

1 **Title**

2 Evaluation of pneumococcal serotyping in nasopharyngeal carriage isolates by latex
3 agglutination, whole genome sequencing (PneumoCaT) and DNA microarray in a high
4 pneumococcal carriage prevalence population in Malawi

5 **Authors**

Todd D. Swarthout (MSc)^{a,b,✉,‡}, Andrea Gori (PhD)^{b,✉}, Naor Bar-Zeev (PhD)^{c,a}, Arox W. Kamng'ona (PhD)^d, Thandie S. Mwalukomo (MMed)^e, Farouck Bonomali (BSC)^a, Roseline Nyirenda (BSc)^a, Comfort Brown^a, Jacqueline Msefula (BSc)^a, Dean Everett (PhD)^f, Charles Mwansambo (MBChB)^g, Katherine Gould (PhD)^h, Jason Hinds (PhD)^h, Robert S. Heyderman (PhD)^{a,b,✉}, Neil French (PhD)^{a,i,¶}

6 a. Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
7 b. NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and
8 Immunity, University College London, London, United Kingdom
9 c. International Vaccine Access Center, Department of International Health, Johns Hopkins
10 University, Baltimore, USA
11 d. Department of Biomedical Sciences, College of Medicine, University of Malawi, Blantyre,
12 Malawi
13 e. Department of Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
14 f. The Queen's Medical Research Institute, University of Edinburgh, Edinburgh
15 g. Ministry of Health, Lilongwe, Malawi
16 h. BUGS Bioscience, London Bioscience Innovation Centre, London, United Kingdom
17 i. Centre for Global Vaccine Research, Institute of Infection and Global Health, University
18 of Liverpool, Liverpool, United Kingdom

[✉]Corresponding author: Todd Swarthout, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, P.O. Box 30096, Chichiri Blantyre 3, Malawi; Email: t.swarthout@ucl.ac.uk; Phone: +265 (0)1 874 628

19 * Todd D. Swarthout and Andrea Gori contributed equally to this work. Author order was
20 determined by seniority at site of study implementation.

21 † Neil French and Robert S. Heyderman contributed equally to this manuscript.

22

23 **Keywords (5/5)**

24 *Streptococcus pneumoniae*, serotyping, latex agglutination, microarray, whole genome
25 sequencing, methodology, Africa

26 **Running title**

27 Serotyping for pneumococcal carriage

28 **Summary of the article's main points**

29 Assessment of pneumococcal serotype distribution associated with colonization and disease
30 is essential for evaluation of pneumococcal vaccines. Latex serotyping is adequate for
31 surveillance, but whole genome sequencing and microarray should be considered at
32 regional reference laboratories.

33 **Abstract**

34 **Background.** Accurate assessment of the serotype distribution associated with
35 pneumococcal colonization and disease is essential for the evaluation and formulation of
36 pneumococcal vaccines and informing vaccine policy.

37

38 **Methods.** We evaluated pneumococcal serotyping concordance between latex
39 agglutination, PneumoCaT by whole genome sequencing (WGS) and DNA microarray using
40 samples from community carriage surveillance in Blantyre, Malawi. Nasopharyngeal swabs
41 were collected, following WHO recommendations, between 2015 and 2017, using stratified
42 random sampling among study populations. Participants included healthy children 3–6 years
43 old (PCV13 vaccinated as part of EPI), healthy children 5–10 years (age-ineligible for
44 PCV13), and HIV-infected adults (18–40yrs) on ART. For phenotypic serotyping we used a
45 13-valent latex kit (SSI, Denmark). For genomic serotyping we applied PneumoCaT pipeline
46 to whole genome sequence libraries. For molecular serotyping by microarray we used the
47 BUGS Bioscience DNA microarray.

48

49 **Results.** 1347 samples were analysed. Concordance was 90.7% (95% CI: 89.0–92.2)
50 between latex and PneumoCaT; 95.2% (93.9–96.3) between latex and microarray; and
51 96.6% (95.5–97.5) between microarray and PneumoCaT. By detecting carried vaccine
52 serotype (VT) pneumococcus in low relative abundance (median 8%), microarray increased
53 VT detection by 31.5% compared to latex serotyping.

54

55 **Conclusion.** All three serotyping methods were highly concordant in identifying dominant
56 serotypes. Latex serotyping is accurate in identifying vaccine-serotypes and requires the
57 least expertise and resources for field-implementation and analysis. However, WGS, which
58 adds population structure, and microarray, which adds multiple-serotype carriage, should be

59 considered at regional reference laboratories while investigating the importance of VT in low
60 relative abundance in transmission and disease.

61 Introduction

62 *Streptococcus pneumoniae* colonises the nasopharynx of healthy individuals. Although
63 carriage is usually asymptomatic, nasopharyngeal (NP) colonization is a prerequisite for
64 disease including otitis media, sinusitis, pneumonia, bacteraemia, and meningitis. (1) The
65 pneumococcus is estimated to be responsible for over 318 000 (uncertainty ratio [UR]: 207
66 000–395 000) deaths every year in children aged 1 to 59 months, with the highest mortality
67 burden among African children.(2) Evidence also shows that HIV-infected children and
68 adults are at significantly higher risk of invasive pneumococcal disease (IPD) than their HIV-
69 uninfected counterparts. (3, 4)

70

71 Current multivalent pneumococcal conjugate vaccines (PCV) target subsets of the nearly
72 100 capsular serotypes known to be expressed by the pneumococcus. PCV reduces
73 nasopharyngeal carriage of the pneumococcal serotypes they contain, known as vaccine
74 serotypes (VT). With reduced carriage among the vaccinated there is then reduced risk of
75 VT-IPD (direct protection) and reduced transmission, therefore reduced risk of VT-IPD
76 among those PCV-unvaccinated (indirect protection). However, non-vaccine serotypes
77 (NVT) have the potential to fill the ecological niche, becoming more common in carriage and
78 disease. (5-7) This phenomenon, known as serotype replacement, may be more
79 pronounced in low-income settings because of higher prevalence, density and diversity of
80 pneumococcal carriage, and represents a considerable risk to the global pneumococcal
81 immunisation strategy.(8) Serotype distribution differs between continents as well as
82 individual countries. (9) Given these differences, accurate assessment of the serotype
83 distribution associated with both pneumococcal colonization and pneumococcal disease is
84 needed in the evaluation, formulation and delivery of pneumococcal vaccines.

85

86 A pneumococcal serotyping method suitable for use in robust carriage and surveillance
87 studies should therefore, at minimum, be accurate in its serotype assignment, particularly in

88 relation to VTs. Additional desirable parameters include detection of most or all serotypes,
89 ability to detect multiple serotypes in carriage (common in high burden settings (10, 11),
90 more in-depth information on genotype, suitable to scale up for large projects, and practical
91 for resource-poor settings. Unfortunately, work in resource-poor settings can too often limit
92 the number of these parameters that can be achieved.

93

94 The gold-standard serotyping method, the Quellung reaction, was developed in the early
95 1900s and is performed by testing colonies with a set of type-specific antisera. (12) Bacteria
96 are observed by microscopy, with serotype defined by observing apparent capsular swelling
97 in reaction to the type-specific antisera. It is laborious, requires frequent use to maintain
98 skills, requires a complete set of type-specific antisera, and is therefore mainly performed by
99 reference laboratories. The PneuCarriage project, a large, multi-centre study, was
100 established with the aim of identifying the best pneumococcal serotyping methods for
101 carriage studies. (13) The Project identified microarray with a culture amplification step as
102 the top-performing method. While robust and systematic, their decision algorithm did not
103 take into account parameters such as cost, skill level and resources needed for assay
104 implementation and maintenance, as well as output processing and interpretation.

105

106 Here we describe, in the context of an ongoing field-based study, (14) the level of
107 concordance between three methods commonly used during ongoing routine pneumococcal
108 surveillance activities in our work: latex agglutination, microarray and serotyping-by-
109 sequencing (using the PneumoCaT pipeline). We also address parameters that researchers
110 and policymakers can consider when deciding which assay to implement in their local
111 setting.

112

113 **Materials and Methods**

114 **Study Setting**

115 Blantyre is located in Southern Malawi with an urban population of approximately 1.3 million.

116

117 **Study Population and Recruitment**

118 Samples were collected as part of a larger 3.5-year pneumococcal carriage surveillance
119 project, as described elsewhere. (14) In brief, this was a prospective rolling cross-sectional
120 observational study using stratified random sampling to measure pneumococcal
121 nasopharyngeal carriage in Blantyre, Malawi. Samples used in this analysis were collected
122 during the first two years of twice-annual cross-sectional surveys, from June 2015 to April
123 2017. Recruitment included three groups: i) healthy children 3–6 years old who received
124 PCV13 as part of routine EPI, ii) healthy children 5–10 years old who were age-ineligible to
125 receive PCV13 as part of EPI, and iii) HIV-infected adults (18–40yrs) on ART.

126

127 **Sample Selection**

128 For concordance analyses between the three methods, all samples were included that had
129 serotyping results available from each of the three methods (latex, microarray, serotyping-
130 by-sequencing). From the total nasopharyngeal swab (NPS) samples collected during the
131 larger surveillance project (including 1,044 from children 3–6 years old [PCV-vaccinated],
132 531 children 5–10 years old [PCV-unvaccinated, age-ineligible] and 428 HIV-infected adults
133 on ART), 1347 samples were culture-confirmed for *S. pneumoniae* and also had results
134 available from the microarray and serotyping-by-sequencing. The final concordance analysis
135 included 846 children 3–6 years old (PCV13-vaccinated), 422 children 5–10 years old (age-
136 ineligible for PCV13 vaccination) and 79 adults (HIV-infected and PCV13-unvaccinated).
137 (Figure 1) Sample selection for microarray and serotyping-by-sequencing was done
138 independently and blind to latex serotype data.

139

140 **Nasopharyngeal Swab Collection**

141 Collection of NP swabs is described elsewhere. (14) In brief, an NP swab sample was
142 collected from each participant using a nylon flocked swab (FLOQSwabsTM, Copan

143 Diagnostics, Murrieta, CA, USA) and then immediately placed into 1.5mL skim milk-tryptone-
144 glucose-glycerol (STGG) medium and processed at the Malawi–Liverpool–Wellcome Trust
145 (MLW) laboratory in Blantyre, according to WHO recommendations. (15) Samples were
146 frozen on the same day at -80°C. (Figure 2)

147

148 **NPS Culture for Pneumococcal Screening & Serotyping**

149 30uL NPS-STGG was plated on a clean sheep blood-gentamicin (SBG; 7% SBA, 5 µl
150 gentamicin/mL) agar plate (primary plate) and incubated overnight at 37°C in ~5% CO₂.
151 Plates showing no *S. pneumoniae* growth were incubated overnight a second time before
152 being reported as negative. *S. pneumoniae* was identified by colony morphology and
153 optochin disc (Oxoid, Basingstoke, UK) susceptibility. The bile solubility test was used on
154 isolates with no or intermediate (zone diameter <14mm) optochin susceptibility. A single
155 colony of confirmed pneumococcus was selected and grown on a clean SBG plate
156 (secondary plate), following the same process as the primary plate. (Figure 1)

157

158 **Latex Serotyping**

159 Pneumococcal growth from secondary plates was used for serotyping by latex agglutination
160 (ImmunoLex™ 7-10-13-valent Pneumotest; Statens Serum Institute, Denmark), following
161 manufacturer guidelines. Using a reaction card and a sterile inoculation loop, a small sweep
162 of an overnight bacterial culture was mixed with saline and a series of individual
163 Pneumotest-Latex reagents in suspension. The card was rocked manually and observed for
164 agglutination. A Pneumotest-Latex chessboard was used to determine which serotype is
165 associated with the observed set of agglutination reactions. The kit allows for differential
166 identification of each PCV13 VT (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 23F). Other
167 than for a limited number of serogroups (6, 7, 9, 18, 19, 23) for which the kit provides
168 serogroup differentiation, there is no further differential identification of NVT serogroups or
169 serotypes. NVT and non-typeable isolates were reported as NVT. Samples were batch-
170 tested on a weekly basis, with technicians blinded to the sample source. After serotyping

171 was complete, the remaining growth from each secondary plate was archived at -80°C in
172 sterile STGG. Refer to Appendix 1 for a more detailed description of latex serotyping.

173

174 **Microarray Serotyping**

175 For samples with culture-confirmed pneumococcal carriage, the original inoculated STGG
176 was thawed and vortexed. Aliquots of 100µl were shipped in 1.8mL cryovials to BUGS
177 Bioscience (BUGS Bioscience Ltd., London, United Kingdom) on dry ice. (Figure 1) The
178 remaining steps for microarray serotyping (including sample processing, culturing, DNA
179 extraction, molecular serotyping and analysis) were completed entirely by BUGS Bioscience.
180 (16, 17) Final microarray results were retrieved by the study team from BUGS Bioscience's
181 web-based SentiNet platform and imported into STATA 13.1 (StataCorp, College Station,
182 TX, USA) for analysis. Refer to Appendix 1 for a more detailed description of microarray
183 serotyping.

184

185 **DNA Extraction and WGS**

186 Archived secondary growth isolates were used to develop sequence libraries for serotyping-
187 by-sequencing (via PneumoCat). To optimise total retrieved DNA, 30µl of thawed isolate-
188 STGG was incubated overnight in 6mL THY (Todd Hewitt broth + yeast) enrichment culture.
189 DNA was extracted from the overnight culture using the Qiagen® QIAamp™ DNA Mini Kit,
190 following manufacturer guidelines for bacterial DNA. Quality control (QC) measures, as
191 required by the guidelines of the sequencing institution, included DNA quantification
192 (Qubit™, Thermo Fisher Scientific, Massachusetts, USA) of all DNA samples and gel
193 electrophoresis imaging on 0.7% agarose to assess DNA integrity. After attaining quantity
194 and quality requirements, 100µL of extracted DNA were aliquoted into skirted 96-well
195 microwell plates and stored at -80°C until shipped on dry ice to the Oxford Genomics Centre
196 (University of Oxford, United Kingdom) for sequencing. Whole genome sequencing was
197 performed at the Oxford Genomics Centre on a HiSeq4000 platform (Illumina™), with
198 paired-end libraries and a read length of 150 pb.

199

200 **Serotyping-by-sequencing**

201 WGS data was retrieved by the study team from a web-based FTP link. Serotype was
202 inferred from the isolates' genome sequences using the PneumoCaT software pipeline, an
203 opensource bioinformatic tool. (18) PneumoCaT requires raw sequencing reads for each
204 isolate which were trimmed and cleaned. Reads were trimmed of the illumina adapters and
205 cleaned of low-quality ends using Trimmomatic (ver. 0.38; available at
206 <http://www.usadellab.org/cms/?page=trimmomatic>). Minimum read length after trimming was
207 80 base pairs (bp), with the minimum average quality for a sliding window of 4 nucleotide
208 being 15. A subset of 700,000 reads per end (1.4 million total) was used for any subsequent
209 analysis. XML result files were parsed with ad hoc bash scripts, in order to extract and
210 tabulate the serotyping result for each isolate. PneumoCaT was installed and used on a
211 Linux machine at the MRC Cloud Infrastructure for Microbial Bioinformatics (CLIMB;
212 <https://www.climb.ac.uk/>). Each serotype identification required an average 5-8 minutes.
213 Refer to Appendix 1 for a more detailed description of serotyping-by-sequencing.

214

215 **Definitions**

216 Concordance was calculated with all samples aggregated and according to the level of
217 discrimination provided by the method. Concordance is reported using two criteria: i) a
218 criterion based on whether both assays reported NVT or both reported VT (VT/NVT criterion)
219 and ii) a criterion based on whether the final serotype reported by each assay is equivalent
220 (serotype-specific criterion).

221

222 Concordance between latex and serotyping-by-sequencing (PneumoCaT): Other than a
223 limited number of serogroups (6, 7, 9, 18, 19, 23) for which the latex kit provides serogroup
224 differentiation, there is no further differential identification of NVT serogroups to serotype.
225 NVT and non-typeable isolates were reported as NVT. Concordance at serotype level
226 (serotype-specific criterion) was reported only if latex reported VT carriage. If latex reported

227 NVT, any NVT reported by PneumoCaT was considered concordant. For example: 23F
228 reported by both latex and PneumoCaT was considered concordant, as was NVT and 15B.
229 However, 19F and 19A was considered discordant, as was NVT and 6B.

230

231 Concordance between latex and microarray: Concordance at serotype level (serotype-
232 specific criterion) was reported only if latex reported VT carriage. If latex reported NVT, any
233 NVT reported by microarray was considered concordant. Because microarray reports
234 multiple serotype carriage, 23F reported by latex and 23F+34 reported by microarray was
235 considered concordant, as was NVT and 18C+33D. However, 19F and 33D+19A was
236 considered discordant, as was NVT and 3+7F. Note that for microarray, some closely related
237 serotypes were reported as a group, with the individual serotype call in brackets (e.g., 6A/B
238 [6B]). In this case, results were analysed to the level of the individual serotype call. For
239 simplicity of analysis, if a method did not claim to detect a serotype (e.g. 23F) but the sample
240 contained that serotype, this result was deemed discordant.

241

242 Concordance between microarray and serotyping-by-sequencing (PneumoCat): Microarray
243 and PneumoCat both differentiate VT and NVT to serotype level, allowing concordance to be
244 calculated on serotype concordance (serotype-specific criterion) for both VT and NVT *S.*
245 *pneumoniae*.

246

247 **Statistical analysis**

248 The formula for percent increase in VT prevalence was: ([VT prevalence using latex – VT
249 prevalence using microarray] / VT prevalence using latex) * 100%. Confidence intervals are
250 binomial exact. Statistical significance was inferred from two-sided p<0.05. Participant data
251 collection was completed using Open Data Kit (ODK) Collect open source software.
252 (v1.24.0). Statistical analyses were completed using Stata 13.1 (StataCorp, College Station,
253 TX, USA).

254

255 **Ethics Considerations**

256 The study protocol was approved by the College of Medicine Research and Ethics
257 Committee, University of Malawi (P.02/15/1677) and the Liverpool School of Tropical
258 Medicine Research Ethics Committee (14.056). Adult participants and parents/guardians of
259 child participants provided written informed consent; children 8-years and older provided
260 informed assent. This included consent for publication.

261

262 **Results**

263 Pneumococcal carriage prevalence results from the larger surveillance project are reported
264 elsewhere. (14) Comparing latex and PneumoCat, the adjusted concordance of correctly
265 identifying pneumococcal carriage as VT or NVT was 90.7% (1216/1341; 95% CI: 89.0–
266 92.2). (Figure 3) Based on the serotype-specific criterion, concordance between latex and
267 PneumoCaT was 87.5%; (1174/1341) (95% CI: 85.7–89.3). Comparing latex and
268 microarray, the concordance based on correctly identifying pneumococcal carriage as VT or
269 NVT was 97.3% 1311/1347 (95% CI: 96.3–98.1). Based on a serotype-specific criterion, the
270 concordance was 95.2% (1282/1347; 95% CI: 93.9–96.3). Comparing microarray and
271 PneumoCaT, concordance based on correctly identifying pneumococcal carriage as VT or
272 NVT was 96.6% (1295/1341; 95% CI: 95.5–97.5). Based on a serotype-specific criterion, the
273 concordance was 82.8% (1110/1341; 95% CI: 80.6–84.8).

274

275 **Increased VT Detection Using Microarray**

276 Using a larger study database of 1,949 samples from the same study, we evaluated latex
277 and microarray data. Aggregating all ages (i.e. child and adult), there was an increase of
278 31.5% in VT prevalence by microarray compared to latex serotyping: 43.0% increase in VT
279 carriage among children 3–6 years old, 21.7% among children 5–10 years old and 10.8%
280 among HIV-infected adults on ART (Table 1). This was due to samples reporting NVT by
281 latex but that also carried VT, as detected by microarray. These VT, undetected by latex,
282 were carried in lower relative abundance (median 8%, range: 2% - 48%). The prevalence of

283 multiple serotype carriage (range 2-6 serotypes) was 35.2% (686/1949). The prevalence
284 among respective age groups was 44.4% (457/1029), 32.8% (169/515), and 14.8%
285 (60/405). Among samples with multiple serotype carriage, latex identified the dominant
286 serotype in 85.3% (585/686; 95%CI: 82.4–87.8) of samples. Despite the overall increase in
287 detection of VT carriage, the proportion of individual VT serotypes detected is not different
288 when comparing microarray to latex (Figure 4).

289

290 **Key Parameters of selected serotyping methods.**

291 Table 2 presents key parameters to further consider when deciding which assay is
292 appropriate for a particular setting. Estimated costs and feasibility of implementation and
293 maintenance are specific to the setting in Malawi at the Malawi-Liverpool-Wellcome Trust
294 Clinical Research Programme in Blantyre. Extrapolation would need further validation
295 outside the scope of this evaluation. Though more limited in its reporting only a single
296 serotype, latex is highly accurate while being less costly and requiring less expertise and
297 resources for field-implementation and analysis. While microarray is the costliest option, it
298 provides greater accuracy of total pneumococcal carriage, including multiple serotype
299 carriage and relative abundance of individual serotypes in carriage. Whole genome
300 sequencing is a strong alternative to latex and would be nearly cost-free if the sequence
301 libraries were already available. In addition, WGS provides opportunity for further analyses,
302 including population structure and antibiotic resistance.

303

304 **Discussion**

305 We report high concordance between three serotyping techniques applicable to routine
306 pneumococcal surveillance. Importantly, we have extended the analysis to include relevant
307 parameters beyond accuracy including cost, time to result, and measures of input required
308 for assay implementation and maintenance. These are parameters that researchers and
309 policy makers should consider when deciding which assay to implement. All three assays
310 appear accurate and concordant in identifying the dominant serotype.

311

312 While latex agglutination is accurate and requires the least expertise and resources for field-
313 implementation and analysis and provides rapid results, standard latex approaches is not
314 optimal for optimal surveillance of vaccine impact, including the detection of multiple
315 serotype carriage and VT in low relative abundance. (19) There have been attempts to
316 implement latex for detection of multiple serotype carriage. Gratten et al. serotyped up to six
317 colonies from nasal-swab culture plates and found multiple-serotype carriage in 29.5% of
318 Papua New Guinean children. (20) The authors went on to serotype at least 50 colonies
319 from 10 selected nasal-swab cultures and concluded that the minor carried serotype
320 accounted for 4 to 27% of the total pneumococcal population. A review of published data on
321 multiple carriage concluded that, to detect a minor carried serotype it would be necessary to
322 serotype at least five colonies to have a 95% chance of detecting the serotype if it accounted
323 for 50% of the total pneumococcal population, and one would need to examine 299 colonies
324 if the serotype was present at a relative abundance of 1%. As part of the PneuCarriage
325 project, to thoroughly characterise samples, up to 120 colonies from each sample were
326 selected to achieve >99% power to detect a minor serotype of 5% abundance. (13) This
327 approach would not be cost- or time-effective. Though dependent on technical capacity to
328 develop in-house reagents, researchers in The Gambia developed a latex agglutination
329 technique in which colonies from the primary culture plate are suspended in saline and
330 serotyped by latex agglutination. (21) While not differentiating NVT serotypes, they did show
331 that up to 10.4% of pneumococcal acquisitions were found to be of multiple serotypes in a
332 longitudinal infant cohort study. While latex is limited in its output, the process can be
333 leveraged for additional endpoints including, for example, measuring carriage density
334 through counting of colony-forming units (CFU) on agar culture plates.

335

336 With opensource bioinformatic tools such as PneumoCaT, serotyping-by-sequencing can be
337 less costly than microarray, even accounting for costs of DNA extraction and WGS, while
338 still being able to differentiate non-typeable and nearly every known VT and NVT. Though

339 we would not recommend initiating DNA extraction and WGS for the use of PneumoCaT
340 alone, sequence libraries can be further leveraged for extensive informative bioinformatic
341 analyses, useful in population biology, antimicrobial resistance investigations and vaccine
342 monitoring. Moreover, using PneumoCaT for serotyping would be essentially cost-free if the
343 sequence libraries were already available, apart from the limited bioinformatic skills needed.
344 While microarray is more costly, it differentiates NVT and multiple serotype carriage with
345 relative abundance, as well as non-*S. pneumoniae* contaminants (i.e. *S. mitis*, *S. salivarius*,
346 *Staphylococcus aureus*) with a degree of precision. This technique stands out for its
347 sensitivity, being able to detect serotypes in low relative abundance, which is of critical
348 importance for understanding the transmission patterns of *S. pneumoniae*.

349
350 There are a number of limitations to mention, including the number of serotyping methods
351 which were not evaluated, including PCR and the SeroBA pipeline. SeroBA is a relatively
352 new serotyping-by-sequencing software. With similar accuracy to PneumoCaT, SeroBA
353 does have operational advantages. (22) SeroBA can correctly call a serotype with a read
354 coverage as low as 10X (20X is required for PneumoCaT). Using a k-mer based approach,
355 rather than the raw sequence alignment, SeroBA requires much lower computational power
356 and time. On the other hand, the PneumoCat source code can be easily adapted to the
357 operator needs, and both software are likely to run on a standard server configuration.
358 Alternative culture-independent methods, such as PCR, could be important for confirming
359 carriage when re-culturing of original NP swab samples is not feasible. Though PCR has
360 been successfully applied on DNA extracted directly from NPS-STGG, evidence suggests
361 that the best way to apply PCR serotyping is after culture enrichment, returning a higher
362 sensitivity and ability to identify multiple serotype carriage. (9) PCR limitations include the
363 need for region-specific reaction protocols, implementing a high number of primer pairs to
364 identify the same range of serotypes identified by microarray or WGS, and the increased risk
365 of detecting non-viable pneumococci. As there is no evidence of a viable but non-culturable
366 (VBNC) state in *S. pneumoniae*, (23) identifying non-viable pneumococci could be

367 disadvantageous for field-based research. While a formal economic analysis of the methods
368 would be justified, we were unable to extrapolate the individual costing components between
369 sites. Such components would include local salaries and additional labour costs,
370 procurement and shipping of equipment and consumables, equipment maintenance, local
371 health and safety requirements, and institutional costs. For this reason, comparative costing
372 is grossly categorized. Though we did not include invasive isolates (from blood or cerebral
373 spine fluid, for example), it is important to identify serotypes associated with IPD, including in
374 post-PCV impact studies. For invasive isolates, with a single-serotype sample, microarray
375 would have limited advantage. Application of serotyping-by-sequencing would then be the
376 most informative option, including insight into population structure, antimicrobial resistance
377 patterns and serotype replacement disease.

378

379 **CONCLUSION**

380 Selection of the appropriate assay should be based on the intended analysis and endpoint.
381 While accuracy and concordance is high between the three assays, parameters of field-
382 implementation and cost vary significantly. In a setting of limited resources, as is true
383 throughout much of sub-Saharan Africa, latex is the best overall option for decentralised
384 surveillance of vaccine impact. However, WGS, which adds population structure, and
385 microarray, which adds multiple-serotype carriage, should be considered at regional
386 reference laboratories while investigating the importance of VT in low relative abundance in
387 transmission and disease.

388

389 **Appendices**

390 An appendix is available online. Consisting of data provided by the authors to benefit the
391 reader, the posted materials are not copyedited and are the sole responsibility of the
392 authors, so questions or comments should be addressed to the corresponding author.

393

394 **Data availability.** The data supporting the findings of this study has been deposited in the
395 Figshare repository. (24)

396

397 **Acknowledgements.** The authors thank the individuals who participated in this study and
398 the local authorities for their support. We are grateful to the hospitality of the QECH ART
399 Clinic, led by Ken Malisita. Our thanks also extend to the MLW laboratory management
400 team, led by Brigitte Denis and George Selemani.

401 **References**

402

- 403 1. Simell B, Auranen K, Kayhty H, Goldblatt D, Dagan R, O'Brien KL, Pneumococcal Carriage G.
404 2012. The fundamental link between pneumococcal carriage and disease. *Expert Rev
405 Vaccines* 11:841-55.
- 406 2. Wahl B, O'Brien KL, Greenbaum A, Majumder A, Liu L, Chu Y, Luksic I, Nair H, McAllister DA,
407 Campbell H, Rudan I, Black R, Knoll MD. 2018. Burden of *Streptococcus pneumoniae* and
408 *Haemophilus influenzae* type b disease in children in the era of conjugate vaccines: global,
409 regional, and national estimates for 2000-15. *Lancet Glob Health* 6:e744-e757.
- 410 3. von Gottberg A, Cohen C, de Gouveia L, Meiring S, Quan V, Whitelaw A, Crowther-Gibson P,
411 Madhi SA, Whitney CG, Klugman KP. 2013. Epidemiology of invasive pneumococcal disease
412 in the pre-conjugate vaccine era: South Africa, 2003-2008. *Vaccine* 31:4200-8.
- 413 4. Nunes MC, von Gottberg A, de Gouveia L, Cohen C, Kuwanda L, Karstaedt AS, Klugman KP,
414 Madhi SA. 2011. Persistent high burden of invasive pneumococcal disease in South African
415 HIV-infected adults in the era of an antiretroviral treatment program. *PLoS One* 6:e27929.
- 416 5. Singleton RJ, Hennessy TW, Bulkow LR, Hammitt LL, Zulz T, Hurlburt DA, Butler JC, Rudolph
417 K, Parkinson A. 2007. Invasive pneumococcal disease caused by nonvaccine serotypes
418 among alaska native children with high levels of 7-valent pneumococcal conjugate vaccine
419 coverage. *JAMA* 297:1784-92.
- 420 6. Feikin DR, Kagucia EW, Loo JD, Link-Gelles R, Puhan MA, Cherian T, Levine OS, Whitney CG,
421 O'Brien KL, Moore MR, Serotype Replacement Study G. 2013. Serotype-specific changes in

422 invasive pneumococcal disease after pneumococcal conjugate vaccine introduction: a
423 pooled analysis of multiple surveillance sites. PLoS Med 10:e1001517.

424 7. Weinberger DM, Malley R, Lipsitch M. 2011. Serotype replacement in disease after
425 pneumococcal vaccination. Lancet 378:1962-73.

426 8. Adegbola RA, DeAntonio R, Hill PC, Roca A, Usuf E, Hoet B, Greenwood BM. 2014. Carriage of
427 Streptococcus pneumoniae and other respiratory bacterial pathogens in low and lower-
428 middle income countries: a systematic review and meta-analysis. PLoS One 9:e103293.

429 9. da Gloria Carvalho M, Pimenta FC, Jackson D, Roundtree A, Ahmad Y, Millar EV, O'Brien KL,
430 Whitney CG, Cohen AL, Beall BW. 2010. Revisiting pneumococcal carriage by use of broth
431 enrichment and PCR techniques for enhanced detection of carriage and serotypes. J Clin
432 Microbiol 48:1611-8.

433 10. Swarthout TD MT, Everett D, Bar Zeev N, Kamng'ona A, Chipasula T, Malisita K, Mwansambo
434 C, Banda M, Hinds J, Gould KA, French N, Heyderman RS. 2016. Persistent vaccine-type
435 carriage of Streptococcus pneumoniae four years after introducing PCV13 in a 3+0 schedule
436 in Malawi, abstr International Symposium on Pneumococci and Pneumococcal Disease,
437 Glasgow, Scotland, 2016.

438 11. Turner P, Hinds J, Turner C, Jankhot A, Gould K, Bentley SD, Nosten F, Goldblatt D. 2011.
439 Improved detection of nasopharyngeal colonization by multiple pneumococcal serotypes
440 by use of latex agglutination or molecular serotyping by microarray. J Clin Microbiol
441 49:1784-9.

442 12. Austrian R. 1976. The quellung reaction, a neglected microbiologic technique. Mt Sinai J Med
443 43:699-709.

444 13. Satzke C, Dunne EM, Porter BD, Klugman KP, Mulholland EK, PneuCarriage project g. 2015.
445 The PneuCarriage Project: A Multi-Centre Comparative Study to Identify the Best Serotyping
446 Methods for Examining Pneumococcal Carriage in Vaccine Evaluation Studies. PLoS Med
447 12:e1001903; discussion e1001903.

448 14. Swarthout TD, Fronterre C, Lourenco J, Obolski U, Gori A, Bar-Zeev N, Everett D, Kamng'ona
449 AW, Mwalukomo TS, Mataya AA, Mwansambo C, Banda M, Gupta S, Diggle P, French N,
450 Heyderman RS. 2020. High residual carriage of vaccine-serotype *Streptococcus pneumoniae*
451 after introduction of pneumococcal conjugate vaccine in Malawi. *Nat Commun* 11:2222.

452 15. Satzke C, Turner P, Virolainen-Julkunen A, Adrian PV, Antonio M, Hare KM, Henao-Restrepo
453 AM, Leach AJ, Klugman KP, Porter BD, Sa-Leao R, Scott JA, Nohynek H, O'Brien KL, Group
454 WHOPCW. 2013. Standard method for detecting upper respiratory carriage of *Streptococcus*
455 pneumoniae: updated recommendations from the World Health Organization Pneumococcal
456 Carriage Working Group. *Vaccine* 32:165-79.

457 16. Newton R, Hinds J, Wernisch L. 2011. Empirical Bayesian models for analysing molecular
458 serotyping microarrays. *BMC Bioinformatics* 12:88.

459 17. Hinds J GK, Witney AA, Baldry SJ, Lambertsen L, Hannage WP, Antonio M, Turner P, Newton
460 R, Wernisch L, Aanensen DM, Bentley S. 2009. Molecular serotyping of *Streptococcus*
461 pneumoniae: a microarray-based tool with enhanced utility for isolate typing, novel
462 serotype discovery, non-typeable investigation, multiple carriage detection, and direct
463 analysis of nasopharyngeal swabs, abstr 9th European Meeting on the Molecular Biology of
464 the Pneumococcus (Europneumo), Bern, Switzerland

465 18. Kapatai G, Sheppard CL, Al-Shahib A, Litt DJ, Underwood AP, Harrison TG, Fry NK. 2016.
466 Whole genome sequencing of *Streptococcus pneumoniae*: development, evaluation and
467 verification of targets for serogroup and serotype prediction using an automated pipeline.
468 PeerJ 4:e2477.

469 19. O'Brien KL, Nohynek H, World Health Organization Pneumococcal Vaccine Trials Carriage
470 Working G. 2003. Report from a WHO working group: standard method for detecting upper
471 respiratory carriage of *Streptococcus pneumoniae*. *Pediatr Infect Dis J* 22:133-40.

472 20. Gratten M, Montgomery J, Gerega G, Gratten H, Siwi H, Poli A, Koki G. 1989. Multiple
473 colonization of the upper respiratory tract of Papua New Guinea children with *Haemophilus*

474 influenzae and Streptococcus pneumoniae. Southeast Asian J Trop Med Public Health

475 20:501-9.

476 21. Hill PC, Cheung YB, Akisanya A, Sankareh K, Lahai G, Greenwood BM, Adegbola RA. 2008.

477 Nasopharyngeal carriage of Streptococcus pneumoniae in Gambian infants: a longitudinal

478 study. Clin Infect Dis 46:807-14.

479 22. Epping L, van Tonder AJ, Gladstone RA, The Global Pneumococcal Sequencing C, Bentley SD,

480 Page AJ, Keane JA. 2018. SeroBA: rapid high-throughput serotyping of Streptococcus

481 pneumoniae from whole genome sequence data. Microb Genom 4.

482 23. Li L, Mendis N, Trigui H, Oliver JD, Faucher SP. 2014. The importance of the viable but non-

483 culturable state in human bacterial pathogens. Front Microbiol 5:258.

484 24. Swarthout TD GA, Bar-Zeev N, Kamng'ona AW, Mwalukomo TS, Bonomali F, Nyirenda R,

485 Brown C, Msefula J, Everett D, Mwansambo C, Gould K, Hinds J, Heyderman RS, French N.

486 2020. Study data and dictionary - evaluation of pneumococcal serotyping methods, Blantyre,

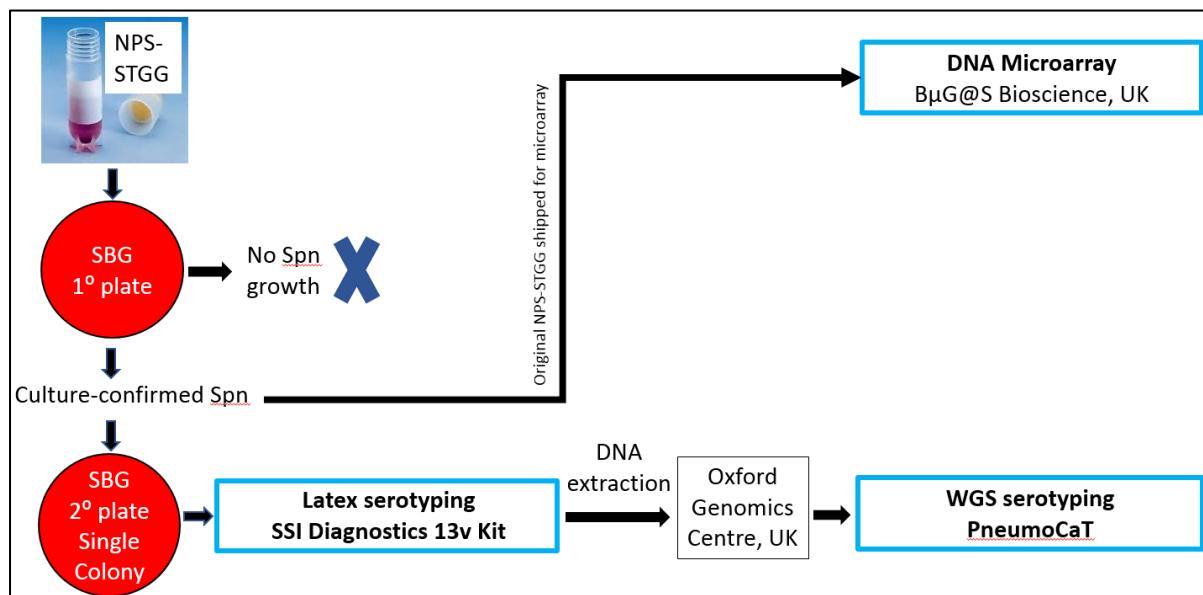
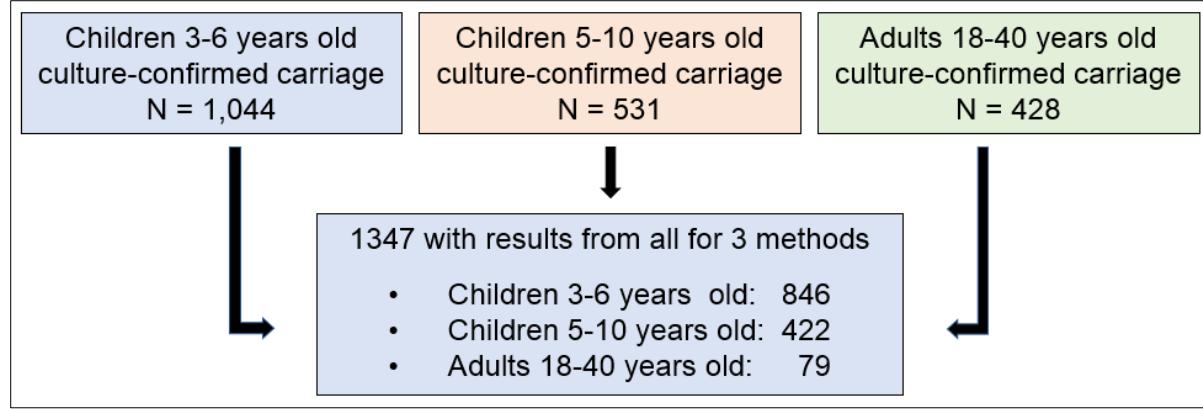
487 Malawi, 2015-2017 doi:10.6084/m9.figshare.12807872.

488

489

490 **Notes**

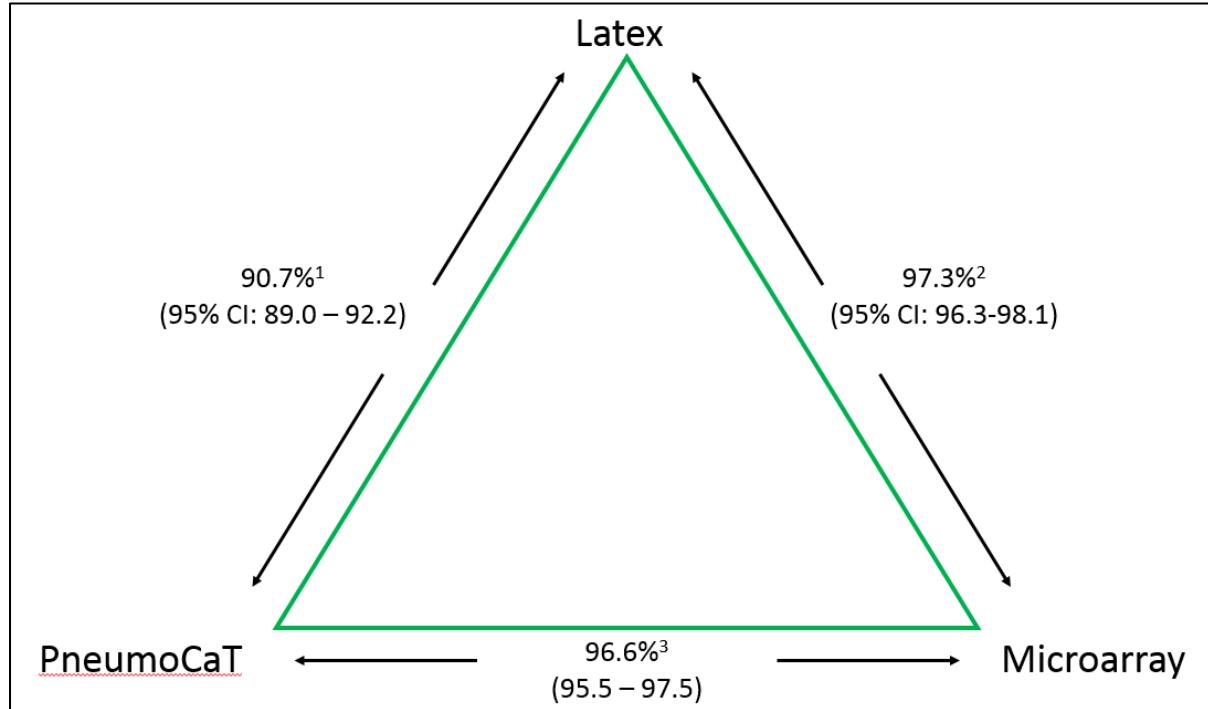
491 **Financial Support.** Bill & Melinda Gates Foundation, USA (OPP117653). A project grant
492 jointly funded by the UK Medical Research Council (MRC) and the UK Department for
493 International Development (DFID) under the MRC/DFID Concordat agreement, also as part
494 of the EDCTP2 programme supported by the European Union (MR/N023129/1); and a
495 recruitment award from the Wellcome Trust (Grant 106846/Z/15/Z). The MLW Clinical
496 Research Programme is supported by a Strategic Award from the Wellcome Trust, UK
497 (206545/Z/17/Z). National Institute for Health Research (NIHR) Global Health Research Unit
498 on Mucosal Pathogens using UK aid from the UK Government (Project number 16/136/46).



499

500 **Disclaimer.** The funders had no role in study design, collection, analysis, data interpretation,
501 writing of the report or in the decision to submit the paper for publication. The corresponding
502 author had full access to the study data and, together with the senior authors, had final
503 responsibility for the decision to submit for publication. TDS, AG, RSH, and NF are
504 supported by the National Institute for Health Research (NIHR) Global Health Research Unit
505 on Mucosal Pathogens using UK aid from the UK Government. The views expressed in this
506 publication are those of the author(s) and not necessarily those of the NIHR or the
507 Department of Health and Social Care.

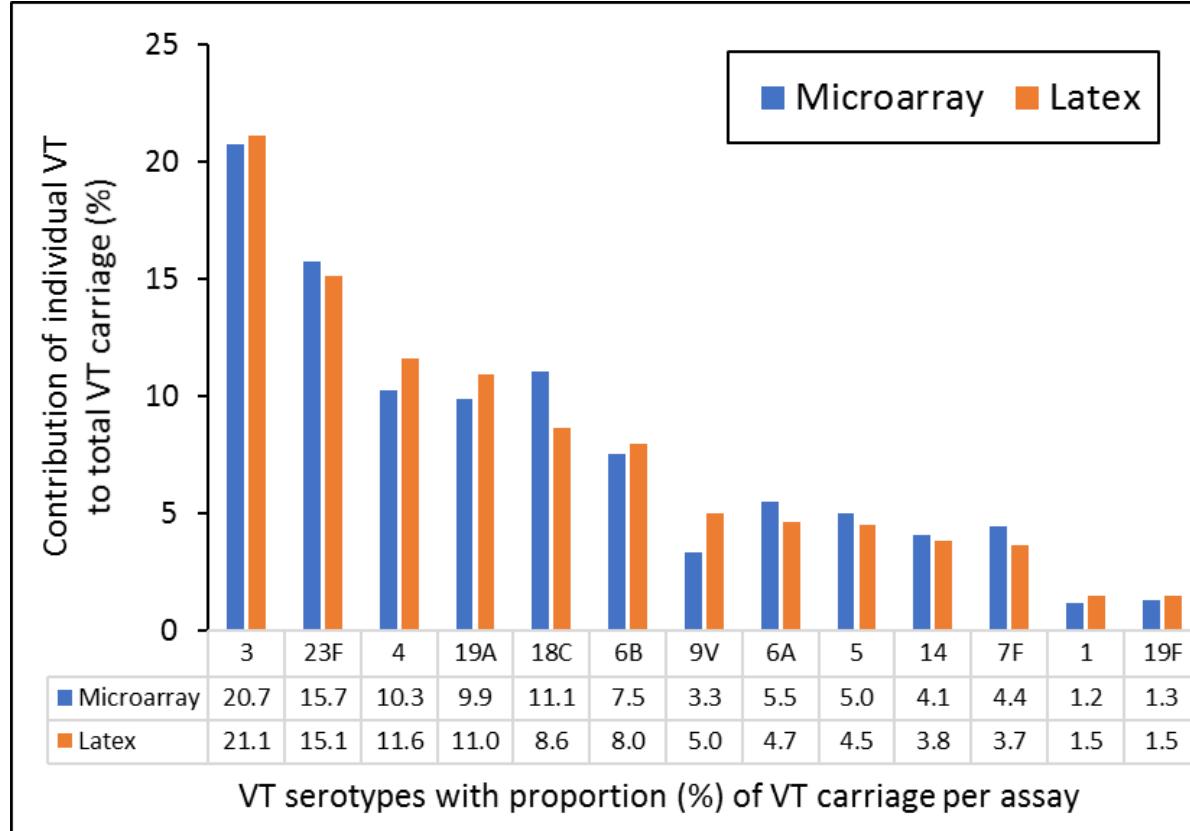
508

509 **Potential conflicts of interest interests.** Dr. Bar-Zeev reports investigator-initiated
510 research grants from GlaxoSmithKline Biologicals and from Takeda Pharmaceuticals outside
511 the submitted work. No other authors declare competing interests.


512

521 **Figure 2** Laboratory procedures. Nasopharyngeal swabs (NPS) were inoculated into STGG and
522 subsequently plated on a growth agar of sheep blood and gentamycin. Bacteria growth (from single-
523 colony picks) from samples culture-confirmed for *Streptococcus pneumoniae* were used for latex
524 serotyping. Remaining pure-growth isolates, retained at -80°C in sterile STGG, were later grown for
525 DNA extraction and WGS. Aliquots of original samples (NPS-STGG) that were culture-confirmed for
526 *Streptococcus pneumoniae* were assessed by microarray. NPS=nasopharyngeal swabs,
527 STGG=skim-milk-tryptone-glucose-glycerol, WGS=whole-genome sequencing, Spn=*Streptococcus*

528 *pneumoniae*, SBG=sheep blood and gentamycin, SSI= Statens Serum Institute, 13v=13-valent, NSP-
529 STGG=NPS inoculated into STGG.


530

531

532 **Figure 3** Concordance between assays. Concordance between two assays was defined as both
533 assays identifying pneumococcal carriage as VT or both as NVT. Latex and PneumoCaT reported
534 one result per sample, both using the same pure-growth culture. Microarray, using an aliquot of the
535 original NPS-STGG, differentiated individual serotypes in multiple serotype carriage, when present.
536 When comparing the three assays, concordance was based on serotype if latex reported VT carriage.
537 If latex reported NVT, this was considered concordant to any NVT reported by PneumoCaT and
538 microarray, as long as PneumoCaT and microarray reported the same NVT.

539

541

542 **Figure 4** Proportion of individual VT serotypes contributing to total VT carriage. The proportion of
543 individual VT serotypes detected is not significantly different when comparing microarray to latex.
544 VT=vaccine serotype.

545

546 **Table 1** Increased detection of VT carriage, latex vs microarray

	Latex VT prevalence (n) 95% CI	Microarray VT prevalence (n) 95% CI	% Increase in VT prevalence
Children 3-6 years, PCV-vaccinated (n=1360)	20.0% (272) 17.9, 22.2	28.6% (389) 26.2, 31.1	43.0%
Children 5-10 years, PCV-unvaccinated (n=904)	21.1% (191) 18.5, 23.9	26.5% (240) 23.7, 29.6	21.7%
Adults, 18-40 years, HIV-infected, PCV-unvaccinated (n=963)	14.2% (137) 12.1, 16.6	16.6% (160) 14.3, 19.1	10.8%
Total (n=3227)	18.6 (600) 17.3, 20.0	24.4 (789) 23.0, 26.0	31.5%

547 PCV=pneumococcal conjugate vaccine, VT=vaccine serotype, CI=confidence interval.

547 **Table 2** Key comparative parameters of serotyping methods.

	Latex (phenotypic)	Microarray (genomic)	PneumoCaT (genomic)
Assay implementation			
Sample used in assay	• Pure growth from single isolate	• Original sample in STGG	• Pure growth from single isolate
Cost estimate ¹	• Lowest of three assays	• Highest of three assays	• Middle of three assays
Implementation of assay	• Least difficult (relatively simple)	• Most difficult	• Moderate difficult
Training required for implementation	• Minimal	• Advanced	• DNA extraction: moderate • WGS library manipulation: advanced • PneumoCaT tool: moderate
Training required for processing and interpretation of results	• Minimal	• Moderate	• Moderate
Assay output and interpretation			
Serotypes reported	• Single	• Multiple, if present	• Single
NVT differentiation	• No ³	• Yes	• Yes
Relative abundance of individual serotypes reported	• No	• Yes	• No
Additional outputs	• Isolates archived and available for further analyses	• AMR Profile ² • NT differentiation	• WGS library accessible for further analyses, including population structure and AMR
Conclusion	• Adequate for surveillance • Limited resolution for optimal VE estimation	• Cost and technique limits ability to de-centralise implementation • Detection of VT in low relative abundance is of critical importance • Sentinel sites should be considered for regional NVT & VT resolution for optimal VE estimation	• Limited resolution for optimal VE estimation • No benefit over latex unless WGS library already available

548

549 ¹Estimated costs and feasibility of implementation and maintenance are specific to the setting in Malawi at the Malawi-Liverpool-Wellcome Trust Clinical

550 Research Programme in Blantyre.

551 ² AMR profile cannot be assigned to a single strain in a sample with multiple-serotype or multiple-pathogen carriage.

552 ³NVT & NT reported as NVT. STGG=skim-milk-tryptone-glucose-glycerol, WGS=whole genome sequencing, VT=vaccine serotype, NVT=non-vaccine

553 serotype, AMR=antimicrobial resistance, NT=non-typeable, VE=vaccine efficacy.

554