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Abstract 

Intracranial stereoelectroencephalography (sEEG) provides unsurpassed sensitivity and 

specificity for human neurophysiology. However, sEEG group analyses are complicated because 

the electrode implantations differ greatly across individuals. Here, using an auditory experiment 

as the test case, we developed a distributed, anatomically realistic sEEG source-modeling 

approach for within- and between-subject analyses. In addition to intracranial event-related 

potentials (iERP), we also estimated the sources of high broadband gamma activity (HBBG), a 

putative correlate of local neural firing. The source models accounted for a significant portion 

of the variance of the sEEG measurements in leave-one-out cross-validation. After logarithmic 

transformations, the sensitivity and signal-to-noise ratio were linearly inversely related to the 

minimal distance between the brain location and electrode contacts (slope≈-3.6). The HGGB 

source estimates were remarkably consistent with analyses of intracranial-contact data. In 

conclusion, distributed sEEG source modeling provides a powerful neuroimaging tool, which 

facilitates anatomically-normalized group analyses of both iERP and HBBG.  
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Introduction 

Stereoelectroencephalography (sEEG) detects the neural activity by measuring the electric 

potentials recorded from electrodes placed inside the brain. Different from 

electroencephalography (EEG) and magnetoencephalography (MEG), where the 

neurophysiological signals are measured extracranially, the intracranial recording allows sEEG 

to provide unprecedented sensitivity to detect local neural currents 
1
. In addition to being used 

to localize epileptogenic zones 
2,3

, sEEG has also been used for high-level cognitive function 

studies 
4-6

. While the practical procedure for localizing the electrodes and the associated data 

analysis has been reported 
7
, a systematic way to combine sEEG data from different patients to 

summarize effects observed from discrete sampling loci is still lacking. This difficulty is the 

consequence of optimizing electrode locations based on individual patients’ medical history, 

imaging data, and vasculature 
8-10

. 

 One way to address this challenge is to model the spatial distribution of neural currents 

based on sEEG data in each patient. In EEG and MEG studies, distributed source modeling 
11

 

estimates a spatial distribution of neural current consistent with the measurements over a 

defined “source space”, which is typically over the cortical surfaces, because MEG and EEG have 

a limited sensitivity beyond the superficial depth 
12

. Individually estimated neural current 

distributions can be spatially registered to a common coordinate system to derive group-level 

inferences. This framework has been extensively used in MEG and EEG data analysis 
13

. An early 

attempt of distributed source modeling of sEEG estimated the origin of the evoked auditory 

response 
14

. However, the brain was only modeled as a simple one-layer sphere and the 

analysis was done in individual patients.  Simulations based on an infinitely homogeneous 

model using a solver closely related to the Minimum-Norm Estimates (MNE) suggested that 

accurate localization of focal neural activity can be achieved if there are electrodes no farther 

than 15 mm 
15

. However, estimating the source of sEEG data using an anatomically realistic 

head model and empirical measurements and combining the modeling results across patients 

remains unexplored. A comprehensive description of the procedure and a quantitative 

evaluation of the performance will have broad impact in bringing this tool in the neuroimaging 

community.  
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One of the most interesting sEEG phenomena, not accessible to scalp EEG, is high-

frequency (> 50 Hz) broadband gamma activity (HBBG). In contrast to large-scale neural 

oscillations visible also to scalp EEG and MEG, HBBG is believed to reflect "non-oscillatory" 

broadband signals, which not only reveal high-frequency synaptic effects but also provide a 

direct correlate of local spiking activity 
16-18

. In non-invasive recordings, sensory responses at 

comparable frequencies are typically much briefer and/or weaker than the sustained HBBG 

observable in intracranial recordings 
19,20

. Measurements of HBBG could thus offer an 

opportunity for much more detailed neurophysiological inferences than those based on iERP or 

oscillatory local field potentials (LFP) alone 
21

. What makes the HBBG specifically interesting 

from a source modeling perspective is that these signals do not seem to spread far from their 

neural site of origin. However, no previous study has, to our knowledge, examined HBBG using 

sEEG source modeling analyses. 

 Here we report a comprehensive workflow to allow for the distributed modeling of 

neural currents, including both iERP and HBBG patterns, using sEEG with electrode locations 

optimized for individual patients with realistic head models. The spatial distributions of neural 

currents were estimated by the MNE 
22

. Importantly, we quantitatively studied three issues 

related to the modeling. First, we depicted and calculated spatial distributions of sensitivity and 

SNR of sEEG. Then, based on empirical sEEG measurements, we used a cross-validation 

procedure to evaluate how much information can be estimated by the distributed source 

modeling.  Third, considering patient’s safety and the access to imaging resources, different 

types of data (CT and/or MRI) are used in identifying the locations of electrode contacts. We 

quantified how the variability in the estimated locations of electrode contacts affect the 

spatiotemporal characteristics of the estimated neural currents. This distributed source 

modeling framework and performance assessment are expected to facilitate studies deriving 

neuroscience inferences using sEEG measurements from patient groups.  
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Results 

Locations of electrode contacts 

Figure 1 (A) shows the locations of electrodes, locations for the neural current estimates, and 

the head models from a representative patient. The locations of all electrodes from all patients 

on a standard template (MNI 305) are shown in Figure 1 (B). Electrodes were distributed mostly 

around the temporal lobes and frontal lobes. Electrodes were implanted in both left and right 

hemispheres. 

 

Estimated neural current distributions and dynamics  

The estimated neural currents in response to the auditory stimuli from two representative 

patients are shown in Figure 2. Strong activity starting at around 120 ms was found at the left 

and right temporal lobes for representative patients with electrodes at the left and right 

temporal lobes, respectively. The spatial distribution and the waveform of the source estimates 

averaged across patients were shown in Figure 1 (C).   

 

High-frequency broadband gamma (HBBG) activity 

We examined the spatial distribution of HBBG due to the auditory stimulus between 60 Hz and 

140 Hz. Figure 3 shows average spatial distributions of significantly increased and decreased 

HBBG in STG and IFG from patients with electrodes implanted in the left hemisphere, 

respectively. These HBBG power changes were further validated from the electrode 

measurements of three patients, who had electrodes implanted in both left STG and IFG (Figure 

3). Similar patterns of significantly increased and decreased HBBG were observed by leaving 

either one of the three validation patients away from the group average analysis. The source 

modeling results matched the finding at the electrode around the left STG and IFG by showing 

significantly increased and decreased HBBG power, respectively. 
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Figure 1. Electrodes, brain models, and the estimated group-averaged neural current 

distributions and dynamics elicited by the auditory stimulus             

 

 (A) An illustration of the source space (green dots) including cortical and sub-cortical brain 

areas, locations of the electrode contacts (blue dots), and three anatomical boundaries (inner 

skull, outer skull, and outer scalp) for the lead field calculation using Boundary Element 

Model on a representative patient. (B) Locations of all electrode contacts (blue dots) depicted 

over a template brain volume (MNI305) in the left (left column) and right (right column) 

hemisphere. A: anterior. P: posterior. L: left. R: right. (C) Spatial distributions of significant 

neural current estimates at 120 ms after the auditory stimulus at the group level. Left and 

right hemisphere results were selectively derived from patients with electrodes implanted in 

the left and right hemispheres, respectively. The distributions over an inflated brain model 

(top row) and at orthogonal anatomical slices (bottom row; L: left hemisphere) are shown at 

the left and right columns, respectively. The average and the standard deviation of the 
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significance time course within the auditory cortex determined from all patients are shown in 

the right columns.  
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Figure 2: Spatial distributions of significant neural current estimates at about 120 ms after the 

sound onset in two representative patients with electrodes implanted in left (s027) and right 

(s031) hemispheres 

 

 

 

These distributions at orthogonal anatomical slices (L: left hemisphere) and over an inflated 

brain model are shown at the left and right columns, respectively. The average and the 

standard deviation of the significance time course within the auditory cortex determined 

from all patients are shown at the right columns. 
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Figure 3. Spatial distributions of HBBG estimates between 60 Hz and 140 Hz in response to 

the auditory stimulus. 

 

 

(A) Significantly increased auditory HBBG activity were found in STG, whereas the HBBG in 

IFG was significantly decreased. (B) The recordings from three patients with electrodes 

implanted at STG and IFG were used to validate the source analysis result: The dark red 

circles show the locations of the electrode contacts closest to the STG and IFG locations of 
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interest, the blue circles denote the rest of the electrode contacts. (C) The time-frequency 

representations (TFR) of the data from the electrode T, which is close to STG, show evidence 

of significantly increased HBBG activity at about 100 Hz between 200 ms and 400 ms after the 

stimulus onset. The data from the electrodes O and D, which is near IFG, show evidence of 

significant HBBG decreases, respectively. (D) Leave-one-out between-subject cross-validation 

analyses: The TFR results from the electrodes T, D, and O were consistent with the source 

modeling of the estimated HBBG power at the group level. Notably, each of the group 

representations at the bottom panel include all patients except the one whose electrode data 

was utilized for the between-subject cross-validation.  
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Cross-validation 

Distributed source modeling provides estimates of spatially distributed currents. As a model, 

the estimated neural current is different from the true neural current. Using leave-one-out 

validation, we quantified this discrepancy (Table 1). The average proportion of the explained 

variance dropped from 38% to 24% as fewer (from 100% to 50%) remaining electrode contacts 

were used for modeling the source. Depending on the number of electrode contacts used for 

modeling, the explained variance at an electrode contact ranged between 49% and 22%. No 

significant relationship between the number of electrode contacts and the proportion of the 

explained variance was found. This was presumably due to the fact that the number and 

location of electrodes for each patient were planned based on the clinical need rather than the 

auditory study. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.256669doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256669
http://creativecommons.org/licenses/by-nc-nd/4.0/


- 12 - 

Table 1. Percentages of the variance explained by the source modeling in the cross-validation 

analysis. 

Patient 

Percentage of remaining contacts (N-1) for 

source modeling 

Number of electrode 

contacts (N) 

Electrode at 

hemisphere 

100% 90% 70% 50% 

left 

hemi. 

right 

hemi. 

s026 38% 34% 23% 28% 69 + - 

s027 36% 32% 32% 17% 104 + - 

s031 22% 21% 18% 18% 95 - + 

s032 33% 31% 30% 26% 67 + - 

s033 44% 45% 34% 30% 76 + - 

s034 36% 33% 32% 27% 100 - + 

s036 49% 37% 37% 19% 59 - + 

s041 42% 34% 22% 19% 70 + + 

max. 49% 45% 37% 33% 104 

min. 22% 21% 18% 17% 59 

average 38% 33% 29% 24% 80 

standard 

deviation 8% 7% 6% 7% 17 

 

Numbers for each patient and the average, maximum, minimum, and standard deviation 

across patients are reported. The presence and absence of the electrodes at hemispheres 

were denoted by “+” and “-“, respectively.  
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Sensitivity 

The spatial distributions of SNR and sensitivity across patients in the left and right hemispheres 

are shown in Figures 4 and 5, respectively. Color coded the brain locations with SNR or 

sensitivity between the top 85% and 99% of the values across the cortex. Note that only 

patients with electrodes implanted at one hemisphere were included in the plot of the same 

hemisphere. Approximate locations of electrode contacts to the cortex were indicated by green 

dots in the figure. Regions with high SNR and sensitivity were found in the vicinity of electrode 

contacts. Within an individual, the spatial distributions of SNR and sensitivity were very visually 

similar, suggesting that the estimated noise distributions were rather spatially homogeneous. 

The SNR and sensitivity in the thalamus and brain stem were comparable to those locations at 

the vicinity of electrode contact implantation: they were about the top 85% of the SNR and 

sensitivity. Figure 6 shows the spatial distributions of average SNR and sensitivity across 

patients with electrodes implanted in the left and right hemispheres in brain surfaces and 

volumes, respectively. Top 15% values were color-coded. High SNR and sensitivity were found 

around the anterior temporal lobe, insula, and frontal lobe, where electrodes were implanted 

based on the clinical need to ascertain epileptogenic zones. Both medial and lateral aspects of 

the cortex and deep brain areas, including part of the brain stem, had high SNR and sensitivity. 
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Figure 4. Distributions of the SNR and sensitivity for patients with electrode contacts in the 

left hemisphere 

 

 

Colors code values sorted between the top 85% and 99% of each individual patient. Green 

dots denote the location of electrode contacts.  
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Figure 5. Distributions of the SNR and sensitivity for patients with electrode contacts in the 

right hemisphere 

 

Colors code values sorted between the top 85% and 99% of each individual patient. 
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Figure 6. Distributions of the average SNR and sensitivity across patients with electrodes 

implanted in the left and right hemispheres.  

 

Colors code values sorted between the top 85% and 99% of the average.  
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We quantitatively characterized how the SNR and sensitivity at a brain location varied 

with its distance to electrode contacts. Specifically, we considered two distance metrics, the 

minimum and the median of all distances between a brain location and all electrode contacts.  

The distributions of both distance metrics versus SNR and sensitivity for each patient and all 

patients in the logarithm scale were shown in Figures 7 and 8 respectively. These distributions 

were visually similar across patients. 

In the logarithm scale, the distributions of SNR and sensitivity versus the minimum of 

the distance appeared to be better described by an inverse linear model than the distributions 

of SNR and sensitivity versus the median of the distance. The regression identified a significant 

inverse linear relationship between the 10-based logarithm of the SNR and the 10-based 

logarithm of the minimum distance with a slope of -3.6 and an intercept of -16.6 (p < 0.01). A 

significant inverse linear relationship between the 10-based logarithm of the sensitivity and the 

10-based logarithm of the minimum distance was found with a slope of -3.7 and an intercept of 

-13.3 (p < 0.01). Both regression lines suggested that when the minimal distance became ten-

fold larger (e.g., 1 mm to 10 mm), the SNR and sensitivity dropped to 0.25% and 0.20%, 

respectively. 
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Figure 7. Scatter plots between the brain-electrode distance and SNR and sensitivity in 

individual patients in the log-log scale 

 

The distance measures include the median and the minimum distances between the 

estimated brain area and electrode contact locations.  Regression lines between the 

minimum distance and the SNR or sensitivity are also shown. 
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Figure 8. Scatter plots between the brain-electrode distance and SNR and sensitivity across all 

patients in the log-log scale. 

 

The distance measures include the median and the minimum distance between the source-

estimated brain area and electrode contact locations.  Regression lines between the 

minimum distance and the SNR or sensitivity were shown. 
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The effect of the variability in electrode contact locations  

The locations of electrode contacts informed by CT and post-surgery MRI on two representative 

patients are shown in Figure 9. While small, the discrepancy between the estimated locations 

of electrode contacts by CT and post-surgery MRI was still visually discernable. The average, 

standard deviation, maximal, and minimal distance between electrode contacts informed by CT 

and post-surgery MRI were and 1.39 mm ± 0.63 mm, 2.87 mm, and 0.24 mm for one patient 

and 2.61 ± 0.83 mm, 4.33 mm, and 0.92 mm for the other patient. The dSPMs estimated from 

two lead field matrices with electrode contact locations informed by CT or post-surgery MRI 

were shown in Figure 9. The spatial distributions and the waveform of the significance of the 

neural currents were similar. Quantitatively, the correlation coefficients of the spatiotemporal 

dynamics between two lead field matrices were both 0.97 in two patients. The ratios of the 

power of the dSPM difference between two lead field matrices and the average power of the 

dSPM between two lead field matrices were 3.34% and 4.04% for patient s026 and s041, 

respectively.  
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Figure 9. Source modeling based on the electrode contacts suggested by the post-surgery MRI 

and CT  

 

Locations of the electrode contacts suggested by the post-surgery MRI and CT (top panel), the 

estimated neural current distributions using the electrode contact locations informed by CT 

(the second row from the top) and post-surgery MRI (the third row from the top), and the 

time courses of statistical significance in the auditory cortex from two representative patients. 
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Discussion 

Here, we describe a novel procedure to estimate a neural current distribution based on the 

discrete sampling of sEEG data with realistic anatomical information from MRI. In our empirical 

data with auditory stimulation, the estimated sources of activations were localized in the 

vicinity of auditory cortices of the superior temporal plane (Figures 1 and 2). Notably, as we 

hypothesized, the source localization results were anatomically highly consistent across 

participants (Figure 1), even though the locations of electrode contacts were highly variable 

across individuals. Further, our source estimation conducted in the frequency domain revealed 

significantly increased 60-140 Hz HBBG in STG, and HBBG decreases in IFG, consistent with the 

analyses of the directly recorded sEEG signal (Figure 3). These results suggest that distributed 

source modeling of sEEG data offers a powerful way to conduct anatomically normalized 

human neurophysiological research at the group level, and thus opens entirely new possibilities 

for basic and clinical neuroscience research with sEEG recordings.  

 

Sensitivity and SNR 

In this study, we systematically examined the sensitivity and SNR distributions of the estimated 

neural current accounting for the recorded sEEG data. The results show that the sensitivity and 

the SNR of the sEEG recording depend strongly on the distance between the estimated area vs. 

electrode contact location (Figures 4, 5, and 6). When we considered individual electrode 

locations, the sensitivity and SNR can become tens or hundreds of times smaller if the current 

source locations in the model is as little as one millimeter away from the nearest electrode 

contact (Figures 7 and 8). The sharp drop of SNR and sensitivity for a moderate increase in the 

minimal distance, together with the cross-validation analysis (Table 1), suggested that precise 

electrode implantation is important to record the desired neural activity at the target brain 

locations. However, as the neural currents were estimated from an ensemble of sEEG 

electrodes, the dependency of the sensitivity and SNR on the distances between the brain 

region of interest and all electrode contacts was more complicated: The sensitivity and SNR can 

be comparable when the median distance from a brain location to all electrode contacts 
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differed by a few centimeters. Therefore, combining data from multiple sEEG electrode 

contacts greatly improves the sensitivity and SNR.  

 

Inclusion of deep brain source locations 

Facilitated by the computational anatomy, we were able to examine the sensitivity and SNR 

distribution at regions with automatically segmented anatomical labels. We were particularly 

interested in the deep brain areas, where non-invasive MEG and EEG measurements have a 

very limited sensitivity 
23

. Consistent with the fact that sEEG electrode contacts are in the 

proximity of deep brain areas, we found that the sensitivity and the SNR in, for example, the 

thalamus and brain stem were comparable to those of several cortical locations (Figure 6). This 

result supports the feasibility of using distributed source modeling of sEEG data to examine the 

interactions between cortical and subcortical areas. 

 We found significant neural currents in deep brain areas. However, we were not able to 

pinpoint the locations toward the medial geniculate body or inferior colliculus, part of the 

known sub-cortical areas involved in the auditory processing pathway. To better identify neural 

currents at these potential regions, we may thus need to limit the source space to the 

candidate locations as a prior constraint. This solution would, however, come with the price of 

neglecting neural currents from locations outside the modeled regions.  

Cross-validation 

We cross-validated the accuracy of the source modeling of sEEG data using the leave-one-out 

approach.  Note that this cross-validation is different from the “goodness-of-fit” in MEG/EEG 

analyses. In our cross- validation, the data used to estimate the source distribution and the data 

used for prediction were exclusive sets. On the contrary, the “goodness-of-fit” in MEG/EEG 

analyses was derived from the same set of measurement for both estimating the source 

distribution and predicting the measurement based on the estimated sources. Our cross-

validation suggested that about 30-50% of the variance can be explained by the proposed 

source modeling (Table 1). In other words, despite the limiting effects of the sharp drop-off of 

the sensitivity of sEEG at locations away from the recording sites (Figures 7 and 8), the source 
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modeling still explained a significant portion of the variance. This is probably because of the 

elicited neural activity is spatially distributed and the model favors a spatially extended source 

distribution to explain the measurements. In such a case, the L-2 norm-based distributed 

source modeling can reasonably describe the distribution of the neural activity at areas away 

from the implanted electrodes.  

Potential factors related to the cross-validation performance reported here include the 

choice of the experimental paradigm, the forward model, and the source model. Here we used 

the neural responses to rather simple auditory stimuli (white noise bursts) with a priori well-

known foci of response activity as the means to validate the predicted sEEG measurements. 

Such empirical validation is closely related to how much neural activity was actually elicited by 

the auditory stimuli. If the elicited neural activity is focal, it is difficult to estimate such an 

activity from measurements at other contact locations with minimal responses. Accordingly, if 

the elicited neural activity is spatially diffuse, the estimated the neural activity could have 

better matched the measurement at the left-out contacts. This potential confound should be 

considered in the interpretation of our results.  

The forward model used in this study can mitigate the challenge of calculating the 

electric potential within the neural current volume 
24,25

. More complicated forward models, 

such as the one using the Finite Element Model 
26

, or simpler models, such as the one assuming 

a simple spherical geometry and homogeneous conductivity 
14

, could provide a potential 

alternative for our choice for the trade-off between accuracy and computational complexity. 

Additional benefits in the forward calculations could be achieved by using recently introduced 

boundary element fast multipole methods, which simulate anatomically realistic head models 

with unprecedented numerical accuracy and speed 
27

. As for the source model, we used the 

MNE for its computational efficiency. Other choices, such as the one preferring focal neural 

current estimate by imposing a constraint to minimize its L-1 norm, such as the minimum-

current estimate 
28

, may be further investigated in the future. Good performance in the cross-

validation analysis may only appear in experiments where spatially extensive neural currents 

are present. For experiments with a focal neural current distribution, such as that in the early 

response of sensory processing in normal subjects and inter-ictal discharges in epilepsy patients, 
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the performance of cross-validation may be low, because estimating neural currents from 

contacts other than the one close to the focal neural current can be difficult. Yet again, in such 

cases, very strong a priori hypotheses of the probable source location are available, in contrast 

to the more complex cognitive processes. 

 

Registration  

Previous studies using the combination of CT and MRI suggested that the accuracy of 

identifying the locations of electrode contacts was in the range of about 1 mm 
29

. In our study, 

we used the MRI before and after electrode implantation to identify the locations of sEEG 

electrodes. Specifically, focal dark spots in the post-surgery MRI were taken as the sites of 

electrode contacts. However, the distortion in the post-surgery MRI due to the susceptibility 

and the spatial resolution of MRI can confound the accuracy of the electrode contract 

localization. Using only MRI to inform the electrode contact location had the benefit of 

reducing the exposure to ionizing radiation in a CT scan. Without a gold standard, it is difficult 

to judge whether the electrode registration is more accurate with either MRI or CT. Both MRI 

and CT have distinct challenges in localizing electrode contacts: CT needs to be registered to 

MRI, and a smooth skull has limited features to warrant accurate registration between CT and 

MRI. The skull of MRI is an essential part may be difficult to be described accurately because of 

the concerns on MRI spatial resolution (about 1 mm) and distortion due to systematic (such as 

the nonlinearity property in MRI gradient coils 
30

) and physiological (such as the susceptibility 

discontinuity between the brain, cerebrospinal fluid, skull, and scalp interfaces) reasons 
31

.  

 

Source estimates of high-frequency broadband gamma activity 

Our results suggest that distributed source estimation could also be utilized for analyses of 

HBBG activity. Evidence for significantly increased HBBG to sound stimuli was found in the 

vicinity of auditory cortices. Interestingly, we found evidence of decreased HBBG in IFG and 

nearby areas right after the onset of the auditory stimulus, an effect that could reflect 

suppression of involuntary attention networks due to the repetitive nature of the non-target 
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auditory stimulus for reviews, see 
32,33

. The most important result of the present analysis, 

however, was the considerable consistency of the source estimates of HBBG and the electrode 

data obtained from contacts in the vicinity of STG and IFG. These novel results suggest that 

distributed source modeling analyses is a way to conduct anatomically-normalized group 

analyses of this highly essential neural activity, which is believed to constitute a direct correlate 

of local firing activity in the human brain 
16-18

.  

 

Future studies 

There are a few issues worth studying further. For example, it is not known how the 

regularization parameter modulates the current source estimate. The regularization parameter 

is crucial in deriving a stable solution because of the ill-posed nature of the lead fields in 

extracranial MEG/EEG measurements. However, in sEEG, the lead fields can vary significantly 

across patients due to different electrode implantation scheme. Further, the conditioning 

number of the lead field matrix in sEEG can be less ill-posed. Thus, how to optimize the 

regularization parameter is still an open question. Second, we derived the group inference by 

averaging neural current estimates across patients. Given quantitative estimates of sensitivity 

and SNR, it might be reasonable to weight the neural current estimates by sensitivity or SNR. 

However, without a gold standard, it is still difficult to justify whether such SNR or sensitivity 

weighted group average is a better choice.  

 

Conclusions 

While sEEG provides unsurpassed spatiotemporal accuracy, the interpretation of results has 

been complicated because the loci of electrode implantations differ greatly across individual 

patients. We developed a distributed, anatomically realistic sEEG source-modeling approach 

with which it becomes possible to estimate both iERP and HBBG responses in any given location 

at group level. High sensitivity and SNR values were found both in cortical and subcortical 

source estimates. After logarithmic transformations, the sensitivity and SNR were linearly 

inversely related to the minimal distance between the brain location and electrode contacts 
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(slope≈-3.6). The HGGB source estimates were remarkably consistent with analyses of 

intracranial-contact data. Distributed sEEG source modeling of iERP and HBBG responses 

provides a new powerful neuroimaging tool that opens up a wealth of possibilities for both 

basic and clinical neuroscience research. 
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Materials and Methods 

Participants 

This study was approved by the Institute Review Board of National Yang Ming University and 

Taipei Veteran General Hospital. Ten medically refractory patients (age: 21 – 45; nine female) 

gave written informed consent before participating in this study. Two patients were excluded 

for the analysis because a large portion of the brain was resected in previous surgeries. The 

number of the implanted electrode contacts and the hemisphere with electrodes, together with 

the patient’s demographic information, are listed in Table 2. 
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Table 2. Demographic, medical, and surgical information for patients 

 

Patient 

Age Sex 

# of electrode contacts (N) electrode hemisphere 

Epilepsy 

diagnosis  

  left hemi. right hemi.  

s026 25 M 69 + - Left TLE 

s027 29 F 104 + - Left TLE 

s031 33 F 95 - + 

Right temporal 

PNH and right 

frontal 

opercular PMG 

s032 23 F 67 + - Left TLE 

s033 21 F 76 + - Left TLE 

s034 27 F 100 - + 

Right frontal 

and temporal 

schizencephaly 

s036 45 F 59 - + Right TLE 

s041 39 F 70 + + Right TLE 

max. 45  104  

min. 21  59  

 

TLE: temporal lobe epilepsy, PNH: periventricular nodular heterotopia, PMG: polymicrogyria. 

M: male; F: female. 
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Experiment design 

Two runs of data were collected from each patient. Each run lasted for six minutes. Within each 

run, fifty trials of auditory stimuli, including 45 trials of white noise (equal power between 20 Hz 

and 10,000 Hz; 0.3 s duration) and five trials of pure tone (440 Hz; 0.3 s duration), were 

randomly presented. The minimum and the average inter-stimulus intervals were 1.2 s and 2.0 

s, respectively. Patients were instructed to press a button when hearing a pure tone while 

ignoring the white noise stimuli. In this study, we only calculated the responses evoked by the 

white noise in order to avoid confounds related to motor responses. Auditory stimuli were 

delivered by an earphone (Model S14, Sensimetrics, Gloucester, MA, USA) using E-Prime 

(Psychology Software Tools, Sharpsburg, PA, USA). 

 

sEEG recording 

The placement of the electrode was solely based on the patient’s benefit in identifying 

epileptogenic zones. Each patient was implanted with 8 or 10 electrodes, whose contacts were 

mostly distributed between bilateral temporal lobes. Each electrode (0.3 mm diameter and 

spacing between contact centers 5 mm; Ad-Tech, Racine, WI, USA) had 6 or 8 contacts. sEEG 

data were sampled at 2,048 Hz with an electrode at FPz as the reference.  

 

MRI acquisitions 

T1-weighted MRI was collected before and after the surgery for electrode implantation on 3T 

MRI scanners (Skyra, SIEMENS, Erlangen, Germany; Discovery MR750, General Electric, 

Milwuakee, WI, USA). The imaging parameters were the same in two acquisitions: MPRAGE 

sequence, TR/TI/TE/flip = 2530 ms/1100 ms/3.49 ms/7
o
, partition thickness = 1.33 mm, matrix = 

256 x 256, 128 partitions, FOV = 21 cm x 21 cm. Two sets of MRIs were acquired for each 

patient before and after electrode implantation.  
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CT acquisitions 

Two patients were acquired with CT after electrode implantation. CT images were used to guide 

the identification of electrode contact locations using 3D slicer 
34

. Parameters used in the CT 

acquisition were 64 slices, rotation duration of 1 second with coverage of 16 cm per rotation, 

60-kW generator (512 × 512 matrix), 120 kV, 301 mAs, and axial slice thickness of 1 mm. 

 

Data analysis 

The first step of our analysis was to identify the location of electrode contacts in the individual’s 

brain. Specifically, in the post-surgery MRI, there were discrete dark image voxel clusters 

caused by the susceptibility artifact for each electrode contact. These dark image voxels 

clusters were used to identify the locations of contacts. We developed an in-house software in 

Matlab (version 2019b, MathWorks, Natick, MA, USA) with a graphical user interface to 

facilitate this process. Specifically, after manually specifying the distance between neighboring 

contacts and the number of contacts on an electrode, an electrode was moved around the 

whole brain such that contact locations matched dark image voxel clusters in the post-surgery 

MRI. Upon completing the manual identification of electrode locations, contact locations were 

further optimized by allowing minor translation (±10 mm) and rotation (±2 degrees) by 

minimizing the sum of squares of image voxel values at all contact locations and their 

neighboring 26 image voxels within a 3-by-3-by-3 image voxel cubic in the post-surgery MRI 

using the patternsearch function in MATLAB.  

 Identified electrode contact locations were registered to pre-surgery MRI, which was 

used to build Boundary Element Models (BEM’s) required for the lead field calculation and to 

define locations of potential neural current sources. In the construction of BEM’s, the inner-

skull, out-skull, and outer-scalp surfaces were automatically created by FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu) based on the pre-surgery MRI. We did not use the post-

surgery MRI for BEM construction because of the concern on the susceptibility artifact caused 

by electrode contacts and surgery wounds. The cortical source space for each patient was 

created at the gray matter and white matter boundary with approximately 5-mm separation 
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between neighboring source locations. In addition, we also had sub-cortical source space, 

including thalamus, caudate, putamen, hippocampus, amygdala, accumbens areas, and 

substancia nigra. These sub-cortical areas were automatically segmented from T1-weighted MRI 

35
. At each source location, we had three orthogonal neural current dipoles in +x, +y, and +z 

directions. The current source space, including both sources at cortical and sub-cortical areas, 

electrode contacts, and three surfaces of inner-skull, out-skull, and out-scalp from a 

representative patient are shown in Figure 1 (A). With defined source space, electrode contact 

locations, and skull as well as scalp boundaries, the lead fields were calculated by the 

OpenMEEG package (https://openmeeg.github.io/) 
24,25

.  

The measured sEEG data and the neural current sources at time t were related to each 

other by 

 

y(t) = A x(t) + n(t), [1] 

 

where y(t) denoted the collection of sEEG data across electrode contacts, x(t) denoted the 

neural current strength, and n(t) denoted the contaminating noise. In this study, we excluded 

the electrode contacts potentially related to epileptic activity when we created y(t). Note that 

x(t) had 3xm elements to describe the neural currents in three orthogonal directions at m brain 

locations. A was the lead field matrix. Specifically, for a unit current dipole source at location r’ 

in the +x, +y, or +z direction, the electric potentials measured at all electrode contacts were 

  

a(r’) = [ax(r’), ay(r’), az(r’)]. [2] 

 

Assembling a(r’) across all possible current dipole source locations created the lead field 

matrix A. 
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A = [a(r’1), a(r’2), …, a(r’k)], k =1, …., d. [3] 

 

where d denotes the total number of current dipole source locations. 

To estimate x(t) using the MNE, we had  

 

������� � �������� � 	
�������, [4] 

 

where C was the noise covariance matrix 

 


 � 
����������. [5] 

 

The operator 
·� takes the ensemble average across realizations. In practice, C was estimated 

from y(t) during the pre-stimulus interval (from -200 ms to 0) with data concatenated across 

trials. The regularization 	 tuned the balance between the strength of the estimated neural 

current strength and the discrepancy between the modeled and measured data. We chose  

	 � 10 in this study as suggested by a previous MEG study 
13

. 

 The spatial distribution of estimated neural currents at each time instant from each 

patient was then spatially registered to an arbitrarily selected subject. Here we chose the 

subject “fsaverage” in the FreeSurfer library as the target subject. This registration was done via 

a spherical coordinate system 
36

. The neural currents were averaged across patients for each 

condition separately. The significance of neural current distribution was estimated by 

calculating the ratio between the instantaneous value and the standard deviation of the 

baseline interval at each source location after subtracting the mean of the estimates in the pre-

stimulus interval. These ratios constituted the dynamic statistical parametric maps (dSPM) and 

were reported to follow a t-like distribution 
37

. 
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 We quantified the spatiotemporal distribution of neural HBBG activity in the frequency 

domain. Specifically, after obtaining ������� for each trial of stimulus, a Morlet wavelet 

function was applied to ������� to extract frequency-specific HGGB signal at the central 

frequency f . The frequency selectivity was controlled by using five cycles of waveform. In this 

study, we specifically focused on the putative "non-oscillatory" HBBG between 60 Hz and 140 

Hz. After the Morlet wavelet filtering, we took the absolute values of the frequency specific 

HBBG waveforms. At each brain location, we calculated the root of the sum of squares (RSS) of 

these wavelet-filtered waveforms of three directional components. Then, we averaged RSS of 

the frequency-specific wavelet-filtered waveforms across trials. The average waveform was 

then normalized to the average of the pre-stimulus baseline interval. We took the 10-based 

logarithm of the normalized average waveform as the spatiotemporal map of HBBG at 

frequency f for each patient. Similar to the group dSPM, these maps were combined across 

patients by averaging, subtracting the mean of the average, and dividing the standard deviation 

in the pre-stimulus baseline interval.  

 These calculations were validated by examining the correspondence of the HBBG 

between the source modeling from a group of patients and measurements from implanted 

electrodes. Specifically, we found patients with electrodes implanted at both the left superior 

temporal gyrus (STG) and inferior frontal gyrus (IFG). The HBBG was estimated by the source 

modeling of measurements from all patients except the chosen one. Then, HBBG from the 

dSPM were compared with the results from electrodes close to the left STG and IFG. 

 

Sensitivity and signal-to-noise ratio evaluation 

With a given distribution of implanted electrodes and a set of current dipole source locations, 

we defined the sensitivity for a current dipole source at location r’ as 

 

s(r’) = ��
	��’� � �


	��’� � ��
	��’�. [6]  
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A map of s(r’) across current dipole source locations quantitatively depicted locations in the 

brain most sensitive to a particular set of implanted electrodes.  

The signal-to-noise (SNR) at a specific location in the brain was derived from the 

“whitened” lead field matrix A. We used Singular Value Decomposition on the noise covariance 

matrix C to obtain a whitening matrix, which was then used to remove the correlation among 

lead fields and to normalize the sensitivity. 

 


 � ����.  
��/	 � ����/	   [7] 

 

 �� � � 
��/	�   [8] 

 

SNR(r’)= ��,�
	 ��’� � ��,


	 ��’� � ��,�
	 ��’�,   [9]  

 

where ��,���’�, ��,
��’�, and  ��,���’� were columns of �� corresponding to the location r’ 

with lead fields in the x-, y-, and, z-direction, respectively. k denotes a scaling factor. Because 

the lead field matrix � was calculated based on the theory and the noise covariance 
 was 

derived from empirical data, there was no information regarding the relative contribution from 

both terms. Thus, we arbitrarily chose k =1 in this study. The interpretation of the SNR should 

be careful considering the possible strength of the neural current and the noise level in 

different measurement conditions.    

 

Cross-validation 

We used cross-validation to evaluate the accuracy of source modeling. Specifically, in a patient, 

the sEEG data at one contact were left-out, whereas a part of the remaining contacts was used 

for source modeling. The estimated sources were then used to predict the measurement at the 

left-out electrode contact by multiplying its lead field matrix and the estimated neural current 
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distribution. Such synthetic data were compared with the actual measurement at the left-out 

contact. Each contact was taken as the left-out contact in each analysis, where the included 

contacts for source modeling were randomly selected and parametrically varied between 100%, 

90%, 70%, and 50% of the remaining contacts. Ideally, the measurement at the left-out contact 

and the synthetic data should match each other. We used the percentage mean-squared-error 

as a metric to evaluate how much information was lost or retained in the source modeling. 

 

Stability of the source modeling 

The locations of electrode contacts were identified by the guidance of post-surgery MRI, where 

focal black spots were taken as the locations of electrode contacts because of the susceptibility 

effects. This procedure was recommended in a previous study 
7
 and used to all patients in this 

study. Alternatively, electrode contacts were localized by the guidance of computer 

tomographic images after registered, with the help of the FSL (flirt function) package, and fused 

with the pre-surgery MRI. Two patients also followed this procedure to localize electrode 

contacts. We measured the average, standard deviation, minimal distance, and maximal 

distance between the discrepancy between two sets of electrode contact locations. Two 

different lead field matrices were calculated accordingly. We calculated the neural currents 

using these two lead field matrices and compared the differences in the estimated 

spatiotemporal dynamics of neural activity.  
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