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Abstract 

It has been long known that bacteria coordinate their physiology with environmental nutrient, 

yet our current understanding offers little intuition for how bacteria respond to the second-

to-minute scale fluctuations in nutrient concentration characteristic of many microbial 

habitats. To investigate the effects of rapid nutrient fluctuations on bacterial growth, we 

coupled custom microfluidics with single-cell microscopy to quantify the growth rate of E. coli 

experiencing 30 s to 60 min nutrient fluctuations. Compared to steady environments of equal 

average concentration, fluctuating environments reduced growth rate by up to 50%. 

However, measured reductions in growth rate were only 38% of the growth loss predicted 

from single nutrient shifts — an enhancement produced by the distinct growth response of 

cells grown in environments that fluctuate rather than shift once. We report an unexpected 

physiology adapted for growth in nutrient fluctuations and implicate nutrient timescale as a 

critical environmental parameter beyond nutrient concentration and source.  
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Introduction 
 

Our planet is sustained by the metabolic activities of microorganisms. In our gut, microbial 

communities break down nutrients into forms that we can take up and use; at sea, microbial 

growth affects the sequestration of carbon in the ocean and its release back into the 

atmosphere; and microbes in the soil convert organic molecules into forms that facilitate 

plant growth. These metabolic activities are often performed under conditions that depart 

from steady state. Rather, the quality and quantity of available nutrients often fluctuate 

rapidly due to microscale spatial heterogeneity, fluid flow, or host eating habits. Many host-

associated or free-living microbes swim through resource landscapes that are highly 

heterogeneous at sub-millimeter scales (1;2;3) and thus experience rapid fluctuations in 

nutrient availability over seconds or minutes (4). Surface-attached microorganisms 

experience rapidly changing resources as a consequence of the movement of the liquid phase 

(5; 6; 7). To understand the impacts that microorganisms have on the physiology of their 

hosts and on global elemental cycles, we thus have to understand how individual bacteria 

respond to nutrient fluctuations. However, our understanding of microbial physiology draws 

heavily on knowledge derived from steady-state environments or single transitions between 

steady states (8; 9; 10). Microbial metabolism and growth under nutrient fluctuations remains 

a knowledge gap, largely due to the technical challenges of studying cells in highly dynamic 

environments. Here, we address this gap using single-cell growth experiments in a custom 

microfluidic device to show that rapid fluctuations substantially diminish growth, but also that 

bacteria can exhibit a fluctuation-adapted growth physiology that favors growth under 

frequent environmental change. 

 

Recent advances in single-cell measurement techniques have laid foundations for considering 

the implications of second- and minute-scale fluctuations on bacterial growth and physiology. 

Single-cell measurements of bacterial mass at femtogram resolution have confirmed that 

individual bacteria add mass exponentially (11; 12). Experiments based on a groundbreaking 

microfluidic tool, the Mother Machine, revealed that the exponential growth of individual 

cells is stable over hundreds of generations (13), indicating that steady-state growth applies 

not only at the population level, but also to individuals. This seminal discovery has catalyzed 

major progress towards understanding the homeostatic regulation by which bacteria tune 

their growth and physiology to their environment, resulting for example in the Adder model 

of cell-size control (14; 15; 16) and hypotheses for its underlying mechanisms (17; 18; 19). 

This wealth of literature stems from and reinforces a long-standing paradigm: that each 

nutrient environment induces a characteristic steady-state growth rate (8; 9; 16), in which 

cells tightly regulate their size (16), proteome (20), and biosynthesis rates (9) in response to 

nutrient availability. The robustness of steady-state cell physiologies has led to growth laws 

that relate physiological traits, such as RNA–protein ratios (9; 21), with steady-state growth 

rate.  
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The expansive experimental and theoretical characterization of steady-state growth has led to 

its use as the framework to interpret bacterial physiology and ecology, even for dynamic 

environments. Currently, our understanding of bacterial responses to changes in the 

environment derives heavily from characterizations of physiological transitions from one 

steady state to another. Upon a nutrient shift out of steady state, cells initiate a cascade of 

responses that depend on the nutrient composition of the new environment (9; 10) and 

typically require hours to complete (22). Specific processes respond over distinct timescales 

— transcription over seconds, translation over minutes, cell division over hours (22) — and 

the progression of these physiological changes is reflected in a cell's growth rate. The kinetics 

of growth transitions thus provide important insight into the strategies employed by bacteria 

and the ecological challenges under which these strategies have evolved (10; 23; 24).  

 

While steady-state growth is highly informative when nutrients shift on timescales sufficiently 

long for cells to reach steady state before the next environmental change, it is unclear 

whether it provides an appropriate framework for understanding physiology when nutrients 

fluctuate on timescales of seconds or minutes. Under a steady-state framework, bacteria 

sense the availability of nutrient and induce the expression of the appropriate genes to 

transition their physiology toward the steady state characteristic of the instantaneous 

environment. However, the physiological ramifications of continuously tracking an 

environment that switches faster than the time required for complete steady-state 

adaptation are unclear. For example, alternating regulation between two steady states may 

produce cells with proteins that are typically not co-expressed. Proteins expressed during 

prior exposures to a certain condition might reduce lag times when that condition returns 

(25; 26), yet unnecessary gene expression can also reduce growth rate (20). How these slower 

gene expression-based responses might integrate to affect bacterial growth in rapid nutrient 

fluctuations is unclear due to the lack of systematic studies of single-cell growth in dynamic 

nutrient conditions at fast timescales. 

 

In this study, we characterized the rate and kinetics of bacterial growth under fluctuations 

between two fixed nutrient concentrations on timescales of seconds to minutes. Using a 

custom microfluidic device that precisely controls the time dependence of nutrient delivery, 

we quantified the growth dynamics of thousands of individual E. coli cells exposed to 

identical, periodic nutrient fluctuations with periods as short as 30 s. We found that nutrient 

fluctuations reduce growth rate by up to 50% compared to a steady nutrient delivery of equal 

average concentration. However, the measured loss is considerably (38%) smaller than the 

growth loss expected from a null model based on the measured growth response to a single 

shift in nutrient concentration. We propose and provide evidence for a new growth 

physiology that is markedly distinct from steady-state physiologies and alleviates growth loss 

in fluctuating nutrient environments. Thus, this work implicates temporal variability as a 

fundamental parameter for understanding bacterial physiology in dynamic habitats. 
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Results and Discussion 

 

Exposing single bacteria to precisely controlled, rapid nutrient fluctuations 

 

To determine how rapid nutrient fluctuations affect bacterial growth, we engineered a 

microfluidic device to rapidly switch between the delivery of two different nutrient 

concentrations (one labeled with fluorescein) while simultaneously imaging individual 

bacteria with time-lapse phase-contrast microscopy (Fig. 1a; Methods; Supplementary Fig. 1). 

We subjected surface-attached E. coli to square-wave nutrient oscillations with periods of 30 

s, 5 min, 15 min or 60 min (Fig. 1b). Each experiment began by flowing cells from a growing 

batch culture into the device and allowing them to settle onto its lower glass surface for 10–

15 min prior to initiating nutrient fluctuations (Methods; Supplementary Fig. 2). Switches 

between the two nutrient concentrations occurred while maintaining a constant flow rate 

and each switch completed in less than 3 s (Supplementary Fig. 3). The resulting nutrient 

signal was reliably experienced by the cells as a square-wave of equal time (half the period) in 

each concentration (Fig. 1b), with sharp transitions between concentrations (Fig. 1c). Due to 

the high flow rates and channel depth (60 µm) used (Supplementary Table 1), the 

composition of the nutrient media was not altered by nutrient depletion or metabolite 

accumulation (Supplementary Fig. 4). Usually, one of the two cells emerging from each 

division was transported away by the flow (Fig. 1d), allowing us to acquire time series of 

thousands of individual cells (4,000–20,000) for each experiment. We confirmed that growth 

rates were independent of a cell's position along the 10-mm-long region imaged within the 

microchannel (Supplementary Fig. 4) and therefore that cells experienced identical nutrient 

time series. 

 

To isolate the role of nutrient fluctuation timescale from that of nutrient concentration, we 

switched between the same two nutrient concentrations for all fluctuating environments, a 

“high” and a “low” concentration of a complex growth medium (Chigh = 2% LB, Clow = 0.1% LB), 

empirically chosen to avoid the saturation of growth rate (Supplementary Fig. 5). Three 

control experiments with steady nutrient concentrations were run in parallel with each 

fluctuating experiment: one at Chigh, one at Clow, and one at Cave = (Chigh+Clow)/2 (i.e., 1.05% LB) 

(Fig. 1a). Importantly, the Cave control provided cells the identical average and total nutrient 

as the fluctuating environments. Together, these steady controls enabled us to distinguish the 

effects of fluctuation timescale from those of nutrient concentration by providing reference 

growth rates in steady high, average and low nutrient concentrations, respectively 

(Supplementary Fig. 5).  
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Fig. 1: The Microfluidic Signal Generator (MSG) creates automated, precise high-frequency 
fluctuations in nutrient concentration while enabling single-cell microscopy. 
a Two channel configurations: the MSG for switching between two media (top) and straight 
channels for steady delivery of a single medium (bottom). The upstream portion of the MSG 
facilitates switching between media delivered to downstream cells via automated control 
over the pressure differences driving two nutrient media while maintaining a constant flow 
rate into the device. The wider downstream section fits over 10 imaging fields of view at 60x 
magnification. Each microfluidic device contains four channels: one MSG and three straight. 
The two MSG channels displayed here schematically represent the flow conditions that 
expose either Clow and Chigh to the cells.  b Bacteria were exposed to fluctuating signals in the 
form of even oscillations between a low and a high LB concentration (Clow and Chigh), with 
period, T, between 30 s and 60 min. Three control environments, Clow, Cave, and Chigh, were 
run simultaneously with each fluctuating environment.  c Fluorescein intensity illustrates the 
signal received at the cell imaging region over multiple oscillations (T = 30 s). Transitions 
between media are completed in less than 3 s.  d Individual E. coli cells growing within the 
MSG. Cells were imaged at 117 sec intervals; timestamps of selected images are displayed in 
minutes. Cells divide between t2 and t3 (orange) and between t4 and t5 (blue), and can be seen 
elongating between other frames. One of the two cells emerging from division is typically 
swept away with the flow. Scale bars indicate 2.5 µm. 
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Growth rate rapidly responds to nutrient fluctuations  

 

This microfluidic system allowed us to measure the growth rate of individual cells in steady 

and fluctuating nutrient concentrations with high precision and high temporal resolution. 

Growth rate, defined here as the rate at which volume doubles, was quantified from changes 

in cell volume between phase-contrast images of single cells acquired approximately every 2 

min (Methods). For each cell imaged, we extracted the length and width using image analysis, 

and quantified cell volume, V(t), by approximating the cell as a cylinder with hemispherical 

caps (17; 27). Using the resulting time series of cell volume, V(t) (Fig. 2a), we computed the 

instantaneous single-cell growth rate, µ(t), from V(t+∆t) = V(t) · 2µ∆t (Methods). Growth rates 

in the steady controls stabilized within 3 h of the start of the experiments (Supplementary Fig. 

5), so single-cell growth rates measured after 3 h were used to compute the steady-state 

growth rates Ghigh, Gave and Glow, averaged across all single cells in Chigh, Cave and Clow, 

respectively (Fig. 2b). We confirmed with metabolomic profiling that the different steady-

state growth rates between the three steady conditions resulted from proportional changes 

in nutrient uptake rates, rather than changes in the uptake of preferred metabolites 

(Methods; Supplementary Fig. 6). 

 

The growth rate in fluctuating nutrient conditions changed rapidly in response to the 

fluctuations. Because instantaneous growth rate dynamics from single cells were noisy 

(Supplementary Fig. 7), we averaged the single-cell growth rates at each time point to obtain 

instantaneous growth rates, which displayed strong and sharp fluctuations, changing more 

than two-fold within minutes (Fig. 2b). Instantaneous growth rate fluctuated with the 

immediate nutrient concentration, such that higher growth rates were observed in the high-

nutrient phase and lower growth rates in the low-nutrient phase (Fig. 2b). When averaging 

the instantaneous growth rates from each phase of the nutrient signal, periodic changes were 

observed when nutrient fluctuated with a period of 5 min, 15 min or 60 min (Fig. 2c), 

indicating that growth rate responded to nutrient shifts in less than 2.5 min. Changes in 

growth rate that slightly precede changes in the nutrient signal are not an anticipatory 

response, but rather are caused by limits in the time-resolution of our measurements 

(Supplementary Fig. 8a). Similarly, fluctuations in growth rate were not resolvable with 30 s 

fluctuations, owing to the temporal resolution of image acquisition (2 min). Nevertheless, 

these results establish that rapid fluctuations in nutrient concentration lead to minute-scale 

fluctuations in instantaneous growth rate. We next asked how these nutrient fluctuations – 

and the resulting fluctuations in instantaneous growth rate – impact the mean rate at which 

individual cells grow.  
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Fig. 2: Nutrient upshifts and downshifts are followed by rapid adjustments in growth rate. 
a Single-cell volume trajectories from a fluctuating environment (fluctuation period T = 60 
min) and control environments: steady Clow, Cave, and Chigh. Each colored line tracks the 
repeated growth and division events of a single cell. Gray lines show the nutrient signal of 
each environment.  b Instantaneous growth rate, µ, over time in steady and fluctuating 
environments. In the steady environments, µ is stabilized at steady-state growth by t = 3 h. In 
a fluctuating environment (T = 60 min), µ fluctuates with the nutrient signal. Each curve is a 
time-average of all instantaneous single-cell growth rates from each 2-min time bin, based on 
estimates of µ from at least 1842 cells per replicate experiment. Given noise in µ at the 
single-cell level (see Supplementary Fig. 7), the growth rate dynamics were best visualized by 
averaging many cells.  c Instantaneous growth rate, µ, averaged across all single-cell growth 
rates as a function of the nutrient phase in fluctuating environments. Regardless of the 
timescale of nutrient fluctuation (T), µ is higher in Chigh and lower in Clow. Regions shaded in 
gray correspond to Chigh phases of the fluctuating nutrient signal. Curves represent replicate 
experiments.  
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Rapid nutrient fluctuations reduce growth rate relative to steady conditions 

 

The mean growth rate in fluctuating environments, Gfluc, was consistently lower than the 

growth rate in the steady average conditions, Gave. For each fluctuating timescale, we 

computed Gfluc as the average of all instantaneous growth rates for all cells, measured from 3 

h to the end of the experiment. For nutrient fluctuations of 30 s, 5 min, 15 min and 60 min 

periods, this measure yielded values of Gfluc of 1.93 ± 0.16 h-1, 1.53 ± 0.20 h-1, 1.15 ± 0.28 h-1 

and 1.15 ± 0.13 h-1, respectively (mean ± standard deviation; n = 3–4 replicate experiments 

per condition, each with at least 1842 cells; Fig. 3a; Supplementary Table 2). The 

corresponding value of Gave was 2.31 ± 0.18 h-1 (n = 13 replicate experiments; Supplementary 

Table 2). Accordingly, Gfluc was lower than Gave by 16.5–50.2% of Gave.  

 

 

 
 
Fig. 3: Rapid nutrient fluctuations reduce growth rate compared to environments of equal 
average nutrient concentration. 
a Cells in fluctuating environments of various period lengths (T) experienced the same time-
averaged nutrient concentration as Cave but grew at lower growth rates. Each point 
represents the mean growth rate of all individual cells measured from all time steps after the 
initial 3 h of each experiment. Colored points are replicate experiments for steady Clow , Cave 
or Chigh or fluctuating nutrient conditions; gray points are additional steady nutrient 
concentrations that span nearly no growth to saturated growth. Error bars denote the 
standard error of the mean and are smaller than data points when not visible.  b Schematic 
representation of Jensen’s inequality (Gave > GJ) and the relationship between Gave, the growth 
rate at steady nutrient Cave = (Clow + Chigh)/2, and GJ, the maximum growth rate expected for 
cells spending equal time at Clow and Chigh. Gfluc in our experiments is below even GJ, indicating 
that the non-linear relationship between growth rate and nutrient concentration is not 
sufficient to explain why fluctuations decrease growth rate.  c Percent change in growth rate 
for Gfluc at different period lengths relative to a steady-state reference, either Gave or to GJ. 
Change was calculated as (Gfluc - Gave)/ Gave ×100 or (Gfluc - GJ)/ GJ ×100 from conditions 
performed on the same day. Error bars denote the standard error of the mean. 
  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.256529doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256529
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

9 

This reduction in mean growth rate has a strong impact on bacterial population dynamics. For 

example, for an initial biomass of M0 = 1 µm3, the values of Gfluc for 30 s fluctuations (1.93 ± 

0.16 h-1) and of Gave (2.31 ± 0.18 h-1) correspond to a daily (t = 1 d) biovolume produced of 9 × 

1013 µm3 and 5 × 1016 µm3, respectively (Supplementary Table 3). That is, two cells of equal 

initial volume, both growing exponentially (M(t) = M0  2Gt) with one at rate Gfluc and one at 

Gave, will differ in biomass production by over 500-fold in a single day, implicating the 

timescale of nutrient availability as an important parameter in the dynamics of bacterial 

populations.  

 

Why do fluctuations reduce growth rate relative to the steady-state growth rate, Gave? The 

concave Monod curve offers a potential, purely mathematical explanation: steady-state 

growth rate increases less than linearly with nutrient concentration (Fig. 3b). This is an 

example of Jensen's inequality, which states that for a concave function, the mean of the 

function (i.e., GJ = (Glow + Ghigh)/2) is smaller than the function of the mean (i.e., Gave). Thus, 

Jensen’s inequality predicts from the steady-state growth function that fluctuations between 

Chigh and Clow would result in a growth rate lower than Gave. Indeed, the mean growth rate 

based on Jensen’s inequality is GJ = 1.97 ± 0.16 h-1 (Fig. 3b), which is lower than Gave = 2.31 ± 

0.18 h-1. However, Jensen's inequality does not explain the observed growth reductions (Fig. 

3c): the growth rates from fluctuating environments, Gfluc, were lower than GJ for all 

fluctuation periods except 30 s (Supplementary Fig. 9). Thus, the non-linear relationship 

between growth rate and nutrient concentration is not sufficient to explain the magnitude of 

the growth rate reduction caused by fluctuations.  

 

We hypothesized that the reduction in growth rate results from the time required for cells to 

adopt the steady-state physiology characteristic of the current nutrient condition after each 

fluctuation. The prevailing paradigm for growth transitions presumes that cells initiate a 

physiological transition (mediated by differential gene expression) to the immediate nutrient 

environment, regardless of the nutrient timescale. In response to a shift in nutrient 

concentration (e.g., from Clow to Chigh), cells grow at rates lower than Ghigh for a period of 

several hours until the physiological transition is complete (Fig. 4a). The hours-scale transition 

in growth rate is a characteristic response to environments in which the nutrient condition 

shifts only once (10; 22; 23; 24). Based on this, growth dynamics are predictable from steady 

states when nutrient fluctuates on timescales sufficiently long for cells to complete their 

physiological transition before the environment again changes (28). When nutrients fluctuate 

on timescales faster than the time required to complete a physiological transition, the 

paradigm predicts that cells would be continuously transitioning and thus continuously 

growing at rates lower than steady state, causing Gfluc to be lower than GJ.  
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Growth rate responses differ between repeated fluctuations and single nutrient shifts 

 

To determine whether the time spent physiologically transitioning can explain the reduction 

in Gfluc from GJ, we compared the growth rate dynamics between cells exposed to fluctuations 

and cells exposed to a single up- or down-shift in nutrient concentration after having grown in 

steady conditions. In single-upshift experiments, cells growing steadily at Glow were switched 

to Chigh, while in single-downshift experiments cells growing steadily at Ghigh were switched to 

Clow. These single-shift experiments enabled us to quantify the growth rate response as cells 

transitioned between two steady states, including the time for the growth rate adjustment to 

complete (Fig. 4a). In single-upshift experiments, growth rate gradually increased from Glow 

until it reached the steady-state value Ghigh after 2–3 h. In single-downshift experiments, 

growth rate dropped sharply from Ghigh down to 10% of Glow, then gradually increased until it 

reached the steady-state value Glow after 5 h (Fig. 4a).  

 

In contrast to cells experiencing single shifts in nutrient concentration, cells grown in 

fluctuations did not reach Ghigh or Glow as target set points. Instead, growth rate in fluctuations 

stabilized at values lower than steady-state values. To accurately quantify instantaneous 

growth rate dynamics in fluctuating environments, we focused on the fluctuations of 15 and 

60 min periods, which were better resolved with our 2-min imaging interval. In fluctuations, 

we did not observe the transition characteristic of single shifts (Fig. 4b). Instead, growth rate 

under fluctuations stabilized at 66% of Ghigh after each upshift and at 63–68% of Glow after 

each downshift (Fig. 4c, d; Supplementary Table 4), indicating that cells grown in fluctuations 

are not continuously transitioning towards Ghigh or Glow in response to their immediate 

environment. These lower stabilized growth rates resulted in time-averaged growth rates 

(Gfluc) that were smaller than GJ. These observations show that the effect of rapid nutrient 

fluctuations on growth cannot be understood by reference to a sequence of single up- and 

down-shifts, and do not support the hypothesis that the reduction in growth rate under 

fluctuations results from continuous physiological transitions toward growth at Ghigh and Glow. 

 

The stabilization of growth rate was considerably faster in rapidly fluctuating environments 

than in steady environments perturbed by a single nutrient shift, indicating that cells grown 

under fluctuations have a different growth physiology from cells growth under steady 

nutrient conditions. While growth rate adjustments required hours after a single shift, 

instantaneous growth rate in fluctuating conditions stabilized within minutes of a nutrient 

shift (Fig. 4b): 3–4 min after each nutrient upshift and 2–15 min after each downshift (Fig. 

4e). This stabilization of growth rate on a timescale of minutes is more consistent with a 

stable growth physiology, i.e. a single cellular composition that grows at different rates due to 

changes in metabolite flux (Fig. 4f), rather than a physiology that is continuously in transition. 

Our results thus suggest the existence of a distinct physiology that cells adopt upon 

experiencing rapid nutrient fluctuations.  
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Fig. 4: Growth rate responses differ between repeated fluctuations and single nutrient 
shifts. 
a Average growth rate of single cells over time in four conditions: a single shift in nutrient 
concentration (occurring at 3 h, after cells had reached steady-state growth in the initial 
condition), steady Clow, steady Cave and steady Chigh. On the left, a single nutrient upshift (shift 
from Clow to Chigh) and on the right, a single nutrient downshift (from Chigh to Clow). After each 
shift, growth rate gradually reaches steady-state growth in the post-shift condition. The 
growth rates in Clow before the upshift and in the steady Clow condition are both within the 
range of measured steady-state Glow (Supplementary Table 2). Data is from one 
representative experiment. The shaded region marks the portion of single-shift data plotted 
in b, which does not include the full progression to steady-state growth after a single up- or 
down-shift.  b Growth rate from single cells in fluctuating nutrient conditions stabilize more 
rapidly and at a lower value when compared to the growth rate dynamics of cells 
experiencing a single shift. Data was aligned such that the nutrient shift in all conditions 
occurs at t = 0. Post-shift data in fluctuating environments are plotted up until the next shift 
occurs. Shaded error bars denote the standard deviation among replicate experiments (n = 3–
4 for fluctuating conditions; n = 2 for single-shift conditions).  c Growth rate is considered 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.256529doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256529
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

12 

stabilized once the slope of the growth signal within a shrinking window reaches zero. 
Stabilization time is defined as the time between the nutrient shift and the time at which 
growth rate is stabilized.  d The growth rate of fluctuation-grown cells stabilized at rates 
lower than steady-state Ghigh or Glow. Cells experiencing 15 min and 60 min fluctuations 
stabilized at 1.86 ± 0.47 h-1 and 1.86 ± 0.13 h-1, respectively, after an upshift and at 0.65 ± 
0.22 h-1 and 0.60 ± 0.10 h-1 after a downshift. Cells shifted once from steady state stabilized 
only upon reaching steady state Ghigh (2.84 ± 0.08 h-1) after an upshift or Glow (0.96 h-1) when 
growth rate stabilized after a downshift (only one of two replicates stabilized at Glow after 5h 
of post-shift observation). e Cells grown in fluctuations stabilize in growth rate within 3.8 ± 
0.0 (T = 15 min) or 3.3 ± 1.4 min (T = 60 min) of each upshift and within 2.2 ± 1.9 min (T = 15 
min) or 15.0 ± 7.6 min (T = 60 min) of each downshift (n = 3–4). Cells grown in steady 
environments stabilize hours after a single shift, 116.3 ± 12.4 min in the case of upshifts (n = 
2) and at least 297.5 min after a downshift (one of two replicates stabilized after 5 h).  f The 
initial change in growth rate in the minutes following a nutrient shift was greater in the cells 
experiencing fluctuations than in cells experiencing only a single shift. Over the first 7.5 min 
after each upshift, cells experiencing fluctuations increased in growth rate relative to their 
pre-shift growth rate (t = 0) by 138.3 ± 20.6% (15 min) or 158.7 ± 48.4% (60 min), compared 
to a 12.0 ± 14.0% increase in the single shift case. Over the 7.5 min after each downshift, cells 
experiencing fluctuations decreased in growth rate by 57.8 ± 3.7% (15 min) or 80.4 ± 2.6% (60 
min), compared to a 90.9 ± 2.5% decrease in growth rate in cells after a single shift. Error bars 
denote the standard deviation between replicates (n = 2–4). 
 

 

 

Rapid nutrient fluctuations induce a novel growth physiology  

 

To demonstrate that bacteria can adopt a distinct physiological state when exposed to rapid 

nutrient fluctuations, we performed an experiment in which cells growing under steady Clow 

for at least 3.5 h were then exposed to fluctuations with period T = 60 min. We found that the 

first nutrient upshift induced the gradual increase in growth rate characteristic of the 

physiological transition between Glow and Ghigh (Fig. 5a). Subsequent upshifts displayed faster 

growth rate adjustments that increasingly resembled that characteristic of cells grown in 

fluctuating conditions (Fig. 5a). This transition confirms that cells can adopt a fluctuation-

induced growth physiology, induced by repeated nutrient shifts.  

 

The transition to a stable growth physiology occurred within 2–3 h of the onset of 

fluctuations. The growth following each successive nutrient upshift (growth in Chigh) increased 

during this 2–3 h transition time, offsetting the decreasing growth following each successive 

downshift (growth in Clow) (Fig. 5b). In both nutrient concentrations, growth ceased to differ 

significantly from the third nutrient fluctuation period onwards (Fig. 5b). The overall increase 

from initial to stabilized growth suggests that the physiological transition to a fluctuation-

induced physiology enhances growth in fluctuating environments. This enhancement is 

potentially a physiological trade-off, reducing growth rate in low nutrient concentration to 

increase the cell's potential to quickly adjust to a higher growth rate when nutrient 
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concentration becomes high (Fig. 5b). Indeed, in the minutes after a nutrient shift, the growth 

rates of cells in fluctuating conditions were higher than those of cells exposed to a single shift 

(Fig. 4f; Supplementary Fig. 8b). Thus, instead of continuously transitioning between steady-

state physiologies, cells exposed to rapid nutrient fluctuations adopt a distinct, stable 

physiology that alleviates the challenges of growth in unsteady conditions.  

 

 

 
 
Fig. 5: Rapid nutrient fluctuations induce the transition to a novel growth physiology. 
a After at least 3.5 h of growth in steady Clow, cells experience the onset of nutrient 
fluctuations (T = 60 min) between Clow and Chigh. The growth rate dynamics in response to 
each successive nutrient period transition from the dynamics observed in response to a single 
shift to those observed in fluctuating environments (Fig. 4b). The growth rate dynamics of the 
successive periods, including the 60 min preceding the first nutrient upshift ("period 0"), are 
overlaid to show the stabilization of the growth rate signal. Shaded error bars denote the 
standard deviation among replicate experiments (n = 3).  b Stabilization of growth rate 
dynamics with successive nutrient periods. The mean growth rate following each downshift 
(half period in Clow, tlow), each upshift (half period in Chigh, thigh) and across the full period (T) 
adjusts and stabilizes by the third period. Error bars denote the standard error of the mean (n 
= 3) and are smaller than points when not visible.  
 
 

 

Growth in rapid nutrient fluctuations is higher than predicted by steady-state growth models 

 

To quantify the advantages of a fluctuation-induced physiology, we compared mean growth 

rates under fluctuations with mean growth rates predicted by a null model based on the 

measured single-shift responses. The null model assumes the absence of a fluctuation-

induced physiology, so that upon each shift in nutrient cells initiate the transition toward the 

corresponding physiological steady state, and uses the times series of the observed single-

shift growth rate transitions (Fig. 4a) to predict the growth rate dynamics and thus Gfluc (Fig. 

6). For long fluctuation periods (T = 12–96 h), each nutrient phase (duration T/2) is sufficiently 

long for cells to complete the 2–5 h physiological transition to a new steady state before the 
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ensuing shift (Supplementary Fig. 9). As the period T increases, the null model thus predicts 

that the growth rate tends toward GJ (Fig. 6). As the period decreases, cells spend a larger 

fraction of time transitioning, causing a larger predicted reduction in growth rate relative to 

Gave (for example, 17% below Gave for T = 96 h, but 31% below Gave for T = 12 h; 

Supplementary Table 5). In the absence of the fluctuation-induced physiology, the reduction 

in growth rate continues to increase as the period further decreases. The null model predicts 

values of Gfluc that are 44% below Gave for T = 60 min and 50% below Gave for T = 30 s 

(Supplementary Table 5). Because these nutrient periods are shorter than the physiological 

transition time, the null model assumed the cells were "low-adapted": able to grow at Glow 

immediately upon experiencing Clow and, upon shifts to Chigh, displaying the growth rate 

dynamics of a single-shift toward growth at Ghigh (Supplementary Fig. 9). An alternative null 

model (see “high-adapted” in Supplementary Fig. 9) produced the same trend: faster 

fluctuations further decreased the predicted value of Gfluc.  

 

 

 
 
Fig. 6: Growth rate under rapid nutrient fluctuations is sensitive to timescale and higher 
than predicted by steady-state models. 
Growth rates under rapid nutrient fluctuation (blue), expressed as a fraction of the growth 
rate in the steady average nutrient environment (Gave; yellow), are higher than predicted from 
data on single shifts between steady states. Each measured point represents the time-
averaged growth rate G and standard deviation between replicates (n = 3–4). Predicted 
values of Gfluc (gray) reach a maximum of GJ when the fluctuating nutrient timescale is 
infinitely long relative to the time required to transition from growth at Glow to Ghigh, and vice 
versa. At slow nutrient timescales (T = 12 h or more), predicted Gfluc was based on the growth 
rate dynamics measured from single nutrient up- and down-shifts. When each nutrient was 
shorter than the stabilization time (T = 60 min or less), the predictions considered cells were 
low-adapted and able to grow at Glow immediately upon experiencing Clow. Thus growth rate 
during the Chigh phases of the fluctuating signal followed the measured dynamics of the single 
upshift response between t = 0 and the length of the simulated Chigh phase (Supplementary 
Fig. 9). Steady-state Ghigh is never reached, and growth returns immediately to Glow when the 
environment returns to Clow. Alternative models to predict Gfluc under rapid nutrient 
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timescales are presented in the Supplementary Information. All models predict lower Gfluc 
with decreasing period lengths (T) (Supplementary Fig. 9; Supplementary Table 5) — the 
opposite of the trend observed from the experimental values of Gfluc. The deviation between 
measured and predicted Gfluc differentiates the growth physiology at rapid fluctuation 
timescales from the growth behaviors expected from steady state, and highlights the 
timescale-dependent nature of the growth advantage conferred by a physiology adapted for 
growth under rapid nutrient fluctuations.  
 
 

 

This trend in the null model is the opposite of that displayed by the measured values of Gfluc 

for rapid fluctuations. With the observed fluctuation-induced growth rate dynamics, the 

experimentally observed value of Gfluc increases with decreasing fluctuation period: Gfluc is 

50% below Gave for T = 60 min, but only 16.5% below Gave for T = 30 s (Fig. 6). Compared to 

the growth rates predicted from the null model, the experimental Gfluc values represent 21.9 

± 6.0% less growth loss relative to Gave for T = 5 min and 38.2 ± 4.1% less growth loss for T = 

30 s (Fig. 6). This increase in the measured value of Gfluc over that predicted by the null model 

represents the growth advantage in fluctuating conditions afforded by the fluctuation-

adapted growth physiology. These results demonstrate that growth rate in rapid fluctuations 

is qualitatively and quantitatively distinct from steady-state growth dynamics.  

 

An outstanding question concerns how cells sense that the environment is rapidly fluctuating 

and initiate the transition to a fluctuation-induced growth state. It is unclear how the 

fluctuation-induced physiology is achieved, in part because we do not know whether gene 

expression differs between cells growing in fluctuations and cells growing at steady state. 

Alterations in gene expression can be beneficial when environments change on extremely 

rapid timescales: for example, increased expression of photoprotection proteins has been 

demonstrated to increase the growth yield of plants exposed to minute-scale fluctuations in 

light (29). Alternatively, post-translational activation of "spare" ribosomes has been 

implicated as a bacterial strategy to increase growth rate rapidly upon nutrient upshift (30; 

23; 24). The regulation of a fluctuation-induced physiology may of course combine gene 

expression and post-translational controls. Indeed, upon sensing depleted intracellular amino 

acid levels, E. coli has been observed to induce broad responses to increase energy 

production, ribosome levels and translational capacity (31). These observations have begun to 

probe the diversity of strategies that life has evolved to cope with the challenges of 

environmental change. By reporting a novel growth physiology in rapidly fluctuating 

environments, we contribute a new framework by which to pursue an understanding of 

bacterial growth that is relevant to realistic habitats. 

 

 

 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.256529doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256529
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

16 

Conclusions 
 

We found that when bacteria are exposed to nutrient fluctuations their growth rate is 

reduced compared to that observed in steady average nutrient conditions, even when 

nutrient fluctuated on timescales as rapid as seconds. These reductions are not explained by 

the current paradigm in bacterial physiology, which holds that cells experiencing a shift in 

their nutrient environment will transition to the steady state growth physiology of the post-

shift environment. This paradigm was developed from experiments with environments that 

shift only once. Here, we report that rapidly fluctuating nutrient environments induce a novel 

bacterial physiology with growth responses fundamentally distinct single shifts from steady 

state that enables bacteria to grow faster in fluctuations than expected from the existing 

paradigm. 

 

This work establishes nutrient timescale as a fundamental parameter characterizing bacterial 

environments and bacterial growth. In addition to chemical composition and temperature, we 

propose the temporal delivery of nutrients as a major determinant of growth, forming a third 

axis of nutrient environments to consider when studying bacterial behavior. The exposure of 

bacteria to rapid nutrient fluctuations is evident in in situ measurements (5; 32; 33), 

laboratory experiments (34; 35) and models (36). However, the physiological consequences of 

rapid nutrient fluctuations had not previously been investigated. Only through direct 

experiments designed to test the role of nutrient fluctuations in a controlled manner could 

nutrient timescale emerge as a key parameter for bacterial growth. By quantifying growth 

rate across a range of fluctuation timescales relevant to bacterial habitats, this work has 

uncovered a strong dependence of bacterial growth on the temporal dynamics of nutrient 

concentration, highlighting the importance of temporal variability (and by extension, 

microscale heterogeneity) when considering bacterial growth in realistic environments. 

 

The fluctuation-induced growth physiology in E. coli opens the door to the discovery of novel 

forms of regulation by which bacteria coordinate their growth with nutrient availability. First, 

this study focuses on a single type of fluctuation – square waves – but huge complexity 

characterizes the time series of nutrient signals in the wild, including different fluctuation 

magnitudes, duty cycles, and degrees of randomness. Further studies with diverse patterns of 

nutrient fluctuations may yield additional strategies of bacterial growth in temporally variable 

environments. It is also possible that distinct strategies of growth in complex temporal 

environments have evolved between bacterial species that occupy distinct ecological niches. 

Taxon-specific specializations for the timescale of light fluctuations have long been observed 

in plants (37), and more recently in microbial response times to inputs of water to dry soils 

(38).  

 

Our results illustrate how identical environmental shifts can induce different responses 

depending on the timescale at which the shifts are delivered, demonstrating the need to 
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account for temporal variability in the environment at timescales that have been mostly 

ignored to date. Understanding the diversity of growth responses to realistic features of 

microbial environments will bring us closer to the establishment of general frameworks for 

bacterial growth in natural ecosystems and the discovery of mechanistic links between the 

interactions that occur on the scale of single cells, populations and communities.  

 

 

 

Methods 

Bacterial Strain 

All experiments in this study were performed with the same E. coli strain, K-12 NCM3722 

∆motA. The background strain, K-12 NCM3722, has been sequenced (39) and physiologically 

characterized to be prototropic (40). The motility mutant (∆motA) lacks flagella, facilitating 

long-term observation in microfluidics (16). 

 

Growth Media 

Batch culture medium 

MOPS medium (Teknova) supplemented with 0.2% glucose w/v and 1.32 mM K2HPO4 was 

used for overnight and seed batch cultures. All batch cultures contained 3 mL of 

supplemented MOPS medium inoculated with E. coli.  

 

Microfluidics medium 

Lysogeny broth (LB) composed of tryptone (10g/L), yeast extract (5 g/L) and NaCl (10g/L) was 

used for all microfluidic nutrient conditions. For the microfluidic experiments, the same stock 

solution of 100% LB was mixed with an equimolar NaCl solution (2.5g NaCl in 250 mL 0.22 µm 

filtered water (Millipore Millipak Express 40, catalog no. MPGP04001) to prepare three 

dilutions: low, average, and high. To avoid bubble formation within the microfluidics, the NaCl 

solution was freshly autoclaved the day of each experiment and then cooled before preparing 

the LB dilutions. The high LB (2%) mixed 2mL full LB into 98mL salt solution. The low LB (0.1%) 

mixed 5mL of the high LB solution with 95mL salt solution. Afterwards, the high LB solution 

was labeled with 0.26 nM sodium fluorescein, to allow visual calibration of switching between 

mediums. All solutions were adjusted to pH 7 with NaOH. Equal parts of low and high LB were 

mixed to produce the average LB control; hence the average LB medium contained 0.13 nM 

sodium fluorescein. This fluorescein addition had no effect on growth rate (Supplementary 

Fig. 2a). Furthermore, we confirmed with metabolomic profiling that the different steady-

state growth rates between the three steady conditions resulted from proportional changes 

in nutrient uptake rates, rather than changes in the nutrients being metabolized 

(Supplementary Fig. 6). Growth media were loaded into plastic 10 mL syringes (Codan) or 

glass vials (VWR, cat. no. 548-0154) and warmed to 37 °C at least 3 h prior to the start of each 

experiment. 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.256529doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256529
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

18 

Metabolomics characterization of growth media 

To determine how diluting LB affected the consumption of its nutrient components, we 

collected the supernatant from 20 mL batch cultures grown at 37 °C shaking in 125 mL 

Erlenmeyer flasks. Twelve flasks were prepared in parallel, four of each nutrient 

concentration (Clow, Cave, Chigh). Three of each concentration was inoculated with cells, while 

the fourth flask was kept bacteria-free and sampled as a blank control. The inoculum was 

prepared with the same overnight and seed culture preparation used for the microfluidics 

experiments (see Cell Preparation). Once the seed culture reached an OD600 of 0.1 (grown in 

MOPS medium with 0.2% glucose), nine 1 mL aliquots were centrifuged for 2 min at 2500 rcf 

(Eppendorf, Centrifuge 5424 R) and the MOPS-based supernatant removed. The cell pellet 

was gently resuspended in the final growth medium (Clow, Cave or Chigh) and then inoculated 

into the appropriate flask. Each flask was sampled every 30 min by centrifuging 500 µL of 

culture for 5 min at 2500 rcf. Then 100 µL of supernatant was removed from the top of each 

tube and stored in a 96-well plate (Thermo Scientific). Samples were kept on ice when in 1.5 

mL microcentrifuge tubes (Sarstedt AG & Co.), and then at -20 °C when in the plate. The 

samples were thawed and diluted 1:10 in milliQ water prior to measurements with flow 

injection time-of-flight mass spectrometry (FIA-QTOF). 

 

The different steady-state growth rates we measured arise from proportional changes in 

metabolite uptake, rather than shifts in the preferential uptake of some metabolites among 

the different concentrations of LB (Clow, Cave, Chigh). To confirm that differences in growth 

resulted from different levels of nutrient uptake and not different consumed nutrient 

sources, depletion of extracellular metabolites was measured using flow injection time-of-

flight mass spectrometry (FIA-QTOF) (Supplementary Fig. 6). Untargeted metabolomics 

measurements were performed with a binary LC pump (Agilent Technologies) and a MPS2 

Autosampler (Gerstel) coupled to an Agilent 6520 time-of-flight mass spectrometer (Agilent 

Technologies) operated in negative mode, at 4 Ghz, high resolution, with a m/z (mass/charge) 

range of 50-1,000 as described previously (41). The mobile phase consisted of 

isopropanol:water (60:40, v/v) with 5 mM ammonium fluoride buffer at pH 9 at a flow rate of 

150 μl/min. Raw data was processed and analyzed with Matlab (The Mathworks, Natick) as 

described in (Fuhrer et al., 2011) and ions were annotated against the KEGG database 

(restricted to Escherichia coli) with 0.003 Da tolerance. We detected 284 metabolites from 

batch cultures inoculated into Cave or Chigh (Supplementary Table 6) and monitored their 

depletion to find that all detectable metabolites displayed comparable dynamics in the two 

nutrient concentrations (Supplementary Fig. 6). This suggests that the different growth rates 

observed among nutrient concentrations arise from differences in nutrient flux, not 

differences in the composition of nutrient consumed. Metabolites in Clow were below the 

detection limit. 
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Cell preparation 

Cells for each experiment were grown in two batch cultures, the overnight culture and the 

seed culture, before entering the microchannels. The overnight culture was inoculated 

directly from a -80 °C glycerol stock into 3 mL of supplemented MOPS medium and shaken for 

12–16 h at 37 °C at 200 rpm. The next morning, cells from the overnight culture were diluted 

to achieve 3 mL of supplemented MOPS medium with an initial OD600 below detection, 

generally a 1:1000 or 1:2000 dilution. This seed culture was used to inoculate microchannels 

once cells reached an OD600 between of 0.07 – 0.10. 

 

Microchannel fabrication 

Microfluidic channels with a depth of 60 µm were cast in PDMS from a custom-made master 

mold (Fig. 1a) such that all four channels (1 Microfluidic Signal Generator (MSG) for 

fluctuating environments and 3 straight channels for steady environments) were present on 

the same device. Each PDMS device was bonded to a glass slide by plasma treating each 

interacting surface for at least 1 min, then incubating the assembled chip for at least 2 h at 80 

°C. The morning of each experiment, bonded channels were cooled to room temperature and 

then treated with a 1:10 dilution of poly-L-lysine (Sigma catalog no. P8920) in milliQ water. 

Poly-L-lysine treatment increased the number of attached cells and extended attachment 

duration, allowing for longer observations of single cells without affecting growth 

(Supplementary Fig. 2b, c). This treatment has no effect on growth rate (Supplementary Fig. 

2c) and involves incubating the diluted poly-lysine solution inside each channel for 15 min, 

before gently removing the solution and flushing the emptied channel with sterile milliQ 

water. The treated channels were then air dried for at least 2 h prior to experimental use. 

 

Nutrient signal calibration and generation 

All fluctuating nutrient signals in this study switched between two nutrient media: a “high” 

and “low” concentration of LB. To switch between mediums, we oscillated pressure within 

each reservoir of nutrient medium while maintaining a steady mean pressure to ensure a 

steady total flow rate of medium through the device (Supplementary Fig. 1). This flow rate 

was determined by collecting the fluid output from the MSG and measuring the volume per 

minute. While the pressure differentials across the set-up can vary (e.g., different device, 

slight variations in tubing lengths and angles), the range of flow rates used had no effect on 

growth rate (Supplementary Fig. 2). Because the pressure differentials could vary from day-

to-day, the pressure differences required to completely switch between mediums were 

calibrated prior to each experiment at 20× magnification, which enabled visualization of the 

entire signal junction (Supplementary Fig. 1). These calibrated pressure differences were then 

used to define the fluctuating nutrient signal. The pressure system is programmed to 

generate the signal in synchrony with image acquisition. Thus, timestamps from the image 

data can be directly correlate with specific time points within the nutrient signal. Separately, 

the stability of the calibrated signals was visually confirmed by comparing the fluorescent 

signal exiting the junction with the signal observed downstream (Fig. 1c; Supplementary Fig. 
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3). These visualizations were conducted at 60× magnification and quantified by custom image 

processing scripts in MATLAB (see Data and Software Availability).  
 

Quantification of switching timescale and nutrient signal stability 

To assess the accuracy between our designed signal (an even square-wave) and the signal 

realized within the microfluidic device, we compared the transition dynamics of nutrient 

shifts occurring immediately after the signal junction and those occurring near the end of the 

cell imaging region. Two positions in the MSG were imaged while the fluid flowing through 

fluctuated between a medium labeled with 0.26 nM sodium fluorescein and an unlabeled 

medium on a 30 s period. Specifically, we compared the sharpness of the signal immediately 

upon generation with that observed further downstream, as experienced by the surface-

attached cells and observed virtually no decay in the fluorescent signal between the signal 

junction and the imaging region (Supplementary Fig. 3), only the time delay as calculated in 

Supplementary Table 1. While no fluid mixing occurs in this device – we operate under 

laminar flow regimes and there is no Lagrangian mixing – the diffusion of nutrients (or sodium 

fluorescein, which is 2–4 times the molecular weight of an amino acid) could potentially 

smooth out our nutrient signal. Diffusion can be further aided by Taylor dispersion, a 

phenomenon in which velocity gradients in the fluid flow (i.e., shear) work to increase the 

effective diffusion of a chemical species by spreading it across a larger region, thereby 

favoring diffusion. Were the magnitude of these effects non-negligible in our system, we 

should expect different slopes during transitions between the signals at the junction and 

downstream. Specifically, the downstream signal should have a longer transition time as we 

would detect fluorescence leaching into the Clow phases of the signal. However, the time 

required to complete transitions (i.e., time to go from baseline to saturated fluorescent signal 

and vice versa) was about 2 s in both locations (Supplementary Fig. 3). Thus, our flow rates 

are sufficiently fast to carry our intended signal across the entire length of the device without 

noticeable smoothing from diffusion. We also determined that the periodic oscillations in 

nutrient signal are robust across time. The programmed period (T = 30 s) was reliably 

quantified between peaks and between troughs from the repetitive fluorescein signal 

(Supplementary Fig. 3). 

 

Microfluidics experimental procedure 

The complete system involves: (1) a Nikon Eclipse Ti inverted microscope, (2) a full-case 

incubator that maintains a stable temperature (37 °C) around the entire microscope, except 

for the camera and light sources, (3) a computer to operate the microscope software (Nikon 

Elements) and MATLAB, (4) a data acquisition (DAQ) system that interfaces with MATLAB to 

control two pressure regulators, one for each nutrient source, (5) two reservoirs of nutrient 

medium, one of each nutrient concentration, and (6) a source of compressed air. The 

compressed air is fed into the pressure system through a manual regulator, which caps the 

pressure directed towards the two automated regulators at 1.5 psi. To ensure that the 

automated regulators receive a stable input, the pressure of the compressed air source is 
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higher than this maximum value. Each automated regulator is connected to and modulates 

the internal pressure of one reservoir of nutrient medium (Chigh or Clow). Each nutrient 

reservoir is a septum-capped glass vial (vials: VWR, Cat. No. 548-0154; caps: VWR, Cat. No. 

548-0872) with two needles inserted into the silica septum: one short and one long. The short 

needle directly connects an automated pressure regulator with the air space within its 

reservoir, thereby adjusting the pressure within the reservoir as dictated by the MATLAB 

signal (Supplementary Fig. 1a). The long needle connects the fluid within its reservoir with the 

microchannel via tubing inserted into the inlets of the device (Supplementary Fig. 1a). The 

microscope and media are contained within a custom LIS incubator, which maintains the 

sample and all media at 37 °C. 

 

Experiments were based on the exposure of cells attached to the lower surface of the 

microchannels to precisely controlled fluctuating or steady nutrient conditions, and the 

imaging of thousands of cells in the downstream imaging region in order to calculate their 

individual growth rates. The treated, dry microchannels were inoculated with around 50 µl of 

the seed culture (see Culture procedure) for 10–15 min, allowing cells to settle and attach to 

the glass surface within each microchannel before flow was established. Prior to inoculation, 

the microfluidic device was placed in a vacuum for at least 10 min to remove air from the 

PDMS. This step helped to avoid the presence of bubbles inside the channels, by removing air 

from the PDMS so that any air introduced in the set-up would be absorbed by the PDMS.  

Inputs to fluctuating conditions were two septum-capped glass vials (one each for high and 

low nutrient) from which flow was driven by a custom-built air pressure system 

(Supplementary Fig. 1a). Inputs to steady conditions were 10 mL plastic syringes (Codan) from 

which flow was driven by a syringe pump (Harvard Apparatus). Outputs for all conditions led 

to liquid waste receptacles. To avoid changes in pressure throughout experiments, we 

ensured that the waste tubing was sufficiently short to never become submerged by the 

rising level of waste water.  

 

Image acquisition 

Individual cells from all microchannel environments were imaged with phase contrast 

microscopy using a Nikon Eclipse Ti inverted microscope equipped with an Andor Zyla sCMOS 

camera (6.5 µm per pixel) at 60× magnification (40× objective with 1.5× amplification), for a 

final image resolution of 0.1083 µm per pixel. This magnification was high enough to detect 

changes in growth between each image, yet low enough to image hundreds of cells per field 

of view. Each position was repeatedly imaged every 117 s (1:57 min), a time step sufficiently 

high to allow the acquisition of multiple time points along a growth curve (i.e., 10 time points 

in a 20 min cell cycle), yet infrequent enough to image a total of 40–50 positions within each 

time step. Generally, 10 imaging positions per condition allowed us to track 500–1000 or 

more cells per nutrient condition. We confirmed that growth rates were independent of a 

cell’s position along the 10-mm-long region imaged within the microchannel (Supplementary 

Fig. 4) and therefore that cells experienced identical nutrient time series, regardless of 
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location within the microchannel. The uneven time step (1:57 min as opposed to 2:00 min) 

was chosen to avoid potential aliasing effects, by sampling at various points along the nutrient 

period instead of repeatedly at the same few. Light exposure was limited to 20 ms per image, 

with the shutter only open during image capture. Image acquisition was fully automated 

through Nikon Elements, supplemented with the Nikon Perfect Focus System to prevent loss 

of focus due to vertical shifts in the sample. 

 

Image processing 

In preparation for analysis, image sequences from microfluidic experiments were first passed 

through a particle tracking step and a quality control step. First, a custom MATLAB particle 

tracking pipeline was developed to: (1) read image data directly from Nikon Elements image 

files, (2) identify particles based on pixel intensity, (3) fit an ellipse to each particle and 

measure particle parameters (e.g., length, width) and (4) track individual particles through 

time. Second, to exclude errors from our analysis – for example, particles arising from noise 

(i.e., non-uniformity in the background) or particles that include more than one cell – a quality 

control step trimmed our tracked dataset, using size criteria and noise filters to exclude 

errors. The parameter values used in both steps ensured that the vast majority of tracks 

derive from isolated single cells. The final output of these two steps is a data matrix 

containing parameter data (e.g., cell length) over time for hundreds of individual cells growing 

in isolation. Reducing our analysis to cells without neighbors allowed us to assume no 

accumulation or depletion of medium components, as well as physical interactions between 

cells. Cells in contact were excluded from analysis to avoid the possibility of metabolic 

interactions and imprecision in the measurement of cell size. Specifics regarding the particle 

tracking and quality control steps are available in the scripts (see Data and Software 

Availability). 

 

Quantification and statistical analyses 

Calculating instantaneous growth rate, µ  

One widely used method to calculate growth rate is to consider single-cell growth an 

exponential process (11;12) and solve for instantaneous growth rate, µ. This definition of 

growth rate is used throughout this study. From the length and width measured during 

particle tracking, the instantaneous volume of each individual cell was approximated as a 

cylinder with hemispherical caps (17). The approximated volumes were then used to compute 

instantaneous single-cell growth rates in terms of volume doublings per hour. Using V(t+∆t) = 

V(t) · 2µ∆t, we calculated µ between each pair of time steps, with ∆t = 117 s (imaging frame 

rate). Specifically, we took the natural logarithm of each volume trajectory and calculated the 

slope between each point. Dividing the slope by the natural log of 2 changes the base of the 

exponential from e to 2. Thus, µ represents the exponential rate at which volume doubles. 

 

 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.256529doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256529
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

23 

Accounting for day-to-day variability in growth rate 

While steady-state growth rates were generally reproducible (Supplementary Fig. 5b; 

Supplementary Table 2), we found that growth rate measurements performed on the same 

day (i.e., same seed culture) were moderately correlated (Supplementary Fig. 5c). This 

correlation indicates that slight differences between the seed culture (which was different for 

each experiment) contributed the differences in growth rate measured from identical 

conditions between experiments. Thus, when comparing growth rate across conditions (e.g., 

Gfluc and Gave), we compared measurements performed on the same day before comparing 

between experimental replicates, calculating the fraction of Gave represented by the 

measured Gfluc from that same experiment before calculating statistics (i.e., mean and 

standard deviation of Gfluc/Gave) across experiments. We used this same approach when 

comparing Gfluc to GJ, which was calculated from each experiment’s Glow and Ghigh, and Gfluc to 

Glow. The alternative approach for this comparison would be to calculate the mean and 

standard deviation between experimental replicates before calculating fractions (e.g., 

Gfluc/Gave) and combining error. Numerically, this alternative approach yields very similar 

results.  

 

 

Data and Software Availability 

The data that support this study are available from the corresponding authors upon request. 

Image processing, data analysis and plotting scripts are available on Github: 

https://github.com/jkimthu/growing-up  
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