

1 **Unique roles of vaginal *Megasphaera* phylotypes in reproductive health**

2

3 Abigail L. Glascock¹, Nicole R. Jimenez², Sam Boundy², Vishal N. Koparde¹, J. Paul

4 Brooks³, David J. Edwards⁴, Jerome F. Strauss III⁵, Kimberly K. Jefferson², Myrna G.

5 Serrano², Gregory A. Buck^{2,6}, Vaginal Microbiome Consortium and Jennifer M.

6 Fettweis^{2,5*}

7 ¹Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA

8 ²Department of Microbiology & Immunology, Virginia Commonwealth University,

9 Richmond, Virginia, USA

10 ³Department of Supply Chain Management and Analytics, Virginia Commonwealth

11 University, Richmond, Virginia, USA

12 ⁴Department of Statistical Sciences and Operations Research, Virginia Commonwealth

13 University, Richmond, Virginia, USA

14 ⁵Department of Obstetrics and Gynecology, Virginia Commonwealth University,

15 Richmond, Virginia, US

16 ⁶Department of Computer Science, Virginia Commonwealth University, Richmond,

17 Virginia, USA

18 **Running Title: Vaginal *Megasphaera***

19 *Address correspondence to Jennifer M. Fettweis, jennifer.fettweis@vcuhealth.org.

20

21 **ABSTRACT**

22 The composition of the human vaginal microbiome has been extensively studied and is
23 known to influence reproductive health. However, the functional roles of individual taxa
24 and their contributions to negative health outcomes have yet to be well characterized.
25 Here, we examine two vaginal bacterial taxa grouped within the genus *Megasphaera* that
26 have been previously associated with bacterial vaginosis (BV) and pregnancy
27 complications. Phylogenetic analyses support the classification of these taxa as two
28 distinct species. These two phylotypes, *Megasphaera* phylotype 1 (MP1) and
29 *Megasphaera* phylotype 2 (MP2), differ in genomic structure and metabolic potential,
30 suggestive of differential roles within the vaginal environment. Further, these vaginal taxa
31 show evidence of genome reduction and changes in DNA base composition, which may
32 be common features of host dependence and/or adaptation to the vaginal environment.
33 In a cohort of 3,870 women, we observed that MP1 has a stronger positive association
34 with bacterial vaginosis whereas MP2 was positively associated with trichomoniasis.
35 MP1, in contrast to MP2 and other common BV-associated organisms, was not
36 significantly excluded in pregnancy. In a cohort of 52 pregnant women, MP1 was both
37 present and transcriptionally active in 75.4% of vaginal samples. Conversely, MP2 was
38 largely absent in the pregnant cohort. This study provides insight into the evolutionary
39 history, genomic potential and predicted functional role of two clinically relevant vaginal
40 microbial taxa.

41 The vaginal microbiome is an important determinant of women's reproductive
42 health, pregnancy outcomes and neonatal health^{1–6}. Optimal vaginal microbial health is
43 typically characterized by dominance of one or more lactic-acid producing species of the
44 genus *Lactobacillus* that function to lower the pH and prohibit the growth of other
45 organisms⁷. A vaginal microbiome depleted of protective vaginal lactobacilli and enriched
46 in diverse anaerobic species is often clinically diagnosed as bacterial vaginosis (BV). BV
47 is the most common vaginal condition worldwide, affecting an estimated 27% of women
48 in North America⁸. This condition has been associated with an increased risk of acquiring
49 sexually transmitted infections (STIs) as well as pregnancy complications including
50 spontaneous preterm birth^{9–12}. While associations of vaginal microbial taxa with
51 reproductive health conditions such as BV are well established, the pathophysiological
52 significance of these taxa remains largely unknown. Developing a more comprehensive
53 understanding of how individual taxa contribute to negative health outcomes is essential
54 for understanding the underlying biological mechanisms and for the development of
55 effective therapeutics.

56 Here, we focus on two vaginal anaerobic taxa, *Megasphaera* phylotype 1 (MP1)
57 and *Megasphaera* phylotype 2 (MP2) and their roles in reproductive health and disease.
58 Both MP1 and MP2 have been previously associated with bacterial vaginosis across
59 multiple cohorts^{3,13–15}. Due to its high specificity for the condition, MP1 has been used in
60 combination with other taxa for molecular diagnosis of BV^{14,16}. MP2 was described by
61 Martin *et al.* to be more prevalent in samples collected from women with trichomoniasis,
62 suggesting the potential for divergent roles of these vaginal *Megasphaera* in disease
63 states¹⁷. *Megasphaera* species have also been linked to an increased risk for HIV

64 acquisition^{18,19}. Given that MP1 and MP2 have been observed in the urogenital tracts of
65 adolescent males and heterosexual couples, it seems likely that these bacteria can be
66 sexually transmitted^{20,21}.

67 Vaginal carriage of *Megasphaera* is strongly associated with BV, and pregnant
68 women with BV have an elevated risk for spontaneous preterm birth²². The outcomes
69 across antibiotic intervention studies for prevention of preterm birth have been
70 inconsistent, which may be attributed in part to the significant heterogeneity in study
71 design and the choice and timing of therapeutic intervention²². It is now clear that there
72 are different subtypes of BV that can be stratified using molecular approaches, and some
73 subtypes of BV may be more tightly linked to preterm birth than others. Even though BV
74 has long been linked to elevated risk for preterm birth, more recent vaginal microbiome
75 studies have identified higher MP1 carriage in women who go on to deliver preterm^{12,23–}
76 25. Interestingly, Mitchell *et al.* observed MP1 in samples collected from the upper genital
77 tract of women undergoing hysterectomy²⁶, suggesting that MP1 may be capable of
78 ascending from the vaginal environment into the upper genital tract. Together, these
79 observations suggest that MP1 can colonize the vaginal environment, ascend into the
80 upper genital tract and potentially contribute to PPROM and/or spontaneous preterm
81 birth.

82 In the current study, we use several approaches to delineate the roles of MP1 and
83 MP2 in reproductive health. These include phylogenetic analyses that probe the
84 evolutionary history of these organisms, genomic characterization that permits
85 assessment of their metabolic potential, and a study to define their individual associations
86 with demographic and clinical measures.

87 **RESULTS**

88 **Evolutionary history and genomic divergence of MP1 and MP2**

89 Genomes of three representative MP1 isolates and three representative MP2
90 isolates were analyzed to gain insight into the mechanisms underlying their colonization
91 of the human vaginal environment (Supplementary Table 1). A phylogenetic analysis of
92 145 orthologous genes using 110 genomes classified to the class Negativicutes revealed
93 that MP1 and MP2 are evolutionarily distinct and separated from the nearest
94 *Megasphaera/Anaeroglobus* clade (Fig. 1). Similar results were observed in a
95 phylogenetic analysis using 16S ribosomal RNA (rRNA) genes and the inferred topology
96 was largely reflective of niche adaptation (Fig. 2). In one case, niche-specific separation
97 did not occur; *Megasphaera* sp. BV3C16-1, which was isolated from the human vagina,
98 was grouped with oral taxa. This taxon has been reported in vaginal microbiome²⁴, but it
99 has been observed at low abundance and prevalence. For example, the taxon was
100 identified in five of 3,870 vaginal samples (0.12%) at a threshold of 0.01% in a cohort of
101 women enrolled through the Vaginal Human Microbiome Project (VaHMP)²⁷.

102 Given the significant divergence of these two vaginal phylotypes from other closely
103 related taxa, we performed a percentage of conserved proteins (POCP) analysis, a metric
104 for delineating genus boundaries²⁸. The suggested cutoff for delineation of genera is a
105 POCP value of less than 50% to the genus type strain. The POCP values for members
106 of the MP1 and MP2 clade in comparison to the type strain (*Megasphaera elsdenii* DSM
107 20460) range from 49.6-52.6% (Supplementary Fig. 1, Supplementary Table 2).
108 *Anaeroglobus geminatus*, currently classified as a separate genus, had a POCP value of
109 52.5% compared to the *Megasphaera* type strain²⁹. A recent study by Campbell *et al.*

110 identified Conserved Signature Indels (CSIs) and Conserved Signature Proteins (CSPs)
111 used to classify organisms to families within the class Negativicutes³⁰. We identified all
112 CSIs and CSPs indicative of Veillonellaceae family genomes in MP1 and MP2 genomes
113 (Supplementary Table 3), supporting their previous placement within the Veillonellaceae
114 family. However, three of nine CSP markers specific for the class Negativicutes were
115 absent from all MP1 and MP2 genomes, indicative of genome reduction that is not
116 observed in other host-related *Megasphaera*. While biochemical analyses have yet to be
117 performed, the phylogeny, POCP analysis, loss of CSP markers, and specificity of the
118 clade to the vaginal environment could support placement of these phylotypes into a novel
119 genus of bacteria.

120 We compared the genomes of MP1 and MP2 with genomes of seven
121 *Megasphaera* isolates from human and mammalian GI tracts, the single human oral
122 *Anaeroglobus* isolate and the vaginal *Megasphaera* sp. BV3C16-1 isolate^{29,31-34}. All of
123 the MP1 and MP2 isolates exhibit evidence of genome reduction with an average genome
124 size of 1.71 megabases (Mb) relative to an average genome size of 2.35 Mb for the other
125 studied *Megasphaera* and *Anaeroglobus* genomes ($q=0.001$, 95% CI [-0.97,-0.32],
126 Kruskal-Wallis test for differences in genome size with FDR correction). The MP1 and
127 MP2 genomes contain a predicted 1,571 protein-coding genes on average, which is
128 significantly fewer than the number of protein-coding genes for the other studied
129 *Megasphaera* and *Anaeroglobus* genomes, which contained an average of 2,116 genes
130 ($q=0.00015$, 95% CI [-749,-341], Kruskal-Wallis test for differences in predicted gene
131 count with FDR correction). MP1 and MP2 also exhibit lower average GC composition
132 with an average of 42.6% compared to an average of 51.1% in the other host-associated

133 genomes in the *Megasphaera/Anaeroglobus* clade ($q=0.0005$, 95% CI [-12.17,-4.75],
134 Kruskal-Wallis test for differences in average GC composition with FDR correction) (Fig.
135 3a). Reduction in genome size and lower GC percentage has been observed in vaginal
136 strains of other bacterial taxa including *Lactobacillus* and *Gardnerella*, suggesting
137 reductive evolution may be a common feature of adaptation to the vaginal
138 environment^{35,36}.

139 **Taxonomic placement of MP1 and MP2 as two discrete species**

140 Similarity of the 16S rRNA gene at an identity threshold of 97% is often used to
141 delineate species. The 16S rRNA similarity between the two phylotypes is 96.3%. This
142 figure along with reports by Srinivasan *et al.*, implies that the two phylotypes are best
143 classified as distinct species based on 16S rRNA gene sequence similarity
144 (Supplementary Table 4)^{37,38}. The average nucleotide identity (ANI) between MP1 and
145 MP2, which takes into account the entire nucleotide content of genomes, is 73%. This
146 figure is markedly less than the 95-96% threshold suggested for species demarcation
147 using this method (Supplementary Table 5)³⁹. Our phylogenetic analyses (Fig. 1, Fig. 2)
148 reflected these findings, with MP1 and MP2 identified as sister taxa, distinct from other
149 *Megasphaera* and *Anaeroglobus* and separated by significant branch lengths, signifying
150 extensive divergence.

151 Further comparative analyses revealed that genomic synteny is conserved within
152 phylotype, with variations attributable to the presence of temperate bacteriophage.
153 However, extensive genome rearrangement was observed between MP1 and MP2
154 genomes (Fig. 3c, Supplementary Fig. 2). While a significant difference in genome size
155 was not observed between MP1 (average of 1.72 Mb) and MP2 (average of 1.70 Mb)

156 isolates ($q=0.7497$, 95% CI [-0.118, 0.152], Kruskal-Wallis test for differences in genome
157 size with FDR correction), there was an observed difference in GC composition between
158 the MP1 (average of 46.3%) and MP2 isolates (average of 39.0%) ($q=0.000002$, 95% CI
159 [6.95,7.61], Kruskal-Wallis test for differences in GC composition with FDR correction).
160 The two phylotypes also exhibit GC-divergent codon preference at the third position
161 (average GC composition at third position: MP1- 47%, MP2- 31%), signaling evolutionary
162 pressure for a reduction in GC composition in MP2 (Fig. 3b). The observed sequence
163 divergence, differential GC composition and codon preference, and lack of synteny
164 between MP1 and MP2 genomes provide support for the designation of the two
165 phylotypes as distinct species.

166 **Genomic evidence for niche specialization to the vaginal environment**

167 To assess differences in the predicted metabolic potential, we annotated and
168 performed metabolic reconstructions of 15 genomes including representatives of MP1,
169 MP2 and related bacterial strains classified to the *Megasphaera* and *Anaeroglobus*
170 genera. As expected, given the observed genome reduction of MP1 and MP2, many
171 metabolic pathways present among all other related taxa are absent in the MP1/MP2
172 clade (Supplementary Table 6). MP1 and MP2 are predicted to lack genes conserved in
173 other *Megasphaera* and *Anaeroglobus* genomes that function to transport putrescine and
174 spermidine, metabolize nitrogen, produce selenocysteine and transport and modify the
175 metals nickel and molybdenum. Thus, these organisms may have evolved to rely on
176 synergy with the host and/or microbial co-inhabitants. Interestingly, MP1 and MP2 are
177 predicted to have retained the ability to produce spermidine, a known metabolic marker
178 of BV₄₀. Despite the overall genomic reduction of MP1 and MP2, these vaginal phylotypes

179 have also gained functions specific to their clade. MP1 and MP2 specifically encode
180 virulence genes including variable tetracycline resistance genes (*i.e.*, *tetM*, *tetO*, *tetW*)
181 and genes necessary for iron uptake (*i.e.*, *tonB* and hemin uptake outer membrane
182 receptor). Iron sequestration is commonly a critical characteristic of pathogenic bacteria
183 and may be pertinent to the vaginal microbiome given the influx of available iron during
184 menses⁴¹. MP1 and MP2 genomes also encode multiple CRISPR-associated proteins,
185 which likely function to protect these bacteria from foreign genetic elements⁴².

186 **Predicted functional divergence of MP1 and MP2**

187 MP1 and MP2 also possess unique predicted metabolic functions, indicative of
188 their divergence. While genomes of both phylotypes encode the majority of genes
189 required for glycolysis, MP2 genomes lack hexokinase. The absence of this gene
190 suggests that MP2 strains cannot use glucose as a carbon source. MP1 genomes are
191 predicted to lack adenosine deaminase (ADA), an enzyme involved in the adenine
192 salvage pathway. In contrast, MP2 genomes retain ADA but lack the gene encoding
193 cytidine deaminase, which functions in the recycling of cytosine bases. These differential
194 salvage strategies are intriguing given that MP1 genomes have markedly higher GC
195 content than MP2 genomes. The phylotypes also differ in their ability to synthesize amino
196 acids. MP2 genomes are incapable of synthesizing leucine and tryptophan, while MP1
197 genomes lack the ability to interconvert serine and cysteine. Production of aromatic amino
198 acids including tryptophan is energetically expensive⁴³. Thus, the loss of tryptophan
199 synthesis genes in MP2 is an example of energetically favorable genome reduction in this
200 host-associated organism.

201 **MP1 and MP2 phylotypes have distinct clinical associations**

202 Given the distinct metabolic capacities of the MP1 and MP2 phylotypes, we
203 examined the self-survey and clinical data associated with the Vaginal Human
204 Microbiome Project (VaHMP) to investigate their individual roles in reproductive health²⁷.
205 We first examined demographic and clinical associations with vaginal MP1 and MP2
206 carriage in a cohort of 3,091 non-pregnant women. In this cohort, 27% of women
207 (845/3091) carried MP1 only, 5% (163/3091) carried MP2 only, 6% (182/3091) carried
208 both phylotypes, and 62% (1901/3,091) carried neither phylotype. Compared to the
209 average alpha diversity (i.e., inverse Simpson's index) of samples containing neither of
210 the two phylotypes (1.37), alpha diversity was increased in samples containing MP1 only
211 (1.79), MP2 only (3.47) and both phylotypes (3.37) (Fig. 4). Notably, vaginal microbiome
212 communities containing MP2 exhibited an almost two-fold increase in alpha diversity
213 compared with MP1 alone.

214 Associations with demographics were determined using a generalized linear
215 model. Both phylotypes were associated with African-ancestry (MP1: $q=3.00e-31$, MP2:
216 $q=1.10e-21$, with FDR correction) and a self-reported annual household income of less
217 than 20k (MP1: $q=2.23e-18$, MP2: $q=3.31e-18$ with FDR correction) (Supplementary
218 Table 7). Fethers *et. al* previously reported that MP1 was associated with women who
219 have sex with women (WSW)⁴⁴. WSW experience higher rates of BV than women who
220 do not have sex with women⁴⁵. Thus, we examined the association of both *Megasphaera*
221 phylotypes with WSW. Although 44% (38/86) of women who reported a current female
222 partner were MP1 positive and there was a positive association between WSW and MP1
223 carriage ($q=0.075$ with FDR correction), it did not reach the threshold for significance
224 ($p<0.05$). Using the general linearized model (GLM), the race/ethnicity field was identified

225 as a significant covariate with WSW. In stratified analyses, we found that among women
226 who did not report African ancestry, there was a strong association between WSW (N=25)
227 and MP1 ($q= 0.0012$ with FDR correction), but that among women reporting African
228 ancestry, WSW (N=61) was not significantly associated with MP1 ($q= 0.846$ with FDR
229 correction). The majority of participants not reporting African ancestry self-identified as
230 Caucasian (68%). This finding highlights the need for precision medicine approaches that
231 account for the contribution of individual environmental and genetic factors and their
232 interactions to fully understand the contributions that shape vaginal microbiome
233 composition and impact risk for adverse reproductive health outcomes.

234 To assess the association of these two phylotypes with three common vaginal
235 infections (*i.e.*, bacterial vaginosis, candidiasis and trichomoniasis) we performed a
236 relative risk analysis. We observed that while both MP1 and MP2 were associated with
237 an increased risk for BV (MP1: 4.57, 95% CI [3.76,5.55], MP2: 2.19, 95% CI [1.79-2.69]),
238 MP1 is associated with a higher risk for this condition (Table 1). In contrast, MP2 was
239 associated with an increased risk for trichomoniasis (4.84, 95% CI [3.06-7.64]), whereas
240 MP1 had no association (0.96, 95% CI [0.59-1.56]). Using the GLM approach, MP1 and
241 MP2 strains were both associated with self-reported vaginal odor (MP1: $q= 5.39e-18$,
242 MP2: $q= 1.36e-10$ with FDR correction) and vaginal discharge (MP1: $q= 1.40e-17$, MP2:
243 $q= 4.64e-7$ with FDR correction). Both phylotypes were also associated with clinician-
244 diagnosed elevated vaginal pH (>4.5) (MP1: $q= 3.56e-34$, MP2: $q= 7.29e-12$ with FDR
245 correction) consistent with previous reports. Carriage of MP1 and MP2 were also
246 associated with having more than 10 lifetime sexual partners (MP1: $q= 0.00037$, MP2: $q=$

247 4.65e-5 with FDR correction) and having more than one sexual partner in the past month
248 (MP1: $q= 0.0002$, MP2: $q= 2.24e-5$ with FDR correction).

249 **MP1 and MP2 in Pregnancy**

250 Recent studies have shown that the vaginal microbiome in pregnancy is
251 associated with decreased alpha diversity and dominance of protective *Lactobacillus*
252 species⁴⁶⁻⁴⁹. Similarly, BV-associated organisms have been shown to be less prevalent
253 in pregnant women^{27,50}. Thus, not surprisingly in a case-matched cohort of 779 pregnant
254 and 779 non-pregnant women from the VaHMP study, we found that MP2 was
255 significantly decreased in pregnancy ($q < 0.05$, Mann-Whitney U test with FDR correction)
256 (Fig. 5). This finding is in agreement with previous work demonstrating that BV organisms
257 are often less prevalent in pregnancy^{27,50}. In contrast, MP1 was not significantly excluded
258 in the pregnant cohort ($q = 0.596$, Mann-Whitney U test with FDR correction). MP1 has
259 been previously associated with risk for preterm birth^{12,23,24}; additional studies will be
260 necessary to determine whether the ability of MP1 to persist throughout gestation has
261 implications for complications in pregnancy.

262 To determine whether the two vaginal phylotypes were functionally active in
263 pregnancy, we analyzed metatranscriptomic data from 57 samples collected from 52
264 pregnant women who delivered at term as a part of the case-control Preterm Birth cohort
265 from the Multi-‘Omic Microbiome Study – Pregnancy Initiative (MOMS-PI)²³. This is a
266 reanalysis of a subset of an existing dataset previously published in 2019^{23,50}. In this
267 cohort, 43 samples contained transcripts assigned to MP1 while only one sample
268 contained transcripts assigned to MP2 (Supplementary Table 8, Supplementary Table 9),
269 consistent with our observation that MP2 seems to be less prevalent in pregnancy while

270 MP1 is maintained. Because MP2 was only detected in a single sample, we will focus on
271 the findings pertaining to MP1 here. The data showed that *in vivo* in the vaginal
272 environment, MP1 strains transcribed genes from 34 unique pathways. Notably, MP1
273 strains transcribed genes involved in butyrate production, which has previously been
274 associated with BV⁴⁰.

275 For this cohort (N=57), we also had paired 16S rDNA profiles and metagenome
276 sequencing profiles generated as a part of a previous study²³. In these paired data, we
277 observed that the 16S rDNA relative abundance measures for MP1 were strongly
278 correlated to their paired metagenomic relative abundance measures ($\rho=0.92$,
279 Spearman's rank correlation). This finding supports the use of 16S rDNA profiles in lieu
280 of metagenomic sequencing data to estimate the relative abundance of MP1 in these
281 cohorts. The correlation of MP1 metagenomic relative abundance measures to their
282 paired metatranscriptomic relative abundance measures was also significant ($\rho=0.91$,
283 Spearman's rank correlation). Intriguingly, the relative abundance measures of the
284 transcripts assigned to MP1 were greater than the observed relative abundance
285 measures in the paired metagenomic dataset ($p= 2.95e-05$, Mann-Whitney U test) (Fig.
286 6). This suggests that MP1 is highly transcriptionally active in these samples and makes
287 up a greater proportion of the transcripts than would be predicted based upon the
288 metagenomic data alone. Taken together, the above analyses demonstrate that MP1 is
289 maintained in pregnancy, in contrast to other BV-associated organisms, and is
290 transcriptionally active in a majority of pregnant women in our cohort. These observations
291 in combination with previous associations of MP1 with PPROM and spontaneous preterm
292 labor, highlights MP1 as an important target for future study^{12,23,24}.

293 **DISCUSSION**

294 In conclusion, our phylogenetic analyses suggest that MP1 and MP2 are
295 evolutionarily divergent from other *Megasphaera* species as well as each other. While
296 comprehensive biological and physiological assays of MP1 and MP2 isolates would be
297 necessary, there is strong phylogenetic evidence that supports placement of MP1 and
298 MP2 into a separate genus. Compared to other *Megasphaera*, both organisms exhibit
299 loss of gut-specific metabolic pathways, acquisition of iron uptake pathways, and loss of
300 genes involved in the biosynthesis of differential amino acids. These organisms also
301 exhibit reduced genomes and lowered GC composition, indicative of a transition to a more
302 host-dependent state⁴⁷ that seems to be a common feature of adaption to the vaginal
303 environment^{35,36}. Taken together these observations are suggestive of adaptation to the
304 host and/or vaginal environment.

305 Several lines of evidence support the hypothesis that MP1 and MP2 have adapted
306 from an ancestral gastrointestinal tract strain to colonize the vaginal niche: i) the similarity
307 of MP1 and MP2 to human gastrointestinal *Megasphaera* species, ii) the ubiquity of
308 *Megasphaera* in the GI tracts of humans and mammals^{31,32}, iii) the streamlined genomes
309 of MP1 and MP2, a common feature of strains identified in the human vagina, and iv) the
310 physical proximity of the rectum and vagina. Based on our observations, we hypothesize
311 that these two phylotypes share a common ancestor, likely a colonizer of the
312 gastrointestinal tract. Their evolutionary divergence is characterized by progressive gene
313 loss and genome reduction, common features among host-dependent organisms. These
314 changes may be indicative of host dependence and/or adaptation to the vaginal
315 environment specifically.

316 MP1 and MP2 are evolutionarily divergent and functionally distinct from one
317 another as well, and these findings have important implications for the contributions of
318 these unique phylotypes to vaginal infections and pregnancy complications^{3,12-14,17,24}.
319 Several lines of evidence show differential associations of these two phylotypes with
320 clinical diagnoses and demographic factors. As expected, our analyses confirmed that
321 MP1 is tightly correlated with BV as diagnosed by Amsel's criteria in a cohort of 3,091
322 non-pregnant women of reproductive age. This result is consistent with numerous
323 previous studies that have demonstrated the strong association of MP1 with BV and led
324 to its use as a biomarker for the diagnosis of the condition^{8/18/2020 5:45:00 PM}. MP2 was also
325 associated with BV (RR= 2.19, 95% C.I. (1.79-2.69)) in the cohort, but to a lesser extent
326 than MP1 (RR= 4.57, 95% C.I. (3.76-5.55)). This finding is consistent with previous
327 reports of the specificity and sensitivity of MP1 and MP2 for BV diagnosis. While MP1
328 and MP2 have both been reported to have high specificity for BV ranging from 88.5%-
329 98.1% for MP1 and 98.9-100% for MP2 as diagnosed by Amsel's criteria, Nugent score
330 or a combination of both diagnostic measures, the sensitivity of MP2 (6.9%-31.0%) has
331 been reported to be significantly lower than that of MP1 (68.4%-95.1%)^{16,51}. In the current
332 study, we observed an overall prevalence of 33.2% (n=1027) for MP1 and 11.2% (n=345)
333 for MP2 among non-pregnant women of reproductive age. However, our results also
334 suggest that the two major *Megasphaera* phylotypes may be associated with different
335 subtypes of vaginal dysbiosis.

336 In the cohort of 3,091 non-pregnant women of reproductive age, MP2 was strongly
337 associated with trichomoniasis whereas MP1 was not associated with the condition. To
338 our knowledge, the association of MP2 with trichomoniasis was first described by Martin

339 *et al.* in 2013, and our study confirms and extends this observation¹⁷. Martin *et al.* also
340 highlighted an observation from a 1992 study suggesting that *Trichomonas vaginalis*
341 infection was associated with intermediate flora as defined by Nugent score among
342 pregnant women⁵². Together, these findings highlight the need to distinguish between
343 related taxa, such as MP1 and MP2, in microbiome analyses in order to accurately define
344 the functionally relevant subtypes of vaginal dysbiosis and how they contribute to adverse
345 reproductive health outcomes.

346 In the current study, MP1 and MP2 were both more prevalent among women who
347 reported African ancestry (MP1 AA: 41.1%, MP1 Non-AA: 19.8%, MP2 AA: 15.9%, MP2
348 Non-AA: 3.1%), consistent with several previous reports including an analysis of the first
349 1,686 women enrolled in the VaHMP cohort^{1,27,53}. The association of MP1 and MP2 with
350 African ancestry is consistent with the increased incidence of BV among women with
351 African ancestry^{53–55}. In a recent study of 33 white women and 16 black women who were
352 BV negative as assayed by both Amsel's and Nugent's criteria, Beamer *et al.* did not
353 detect significant differences in the colonization and density of a number of bacterial
354 species assayed by cultivation and molecular methods⁵⁶. Notably, organisms such as
355 MP1 are rarely observed in women with low Nugent scores; MP1 was identified in 2/33
356 (6.1%) white women and 2/16 black women (12.5%) by qPCR. While it is less refined
357 than new molecular methods for assaying the vaginal environment, Nugent score, which
358 calculates a score for BV based on the presence of bacterial morphotypes as assayed by
359 microscopy, is still a direct measure of microbial composition. By excluding individuals
360 with higher Nugent score, a significant proportion of women of African ancestry may be
361 excluded from the study. In this current analysis of the VaHMP cohort, race and ethnicity

362 were tightly correlated with a number of covariates including measures of socioeconomic
363 status such as education and annual income. Additional studies will be needed to further
364 define the contributions of both genetic and environmental factors that shape vaginal
365 microbiome composition^{55,57,58}.

366 In the current study, MP1 and MP2 were also found to be associated with
367 increased alpha diversity of the microbiome profile and elevated vaginal pH (>4.5), which
368 is one of Amsel's criteria for BV and is consistent with previous studies linking these
369 *Megasphaera* phylotypes to BV. Interestingly, the vaginal microbiome profile of women
370 who carried MP2 exhibited higher alpha diversity compared to the vaginal microbiome of
371 women who carried MP1 alone. MP2 exhibits greater genome reduction than MP1, likely
372 making it more reliant on other microbial species and/or host factors. This genomic
373 reduction may account for why MP2 is less prevalent in the overall population and specific
374 to a more diverse dysbiotic state.

375 MP1 is prevalent in the vaginal environment and has been associated with preterm
376 birth in several recent studies, marking it as a taxon of interest^{23–25,49,50}. Our current study
377 suggests that MP1 levels are similar among pregnant and non-pregnant women, unlike
378 many other BV-associated vaginal taxa which seem to be excluded during the gestational
379 shaping of the vaginal microbiome^{25,59,60}. MP1 is highly prevalent in the VaHMP cohort,
380 colonizing 33.2% of women in the study. These findings suggest that this highly prevalent
381 organism colonizes the vaginal environment and remains present and transcriptionally
382 active during pregnancy. Mitchell *et al.* observed MP1 in the upper genital tract (UGT) of
383 women undergoing hysterectomy suggesting that this organism is likely capable of
384 ascending into the UGT. This capability combined with the ability of MP1 to maintain

385 colonization during pregnancy suggests that this organism is a candidate for future
386 studies investigating the proposed model where ascending infection of vaginal organisms
387 contributes to in preterm labor and/or birth. *Megasphaera* has also been associated with
388 low vitamin D levels⁶¹ highlighting a possible link between vaginal microbiome signatures
389 and host state⁶². Identifying mechanisms that permit this organism to pervade the
390 changing vaginal environment associated with the progression of pregnancy may possibly
391 lead to the development of more effective preventative therapeutics targeting microbe-
392 related preterm labor and delivery. This study also highlights the need for continued
393 exploration of mechanisms of microbial evolution in the human microbiome.
394 Understanding the processes that underlie adaptation to specific human host-associated
395 environments will inform strategies for modulating the microbiome to prevent disease and
396 promote human microbial health.

397

398 **AUTHOR CONTRIBUTIONS**

399 A.L.G. conducted all experiments and analyses and drafted the manuscript. N.R.J.
400 contributed to clinical association analyses and manuscript preparation. S.B. contributed
401 to comparative genomic analyses. V.N.K. performed genome assembly and initial
402 genome annotation. J.P.B. and D.J.E. provided support for statistical analyses. J.F.S.
403 provided clinically relevant interpretation of results. K.K.J. oversaw cultivation of isolates
404 and provided interpretation of results. M.G.S. oversaw genome sequencing and provided
405 interpretation of phylogenetic data. G.A.B. contributed to interpretation of the results, and
406 G.A.B., K.K.J., J.F.S. and J.M.F. serve as the executive leadership team and planned
407 and directed the overall VaHMP and MOMP-PI studies. The VMC provided infrastructure

408 and data for the study. J.M.F. supervised this study and led the overall direction and
409 planning. A.L.G. and J.M.F designed the study and wrote the manuscript with
410 contributions from all other authors.

411

412 **ACKNOWLEDGMENTS**

413 The study team gratefully acknowledges the participants who contributed specimens and
414 data to the Vaginal Human Microbiome Project (VaHMP) and the Multi-Omic Microbiome
415 Project-Pregnancy Initiative (MOMS-PI). The authors would also like to acknowledge
416 other members of the Vaginal Microbiome Consortium and the Research Alliance for
417 Microbiome Science (RAMS) Registry whose contributions made the study possible
418 including the team of research coordinators, the team of sample processors, the team of
419 data managers and the team of clinicians and nurses who assisted with sample collection.
420 We thank our collaborators at the Global Alliance to Prevent Prematurity and Stillbirth
421 (GAPPS) for their contributions to the MOMS-PI study. We acknowledge helpful
422 discussions with Robert P. Hirt, Brian C. Verrelli, Phillip B. Hylemon and Glen E. Kellogg.
423 This study was funded by NIH grants UH3AI083263 and U54HD080784. Other grants
424 that provided partial support include GAPPS BMGF PPB grant and NIH grant
425 R21HD092965. NRJ was supported by grant R25GM090084 for the VCU Initiative For
426 Maximizing Student Development (IMSD) program. All sequence analysis reported herein
427 was performed in the Genomics Core of the Nucleic Acids Research Facilities at VCU; all
428 informatics analysis was performed on servers provided by the Center for High
429 Performance Computing at VCU.

430

431 **COMPETING INTERESTS**

432 Some authors (Brooks, Edwards, Strauss, Jefferson, Serrano, Buck & Fettweis) are co-
433 inventors on a pending patent for a preterm birth diagnostic signature. Strauss serves
434 as a Member on the Scientific Advisory Board of Prescient Medicine.

435

436 **MATERIALS AND METHODS**

437 **Cultivation of MP1 and MP2**

438 Using anaerobic technique, we cultivated, isolated and sequenced the genomes
439 of one isolate of *Megasphaera* phylotype 1 (MP1, strain M1-70) and two isolates of
440 *Megasphaera* phylotype 2 (MP2, strains M2-4 and M2-8) from frozen glycerol stocks of
441 vaginal swab samples collected through the Vaginal Human Microbiome Project
442 (VaHMP)⁶³. One mid-vaginal swab from each participant was used to inoculate 1.0mL of
443 supplemented brain-heart infusion (sBHI) culture media with an added cryo-protectant
444 (20% glycerol) and stored at -80°C (Supplementary Table 11). Frozen vaginal culture
445 samples were targeted for cultivation based on the presence and high relative abundance
446 of bacterial targets of interest. These samples were identified using 16S rRNA gene
447 based vaginal microbiome profiles generated for each participant. A scraping of the frozen
448 vaginal culture media from the selected targets was used to inoculate agar plates for
449 bacterial culture. Scrapings were plated on both ThermoScientific Remel Chocolate agar
450 (lysed blood agar) and ThermoScientific Remel Brucella Blood agar (5% sheep's blood)
451 at four dilutions: 1:10, 1:100, 1:1000 and 1:10000. Plates were stored at 37°C for 24-48
452 hours. The plates were enclosed in three nested Ziploc bags along with a Mitsubishi
453 Anaeropack-Anaero packet to simulate anaerobic conditions. Individual colonies were

454 selected for growth and purification from the dilution plates based on colony morphology
455 and differential growth characteristics. After re-streaking for visibly pure colonies, the
456 isolates were taxonomically identified by colony PCR amplification of the full 16S rRNA
457 gene using universal 16S primers^{64,65}. Amplicons were purified using the Qiagen
458 QIAquick PCR Purification Kit and sequenced using the Applied Biosystems 3730 DNA
459 Analyzer. Colonies that were identified as bacterial targets of interest and exhibited no
460 evidence of contamination were selected for extraction of genomic DNA. A single colony
461 inoculum was added to 5mL of sBHI in a 15mL falcon tube. Tubes were loosely capped
462 to allow gas exchange and stored in a rack at 37°C for 24-48 hours in three nested Ziploc
463 bags containing a Mitsubishi Anaeropack-Anaero. The DNA was then extracted using the
464 Qiagen DNeasy Blood & Tissue Kit and quantified using the Nanodrop 2000
465 spectrophotometer. Frozen stocks for MP1 and MP2 isolates were not recoverable.

466 **Genome Sequencing and Assembly**

467 Purified genomic DNA from the single MP1 isolate was sequenced using the
468 Roche 454 GS FLX Titanium platform. The resulting reads were trimmed for quality and
469 assembled using Newbler v2.8⁶⁶. Purified genomic DNA derived from the two MP2
470 isolates M2-4 and M2-8 were sequenced using the Illumina MiSeq platform and the
471 resulting reads were trimmed for quality and assembled using Newbler v2.8, CLC Bio and
472 SPAdes⁶⁶⁻⁶⁸. These three assemblies were merged using CISA to produce the most
473 complete and accurate contigs⁶⁹.

474 **Structural Genomic Analysis**

475 Genomic synteny was analyzed between genome representatives of MP1 and
476 MP2 and other host-associated *Megasphaera* species. This analysis was performed at

477 the both the protein and nucleic acid level. Nucleic acid-based synteny analyses were
478 performed using NUCmer while amino acid-based synteny analyses were performed
479 using PROmer. Both NUCmer and PROmer are available as a part of the MUMmer 3.0
480 package⁷⁰. Synteny plots were created using gnuplot from the gnuplot 4.2 package and
481 MUMmerplot, which is also available as a part of the MUMmer 3.0 package⁷¹. Genomic
482 GC composition was determined using in-house scripts. Codon usage within the
483 genomes was calculated using cusp, a program included in the EMBOSS Tools package
484 available through EMBL-EBI⁷². Comparative analyses of basic genome statistics
485 including genome size, predicted number of proteins and GC composition were
486 performed using a Kruskal-Wallis test. This was performed using the kruskal.test function
487 in R. All calculated p values were adjusted using the FDR correction in R using the
488 p.adjust function. Resulting corrected q values are reported in the Results.

489 **Measures of Genomic Similarity**

490 Analyses were performed utilizing three MP1 genomes, three MP2 genomes and
491 all publicly available *Megasphaera* and *Anaeroglobus* genomes at NCBI as of January 1,
492 2015 (Supplementary Table 10). One metagenomic *Megasphaera elsdenii* assembly was
493 excluded from the analysis due to variation in size and gene content from other deposited
494 *M. elsdenii* genomes. One representative of MP1 (Veillonellaceae bacterium DNF00751)
495 and two representatives of MP2 (*Megasphaera* genomosp. 2, Veillonellaceae bacterium
496 KA00182) were deposited after analyses were complete. ANI values suggest that they
497 are similar in genomic content to the genome representatives analyzed in this study.
498 Veillonellaceae bacterium DNF00751 had ANI values ranging from 96.5-98.6% compared
499 to the three MP1 genomes utilized in our analysis. *Megasphaera* genomosp. 2 had ANI

500 values ranging from 98.5-99.0% and Veillonellaceae bacterium KA00182 had ANI values
501 ranging from 98.6-99.0% to the three MP2 genomes utilized in our analyses.

502 To assess genomic similarity using the entire nucleotide content of the genomes,
503 a pairwise calculation of the average nucleotide identity was performed using a publicly
504 available script (<https://github.com/chjp/ANI>). 16S ribosomal RNA gene sequences are
505 commonly used to distinguish bacterial species and establish evolutionary relatedness⁷³.
506 16S rRNA gene sequences were identified and extracted from genomes using
507 RNAmmer⁷⁴. Sequence similarity of the 16S rRNA genes was determined using the blastn
508 algorithm⁷⁵. In order to delineate genus boundaries, pairwise Percentage of Conserved
509 Proteins (POCP) values were calculated using in-house scripts developed based on the
510 methods described in Qin et al., 2014²⁸.

511 **CSI and CSP detection**

512 Conserved Signature Proteins (CSPs) and genomic regions containing Conserved
513 Signature Indels (CSIs) were identified using BLAST⁷⁵. Genomic regions containing CSIs
514 were aligned using MUSCLE and visualized using Jalview^{76,77}. This analysis was based
515 on work performed by Campbell *et al.* identifying CSPs and CSIs indicative of the
516 placement of certain taxa within the class Negativicutes³⁰.

517 **Genome Annotation and Metabolic Reconstruction**

518 Genomes were annotated using both an in-house annotation pipeline and RAST⁷⁷,
519 a web-based genome visualization, annotation and metabolic reconstruction tool
520 provided by NMPDR⁷⁸. As a part of the in-house Genome Annotation Pipeline, the
521 following programs were used. Genes were called using both Glimmer3 and
522 GeneMarkS^{79,80}. Ribosomal RNA genes were identified and extracted from genomes

523 using RNAmmer⁷⁴. Genes encoding tRNAs were identified in genomes using tRNAscan-
524 SE⁸¹. Orthologous genes were detected using rpsblast in conjunction with Pfam and COG
525 databases^{75,82-85}. Predicted gene functions were annotated using blastx and the nr
526 database at NCBI⁷⁵. Metabolic reconstruction was performed using ASGARD⁸⁵ and visual
527 representations of predicted variation within metabolic pathways were generated using
528 the program color-maps⁸⁶. To determine genes lost in MP1 and MP2, genes specific to
529 MP1 and MP2 and genes that can be used to distinguish the two phylotypes, RAST
530 annotation was utilized. Findings were verified by comparing RAST results to the Genome
531 Annotation Pipeline Glimmer3 and GeneMarkS gene calls. Further verification was
532 performed using the tblastn algorithm to compare known annotated protein sequences
533 available through NCBI to the raw genomic contigs^{75,82,85}.

534 **Phylogenetic Analysis**

535 To perform a phylogenetic reconstruction of the 16S rRNA gene, 16S rRNA
536 sequences were identified and extracted from the genomes using RNAmmer⁷⁴. The
537 extracted 16S rRNA gene sequences were aligned using MUSCLE⁷⁶. The resulting
538 alignment file was converted to phylip format using a web-based tool for DNA and protein
539 file format conversion, **AL**ignment **T**ransformation **E**nvi**R**onment or ALTER⁸⁷. RAxML-
540 HPC was used to perform a rapid bootstrap analysis using 1,000 bootstraps and search
541 for the best scoring maximum likelihood tree using the gamma model of heterogeneity⁸⁸.
542 To create a phylogenetic reconstruction of all Negativicutes class genomes, 145
543 orthologous genes were used. OrthoDB, an online database for orthologous groups was
544 used to determine which orthologous genes were conserved at the family level
545 (Veillonellaceae)⁸⁹. These genes were verified using reciprocal blast and extracted from

546 the six MP1 and MP2 genomes as well as from all publicly available genomes classified
547 to the class Negativicutes at NCBI as of January 1, 2015. *Clostridium botulinum* A strain
548 Hall was selected as the outgroup. This species was chosen due to its classification in
549 the same phylum (Firmicutes) but different class (Clostridia versus Negativicutes) as
550 compared to the Negativicutes genomes. Each orthologous gene was separately aligned
551 using MUSCLE, a program within the EMBOSS Tools package available through EMBL-
552 EBI^{72,76}. Alignments were visually examined and those with large gaps or likely errors
553 were discarded. Sequences from all orthologs were concatenated together to form one
554 large informative sequence. Concatenated sequences were then pruned for informative
555 regions using Gblocks⁹⁰. The resulting sequences were converted from pir to phylip
556 format using the web tool, ALTER⁸⁷. RAxML-HPC was used to perform a rapid bootstrap
557 analysis using 100 bootstraps and search for the best scoring maximum likelihood tree
558 using optimization of substitution rates, the gamma model of heterogeneity and the WAG
559 amino acid substitution matrix ⁸⁸. Aesthetic changes to the tree were made using
560 TreeDyn⁹¹.

561 **Participant Recruitment and Informed Consent**

562 We used samples and data from two existing cohorts for this study, The Vaginal
563 Human Microbiome Project (VaHMP) and the Multi-Omic Microbiome Study–Pregnancy
564 Initiative (MOMS-PI), reviewed and approved by the Institutional Review Board at Virginia
565 Commonwealth University (IRB #HM12169, IRB #HM15527). Samples and data are
566 maintained in the Research Alliance for Microbiome Science (RAMS) Registry at Virginia
567 Commonwealth University (IRB #HM15528). The study was performed with compliance
568 to all relevant ethical regulations. Written informed consent was obtained for all

569 participants and parental permission and assent was obtained for participating minors at
570 least 15 years of age.

571 **Sample Collection, Vaginal Microbiome Profiling and Analysis**

572 Samples collected as part of the Vaginal Human Microbiome Project (VaHMP) at
573 Virginia Commonwealth University were used for this study as previously described⁶³.
574 Briefly, mid-vaginal wall swab samples were collected and DNA was extracted from the
575 swabs using the MoBio Powersoil DNA Isolation Kit. DNA samples were randomized to
576 avoid batch effects and the V1-V3 region of the 16S rRNA gene was amplified using
577 polymerase chain reaction (PCR) and universal primers (Supplementary Table 12)^{64,65}.
578 The amplified 16S rDNA fragments were sequenced using the Roche 454 GS FLX
579 Titanium platform. Sequences were classified using both the Ribosomal Database Project
580 (RDP) classifier and the in-house STIRRUPS (Species-level Taxon Identification of rDNA
581 Reads using a USEARCH Pipeline Strategy) classifier to achieve species-level
582 classification (version 10-18-17)^{92,93}. Samples that yielded less than 5,000 reads were
583 excluded from analysis.

584 Taxa were determined to be present if they comprised at least 0.1% of the vaginal
585 microbiome profile of a given sample. Demographics and health history data was self-
586 reported by the participants. Associations were calculated based on the presence or
587 absence of a taxon of interest (threshold of 0.1% of total reads) in combination with given
588 demographic or clinical data. Statistical significance was calculated using a generalized
589 linear model using logistic regression as implemented in the ‘glm’ function in R. All
590 calculated p values were corrected for multiple testing using the FDR correction method.

591 This was performed in R using the p.adjust function. Adjusted q values are reported in
592 the Results.

593 **Alpha Diversity Measures**

594 16S rDNA-based vaginal microbiome profiles from the Vaginal Human Microbiome
595 Project (VaHMP) outpatient cohort of non-pregnant subjects was used for this analysis
596 (n=3091). Alpha diversity for each microbiome profile was calculated using relative
597 proportion data, renormalized to exclude unclassified reads (below 97% threshold).
598 Inverse Simpson's Index was used as the measure of alpha diversity. This metric was
599 calculated using the R package 'vegan.' Average Inverse Simpson's Index alpha diversity
600 measures were generated for four subsets of vaginal microbiome data i) samples
601 containing neither phylotype ii) samples containing only MP1 iii) samples containing only
602 MP2 and iv) samples containing both MP1 and MP2. Presence of a phylotype was
603 denoted by a relative abundance of greater than or equal to 0.1% of the vaginal
604 microbiome profile. Statistical significance was calculated using a two-tailed Student's T-
605 test with a significance level of 0.05.

606 **Relative Risk**

607 The non-pregnant, outpatient VaHMP cohort was used for this analysis (n=3091).
608 Samples met the threshold of at least 5,000 reads. Vaginal infection status was
609 determined based on clinician diagnosis at time of visit. Relative risk values and their
610 corresponding 95% confidence interval values were calculated based on the standard
611 relative risk formula. Relative Risk = $(A/A+B) / (C/C+D)$ where A represents the number
612 of samples where the taxon is present and the participant is diagnosed with the disease,
613 B represents the number of samples where the taxon is present but the participant is not

614 diagnosed with the disease, C represents the number of samples where the taxon is
615 absent but the participant is diagnosed with the disease and D represents the number of
616 samples where the taxon is not present and the participant is not diagnosed with the
617 disease.

618 **Pregnancy Analysis**

619 A case-matched cohort was used for this analysis. A cohort of 779 pregnant
620 women was case-matched 1:1 based on ethnicity, age and income to 779 non-pregnant
621 controls. Using the R package 'wilcox', we performed a Mann-Whitney U test on all
622 vaginal microbial taxa present in at least 5% of samples that comprise at least 0.1%
623 relative proportion of the microbiome profile. We utilized the R function 'p.adjust' to correct
624 for multiple testing using the FDR correction. Results for three *Lactobacillus* species,
625 MP1, MP2 and select associated organisms associated with dysbiosis are shown⁹⁴.

626 **Transcriptomic Analyses**

627 The Multi-Omic Microbiome Study-Pregnancy Initiative (MOMS-PI) Preterm Birth
628 cohort was utilized for this analysis⁹⁵. This cohort consists of several hundred thousand
629 samples collected from pregnant women throughout and after their pregnancies. For
630 meta-transcriptomics, we collected a mid-vaginal swab from each participant and pre-
631 processed the sample within an hour of collection by inserting the swab into RNAlater®
632 (Qiagen). These swabs were then processed using MoBio Power Microbiome RNA
633 Isolation kit as described by the manufacturer. Total RNA was depleted of human and
634 microbial rRNA using the Epicentre/Illumina Ribo-Zero Magnetic Epidemiology Kit as
635 described by the manufacturer. Enriched messenger RNA was prepared for sequencing
636 by constructing cDNA libraries using the KAPA Biosystems KAPA RNA HyperPrep Kit.

637 Indexed cDNA libraries were pooled in equimolar amounts and sequenced on the Illumina
638 HiSeq 4000 instrument running 4 multiplexed samples per lane with an average yield of
639 ~100 Gb/lane, sufficient to provide >100X coverage of the expression profiles of the most
640 abundant 15-20 taxa in a sample. Raw sequence data was demultiplexed into sample-
641 specific fastq files using *bcl2fastq* conversion software from Illumina. Adapter residues
642 were trimmed from both 5' and 3' end of the reads using Adapter Removal tool v2.1.3.
643 The sequences were trimmed for quality using *meeptools*⁹⁶, retaining reads with minimum
644 read length of 70b and *meep* (maximum expected error) quality score less than 1. Human
645 reads were identified and removed from each sample by aligning the reads to hg19 build
646 of the human genome using the BWA aligner⁹⁷. Transcripts were classified using
647 HUMAnN2^{98,99} and shortBRED¹⁰⁰. Transcripts assigned to either MP1 or MP2 were
648 analyzed for this study.

649 **Data Availability**

650 The genomes of *Megasphaera* phylotype 1 (MP1, strain M1-70), *Megasphaera*
651 phylotype 2 (MP2, strain M2-4) and *Megasphaera* phylotype 2 (MP2, strain M2-8) have
652 been submitted to DDBJ/ENA/GenBank under accession numbers PTJT00000000,
653 PTJU00000000 and PTJV00000000 respectively. The versions described in this paper
654 are versions PTJT01000000, PTJU01000000 and PTJV01000000. Data from the VaHMP
655 has been deposited under dbGAP Study Accession phs000256.v3.p2. Raw
656 metatranscriptomic sequences from the MOMS-PI project are available at NCBI's
657 controlled-access dbGaP (Study Accession: phs001523.v1.p1). Access to additional
658 fields can be requested through the RAMS Registry (<https://ramsregistry.vcu.edu>).

659 **Code availability**

660 Custom code for GC composition and Percentage of Conserved Protein (POCP)
661 calculations is available at <https://github.com/Vaginal-Microbiome-Consortium>.

662
663 **BIBLIOGRAPHY**
664

- 665 1. Ravel, J. *et al.* Vaginal microbiome of reproductive-age women. *Proc. Natl. Acad. Sci. U. S. A.* **108 Suppl 1**, 4680–4687 (2011).
- 666 2. Romero, R. *et al.* The role of infection in preterm labour and delivery. *Paediatr. Perinat. Epidemiol.* **15 Suppl 2**, 41–56 (2001).
- 667 3. Fethers, K. *et al.* Bacterial vaginosis (BV) candidate bacteria: associations with BV and behavioural practices in sexually-experienced and inexperienced women. *PLoS One* **7**, e30633 (2012).
- 668 4. van de Wijgert, J. H. H. M. The vaginal microbiome and sexually transmitted infections are interlinked: Consequences for treatment and prevention. *PLoS Med.* **14**, e1002478 (2017).
- 669 5. Dominguez-Bello, M. G. *et al.* Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 11971–11975 (2010).
- 670 6. van Best, N., Hornef, M. W., Savelkoul, P. H. M. & Penders, J. On the origin of species: Factors shaping the establishment of infant's gut microbiota. *Birth Defects Res. Part C Embryo Today Rev.* **105**, 240–251 (2015).
- 671 7. Tachedjian, G., Aldunate, M., Bradshaw, C. S. & Cone, R. A. The role of lactic acid production by probiotic *Lactobacillus* species in vaginal health. *Res. Microbiol.* **168**, 782–792 (2017).

684 8. Peebles, K., Velloza, J., Balkus, J. E., McClelland, R. S. & Barnabas, R. V. High
685 Global Burden and Costs of Bacterial Vaginosis: A Systematic Review and Meta-
686 Analysis. *Sex. Transm. Dis.* **46**, 304–311 (2019).

687 9. Cohen, C. R. *et al.* Bacterial Vaginosis Associated with Increased Risk of Female-to-
688 Male HIV-1 Transmission: A Prospective Cohort Analysis among African Couples.
689 *PLoS Med* **9**, e1001251 (2012).

690 10. Hillier, S. L. *et al.* The role of bacterial vaginosis and vaginal bacteria in amniotic
691 fluid infection in women in preterm labor with intact fetal membranes. *Clin. Infect.*
692 *Dis. Off. Publ. Infect. Dis. Soc. Am.* **20 Suppl 2**, S276-278 (1995).

693 11. Kenyon, C., Colebunders, R. & Crucitti, T. The global epidemiology of bacterial
694 vaginosis: a systematic review. *Am. J. Obstet. Gynecol.* **209**, 505–523 (2013).

695 12. Nelson, D. B. *et al.* Early pregnancy changes in bacterial vaginosis-associated
696 bacteria and preterm delivery. *Paediatr. Perinat. Epidemiol.* **28**, 88–96 (2014).

697 13. Zozaya-Hinchliffe, M., Martin, D. H. & Ferris, M. J. Prevalence and abundance of
698 uncultivated Megasphaera-like bacteria in the human vaginal environment. *Appl.*
699 *Environ. Microbiol.* **74**, 1656–1659 (2008).

700 14. Datcu, R. *et al.* Bacterial vaginosis diagnosed by analysis of first-void-urine
701 specimens. *J. Clin. Microbiol.* **52**, 218–225 (2014).

702 15. Lennard, K. *et al.* Microbial Composition Predicts Genital Tract Inflammation and
703 Persistent Bacterial Vaginosis in South African Adolescent Females. *Infect. Immun.*
704 **86**, (2018).

705 16. Fredricks, D. N., Fiedler, T. L., Thomas, K. K., Oakley, B. B. & Marrazzo, J. M.

706 Targeted PCR for detection of vaginal bacteria associated with bacterial vaginosis.

707 *J. Clin. Microbiol.* **45**, 3270–3276 (2007).

708 17. Martin, D. H. *et al.* Unique vaginal microbiota that includes an unknown

709 Mycoplasma-like organism is associated with *Trichomonas vaginalis* infection. *J.*

710 *Infect. Dis.* **207**, 1922–1931 (2013).

711 18. McClelland, R. S. *et al.* Evaluation of the association between the concentrations of

712 key vaginal bacteria and the increased risk of HIV acquisition in African women from

713 five cohorts: a nested case-control study. *Lancet Infect. Dis.* **18**, 554–564 (2018).

714 19. Sabo, M. C. *et al.* Associations between vaginal bacteria implicated in HIV

715 acquisition risk and proinflammatory cytokines and chemokines. *Sex. Transm.*

716 *Infect.* (2019) doi:10.1136/sextans-2018-053949.

717 20. Zozaya, M. *et al.* Bacterial communities in penile skin, male urethra, and vaginas of

718 heterosexual couples with and without bacterial vaginosis. *Microbiome* **4**, (2016).

719 21. Nelson, D. E. *et al.* Bacterial communities of the coronal sulcus and distal urethra of

720 adolescent males. *PLoS One* **7**, e36298 (2012).

721 22. Lamont, R. F. Advances in the Prevention of Infection-Related Preterm Birth. *Front.*

722 *Immunol.* **6**, (2015).

723 23. Fettweis, J. M. *et al.* The vaginal microbiome and preterm birth. *Nat. Med.* **25**, 1012–

724 1021 (2019).

725 24. Paramel Jayaprakash, T. *et al.* High Diversity and Variability in the Vaginal

726 Microbiome in Women following Preterm Premature Rupture of Membranes

727 (PPROM): A Prospective Cohort Study. *PLoS One* **11**, e0166794 (2016).

728 25. Hočevat, K. *et al.* Vaginal Microbiome Signature Is Associated With Spontaneous
729 Preterm Delivery. *Front. Med.* **6**, 201 (2019).

730 26. Mitchell, C. M. *et al.* Colonization of the upper genital tract by vaginal bacterial
731 species in nonpregnant women. *Am. J. Obstet. Gynecol.* **212**, 611.e1–9 (2015).

732 27. Fettweis, J. M. *et al.* Differences in vaginal microbiome in African American women
733 versus women of European ancestry. *Microbiol. Read. Engl.* **160**, 2272–2282
734 (2014).

735 28. Qin, Q.-L. *et al.* A proposed genus boundary for the prokaryotes based on genomic
736 insights. *J. Bacteriol.* **196**, 2210–2215 (2014).

737 29. Carlier, J.-P. *et al.* Anaeroglobus geminatus gen. nov., sp. nov., a novel member of
738 the family Veillonellaceae. *Int. J. Syst. Evol. Microbiol.* **52**, 983–986 (2002).

739 30. Campbell, C., Adeolu, M. & Gupta, R. S. Genome-based taxonomic framework for
740 the class Negativicutes: division of the class Negativicutes into the orders
741 Selenomonadales emend., Acidaminococcales ord. nov. and Veillonellales ord. nov.
742 *Int. J. Syst. Evol. Microbiol.* **65**, 3203–3215 (2015).

743 31. Rogosa, M. Transfer of *Peptostreptococcus elsdenii* Gutierrez *et al.* to a New
744 Genus, *Megasphaera* [M. elsdenii (Gutierrez *et al.*) comb. nov.]. *Int. J. Syst.
745 Bacteriol.* **21**, 187–189 (1971).

746 32. Padmanabhan, R. *et al.* Non-contiguous finished genome sequence and description
747 of *Megasphaera massiliensis* sp. nov. *Stand. Genomic Sci.* **8**, 525–538 (2013).

748 33. Marchandin, H. *et al.* Phylogenetic analysis of some *Sporomusa* sub-branch
749 members isolated from human clinical specimens: description of *Megasphaera*
750 *micronuciformis* sp. nov. *Int. J. Syst. Evol. Microbiol.* **53**, 547–553 (2003).

751 34. Shetty, S. A., Marathe, N. P., Lanjekar, V., Ranade, D. & Shouche, Y. S.

752 Comparative genome analysis of *Megasphaera* sp. reveals niche specialization and

753 its potential role in the human gut. *PLoS One* **8**, e79353 (2013).

754 35. Mendes-Soares, H., Suzuki, H., Hickey, R. J. & Forney, L. J. Comparative functional

755 genomics of *Lactobacillus* spp. reveals possible mechanisms for specialization of

756 vaginal lactobacilli to their environment. *J. Bacteriol.* **196**, 1458–1470 (2014).

757 36. Yeoman, C. J. *et al.* Comparative Genomics of *Gardnerella vaginalis* Strains

758 Reveals Substantial Differences in Metabolic and Virulence Potential. *PLoS One* **5**,

759 37. Mende, D. R., Sunagawa, S., Zeller, G. & Bork, P. Accurate and universal

760 delineation of prokaryotic species. *Nat. Methods* **10**, 881–884 (2013).

761 38. Srinivasan, S. *et al.* Characterization of novel *megasphaera* species from the female

762 reproductive tract. *Am. J. Obstet. Gynecol.* **219**, 648–649 (2018).

763 39. Kim, M., Oh, H.-S., Park, S.-C. & Chun, J. Towards a taxonomic coherence between

764 average nucleotide identity and 16S rRNA gene sequence similarity for species

765 demarcation of prokaryotes. *Int. J. Syst. Evol. Microbiol.* **64**, 346–351 (2014).

766 40. Srinivasan, S. *et al.* Metabolic signatures of bacterial vaginosis. *mBio* **6**, (2015).

767 41. Cornelissen, C. N. & Hollander, A. TonB-Dependent Transporters Expressed by

768 *Neisseria gonorrhoeae*. *Front. Microbiol.* **2**, 117 (2011).

769 42. Koonin, E. V. & Makarova, K. S. Mobile Genetic Elements and Evolution of

770 CRISPR-Cas Systems: All the Way There and Back. *Genome Biol. Evol.* **9**, 2812–

771 2825 (2017).

772 43. Priya, V. K., Sarkar, S. & Sinha, S. Evolution of tryptophan biosynthetic pathway in

773 microbial genomes: a comparative genetic study. *Syst. Synth. Biol.* **8**, 59–72 (2014).

774 44. Fethers, K. *et al.* Bacterial vaginosis (BV) candidate bacteria: associations with BV
775 and behavioural practices in sexually-experienced and inexperienced women. *PLoS*
776 *One* **7**, e30633 (2012).

777 45. Plummer, E. L. *et al.* Sexual practices have a significant impact on the vaginal
778 microbiota of women who have sex with women. *Sci. Rep.* **9**, 19749 (2019).

779 46. MacIntyre, D. A. *et al.* The vaginal microbiome during pregnancy and the
780 postpartum period in a European population. *Sci. Rep.* **5**, 8988 (2015).

781 47. Romero, R. *et al.* The composition and stability of the vaginal microbiota of normal
782 pregnant women is different from that of non-pregnant women. *Microbiome* **2**, 4
783 (2014).

784 48. Aagaard, K. *et al.* A metagenomic approach to characterization of the vaginal
785 microbiome signature in pregnancy. *PLoS One* **7**, e36466 (2012).

786 49. Walther-António, M. R. S. *et al.* Pregnancy's stronghold on the vaginal microbiome.
787 *PLoS One* **9**, e98514 (2014).

788 50. Serrano, M. G. *et al.* Racial/ethnic diversity in the dynamics of the vaginal microbiome
789 during pregnancy. *Nat. Med.* **25**, 1001–1011 (2019).

790 51. Hilbert, D. W. *et al.* Development and Validation of a Highly Accurate Quantitative
791 Real-Time PCR Assay for Diagnosis of Bacterial Vaginosis. *J. Clin. Microbiol.* **54**,
792 1017–1024 (2016).

793 52. Hillier, S. L., Krohn, M. A., Nugent, R. P. & Gibbs, R. S. Characteristics of three
794 vaginal flora patterns assessed by gram stain among pregnant women. Vaginal
795 Infections and Prematurity Study Group. *Am. J. Obstet. Gynecol.* **166**, 938–944
796 (1992).

797 53. Marrazzo, J. M. Interpreting the epidemiology and natural history of bacterial
798 vaginosis: are we still confused? *Anaerobe* **17**, 186–190 (2011).

799 54. Ness, R. B. *et al.* Can known risk factors explain racial differences in the occurrence
800 of bacterial vaginosis? *J. Natl. Med. Assoc.* **95**, 201–212 (2003).

801 55. Borgdorff, H. *et al.* The association between ethnicity and vaginal microbiota
802 composition in Amsterdam, the Netherlands. *PLoS One* **12**, e0181135 (2017).

803 56. Beamer, M. A. *et al.* Bacterial species colonizing the vagina of healthy women are
804 not associated with race. *Anaerobe* **45**, 40–43 (2017).

805 57. Taylor, B. D. *et al.* Toll-like receptor variants and cervical *Atopobium vaginæ*
806 infection in women with pelvic inflammatory disease. *Am. J. Reprod. Immunol. N. Y.*
807 *N* 1989 **79**, (2018).

808 58. Murphy, K. & Mitchell, C. M. The Interplay of Host Immunity, Environment and the
809 Risk of Bacterial Vaginosis and Associated Reproductive Health Outcomes. *J.*
810 *Infect. Dis.* **214 Suppl 1**, S29-35 (2016).

811 59. Chu, D. M., Seferovic, M., Pace, R. M. & Aagaard, K. M. The microbiome in preterm
812 birth. *Best Pract. Res. Clin. Obstet. Gynaecol.* **52**, 103–113 (2018).

813 60. Brown, R. G. *et al.* Establishment of vaginal microbiota composition in early
814 pregnancy and its association with subsequent preterm prelabor rupture of the fetal
815 membranes. *Transl. Res. J. Lab. Clin. Med.* **207**, 30–43 (2019).

816 61. Jefferson, K. K. *et al.* Relationship between vitamin D status and the vaginal
817 microbiome during pregnancy. *J. Perinatol. Off. J. Calif. Perinat. Assoc.* **39**, 824–836
818 (2019).

819 62. Integrative HMP (iHMP) Research Network Consortium. The Integrative Human
820 Microbiome Project. *Nature* **569**, 641–648 (2019).

821 63. Fettweis, J. M., Serrano, M. G., Girerd, P. H., Jefferson, K. K. & Buck, G. A. A new
822 era of the vaginal microbiome: advances using next-generation sequencing. *Chem.*
823 *Biodivers.* **9**, 965–976 (2012).

824 64. Frank, J. A. *et al.* Critical evaluation of two primers commonly used for amplification
825 of bacterial 16S rRNA genes. *Appl. Environ. Microbiol.* **74**, 2461–2470 (2008).

826 65. Romero, R. *et al.* The vaginal microbiota of pregnant women who subsequently
827 have spontaneous preterm labor and delivery and those with a normal delivery at
828 term. *Microbiome* **2**, 18 (2014).

829 66. Miller, J. R., Koren, S. & Sutton, G. Assembly Algorithms for Next-Generation
830 Sequencing Data. *Genomics* **95**, 315–327 (2010).

831 67. Krämer, A., Green, J., Pollard, J. & Tugendreich, S. Causal analysis approaches in
832 Ingenuity Pathway Analysis. *Bioinforma. Oxf. Engl.* **30**, 523–530 (2014).

833 68. Bankevich, A. *et al.* SPAdes: A New Genome Assembly Algorithm and Its
834 Applications to Single-Cell Sequencing. *J. Comput. Biol.* **19**, 455–477 (2012).

835 69. Lin, S.-H. & Liao, Y.-C. CISA: Contig Integrator for Sequence Assembly of Bacterial
836 Genomes. *PLoS ONE* **8**, (2013).

837 70. Delcher, A. L., Phillippy, A., Carlton, J. & Salzberg, S. L. Fast algorithms for large-
838 scale genome alignment and comparison. *Nucleic Acids Res.* **30**, 2478–2483
839 (2002).

840 71. gnuplot homepage. <http://gnuplot.info/>.

841 72. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open
842 Software Suite. *Trends Genet. TIG* **16**, 276–277 (2000).

843 73. Janda, J. M. & Abbott, S. L. 16S rRNA Gene Sequencing for Bacterial Identification
844 in the Diagnostic Laboratory: Pluses, Perils, and Pitfalls. *J. Clin. Microbiol.* **45**,
845 2761–2764 (2007).

846 74. Lagesen, K. *et al.* RNAmmer: consistent and rapid annotation of ribosomal RNA
847 genes. *Nucleic Acids Res.* **35**, 3100–3108 (2007).

848 75. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local
849 alignment search tool. *J. Mol. Biol.* **215**, 403–410 (1990).

850 76. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high
851 throughput. *Nucleic Acids Res.* **32**, 1792–1797 (2004).

852 77. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J.
853 Jalview Version 2--a multiple sequence alignment editor and analysis workbench.
854 *Bioinforma. Oxf. Engl.* **25**, 1189–1191 (2009).

855 78. Overbeek, R. *et al.* The SEED and the Rapid Annotation of microbial genomes using
856 Subsystems Technology (RAST). *Nucleic Acids Res.* **42**, D206-214 (2014).

857 79. Delcher, A. L., Harmon, D., Kasif, S., White, O. & Salzberg, S. L. Improved microbial
858 gene identification with GLIMMER. *Nucleic Acids Res.* **27**, 4636–4641 (1999).

859 80. Besemer, J., Lomsadze, A. & Borodovsky, M. GeneMarkS: a self-training method for
860 prediction of gene starts in microbial genomes. Implications for finding sequence
861 motifs in regulatory regions. *Nucleic Acids Res.* **29**, 2607–2618 (2001).

862 81. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of
863 transfer RNA genes in genomic sequence. *Nucleic Acids Res.* **25**, 955–964 (1997).

864 82. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST.
865 *Bioinforma. Oxf. Engl.* **26**, 2460–2461 (2010).

866 83. Finn, R. D. *et al.* The Pfam protein families database. *Nucleic Acids Res.* **38**, D211-
867 222 (2010).

868 84. Tatusov, R. L. *et al.* The COG database: an updated version includes eukaryotes.
869 *BMC Bioinformatics* **4**, 41 (2003).

870 85. Marchler-Bauer, A. *et al.* CDD: a database of conserved domain alignments with
871 links to domain three-dimensional structure. *Nucleic Acids Res.* **30**, 281–283 (2002).

872 86. Alves, J. M. P. & Buck, G. A. Automated System for Gene Annotation and Metabolic
873 Pathway Reconstruction Using General Sequence Databases. *Chem. Biodivers.* **4**,
874 2593–2602 (2007).

875 87. Glez-Peña, D., Gómez-Blanco, D., Reboiro-Jato, M., Fdez-Riverola, F. & Posada, D.
876 ALTER: program-oriented conversion of DNA and protein alignments. *Nucleic Acids
877 Res.* **38**, W14-18 (2010).

878 88. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis
879 of large phylogenies. *Bioinforma. Oxf. Engl.* **30**, 1312–1313 (2014).

880 89. Kriventseva, E. V. *et al.* OrthoDB v8: update of the hierarchical catalog of orthologs
881 and the underlying free software. *Nucleic Acids Res.* **43**, D250-256 (2015).

882 90. Castresana, J. Selection of conserved blocks from multiple alignments for their use
883 in phylogenetic analysis. *Mol. Biol. Evol.* **17**, 540–552 (2000).

884 91. Chevenet, F., Brun, C., Bañuls, A.-L., Jacq, B. & Christen, R. TreeDyn: towards
885 dynamic graphics and annotations for analyses of trees. *BMC Bioinformatics* **7**, 439
886 (2006).

887 92. Fettweis, J. M. *et al.* Species-level classification of the vaginal microbiome. *BMC*
888 *Genomics* **13 Suppl 8**, S17 (2012).

889 93. Cole, J. R. *et al.* The Ribosomal Database Project: improved alignments and new
890 tools for rRNA analysis. *Nucleic Acids Res.* **37**, D141-145 (2009).

891 94. Whitney, J. Testing for differences with the nonparametric Mann-Whitney U test. *J.*
892 *Wound Ostomy Cont. Nurs. Off. Publ. Wound Ostomy Cont. Nurses Soc.* **24**, 12
893 (1997).

894 95. Integrative HMP (iHMP) Research Network Consortium. The Integrative Human
895 Microbiome Project: dynamic analysis of microbiome-host omics profiles during
896 periods of human health and disease. *Cell Host Microbe* **16**, 276–289 (2014).

897 96. Koparde, V., Parikh, H., Bradley, S. & Sheth, N. MEEPTOOLS: a maximum
898 expected error based FASTQ read filtering and trimming toolkit. *Int. J. Comput. Biol.*
899 *Drug Des.* **10**, (2015).

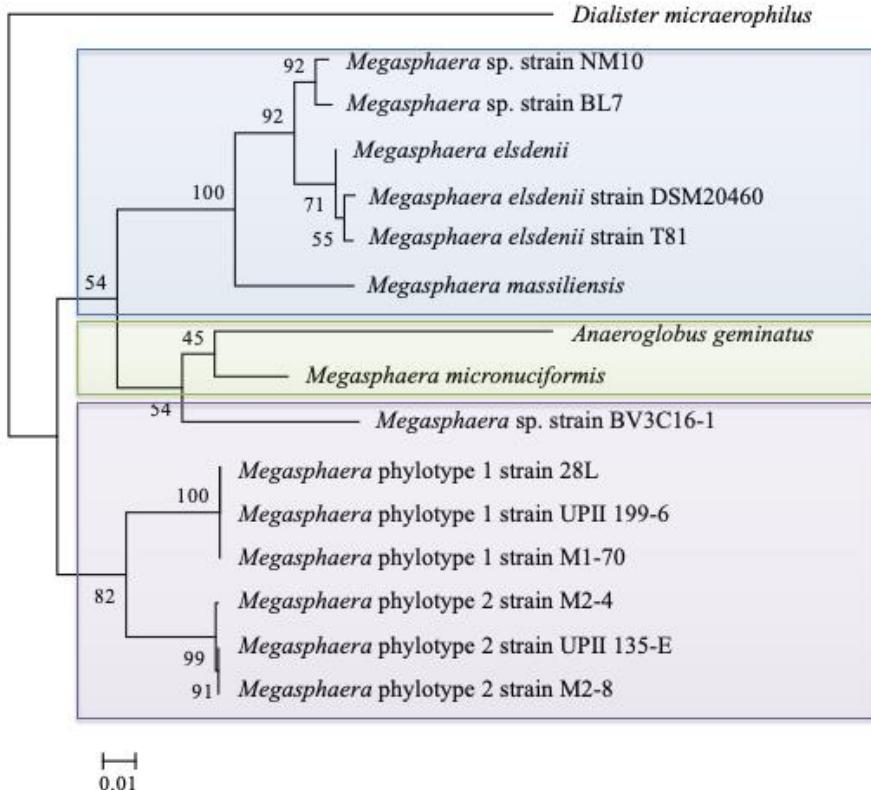
900 97. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler
901 transform. *Bioinforma. Oxf. Engl.* **26**, 589–595 (2010).

902 98. Ordoukhanian, P., Nichols, J. & Head, S. R. Primer Extension, Capture, and On-
903 Bead cDNA Ligation: An Efficient RNAseq Library Prep Method for Determining
904 Reverse Transcription Termination Sites. *Methods Mol. Biol. Clifton NJ* **1712**, 253–
905 261 (2018).

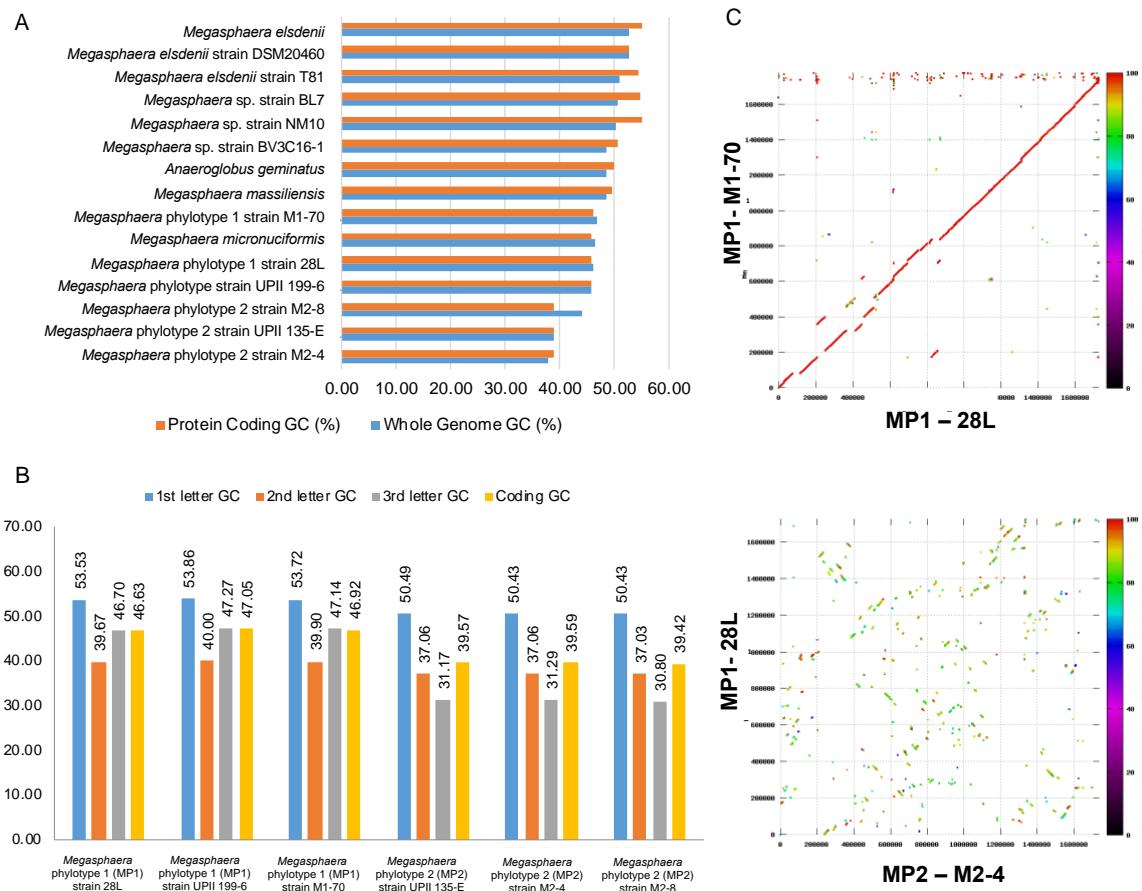
906 99. Abubucker, S. *et al.* Metabolic reconstruction for metagenomic data and its
907 application to the human microbiome. *PLoS Comput. Biol.* **8**, e1002358 (2012).

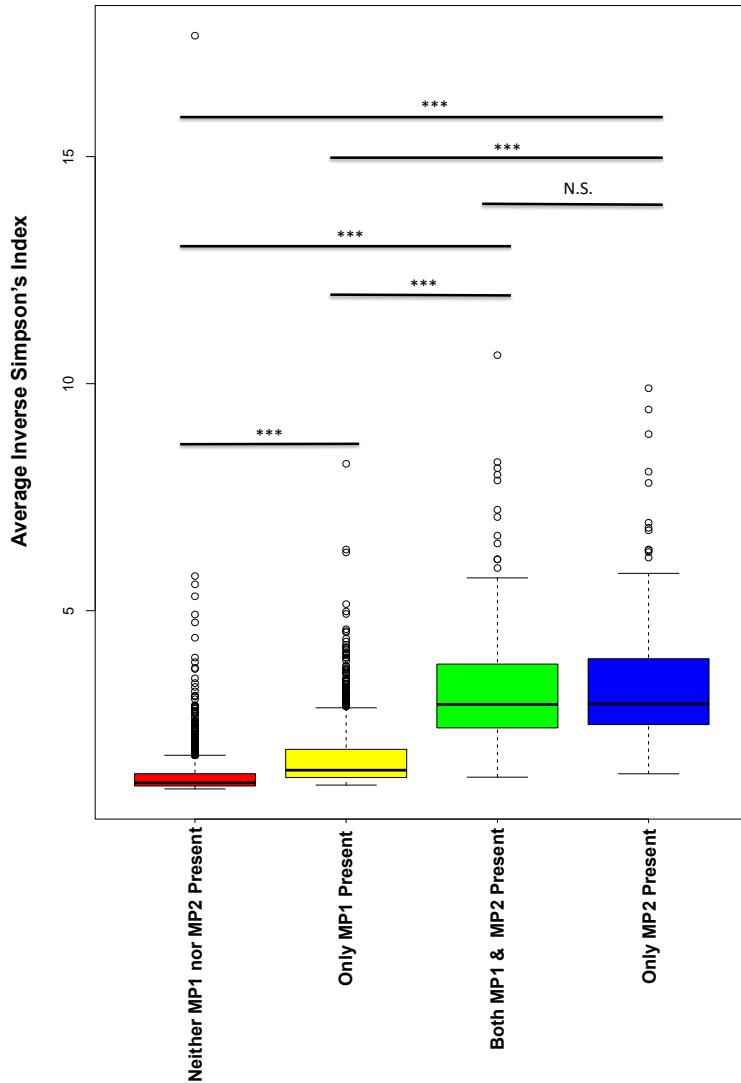

908 100. Kaminski, J. *et al.* High-Specificity Targeted Functional Profiling in Microbial
909 Communities with ShortBRED. *PLOS Comput. Biol.* **11**, e1004557 (2015).

910


Table 1: Relative Risk of Vaginal Infections in the Presence of MP1 and MP2

	Bacterial Vaginosis	Trichomoniasis	Candidiasis
<i>Megasphaera</i> phylotype 1	4.57 (3.76-5.55)	0.96 (0.59-1.56)	0.52 (0.37-0.74)
<i>Megasphaera</i> phylotype 2	2.19 (1.79-2.69)	4.84 (3.06-7.64)	0.54 (0.30-0.96)
<i>Gardnerella vaginalis</i>	6.44 (4.18-9.92)	2.47 (1.23-4.94)	0.65 (0.49-0.88)
<i>Prevotella</i> cluster2	5.48 (4.31-6.98)	2.32 (1.44-3.74)	0.45 (0.33-0.62)
Clostridiales BVAB2	4.14 (3.46-4.96)	1.04 (0.63-1.72)	0.42 (0.28-0.64)
<i>Sneathia amnii</i>	3.97 (3.25-4.84)	2.93 (1.83-4.70)	0.48 (0.35-0.68)
<i>Mycoplasma hominis</i>	2.57 (2.15-3.08)	5.80 (3.70-9.09)	1.07 (0.75-1.53)
"Ca. <i>Mycoplasma giererdii</i> "	0.88 (0.50-1.55)	21.00 (13.82-31.91)	0.71 (0.27-1.87)


*Relative risk values were calculated based on the customary relative risk formula for MP1, MP2 and taxa known to be associated with BV and trichomoniasis. Relative Risk = (A/A+B) / (C/C+D) where A represents the number of samples where the taxon is present and the participant is diagnosed with the disease, B represents the number of samples where the taxon is present but the participant is not diagnosed with the disease, C represents the number of samples where the taxon is absent but the participant is diagnosed with the disease and D represents the number of samples where the taxon is not present and the participant is not diagnosed with the disease. The relative risk conferred by each taxon is shown with the 95% confidence interval in parentheses for BV, trichomoniasis and yeast infection (Candidiasis). Our total cohort of non-pregnant women (N=3091) was used for this analysis.


Figure 1. Maximum Likelihood Phylogenetic Tree of the Class Negativicutes. A total of 145 orthologous genes from 110 genomes assigned to the class Negativicutes were included in this analysis. *Clostridium botulinum* A strain Hall was designated as the outgroup. This maximum-likelihood phylogenetic tree was generated using 100 bootstrap replicates. Bootstrap values as present at nodes of the tree. Families within the tree highlighted in different colors: Sporomusaceae: yellow, Selenomonadaceae: blue, Acidaminococcaceae: green, Veillonellaceae: purple. MP1 and MP2 genomes are outlined with dotted lines and labeled.

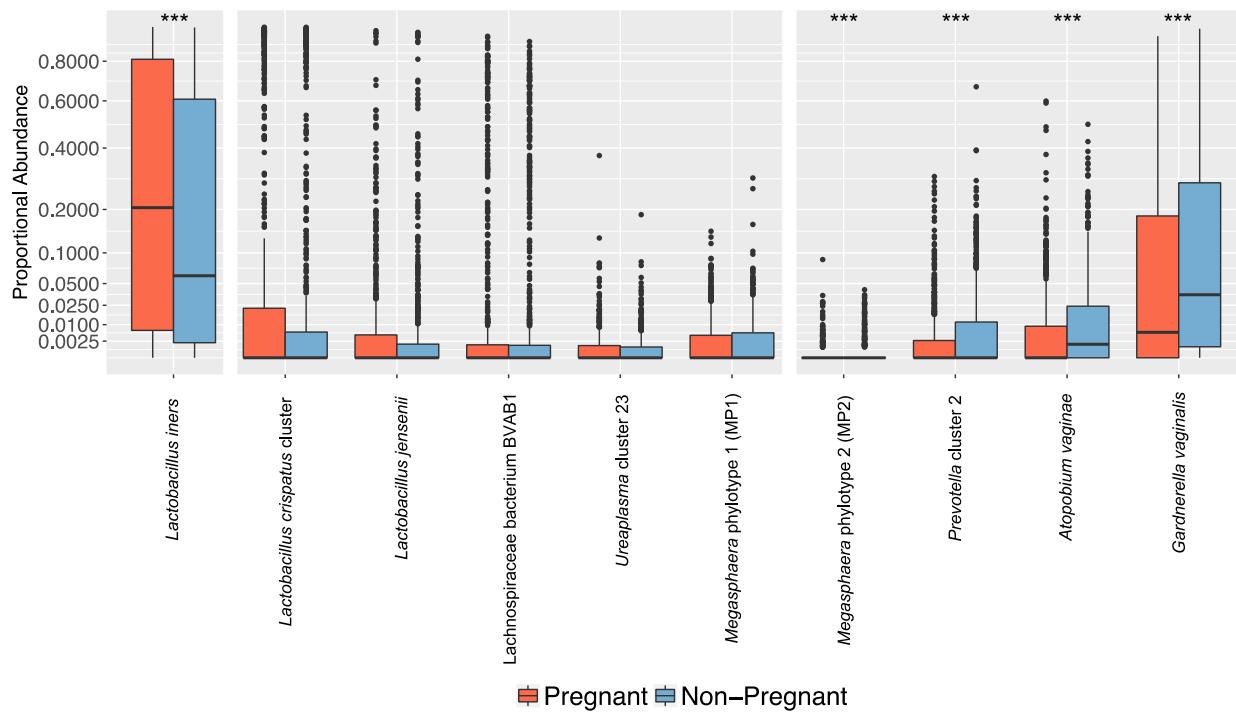

Figure 2: Maximum Likelihood Phylogenetic Tree of 16S Ribosomal RNA gene. This maximum likelihood tree was generated using RAxML-HPC with 1,000 bootstraps. Input data were full-length 16S ribosomal RNA gene sequences (nucleotide). Numbers at nodes are indicative of bootstrap support of that node placement. *Dialister micraerophilus* was selected as the outgroup and is a human oral isolate also classified in the family Veillonellaceae. Remaining isolates are colored by their site of isolation: blue- mammalian gut, green- human oral, purple- human vaginal.

Figure 3. Distinctive GC Composition, Codon Preference & Genomic Structure Between Vaginal *Megasphaera* Phylotypes. a) Differences in both whole genome (blue) and protein-coding (orange) GC composition are shown. b) codon preference is distinct between MP1 and MP2 genomes based on differences in GC composition at specific codon positions (position 1, position 2, position 3 : blue, orange, gray) and in the overall coding GC composition (yellow). c) synteny is conserved within phylotype but lost between MP1 and MP2 genomes. Synteny plots demonstrate structural alignment of genomic content at the amino acid level. Color designates similarity at the amino acid level. The upper panel shows the strong conservation of genomic synteny and protein identity (red color) between two MP1 genomes. The lower panel show massive genome rearrangement and loss of amino acid sequence conservation between a MP1 and a MP2 genome.

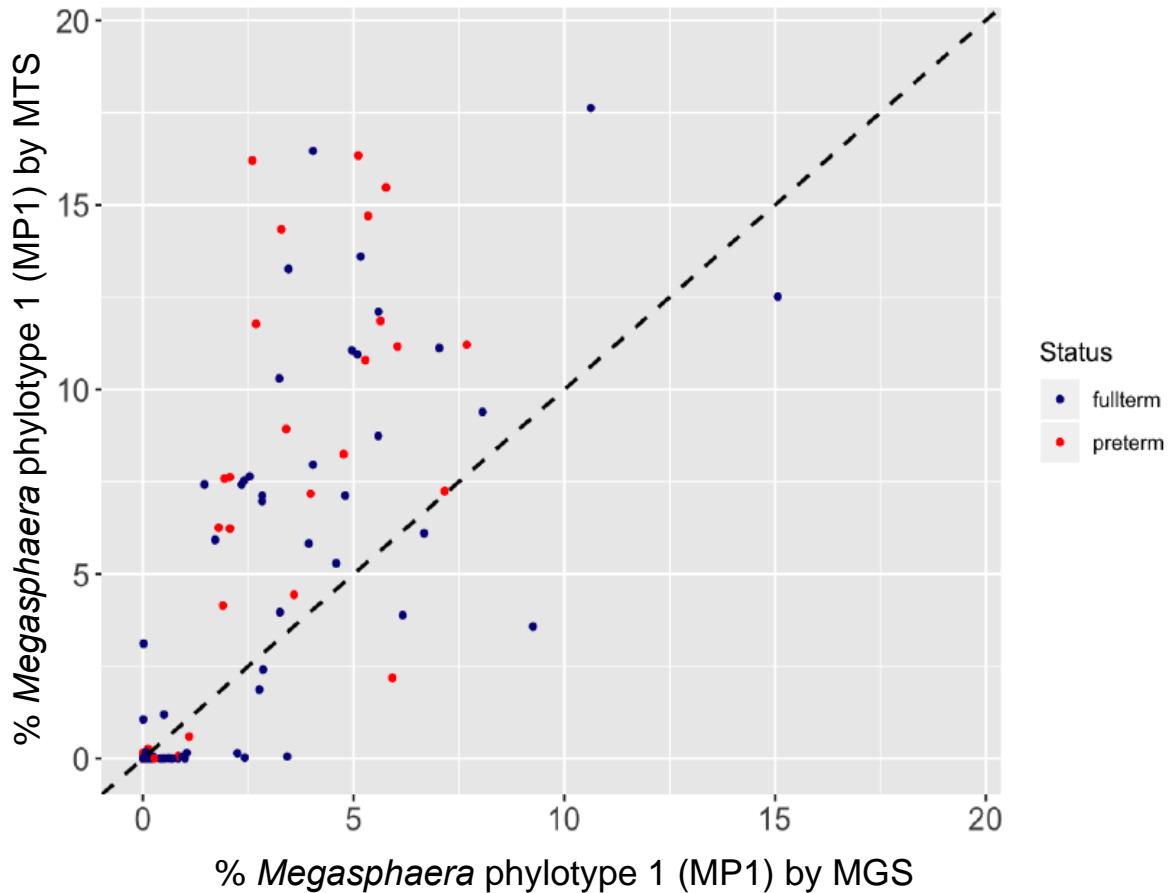


Figure 4. Vaginal *Megasphaera* Photypes Associated with Increased Alpha Diversity. Alpha diversity was measured for vaginal microbiome profiles using the Inverse Simpson's Index, calculated using the 'vegan' package in R. Distribution of Inverse Simpson's Index for each group is shown. Boxes show median and interquartile ranges, with whiskers denoting maximum and minimum values. Outliers are shown as dots. Significance was determined using a two-tailed Student's T-test. Four different groups are shown, samples containing neither MP1 or MP2 (n=1901, red), samples containing MP1 only (n=845, yellow), samples containing both MP1 and MP2 (n=182, green) and samples containing only MP2 (n=163, blue). Taxa were determined to be present in a sample if they comprised greater than or equal to 0.1% of the sample. Samples with MP1 only, MP2 only and both photypes all exhibit increased alpha diversity, with MP2 only samples being the most highly diverse. All comparisons were found to be highly significant ($p < 0.01$) with the exception of MP2 only and both photypes.

Figure 5. *Megasphaera* phylotype 1 (MP1) Not Significantly Excluded in Pregnancy.

Results were generated from a cohort of 779 pregnant women case matched 1:1 with non-pregnant controls (N=1558). Using the R packages 'wilcox', a Mann-Whitney U test was performed on all vaginal microbial taxa both present in at least 5% of samples and comprising at least 0.1% relative proportion of the microbiome profile. The R package 'p.adjust' was utilized to correct for multiple testing using the FDR correction. The distribution of proportional abundance across both pregnant (red) and non-pregnant (blue) cohorts are shown. Boxes show median and interquartile ranges, with whiskers denoting maximum and minimum values. Outliers are shown as dots. *Lactobacillus iners* is shown to be significantly more prevalent in the pregnant cohort ($q=1.20E-6$). *Lactobacillus crispatus* cluster, *Lactobacillus jensenii*, Lachnospiraceae BVAB1, *Megasphaera* phylotype 1 (MP1) and *Ureaplasma* cluster 23 are not significantly different between the two cohorts ($q=0.19$, 0.23 , 0.43 , 0.56 , 0.26 respectively). *Megasphaera* phylotype 2 (MP2), *Prevotella* cluster 2, *Atopobium vaginæ* and *Gardnerella vaginalis* are significantly lower in the pregnant cohort ($q=5.82x10^{-3}$, $6.09E-8$, $7.95E-8$, $2.82E-7$ respectively).

Figure 6. Relationship between *Megasphaera* 16S read abundance and transcript abundance in paired datasets. Results were generated from samples collected from a cohort of pregnant women that participated in the MOMS-PI study. Samples were processed for whole metagenome microbiomics and transcriptomics. Percent of total transcripts attributed to the taxon of interest is shown on the y-axis. Percent of total whole metagenome sequencing reads attributed to the taxon of interest are shown on the x-axis. Each dot represents an individual sample. The relationship between WMGS and WMTS representation of *Megasphaera* phylotype 1 (MP1) is shown. Figures were generated using the R package 'ggplot'. Data points representing samples from women who went on to deliver full term are shaded blue, while data points representing samples from women who went on to deliver preterm are shaded red. The dotted line extending across the graph diagonally represent the expected 1:1 relationship of WMGS and WMTS- based abundance measures.

Supplementary Table 1. Genome Characteristics of *Megasphaera* phylotype 1 and *Megasphaera* phylotype 2 Isolates

	M1-70 (MP1)	28L (MP1)	UPII 199-6 (MP1)	M2-4 (MP2)	M2-8 (MP2)	UPII 135-E (MP2)
Isolation Location	VCU	JCVI	JCVI	VCU	VCU	JCVI
Predicted Genome Size (Mb)	1.78	1.73	1.64	1.74	1.71	1.65
GC Percentage	46.33	46.05	46.37	38.94	39.09	38.88
Number of Contigs	129	34	45	311	328	49
N50 length (bp)	179993	156177	100595	102411	131070	64000
Number of Contigs @ N50	4	5	7	6	5	8
Transcriptome Size (Mb)	1.55	1.55	1.46	1.46	1.41	1.44
Transcriptome/Genome Ratio	0.87219	0.89894	0.88832	0.83913	0.82962	0.87491
Number of Predicted Genes	1647	1715	1457	1591	1508	1510

Supplementary Table 2. Percentage of Conserved Proteins Among Vaginal *Megasphaera* and Closely Related Genomes. Percentage of Conserved Proteins (POCP) values were calculated based on the method described by Qin et al. A POCP value of less than 50% is indicative that two genomes should be classified to separate bacterial genera. Pairwise POCP values are denoted by color: dark blue- 80-100%, medium blue- 60-80%, light blue- 50-60%, white- less than 50%, likely isolates from distinct genera.

Supplementary Table 3. Conserved Signature Indel and Conserved Signature Protein Analysis of Vaginal *Megasphaera* Phylotypes

	<i>Megasphaera</i> Phylotype 1 (MP1) strain 28L	<i>Megasphaera</i> Phylotype 1 (MP1) strain UPII 199-6	<i>Megasphaera</i> Phylotype 1 (MP1) strain M1-70	<i>Megasphaera</i> Phylotype 2 (MP2) strain UPII 135-E	<i>Megasphaera</i> Phylotype 2 (MP2) strain M2-4	<i>Megasphaera</i> Phylotype 2 (MP2) strain M2-8
Conserved Signature Indels						
Specific to Class <i>Negativicutes</i>						
3-Isopropylmalate dehydratase, large subunit (1 aa deletion, position 30-71)	Present	Present	Present	Present	Present	Present
DNA-directed RNA polymerase, subunit sigma (1 aa insertion, position 47-73)	Present	Present	Present	Present	Present	Present
Specific to Family <i>Veillonellaceae</i>						
GTP diposphokinase (1 aa deletion, position 441-476)	Present	Present	Present	Present	Present	Present
GTP diposphokinase (1 aa deletion, position 362-403)	Present	Present	Present	Present	Present	Present
Conserved Signature Proteins						
Specific to Class <i>Negativicutes</i>						
SELR_02010	Present	Present	Present	Present	Present	Present
SELR_03110	Present	Present	Present	Present	Present	Present
SELR_03270	Present	Present	Present	Present	Present	Present
SELR_05060	Present	Present	Present	Present	Present	Present
SELR_08460	Present	Present	Present	Present	Present	Present
SELR_10260	Absent	Absent	Absent	Absent	Absent	Absent
SELR_10270	Absent	Absent	Absent	Absent	Absent	Absent
SELR_15360	Absent	Absent	Absent	Absent	Absent	Absent
SELR_06480	Present	Present	Present	Present	Present	Present
Specific to Family <i>Veillonellaceae</i>						
MELS_0132	Present	Present	Present	Present	Present	Present
MELS_0206	Present	Present	Present	Present	Present	Present
MELS_0844	Present	Present	Present	Present	Present	Present
MELS_2049	Present	Present	Present	Present	Present	Present

*Presence of Conserved Signature Proteins (CSPs) and genomic regions containing Conserved Signature Indels (CSIs) indicative of the class *Negativicutes* and the family *Veillonellaceae* are shown. All CSIs for both the class and family were detected in MP1 and MP2 genomes. All CSPs indicative of the family *Veillonellaceae* were also identified. Absent CSPs (3/9 indicative of the class *Negativicutes*) are denoted in red.

Supplementary Table 4. 16S Ribosomal RNA Similarity Matrix Among Vaginal *Megasphaera* Phylotypes and Related Genomes. Pairwise 16S ribosomal RNA similarity was calculated using full length 16S rRNA sequences and the blastn algorithm. Similarity values are denoted by color: red- 98-100%, orange-96-98%, yellow-94-96%, green-92-94%, blue-90-92%. The suggested cutoff for delineating species is 97%.

Supplementary Table 5. Average Nucleotide Identity Analysis Among Vaginal *Megasphaera* Phylotypes and Related Genomes. Pairwise Average Nucleotide Identity (ANI) was calculated using a publicly available script (see Methods). ANI values are denoted by color: yellow- greater than 95%, the suggested cutoff for classifying isolates as the same species, green- 80-94.99%, blue- less than 80% ANI.

Supplementary Table 6. Predicted Metabolic Differences between MP1, MP2 and Closely Related Bacterial Taxa. Sheet 1: Genes that distinguish vaginal Veillonellaceae from closely related species are shown including three sections: genes largely conserved in *Megasphaera* and *Anaeroglobus* but lost in MP1 and MP2, genes specific to oral and vaginal strains, and genes specific to MP1 and/or MP2. Sheet 2: Genes distinguishing MP1 and MP2 genomes are shown in three sections: genes present only in MP1, genes present only in MP2, and genes that are variable between the two phylotypes. Genes present in a specific genome are denoted with an 'X'.

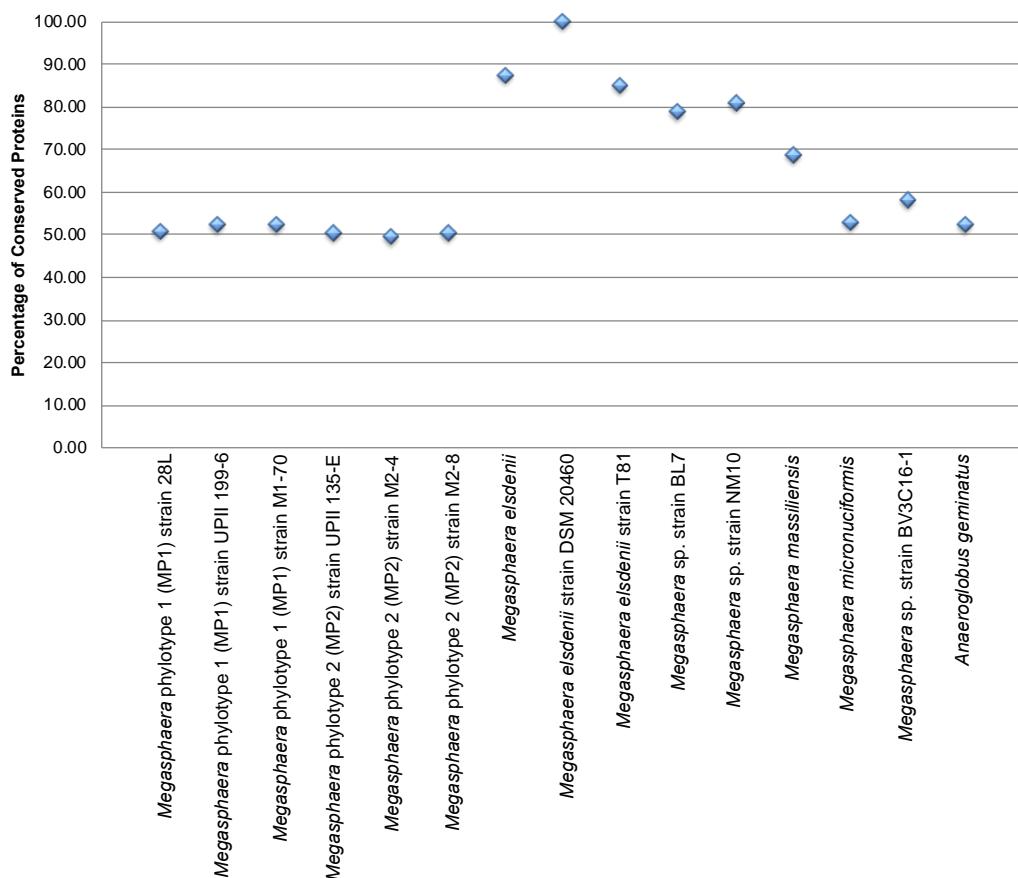
Supplementary Table 7. Vaginal *Megasphaera* Phylotypes exhibit Differential Associations with Demographics. General demographics and clinical measures of the non-pregnant, outpatient cohort (n=3091) are shown. Results are separated into five distinct cohorts: i) the overall cohort (n=3091), ii) participants carrying neither MP1 or MP2 (n=1901), iii) participants carrying MP1 only (n=845), iv) participants carrying MP2 only (n=163) and v) participants carrying both phylotypes (n=182). Counts (left) and percentages (right) are shown for each datapoint with the exception of age and sample pH which are shown as averages.

Supplementary Table 8. *Megasphaera* Phylotype 1 (MP1) Transcription in Pregnancy. The Multi- 'Omic Microbiome Study- Pregnancy Initiative (MOMS-PI) cohort was utilized for this analysis. Transcripts were classified using HUMAnN2^{98,99} and shortBRED₁₀₀ to specific functional pathways. Pathway abundances attributed to MP1 for each sample are shown. Forty-three samples contained MP1 transcripts.

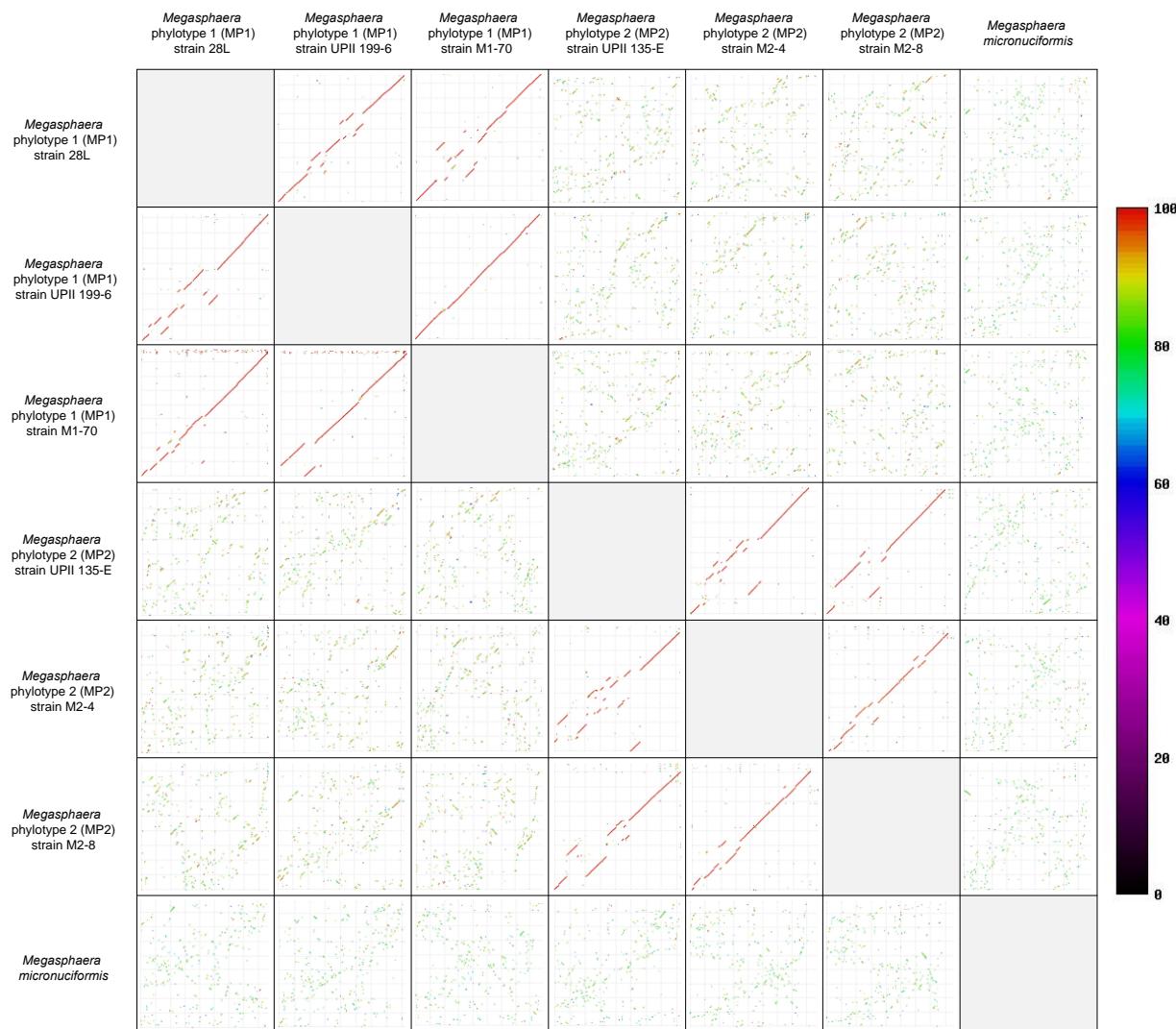
Supplementary Table 9. *Megasphaera* Phylotype 2 (MP2) Transcription in Pregnancy. The Multi- 'Omic Microbiome Study- Pregnancy Initiative (MOMS-PI) cohort was utilized for this analysis. Transcripts were classified using HUMAnN2^{98,99} and shortBRED₁₀₀ to specific functional pathways. Pathway abundances attributed to MP2 are shown. One sample contained MP2 transcripts.

Supplementary Table 10. Genomes Utilized in Phylogenetic Reconstruction of the Class Negativicutes. Basic genome statistics acquired from NCBI are shown. The genomes included were utilized in the creation of the class Negativicutes phylogenetic tree. These include genomes classified to the class Negativicutes and available at NCBI

as of January 1, 2015. Genomes were excluded from analysis if they did not contain all 145 orthologous genes needed for the analysis, were low-quality or were significantly different in size or content from other deposited genomes of the same species potentially indicative of a poor assembly.


Supplementary Table 11. Supplemented Brain-Heart Infusion Recipe

Ingredient	Quantity
Brain-Heart Infusion Powder (Oxoid)	9.25g
Yeast Extract	2.50g
Gelatin	2.50g
Dextrose	0.25g
Sucrose	0.25g
Deionized Water	250mL


Supplementary Table 12. Universal 16S rRNA Gene Primers

Primer Name	Sequence (5' to 3') ^a
16SF-YM	AGAGTTGAT <u>Y</u> MTGGCTCAG
16SF-Bif	AGGGTTCGATTCTGGCTCAG
16SF-Bor	AGAGTTGATCCTGGCTTAG
16SF-Chl	AGAATTGATCTTGGCTTAG
1492R	TACCTTGTACGACTT

^a Degenerate bases are underlined. Forward primers were combined in a 4:1:1:1 ratio (16SF-YM : 16SF-Bif : 16SF-Bor : 16SF-Chl).^{64,65}

Supplementary Figure 1. Percentage of Conserved Proteins Analysis versus *Megasphaera* Type Strain. Pairwise Percentage of Conserved Proteins (POCP) values were calculated based on the methods described in Qin et al., 2014. Shown are the POCP values generated between 15 taxa and the *Megasphaera* type strain *Megasphaera elsdenii* strain DSM20460. POCP values below 50% are the suggested cutoff for delineation of a separate bacterial genus.

Supplementary Figure 2. Syntenic Comparison of Vaginal *Megasphaera* Phylotypes and the Oral Isolate *M. micronuciformis*. Full genomes for three MP1, three MP2 and one *Megasphaera micronuciformis* isolate were used for this analysis. Synteny plots demonstrate structural alignment of genomic content at the amino acid level. Color designates similarity at the amino acid level. Synteny is conserved within phylotype as evidenced clear alignment of genomes and protein identity is conserved as well. Between the two phylotypes and in comparison of *M. micronuciformis*, massive genome rearrangement and loss of amino acid sequence conservation is observed.