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Abstract

Neuronal oscillations emerge in early human development. These periodic oscillations are thought to rapidly
change in infancy and stabilize during maturity. Given their numerous connections to physiological and cogni-
tive processes, as well as their pathological divergence, understanding the trajectory of oscillatory development
is important for understanding healthy human brain development. This understanding is complicated by recent
evidence that assessment of periodic neuronal oscillations is confounded by aperiodic neuronal activity, which
is an inherent feature of electrophysiological neuronal recordings. Recent cross-sectional evidence shows that
this aperiodic signal progressively shifts from childhood through early adulthood, and from early adulthood
into later life. None of these studies, however, have been performed in infants, nor have they been examined
longitudinally. Here, we analyzed non-invasive EEG data from 22 typically developing infants, across multiple
time points, ranging between 38 and 203 days old. We show that the progressive flattening of the EEG power
spectrum begins in very early development, continuing through the first several months of life. These results
highlight the importance of separating the periodic and aperiodic neuronal signals, because the aperiodic signal
can bias measurement of neuronal oscillations. Given the infrequent, bursting nature of oscillations in infants,
we recommend the use of quantitative time domain approaches that isolate bursts and uncover changes in
waveform properties of oscillatory bursts.

1. Introduction can be readily observed with non-invasive electroen-

cephalography (EEG) in adult humans in the awake

Many drastic changes in brain structure and function
occur during the first year of life. Among those are
the rapid changes the complexity and diversity of neu-
rons and neuronal connections (Silbereis et al., 2016).
In early, prenatal neurodevelopment, these changes
are accompanied by a profound shift in cortical elec-
trophysiology, including the spontaneous emergence
of neuronal oscillations and their differentiation into
multiple frequency bands (Trujillo et al., 2019).

In the context of neuronal oscillations, strong rhythms
such as the visual alpha- and sensorimotor mu-rhythms
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state, but these rhythms are not present at birth. These
striking differences spurred interest in studying changes
of neuronal oscillations across development begin-
ning in the earliest days of EEG (Berger, 1933). Clas-
sical cross-sectional and longitudinal studies in in-
fants and children measured oscillatory frequency and
amplitude of alpha-rhythms in the time domain, show-
ing that oscillatory frequency increases over the span
of childhood, while amplitude decreases (Lindsley,
1938, 1939). The alpha-rhythm emerges at around 3—
4 months, with a frequency of around 3—4 Hz (Smith,
1938; Lindsley, 1939), increasing to 5.5-7 Hz at 12
months; the frequency continues to increase over
the course of childhood and adolescence (Henry and
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Greulich, 1944) before decreasing later in life (Wang
and Busse, 1969).

Eventually these time domain approaches gave way
to later studies that used spectral domain approaches
to measure changes across fixed selected frequency
bands in terms of relative or absolute power (Hagne,
1968; Mizuno et al., 1970; Marshall et al., 2002; Saby
and Marshall, 2012). However, there are several short-
comings associated with using spectral power mea-
sures in fixed frequency ranges (Haller et al., 2018;
Cole and Voytek, 2019). First, oscillations in infant
EEG are transient, appearing in short bursts. This
means that spectral measures that average across very
long time windows, such as are commonly used, can
make very high amplitude oscillatory bursts appear
to be much smaller in amplitude, since they average
in data from times when no oscillations are present
(Jones, 2016; Cole and Voytek, 2019). Because of
this, it is unclear whether oscillatory amplitude ac-
tually decreases with development, or whether oscil-
latory bursts become less frequent. Furthermore, an
oscillation whose frequency is less stable can also
manifest as a lower amplitude rhythm when measured
using traditional spectral approaches. Given the dif-
ferential role that oscillatory bursts play compared
to tonic rhythms in neural processing and cognition
(Feingold et al., 2015; Lundqvist et al., 2016; Peterson
and Voytek, 2017), it is important to clearly elucidate
the nature of how these rhythms change with early
development.

Another shortcoming of traditional spectral analysis
approaches is that EEG activity consists of mixed
periodic and aperiodic signals (Haller et al., 2018).
Aperiodic activity manifests in the 1/f-like structure
of the signal, and is the dominating type of activity
when oscillatory bursts are absent. Because of this,
even when no oscillation is present, spectral analy-
ses will show power within a frequency band driven
entirely by the aperiodic signal, and not by any os-
cillatory activity. Thus, without explicitly measuring
and controlling for the aperiodic signal, one cannot
say with certainty whether the band-specific power
changes seen in development are driven by changes in
oscillatory bursts, the aperiodic signal, or both. This
is especially important given the emerging evidence
that the aperiodic exponent exhibits strong changes

both across aging (up to 70 years old) (Voytek et al.,
2015) and across childhood (from 4 to 12 years old)
(He et al., 2019). However, these studies are limited
by the fact that they are cross-sectional and don’t
account for the bursty nature of oscillations, which
can also change across development and distort spec-
tral estimates of neuronal oscillations (Cuevas et al.,
2014), especially given substantial variability across
individuals.

As of yet, no study has explicitly examined longitudi-
nal changes in aperiodic activity and oscillatory bursts
across development, which results in a lack of clar-
ity regarding which features are truly changing with
development: the aperiodic signal, and/or oscillatory
burst amplitude and oscillatory frequency. Therefore,
here we aim to show explicit quantification of ape-
riodic and periodic processes in infant EEG using
openly available tools and methodological considera-
tions specific to infant data. For this, we re-analyzed
open data from Xiao et al. (2018), consisting of lon-
gitudinal EEG measurements of infants in the first
seven months of life. We assess changes in the ape-
riodic component, as well as changes in oscillatory
bursts by quantifying waveform features in the time
domain (Cole and Voytek, 2019; Schaworonkow and
Nikulin, 2019).

We find that the aperiodic exponent exhibits strong
changes during infancy, with a marked decrease across
the investigated age range of the first month to the
seventh month of life. This decrease in spectral ex-
ponent is equivalent to a "flattening" of the power
spectrum as seen in aging (Voytek et al., 2015), which
has previously been linked to an alteration in the rela-
tive contributions of excitatory and inhibitory currents
contributing to the field potentials from which EEG
activity arises (Gao et al., 2017). In addition, we
quantified bursts over occipital and sensorimotor re-
gions. While we confirm previous work showing that
oscillatory frequency increases with development, we
find no significant change in alpha-amplitude. This
suggests that prior observations of decreasing alpha-
amplitude with development may be at least partially
driven by the oscillation frequency changes.

While these results are specific to early development,
we argue more generally that the complexity of neu-
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ral oscillations—including their bursty nature—as well
as the often overlooked aperiodic signal, all need to
be taken into consideration when assessing spectral
measures of neural oscillations. Specifically, we pro-
pose an analysis approach that quantifies the aperi-
odic component and uses burst detection algorithms.
Such a combined approach may yield improved clar-
ity regarding the relationship between oscillatory and
aperiodic activity to perceptual, cognitive, and motor
development in infancy.

2. Materials and Methods

2.1. Experimental recordings

We reanalyzed an openly available EEG dataset (Xiao
et al., 2018; Hooyman et al., 2018). Here, we give a
brief summary of the experimental methods, with full
details given in the original publications.

2.1.1. Participants

The study protocol was approved by the institutional
review board of the University of Southern Califor-
nia. Written consent was obtained prior to the experi-
ment from the parent or legal guardian. The dataset
was collected from 22 typically developing infants
(10 male, 12 female), stemming from full-term births,
with 1-6 recordings per infant and a one month inter-
val between sessions, with the minimum and maxi-
mum age present in this dataset of 38 and 203 days,
respectively. Participants exclusion criteria were: (1)
complications during birth (2) any known visual, or-
thopedic or neurological impairment (3) below 5"
percentile Bayley Scales of Infant Development (Bay-
ley, 2005) score at the age of testing. 71 sessions of
approximately 5 minute length were acquired in total.
One session was excluded from analysis because only
35 seconds of data was contained in the associated
file.

2.1.2. Experimental Design and EEG recording setup

The experimental session consisted of four types of
blocks: 1) baseline recording where the infant was
presented with a glowing globe toy (40—60 seconds)
2) reaching trial: were a toy was placed in front of

the infant, with encouragement to reach for it (20 sec-
onds) 3) non-reaching trial: toy was removed (20 sec-
onds). Reaching and non-reaching trials were re-
peated five times. 4) baseline recording. Since behav-
ioral annotations were not contained in the dataset, we
did not differentiate between conditions and analyzed
the recording as a continuous trace. Scalp EEG was
recorded from a 32 channel BioSemi active electrode
cap (Amsterdam, The Netherlands), with channels
arranged in the international 10-20 system. The data
was available with a sample rate of 512 Hz.

2.2. Data analysis

Data analysis was performed with python using MNE
v.0.20.4 (Gramfort et al., 2013), and R (R Core Team,
2017) for calculating linear mixed models using the
Ime4 library (Bates et al., 2015). The analysis code
needed to reproduce the analysis and figures is pro-
vided here: http://github.com/nschawor/eeg-infants-
exponent.

2.2.1. Preprocessing

First, channels were manually rejected using visual
inspection to exclude outlier channels according to
excessive noise level and displacement; time seg-
ments showing movement artefacts were manually
rejected. After that, independent component analy-
sis was performed (FastICA on 2-40 Hz band-pass
filtered data, principal component analysis was used
as a pre-whitening step to first retain components
that explain 95% of the data variance which were
subsequently passed on to the independent compo-
nent algorithm. In one session, the threshold needed
to adjusted to 99% to return more than one compo-
nent, because of very strong noise common to all
electrodes). Strong muscle noise and movement arte-
fact components were identified manually with aid
of spatial topographies, frequency spectra and com-
ponent time courses. These components were then
projected out (mean and standard deviation of num-
ber of rejected components: 1.1541.13). In general,
because the separation between noise and signal ICA
components in infant EEG data is less distinct than
in adults (Noreika et al., 2020), we rejected compo-
nents conservatively. The data was re-referenced to a
common average reference.
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2.2.2. Calculation of aperiodic exponents

The spectral parameterization method and toolbox of
Haller et al. (2018) (version 1.0.0) was employed for
calculation of aperiodic exponents. In this approach,
the power spectrum is modelled as a combination
of aperiodic and oscillatory components, which al-
lows distinguishing between oscillatory and aperiodic
contributions to the spectrum. Following steps were
executed to arrive at the aperiodic exponent measure.

1. For each session, data was split into 10 second
segments.

2. For each segment, the power spectrum was
computed using the multitaper method (using
1 Hz bandwidth, resulting in 9 discrete prolate
spheroidal sequence tapers).

3. The aperiodic exponent was estimated from the
power spectrum of each segment. All expo-
nents from model fits satisfying a minimum R>
value of 0.95 were kept for further analysis.

4. The mean exponent across segments was calcu-
lated, obtaining one value per channel for each
session.

A challenge in analyzing this dataset is the presence
of many artefacts stemming from gross motor move-
ments as well as a high level of muscle noise. As the
presence of artefacts influences power spectral esti-
mates, the aperiodic exponent was evaluated across
segments of data to increase the stability of the esti-
mate by averaging. The length of segments of 10 sec-
onds was chosen to balance off a long enough segment
length for reliable estimation of the power spectrum
while obtaining a sufficient number of segments to
identify non-stationary outliers.

Settings for the spectral parameterization algorithm
were: peak width limits: (0.5, 12.0); maximum num-
ber of peaks: 5; minimum peak height: 0.0; peak
threshold: 2.0; and aperiodic mode: ‘fixed’. Here, we
only take into account the aperiodic component from
the power spectrum, discarding estimated peaks.The
presence of a high level of muscle noise manifests in
the spectral domain as an increased level of >10 Hz
power levels. We therefore parameterized the spectra
in the frequency range 1-10 Hz to reduce contamina-
tion of exponent model fit by an increase in muscle
noise.

For statistical evaluation, a linear mixed effects model
was fit to the aperiodic exponents with participant as
a random effect and age as a fixed effect for each
channel independently. We extracted the correspond-
ing t-values and parameter estimates for the fixed
effect. Significance was assessed with a hierarchical
bootstrapping approach: the exponent values were
permuted across sessions within a participant and
the first session was placed at an age drawn with re-
placement from the empirical distribution of age at
the first session, with subsequent sessions retaining
their spacing. 5,000 bootstrapping iterations were per-
formed, fitting a linear mixed model to the permuted
exponent values and generating a null distribution of
parameter estimates. p-values were computed as: (1 +
number times the true parameter estimate exceeds the
null distribution)/(1 + number of bootstrap iterations).
Bonferroni p-value adjustment was applied to correct
for multiple comparisons across 32 channels.

2.2.3. Calculation of waveform features

The bycycle toolbox (Cole and Voytek, 2019) (version
0.1.3) was used for detecting and quantifying burst
features in the time domain. Following steps were
executed to arrive at average burst features for each
dataset:

1. To extract the signals of interest, we used a
Laplacian spatial filter, where from the activity
of one center electrode, four surrounding elec-
trodes were subtracted (see inset of Fig. 4A and
Fig. 4B for used electrodes).

2. A narrow band-pass filter (finite impulse re-
sponse filter, 3—7 Hz) was used for identifica-
tion of zero-crossings.

3. With aid of zero-crossings, cycle features were
determined on broad-band filtered (1-45 Hz)
data.

4. All cycles that pass predefined criteria regard-
ing amplitude and period consistency as well
as relative amplitude extent were classified as
bursts.

5. Mean waveform features across burst cycles
(voltage amplitude, cycle frequency, peak-trough
and rise-decay asymmetry) were computed for
each session.
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The rationale for using a Laplacian filter is to extract
more local signals, less influenced by volume conduc-
tion, while maintaining computational simplicity, as
recommended by Cuevas et al. (2014). We used three
spatial derivations, centered over left and right sen-
sorimotor electrodes as well as over central posterior
electrodes. Spatial patterns were calculated with aid
of the covariance matrix across channels (Haufe et al.,
2014).

In accordance with previous literature, we chose 3—
7 Hz as the filter range for zero-crossing determi-
nation, as this is the frequency range where alpha-
rhythm type oscillatory bursts start to gradually emerge
in infants. We used the following parameter settings
for determining bursts which were consistent across
sessions: minimum of three present cycles, amplitude
fraction threshold = 0.5, amplitude consistency thresh-
old: 0.5, period consistency threshold: 0.5, mono-
tonicity threshold: 0.5. Even though these criteria
are manually selected, they were used for all sessions
and all subjects, and thus allow for within subjects
comparisons across age.

Analog to the aperiodic component analysis, we then
fit a linear mixed model with participant as a random
effect and age as the fixed effect separately for each
waveform feature and for each of the three Lapla-
cian signals and assessed significance via hierarchical
bootstrapping. Bonferroni p-value correction was ap-
plied to correct for multiple comparisons across the
three Laplacian channels. To compare differences in
oscillation frequency across channels, we estimated
a common model with data from all three channels
with an additional intercept for the factor channel and
compared channel-specific intercepts against channel-
specific intercepts of a null model (5,000 bootstrap
iterations), where waveform-features were pooled and
then randomly assigned to a channel.

3. Results

3.1. Aperiodic exponent decreases with age

The aperiodic exponent was computed for each chan-
nel for each session for each participant, the process
is illustrated in Fig. 1. The number of analyzed seg-
ments per subject (after data cleaning and exluding

suboptimal model fits) per session was: 39.54+6.57
(mean + standard deviation), comprising approxi-
mately 94.0% =+ 4.3% of the original available data.
Example topographies for a single subject across ses-
sions can be seen in the bottom row, showing gradual
decrease of aperiodic exponent values. The grand
average shown in Fig. 2A shows decreased exponent
values for sensorimotor channels in contrast to pos-
terior channels. The exponent decreased with age
across the investigated age range for occipital-parietal
channels. This was quantified in terms of a negative
coefficient of the linear mixed model for the fixed
effect age which is shown for each channel in Fig. 2B.
The decreasing exponent values across sessions for
each participant are shown in Fig. 2C for channel
PO3.

3.2. Changes across age in oscillatory bursts fre-
quency

We assessed oscillatory bursts in the 3—7 Hz frequency
range from Laplacian filtered signals from sensori-
motor and occipital regions, see Fig. 3 for example
traces for a single subject. The number of detected
bursts per session was: 63.504+54.19 (mean = stan-
dard deviation). After burst detection, the mean cycle
features were computed for each session and each
channel. A linear mixed model showed a significant
relationship between mean oscillation frequency and
age: oscillation frequency significantly increases with
age, for sensorimotor as well as posterior channels
(see Fig. 4A and 4B), consistent with previous litera-
ture. In this dataset, oscillation frequency of posterior
bursts did not differ significantly from frequency of
sensorimotor bursts (see Fig. 4C, comparison of in-
tercepts of electrodes of linear mixed model fitted
with common slope for age-effect slope, bootstrapped
p-value > 0.05). We find no significant effect of burst
amplitude and age within the investigated age range,
as well as other investigated waveform features (see
Table 1).

4. Discussion

The aim of this article is to illustrate robust ways of
assessing aperiodic activity in the spectral domain and
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Figure 1: Example exponent calculation procedure and topographies for one subject. A) Infant 32-channel EEG data of
approximately was cut into segments of 10 seconds length, with the first six segments shown here. B) The power spectrum was
calculated for each channel and each segment, shown is the power spectrum for the black trace. A linear slope was fit to the frequency
range 1-10 Hz (red line). C) The aperiodic exponents for segments which had a model fit of R > 0.95 were retained and the mean
across segments was calculated (orange line). D) The calculation was performed for each session, error bar shows standard deviation
across segments. E) Example topographies of aperiodic exponents for one subject for all sessions, showing gradual decrease in

exponent values.

burst feature

C3 -t-value C3-p-value C4-t-value C4-p-value Pz-t-value Pz - p-value

frequency

peak-trough asymmetry
rise-decay asymmetry
amplitude voltage

3.219631 0.0024** 4.097415 0.00240** 3.176145 0.009598**
1.084038 1.0000 0.850820 1.00000 1.094204 1.000000
0.873353 1.0000 -0.449706 1.00000 0.420949 1.000000
0.620464 1.0000 1.926013 0.10078 -1.672853 0.451110

Table 1: Linear mixed model estimates for fixed effect age on average burst features for three Laplacian channels. p-values
are obtained by hierarchical bootstrapping. Bonferroni multiple comparison p-value correction across channels and features was

applied. N=70 sessions.
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Figure 2: Spectral analysis: aperiodic exponent decreases with age in infants. A) Grand average spatial topography of aperiodic
exponent values averaged across all sessions. B) The exponent decreases significantly with age over posterior channels. Shown is
the t-value from the linear mixed model for the fixed effect age. Circles mark channels with a corresponding Bonferroni corrected
p-value<0.01. N=70 sessions. C) Aperiodic exponent values for the channel PO3. Each line corresponds to one participant. N=70
sessions, Bonferroni corrected p-value = 0.0064. The solid green line is the population level model prediction, with shaded areas

representing the 95% confidence interval of the prediction.
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Figure 3: Example burst spatial patterns and time series for one subject. A) Spatial patterns for the three Laplacian filtered
channels, which activity was used to perform burst detection, showing a focus over the areas of interest. B) Example traces for
each channel with detected burst cycles highlighted. C) After burst detection, cycle features such as oscillation frequency and D)

amplitude were computed and then averaged (orange) across each session.
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Figure 4: Time domain analysis: oscillation frequency increases with age in infants. A) Oscillation frequency increases with
age for sensorimotor bursts. Topography shows spatial pattern for Laplacian C3 channel. N=70 sessions, multiple comparison
corrected p-value = 0.0024, obtained by hierarchical bootstrapping. The solid green line is the population level model prediction,
with shaded areas representing the 95% confidence interval of the prediction. B) Analog to A), but for posterior bursts as extracted
with a Laplacian Pz channel, multiple comparison corrected p-value = 0.009598. C) Mean oscillation frequency for sensorimotor C3
and C4 channels as well as posterior Pz channel increases with age. Solid lines are the population level model predictions, with
shaded areas representing the 95% confidence interval of the prediction.

periodic activity in the time domain for EEG record-
ings taken during the first months of life. In contrast
to adult EEG, sustained oscillations are mostly absent
in this data, as indicated by few to no peaks in in-
fant power spectra and corroborated by time-domain
analyses, which show that oscillatory bursts occur
rarely. We show that aperiodic activity attenuates in
the examined developmental interval. The underlying
processes that drive this attenuation are not yet clear
and need to be studied further in conjunction with
structural changes that occur within this time frame,
e.g. changes in myelination, brain volume or cortical
thickness (Gilmore et al., 2007; Holland et al., 2014),
as well as changes in cognitive development. By
relating changes in aperiodic exponent to structural
and functional measurements it may become possible
to distinguish different contributions to the exponent
measure, for instance excitation/inhibition balance
(Gao et al., 2017) or theories of brain functioning (He,
2014).

Changes in exponent will be reflected in measures of
relative power, because normalizing absolute power
values will not be sufficient to correct for that. This
is because changes in relative power do not neces-
sarily reflect oscillatory dynamics, but can also indi-
cate changes in aperiodic exponent. Care has to be
taken to assure that spectral measures used in a study

capture the corresponding physiological aspects the
researcher intends to measure.

Additionally, we investigated oscillatory bursts in
the frequency range of 3—7 Hz using a quantitative
method for extracting cycle-by-cycle waveform fea-
tures for oscillations. This approach allows us to
describe changes in waveform features for posterior
and sensorimotor bursts. We argue that in the context
of oscillation ontogeny, infant data is better suited for
time domain analysis as opposed to purely spectral
analysis approaches, because of the transient nature
of oscillatory bursts. Oscillatory bursts will not nec-
essarily show up in the frequency spectrum computed
over long time windows because oscillatory peaks
will be eclipsed by the aperiodic component if they
occur infrequently (Jones, 2016). Early studies in
oscillation changes in development and aging relied
on visual inspection and subjective ratings of regu-
larity of rhythms (Lindsley, 1938), but this can be
measured by a quantitative assessment of oscillatory
bursts, evaluating each cycle in terms of its waveform
features.

A limitation of this study is that the functional modu-
lation of oscillatory bursts was not taken into account.
While we observed changes in oscillatory frequency
with a topographical distribution attributable to visual
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or sensorimotor rhythms, because of lack in behavior
annotation it was not possible to assess rhythm desyn-
chronization with respect to behavior (Stroganova
et al., 1999; Bell and Wolfe, 2008), which would be
interesting for future studies. Additionally, recordings
only had a length of approximately five minutes. Dur-
ing such a short period, the sampled behavior could be
very different between sessions, because infant behav-
ior can only be experimentally controlled to a certain
degree, making it challenging to assess changes in
EEG activity over sessions with this type of data. It
would be desirable to run this type of analysis on a
larger dataset with longer recordings and behavioral
annotations.
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