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Abstract

Intracranial stereoelectroencephalography (sEEG) provides unsurpassed sensitivity and
specificity for human neurophysiology. However, sEEG group analyses are complicated because
the electrode implantations differ greatly across individuals. Here, using an auditory experiment
as the test case, we developed a distributed, anatomically realistic SEEG source-modeling
approach for within- and between-subject analyses. In addition to intracranial event-related
potentials (iERP), we also estimated the sources of high broadband gamma activity (HBBG), a
putative correlate of local neural firing. The source models accounted for a significant portion
of the variance of the sEEG measurements in leave-one-out cross-validation. After logarithmic
transformations, the sensitivity and signal-to-noise ratio were linearly inversely related to the
minimal distance between the brain location and electrode contacts (slope=-3.6). The HGGB
source estimates were remarkably consistent with analyses of intracranial-contact data. In
conclusion, distributed sEEG source modeling provides a powerful neuroimaging tool, which

facilitates anatomically-normalized group analyses of both iERP and HBBG.
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Introduction

Stereoelectroencephalography (sEEG) detects the neural activity by measuring the electric
potentials recorded from electrodes placed inside the brain. Different from
electroencephalography (EEG) and magnetoencephalography (MEG), where the
neurophysiological signals are measured extracranially, the intracranial recording allows sEEG
to provide unprecedented sensitivity to detect local neural currents ' In addition to being used
to localize epileptogenic zones *?, sEEG has also been used for high-level cognitive function
studies *®. While the practical procedure for localizing the electrodes and the associated data
analysis has been reported ’, a systematic way to combine sEEG data from different patients to
summarize effects observed from discrete sampling loci is still lacking. This difficulty is the
consequence of optimizing electrode locations based on individual patients’ medical history,

imaging data, and vasculature **°.

One way to address this challenge is to model the spatial distribution of neural currents
based on sEEG data in each patient. In EEG and MEG studies, distributed source modeling **
estimates a spatial distribution of neural current consistent with the measurements over a
defined “source space”, which is typically over the cortical surfaces, because MEG and EEG have
a limited sensitivity beyond the superficial depth 12, Individually estimated neural current
distributions can be spatially registered to a common coordinate system to derive group-level
inferences. This framework has been extensively used in MEG and EEG data analysis 13 An early
attempt of distributed source modeling of sSEEG estimated the origin of the evoked auditory
response %, However, the brain was only modeled as a simple one-layer sphere and the
analysis was done in individual patients. Simulations based on an infinitely homogeneous
model using a solver closely related to the Minimum-Norm Estimates (MNE) suggested that
accurate localization of focal neural activity can be achieved if there are electrodes no farther
than 15 mm . However, estimating the source of SEEG data using an anatomically realistic
head model and empirical measurements and combining the modeling results across patients
remains unexplored. A comprehensive description of the procedure and a quantitative
evaluation of the performance will have broad impact in bringing this tool in the neuroimaging

community.
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One of the most interesting SEEG phenomena, not accessible to scalp EEG, is high-
frequency (> 50 Hz) broadband gamma activity (HBBG). In contrast to large-scale neural
oscillations visible also to scalp EEG and MEG, HBBG is believed to reflect "non-oscillatory”
broadband signals, which not only reveal high-frequency synaptic effects but also provide a

16-18

direct correlate of local spiking activity . In non-invasive recordings, sensory responses at

comparable frequencies are typically much briefer and/or weaker than the sustained HBBG

1920 Measurements of HBBG could thus offer an

observable in intracranial recordings
opportunity for much more detailed neurophysiological inferences than those based on iERP or
oscillatory local field potentials (LFP) alone *'. What makes the HBBG specifically interesting
from a source modeling perspective is that these signals do not seem to spread far from their
neural site of origin. However, no previous study has, to our knowledge, examined HBBG using

SEEG source modeling analyses.

Here we report a comprehensive workflow to allow for the distributed modeling of
neural currents, including both iERP and HBBG patterns, using SEEG with electrode locations
optimized for individual patients with realistic head models. The spatial distributions of neural
currents were estimated by the MNE *%. Importantly, we quantitatively studied three issues
related to the modeling. First, we depicted and calculated spatial distributions of sensitivity and
SNR of sEEG. Then, based on empirical SEEG measurements, we used a cross-validation
procedure to evaluate how much information can be estimated by the distributed source
modeling. Third, considering patient’s safety and the access to imaging resources, different
types of data (CT and/or MRI) are used in identifying the locations of electrode contacts. We
quantified how the variability in the estimated locations of electrode contacts affect the
spatiotemporal characteristics of the estimated neural currents. This distributed source
modeling framework and performance assessment are expected to facilitate studies deriving

neuroscience inferences using sEEG measurements from patient groups.
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Results

Locations of electrode contacts

Figure 1 (A) shows the locations of electrodes, locations for the neural current estimates, and
the head models from a representative patient. The locations of all electrodes from all patients
on a standard template (MNI 305) are shown in Figure 1 (B). Electrodes were distributed mostly
around the temporal lobes and frontal lobes. Electrodes were implanted in both left and right

hemispheres.

Estimated neural current distributions and dynamics

The estimated neural currents in response to the auditory stimuli from two representative
patients are shown in Figure 2. Strong activity starting at around 120 ms was found at the left
and right temporal lobes for representative patients with electrodes at the left and right
temporal lobes, respectively. The spatial distribution and the waveform of the source estimates

averaged across patients were shown in Figure 1 (C).

High-frequency broadband gamma (HBBG) activity

We examined the spatial distribution of HBBG due to the auditory stimulus between 60 Hz and
140 Hz. Figure 3 shows average spatial distributions of significantly increased and decreased
HBBG in STG and IFG from patients with electrodes implanted in the left hemisphere,
respectively. These HBBG power changes were further validated from the electrode
measurements of three patients, who had electrodes implanted in both left STG and IFG (Figure
3). Similar patterns of significantly increased and decreased HBBG were observed by leaving
either one of the three validation patients away from the group average analysis. The source
modeling results matched the finding at the electrode around the left STG and IFG by showing

significantly increased and decreased HBBG power, respectively.
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Figure 1. Electrodes, brain models, and the estimated group-averaged neural current

distributions and dynamics elicited by the auditory stimulus

(A) o (C)

z immi)

(A) An illustration of the source space (green dots) including cortical and sub-cortical brain
areas, locations of the electrode contacts (blue dots), and three anatomical boundaries (inner
skull, outer skull, and outer scalp) for the lead field calculation using Boundary Element
Model on a representative patient. (B) Locations of all electrode contacts (blue dots) depicted
over a template brain volume (MNI305) in the left (left column) and right (right column)
hemisphere. A: anterior. P: posterior. L: left. R: right. (C) Spatial distributions of significant
neural current estimates at 120 ms after the auditory stimulus at the group level. Left and
right hemisphere results were selectively derived from patients with electrodes implanted in
the left and right hemispheres, respectively. The distributions over an inflated brain model
(top row) and at orthogonal anatomical slices (bottom row; L: left hemisphere) are shown at

the left and right columns, respectively. The average and the standard deviation of the
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significance time course within the auditory cortex determined from all patients are shown in

the right columns.
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Figure 2: Spatial distributions of significant neural current estimates at about 120 ms after the

sound onset in two representative patients with electrodes implanted in left (s027) and right
(s031) hemispheres

These distributions at orthogonal anatomical slices (L: left hemisphere) and over an inflated
brain model are shown at the left and right columns, respectively. The average and the

standard deviation of the significance time course within the auditory cortex determined

from all patients are shown at the right columns.
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Figure 3. Spatial distributions of HBBG estimates between 60 Hz and 140 Hz in response to
the auditory stimulus.
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(A) Significantly increased auditory HBBG activity were found in STG, whereas the HBBG in
IFG was significantly decreased. (B) The recordings from three patients with electrodes
implanted at STG and IFG were used to validate the source analysis result: The dark red

circles show the locations of the electrode contacts closest to the STG and IFG locations of
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interest, the blue circles denote the rest of the electrode contacts. (C) The time-frequency
representations (TFR) of the data from the electrode T, which is close to STG, show evidence
of significantly increased HBBG activity at about 100 Hz between 200 ms and 400 ms after the
stimulus onset. The data from the electrodes O and D, which is near IFG, show evidence of
significant HBBG decreases, respectively. (D) Leave-one-out between-subject cross-validation
analyses: The TFR results from the electrodes T, D, and O were consistent with the source
modeling of the estimated HBBG power at the group level. Notably, each of the group
representations at the bottom panel include all patients except the one whose electrode data

was utilized for the between-subject cross-validation.
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Cross-validation

Distributed source modeling provides estimates of spatially distributed currents. As a model,
the estimated neural current is different from the true neural current. Using leave-one-out
validation, we quantified this discrepancy (Table 1). The average proportion of the explained
variance dropped from 38% to 24% as fewer (from 100% to 50%) remaining electrode contacts
were used for modeling the source. Depending on the number of electrode contacts used for
modeling, the explained variance at an electrode contact ranged between 49% and 22%. No
significant relationship between the number of electrode contacts and the proportion of the
explained variance was found. This was presumably due to the fact that the number and
location of electrodes for each patient were planned based on the clinical need rather than the

auditory study.
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Table 1. Percentages of the variance explained by the source modeling in the cross-validation

analysis.

Percentage of remaining contacts (N-1) for Number of electrode Electrode at
Patient source modeling contacts (N) hemisphere

left right

100% 90% 70% 50% hemi. hemi.
s026 38% 34% 23% 28% 69 + -
s027 36% 32% 32% 17% 104 + -
s031 22% 21% 18% 18% 95 - +
s032 33% 31% 30% 26% 67 + -
s033 44% 45% 34% 30% 76 + -
s034 36% 33% 32% 27% 100 - +
s036 49% 37% 37% 19% 59 - +
s041 42% 34% 22% 19% 70 + +
max. 49% 45% 37% 33% 104
min. 22% 21% 18% 17% 59
average 38% 33% 29% 24% 80
standard
deviation 8% 7% 6% 7% 17

Numbers for each patient and the average, maximum, minimum, and standard deviation
across patients are reported. The presence and absence of the electrodes at hemispheres
were denoted by “+” and “-“, respectively.

-12 -


https://doi.org/10.1101/2020.08.18.256669
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.18.256669; this version posted August 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Sensitivity

The spatial distributions of SNR and sensitivity across patients in the left and right hemispheres
are shown in Figures 4 and 5, respectively. Color coded the brain locations with SNR or
sensitivity between the top 85% and 99% of the values across the cortex. Note that only
patients with electrodes implanted at one hemisphere were included in the plot of the same
hemisphere. Approximate locations of electrode contacts to the cortex were indicated by green
dots in the figure. Regions with high SNR and sensitivity were found in the vicinity of electrode
contacts. Within an individual, the spatial distributions of SNR and sensitivity were very visually
similar, suggesting that the estimated noise distributions were rather spatially homogeneous.
The SNR and sensitivity in the thalamus and brain stem were comparable to those locations at
the vicinity of electrode contact implantation: they were about the top 85% of the SNR and
sensitivity. Figure 6 shows the spatial distributions of average SNR and sensitivity across
patients with electrodes implanted in the left and right hemispheres in brain surfaces and
volumes, respectively. Top 15% values were color-coded. High SNR and sensitivity were found
around the anterior temporal lobe, insula, and frontal lobe, where electrodes were implanted
based on the clinical need to ascertain epileptogenic zones. Both medial and lateral aspects of

the cortex and deep brain areas, including part of the brain stem, had high SNR and sensitivity.
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Figure 4. Distributions of the SNR and sensitivity for patients with electrode contacts in the
left hemisphere

sensitivity _—

$

Colors code values sorted between the top 85% and 99% of each individual patient. Green

dots denote the location of electrode contacts.
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Figure 5. Distributions of the SNR and sensitivity for patients with electrode contacts in the

right hemisphere

Colors code values sorted between the top 85% and 99% of each individual patient.
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Figure 6. Distributions of the average SNR and sensitivity across patients with electrodes

implanted in the left and right hemispheres.

sensitivity

Colors code values sorted between the top 85% and 99% of the average.
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We quantitatively characterized how the SNR and sensitivity at a brain location varied
with its distance to electrode contacts. Specifically, we considered two distance metrics, the
minimum and the median of all distances between a brain location and all electrode contacts.
The distributions of both distance metrics versus SNR and sensitivity for each patient and all
patients in the logarithm scale were shown in Figures 7 and 8 respectively. These distributions

were visually similar across patients.

In the logarithm scale, the distributions of SNR and sensitivity versus the minimum of
the distance appeared to be better described by an inverse linear model than the distributions
of SNR and sensitivity versus the median of the distance. The regression identified a significant
inverse linear relationship between the 10-based logarithm of the SNR and the 10-based
logarithm of the minimum distance with a slope of -3.6 and an intercept of -16.6 (p < 0.01). A
significant inverse linear relationship between the 10-based logarithm of the sensitivity and the
10-based logarithm of the minimum distance was found with a slope of -3.7 and an intercept of
-13.3 (p < 0.01). Both regression lines suggested that when the minimal distance became ten-
fold larger (e.g., 1 mm to 10 mm), the SNR and sensitivity dropped to 0.25% and 0.20%,

respectively.
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Figure 7. Scatter plots between the brain-electrode distance and SNR and sensitivity in

individual patients in the log-log scale
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The distance measures include the median and the minimum distances between the
estimated brain area and electrode contact locations. Regression lines between the

minimum distance and the SNR or sensitivity are also shown.
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Figure 8. Scatter plots between the brain-electrode distance and SNR and sensitivity across all

patients in the log-log scale.
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The distance measures include the median and the minimum distance between the source-
estimated brain area and electrode contact locations. Regression lines between the

minimum distance and the SNR or sensitivity were shown.
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The effect of the variability in electrode contact locations

The locations of electrode contacts informed by CT and post-surgery MRI on two representative
patients are shown in Figure 9. While small, the discrepancy between the estimated locations
of electrode contacts by CT and post-surgery MRI was still visually discernable. The average,
standard deviation, maximal, and minimal distance between electrode contacts informed by CT
and post-surgery MRI were and 1.39 mm £ 0.63 mm, 2.87 mm, and 0.24 mm for one patient
and 2.61 £ 0.83 mm, 4.33 mm, and 0.92 mm for the other patient. The dSPMs estimated from
two lead field matrices with electrode contact locations informed by CT or post-surgery MRI
were shown in Figure 9. The spatial distributions and the waveform of the significance of the
neural currents were similar. Quantitatively, the correlation coefficients of the spatiotemporal
dynamics between two lead field matrices were both 0.97 in two patients. The ratios of the
power of the dSPM difference between two lead field matrices and the average power of the
dSPM between two lead field matrices were 3.34% and 4.04% for patient s026 and s041,

respectively.
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Figure 9. Source modeling based on the electrode contacts suggested by the post-surgery MRI
and CT
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Locations of the electrode contacts suggested by the post-surgery MRI and CT (top panel), the
estimated neural current distributions using the electrode contact locations informed by CT
(the second row from the top) and post-surgery MRI (the third row from the top), and the

time courses of statistical significance in the auditory cortex from two representative patients.
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Discussion

Here, we describe a novel procedure to estimate a neural current distribution based on the
discrete sampling of sEEG data with realistic anatomical information from MRI. In our empirical
data with auditory stimulation, the estimated sources of activations were localized in the
vicinity of auditory cortices of the superior temporal plane (Figures 1 and 2). Notably, as we
hypothesized, the source localization results were anatomically highly consistent across
participants (Figure 1), even though the locations of electrode contacts were highly variable
across individuals. Further, our source estimation conducted in the frequency domain revealed
significantly increased 60-140 Hz HBBG in STG, and HBBG decreases in IFG, consistent with the
analyses of the directly recorded sEEG signal (Figure 3). These results suggest that distributed
source modeling of sEEG data offers a powerful way to conduct anatomically normalized
human neurophysiological research at the group level, and thus opens entirely new possibilities

for basic and clinical neuroscience research with sEEG recordings.

Sensitivity and SNR

In this study, we systematically examined the sensitivity and SNR distributions of the estimated
neural current accounting for the recorded sEEG data. The results show that the sensitivity and
the SNR of the sEEG recording depend strongly on the distance between the estimated area vs.
electrode contact location (Figures 4, 5, and 6). When we considered individual electrode
locations, the sensitivity and SNR can become tens or hundreds of times smaller if the current
source locations in the model is as little as one millimeter away from the nearest electrode
contact (Figures 7 and 8). The sharp drop of SNR and sensitivity for a moderate increase in the
minimal distance, together with the cross-validation analysis (Table 1), suggested that precise
electrode implantation is important to record the desired neural activity at the target brain
locations. However, as the neural currents were estimated from an ensemble of SEEG
electrodes, the dependency of the sensitivity and SNR on the distances between the brain
region of interest and all electrode contacts was more complicated: The sensitivity and SNR can

be comparable when the median distance from a brain location to all electrode contacts
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differed by a few centimeters. Therefore, combining data from multiple sEEG electrode

contacts greatly improves the sensitivity and SNR.

Inclusion of deep brain source locations

Facilitated by the computational anatomy, we were able to examine the sensitivity and SNR
distribution at regions with automatically segmented anatomical labels. We were particularly
interested in the deep brain areas, where non-invasive MEG and EEG measurements have a
very limited sensitivity *>. Consistent with the fact that sEEG electrode contacts are in the
proximity of deep brain areas, we found that the sensitivity and the SNR in, for example, the
thalamus and brain stem were comparable to those of several cortical locations (Figure 6). This
result supports the feasibility of using distributed source modeling of sEEG data to examine the

interactions between cortical and subcortical areas.

We found significant neural currents in deep brain areas. However, we were not able to
pinpoint the locations toward the medial geniculate body or inferior colliculus, part of the
known sub-cortical areas involved in the auditory processing pathway. To better identify neural
currents at these potential regions, we may thus need to limit the source space to the
candidate locations as a prior constraint. This solution would, however, come with the price of

neglecting neural currents from locations outside the modeled regions.
Cross-validation

We cross-validated the accuracy of the source modeling of SEEG data using the leave-one-out
approach. Note that this cross-validation is different from the “goodness-of-fit” in MEG/EEG
analyses. In our cross- validation, the data used to estimate the source distribution and the data
used for prediction were exclusive sets. On the contrary, the “goodness-of-fit” in MEG/EEG
analyses was derived from the same set of measurement for both estimating the source
distribution and predicting the measurement based on the estimated sources. Our cross-
validation suggested that about 30-50% of the variance can be explained by the proposed
source modeling (Table 1). In other words, despite the limiting effects of the sharp drop-off of

the sensitivity of sEEG at locations away from the recording sites (Figures 7 and 8), the source
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modeling still explained a significant portion of the variance. This is probably because of the
elicited neural activity is spatially distributed and the model favors a spatially extended source
distribution to explain the measurements. In such a case, the L-2 norm-based distributed
source modeling can reasonably describe the distribution of the neural activity at areas away

from the implanted electrodes.

Potential factors related to the cross-validation performance reported here include the
choice of the experimental paradigm, the forward model, and the source model. Here we used
the neural responses to rather simple auditory stimuli (white noise bursts) with a priori well-
known foci of response activity as the means to validate the predicted sEEG measurements.
Such empirical validation is closely related to how much neural activity was actually elicited by
the auditory stimuli. If the elicited neural activity is focal, it is difficult to estimate such an
activity from measurements at other contact locations with minimal responses. Accordingly, if
the elicited neural activity is spatially diffuse, the estimated the neural activity could have
better matched the measurement at the left-out contacts. This potential confound should be
considered in the interpretation of our results.

The forward model used in this study can mitigate the challenge of calculating the

24,25

electric potential within the neural current volume . More complicated forward models,

such as the one using the Finite Element Model %% or simpler models, such as the one assuming

a simple spherical geometry and homogeneous conductivity **

, could provide a potential
alternative for our choice for the trade-off between accuracy and computational complexity.
Additional benefits in the forward calculations could be achieved by using recently introduced
boundary element fast multipole methods, which simulate anatomically realistic head models
with unprecedented numerical accuracy and speed ?’. As for the source model, we used the
MNE for its computational efficiency. Other choices, such as the one preferring focal neural
current estimate by imposing a constraint to minimize its L-1 norm, such as the minimum-
current estimate %, may be further investigated in the future. Good performance in the cross-
validation analysis may only appear in experiments where spatially extensive neural currents

are present. For experiments with a focal neural current distribution, such as that in the early

response of sensory processing in normal subjects and inter-ictal discharges in epilepsy patients,
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the performance of cross-validation may be low, because estimating neural currents from
contacts other than the one close to the focal neural current can be difficult. Yet again, in such
cases, very strong a priori hypotheses of the probable source location are available, in contrast

to the more complex cognitive processes.

Registration

Previous studies using the combination of CT and MRI suggested that the accuracy of
identifying the locations of electrode contacts was in the range of about 1 mm . In our study,
we used the MRI before and after electrode implantation to identify the locations of SEEG
electrodes. Specifically, focal dark spots in the post-surgery MRI were taken as the sites of
electrode contacts. However, the distortion in the post-surgery MRI due to the susceptibility
and the spatial resolution of MRI can confound the accuracy of the electrode contract
localization. Using only MRI to inform the electrode contact location had the benefit of
reducing the exposure to ionizing radiation in a CT scan. Without a gold standard, it is difficult
to judge whether the electrode registration is more accurate with either MRI or CT. Both MRI
and CT have distinct challenges in localizing electrode contacts: CT needs to be registered to
MRI, and a smooth skull has limited features to warrant accurate registration between CT and
MRI. The skull of MRl is an essential part may be difficult to be described accurately because of
the concerns on MRI spatial resolution (about 1 mm) and distortion due to systematic (such as
the nonlinearity property in MRI gradient coils %% and physiological (such as the susceptibility

discontinuity between the brain, cerebrospinal fluid, skull, and scalp interfaces) reasons .

Source estimates of high-frequency broadband gamma activity

Our results suggest that distributed source estimation could also be utilized for analyses of
HBBG activity. Evidence for significantly increased HBBG to sound stimuli was found in the
vicinity of auditory cortices. Interestingly, we found evidence of decreased HBBG in IFG and
nearby areas right after the onset of the auditory stimulus, an effect that could reflect

suppression of involuntary attention networks due to the repetitive nature of the non-target
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auditory stimulus for reviews, see %%

. The most important result of the present analysis,
however, was the considerable consistency of the source estimates of HBBG and the electrode
data obtained from contacts in the vicinity of STG and IFG. These novel results suggest that
distributed source modeling analyses is a way to conduct anatomically-normalized group
analyses of this highly essential neural activity, which is believed to constitute a direct correlate

of local firing activity in the human brain 16-18

Future studies

There are a few issues worth studying further. For example, it is not known how the
regularization parameter modulates the current source estimate. The regularization parameter
is crucial in deriving a stable solution because of the ill-posed nature of the lead fields in
extracranial MEG/EEG measurements. However, in sEEG, the lead fields can vary significantly
across patients due to different electrode implantation scheme. Further, the conditioning
number of the lead field matrix in SEEG can be less ill-posed. Thus, how to optimize the
regularization parameter is still an open question. Second, we derived the group inference by
averaging neural current estimates across patients. Given quantitative estimates of sensitivity
and SNR, it might be reasonable to weight the neural current estimates by sensitivity or SNR.
However, without a gold standard, it is still difficult to justify whether such SNR or sensitivity

weighted group average is a better choice.

Conclusions

While sEEG provides unsurpassed spatiotemporal accuracy, the interpretation of results has
been complicated because the loci of electrode implantations differ greatly across individual
patients. We developed a distributed, anatomically realistic sSEEG source-modeling approach
with which it becomes possible to estimate both iERP and HBBG responses in any given location
at group level. High sensitivity and SNR values were found both in cortical and subcortical
source estimates. After logarithmic transformations, the sensitivity and SNR were linearly

inversely related to the minimal distance between the brain location and electrode contacts
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(slope=-3.6). The HGGB source estimates were remarkably consistent with analyses of
intracranial-contact data. Distributed sEEG source modeling of iERP and HBBG responses
provides a new powerful neuroimaging tool that opens up a wealth of possibilities for both

basic and clinical neuroscience research.
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Materials and Methods

Participants

This study was approved by the Institute Review Board of National Yang Ming University and
Taipei Veteran General Hospital. Ten medically refractory patients (age: 21 — 45; nine female)
gave written informed consent before participating in this study. Two patients were excluded
for the analysis because a large portion of the brain was resected in previous surgeries. The
number of the implanted electrode contacts and the hemisphere with electrodes, together with

the patient’s demographic information, are listed in Table 2.
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Table 2. Demographic, medical, and surgical information for patients

Age Sex Epilepsy

Patient # of electrode contacts (V) electrode hemisphere diagnosis

left hemi. right hemi.

s026 25 M 69 + - Left TLE

s027 29 F 104 + - Left TLE

Right temporal
PNH and right

frontal
s031 33 F 95 - + opercular PMG
s032 23 F 67 + - Left TLE
s033 21 F 76 + - Left TLE

Right frontal
and temporal

s034 27 F 100 - + schizencephaly
s036 45 F 59 - + Right TLE

s041 39 F 70 + + Right TLE

max. 45 104

min. 21 59

TLE: temporal lobe epilepsy, PNH: periventricular nodular heterotopia, PMG: polymicrogyria.

M: male; F: female.
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Experiment design

Two runs of data were collected from each patient. Each run lasted for six minutes. Within each
run, fifty trials of auditory stimuli, including 45 trials of white noise (equal power between 20 Hz
and 10,000 Hz; 0.3 s duration) and five trials of pure tone (440 Hz; 0.3 s duration), were
randomly presented. The minimum and the average inter-stimulus intervals were 1.2 s and 2.0
s, respectively. Patients were instructed to press a button when hearing a pure tone while
ignoring the white noise stimuli. In this study, we only calculated the responses evoked by the
white noise in order to avoid confounds related to motor responses. Auditory stimuli were
delivered by an earphone (Model S14, Sensimetrics, Gloucester, MA, USA) using E-Prime

(Psychology Software Tools, Sharpsburg, PA, USA).

SEEG recording

The placement of the electrode was solely based on the patient’s benefit in identifying
epileptogenic zones. Each patient was implanted with 8 or 10 electrodes, whose contacts were
mostly distributed between bilateral temporal lobes. Each electrode (0.3 mm diameter and
spacing between contact centers 5 mm; Ad-Tech, Racine, WI, USA) had 6 or 8 contacts. SEEG

data were sampled at 2,048 Hz with an electrode at FPz as the reference.

MRI acquisitions

T:-weighted MRI was collected before and after the surgery for electrode implantation on 3T
MRI scanners (Skyra, SIEMENS, Erlangen, Germany; Discovery MR750, General Electric,
Milwuakee, WI, USA). The imaging parameters were the same in two acquisitions: MPRAGE
sequence, TR/TI/TE/flip = 2530 ms/1100 ms/3.49 ms/7°, partition thickness = 1.33 mm, matrix =
256 x 256, 128 partitions, FOV = 21 cm x 21 cm. Two sets of MRIs were acquired for each

patient before and after electrode implantation.
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CT acquisitions

Two patients were acquired with CT after electrode implantation. CT images were used to guide
the identification of electrode contact locations using 3D slicer **. Parameters used in the CT
acquisition were 64 slices, rotation duration of 1 second with coverage of 16 cm per rotation,

60-kW generator (512 x 512 matrix), 120 kV, 301 mAs, and axial slice thickness of 1 mm.

Data analysis

The first step of our analysis was to identify the location of electrode contacts in the individual’s
brain. Specifically, in the post-surgery MRI, there were discrete dark image voxel clusters
caused by the susceptibility artifact for each electrode contact. These dark image voxels
clusters were used to identify the locations of contacts. We developed an in-house software in
Matlab (version 2019b, MathWorks, Natick, MA, USA) with a graphical user interface to
facilitate this process. Specifically, after manually specifying the distance between neighboring
contacts and the number of contacts on an electrode, an electrode was moved around the
whole brain such that contact locations matched dark image voxel clusters in the post-surgery
MRI. Upon completing the manual identification of electrode locations, contact locations were
further optimized by allowing minor translation (10 mm) and rotation (t2 degrees) by
minimizing the sum of squares of image voxel values at all contact locations and their
neighboring 26 image voxels within a 3-by-3-by-3 image voxel cubic in the post-surgery MRI

using the patternsearch function in MATLAB.

Identified electrode contact locations were registered to pre-surgery MRI, which was
used to build Boundary Element Models (BEM’s) required for the lead field calculation and to
define locations of potential neural current sources. In the construction of BEM’s, the inner-
skull, out-skull, and outer-scalp surfaces were automatically created by FreeSurfer

(http://surfer.nmr.mgh.harvard.edu) based on the pre-surgery MRI. We did not use the post-

surgery MRI for BEM construction because of the concern on the susceptibility artifact caused
by electrode contacts and surgery wounds. The cortical source space for each patient was

created at the gray matter and white matter boundary with approximately 5-mm separation
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between neighboring source locations. In addition, we also had sub-cortical source space,
including thalamus, caudate, putamen, hippocampus, amygdala, accumbens areas, and
substancia nigra. These sub-cortical areas were automatically segmented from T;-weighted MRI
3> At each source location, we had three orthogonal neural current dipoles in +x, +y, and +z
directions. The current source space, including both sources at cortical and sub-cortical areas,
electrode contacts, and three surfaces of inner-skull, out-skull, and out-scalp from a
representative patient are shown in Figure 1 (A). With defined source space, electrode contact
locations, and skull as well as scalp boundaries, the lead fields were calculated by the

24,25

OpenMEEG package (https://openmeeg.github.io/)

The measured sEEG data and the neural current sources at time t were related to each

other by

y(t) = A x(t) + n(t), [1]

where y(t) denoted the collection of SEEG data across electrode contacts, x(t) denoted the
neural current strength, and n(t) denoted the contaminating noise. In this study, we excluded
the electrode contacts potentially related to epileptic activity when we created y(t). Note that
x(t) had 3xm elements to describe the neural currents in three orthogonal directions at m brain
locations. A was the lead field matrix. Specifically, for a unit current dipole source at location r’

in the +x, +y, or +z direction, the electric potentials measured at all electrode contacts were

a(r') = [a(r’), a,(r'), a[{r')]. (2]

Assembling a(r’) across all possible current dipole source locations created the lead field

matrix A.
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A =[a(r'’y), a(r’,), ..., a(r'y)], k=1, ...., d. [3]

where d denotes the total number of current dipole source locations.

To estimate x(t) using the MNE, we had

xMNE(t) = RAT(ARAT + /’lC)_ly(t), [4]

where C was the noise covariance matrix

C = (n(t)n” (v)). (5]

The operator {-) takes the ensemble average across realizations. In practice, C was estimated
from y(t) during the pre-stimulus interval (from -200 ms to 0) with data concatenated across
trials. The regularization A tuned the balance between the strength of the estimated neural
current strength and the discrepancy between the modeled and measured data. We chose

A = 10 in this study as suggested by a previous MEG study .

The spatial distribution of estimated neural currents at each time instant from each
patient was then spatially registered to an arbitrarily selected subject. Here we chose the
subject “fsaverage” in the FreeSurfer library as the target subject. This registration was done via
a spherical coordinate system *® The neural currents were averaged across patients for each
condition separately. The significance of neural current distribution was estimated by
calculating the ratio between the instantaneous value and the standard deviation of the
baseline interval at each source location after subtracting the mean of the estimates in the pre-
stimulus interval. These ratios constituted the dynamic statistical parametric maps (dSPM) and

were reported to follow a t-like distribution *’.
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We quantified the spatiotemporal distribution of neural HBBG activity in the frequency
domain. Specifically, after obtaining xyyg(t) for each trial of stimulus, a Morlet wavelet
function was applied to xyyg(t) to extract frequency-specific HGGB signal at the central
frequency f . The frequency selectivity was controlled by using five cycles of waveform. In this
study, we specifically focused on the putative "non-oscillatory” HBBG between 60 Hz and 140
Hz. After the Morlet wavelet filtering, we took the absolute values of the frequency specific
HBBG waveforms. At each brain location, we calculated the root of the sum of squares (RSS) of
these wavelet-filtered waveforms of three directional components. Then, we averaged RSS of
the frequency-specific wavelet-filtered waveforms across trials. The average waveform was
then normalized to the average of the pre-stimulus baseline interval. We took the 10-based
logarithm of the normalized average waveform as the spatiotemporal map of HBBG at
frequency f for each patient. Similar to the group dSPM, these maps were combined across
patients by averaging, subtracting the mean of the average, and dividing the standard deviation

in the pre-stimulus baseline interval.

These calculations were validated by examining the correspondence of the HBBG
between the source modeling from a group of patients and measurements from implanted
electrodes. Specifically, we found patients with electrodes implanted at both the left superior
temporal gyrus (STG) and inferior frontal gyrus (IFG). The HBBG was estimated by the source
modeling of measurements from all patients except the chosen one. Then, HBBG from the

dSPM were compared with the results from electrodes close to the left STG and IFG.

Sensitivity and signal-to-noise ratio evaluation

With a given distribution of implanted electrodes and a set of current dipole source locations,

we defined the sensitivity for a current dipole source at location r’ as

s(r)=ai(r) +aj(r) +az (r). [6]
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A map of s(r’) across current dipole source locations quantitatively depicted locations in the

brain most sensitive to a particular set of implanted electrodes.

The signal-to-noise (SNR) at a specific location in the brain was derived from the
“whitened” lead field matrix A. We used Singular Value Decomposition on the noise covariance
matrix C to obtain a whitening matrix, which was then used to remove the correlation among

lead fields and to normalize the sensitivity.

C=UAUT. C"V2 =UyA~ V2 (7]
A, =kC V%4 (8]
SNR(r)= a3, () + a3, () +aj, , (1), [9]

where a,, ("), a,,,,(r"), and a,, ,(r") were columns of 4, corresponding to the location r’
with lead fields in the x-, y-, and, z-direction, respectively. k denotes a scaling factor. Because
the lead field matrix A was calculated based on the theory and the noise covariance C was
derived from empirical data, there was no information regarding the relative contribution from
both terms. Thus, we arbitrarily chose k =1 in this study. The interpretation of the SNR should
be careful considering the possible strength of the neural current and the noise level in

different measurement conditions.

Cross-validation

We used cross-validation to evaluate the accuracy of source modeling. Specifically, in a patient,
the sEEG data at one contact were left-out, whereas a part of the remaining contacts was used
for source modeling. The estimated sources were then used to predict the measurement at the

left-out electrode contact by multiplying its lead field matrix and the estimated neural current
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distribution. Such synthetic data were compared with the actual measurement at the left-out
contact. Each contact was taken as the left-out contact in each analysis, where the included
contacts for source modeling were randomly selected and parametrically varied between 100%,
90%, 70%, and 50% of the remaining contacts. Ideally, the measurement at the left-out contact
and the synthetic data should match each other. We used the percentage mean-squared-error

as a metric to evaluate how much information was lost or retained in the source modeling.

Stability of the source modeling

The locations of electrode contacts were identified by the guidance of post-surgery MRI, where
focal black spots were taken as the locations of electrode contacts because of the susceptibility
effects. This procedure was recommended in a previous study 7 and used to all patients in this
study. Alternatively, electrode contacts were localized by the guidance of computer
tomographic images after registered, with the help of the FSL (flirt function) package, and fused
with the pre-surgery MRI. Two patients also followed this procedure to localize electrode
contacts. We measured the average, standard deviation, minimal distance, and maximal
distance between the discrepancy between two sets of electrode contact locations. Two
different lead field matrices were calculated accordingly. We calculated the neural currents
using these two lead field matrices and compared the differences in the estimated

spatiotemporal dynamics of neural activity.
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