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Highlights  

● Regional [18F]-Florbetapir PET predicts future transition to dementia in Downs 

Syndrome. 

● Increased amyloid in prefrontal, inferior parietal, superior frontal, rostral middle frontal, 

and posterior cingulate cortices detect transitioiners, with prefrontal and superior frontal 

being best overall.  

● Amyloid PET-based classification able to discriminate between transitioners and non-

transitioners. 
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Abstract 

INTRODUCTION: Down syndrome (DS) is associated with elevated risk for Alzheimer’s 

disease (AD) due to beta amyloid (Aβ) lifelong accumulation. We hypothesized that the spatial 

distribution of brain Aβ predicts future dementia conversion in individuals with DS. 

 

METHODS: We acquired 18F-Florbetapir PET scans from 19 nondemented individuals with DS 

at baseline and monitored them for four years, with five individuals transitioning to dementia. 

Machine learning classification determined features on 18F-Florbetapir standardized uptake value 

ratio (SUVR) maps that predicted transition. 
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RESULTS: In addition to “AD signature” regions including the inferior parietal cortex, temporal 

lobes, and the cingulum, we found that Aβ cortical binding in the prefrontal and superior frontal  

cortices distinguished subjects who transitioned to dementia. Classification did well in predicting 

transitioners. 

 

DISCUSSION: Our study suggests that specific regional profiles of brain amyloid in older adults 

with DS may predict cognitive decline and are informative in evaluating the risk for dementia.  
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1. INTRODUCTION 

Individuals with Down syndrome (DS) have a high age-related prevalence of Alzheimer’s 

disease (AD) and life-long accumulation of brain amyloid (Aβ) in part due to the triplication of 

amyloid precursor protein (APP) on chromosome 21 [1]. Early identification of those at highest 

risk for early onset dementia is paramount for intervention trials in DS since potential disease 

modification is less effective after symptoms of cognitive decline are observable  [2].  Current 

approaches for detecting brain Aβ include Positron Emission Tomography (PET) [3,4].  One 

important issue is whether amyloid-PET alone could be predictive of dementia transition in DS.  

As Aβ accumulates in the brain across the lifespan in DS, it may be possible to identify  regional 

Aβ distributions that predict future conversion to dementia.  

In this study, a small sample of cognitively stable (non-demented) participants with DS 

were followed clinically for four years after acquiring a baseline [18F]-Florbetapir PET scan.  

During the four-year follow up, a subset progressed to dementia. Here we report on differential 

amyloid accumulation as a function of transition time and classification results of predicting those 

who transitioned, using the baseline PET scan.  Regions of particular interest of amyloid uptake 

were the frontal regions, middle and inferior temporal cortices, and the inferior parietal cortex, as 

these areas have been linked to executive functioning, visuospatial processing, and memory and 

are consistent with late Braak and Braak stages [5]. We hypothesized these regions would show 

preferential uptake during dementia transition. 

 

2.  METHODS 

2.1 Participant Characteristics  
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Nineteen cognitively stable adult participants with DS were evaluated at baseline and after  

nine, 18, 27, and 48 months.  Informed consent was obtained according to IRB protocols for 

persons with intellectual disabilities. During the period of follow-up, five participants progressed 

(age=50.4+/-4.3yrs.; sex=2 Male, 3 Female; average transition time from PET scan=1.9±1.3yrs.) 

to dementia based on clinical evaluations; fourteen remained cognitively stable (age=52.1+/-

5.7yrs.; sex=10 male, 4 female). The groups did not differ in mean age (t(17)=0.70;p<0.49 two-

tailed) or sex (p<0.30 Fisher’s).  Baseline PET scans were acquired along with longitudinal 

neuropsychological assessments (supplement S3).   

 

2.2 Diagnosis of the Transition to Dementia 

Dementia was diagnosed in accordance with ICD-10 and DSM-IV-TR criteria as outlined 

by Sheehan et al. [6]. Transition classification followed comprehensive baseline and longitudinal 

assessments including history, neurological examination, and consideration of previous studies in 

the medical record. Transition to dementia was decided at a consensus conference, blinded to the 

PET scan and neuropsychological results. Participants with confounding conditions (e.g. sensory 

deficit, untreated thyroid dysfunction, and major depression) were excluded.  Details regarding 

transition symptoms of individual participants are given in the supplemental material (supplement 

S1).  

 

2.3 Image Acquisition 

[18F]-Florbetapir PET scans were acquired at the University of California, Irvine 

Neuroscience Imaging Center using the High Resolution Research Tomograph (HRRT) [7].  Image 

acquisition followed the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [8] protocol.  PET 
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reconstructions were performed using the 3D ordinary Poisson ordered subset expectation 

maximization (3D OP-OSEM) algorithm with scatter and attenuation corrections [9]. Structural 

T1-weighted MPRAGE scans were acquired on a 3-Tesla Philips Achieva scanner (sagittal 

orientation, TR/TE=6.8/3.2ms, flip angle=9°, NEX=1, field of view=27cm2, voxel 

resolution=0.94x0.94x1.20mm, matrix size=288x288x170, SENSE acceleration factor=2).  

 

2.4 Image Processing 

The PET frames were realigned, averaged, and co-registered with their respective MRI 

scans. MRI segmentations were computed with the FreeSurfer (FS6; RRID:SCR_001847).  

Regions of interest (ROI) were extracted in the native MRI space from the FS6  Desikan/Killiany 

atlas [10] segmentations.  The PET counts were converted to standardized uptake value ratio 

(SUVR) units using the cerebellum cortex reference region. Correction for partial volume effects 

was performed using PETSurfer [11].  Voxel-weighted ROI averages for inferior parietal, 

entorhinal, lateral occipital, anterior/posterior cingulate, inferior/middle/superior temporal, 

prefrontal, superior frontal, rostral-middle frontal, medial/lateral orbito-frontal, precuneus, dorsal 

striatum, hippocampus, and whole-brain were computed for each subject.  To understand whether 

regional amyloid burden was predictive of transition, we modeled the logit of the probability of 

transition as a linear function of average amyloid burden for each ROI after removing the linear 

effects of region volume and age. 

 

3. RESULTS 

In the following sections, we describe analyses designed to evaluate: (1) the relationship 

between transition time to clinical dementia and regional amyloid burden; (2) the effect size of 
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differences between transitioned and non-transitioned participants; (3) our ability to predict who 

would transition to frank dementia.  

 

3.1 Brain Amyloid and Risk of Clinical Conversion 

Cox regression models were built with the R survival package to evaluate the risk of 

conversion given the variable transition times relative to the PET scan acquisitions 

(RRID:SCR_001905). Separate regression models were evaluated for each ROI after removing 

the linear effects of region volume on ROI SUVR average and including age at the time of PET 

scan as a covariate.   The results are shown in Table 1 where regions are ordered by magnitude of 

risk.  The Cohen’s D effect sizes of the group differences for each ROI is included.  

 

3.2 Amyloid Classification of Future Clinical Transition  

Given the robust findings from the regression analyses, we were interested in evaluating 

the performance of a classification algorithm in detecting future dementia transitions using 

amyloid PET data prior to conversion.  Because of the small sample size, we used an independent 

dataset of eleven participants with DS from the Alzheimer’s Biomarkers Consortium-Down 

Syndrome (ABC-DS) with an initial consensus-based diagnosis of mild cognitive impairment-

Down Syndrome (MCI-DS) [12], six of which transitioned (range: 1.0-1.6 yrs. after PET scan) to 

a diagnosis of dementia (age=53.1+/-4.3yrs.;1 woman, 10 men). This allowed us to test the 

logistic regression classifiers trained with the primary dataset. Using the PET scan data from the 

independent test set, prior to transition and after removing the linear effects of region volume and 

age, we evaluated whether the trained classifiers could discriminate between those who 

transitioned to dementia and those who did not (Table 2).  We found, similar to the Cox regression 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2020. ; https://doi.org/10.1101/2020.08.19.257790doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.19.257790
http://creativecommons.org/licenses/by-nc-nd/4.0/


analysis, that amyloid burden in prefrontal, inferior parietal, superior frontal, rostral middle 

frontal, and posterior cingulate were among the most sensitive regions for detecting who would 

eventually transition.  Broadly looking across the metrics, we found prefrontal and superior 

frontal cortices to be the best overall regions, with high sensitivity, balanced accuracy, area under 

the receiver operating characteristic (auc) curve, and reasonably good specificity (0.80).  

 

4. DISCUSSION 

This retrospective case-control study evaluated a cohort of nineteen participants with DS, 

five of whom transitioned to dementia during the course of follow-up. The primary goal was to 

evaluate the regional distribution of amyloid prior to clinical transition and understand whether 

amyloid alone predicts future transition. Exploiting an advantage of logistic regression with 

retrospective study designs [13], these analyses described the predictive potential for classifying 

cases based on regional amyloid distribution in scans prior to transition.  We found that high 

amyloid burden in several regions, namely the prefrontal, superior and rostral middle frontal and 

posterior cingulate provided excellent prediction of dementia transition.   These regions are 

broadly associated with executive function, working memory, and attentional focus which have 

been implicated in dementia progression in both DS [14] and neurotypical populations [15].   

In the neurotypical population, the biomarker utility of increased cortical uptake as a result 

of amyloid binding on PET scans has been of interest in preclinical AD. However, it is not clear 

that the uptake data reliably predicts those who will subsequently transition to dementia [3].  

Various working groups in nuclear medicine and AD have developed criteria for using amyloid 

PET in the diagnosis of patients with persistent or unexplained mild cognitive impairment in the 

neurotypical population but the diagnostic and predictive status of these measures remains 
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uncertain [16].   Other groups have found the rate of β-amyloid accumulation in the brains of 

individuals with DS differ according to the pre-existing amyloid burden [17,18] and the presence 

of cortical Pittsburgh compound B (PiB)-binding, another PET amyloid ligand, as a function of 

age which has been confirmed in post-mortem studies [19].  Our study suggests regional profiles 

of brain amyloid in older adults with DS may predict cognitive decline and are informative in 

evaluating the risk for dementia. In a related study, we found increased amyloid in specific regions 

to be associated with MCI-DS, supporting the use of regional amyloid in tracking dementia 

progression in DS [12]. Our current study reinforces these observations, suggesting a role for 

regional amyloid measurements in a composite risk score for predicting dementia progression in 

individuals with DS.  Pending replication, regional amyloid is likely a useful quantitative measure 

to include in a composite risk score for dementia transition in DS. 
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 PVC Without PVC 

Regions of Interest Z P P Adj Cohen’s D Z P P Adj Cohen’s D 

BrainAverage 2.53 0.006 0.044 1.87 2.51 0.006 0.041 1.19 

SuperiorFrontal 2.53 0.006 0.044 1.86 2.50 0.006 0.041 1.85 

Prefrontal 2.24 0.012 0.056 1.81 2.39 0.009 0.047 1.80 

MiddleTemporal 2.45 0.007 0.047 1.74 2.00 0.026 0.077 2.18 

PosteriorCingulate 2.25 0.012 0.056 1.67 2.44 0.007 0.045 2.18 

RostralMiddleFrontal 2.20 0.014 0.056 1.66 2.37 0.009 0.047 1.65 

InferiorParietal 2.64 0.004 0.037 1.60 2.71 0.003 0.030 1.77 

SuperiorTemporal 2.20 0.014 0.056 1.55 2.32 0.010 0.051 1.43 

Precuneus 2.62 0.004 0.040 1.52 2.61 0.004 0.035 1.65 

LateralOrbitoFrontal 1.92 0.027 0.074 1.29 2.11 0.017 0.063 1.90 

MedialOrbitoFrontal 1.98 0.024 0.072 1.18 2.26 0.012 0.052 1.24 

AnteriorCingulate 1.97 0.024 0.073 1.13 2.13 0.017 0.063 1.29 

DorsalStriatum 1.83 0.033 0.074 1.10 1.86 0.031 0.094 0.95 
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InferiorTemporal 1.65 0.049 0.098 0.89 2.65 0.004 0.032 1.62 

Hippocampus 0.18 0.431 0.431 0.13 0.66 0.254 0.259 0.35 

EntorhinalCortex -1.39 0.083 0.083 
 

-0.73  -0.46 0.323 0.323 -0.23 

LateralOccipital -1.93 0.027 0.054 -1.32 0.65 0.259 0.259 0.09 

Table 1. Cox regression analysis results with and without partial volume correction (PVC) by 
region of interest.  Table shows the z-score from Cox regression, uncorrected p-values (P), 
adjusted (Hommel method) p-values (P Adj), and Cohen’s D effect size of transitioned vs. non-
transitioned participants. 

 

 

Region Sensitivity Specificity Balanced 
Accuracy 

AUC 

Prefrontal 1.00 0.80 0.90 0.93 

PosteriorCingulate 1.00 0.60 0.80 0.83 

InferiorParietal 1.00 0.20 0.60 0.80 

SuperiorFrontal 1.00 0.80 0.90 0.97 

RostralMiddleFrontal 1.00 0.60 0.80 0.90 

AnteriorCingulate 0.83 0.80 0.82 0.90 

SuperiorTemporal 0.83 0.40 0.62 0.67 

MiddleTemporal 0.83 0.40 0.62 0.80 

BrainAverage 0.67 0.80 0.73 0.80 

Precuneus 0.67 0.40 0.53 0.73 

LateralOrbitoFrontal 0.67 0.80 0.73 0.77 

MedialOrbitoFrontal 0.67 0.60 0.63 0.80 

DorsalStriatum 0.50 0.80 0.65 0.77 

InferiorTemporal 0.50 0.80 0.65 0.70 

Hippocampus 0.33 1.00 0.67 0.47 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2020. ; https://doi.org/10.1101/2020.08.19.257790doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.19.257790
http://creativecommons.org/licenses/by-nc-nd/4.0/


EntorhinalCortex 0.00 1.00 0.50 0.30 

LateralOccipital 0.00 1.00 0.50 0.67 

Table 2:  Logistic regression classifier results tested on an independent sample of participants 
with MCI (N=11) prior to conversion to dementia (N=6).  Metrics shown include specificity, 
sensitivity, accuracy balanced for number of participants in each test group, and area under the 
ROC curve (auc). 
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