

1

2

3 **Live-imaging of endothelial Erk activity reveals dynamic and sequential
4 signalling events during regenerative angiogenesis**

5

6 Kazuhide S. Okuda^{1,2,3}, Mikaela Keyser¹, David B. Gurevich⁴, Caterina Sturtzel^{5,6},
7 Scott Patterson^{1,2,3}, Huijun Chen¹, Mark Scott¹, Nicholas D. Condon¹, Paul Martin⁴,
8 Martin Distel^{5,6}, Benjamin M. Hogan^{1,2,3,7#}

9

10

11

12 *¹Divisions of Genomics of Development and Disease, Institute for Molecular Bioscience, The University
13 of Queensland, St Lucia, QLD 4072, Australia*

14 *²Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000,
15 Australia*

16 *³Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000,
17 Australia*

18 *⁴School of Biochemistry, biomedical Sciences Building, University Walk, University of Bristol, Bristol
19 BS8 1TD, United Kingdom*

20 *⁵Innovative Cancer Models, St Anna Kinderkrebsforschung, Children's Cancer Research Institute, 1090
21 Vienna, Austria*

22 *⁶Zebrafish Platform Austria for preclinical drug screening (ZANDR), 1090 Vienna, Austria*

23 *⁷Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC 3000, Australia*

24

25

26

27

28

29

30

31

32

33 *Author for Correspondence:*

34 *# Professor Ben Hogan
35 Organogenesis and Cancer Program,
36 Peter MacCallum Cancer Centre,
37 Melbourne, VIC 3000, Australia
38 E-mail: ben.hogan@petermac.org*

39

40

41 **Keywords:** Erk, Vegfr, Angiogenesis, Endothelial cell, Regeneration, Zebrafish.

42

43 **Abstract**

44

45 The formation of new blood vessel networks occurs via angiogenesis during
46 development, tissue repair and disease. Angiogenesis is regulated by intracellular
47 endothelial signalling pathways, induced downstream of Vascular endothelial growth
48 factors (VEGFs) and their receptors (VEGFRs). A major challenge in understanding
49 angiogenesis is interpreting how signalling events occur dynamically within endothelial
50 cell populations during sprouting, proliferation and migration. Erk is a central
51 downstream effector of Vegf-signalling and reports the signalling that drives
52 angiogenesis. We generated a vascular Erk biosensor transgenic line in zebrafish
53 using a kinase translocation reporter that allows live-imaging of Erk-signalling
54 dynamics. We demonstrate the utility of this line to live-image Erk activity during
55 physiologically relevant angiogenic events. Further, we reveal dynamic and sequential
56 endothelial cell Erk-signalling events following blood vessel wounding. Initial signalling
57 is dependent upon Ca^{2+} in the earliest responding endothelial cells, but is independent
58 of Vegfr-signalling and local inflammation. The sustained regenerative response
59 however, involves a Vegfr-dependent mechanism that initiates concomitant with the
60 wound inflammatory response. This work thus reveals a highly dynamic sequence in
61 regenerative angiogenesis that was not previously appreciated. Altogether, this study
62 demonstrates the utility of a unique biosensor strain for analysing dynamic endothelial
63 Erk-signalling events and validates a new resource for the study of vascular signalling
64 in real-time.

65

66 **Introduction**

67 The formation of new blood vessels from pre-existing vasculature (angiogenesis) is a
68 fundamental process central in the formation of a viable embryo and in the
69 pathogenesis of many diseases (Carmeliet and Jain, 2011; Chung and Ferrara,
70 2011; Potente et al., 2011). Angiogenesis is controlled by intricately regulated cell-cell,
71 cell-matrix and intracellular signalling events. The activity of extracellular signal-
72 regulated kinase (ERK) downstream of the vascular endothelial growth factor A
73 (VEGFA)/VEGF receptor 2 (VEGFR2) signalling pathway is essential for both
74 developmental and pathological angiogenesis (Koch and Claesson-Welsh,
75 2012; Simons et al., 2016). ERK-signalling is also required downstream of
76 VEGFC/VEGFR3 signalling in lymphangiogenesis (Deng et al., 2013). ERK is required
77 for angiogenic sprouting, proliferation and migration, with genetic or pharmacological
78 inhibition of ERK-signalling resulting in impaired blood vessel development in
79 zebrafish and mice (Srinivasan et al., 2009; Costa et al., 2016; Nagasawa-Masuda and
80 Terai, 2016; Shin et al., 2016). Cancer-associated vessels have high ERK activity and
81 inhibition of ERK-signalling blocks cancer-associated angiogenesis in mice (Wilhelm
82 et al., 2004; Murphy et al., 2006). Beyond the formation of new vessels, ERK-signalling
83 is also essential to maintain vascular integrity in quiescent endothelial cells (ECs)
84 (Ricard et al., 2019), altogether demonstrating a central role for ERK in vascular
85 biology.

86

87 Despite its importance, vascular ERK-signalling has largely been examined with
88 biochemical assays or in tissues in static snapshots. Numerous studies have
89 suggested that ERK-signalling is likely to be highly dynamic during angiogenic events,
90 for example studies that examine Erk activation using antibodies to detect
91 phosphorylated Erk (pErk) have observed changes associated with increased EC
92 signalling, EC motility and specific EC behaviours (Costa et al., 2016; Nagasawa-
93 Masuda and Terai, 2016; Shin et al., 2016). In zebrafish, live-imaging of blood ECs at
94 single cell-resolution coupled with carefully staged immunofluorescence staining for
95 pErk suggested that an underlying dynamic Erk-signalling event may control tip-cell
96 maintenance in angiogenesis (Costa et al., 2016). Nevertheless, EC signalling
97 dynamics at the level of key intracellular kinases, such as ERK, remain poorly
98 understood. This gap in our understanding is largely due to a gap in our ability to live-
99 image changes in signalling as they occur.

100
101 A number of new biosensors have now been applied *in vitro* and *in vivo* that allow live-
102 imaging of proxy readouts for intracellular signalling events (reviewed in detail in (Shu,
103 2020)). One approach used, has involved application of biosensors that utilise
104 fluorescence resonance energy transfer (FRET)-based readouts. The first ERK FRET-
105 based biosensor (ERK activity reporter (EKAR)) was developed in 2008 (Harvey et al.,
106 2008). Since then, modifications had been made to improve its sensitivity and dynamic
107 range to generate other ERK FRET-based biosensors such as EKAR-EV, RAB-
108 EKARev, and sREACH (Komatsu et al., 2011;Ding et al., 2015;Tang and Yasuda,
109 2017;Mehta et al., 2018). Importantly, these ERK FRET-based biosensors had been
110 applied *in vivo* to visualise ERK-signalling dynamics in various cell types during
111 development, cell migration, and wound healing (Kamioka et al., 2012;Mizuno et al.,
112 2014;Goto et al., 2015;Hiratsuka et al., 2015;Kamioka et al., 2017;Takeda and
113 Kiyokawa, 2017;Sano et al., 2018;Wong et al., 2018). While these ERK FRET-based
114 biosensors have been widely reported, they are limited in requiring extensive FRET
115 controls and a low speed of acquisition for FRET based imaging. More recently, Regot
116 and colleagues generated the ERK-kinase translocation reporter (KTR)-Clover
117 construct (hereafter referred to as EKC), that allows for dynamic analysis of ERK
118 activity using a readout not involving FRET. A fluorescence-based kinase activity
119 reporter translates ERK phosphorylation events into a nucleo-cytoplasmic shuttling
120 event of a synthetic reporter (Regot et al., 2014). Thus, the KTR system allows rapid
121 quantifiable measurements of ERK activity based upon subcellular localisation of a
122 fluorescent fusion protein, and is more sensitive to phosphatase-mediated kinase
123 activity downregulation when compared to other commonly used kinase activity
124 reporters. This has been applied to enable dynamic ERK-signalling pulses to be
125 analysed in single-cell resolution both *in vitro* and also *in vivo* (Regot et al., 2014;de
126 la Cova et al., 2017;Mayr et al., 2018;Goglia et al., 2020), where it has demonstrated
127 to be of high utility.

128
129 In this study, we generated a vascular EC-restricted EKC zebrafish transgenic strain
130 and assessed its utility to study angiogenesis *in vivo*. We apply real-time quantification
131 of Erk-signalling dynamics during developmental angiogenesis and vessel
132 regeneration. We establish methods to quantify Erk activity during real time imaging
133 that will be applicable in a variety of settings in vascular biology and beyond.

134 Demonstrating the promise of this approach, we here identify an immediate early Erk-
135 signalling response to wounding of vasculature that is Ca^{2+} signalling dependent and
136 distinct from a later Vegfr-driven regenerative response. Overall, this work reports a
137 unique resource for imaging of vascular signalling and further illuminates mechanisms
138 of vascular regeneration following wounding.

139

140

141 **Results**

142 **Generation of a zebrafish EC EKC transgenic line**

143 KTRs utilise a kinase docking and target site that is juxtaposed to a phospho-inhibited
144 nuclear localization signal (NLS) and attached to a fluorescent tag (Regot et al., 2014).
145 Upon kinase activity the NLS is inactive and the fluorescent tag detected in the
146 cytoplasm; when the kinase is not active dephosphorylated NLS leads to increased
147 nuclear localisation. The EKC module that we took advantage of here relies upon the
148 well characterised ERK-dependent transcription factor ELK1, utilising the ERK
149 docking site (**Figure 1A**) (Chang et al., 2002;Regot et al., 2014). This reporter has
150 previously been shown to report Erk activity *in vivo* (de la Cova et al., 2017;Mayr et
151 al., 2018). To visualise real-time Erk-signalling in ECs, we expressed this reporter
152 under the control of an EC-specific promoter (*fli1aep* (Villefranc et al., 2007)) (**Figures**
153 **1A-E**). Blood vessel development was unaffected in *Tg(fli1aep:EKC)* transgenic
154 embryos and larvae (**Figures 1B-E**). Furthermore, transgenic adults displayed no
155 adverse morphological features and were fertile (data not shown), indicating that EKC
156 does not inhibit Erk-signalling *in vivo*, or cause developmental phenotypes and
157 consistent with previous findings (Mayr et al., 2018).

158

159 To test if the *Tg(fli1aep:EKC)* line reports vascular Erk-signalling, embryos were
160 treated with either DMSO, mitogen-activated protein kinase kinase (MEK) inhibitor
161 SL327, or pan-VEGFR inhibitor SU5416, and vascular EKC localisation examined at
162 27 hpf. Tip ECs in developing ISVs had been shown to have high Erk activity (Costa
163 et al., 2016;Nagasaki-Masuda and Terai, 2016;Shin et al., 2016) and we observed
164 highly nuclear depleted EKC localisation in ISV tip cells in DMSO treated embryos.
165 (**Figures 1F-F'',I**). In contrast, ISV tip ECs of embryos treated with either SL327 or
166 SU5416 had nuclear enriched EKC localisation indicating inactive Erk-signalling
167 (**Figures 1G-I**). To best visualise these differences in signalling and differences shown

168 below, we used a heat map of nuclear EC EKC intensity that is inverted so that blue-
169 scale indicated low signalling (nuclear enriched) and red-scale indicates high
170 signalling (nuclear depleted) (**Figures 1F''-H''**). Therefore, we confirmed that the
171 *Tg(fli1ep:EKC)* (hereafter EC EKC) transgenic enables quantification of Erk activity in
172 developing ECs.

173

174

175 **The EC EKC line enables visualisation and quantification of dynamic Erk activity**
176 **during primary angiogenesis**

177 We next sought to determine whether the EC EKC sub-cellular localisation reports
178 physiologically relevant Erk-signalling events. Using immunofluorescence staining,
179 ISV tip cells that sprout from the dorsal aorta (DA) have been shown to have higher
180 Erk-signalling than ECs that remain in the DA during the initiation of angiogenesis
181 (Nagasawa-Masuda and Terai, 2016; Shin et al., 2016). We examined 22 hpf embryos
182 and indeed observed that sprouting ISV ECs display high Erk activity based upon EKC
183 localisation (**Figure 1-figure supplement 1A-B**). However, many DA ECs also
184 appeared to have nuclear depleted EKC localisation (**Figure 1-figure supplement**
185 **1A**, yellow arrows). To compare EKC and Erk-signalling levels between sprouting tip-
186 cells and the DA, we utilised multiple methods. We found that measuring the
187 nuclear/cytoplasm EKC intensity ratio in DA ECs was inaccurate because DA ECs are
188 tightly packed, making cytoplasmic quantification unreliable (**Figure 1-figure**
189 **supplement 1A'**). Previous studies have compared nuclear EKC with nuclear H2B-
190 mCherry intensity in the same cell as a ratio to measure Erk activity (eg. in vulval
191 precursor cells in the worm (de la Cova et al., 2017)). We assessed the ratio of nuclear
192 EKC/H2B-mCherry intensity in double transgenic
193 *Tg(fli1ae:EKC);Tg(fli1a:H2B:mCherry)* (hereafter referred to as EC-EKC/mCherry)
194 embryos and found that the ISV tip cells had higher Erk activity than adjacent DA
195 “stalk” ECs (**Figure 1-figure supplement 1A'' and C**). We used a stable *Tg(fli1a:H2B-*
196 *mCherry*) transgenic line with consistent H2B-mCherry intensity within ECs. Next, we
197 investigated whether nuclear EKC intensity alone was sufficient to compare Erk-
198 signalling between ECs. The ratio of nuclear EKC intensity of the sprouting ISV tip-cell
199 and the adjacent DA “stalk” EC clearly showed higher signalling in tip-cells and was
200 consistent with EKC/H2B-mCherry measurements (**Figure 1-figure supplement 1C**).
201 Thus, we establish that both methods can be reliably used, when measurement of

202 nuclear/cytoplasm EKC intensity is challenging because of the need to confidently
203 identify a cells cytoplasm. We typically compare nuclear EKC intensities for
204 subsequent analyses here.

205

206 Next, we correlated an ECs Erk-signalling state (based on EC EKC intensity) with its
207 motility state (based on nuclear elongation) as previous studies have suggested a
208 correlation (Costa et al., 2016). At 28 hpf, ISV tip cells were either located above the
209 horizontal myoseptum with elongated nuclei indicative of high motility (migrating EC),
210 or at the level of the future dorsal longitudinal anastomotic vessel, with rounded nuclei
211 (non-migrating EC) (**Figure 1-supplement 1D-F**). We found that migrating ECs had
212 higher Erk activity than non-migrating ECs, irrespective of their tip or stalk cell location
213 in an ISV (**Figure 1-figure supplement 1D-H**). This is consistent with previous studies
214 of Vegfa/Kdr/Kdrl/Erk signalling in zebrafish ISVs (Yokota et al., 2015;Shin et al., 2016)
215 and confirms a strong correlation between ISV EC motility and EC Erk-signalling.

216

217 Using carefully staged immunofluorescence analyses, it was previously suggested
218 that when tip cells divide in ISV angiogenesis, daughter cells show asymmetric
219 Kdrl/Erk signalling that re-establishes the tip/stalk EC hierarchy (Costa et al., 2016).
220 However, an analysis of fixed material can only ever imply underlying dynamics. To
221 investigate the dynamics of Erk-signalling upon tip-cell division, we performed high-
222 speed time-lapse imaging of ISV tip ECs as they undergo mitosis in 24 hpf embryos.
223 Immediately preceding cell-division, ECs display cytoplasmic localisation of H2B-
224 mCherry due to the disruption of the nuclear membrane (**Figure 2A**, yellow arrow).
225 High-speed live-imaging of ISV tip ECs revealed nuclear enriched EKC localisation
226 during cell division (**Figures 2A-C**), which was maintained until cytokinesis (**Figure**
227 **2B, Video 1**) but may reflect nuclear membrane breakdown rather than altered cellular
228 signalling. Subsequently, daughter ECs in the tip position progressively increased their
229 Erk activity, while ECs in the trailing stalk daughter position remained nuclear
230 enriched, showing asymmetric Erk-signalling activity rapidly following cell division
231 (**Figure 2B-I, Video 1**). To accurately assess this across multiple independent tip-cell
232 divisions, we measured the ratio of tip/stalk daughter cell nuclear EKC intensity over
233 time. This revealed that tip cells consistently increased their Erk activity relative to
234 stalk cells in a progressive manner with the most dramatic asymmetry observed ~21

235 minutes post-cytokinesis (**Figures 2B-K, Video 1**). Collectively, the EC EKC line
236 enabled quantitative assessment of physiologically relevant Erk activity by real-time
237 live imaging and confirmed previously suggested asymmetric signalling post tip-cell
238 division.

239

240 **Vessel wounding induces rapid Erk activation**

241 As a major downstream target for VEGFA/VEGFR2 signalling, ERK phosphorylation
242 is essential for stimulating ectopic sprouting of otherwise quiescent mature vessels
243 (Wilhelm et al., 2004; Murphy et al., 2006). However, Erk-signalling dynamics during
244 pathological angiogenesis have not been analysed in detail. To determine whether the
245 EC EKC line can be used to dynamically visualise Erk activation in ECs in pathological
246 settings, we analysed EC Erk activity following vessel wounding using a laser ablation
247 method. We chose this model because vessel wounding in 4 dpf larvae results in
248 highly reproducible Vegfa/Kdr/Kdrl signalling-dependent vessel regeneration
249 (Gurevich et al., 2018). Importantly, cell wounding induces rapid ERK-signalling waves
250 *in vitro* and *in vivo* in other settings (Matsubayashi et al., 2004; Li et al., 2013; Hiratsuka
251 et al., 2015; Aoki et al., 2017; Mayr et al., 2018).

252

253 To visualise Erk-signalling dynamics following cellular ablation and vessel wounding,
254 we time-lapse imaged both ablated ISV ECs and the adjacent non-ablated ISV ECs in
255 4 dpf EC-EKC/mCherry larvae for 20 minutes before and for 22 minutes after vessel
256 wounding. As a control, ISV ECs of unablated 4 dpf larvae were time-lapse imaged for
257 the same period. EKC localisation in the majority of ISV ECs indicated low basal Erk-
258 signalling in ECs of mature vessels (**Figures 3A,A',C,C',E,F, Videos 2-5**). Upon
259 vessel wounding, Erk activity in ablated ISV ECs immediately increased (**Figures**
260 **3B,B',E,F, Videos 3 and 4**). Surprisingly, Erk activity in ECs of ISVs located adjacent
261 to the ablated ISV (termed adjacent ISV) also rapidly increased (**Figures 3D,D',E,F,**
262 **Videos 3 and 5**). Although the activation of Erk-signalling in adjacent ISV ECs was
263 slightly slower than in ablated ISV ECs, the level of Erk activation in ablated and
264 adjacent vessels was comparable by 15 minutes post-ablation (mpa, green dotted
265 line) and consistent up to 22 mpa (**Figures 3F**). Both venous and arterial ECs equally
266 showed Erk activation 15 mpa in ablated ISVs post-vessel wounding, suggesting that
267 both venous and arterial ECs are able to rapidly activate Erk-signalling (**Figure 3G**).

268

269 **The initial rapid Erk-signalling response is not induced by macrophages or**
270 **Vegfr activity**

271 Macrophages recruited to a wound site have been shown to provide a local source of
272 Vegfa that stimulates vessel regeneration (Gurevich et al., 2018). Therefore, we
273 investigated whether macrophages are required for rapid Erk activation in ISV ECs.
274 As previously reported (Gurevich et al., 2018), macrophage recruitment to wounded
275 site was minimal at 15 mpa, while robust macrophage recruitment was observed 3
276 hours post-ablation (hpa), suggesting that macrophages may not contribute to rapid
277 Erk activation (**Figure 3-figure supplement 1A-D**). We depleted macrophages by
278 knocking down Spi-1 proto-oncogene b (Spi1b) and Colony stimulating factor 3
279 receptor (Csf3r) using established morpholinos (Rhodes et al., 2005;Ellett et al.,
280 2011;Pase et al., 2012) (**Figure 3-figure supplement 1E-G**). The rapid EC Erk
281 activation post-wounding was unaffected upon macrophage depletion (**Figure 3H**,
282 **Figure 3-figure supplement 1H-S'**). We next tested whether Vegfr-signalling is
283 required for this rapid Erk activation. Erk activation in both ablated and adjacent ISV
284 ECs 15 mpa was blocked in larvae treated with SL327, indicating that it requires
285 upstream Mek activation (**Figure 3I**, **Figure 3-figure supplement 2D-M'**). However,
286 treatment with two independent and validated VEGFR-inhibitors, SU5416 (**Figure 1H-I**
287) and AV951 (**Figure 3-figure supplement 2A-C**), did not impair the rapid Erk
288 activation at 15 mpa (**Figure 3I**, **Figure 3-figure supplement 2O-Z'**). Therefore, Erk
289 activation in both ablated and adjacent ISV ECs 15 mpa is induced independently of
290 either macrophages or Vegfr-signalling, suggesting an initial response to vessel
291 wounding that has not been previously examined.

292

293 **Following the initial rapid Erk activation, signalling is progressively restricted**
294 **to regenerating vessels**

295 Previous studies have shown that local wounding induces a rapid burst in ERK-
296 signalling in surrounding cells (Matsubayashi et al., 2004;Li et al., 2013;Hiratsuka et
297 al., 2015;Aoki et al., 2017;Mayr et al., 2018). To determine whether the initial Erk
298 activation in ISV ECs post-vessel wounding was maintained, Erk activity was followed
299 over a longer time-course until 3 hpa, when robust macrophage recruitment was
300 observed (**Figure 3-figure supplement 1C,D**). Erk activity was again increased upon
301 vessel wounding in both ablated and adjacent ISV ECs at 15 mpa (**Figure 4A-D**,
302 **Figure 4-figure supplement 1A-I'**). Erk activity was maintained until 30 mpa in

303 adjacent ISV ECs, but then gradually decreased and returned to non-ablated control
304 levels by 1 hpa (**Figure 4B-D**). By contrast, high Erk activity was maintained for the
305 duration in ablated ISV ECs (**Figure 4A,A',C,D**). To test if this difference in Erk activity
306 was influenced by long-term time-lapse imaging, Erk-signalling was analysed in ISV
307 ECs of 3 hpa larvae. Similar to the time-course analysis, Erk activity in ablated ISV
308 ECs was high at 3 hpa, while ECs in adjacent ISVs were at non-ablated control level
309 (**Figure 4-figure supplement 1J-N**).

310

311 Given that the initial rapid burst of Erk activation progressively returns to basal levels
312 in unwounded vessels, we assessed if this was a general wound response. We
313 examined the initial Erk-signalling burst in muscle and skin cells following a large
314 puncture wound using a ubiquitous EKC strain (Mayr et al., 2018). This confirmed that
315 an initial activation of Erk signalling in cells surrounding the puncture wound was only
316 transient (**Video 6**) and in this case was progressively lost even in cells at the
317 immediate site of the wound, unlike in regenerating vessels. To further investigate
318 whether only regenerating ISVs maintain high Erk activity after wounding, tissue in
319 between the ISVs was ablated without injuring the ISVs in 4 dpf EC-EKC/mCherry
320 larvae. Erk activity in surrounding ISV ECs was analysed at 15 mpa and 3 hpa. Similar
321 to vessel ablation, this adjacent tissue ablation resulted in rapid activation of Erk-
322 signalling in ISV ECs (**Figure 4-figure supplement 2A-C**). Erk activity in these ECs
323 decreased to non-ablated control levels by 3 hpa (**Figure 4-figure supplement 2A-C**). Therefore,
324 Erk-signalling is immediately activated in muscle, skin epithelial and
325 ECs upon injury, but only regenerating vessels retain this high activity at 3 hpa.

326

327 **Vegfr-signalling drives ongoing Erk activity to control vessel regeneration**

328 We next examined if ongoing Erk activity in ablated ISV ECs was maintained by Vegfr-
329 signalling consistent with earlier reports (Gurevich et al., 2018). To test this, we
330 analysed Erk activity of ablated ISV ECs in 3 hpa larvae treated with inhibitors of the
331 Kdr/Kdrl/Mek/Erk signalling pathway. Treatment with SL327 inhibited Erk activation at
332 3 hpa, as did treatment with the Vegfr-inhibitor SU5416, indicating that Vegfr/Mek
333 signalling is required for sustained high Erk activity in ablated ISV ECs 3 hpa (**Figure**
334 **5A, Figure 5-figure supplement 1A-F',I-J'**). To determine the functional relevance of
335 this in ongoing regeneration, we treated embryos following cell ablation-based vessel
336 wounding with SU5416 or two independent Mek inhibitors: SL327 and Trametinib. We

337 observed that inhibition of Vegfr- or Erk-signalling blocked all ongoing vessel
338 regeneration (**Figure 5B-F**).

339

340 Interestingly, we noted that while treatment with SU5416 at 10 μ M blocked ongoing
341 Erk activation (**Figure 5-figure supplement 1I-J'**), treatment with the same inhibitor
342 at a lower dose of 4 μ M did not completely block Erk activity (**Figure 5-figure**
343 **supplement 1G-H'**). To further investigate this with more spatial resolution, we
344 examined Erk activity in ISV ECs relative to their distance from the cellular ablation
345 site. Erk-signalling in the first, second, and third ISV ECs from the wound was activated
346 3 hpa in control larvae, while treatment with 10 μ M SU5416 inhibited signalling in ECs
347 located in all of these positions (**Figure 5G,I,J, Figure 5-figure supplement 1C-D',I-**
348 **J'**). However, with the intermediate dose of 4 μ M SU5416, while the closest cell to the
349 wound site still displayed Erk activity, as did the second cell from the wound site, the
350 third and furthest from the wounded sites were now inhibited (**Figure 5H,J, Figure 5-**
351 **figure supplement 1G-H'**). These results suggest that there is a gradient of Vegfr/Erk
352 signalling activity in the ablated ISV ECs resulting in higher Vegfr/Erk activity in ECs
353 closer to the wounded site, which can only be inhibited with SU5416 at higher
354 concentrations. To test this, we examined the EC EKC levels relative to cell position
355 and directly confirmed this graded activation at 3 hpa (**Figure 5K, Figure 4-figure**
356 **supplement 1J-M'**). Together, these analyses confirm that during the ongoing
357 response to vessel wounding, Vegfr-signalling is crucial and drives a graded signalling
358 response to regulate regenerating vessels.

359

Ca²⁺ signalling is required for initial rapid Erk activation upon vessel wounding

360 Although Vegfr-signalling is required for sustaining high Erk activity in ablated ISV
361 ECs, it is not required for inducing the initial rapid Erk-signalling response. Activated
362 by ATP released by damaged cells, Ca²⁺ signalling is one of the first intra-cellular
363 mechanisms to be activated post-wounding in many cell types (reviewed in detail in
364 (Ghilardi et al., 2020)). Accordingly, mechanical injury of blood vessels has been
365 shown *in situ* to rapidly activate Ca²⁺ signalling in neighbouring endothelial cells in
366 excised rat aorta (Berra-Romani et al., 2008; Berra-Romani et al., 2012). Although Ca²⁺
368 signalling activates Erk-signalling in endothelial cells downstream of the Vegfa/Vegfr2

369 signalling pathway (Koch and Claesson-Welsh, 2012; Moccia et al., 2012), Ca^{2+}
370 signalling alone can also activate Erk-signalling (Xiao et al., 2011; Handly et al., 2015).

371

372 To determine whether Ca^{2+} signalling is rapidly activated in ablated ISV ECs in our
373 model, we measured the dynamic expression of a ubiquitously expressed GCamp, a
374 GFP-based Ca^{2+} probe, using the *Tg(actb2:GCaMP6f);Tg(kdrl:mCherry-CAAX)*
375 transgenic line (Herzog et al., 2019). ISVs in non-ablated 4 dpf larvae did not show
376 Ca^{2+} signalling, indicating low Ca^{2+} activity in stable ISVs (**Figure 6B, Video 7**). In
377 contrast, ablated ISV ECs showed a rapid pulse of active Ca^{2+} signalling at 5mpa,
378 which progressively decreased and returned to the level of surrounding tissue (**Figure**
379 **6A,B, Video 8**). Similar to ISVs in non-ablated controls, active Ca^{2+} signalling was not
380 observed in adjacent ISVs (**Figure 6A,B, Video 8**). To determine whether Ca^{2+}
381 signalling is required for rapid Erk activation in ablated ISV ECs, 4 dpf EC-
382 EKC/mCherry larvae were treated with either DMSO or a potent Ca^{2+} signalling
383 inhibitor Nifedipine for 30 minutes. Nifedipine treatment did not inhibit Erk-signalling
384 activation in adjacent ISV ECs resulting in similar Erk activity as DMSO treated larvae
385 15 mpa (**Figure 6C, Figure 6-figure supplement 1A-B',G-J'**). However, Erk
386 activation in ablated ISV ECs (where we observed the GCaMP signal above) was
387 significantly reduced when compared to DMSO treated larvae (**Figure 6C, Figure 6-**
388 **figure supplement 1C-F'**). This was reproduced in an independent experiment using
389 Amlodipine, an alternative Ca^{2+} signalling inhibitor (**Figure 6D, Figure 6-figure**
390 **supplement 1K-T'**). This indicates that Ca^{2+} signalling plays a crucial role upstream
391 of Erk in the wound response, but also that the response is differentially regulated in
392 ablated compared with adjacent vessels, indicative of additional underlying signalling
393 complexity.

394

395 We next tested whether Ca^{2+} signalling is required for maintaining Erk activity in
396 ablated ISV ECs 3 hpa. To assess ongoing signalling, 4 dpf EC-EKC/mCherry larvae
397 were treated with either DMSO or Nifedipine 30 minutes prior to the 3 hpa timepoint.
398 Activation of Erk-signalling in ablated ISV ECs 3 hpa was not inhibited by Nifedipine
399 (**Figure 6E, Figure 6-figure supplement 1U-Z'**). Thus, Ca^{2+} signalling is required for
400 rapid Erk activation, but not for maintaining Erk activity in ablated ISV ECs. In the
401 analysis of Ca^{2+} signalling following vessel wounding, we noted that this transient
402 pulse of Ca^{2+} signalling was highest in the ECs closest to the wounded site (**Video 8**).

403 Thus, we further sought to determine if Erk-signalling in ECs closest to the wound
404 activates first during the initial dynamic induction. Detailed analysis (**Video 3**), showed
405 that Erk-signalling in ECs closer to the wounded site (first and second positioned ECs)
406 activated first, followed by ECs further away from the wounded site (third, fourth and
407 fifth ECs) (**Figure 6F-G**). This shows that like the initial burst in Ca^{2+} signalling post-
408 vessel wounding, Erk-signalling is activated progressively in ECs closest to the
409 wounded site first, followed by those further away.

410

411

412 **Discussion**

413 ERK-signalling is a downstream target for a number of pathways essential for
414 development (including VEGFA/VEGFR2, EGF/EGFR, FGF/FGFR pathways) and
415 plays a central role in organ development by promoting proliferation, growth, migration
416 and differentiation (Hogan and Schulte-Merker, 2017; Lavoie et al., 2020). As such,
417 Erk-signalling must be tightly regulated in both its spatial and temporal activation. To
418 understand how dynamically Erk activity is regulated in developing vasculature, we
419 generated the *Tg(fli1aep:EKC)* transgenic line and validated its use as a proxy readout
420 of active Erk-signalling in vasculature. We found that it both provided a valid readout
421 for physiological Erk-signalling and uncovered previously unappreciated Erk-signalling
422 dynamics during vessel regeneration (**Figure 7**). In the context of tip cell proliferation
423 in angiogenesis, we revealed very rapid post-cell division signalling asymmetry,
424 confirming previous work based on static imaging (Costa et al., 2016). In regenerative
425 angiogenesis, we reveal a two-step mechanism for Erk-signalling activation post-
426 vessel wounding, that involves an immediate and an ongoing signalling response that
427 progressively limits Erk-signalling to vessels that are regenerating. Importantly, this
428 study shows the utility of this new transgenic line to elucidate dynamic Erk-signalling
429 events in vertebrate ECs and we suggest it will be a useful tool for diverse future
430 studies of development and disease.

431

432 At a technical level, we used various quantification methods for measuring Erk activity
433 in ECs and all generated valid results. The ratio of nuclear/cytoplasm EKC localisation
434 gives the most accurate readout (Regot et al., 2014), but can only be used when cells
435 are not tightly packed and their cytoplasmic fluorescence can be accurately measured.
436 This is especially challenging for ECs which overlap and have unpredictable
437 morphology in functional tubes. De la Cova and colleagues, recently applied ERK-
438 nKTR, a second generation ERK KTR which includes a nuclear localised H2B-
439 mCherry allowing them to quantify Erk activity based on Clover/mCherry in nuclei in
440 *C. elegans* (de la Cova et al., 2017). We used a similar approach here with two
441 independent transgenes driving EKC and H2B-mCherry and produced highly
442 consistent results. It is worth noting that inter-embryo/larvae variations in H2B-
443 mCherry intensity need to be considered when using this approach. Finally, we also
444 used the measurement of nuclear EKC normalised to the average EKC intensity of the
445 DA to normalise for embryo to embryo variation. This approach also provided data

446 consistent with the other two methods. Thus, overall this EC EKC model is highly
447 robust with multiple methods to quantify and normalise sensor localisation. As KTR
448 reporters are used more frequently *in vivo* in the future, the quantification methods
449 used here may be applied to many scenarios analysing cellular Erk activity in cells
450 with complex 3D morphology.

451

452 Studies in zebrafish and xenopus have demonstrated rapid Erk activation in epithelial
453 cells upon local wounding, which subsides relatively quickly (within 1hpa) as tissue
454 repair progresses (Li et al., 2013; Mayr et al., 2018). Interestingly, our work shows a
455 similar, very rapid, Erk activation in all vasculature in proximity of a wound. This
456 suggests a common, initial, rapid Erk-signalling response immediately post-wounding
457 in many different cell types and tissues – as if cells adjacent to a wound are rapidly
458 primed to respond. However, in the vasculature this signalling returned to pre-ablation
459 levels by 1 hpa, while Erk activity was maintained for a longer timeframe only in the
460 wounded vessels. This ongoing, later signalling was maintained through Vegfr activity,
461 likely stimulated by Vegfa secreted locally by recruited macrophages (Gurevich et al.,
462 2018). Thus, Erk-signalling dynamics between wounded (ablated) and unwounded
463 (adjacent) vessels differed significantly. We suggest this difference represents an
464 initial priming of the wounded tissue (the rapid Erk response) that is replaced overtime
465 with sustained vascular Erk-signalling that is essential in the regenerative response.

466

467 Rapid Ca^{2+} signalling post-wounding is observed in multiple systems *in vitro* and *in*
468 *vivo* (reviewed in detail in (Ghilardi et al., 2020)). Using both quantitative live imaging
469 and pharmacological inhibition, we found that Ca^{2+} signalling is required for Erk
470 activation in ablated ISV ECs. Taking advantage of the high spatial and temporal
471 resolution in our model, we found that Ca^{2+} -dependent Erk-signalling is activated
472 progressively from cells closest to the wound to cells further away. This may be
473 consistent with a wave of tissue Ca^{2+} signalling through the wounded vessel. Activation
474 of Erk-signalling at 2 mpa in wounded epithelial cells in xenopus promotes actomyosin
475 contraction and wound closure (Li et al., 2013). Therefore, rapid Ca^{2+} signalling-
476 mediated Erk activation in the wounded vessel may ensure efficient wound closure in
477 ablated ISVs. However, we found no evidence that Ca^{2+} signalling influenced the
478 broader, rapid Erk-signalling response in unwounded but adjacent vasculature. One
479 interesting candidate to contribute to this broader mechanism is altered tissue tension

480 associated with the tissue ablation, which had been shown in some contexts to
481 modulate ERK-signalling (Rosenfeldt and Grinnell, 2000; Hirata et al., 2015). Perhaps
482 consistent with this idea, we did not identify a mechanism required for rapid Erk
483 activation in adjacent ISV ECs and vessel wounding was not required - tissue
484 wounding in between ISVs alone activated Erk-signalling in surrounding ECs. Further
485 work is needed to fully appreciate the mechanical tissue contributions in this response.
486 Nevertheless, rapid Erk activation in ECs upon wounding seems likely to potentiate
487 these ECs to more rapidly respond to external growth factors such as Vegfa upon the
488 later activation of the inflammatory response and initiation of a sustained regenerative
489 angiogenesis.

490

491 Taking advantage of spatial information in the imaging data, we showed that ECs in
492 wounded ISVs that are actively regenerating at 3 hpa display a graded signalling
493 response along the vessel at the level of Vegfr/Erk activity. This is likely due to a
494 discrete local source of Vegfa from macrophages and may explain why unwounded
495 ISV ECs, which are further away from the Vegfa source, do not sustain high Erk activity
496 at 3 hpa. In bigger wounds, excessive angiogenesis has been previously reported to
497 occur from adjacent ISVs and macrophage-dependent vascular regression is then
498 required to ensure vessel patterns returns to their original state (Gurevich et al., 2018).
499 Therefore, we hypothesise that maintaining Erk activity only in ECs of vessels that
500 need to regenerate in this ablation model, ensures EC proliferation and migration only
501 occurs in regenerating vessels, and prevents excessive angiogenesis. Further studies
502 could investigate Erk-signalling dynamics of ECs in bigger wounds, which more
503 closely resemble traumatic injury in humans and could further assess Erk-signalling
504 dynamics in excessive angiogenesis and regression.

505

506 Blood vessels constantly remodel to accommodate for the needs of the human body
507 during development and disease (Carmeliet and Jain, 2011; Chung and Ferrara,
508 2011; Potente et al., 2011). It is therefore not surprising for Erk-signalling, which is a
509 key modulator of angiogenesis, to be highly dynamic in ECs. As a novel tool that allows
510 real-time analysis of Erk activity, EC EKC biosensors will be useful for elucidating Erk-
511 signalling events in vasculature in an array of settings and different vertebrate models.
512 Importantly, in zebrafish the *Tg(fli1aep:EKC)* transgenic line can be coupled with both
513 established and novel mutants with vascular phenotypes to investigate how real-time

514 EC Erk-signalling dynamics is affected in the absence of key vascular genes. Further,
515 dynamic Erk-signalling events in ECs in zebrafish disease models associated with
516 increased angiogenesis such as in cancer (Nicoli et al., 2007) and tuberculosis
517 (Oehlers et al., 2015) can be analysed using this EC EKC model. This could highlight
518 novel pathological Erk-signalling events in ECs, that could be normalised using drugs
519 shown to modulate Erk-signalling (Goglia et al., 2020). Of note, KTR constructs for
520 other kinases such as AKT, JNK and p38 are also now available (Regot et al.,
521 2014; Maryu et al., 2016). Also, other types of fluorescence-based kinase activity
522 reporters such as separation of phases-based activity reporter of kinases (SPARK),
523 that had been shown to work in zebrafish could be applied to visualise EC Erk activity
524 in zebrafish (Zhang et al., 2018). Future studies should combine multiple zebrafish
525 transgenics expressing such reporters to elucidate real-time interaction between
526 different kinases in signalling pathways and to understand the real-time mechanistic
527 drivers of development and disease.

Materials and methods

Key resources table

Reagent type	Designation	Source or reference	Identifiers	Additional information/reagent source
Genetic reagent (<i>D.rerio</i>)	<i>Tg(fli1a:H2B-mCherry)^{uq37bh}</i>	(Baek et al., 2019)	ZFIN ID: ZDB-ALT-191011-5	Ben M Hogan (Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Australia)
Genetic reagent (<i>D.rerio</i>)	<i>Tg(fli1a:EGFP)^{y1}</i>	(Lawson and Weinstein, 2002)	ZFIN ID: ZDB-ALT-011017-8	Brant M Weinstein (National Institute of Child Health and Human Development, Bethesda, USA)
Genetic reagent (<i>D.rerio</i>)	<i>Tg(fli1aep:ERK-KTR-Clover)^{uq39bh}</i>	This study		Ben M Hogan (Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Australia)
Genetic reagent (<i>D.rerio</i>)	<i>Tg(ubb:Mmu.Elk1-KTR-mClover)^{vi1}</i>	(Mayr et al., 2018)	ZFIN ID: ZDB-ALT-190211-6	Martin Distel (Children's Cancer Research Institute, Austria)
Genetic reagent (<i>D.rerio</i>)	<i>Tg(actb2:GCaMP6f)^{zf3076}</i>	(Herzog et al., 2019)	ZFIN ID: ZDB-ALT-200610-2	Leah Herrgen (Centre for Discovery Brain Sciences, University of Edinburgh, Germany)

Genetic reagent (<i>D.rerio</i>)	<i>Tg(kdrl:mCherry-CAAX)^{y171}</i>	(Fujita et al., 2011)	ZFIN ID: ZDB-ALT-110429-3	Brent M Weinstein (National Institute of Child Health and Human Development, Bethesda, USA)
Genetic reagent (<i>D.rerio</i>)	<i>Tg(mpeg1:mCherry)^{g123}</i>	(Ellett et al., 2011)	ZFIN ID: ZDB-ALT-120117-2	Graham Lieschke (Australian Regenerative Medicine Institute, Monash University, Australia)
Genetic reagent (<i>D.rerio</i>)	<i>Tg(kdrl:EGFP)^{s843}</i>	(Beis et al., 2005)	ZFIN ID: ZDB-ALT-050916-14	Didier Stainier (Max Planck Institute for Heart and Lung Research, Germany)
Sequence-based reagent	MO1-spi1b	(Rhodes et al., 2005)	ZFIN ID: ZDB-MRPHLNO-050224-1	Genetools, LLC, OR, USA
Sequence-based reagent	MO3-csf3r	(Ellett et al., 2011)	ZFIN ID: ZDB-MRPHLNO-111213-1	Genetools, LLC, OR, USA
Software, algorithm	FIJI	ImageJ (http://imagej.nih.gov/ij/)		Image processing and analysis, Version Fiji version 1
Software, algorithm	Imaris x64	Bitplane, Belfast, UK		Image processing and analysis, Version 9.5.1
Software, algorithm	GraphPad Prism	GraphPad Prism (http://graphpad.com)		Statistics, Prism8: Version 8.3.0

Software, algorithm	R/R Studio	R project (r- project.org)	Statistics, R version 4.0.2	
Chemical compound, drug	SL327 (MEK signalling inhibitor)	Merck, Darmstadt, Germany	S4069	Diluted in DMSO
Chemical compound, drug	Trametinib (MEK signalling inhibitor)	Selleck chemicals, TX, USA	S2673	Diluted in DMSO
Chemical compound, drug	SU5416	Merck, Darmstadt, Germany	S8442	Diluted in DMSO
Chemical compound, drug	AV951	Adooq Bioscience, CA, USA	475108-18-0	Diluted in DMSO
Chemical compound, drug	Nifedipine	Bio-Techne, MN, USA	1075	Diluted in DMSO
Chemical compound, drug	Amlodipine	Merck, Darmstadt, Germany	A5605	Diluted in DMSO

1 **Zebrafish**

2 All zebrafish work was conducted in accordance with the guidelines of the animal
3 ethics committees at the University of Queensland, Peter MacCallum Cancer Centre,
4 University of Bristol, and the Children's Cancer Research Institute. The transgenic
5 zebrafish lines used were published previously as following: *Tg(fli1a:H2B-*
6 *mCherry)*^{uq37bh} (Baek et al., 2019), *Tg(fli1a:EGFP)*^{y1} (Lawson and Weinstein, 2002),
7 *Tg(ubb:Mmu.Elk1-KTR-mClover)*^{vi1} (Mayr et al., 2018), *Tg(actb2:GCaMP6f)*^{zf3076}
8 (Herzog et al., 2019), *Tg(kdrl:mCherry-CAAX)*^{y171} (Fujita et al., 2011),
9 *Tg(mpeg1:mCherry)*^{gl23} (Ellett et al., 2011), and *Tg(kdrl:EGFP)*^{s843} (Beis et al., 2005).
10 The *Tg(fli1aep:ERK-KTR-Clover)*^{uq39bh} transgenic line (referred to as *Tg(fli1aep:EKC)*
11 in this study) was generated for this study using Gateway cloning and transgenesis.
12 The pENTR-ERKKTRClover plasmid (#59138) was purchased from Addgene.

13

14 **Live imaging and laser-inflicted vessel/tissue wounding**

15 Embryos/Larvae at indicated stages were immobilised with Tricaine (0.08 mg/ml) and
16 mounted laterally in either 1.2% ultra-low gelling agarose (specifically for **Video 6**),
17 0.25% low melting agarose (specifically for **Videos 7 and 8**, and **Figure 6A**), or 0.5%
18 low melting agarose (Merck, Darmstadt, Germany, A9414-100G) as previously
19 described (Okuda et al., 2018). Images were taken at indicated timepoints/timeframe
20 using either a Zeiss LSM 710 confocal microscope (specifically for **Figure 1B-E**), Leica
21 SP8 X WLL confocal microscope (specifically for **Video 6**), Leica TCS SP8
22 multiphoton microscope (specifically for **Videos 7 and 8**, and **Figure 6A**), Olympus
23 Yokogawa CSU-W1 Spinning Disc Confocal microscope (specifically for **Figure 6-**
24 **figure supplement 1K-T'**), or an Andor Dragonfly Spinning Disc Confocal
25 microscope.

26

27 Muscle wounding in 30 hpf *Tg(ubb:Mmu.Elk1-KTR-mClover)* embryos were
28 conducted as previously described (specifically for **Video 6**) (Mayr et al., 2018). Briefly,
29 a laser-inflicted wound was introduced on mounted embryos using the Leica SP8 X
30 FRAP module with the UV laser line of 405 nm at 85% laser power. Vessel wounding
31 in 4 dpf *Tg(actb2:GCaMP6f);Tg(kdrl:mCherry-CAAX)* larvae were conducted as
32 previously described (specifically for **Video 7 and 8**, and **Figure 6A**) (Gurevich et al.,
33 2018). Briefly, a laser-inflicted wound was introduced on mounted larvae using a
34 Micropoint laser (Spectra-Physics, CA, USA) connected to a Zeiss Axioplan II

35 microscope with a laser pulse at a wavelength of 435 nm. All other tissue/vessel
36 wounding in either 3 dpf (specifically for **Figure 3-figure supplement 1B,C,L-S**) or 4
37 dpf EC-EKC/mCherry or *Tg(kdrl:EGFP);Tg(mpeg1:mCherry)* larvae were conducted
38 using either a Zeiss LSM 710 confocal microscope or a Olympus FVMPE-RS
39 multiphoton microscope. Briefly, a laser-inflicted wound was introduced on mounted
40 larvae using a two-photon laser at 790 nm (Zeiss LSM 710 confocal microscope) or
41 800 nm (Olympus FVMPE-RS multiphoton microscope) at 80% laser power (Mai Tai,
42 Spectra-Physics, CA, USA). The area of laser ablation for vessel wounding
43 experiments was made consistent for all experiments (height: 40 μ m, width: 15 μ m).
44 All vessel wounding was conducted on the ISV dorsal to the cloaca.

45

46 For **Video 1**, time-lapse images of ISVs in 24-25 EC-EKC/mCherry embryos were
47 acquired every 14-17 seconds for 40 minutes using an Andor Dragonfly Spinning Disc
48 Confocal microscope. Difference in time intervals were due to difference in z section
49 number in different embryos. Pre-division ISV tip ECs with cytoplasmic H2B-mCherry
50 localisation were selected for imaging. For **Videos 3-5**, time-lapse images of ISVs in
51 4 dpf EC-EKC/mCherry larvae were taken every minute for 20 minutes using an Andor
52 Dragonfly Spinning Disc Confocal microscope, wounded as described above using a
53 Zeiss LSM 710 confocal microscope, transferred to an Andor Dragonfly Spinning Disc
54 Confocal microscope (allowing for 2 minutes to transfer the larvae and initiate imaging)
55 and re-imaged every minute for another 20 minutes. As a control (**Video 2**), time-lapse
56 images of ISVs in 4 dpf EC-EKC/mCherry larvae were taken every minute for 41
57 minutes. For **Video 6**, time-lapse images of the trunk in a 30 hpf *Tg(ubb:Mmu.Elk1-*
58 *KTR-mCherry*) embryo were acquired every 21 minutes from 5 mpa until 3 hpa using
59 a Leica SP8 X WLL confocal microscope. For **Video 8**, time-lapse images of ISVs in
60 4 dpf *Tg(actb2:GCaMP6f);Tg(kdrl:mCherry-CAAX)* larvae were acquired every minute
61 from 5 mpa until 20 mpa using a Leica SP8 confocal microscope. As a control (**Video**
62 **7**), time-lapse images of ISVs in 4 dpf *Tg(actb2:GCaMP6f);Tg(kdrl:mCherry-CAAX)*
63 larvae were acquired every minute for 15 minutes using a Leica SP8 confocal
64 microscope.

65

66 **Morpholino injections**

67 The *spi1b* and *csf3r* morpholinos used in this study have been validated and described
68 previously (Rhodes et al., 2005;Ellett et al., 2011;Pase et al., 2012). A cocktail of *spi1b*
69 (5ng) and *csf3r* (2.5ng) morpholinos were injected into 1-4 cell stage EC-
70 EKC/mCherry or *Tg(mpeg1:mCherry)* embryos as previously described (Pase et al.,
71 2012). ISVs of 3 dpf morphants/uninjected controls were imaged before vessel
72 wounding, wounded as described above, and reimaged at 15 mpa. Non-ablated 3 dpf
73 EC-EKC/mCherry morphants/uninjected controls were imaged, and re-imaged 15
74 minutes later. Macrophage numbers (*mpeg1:mCherry*-positive) in 3 dpf embryos
75 (**Figure 3-figure supplement 1E,F**) or 4 dpf larvae (**Figure 3-figure supplement 1A-C**)
76 were manually quantified using the cell counter tool in FIJI.

77

78 **Drug treatments**

79 For investigating Erk activity in ISV tip ECs in 28 hpf embryos following drug treatment,
80 27 hpf *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)* embryos were treated for an hour with
81 either 0.5% DMSO (vehicle control), 15 μ M SL327, 4 μ M SU5416, or 500 nM AV951
82 diluted in E3 medium with 0.003% 1-phenyl-2-thiourea (PTU) and imaged as
83 described above at 28 hpf. Up to 5 ISV tip ECs were quantified per embryo.

84 For investigating the role of prolonged EC Erk activity in vessel regeneration, ISVs of
85 4 dpf *Tg(fli1aep:EKC)* larvae were wounded as described above and were treated with
86 either 0.5% DMSO (vehicle control), 4 μ M SU5416, 15 μ M SL327, or 1 μ M Trametinib
87 for 24 hours and imaged as described above at 5 dpf (24 hpa). For measuring Erk
88 activity in ECs pre- and post-ablation in 4 dpf larvae following drug treatment, 4 dpf
89 EC-EKC/mCherry larvae were first treated for an hour with either 0.5% DMSO, 15 μ M
90 SL327, 4 μ M or 10 μ M SU5416, or 500 nM AV951. ISVs of these larvae were imaged
91 then wounded as described above in the presence of respective drugs at indicated
92 concentrations in the mounting media. The same larvae were reimaged at 15 mpa.
93 Alternatively, larvae were removed from mounting media following vessel wounding
94 and incubated in respective drugs at indicated concentrations in E3 media, before
95 being remounted and imaged at 3 hpa.

96 For Nefidipine and Amlodipine treatment, 4 dpf EC-EKC/mCherry larvae were first
97 treated for 30 minutes with either 1% DMSO, 50 μ M Nifedipine, or 100 μ M Amlodipine.
98 This was because treatment for 1 hour with either 50 μ M nifedipine or 100 μ M
99 Amlodipine resulted in mortalities due to reduced cardiac function. The ISVs of these

100 larvae were imaged and wounded as described above and reimaged 15 mpa.
101 Alternatively, 4 dpf EC-EKC/mCherry larvae were imaged before vessel wounding,
102 and removed from mounting media following vessel wounding and incubated in 1%
103 DMSO. 30 minutes before 3 hpa, larvae were treated with 50 μ M Nifedipine or
104 continued its treatment with 1% DMSO, before being remounted in the presence of
105 respective drugs at indicated concentrations and reimaged 3 hpa. Non-ablated 4 dpf
106 EC-EKC/mCherry larvae controls were imaged, then reimaged either 15 mpa or 3 hpa
107 as described above.

108

109 **Image processing and analysis**

110 Images were processed with image processing software FIJI version 1 (Schindelin et
111 al., 2012) and Imaris x64 (Bitplane, Version 9.5.1). Erk activity in ECs were
112 measured by either comparing nuclear/cytoplasm EKC intensity, nuclear EKC/H2B-
113 mCherry intensity, or nuclear EKC intensity. The nuclear/cytoplasm EKC intensity
114 was quantified as described before (Kudo et al., 2018) with modifications, using a
115 semi-autonomous custom written script in the ImageJ macro language. Briefly, z
116 stack images were first processed into a maximum intensity z-projection. H2B-
117 mCherry-positive EC nuclei underwent thresholding and were selected as individual
118 regions of interest (ROI). The EKC channel was converted to a 32-bit image with
119 background (non-cell associated) pixels converted to NaN. The average pixel
120 intensity of EKC in the nuclei ROIs were measured (nuclear EKC intensity). Nuclei
121 ROIs were then expanded and converted to a banded selection of the adjacent
122 cytoplasmic area and the average pixel intensity of EKC within the expanded ROIs
123 were measured (cytoplasm EKC intensity). The custom written ImageJ macro is
124 available here: [\[https://github.com/NickCondon/Nuclei-Cyto_MeasuringScript\]](https://github.com/NickCondon/Nuclei-Cyto_MeasuringScript).

125

126 The average pixel intensity of either nuclear EKC or H2B-mCherry of ECs in 3D was
127 quantified using Imaris software. The entire EC nucleus was masked using the H2B-
128 mCherry signal. **Figures 1J and K** represent averages of data within each minute. For
129 Embryos/larvae exposed to long-term time-lapse (for example **Videos 2-5**), or ablated
130 with high-powered multiphoton laser for ablation studies, difference in photostability
131 between fluorophores could significantly alter the ratio of nuclear EKC/H2B-mCherry
132 intensity (Lam et al., 2012). Therefore, we either compared the ratio of nuclear EKC

133 intensities between ECs within the same fish (for example **Video 1**), or we normalised
134 EC nuclear EKC intensity with the average EKC intensity of another EKC-expressing
135 structure (for example **Videos 2-5**). For larvae that underwent laser-inflicted
136 wounding, nuclear EKC intensity pre- and post- ablation was normalised with the
137 average pixel intensity of EKC of the entire DA within 2 somite length. The ROI that
138 covers the same DA region in pre- and post-wounded larvae was manually selected
139 on a maximum intensity z-projection of the EKC channel, and average pixel intensity
140 was calculated using FIJI. Datasets were presented as either the ratio of post/pre-
141 ablation normalised nuclear EKC intensity, or as normalised nuclear EKC intensity
142 further normalised to normalised nuclear EKC intensity in 2 mpa ECs (specifically for
143 **Figure 6O**). 3 closest ECs from the wounded site in both ablated and adjacent ISVs
144 were quantified, except for **Figures 5K and 6G**, where 5 closest ECs from the
145 wounded site in ablated ISVs were analysed. For **Videos 2-5**, reduction in EKC
146 intensity due to photobleaching was minimised using the bleach correction tool
147 (correction method: Histogram Matching) in FIJI, however quantifications were all
148 done using raw data.

149
150 GCaMP6f average pixel intensity on ISVs and unablated tissue in 4 dpf
151 *Tg(actb2:GCaMP6f);Tg(kdrl:mCherry-CAAX)* larvae was measured using FIJI.
152 Maximum intensity z-projection images of both GCaMP6f and mCherry-CAAX
153 channels were first corrected for any drift in x/y dimensions. A ROI was drawn around
154 the mCherry-CAAX-positive ISV segment nearest to the site of injury (an area
155 consistently between 100-150 μm^2) and the average pixel intensity of GCaMP6f within
156 the ROI at each timepoints were measured using FIJI. Similar measurements were
157 acquired for adjacent ISVs, ISVs in unablated control larvae, and uninjured tissue,
158 maintaining consistent size of ROI within each biological replicate. ISV GCaMP6f
159 average pixel intensity was normalised to the average pixel intensity in uninjured tissue
160 GCaMP6f within the same larvae.

161
162 The percentage of ISV height was measured by dividing the total horizontal height of
163 the ISV with the prospective total horizontal height of the ISV (the horizontal height
164 from the base ISV/DA intersection to the tip of the ISV/DLAV intersection. Ellipticity
165 (oblate) of ISV tip ECs were quantified using Imaris software.

166

167 **Statistics**

168 Graphic representations of data and statistical analysis was performed using either
169 Prism 8 Version 8.3.0 or R software. Mann-Whitney test was conducted when
170 comparing two datasets and Kruskal-Wallis test was conducted when comparing
171 multiple datasets using Prism 8. Natural permutation test was used to test for
172 differences between the population mean curve for datasets in **Figure 3E,F** and
173 **Figure 4C,D** using R software. Stars indicate p-value as level of significance with
174 $p \leq 0.001$ (***) $, p \leq 0.01$ (**), $p \leq 0.05$ (*), and $p > 0.05$ (not significant, n.s.). Error bars in
175 all graphs represent standard deviation.

176

177 **Acknowledgements**

178 This work was supported by NHMRC grants 1164734 and 1165117. BMH was
179 supported by an NHMRC fellowship 1155221. We thank Dr Enid Lam and Dr Elizabeth
180 Mason for their technical assistance. Imaging was performed in the Australian Cancer
181 Research Foundation's Cancer Ultrastructure and Function Facility at IMB, Centre for
182 Advanced Histology and Microscopy at Peter MacCallum Cancer Centre, Wolfson
183 Bioimaging Facility at University of Bristol, and the Zebrafish platform Austria for
184 preclinical drug screening at the Children's Cancer Research Institute supported by
185 the Austrian Research Promotion Agency (FFG) project 7640628 (Danio4Can).

186

187 **Author contributions**

188 Kazuhide S. Okuda, Conceptualization, Formal analysis, Investigation, Methodology,
189 Writing-original draft; Mikaela Keyser, Formal analysis, Investigation; David B.
190 Gurevich, Formal analysis, Investigation; Caterina Sturtzel, Investigation; Scott
191 Patterson, Investigation; Huijun Chen, Investigation; Mark Scott, Methodology;
192 Nicholas Condon, Methodology; Paul Martin, Resources, Supervision; Martin Distel,
193 Conceptualization, Resources, Supervision; Benjamin M. Hogan, Conceptualization,
194 Resources, Supervision, Funding acquisition, Writing-review and editing.

195

196 **References**

197 Aoki, K., Kondo, Y., Naoki, H., Hiratsuka, T., Itoh, R.E., and Matsuda, M. (2017). Propagating
198 Wave of ERK Activation Orients Collective Cell Migration. *Dev Cell* 43, 305-317 e305.

199 Baek, S., Oh, T.G., Secker, G., Sutton, D.L., Okuda, K.S., Paterson, S., Bower, N.I., Toubia, J.,
200 Koltowska, K., Capon, S.J., Baillie, G.J., Simons, C., Muscat, G.E.O., Lagendijk, A.K.,
201 Smith, K.A., Harvey, N.L., and Hogan, B.M. (2019). The Alternative Splicing Regulator
202 Nova2 Constrains Vascular Erk Signaling to Limit Specification of the Lymphatic
203 Lineage. *Dev Cell* 49, 279-292 e275.

204 Beis, D., Bartman, T., Jin, S.W., Scott, I.C., D'amico, L.A., Ober, E.A., Verkade, H., Frantsve, J.,
205 Field, H.A., Wehman, A., Baier, H., Tallafuss, A., Bally-Cuif, L., Chen, J.N., Stainier,
206 D.Y., and Jungblut, B. (2005). Genetic and cellular analyses of zebrafish
207 atrioventricular cushion and valve development. *Development* 132, 4193-4204.

208 Berra-Romani, R., Raqeeb, A., Avelino-Cruz, J.E., Moccia, F., Oldani, A., Speroni, F., Taglietti,
209 V., and Tanzi, F. (2008). Ca²⁺ signaling in injured in situ endothelium of rat aorta. *Cell
210 Calcium* 44, 298-309.

211 Berra-Romani, R., Raqeeb, A., Torres-Jacome, J., Guzman-Silva, A., Guerra, G., Tanzi, F., and
212 Moccia, F. (2012). The mechanism of injury-induced intracellular calcium
213 concentration oscillations in the endothelium of excised rat aorta. *J Vasc Res* 49, 65-
214 76.

215 Carmeliet, P., and Jain, R.K. (2011). Molecular mechanisms and clinical applications of
216 angiogenesis. *Nature* 473, 298-307.

217 Chang, C.I., Xu, B.E., Akella, R., Cobb, M.H., and Goldsmith, E.J. (2002). Crystal structures of
218 MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and
219 activator MKK3b. *Mol Cell* 9, 1241-1249.

220 Chung, A.S., and Ferrara, N. (2011). Developmental and pathological angiogenesis. *Annu Rev
221 Cell Dev Biol* 27, 563-584.

222 Costa, G., Harrington, K.I., Lovegrove, H.E., Page, D.J., Chakravartula, S., Bentley, K., and
223 Herbert, S.P. (2016). Asymmetric division coordinates collective cell migration in
224 angiogenesis. *Nat Cell Biol* 18, 1292-1301.

225 De La Cova, C., Townley, R., Regot, S., and Greenwald, I. (2017). A Real-Time Biosensor for
226 ERK Activity Reveals Signaling Dynamics during *C. elegans* Cell Fate Specification. *Dev
227 Cell* 42, 542-553 e544.

228 Deng, Y., Atri, D., Eichmann, A., and Simons, M. (2013). Endothelial ERK signaling controls
229 lymphatic fate specification. *J Clin Invest* 123, 1202-1215.

230 Ding, Y., Li, J., Enterina, J.R., Shen, Y., Zhang, I., Tewson, P.H., Mo, G.C., Zhang, J., Quinn,
231 A.M., Hughes, T.E., Maysinger, D., Alford, S.C., Zhang, Y., and Campbell, R.E. (2015).
232 Ratiometric biosensors based on dimerization-dependent fluorescent protein
233 exchange. *Nat Methods* 12, 195-198.

234 Ellett, F., Pase, L., Hayman, J.W., Andrianopoulos, A., and Lieschke, G.J. (2011). mpeg1
235 promoter transgenes direct macrophage-lineage expression in zebrafish. *Blood* 117,
236 e49-56.

237 Fujita, M., Cha, Y.R., Pham, V.N., Sakurai, A., Roman, B.L., Gutkind, J.S., and Weinstein, B.M.
238 (2011). Assembly and patterning of the vascular network of the vertebrate
239 hindbrain. *Development* 138, 1705-1715.

240 Ghilardi, S.J., O'reilly, B.M., and Sgro, A.E. (2020). Intracellular signaling dynamics and their
241 role in coordinating tissue repair. *Wiley Interdiscip Rev Syst Biol Med* 12, e1479.

242 Goglia, A.G., Wilson, M.Z., Jena, S.G., Silbert, J., Basta, L.P., Devenport, D., and Toettcher,
243 J.E. (2020). A Live-Cell Screen for Altered Erk Dynamics Reveals Principles of
244 Proliferative Control. *Cell Syst* 10, 240-253 e246.

245 Goto, A., Nakahara, I., Yamaguchi, T., Kamioka, Y., Sumiyama, K., Matsuda, M., Nakanishi, S.,
246 and Funabiki, K. (2015). Circuit-dependent striatal PKA and ERK signaling underlies
247 rapid behavioral shift in mating reaction of male mice. *Proc Natl Acad Sci U S A* 112,
248 6718-6723.

249 Gurevich, D.B., Severn, C.E., Twomey, C., Greenhough, A., Cash, J., Toye, A.M., Mellor, H.,
250 and Martin, P. (2018). Live imaging of wound angiogenesis reveals macrophage
251 orchestrated vessel sprouting and regression. *EMBO J* 37.

252 Handly, L.N., Pilko, A., and Wollman, R. (2015). Paracrine communication maximizes cellular
253 response fidelity in wound signaling. *Elife* 4, e09652.

254 Harvey, C.D., Ehrhardt, A.G., Cellurale, C., Zhong, H., Yasuda, R., Davis, R.J., and Svoboda, K.
255 (2008). A genetically encoded fluorescent sensor of ERK activity. *Proc Natl Acad Sci U*
256 *S A* 105, 19264-19269.

257 Herzog, C., Pons Garcia, L., Keatinge, M., Greenald, D., Moritz, C., Peri, F., and Herrgen, L.
258 (2019). Rapid clearance of cellular debris by microglia limits secondary neuronal cell
259 death after brain injury *in vivo*. *Development* 146.

260 Hirata, H., Gupta, M., Vedula, S.R., Lim, C.T., Ladoux, B., and Sokabe, M. (2015). Actomyosin
261 bundles serve as a tension sensor and a platform for ERK activation. *EMBO Rep* 16,
262 250-257.

263 Hiratsuka, T., Fujita, Y., Naoki, H., Aoki, K., Kamioka, Y., and Matsuda, M. (2015). Intercellular
264 propagation of extracellular signal-regulated kinase activation revealed by *in vivo*
265 imaging of mouse skin. *Elife* 4, e05178.

266 Hogan, B.M., and Schulte-Merker, S. (2017). How to Plumb a Pisces: Understanding Vascular
267 Development and Disease Using Zebrafish Embryos. *Dev Cell* 42, 567-583.

268 Kamioka, Y., Sumiyama, K., Mizuno, R., Sakai, Y., Hirata, E., Kiyokawa, E., and Matsuda, M.
269 (2012). Live imaging of protein kinase activities in transgenic mice expressing FRET
270 biosensors. *Cell Struct Funct* 37, 65-73.

271 Kamioka, Y., Takakura, K., Sumiyama, K., and Matsuda, M. (2017). Intravital Forster
272 resonance energy transfer imaging reveals osteopontin-mediated
273 polymorphonuclear leukocyte activation by tumor cell emboli. *Cancer Sci* 108, 226-
274 235.

275 Koch, S., and Claesson-Welsh, L. (2012). Signal transduction by vascular endothelial growth
276 factor receptors. *Cold Spring Harb Perspect Med* 2, a006502.

277 Komatsu, N., Aoki, K., Yamada, M., Yukinaga, H., Fujita, Y., Kamioka, Y., and Matsuda, M.
278 (2011). Development of an optimized backbone of FRET biosensors for kinases and
279 GTPases. *Mol Biol Cell* 22, 4647-4656.

280 Kudo, T., Jeknic, S., Macklin, D.N., Akhter, S., Hughey, J.J., Regot, S., and Covert, M.W.
281 (2018). Live-cell measurements of kinase activity in single cells using translocation
282 reporters. *Nat Protoc* 13, 155-169.

283 Lam, A.J., St-Pierre, F., Gong, Y., Marshall, J.D., Cranfill, P.J., Baird, M.A., McKeown, M.R.,
284 Wiedenmann, J., Davidson, M.W., Schnitzer, M.J., Tsien, R.Y., and Lin, M.Z. (2012).
285 Improving FRET dynamic range with bright green and red fluorescent proteins. *Nat*
286 *Methods* 9, 1005-1012.

287 Lavoie, H., Gagnon, J., and Therrien, M. (2020). ERK signalling: a master regulator of cell
288 behaviour, life and fate. *Nat Rev Mol Cell Biol*.

289 Lawson, N.D., and Weinstein, B.M. (2002). In vivo imaging of embryonic vascular
290 development using transgenic zebrafish. *Dev Biol* 248, 307-318.

291 Li, J., Zhang, S., Soto, X., Woolner, S., and Amaya, E. (2013). ERK and phosphoinositide 3-
292 kinase temporally coordinate different modes of actin-based motility during
293 embryonic wound healing. *J Cell Sci* 126, 5005-5017.

294 Maryu, G., Matsuda, M., and Aoki, K. (2016). Multiplexed Fluorescence Imaging of ERK and
295 Akt Activities and Cell-cycle Progression. *Cell Struct Funct* 41, 81-92.

296 Matsubayashi, Y., Ebisuya, M., Honjoh, S., and Nishida, E. (2004). ERK activation propagates
297 in epithelial cell sheets and regulates their migration during wound healing. *Curr Biol*
298 14, 731-735.

299 Mayr, V., Sturtzel, C., Stadler, M., Grissenberger, S., and Distel, M. (2018). Fast Dynamic in
300 vivo Monitoring of Erk Activity at Single Cell Resolution in DREKA Zebrafish. *Front Cell*
301 *Dev Biol* 6, 111.

302 Mehta, S., Zhang, Y., Roth, R.H., Zhang, J.F., Mo, A., Tenner, B., Huganir, R.L., and Zhang, J.
303 (2018). Single-fluorophore biosensors for sensitive and multiplexed detection of
304 signalling activities. *Nat Cell Biol* 20, 1215-1225.

305 Mizuno, R., Kamioka, Y., Kabashima, K., Imajo, M., Sumiyama, K., Nakasho, E., Ito, T.,
306 Hamazaki, Y., Okuchi, Y., Sakai, Y., Kiyokawa, E., and Matsuda, M. (2014). In vivo
307 imaging reveals PKA regulation of ERK activity during neutrophil recruitment to
308 inflamed intestines. *J Exp Med* 211, 1123-1136.

309 Moccia, F., Berra-Romani, R., and Tanzi, F. (2012). Update on vascular endothelial Ca(2+)
310 signalling: A tale of ion channels, pumps and transporters. *World J Biol Chem* 3, 127-
311 158.

312 Murphy, D.A., Makonnen, S., Lassoued, W., Feldman, M.D., Carter, C., and Lee, W.M. (2006).
313 Inhibition of tumor endothelial ERK activation, angiogenesis, and tumor growth by
314 sorafenib (BAY43-9006). *Am J Pathol* 169, 1875-1885.

315 Nagasawa-Masuda, A., and Terai, K. (2016). ERK activation in endothelial cells is a novel
316 marker during neovasculogenesis. *Genes Cells* 21, 1164-1175.

317 Nicoli, S., Ribatti, D., Cotelli, F., and Presta, M. (2007). Mammalian tumor xenografts induce
318 neovascularization in zebrafish embryos. *Cancer Res* 67, 2927-2931.

319 Oehlers, S.H., Cronan, M.R., Scott, N.R., Thomas, M.I., Okuda, K.S., Walton, E.M., Beerman,
320 R.W., Crosier, P.S., and Tobin, D.M. (2015). Interception of host angiogenic signalling
321 limits mycobacterial growth. *Nature* 517, 612-615.

322 Okuda, K.S., Baek, S., and Hogan, B.M. (2018). Visualization and Tools for Analysis of
323 Zebrafish Lymphatic Development. *Methods Mol Biol* 1846, 55-70.

324 Pase, L., Layton, J.E., Wittmann, C., Ellett, F., Nowell, C.J., Reyes-Aldasoro, C.C., Varma, S.,
325 Rogers, K.L., Hall, C.J., Keightley, M.C., Crosier, P.S., Grabher, C., Heath, J.K.,
326 Renshaw, S.A., and Lieschke, G.J. (2012). Neutrophil-delivered myeloperoxidase
327 dampens the hydrogen peroxide burst after tissue wounding in zebrafish. *Curr Biol*
328 22, 1818-1824.

329 Potente, M., Gerhardt, H., and Carmeliet, P. (2011). Basic and therapeutic aspects of
330 angiogenesis. *Cell* 146, 873-887.

331 Regot, S., Hughey, J.J., Bajar, B.T., Carrasco, S., and Covert, M.W. (2014). High-sensitivity
332 measurements of multiple kinase activities in live single cells. *Cell* 157, 1724-1734.

333 Rhodes, J., Hagen, A., Hsu, K., Deng, M., Liu, T.X., Look, A.T., and Kanki, J.P. (2005). Interplay
334 of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. *Dev*
335 *Cell* 8, 97-108.

336 Ricard, N., Scott, R.P., Booth, C.J., Velazquez, H., Cilfone, N.A., Baylon, J.L., Gulcher, J.R.,
337 Quaggin, S.E., Chittenden, T.W., and Simons, M. (2019). Endothelial ERK1/2 signaling
338 maintains integrity of the quiescent endothelium. *J Exp Med* 216, 1874-1890.

339 Rosenfeldt, H., and Grinnell, F. (2000). Fibroblast quiescence and the disruption of ERK
340 signaling in mechanically unloaded collagen matrices. *J Biol Chem* 275, 3088-3092.

341 Sano, T., Kobayashi, T., Ogawa, O., and Matsuda, M. (2018). Gliding Basal Cell Migration of
342 the Urothelium during Wound Healing. *Am J Pathol* 188, 2564-2573.

343 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,
344 Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri,
345 K., Tomancak, P., and Cardona, A. (2012). Fiji: an open-source platform for biological-
346 image analysis. *Nat Methods* 9, 676-682.

347 Shin, M., Beane, T.J., Quillien, A., Male, I., Zhu, L.J., and Lawson, N.D. (2016). Vegfa signals
348 through ERK to promote angiogenesis, but not artery differentiation. *Development*
349 143, 3796-3805.

350 Shu, X. (2020). Imaging dynamic cell signaling in vivo with new classes of fluorescent
351 reporters. *Curr Opin Chem Biol* 54, 1-9.

352 Simons, M., Gordon, E., and Claesson-Welsh, L. (2016). Mechanisms and regulation of
353 endothelial VEGF receptor signalling. *Nat Rev Mol Cell Biol* 17, 611-625.

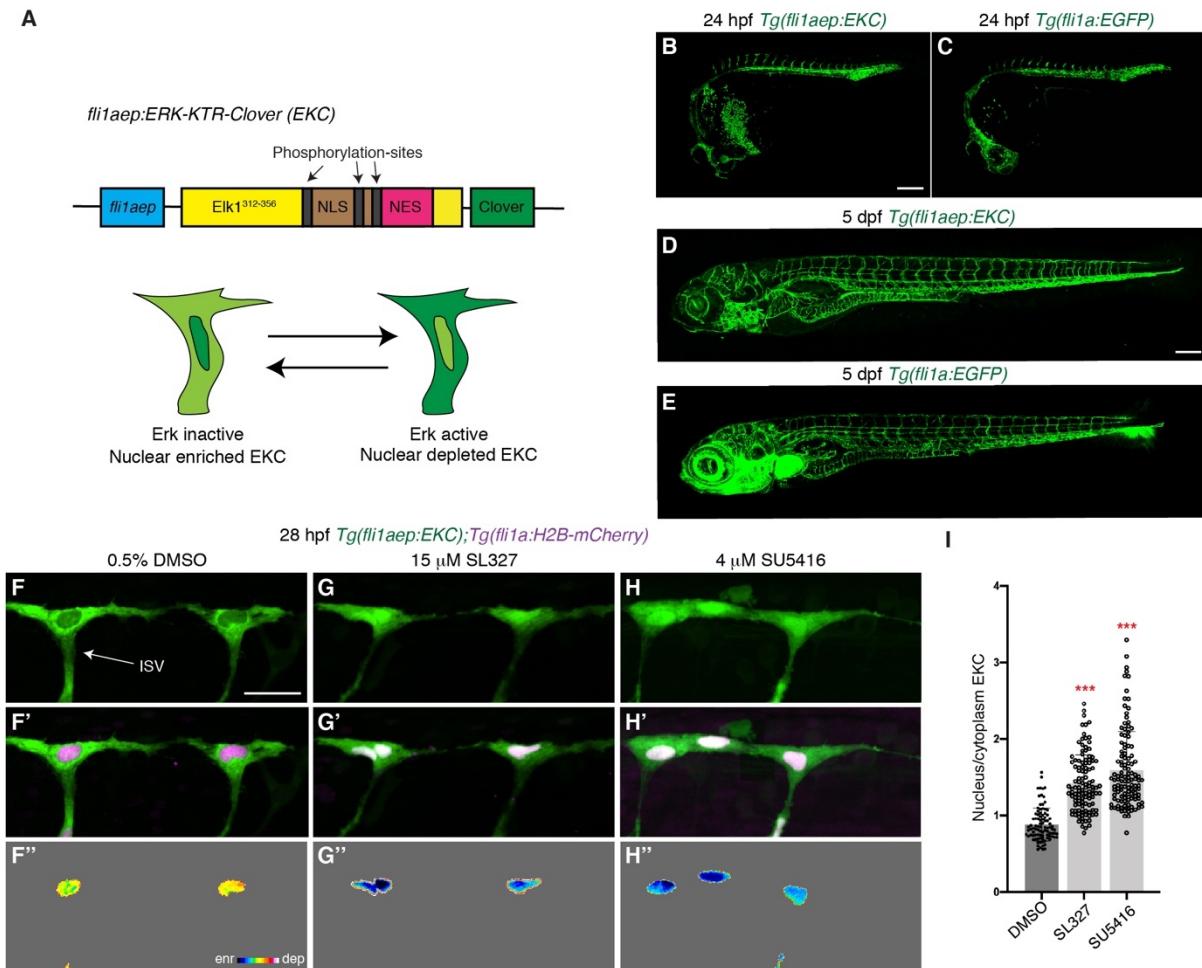
354 Srinivasan, R., Zabuawala, T., Huang, H., Zhang, J., Gulati, P., Fernandez, S., Karlo, J.C.,
355 Landreth, G.E., Leone, G., and Ostrowski, M.C. (2009). Erk1 and Erk2 regulate
356 endothelial cell proliferation and migration during mouse embryonic angiogenesis.
357 *PLoS One* 4, e8283.

358 Takeda, H., and Kiyokawa, E. (2017). Activation of Erk in ileal epithelial cells engaged in
359 ischemic-injury repair. *Sci Rep* 7, 16469.

360 Tang, S., and Yasuda, R. (2017). Imaging ERK and PKA Activation in Single Dendritic Spines
361 during Structural Plasticity. *Neuron* 93, 1315-1324 e1313.

362 Villefranc, J.A., Amigo, J., and Lawson, N.D. (2007). Gateway compatible vectors for analysis
363 of gene function in the zebrafish. *Dev Dyn* 236, 3077-3087.

364 Wilhelm, S.M., Carter, C., Tang, L., Wilkie, D., Mcnabola, A., Rong, H., Chen, C., Zhang, X.,
365 Vincent, P., Mchugh, M., Cao, Y., Shujath, J., Gawlak, S., Eveleigh, D., Rowley, B., Liu,
366 L., Adnane, L., Lynch, M., Auclair, D., Taylor, I., Gedrich, R., Voznesensky, A., Riedl, B.,
367 Post, L.E., Bollag, G., and Trail, P.A. (2004). BAY 43-9006 exhibits broad spectrum oral
368 antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine
369 kinases involved in tumor progression and angiogenesis. *Cancer Res* 64, 7099-7109.


370 Wong, K.L., Akiyama, R., Bessho, Y., and Matsui, T. (2018). ERK Activity Dynamics during
371 Zebrafish Embryonic Development. *Int J Mol Sci* 20.

372 Xiao, Z., Wang, T., Qin, H., Huang, C., Feng, Y., and Xia, Y. (2011). Endoplasmic reticulum
373 Ca²⁺ release modulates endothelial nitric-oxide synthase via extracellular signal-
374 regulated kinase (ERK) 1/2-mediated serine 635 phosphorylation. *J Biol Chem* 286,
375 20100-20108.

376 Yokota, Y., Nakajima, H., Wakayama, Y., Muto, A., Kawakami, K., Fukuhara, S., and
377 Mochizuki, N. (2015). Endothelial Ca²⁺ oscillations reflect VEGFR signaling-regulated
378 angiogenic capacity in vivo. *Elife* 4.

379 Zhang, Q., Huang, H., Zhang, L., Wu, R., Chung, C.I., Zhang, S.Q., Torra, J., Schepis, A.,
380 Coughlin, S.R., Kornberg, T.B., and Shu, X. (2018). Visualizing Dynamics of Cell
381 Signaling In Vivo with a Phase Separation-Based Kinase Reporter. *Mol Cell* 69, 334-
382 346 e334.

383 **Figures and figure legends**

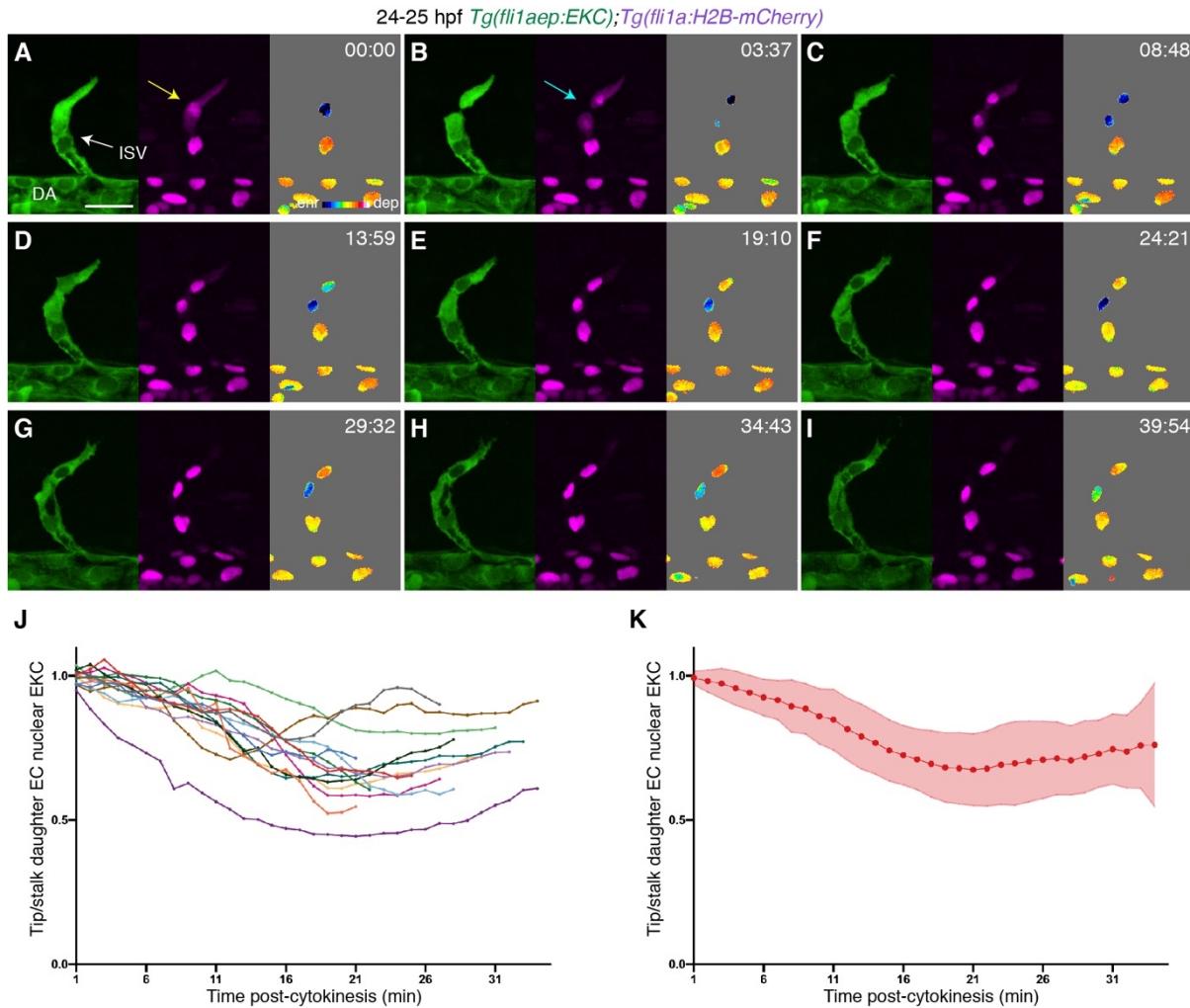
384

385

386 **Figure 1: The *Tg(fli1aep:EKC)* transgenic line enables quantification of vascular**
387 **Erk activity during development.**

388 (A) Schematic representation of the *fli1aep:ERK-KTR-Clover (EKC)* construct, and
389 ECs with nuclear enriched EKC (bottom left, inactive Erk-signalling) and nuclear
390 depleted EKC localisation (bottom right, active Erk-signalling).

391 (B-E) Lateral confocal images of the *Tg(fli1aep:EKC)* (B,D) and *Tg(fli1a:EGFP)* (C,E)
392 embryos/larvae at 24 hpf (B,C) and 5 dpf (D,E).


393 (F-H'') Lateral spinning disc confocal images of ISV ECs in 28 hpf
394 *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)* embryos treated for 1 hour with either 0.5%
395 DMSO (F-F''), 15 μ M SL327 (G-G''), or 4 μ M SU5416 (H-H''). Images F-H show the
396 *fli1aep:EKC* expression, while images F'-H' show both the *fli1aep:EKC* and the
397 *fli1a:H2B-mCherry* expression. Images F''-H'' show the nuclear *fli1aep:EKC*

398 expression with intensity difference represented in 16 colour LUT (Fiji). The *fli1a:H2B-*
399 *mCherry* signal was used to mask the nucleus.

400 (I) Quantification of nucleus/cytoplasm EKC intensity in ISV tip ECs of 28 hpf embryos
401 treated with either 0.5% DMSO (0.881, 93 ISV tip ECs, n=20 embryos), 15 μ M SL327
402 (1.419, 114 ISV tip ECs, n=27 embryos), or 4 μ M SU5416 (1.591, 118 ISV tip ECs,
403 n=27 embryos).

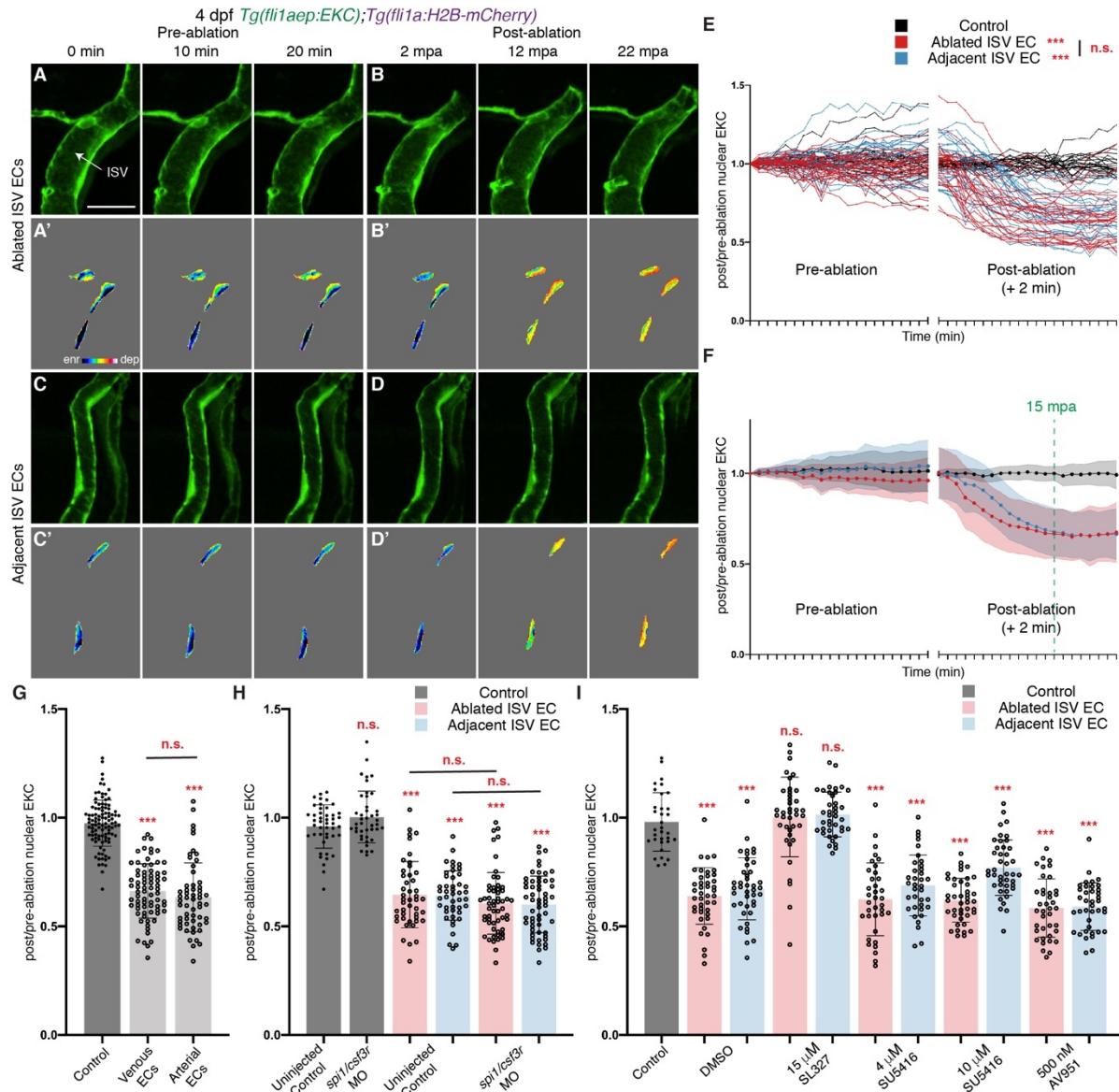
404 ISV: intersegmental vessel. Statistical test: Kruskal Wallis test was conducted for
405 graph I. Error bars represent standard deviation. Scale bars: 200 μ m for images B and
406 D, 25 μ m for image F.

407

408

409

410 **Figure 2: Tip cells show asymmetric Erk activity immediately following cell**
411 **division.**


412 (A-I) Still images from Video 1 showing ISV ECs in a 24-25 hpf
413 *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)* embryo at indicated time points. Left panels
414 show *fli1aep:EKC* expression, middle panels show the *fli1a:H2B-mCherry* expression,
415 and right panels show the nuclear *fli1aep:EKC* expression with intensity difference
416 represented in 16 colour LUT (Fiji). The *fli1a:H2B-mCherry* signal was used to mask
417 the nucleus. The yellow arrow indicates a tip ISV EC with cytoplasmic *fli1a:H2B-*
418 *mCherry* expression. The light blue arrow indicates a tip ISV EC that has undergone
419 cytokinesis.

420 (J,K) Quantification of tip/stalk nuclear EKC intensity of daughter ECs post-cytokinesis
421 (14 EC division events, n=14 embryos). Graph J shows quantification of individual
422 biological replicates and graph K shows the average of all biological replicates.

423 ISV: intersegmental vessel; DA: dorsal aorta. Error bars represent standard deviation.

424 Scale bar: 25 μm .

425

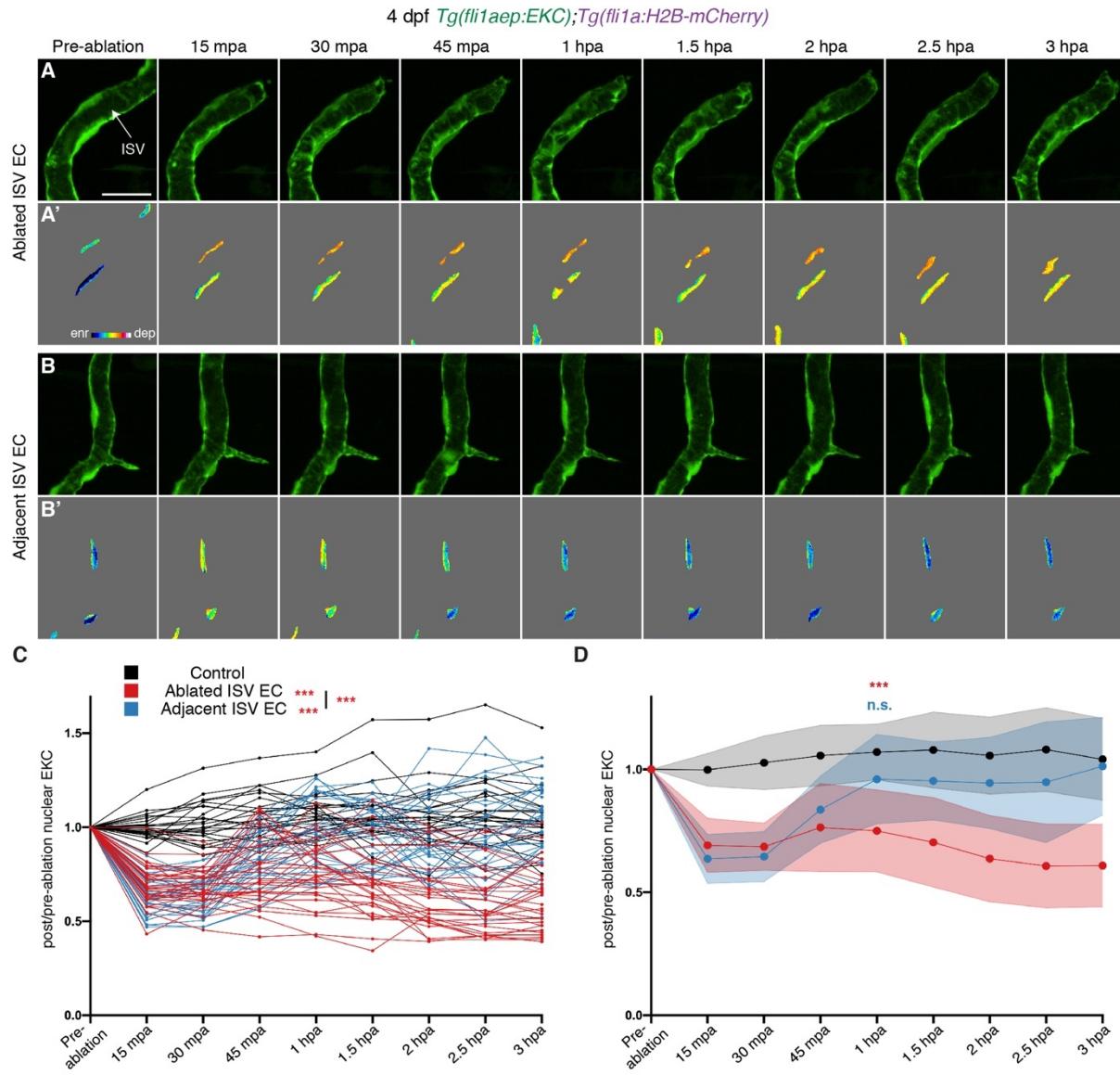
426
427

428 **Figure 3: Wounded vessels rapidly activate Erk independent of macrophages of**
429 **Vegfr-signalling.**

430 **(A-D')** Still images from **Video 4** (A-B') and **Video 5** (C-D') showing ISV ECs of a 4
431 dpf *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)* larva at indicated time points before (pre-
432 ablation) and after (post-ablation) vessel wounding. Erk activity is induced rapidly in
433 wounded and unwounded, adjacent vessels. Images A-D show the *fli1aep:EKC*
434 expression, while images A'-D' show the nuclear *fli1aep:EKC* expression with intensity
435 difference represented in 16 colour LUT (Fiji). The *fli1a:H2B-mCherry* signal was used
436 to mask the nucleus.

437 **(E,F)** Quantification of rapid Erk activation by the ratio of post/pre-ablation nuclear
438 EKC intensity of ECs in non-ablated control ISVs (black, 24 ECs, n=8 larvae), ablated

439 ISVs (red, 27 ECs, n=9 larvae), and adjacent ISVs (light blue, 27 ECs, n=9 larvae)
440 before and after vessel wounding. Graph E shows quantification of individual ECs and
441 graph F shows the average of all biological replicates. Green dotted line indicates 15
442 minutes post-ablation (mpa).


443 (G) Quantification of post/pre-ablation nuclear EKC intensity 15 mpa in ECs of non-
444 ablated control ISVs (103 ECs, n=34 larvae), ablated venous ISVs (75 ECs, n=25
445 larvae), and ablated arterial ISVs (57 ECs, n=19 larvae).

446 (H) Quantification of post/pre-ablation nuclear EKC intensity 15 mpa in ECs of non-
447 ablated uninjected control ISVs (45 ECs, n=15 larvae), non-ablated *spi1/csf3r*
448 morphant ISVs (42 ECs, n=14 larvae), uninjected control ISVs (45 ablated/adjacent
449 ISV ECs, n=15 larvae), and *spi1/csf3r* morphant ISVs (56 ablated ISV ECs and 57
450 adjacent ISV ECs, n=19 larvae).

451 (I) Quantification of post/pre-ablation nuclear EKC intensity 15 mpa in ECs of 0.5%
452 DMSO-treated non-ablated control ISVs (33 ECs, n=11 larvae), and ISVs of larvae
453 treated with either 0.5% DMSO (42 ablated/adjacent ISV ECs, n=14 larvae), 15 μ M
454 SL327 (39 ablated/adjacent ISV ECs, n=13 larvae), 4 μ M SU5416 (36
455 ablated/adjacent ISV ECs, n=12 larvae), 10 μ M SU5416 (42 ablated/adjacent ISV
456 ECs, n=14 larvae), or 500 nM AV951 (42 ablated/adjacent ISV ECs, n=14 larvae).

457 ISV: intersegmental vessel. Statistical test: Permutation test was conducted for graph
458 E. Kruskal Wallis test was conducted for graphs G-I. n.s. represents not significant.

459 Error bars represent standard deviation. Scale bar: 20 μ m

460

461

Figure 4: Wounded but not adjacent vessels retain high Erk activity as the regenerative response proceeds.

(A-B') Lateral spinning disc confocal images of ablated (A) and adjacent ISVs (B) of a 4 dpf *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)* larva before and following vessel wounding at indicated timepoints. Erk activity is progressively lost in the adjacent but retained in the wounded vessel. Images A and B show the *fli1aep:EKC* expression, while images A' and B' show the nuclear *fli1aep:EKC* expression with intensity difference represented in 16 colour LUT (Fiji). The *fli1a:H2B-mCherry* signal was used to mask the nucleus.

(C,D) Quantification of post/pre-ablation nuclear EKC intensity of ECs in non-ablated control ISVs (black, 24 ECs, n=8 larvae), ablated ISVs (red, 30 ECs, n=10 larvae), and

473 adjacent ISVs (light blue, 30 ECs, n=10 larvae) before and after vessel wounding at
474 indicated timepoints. Graph C shows the quantification of individual ECs and graph D
475 shows the average of all biological replicates.
476 ISV: intersegmental vessel. Statistical test: Permutation test was conducted for graph
477 C, Kruskal Wallis test was conducted for graph D. n.s. represents not significant. Error
478 bars represent standard deviation. Scale bar: 20 μm
479

480

481

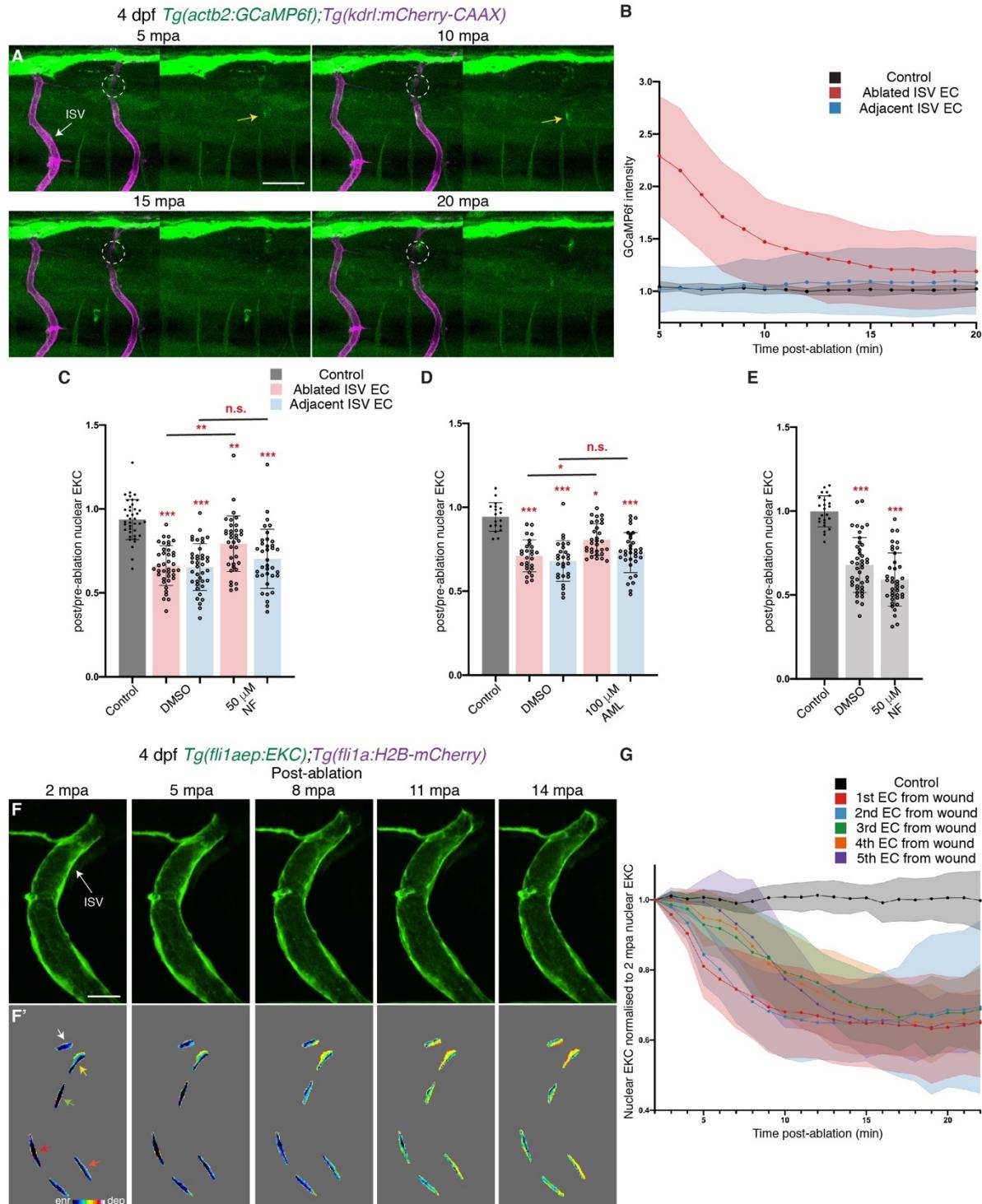
482 **Figure 5: Erk activity in ablated vessels is maintained through the Vegfr**
483 **pathway.**

484 (A) Quantification of post/pre-ablation nuclear EKC intensity 3 hpa in ECs of 0.5%
485 DMSO-treated non-ablated control ISVs (33 ECs, n=11 larvae), and ablated ISVs of
486 larvae treated with either 0.5% DMSO (51 ECs, n=17 larvae), 15 μM SL327 (42 ECs,
487 n=14 larvae), 4 μM SU5416 (47 ECs, n=16 larvae), or 10 μM SU5416 (32 ECs, n=11
488 larvae). Ongoing signalling requires Vegfr and Erk activity.

489 (B-E) Lateral spinning disc confocal images of 24 hpa 5 dpf *Tg(fli1ep:EKC)* larvae
490 treated with either: 0.5% DMSO (B), showing a regenerated ISV; or 4 μM SU5416 (C),
491 15 μM SL327 (D), or 1 μM Trametinib (E); all of which blocked ISV regeneration. White
492 circles show the wounded site of each larvae.

493 (F) Quantification of ISV horizontal length percentage of ablated ISV in 24 hpa 5 dpf
494 *Tg(fli1ep:EKC)* larvae treated with either 0.5% DMSO (n=18 larvae), 4 μM SU5416
495 (n=12 larvae), 15 μM SL327 (n=15 larvae), or 1 μM Trametinib (n=13 larvae).

496 (G-I) Lateral spinning disc confocal images of ablated ISV ECs in 4 dpf 3 hpa
497 *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)* larvae treated with either 0.5% DMSO (G), 4
498 μM SU5416 (H), or 10 μM SU5416 (I). Images show that the nuclear *fli1aep:EKC*


499 expression was consistently higher and more Vegfr-dependent closer to the wound.
500 Intensity difference represented in 16 colour LUT (Fiji). The *fli1a:H2B-mCherry* signal
501 was used to mask the nucleus. Arrows indicate first (white), second (yellow), and third
502 (green) ECs from the wounded site. Full images: **Figure 5-figure supplementary**
503 **1D',H',J'.**

504 **(J)** Quantification of post/pre-ablation nuclear EKC intensity 3 hpa in first (dark grey),
505 second (red) and third (light blue) ECs from the wounded site of 0.5% DMSO-treated
506 non-ablated control ISVs (11 first, second and third ECs, n=11 larvae), and ablated
507 ISVs of larvae treated with either 0.5% DMSO (17 first, second and third ECs, n=17
508 larvae), 4 μ M SU5416 (16 first and second ECs, and 15 third ECs, n=16 larvae), or 10
509 μ M SU5416 (11 first and second ECs, and 10 third ECs, n=11 larvae). Data were taken
510 from graph A.

511 **(K)** Quantification of post/pre-ablation nuclear EKC intensity 3 hpa in first (14 ECs,
512 n=14 larvae), second (14 ECs, n=14 larvae), third (14 ECs, n=14 larvae), forth (11
513 ECs, n=11 larvae), and fifth (8 ECs, n=8 larvae) ECs from the wounded site of ablated
514 ISVs in 4 dpf *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)* larvae. Data for the first, second,
515 and third ECs were taken from **Figure 4-figure supplement 1N**.

516 ISV: intersegmental vessel. DA: dorsal aorta. Statistical test: Kruskal Wallis test was
517 conducted for graphs A,F,J,K. n.s. represents not significant. Error bars represent
518 standard deviation. Scale bar: 50 μ m for image B, 15 μ m for image G.

519

520

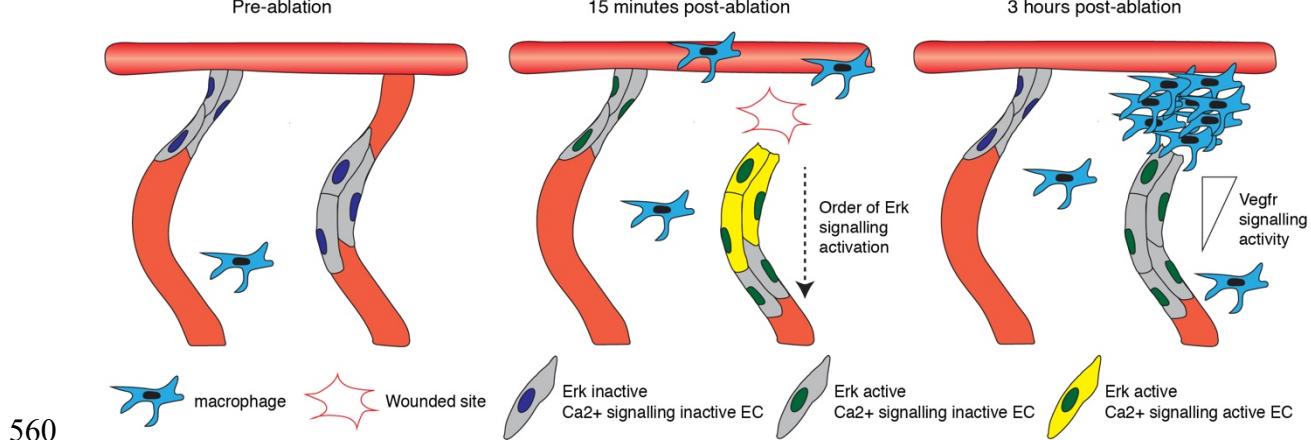
521

Figure 6: Ca²⁺ signalling is required for rapid Erk-activation in ablated vessels.

523 (A) Still images from **Video 8** following vessel wounding and demonstrating a pulse of
 524 activation Ca²⁺ signalling immediately adjacent to the wound, at the indicated time
 525 points (4 dpf). Left panels show both the *actb2:GCaMP6f* and *kdrl:mCherry-CAAX*
 526 expression, while right panels show only the *actb2:GCaMP6f* expression. White circles
 527 show the wounded site. Yellow arrows show ISV ECs with active Ca²⁺ signalling.

528 (B) Quantification of *actb2:GCaMP6f* intensity in unablated control ISVs (black, n=4
529 larvae), and ablated (red, n=10 larvae) and adjacent (light blue, n =10 larvae) ISVs
530 following vessel wounding at indicated time points. Intensity was normalised to
531 *actb2:GCaMP6f* intensity in unablated tissue in the same larvae.

532 (C) Quantification of post/pre-ablation nuclear EKC intensity 15 mpa in ECs of 1%
533 DMSO-treated non-ablated control ISVs (39 ECs, n=13 larvae), and ISVs of larvae
534 treated with either 1% DMSO (39 ablated/adjacent ISV ECs, n=13 larvae) or 50 μ M
535 Nifedipine (36 ablated/adjacent ISV ECs, n=12 larvae).


536 (D) Quantification of post/pre-ablation nuclear EKC intensity 15 mpa in ECs of 1%
537 DMSO-treated non-ablated control ISVs (18 ECs, n=6 larvae), and ISVs of larvae
538 treated with either 1% DMSO (27 ablated/adjacent ISV ECs, n=9 larvae) or 100 μ M
539 Amplopidine (31 ablated ISV ECs and 33 adjacent ISV ECs, n=11 larvae).

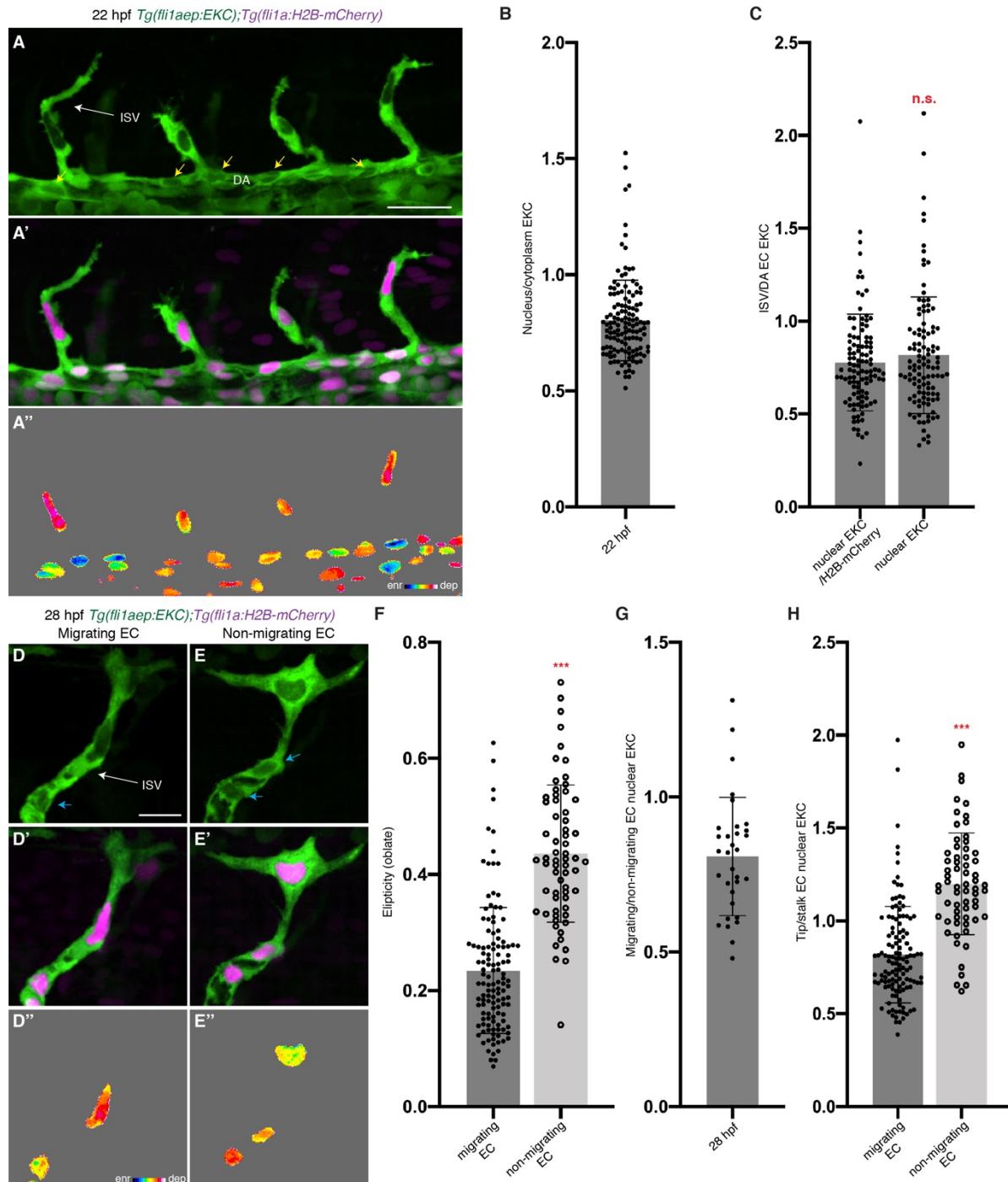
540 (E) Quantification of post/pre-ablation nuclear EKC intensity 3 hpa in ECs of 1%
541 DMSO-treated non-ablated control ISVs (24 ECs, n=8 larvae), and ablated ISVs of
542 larvae treated with either 1% DMSO (42 ECs, n=14 larvae) or 50 μ M Nifedipine (39
543 ECs, n=13 larvae).

544 (F,F') Still images from **Video 3** showing ablated ISV ECs of a 4 dpf
545 *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)* larva at indicated time points after vessel
546 wounding. Rapid activation of Erk is progressive from the wound site to the vessel
547 base. Image F show the *fli1aep:EKC* expression, while image F' shows the nuclear
548 *fli1aep:EKC* expression at indicated timepoints with intensity difference represented
549 in 16 colour LUT (Fiji). The *fli1a:H2B-mCherry* signal was used to mask the nucleus.
550 Arrows indicate first (white), second (yellow), third (green), forth (red), and fifth
551 (orange) ECs from the wounded site.

552 (G) Quantification of nuclear EKC intensity normalised to the nuclear EKC intensity at
553 2 mpa in ECs of ISVs in non-ablated control larvae (black, 24 ECs, n=8 larvae), and
554 the first (red, 9 ECs, n=9 larvae), second (blue, 9 ECs, n=9 larvae), third (green, 9
555 ECs, n=9 larvae), fourth (orange, 8 ECs, n=8 larvae), and fifth (purple, 5 ECs, n=5
556 larvae) ablated ISV ECs from the wounded site following vessel wounding.

557 ISV: intersegmental vessel. Statistical test: Kruskal Wallis test was conducted for
558 graphs C-E. n.s. represents not significant. Error bars represent standard deviation.
559 Scale bars: 50 μ m for image A, 15 μ m for image F.

560
561


562 **Figure 7: A two-step mechanism for activating and maintaining Erk activity in**
563 **regenerating vessels.**

564 Schematic representation of the two-step mechanism employed by ECs to activate
565 Erk-signalling following vessel wounding. Pre-ablation (left), the majority of ECs are
566 Erk-signalling inactive. Following vessel wounding (middle), both ablated and adjacent
567 ISV ECs rapidly activate Erk-signalling. Ca²⁺ signalling is also rapidly activated
568 following vessel wounding but only in ablated ISV ECs, particularly in ECs close to the
569 wounded site. Ca²⁺ signalling activity contributes to the activation of Erk-signalling in
570 ablated ISV ECs in a sequential manner, starting from ECs close to the wounded site.
571 Erk-signalling in adjacent ISV ECs has returned to pre-wound levels by 3 hpa (right).
572 Erk activity in ablated ISV ECs is sustained through Vegfr-signalling, likely stimulated
573 by Vegfa secreted from macrophages recruited to the wounded site. ECs closer to the
574 wounded site are less sensitive to Vegfr signalling inhibition, suggesting higher
575 signalling, when compared to ECs further away.

576
577

578 **Supplementary figure legends**

579

580

581 **Figure 1-figure supplement 1: The *Tg(fli1aep:EKC)* transgenic line reports**

582 **physiologically relevant Erk-signalling during primary angiogenesis.**

583 (A-A'') High Erk-activity in tip-cells. Lateral spinning disc confocal images of budding
584 ISVs in a 22 hpf *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)* embryo. Image A shows the
585 *fli1aep:EKC* expression, image A' shows both the *fli1aep:EKC* and the *fli1a:H2B-*
586 *mCherry* expression, while image A'' shows the nuclear *fli1aep:EKC* expression with

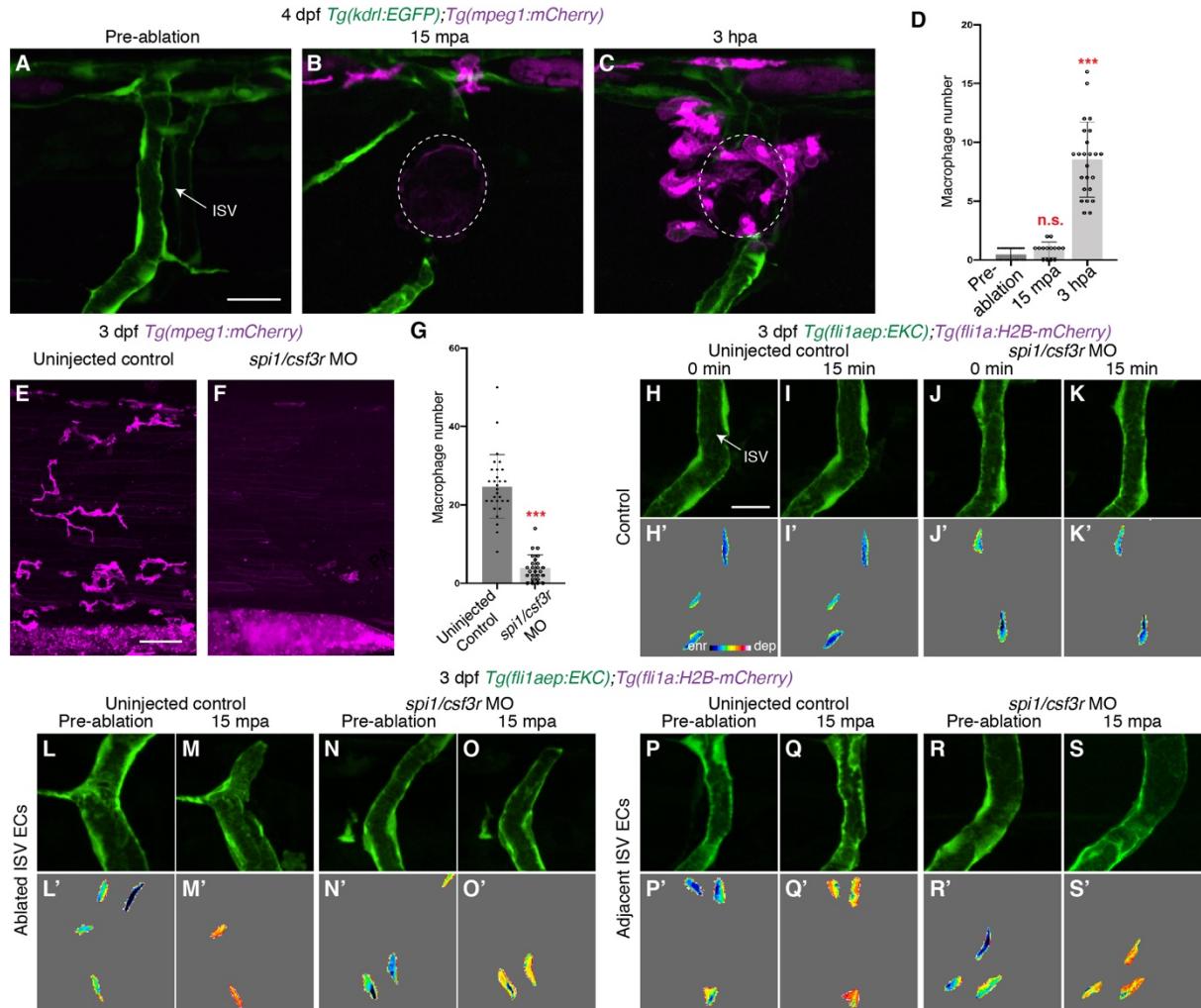
587 intensity difference represented in 16 colour LUT (Fiji). The *fli1a:H2B-mCherry* signal
588 was used to mask the nucleus. Yellow arrows point to DA ECs with nuclear depleted
589 EKC localisation.

590 **(B)** Quantification of nucleus/cytoplasm EKC intensity in sprouting ISV ECs of 22 hpf
591 embryos (0.803, 133 ECs, n=37 embryos).

592 **(C)** Quantification of sprouting ISV EC/ DA “stalk” EC nuclear EKC intensity in 22 hpf
593 embryos (109 ECs, n=37 embryos). DA ECs closest to the sprouting ISV ECs were
594 quantified. Both ratios of nuclear EKC/H2B-mCherry intensity (0.777) and nuclear
595 EKC alone (0.817) show higher Erk activity in sprouting ISV ECs when compared to
596 DA “stalk” ECs.

597 **(D-E”)** Nuclear elongation and Erk-activity correlate. Lateral spinning disc confocal
598 images of either an ISV with migrating tip EC (D) or an ISV with non-migrating tip EC
599 (E) in 28 hpf *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)* embryos. Images D and E show
600 the *fli1aep:EKC* expression, images D' and E' show both *fli1ep:EKC* and *fli1a:H2B-*
601 *mCherry* expressions, while images D'' and E'' show nuclear *fli1aep:EKC* expression
602 with intensity difference represented in 16 colour LUT (Fiji). The *fli1a:H2B-mCherry*
603 signal was used to mask the nucleus. Light blue arrow show ISV stalk ECs with nuclear
604 depleted EKC localisation.

605 **(F)** Quantification of EC ellipticity (oblate) in migrating (124 ECs, n=45 embryos) and
606 non-migrating ISV tip ECs (64 ECs, n=35 embryos) in 28 hpf embryos.

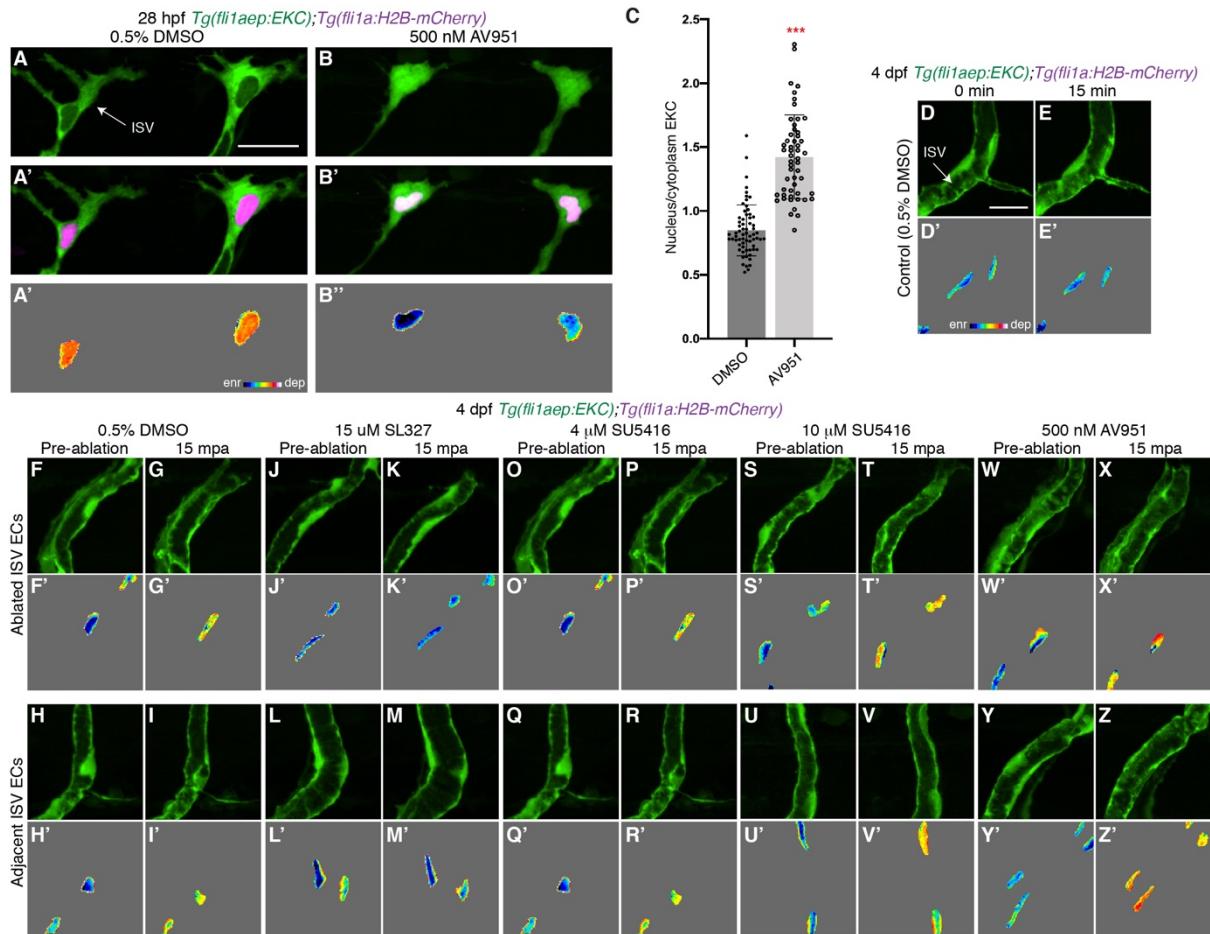

607 **(G)** Quantification of migrating/non-migrating ISV tip EC nuclear EKC intensity in 28
608 hpf embryos (0.808, n=32 embryos). Only embryos with both migrating/non-migrating
609 ISV tip ECs in the same image were quantified.

610 **(H)** Quantification of tip/stalk ISV EC nuclear EKC intensity of either migrating tip ECs
611 or non-migrating tip ECs in 28 hpf embryos (124 migrating tip ECs, n=45 embryos, 64
612 non-migrating tip ECs, n=35 embryos).

613 ISV: intersegmental vessel; DA: dorsal aorta. Statistical test: Mann-Whitney test was
614 conducted for graphs C, F, and H. Error bars represent standard deviation. Scale bars:
615 25 μ m for image A, 15 μ m for image D.

616
617

618


633 (H-S') Lateral spinning disc confocal images of ISV ECs in 3 dpf
634 *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)* uninjected control (H-I', L-M', P-Q') and
635 *spi/csf3r* morphants (J-K', N-O', R-S'). Images H-K' show non ablated control ISV ECs,
636 images L-O' show ablated ISV ECs, and images P-S' show adjacent ISV ECs. Images
637 L,N,P,R were taken pre-ablation, while images M,O,Q,S were taken 15 mpa. Images
638 H-S show the *fli1aep:EKC* expression, and images H'-S' shows the nuclear
639 *fli1aep:EKC* expression with intensity difference represented in 16 colour LUT (Fiji).

640 The *fli1a:H2B-mCherry* signal was used to mask the nucleus.

641 ISV: intersegmental vessel; Statistical test: Kruskal Wallis test was conducted for
642 graph D and Mann-Whitney test was conducted for graph G. n.s. represents not
643 significant. Error bars represent standard deviation. Scale bars: 20 μm for image A,
644 50 μm for image E, 15 μm for image H.

645

646

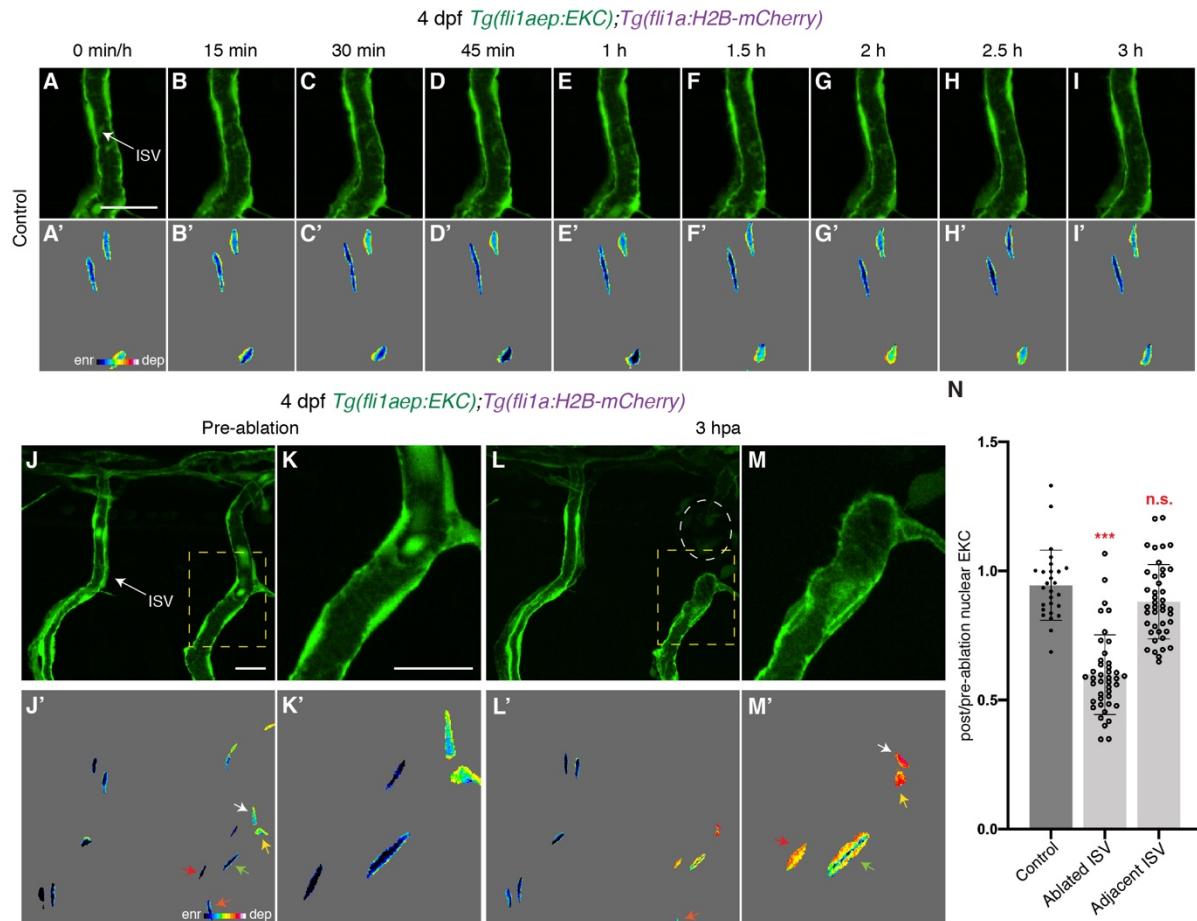
647

648

Figure 3-figure supplement 2: Vegfr-signalling is not required for rapid Erk activation following vessel wounding.

651 (**A-B''**) Lateral spinning disc confocal images of ISV ECs in 28 hpf
 652 *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)* embryos treated for an hour with either 0.5%
 653 DMSO (A-A'') or 500 nM AV951 (B-B''). Images A and B show the *fli1aep:EKC*
 654 expression, while images A' and B' show both the *fli1aep:EKC* and the *fli1a:H2B-*
 655 *mCherry* expression. Images A'' and B'' show the nuclear *fli1aep:EKC* expression with
 656 intensity difference represented in 16 colour LUT (Fiji). The *fli1a:H2B-mCherry* signal
 657 was used to mask the nucleus.

658 (C) Quantification of nucleus/cytoplasm EKC intensity in ISV tip ECs of 28 hpf embryos
659 treated with either 0.5% DMSO (0.849, 65 ECs, n=14 embryos) or 500 nM AV951
660 (1.423, 53 ECs, n=12 embryos).


661 (D-Z') Lateral spinning disc confocal images of ISV ECs in 4 dpf
 662 *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)* larvae treated with either 0.5% DMSO (D-I'),

663 15 μ M SL327 (J-M'), 4 μ M SU5416 (O-R'), 10 μ M SU5416 (S-V'), or 500 nM AV951
664 (W-Z'). Images D-E' show non-ablated control ISV ECs. Images F-G', J-K', O-P', S-T'
665 and W-X' show ablated ISV ECs. Images H-I', L-M', Q-R', U-V' and Y-Z' show adjacent
666 ISV ECs. Images F,H,J,L,O,Q,S,U,W,Y were taken pre-ablation and images
667 G,I,K,M,P,R,T,V,X,Z were taken 15 mpa. Images D-Z show the *fli1aep:EKC*
668 expression, and images D'-Z' show the nuclear *fli1aep:EKC* expression with intensity
669 difference represented in 16 colour LUT (Fiji). The *fli1a:H2B-mCherry* signal was used
670 to mask the nucleus.

671 ISV: intersegmental vessel; Statistical test: Mann-Whitney test was conducted for
672 graph C. Error bars represent standard deviation. Scale bars: 25 μ m for image A, 15
673 μ m for image D.

674

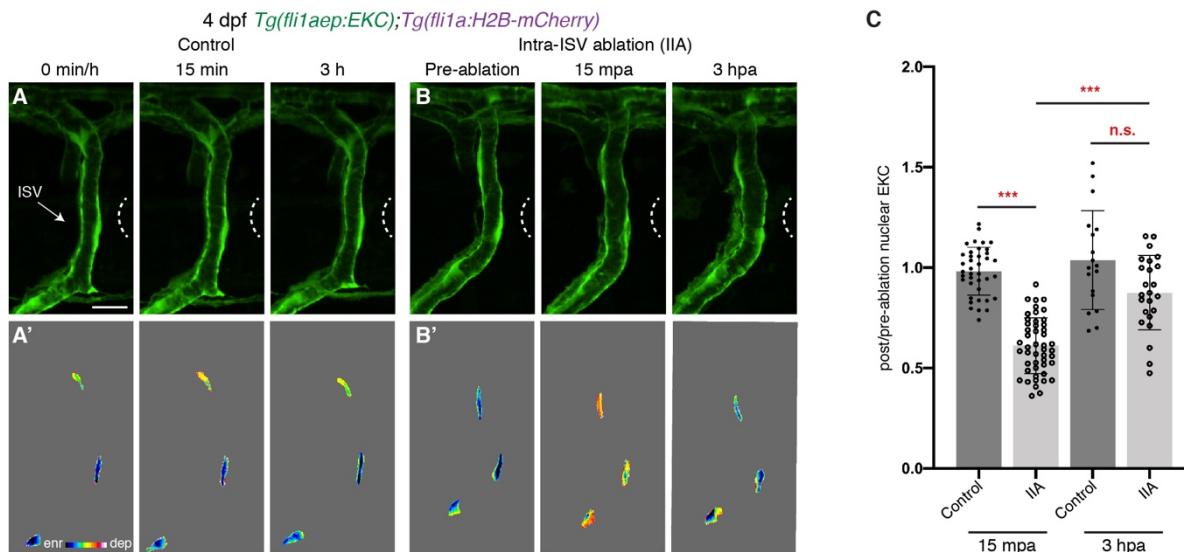
675

676

677

Figure 4-figure supplement 1: Distinct Erk activity between ablated and adjacent ISV ECs 3 hpa.

(A-I') Lateral spinning disc confocal images of ISV ECs in 4 dpf *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)* larvae at indicated timepoints. Images A-I show the *fli1aep:EKC* expression, while images A'-I' show the nuclear *fli1aep:EKC* expression with intensity difference represented in 16 colour LUT (Fiji). The *fli1a:H2B-mCherry* signal was used to mask the nucleus.


(J-M') Lateral spinning disc confocal images of ablated and adjacent ISV ECs in 4 dpf *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)* larvae before (J-K'), and 3 hours following vessel wounding (L-M'). Images J-M show the *fli1aep:EKC* expression, while images J'-M' show the nuclear *fli1aep:EKC* expression with intensity difference represented in 16 colour LUT (Fiji). The *fli1a:H2B-mCherry* signal was used to mask the nucleus. Images K and M are higher magnification images of the yellow boxes in images J and L. White circle in image L show the wounded site. Arrows indicate first (white), second (yellow), third (green), forth (red), and fifth (orange) ECs from the wounded site.

693 (N) Quantification of post/pre-ablation nuclear EKC intensity of ECs in non-ablated
694 control ISVs (27 ECs, n=9 larvae), ablated ISVs (42 ECs, n=14 larvae), and adjacent
695 ISVs (42 ECs, n=14 larvae) 3 hpa.

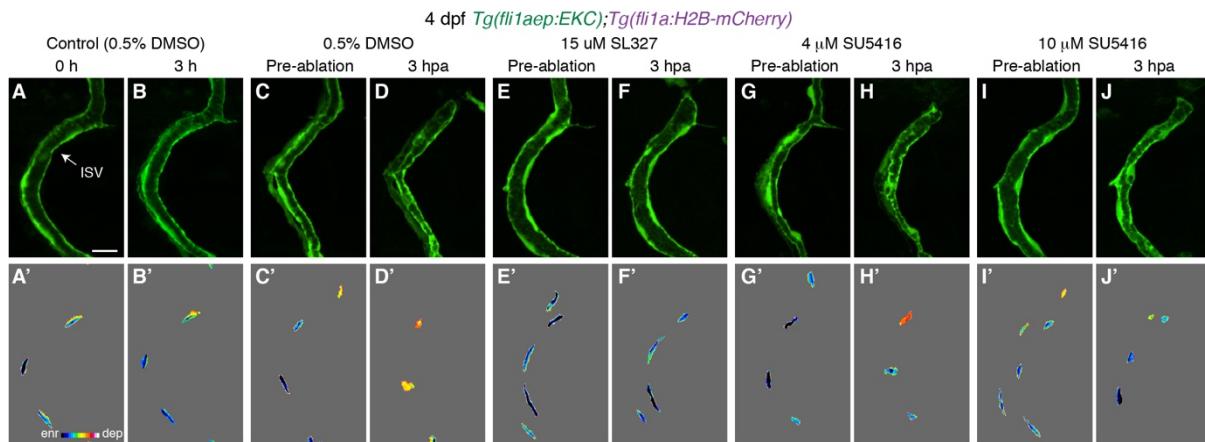
696 ISV: intersegmental vessel; Statistical test: Kruskal Wallis test was conducted for
697 graph N. n.s. represents not significant. Error bars represent standard deviation. Scale
698 bars: 20 μ m for image A, 20 μ m for images J and K.

699

700

701

702


703 **Figure 4-figure supplement 2: Vessel wounding is required for sustained Erk**
704 **activity in ablated ISV ECs.**

705 (A,B) Lateral spinning disc confocal images of ISV ECs in 4 dpf
706 *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)* larvae at 0min/pre-ablation (left), 15
707 minutes/15 mpa (middle), or 3 hours/3 hpa (right). Images A show ISVs in non-ablated
708 control larvae, and images B show ISVs in larvae with tissue ablated in between two
709 ISVs (Intra-ISV ablation (IIA)). Images A and B show the *fli1aep:EKC* expression, while
710 images A' and B' show the nuclear *fli1aep:EKC* expression with intensity difference
711 represented in 16 colour LUT (Fiji). The *fli1a:H2B-mCherry* signal was used to mask
712 the nucleus. White dotted lines show the wounded sites.

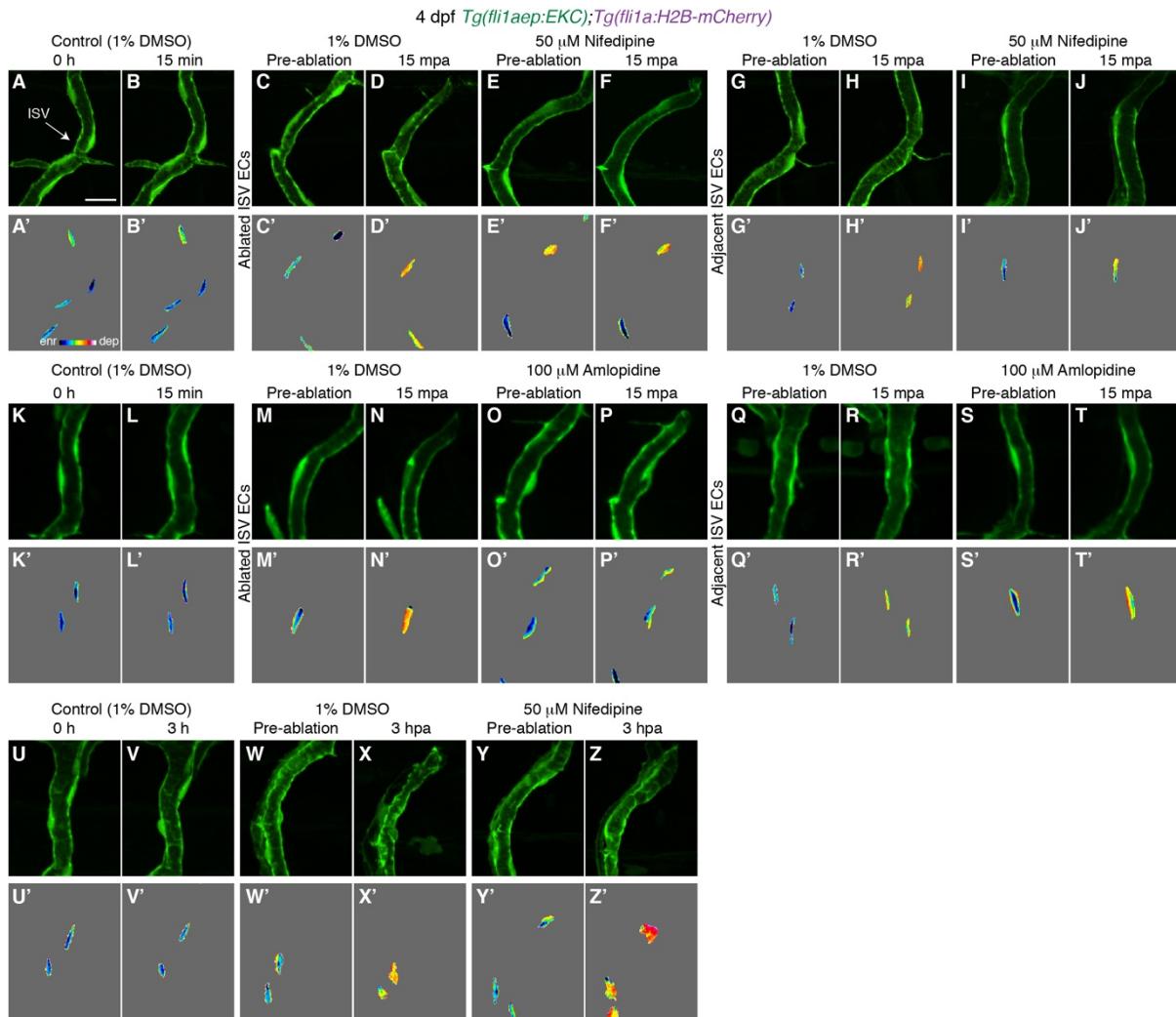
713 (C) Quantification of post/pre-ablation nuclear EKC intensity of ECs in either non-
714 ablated control ISVs or Intra-ISV ablation ISVs at 15 mpa (control, 39 ECs, n=13
715 larvae; intra-ISV ablation, 48 ECs, n=16 larvae) or 3 hpa (control, 18 ECs, n=6 larvae;
716 intra-ISV ablation, 24 ECs, n=8 larvae).

717 ISV: intersegmental vessel; Statistical test: Kruskal Wallis test was conducted for
718 graph C. n.s. represents not significant. Error bars represent standard deviation. Scale
719 bar: 15 μ m

720

721

722


723 **Figure 5-figure supplement 1: Vegfr-signalling is required to sustain Erk activity**
724 **in ablated ISV ECs following vessel wounding.**

725 (A-J') Lateral spinning disc confocal images of ISV ECs in 4 dpf
726 *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)* larvae treated with either 0.5% DMSO (A-D'),
727 15 μ M SL327 (E-F'), 4 μ M SU5416 (G-H'), or 10 μ M SU5416 (I-J'). Images A-B' show
728 non-ablated control ISV ECs. Images C,E,G,I were taken pre-ablation and images
729 D,F,H,J were taken 3 hpa. Images A-J show the *fli1aep:EKC* expression, and images
730 A'-J' show the nuclear *fli1aep:EKC* expression with intensity difference represented in
731 16 colour LUT (Fiji). The *fli1a:H2B-mCherry* signal was used to mask the nucleus.

732 ISV: intersegmental vessel; Scale bar: 15 μ m

733

734

735

736

Figure 6-figure supplement 1: Ca^{2+} signalling is required for rapid Erk activation in ablated ISV ECs.

739 (A-Z') Lateral spinning disc confocal images of ISV ECs in 4 dpf
 740 *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)* larvae treated with either 1% DMSO (A-D',G-
 741 H',K-N',Q-R',U-X'), 50 μ M Nifedipine (E-F',I-J',Y-Z'), or 100 μ M Amlodipine (O-P',S-
 742 T'). Images A-B',K-L',U-V' show non-ablated control ISV ECs. Images
 743 C,E,G,I,M,O,Q,S,W,Y were taken pre-ablation, images D,F,H,J,N,P,R,T were taken
 744 15 mpa, and images X and Z were taken 3 hpa. Images A-Z show the *fli1aep:EKC*
 745 expression, and images A-Z' show the nuclear *fli1aep:EKC* expression with intensity
 746 difference represented in 16 colour LUT (Fiji). The *fli1a:H2B-mCherry* signal was used
 747 to mask the nucleus.

748 ISV: intersegmental vessel. Scale bar: 15 μ m

750 **Video 1: ISV daughter ECs show asymmetric Erk activity following cytokinesis.**

751 Time-lapse video of a ISV tip EC undergoing mitosis in a 24-25 hpf
752 *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)* embryo. Left panel shows the *fli1aep:EKC*
753 expression, middle panel shows the *fli1a:H2B-mCherry* expression, and the right
754 panel shows the nuclear *fli1aep:EKC* expression with intensity difference represented
755 in 16 colour LUT (Fiji). The *fli1a:H2B-mCherry* signal was used to mask the nucleus.
756 Z stacks were acquired every 15.5 seconds for 40 minutes using an Andor Dragonfly
757 Spinning Disc Confocal microscope. Photobleaching was minimised using the bleach
758 correction tool (correction method: Histogram Matching) in FIJI.

759 ISV: intersegmental vessel; DA: dorsal aorta. Scale bar: 25 μ m.

760

761 **Video 2: ISV ECs in 4 dpf larvae have minimal Erk activity.**

762 Time-lapse video of the trunk vessels in a 4 dpf *Tg(fli1aep:EKC);Tg(fli1a:H2B-*
763 *mCherry*) larva at indicated timepoints. Left panel shows the *fli1aep:EKC* expression,
764 middle panel shows both *fli1aep:EKC* and *fli1a:H2B-mCherry* expression, and the
765 right panel shows the nuclear *fli1aep:EKC* expression with intensity difference
766 represented in 16 colour LUT (Fiji). The *fli1a:H2B-mCherry* signal was used to mask
767 the nucleus. Z stacks were acquired every minute for 41 minutes using an Andor
768 Dragonfly Spinning Disc Confocal microscope. Photobleaching was minimised using
769 the bleach correction tool (correction method: Histogram Matching) in FIJI.
770 ISV: intersegmental vessel; DA: dorsal aorta. Scale bar: 20 μ m.

771

772 **Video 3: Both ablated and adjacent ISV ECs rapidly activate Erk-signalling**
773 **following vessel wounding.**

774 Time-lapse video of the trunk vessels in a 4 dpf *Tg(fli1aep:EKC);Tg(fli1a:H2B-*
775 *mCherry*) larva before (pre-ablation) and after (post-ablation) vessel wounding at
776 indicated timepoints. Post-ablation video starts at 2 minutes post-ablation due to the
777 time taken to transfer the larvae between microscopes and for preparation of imaging.
778 Left panel shows the *fli1aep:EKC* expression, middle panel shows both *fli1aep:EKC*
779 and *fli1a:H2B-mCherry* expression, and the right panel shows the nuclear *fli1aep:EKC*
780 expression with intensity difference represented in 16 colour LUT (Fiji). The *fli1a:H2B-*
781 *mCherry* signal was used to mask the nucleus. Z stacks were acquired every 1
782 minutes for 20 minutes before and after vessel wounding using an Andor Dragonfly
783 Spinning Disc Confocal microscope. Photobleaching was minimised using the bleach
784 correction tool (correction method: Histogram Matching) in FIJI.

785 ISV: intersegmental vessel; DA: dorsal aorta. Scale bar: 20 μ m.

786

787

788 **Video 4: Ablated ISV ECs rapidly activate Erk-signalling following vessel**
789 **wounding.**

790 Time-lapse video of the ablated ISV in a 4 dpf *Tg(fli1aep:EKC);Tg(fli1a:H2B-mCherry)*
791 larva before (pre-ablation) and after (post-ablation) vessel wounding at indicated
792 timepoints. Post-ablation video starts at 2 minutes post-ablation due to the time taken
793 to transfer the larvae between microscopes and for preparation of imaging. Left panel
794 shows the *fli1aep:EKC* expression and the right panel shows the nuclear *fli1aep:EKC*
795 expression with intensity difference represented in 16 colour LUT (Fiji). The *fli1a:H2B-*
796 *mCherry* signal was used to mask the nucleus. Z stacks were acquired every 1
797 minutes for 20 minutes before and after vessel wounding using an Andor Dragonfly
798 Spinning Disc Confocal microscope. Photobleaching was minimised using the bleach
799 correction tool (correction method: Histogram Matching) in FIJI.

800 ISV: intersegmental vessel. Scale bar: 20 μ m.

801

802 **Video 5: Adjacent ISV ECs rapidly activate Erk-signalling following vessel**
803 **wounding.**

804 Time-lapse video of the adjacent ISV in a 4 dpf *Tg(fli1aep:EKC);Tg(fli1a:H2B-*
805 *mCherry*) larva before (pre-ablation) and after (post-ablation) vessel wounding at
806 indicated timepoints. Post-ablation video starts at 2 minutes post-ablation due to the
807 time taken to transfer the larvae between microscopes and for preparation of imaging.
808 Left panel shows the *fli1aep:EKC* expression and the right panel shows the nuclear
809 *fli1aep:EKC* expression with intensity difference represented in 16 colour LUT (Fiji).
810 The *fli1a:H2B-mCherry* signal was used to mask the nucleus. Z stacks were acquired
811 every 1 minutes for 20 minutes before and after vessel wounding using an Andor
812 Dragonfly Spinning Disc Confocal microscope. Photobleaching was minimised using
813 the bleach correction tool (correction method: Histogram Matching) in FIJI.

814 ISV: intersegmental vessel. Scale bar: 20 μ m.

815

816

817 **Video 6: Skin epithelial and muscle cells do not maintain high Erk activity for 3**
818 **hours following muscle wounding.**

819 Time-lapse video of the trunk in a 30 hpf *Tg(ubb:MMu.Elk1-KTR-mCherry)* embryo. Z
820 stacks were acquired every 21 minutes from 5 mpa until 3 hpa using a Leica SP8 X
821 WLL confocal microscope (n=6 embryos).

822 Scale bar: 20 μ m.

823

824 **Video 7: ISVs in 4 dpf larvae do not have active Ca²⁺ signalling.**

825 Time-lapse video of ISVs in a 4 dpf *Tg(actb2:GCaMP6f);Tg(kdrl:mCherry-CAAX)*
826 larva. Left panel shows both the *actb2:GCaMP6f* and the *kdrl:mCherry-CAAX*
827 expressions and the right panel shows the *actb2:GCaMP6f* expression. Z stacks were
828 acquired every minute for 15 minutes using a Leica SP8 confocal microscope.
829 ISV: intersegmental vessel. Scale bar: 50 μ m.

830

831 **Video 8: ISVs rapidly activate Ca²⁺ signalling following vessel wounding.**

832 Time-lapse video of both ablated and adjacent ISVs in a 4 dpf
833 *Tg(actb2:GCaMP6f);Tg(kdrl:mCherry-CAAX)* larva following vessel wounding. Left
834 panel shows both the *actb2:GCaMP6f* and the *kdrl:mCherry-CAAX* expressions and
835 the right panel shows the *actb2:GCaMP6f* expression. Z stacks were acquired every
836 minute from 5 mpa until 20 mpa using a Leica SP8 confocal microscope.

837 ISV: intersegmental vessel. Scale bar: 50 μ m.

838

839

840

841

842

843