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Abbreviations

CNS, central nervous system; GH, growth hormone; GHR, growth hormone receptor; STATS5,
signal transducer and activator of transcription 5; POMC, proopiomelanocortin; ARC, arcuate nucleus
of the hypothalamus; DMH, dorsomedial hypothalamic nucleus; LHA, lateral hypothalamus; PVH,
paraventricular hypothalamic nucleus; SST, somatostatin; GHRH, growth hormone releasing

hormone; AgRP, agouti-related peptide
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Abstract

Growth hormone (GH) receptor (GHR), expressed in different brain regions, is known to
participate in the regulation of whole-body energy homeostasis and glucose metabolism. However,
GH activation of these GHR-expressing neurons is less studied. We have generated a novel GHR-
driven Cre recombinase transgenic mouse line (GHR®®) in combination with the floxed tdTomato
reporter mouse line we tracked and activated GHR-expressing neurons in different regions of the
brain. We focused on neurons of the hypothalamic arcuate nucleus (ARC) where GHR was shown to
elicit a negative feedback loop that regulates GH production. We found that ARC®"R* neurons are co-
localized with AgRP, GHRH, and somatostatin neurons, which were activated by GH stimulation.
Using designer receptors exclusively activated by designer drugs (DREADDS) to control GHRAR®
neuronal activity, we revealed that activation of GHR”R® neurons was sufficient in regulating distinct
aspects of energy balance and glucose metabolism. Overall, our study provides a novel mouse model
to study in vivo regulation and physiological function of GHR-expressing neurons in various brain
regions. Furthermore, we identified for the first time specific neuronal population that responds to GH

and directly linked it to metabolic responses in vivo.
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Introduction

A cumulative body of evidence established that growth hormone (GH) plays pivotal roles in
the regulation of systemic metabolism, through activation of the GH receptor (GHR) in the liver,
muscle, adipose, and other tissues (1-6). In the central nervous system (CNS), GH is present in
regions known to participate in the regulation of feeding, energy balance, and glucose metabolism,
including the hypothalamus, hippocampus, and amygdala (7-11). The expression of GHR within the
CNS has been mapped by in situ hybridization and by detection of the downstream target, the
phosphorylated activator of transcription (STAT) 5, revealing large numbers of GH-responsive
neurons in various brain regions (8,12,13). While these studies detected GHR expression within the
CNS, the functional assessment of the GHR-expressing neurons in various brain regions was lacking.

GHR expression in the brain is critical for the neuroendocrine neurons to sense and regulate
GH production by the pituitary (8,14,15). In the arcuate nucleus of the hypothalamus (ARC), the GHR
is involved in a negative feedback loop that regulates GH production and secretion by GH-releasing
hormone (GHRH) (8). As part of this negative feedback, GH inhibits it's own secretion acting on the
GHR in neuropeptide Y (NPY) neurons in the ARC and somatostatin (SST) neurons in the
paraventricular nucleus (PVN). Activation of these neurons augments SST release and inhibits GH
secretion (16,17). In recent years, it became clear that GH action in the ARC represents an important
component of energy homeostasis (13). We have recently shown that neuronal-specific deletion of
GHR in leptin receptor (LepRb)-expressing neurons in the hypothalamus impaired hepatic glucose
production and systemic lipid metabolism (18). Additionally, mice lacking GHR specifically in the
orexigenic agouti-related peptide (AgRP) expressing neurons in the ARC display impaired responses
to fasting and food restriction, while deletion of GHR from anorexigenic proopiomelanocortin (POMC)
neurons in the ARC did not produce significant metabolic phenotype (19,20). Collectively, these
results indicated unique roles of GHR-expressing neurons in the ARC in metabolic control. However,
in vivo GH-mediated activation of GHR-expressing neurons were not studied.

In the current study, we specifically aimed at studying in vivo activation of these complex

neural circuitry of the GHR-expressing neurons in the ARC. To that end, we developed a novel GHR-
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102  driven cre mouse (GHR®*®) using the CRISPR/Cas9 gene-editing technology. The new GHR®*® model
103 allowed us to both track and activate GHR-expressing neurons. Utilizing these mice, we studied the
104  functional roles of GHR neurons in the ARC in the regulation of systemic glucose metabolism and
105 energy homeostasis. We found that activation of GHRARC neurons acutely increased systemic glucose
106  sensitivity, energy expenditure, and heat production. Overall, our study revealed a novel network of
107  metabolic regulation through the hypothalamic GH axis in the ARC. Finally, our mouse model provides
108 a novel tool to identify specific neuronal populations mediating the effects of GH in different brain
109 regions.
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Materials and Methods

Experimental Animals:

GHR®*® mice were generated using the Clustered Regularly Interspaced Short Palindromic
Repeats associated protein Cas9 (CRISPR/Cas9) technology (21,22). All procedures were performed
at the University of Michigan Transgenic Core as before (22). A detailed description of the procedures
is described in Supplementary Materials and Methods. tdTomato mice on the ROSA26 background
(B6.Cg-Gt(ROSA)26Sortm4CAGtdTomaoHze/ - (stock 007914) were purchased from The Jackson
Laboratory. Adult male mice (8-12 weeks old) were used for all studies. All mice were provided ad
libitum access to standard chow diet (Purina Lab Diet 5001) and housed in temperature-controlled
rooms on a 12-hour/12-hour light-dark cycle. Mice were bred and housed within our colony according

to guidelines approved by the Wayne State University Committee on the Care and Use of Animals.

Perfusion and Histology:

Mice were anesthetized (IP) with avertin and transcardially perfused with phosphate-buffered
saline (PBS) (pH 7.5) followed by 4% paraformaldehyde (PFA). Brains were post-fixed, sank in 30%
sucrose, frozen in OCT medium, and then sectioned coronally (30 pm) and processed for
immunohistochemistry as previously described (23,24). For immunohistochemistry, free-floating
brain sections were washed in PBS, blocked using 3% normal donkey serum (NDS) and 0.3% Triton
X-100 in PBS and then stained with a primary antibody for 48 hours at 4°C with agitation in blocking
buffer: DsRed (anti-rabbit, 1:5000, cat. number NC9580775, Takara), GFP (anti-chicken, 1:1000, cat.
number ab13970, Abcam), anti-tdTom (anti-goat, 1:500, cat. number AB8181-200, Scigen), pSTAT5
(anti-rabbit, 1:500, cat. number 9359, Cell Signaling), GFAP (anti-chicken, 1:500, cat. number
Ab5541, Millipore), Iba-1 (anti-goat, 1:1000, cat. number ab5076, Abcam) and cFos (anti-sheep,
1:500, cat. number ab6167, Abcam) For pSTATS5 staining sections were pretreated for 10 min in 90%
Methanol and 10% H»O, in PBS before blocking buffer incubation. On the following day, all floating

brain sections were washed with PBS 0.1M and incubated with the following secondary antibodies for
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2 hours: donkey anti-rabbit, anti-goat, anti-sheep, anti-chicken Alexa Fluor 488 and/or 568 (Invitrogen,
1:200). For the staining specificity control, the immunohistochemical experiments were performed

with brain sections in which the primary antibody was omitted and substituted with serum.

Two-plex fluorescent in-situ hybridization:

Fixed-frozen ARC-containing GHR®® brain sections of 12-week old male mice (10um) were
processed for the RNAscope Fluorescent Multiplex assay (Advanced Cell Diagnostics, Inc). The
samples were double-labeled with probes for GHR (Mm-Ghr-C2 464951), GHRH (Mm-Ghrh-C2

470991), or SST (Mm-Sst-C2 404631) together with tdTom (tdTomato-C3 317041).

Images and data analysis:

All sections used for ISH were visualized with a Zeiss M2 microscope blindly. All other
fluorescent sections were visualized with a Nikon Eclipse Ni microscope coupled to a Nikon DS-Ri2
camera. Photomicrographs were captured using the NIS-Elements Br 5.0 Zen software. Fiji ImageJ
image-editing software was used to overlay photomicrographs to construct merged images and to
mount plates. Only sharpness, contrast, and brightness were adjusted and the same values for each

target labeled were applied.

Surgery and viral injections:

Stereotaxic viral injections were performed as described (25). Briefly, animals were
anesthetized using 1-3% isoflurane, their head shaved and placed in a three-dimensional stereotaxic
frame (Kopf 1900, Cartesian Research Inc., CA). The skull was exposed with a small incision, and
two small holes were drilled for bilateral microinjection (200 nL/side) of the excitatory DREADD, AAV8-
hSyn-DIO-hM3DGg-mCherry (cat. number # 44361-AAV8, Addgene) into the ARC of GHR®® mice at
stereotaxic coordinates based on the Mouse Brain Atlas: A/P: -1.3, M/L: +/-0.2, D/V: -5.85 (26).
Animals received a pre-operative dose of buprenorphine hydrochloride (1 mg/kg). After surgery, mice

were allowed 2 weeks of recovery to maximize virally-transduced gene expression and to acclimate
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animals to handling and experimental paradigms before the study. Activation of the DREADD receptor
was induced by intraperitoneal administration of the agonist, clozapine-N-oxide (CNO, 0.3 mg/kg, ip,
cat. number 4936, Tocris). Expression was verified post hoc in all animals, and any data from animals

in which the transgene expression was located outside the targeted area were excluded from analysis.

Metabolic Analysis:

Following recovery, GHR®® mice with activating DREADD (hM3Dq) underwent glucose
metabolism and energy expenditure assays as previously described (27). Intraperitoneal glucose
tolerance tests were performed on mice fasted for 6 hours. Mice were administered with 0.9% saline
or CNO 1 hour before glucose (2 g/kg BW) injection. GTTs tests were performed one week apart and
blood glucose levels were measured as before (28). Blood insulin was determined using a Mouse
Insulin ELISA kit (cat. number 50-194-7920, Crystal Chem. Inc.). For peripheral GH stimulation
(recombinant mouse GH, 12.5 ug/100g BW, National Hormone & Peptide Program, Harbor-UCLA
Medical Center, CA), mice were injected i.p. and perfused 1.5 hours later, for pPSTATS immunostaining
as described before (18). Metabolic measurements of energy homeostasis were obtained using an
indirect calorimetry system (PhenoMaster, TSE system, Bad Homburg, Germany). The mice were
acclimatized to the cages for 3 days and monitored for 5 days, food and water were provided ad
libitum. Following acclimatization, GHR®® excitatory DREADD-expressing mice received an i.p.
injection of vehicle (0.9% saline) and measurements were analyzed for the following 8 hours. Mice
remained in the chambers with food and water ad libitum and 72 hours later the same experimental
design was repeated, and animals were treated with an i.p. injection of CNO (0.3 mg/kg). Data were

analyzed vehicle vs CNO per mouse.

Statistical analysis:

Unless otherwise stated mean values + SEM is presented in graphics. GTT data were
analyzed by residual maximum likelihood (REML) mixed model followed by Sidak’s post hoc while

cumulative RER, heat production, ambulatory activity, food intake, and water intake data were
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195 analyzed through paired t-test. Post-hoc comparisons were only carried out when the p-value was
196 significant for effect and/or interactions. p < 0.05 was considered statistically significant.

197
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Results

Characterization of the GHR®® mice. To characterize the role of GHR-expressing neurons in the
ARC, we have developed a GHR cell-specific molecular tool (GHR®*®) using CRISPR/Cas9 gene-
editing technology (Supplementary Figure 1A). The GHR®® mice reproduced in Mendelian ratio and
both male and female mice exhibited normal body weight, and fed/fasting blood glucose levels
(Supplementary Figure 1B and 2). GHR®® mouse line was validated by a cre-dependent Rosa26-
tdTomato reporter mouse. The expression pattern of tdTomato reporter revealed the presence of
GHR®¢-expressing neurons in the several areas of the hypothalamus (Figure 1A), including the
midbrain and hindbrain (Supplementary Figure 1C and Supplementary Table 1 and 2) (8,13). To
validate the expression of GHR in our GHRY™™ mice, we performed RNA in situ hybridization with
RNAscope, using probes against GHR and tdTomato in the hypothalamic arcuate nucleus (ARC). As
seen in Figure 1B, the majority of TdTomato* neurons were positive for the expression of the GHR

gene.

Upon binding to the GHR, GH triggers the activation of the JAK/Stat5 pathway (4,29,30). To
track GH-mediated STAT5 phosphorylation (pSTAT5), acute intraperitoneal GH injection was given
to the GHR ™™ mice. We found that pStat5 was colocalized with the majority of the ARC®HR* neurons
(Figure 2A). We did not detect the colocalization of GHR ™™ cells in astrocytes positive to glial
fibrillary acidic protein (GFAP). Additionally, the Ibal, a marker of microglia, did not co-localize with

tdTomato (Figure 2B), indicating that GHR signaling is principally targeting neurons and not glia cells.

To determine whether GHRAR®* neurons overlap with other known ARC populations that are
involved in neuroendocrine regulation, we further examined the expression of SST and GHRH in
identified GHR”R* neurons using double IHC and ISH. We found two-plex fluorescent ISH for GHRH
or SST and tdTomato mRNAs colocalized in the ARC of GHR ™™ mice (Figure 3), as previously
reported (12). In support of previous studies (19,31), we further confirmed a substantial overlap of
GHR* neurons in the ARC with AgRP-expressing neurons in the GHRY™™ mice (Supplementary

Figure 3A). Additionally, in support of the single-cell sequencing data (31), we found a minimal
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colocalization with dopaminergic neurons (GHRY™™/TH* cells), and with POMC neurons

(GHRYT™/B-endorphin* cells) in the ARC (Supplementary Figure 3B and 3C).

GHRAR®* neurons regulate glucose metabolism. The hypothalamic GHR-expressing
neuronal circuits operate within complex physiological settings involving the interrelationships
between SST, GHRH, and AgRP-expressing neurons. We aimed to directly assess the contribution
of ARC GHR-expressing neuronal populations to glucose metabolism and energy homeostasis. To
achieve that, we employed a Cre-dependent DREADD (Designer Receptors Exclusively Activated by
Designer Drugs) virus to acutely modulate neuronal activity in response to peripheral injection of an
otherwise inert compound, clozapine N-oxide (CNO) (32-34). To determine whether activation of
GHRARC* neurons can influence blood glucose levels, we enhanced the GHRARC* neuronal activity of
GHR®"™ mice by stereotactically injecting AAV8-DIO-hM3Dg-mCherry into the ARC and activated the
transduced cells with CNO (Figure 4A). Specific activation of GHR”R® neurons was demonstrated by
nuclear c-Fos expression as a marker of neuronal activation in AAV8-DIO-hM3Dg-mCherry-ARC-
injected GHR®® mice treated with vehicle (data not shown) or CNO (Figure 4A) before perfusion. CNO
administration resulted in a significant increase in c-Fos expression in hM3Dg-expressing ARC
neurons. Basal blood glucose and serum insulin concentrations were indistinguishable between
baseline and CNO injected mice (Figure 4B and D). Each animal served as its own control (e.g.,
saline versus CNO). Despite unchanged fasting blood glucose levels, AAV8-DIO-hM3Dg-mCherry-
ARC CNO-treated GHR®® mice displayed significantly increased glucose disposal, indicating
increased sensitivity in response to an intraperitoneal glucose load (AUC baseline: 1234 + 88. 67 vs
AUC CNO: 1049 + 84. 27, t-test p < 0.05, Figure 4B and C). Of note, the DREADD virus per se (off-

target infection, with or without CNO) did not affect glucose tolerance (data not shown).

GHRARC* neurons regulate energy balance and heat production. To establish the
significance of GHRAR®* neurons in the control of energy utilization, we analyzed components of
energy expenditure in ad libitum-fed 12-week-old male GHR®*® mice. We injected mice with CNO in

the morning during the light cycle, a time in which mice normally refrain from eating. Using a single-
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251  subject approach where each mouse serves as its own control, we showed that stimulation of
252  GHR*RC* neurons produced a significant increase in energy expenditure (Figure 5A), which lasted for
253 approximately 8 hours. This effect was also associated with a significant increase in heat production
254  inthese CNO stimulated hM3Dg-ARC-injected GHR®® mice (paired t-test, p < 0.05) (Figure 5B). CNO
255  stimulated locomotor activity was equivalent to the baseline measurements (Figure 5C). Notably,
256 acute activation of AgRP neurons markedly reduces energy expenditure (25), emphasizing the
257  complexity of ARC GH-responsive neurons, and suggesting that GHRARS*/AgRP-neurons are critical

258 to driving energy homeostasis.

259 Surprisingly, administering CNO to these mice acutely and significantly increased feeding and
260  drinking responses (Figure 6A and B), suggesting that GHRARS* neurons are orexigenic neurons

261  functionally similar to AQRP/SST neuronal cluster in the ARC (31).
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Discussion

We present herein a novel mouse model that expresses cre recombinase driven by
the GHR promoter. Specifically, using tdTomato immunoreactivity as a marker of GHR expression in
GHR ™ mice, we unraveled the uncharacterized population of GHR expressing neurons in the ARC.
Further, using a site-specificity approach we have characterized the function of GHR™ population in
the ARC. Using a combination of a genetic mouse model with site-specific delivery of chemogenetic
agent (CNO) we identified, for the first time, a GHRAR®* neuronal population that plays a critical role

in the maintenance of peripheral glucose metabolism and energy homeostasis.

The distribution of GHR-expressing neurons in the brain by GHRY™™ reporter resembles that
determined by in situ hybridization and by systemic GH injections followed by pSTAT5 expression
pattern in the brain (8,12,13). Large populations of GHR-expressing neurons lay in the hypothalamus,
especially in the ARC, DMH, and VMH; other substantial populations reside in the posterior
hypothalamic area and ventral pre-mammillary nucleus. The hippocampus areas, the cortex, the
cerebellum, and the olfactory area also contain substantial concentrations of GHR-expressing
neurons. The nucleus tractus solitarius (NTS) represents the hindbrain site with significant numbers
of GHR-expressing neurons. Another substantial number of GHR- expressing neurons were
distributed in the thalamus region. These observations are consistent with the expected expression
pattern of GHR in the brain (8,12,13), and for the first time enabled us to study the function of specific

GHR populations throughout the brain.

Evidence for the importance of GH-responsive neurons in the hypothalamus in modulating
metabolism was reported in several studies (35-38). We have recently identified a unique population
of nutrient-sensing leptin receptor (LepRb)-GHR expressing neurons that regulate hepatic glucose
production and lipid metabolism, suggesting that these neurons are crucial for the metabolic functions
of GHR-neurocircuitry (18). LepRb neurons co-express GHR in the ARC, DMH, and LHA, suggesting
the role of GHR in these neurons as an integrating site of glucose metabolism regulation. In the ARC
there is minimal overlap between AgRP neurons and SST neurons, with some transcriptional

similarities between these neurons such as in their synaptic circuitry and function (31,39). Recent
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single-cell analysis of ARC neurons demonstrated that GHR is highly expressed in the tight cluster of
AgRP*/SST* neurons together with corticotropin-releasing factor receptor 1 (Crhrl) (31), suggesting

the potential role of these ARC neurons in GH neurocircuitry.

The circuitries engaged by GHR”R® neurons involve several neuroendocrine populations such
as the SST, GHRH, and AgRP since GHRAR® neurons are co-localized with these cells in the ARC.
The majority of GHRAR®* neurons in the ARC are also pSTAT5 immunoreactive after GH treatment,
confirming their sensitivity to GH. We showed that chemogenetic activation of GHRAR®* neurons
modulated both glucose metabolism and energy homeostasis indicating that GHRAR®* neurons lie
within energy balance and glucoregulatory neurocircuits. While our current studies do not indicate
which specific neuronal subpopulations within GHRARC are responsible for controlling each of these
distinct physiological responses, genetic deletion of GHR in AgRP neurons did not affect glucose
metabolism or energy homeostasis (19), indicating that the role of GHR in AgRP- populations in the
ARC is to coordinate these responses. GHRARC neurons only partially overlap with SST and GHRH
neurons, thus the contribution of these ARC neuronal populations to GHR”R®-mediated glucose

metabolism and energy homeostasis modulation remains to be clarified.

One of the established effects of GH in the ARC - is inhibition of its own secretion, as part of
an auto-feedback circuit, involving the interrelationships between SST, GHRH, and AgRP/NPY -
expressing neurons through GHR (40). This might be particularly important as properly regulated
neural circuits within the GH axis modulate GH release under fed and fasting states (41), while the
imbalance between these networks might be part of multiple maladaptive endocrine changes
responsible for metabolic alterations in obesity. Our chemogenetic studies indicate that the
hypothalamic GHR axis in ARC promotes glucoregulatory responses by enhancing glucose tolerance,
and suggest that GHRARC neurons represent a distinct neuronal population within the GH axis that
play a crucial role in the regulation of glucose metabolism. This effect is complementary to the counter-
regulatory enhancing effect of GH axis during hypoglycemia (42).

GHRARC neurons represent a heterogeneous population, which includes neurochemically-

defined neurons that control specific physiologic functions. For example, acute chemogenetic
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activation of AGRP neurons alters food intake and decreases energy expenditure (25). Additionally,
activation of AgRP neurons acutely impairs systemic insulin sensitivity by inhibiting glucose uptake in
brown adipose tissue (43). However, while the majority of GHR* neurons in the ARC colocalize with
AgRP neurons, GHR represents only a very small cluster within AGRP neuronal population (31);
therefore, it remains possible that other GHR* neuronal populations in the ARC contribute to GHRARC-
mediated modulation of energy balance. In support, chemogenetic activation of ARC-SST neurons,
or intracerebroventricular (i.c.v.) infusion of SST analog acutely and significantly increases feeding
responses (31,44). Infusion of SST analog also increases energy expenditure, drinking behavior, and
lowers glycemic values (44), similar to the chemogenetic activation of GHR”R® neurons. These
findings indicate some functional similarities between SST and GHR”R® neurons whose activation is

sufficient in driving feeding, glucoregulation, and energy balance.

In summary, we have generated the GHRY™™ mouse model to characterize the anatomical
localization of brain-wide GHR expression. Using the GHRY™™ mouse model we demonstrate that
GHRRC comprises a unigue neuronal population capable of controlling energy balance and glucose
metabolism. While the significance of this ARC subpopulation of GH-responsive neurons in the control
of certain aspects of energy balance and glucose regulation remains to be elucidated, our study
emphasizes the role of GH axis as an essential hypothalamic center in regulating metabolic functions
and provides a resource for studying the biology and functionality of GH-responsive neuronal

populations in the brain.
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Figure Legends:

Figure 1. GHR-expressing neurons in the hypothalamus. To visualize cre-expressing
neurons, mice were crossed with tdTomato reporter mice. (A) Immunofluorescent image of GHR*
neurons in the hypothalamus (red, TdTomato). The dashed box indicates a region of the arcuate
nucleus of the hypothalamus (ARC) that is digitally enlarged and shown as an inset. (B) Two-plex
fluorescent in situ hybridization of GHR mRNA (green) and tdTomato mRNA (red) was performed on
coronal slices in the ARC. The dashed box indicates the region of the ARC that is digitally enlarged
and shown as inset demonstrating the colocalization of GHR and tdTomato mRNA (white arrows). 3V
= Third ventricle. Scale bar: 100 pum.

Figure 2. Characterization of GHR-expressing neurons in the ARC. (A) GH signaling in
GHR-expressing neurons in the ARC. Immunofluorescence for pSTAT5 in 12-week-old GHR ™™
mice injected IP with vehicle (saline) or GH (12.5u9/100g BW; 1.5 hr). Representative images from
the ARC of GHRY™™ mice are shown. pSTAT5 (green), TdTomato (red), and merged images of the
indicated mice (colocalization is shown by arrows). (B) Representative images of astrocytes identified
by immunofluorescent detection of GFAP protein (green, upper panel) and microglia evaluated by
Ibal immunostaining (green, lower panel) in the ARC obtained from GHR™“™™ mice (red, TdTomato).
3V = Third ventricle. Scale bar: 100 pum.

Figure 3. GHR-expressing neurons colocalization with SST and GHRH in the ARC. Two-
plex fluorescent in situ hybridization of (A) SST mRNA (green), tdTomato mRNA (red) and DAPI
(blue), and (B) GHRH mRNA (green), tdTomato mRNA (red) and DAPI (blue) was performed on
coronal slices containing the ARC. Dashed box indicates the region of the ARC that is digitally
enlarged and shown as inset demonstrating the colocalization of SST and tdTomato mRNA or GHRH
and tdTomato. 3V = Third ventricle. Scale bar: 100 um.

Figure 4. Acute activation of GHR”RC neurons increases glucose tolerance. (A) Neuronal
activation by cFos (green) was assessed 90 minutes after CNO stimulation. IHC for mCherry (red)
identifies AAV-hM3Dq expression in GHRARC neurons in the ARC. Merged image (green/red) and

dashed box indicate the region of the ARC that is digitally enlarged and shown as inset demonstrating
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the colocalization of cFos and mCherry. 3V =Third ventricle. Scale bar: 100 um. (B) Glucose tolerance
tests (GTT) of 12-week old male mice performed one week apart. Saline (0.1 mL/10 g BW — Baseline)
or CNO (0.3 mg/kg BW i.p) was injected 1 hour before i.p. GTT. The effect of GHR”R® activation was
analyzed by residual maximum likelihood (REML) mixed model followed by Sidak’s post hoc. (C) GTT
area under the curve (AUC) was analyzed by a paired t-test. (D) Fasted insulin levels. Results are

presented as mean = SEM, n=7; * p < 0.05 compared to vehicle values

Figure 5. Acute activation of GHR”R® neurons increases energy homeostasis but not
ambulatory activity. (A) Respiratory exchange ratio (RER). (B) Heat production. (C) Ambulatory
activity assessed by a total of beam breaks. Mice were acclimated in metabolic cages and i.p. injected
with either saline (grey) or CNO (red) at 10:30 am. On the right side, AUC of the light cycle period
from the treatment time. Data are from male mice, analyzed by paired t-test (mean + SEM, n = 7,
* p < 0.05 compared to vehicle values)

Figure 6. Acute activation of GHR”RC neurons increases food and water intake. (A) Food
intake. (B) Water intake. Mice were acclimated in metabolic cages and i.p. injected with either saline

(grey) or CNO (red) at 10:30 am. Results are presented as mean = SEM (filled area). On the right

side, AUC of the light cycle period from the treatment time. Data are from male mice, analyzed by

paired t-test (mean + SEM, n = 7; * p < 0.05 compared to vehicle values
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Distribution of GHRe"¢’c"®e TDTom immunoreactive neurons

Brain areas and nuclei
Lateral orbital cortex
Anterior olfactory area
Orbital cortex
Prelimbic cortex
Secondary motor cortex
Cingulate cortex
Piriform cortex
Accumbens nucleus
Lateral septal nucleus
Bed nucleus of the stria terminalis
Subfornical organ
Paraventricular thalamic nucleus
Dentate gyrus
Field CA3 hippocampus
Lateral amygdala
Basolateral amygdala
Dorsal premammillary nucleus
Periaqueductal gray
Mammillary nucleus
Interpeduncular nucleus
Cerebellum
Nucleus of solitary tract

Area postrema
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Table 1
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MPOa
RCH
PVH
ARH
VMH
DMh
LHA
DA
pHA
pmV

Distribution of GHRC¢™®c™®e TDTom immunoreactive neurons

hypothalamic areas and nuclei
Medial preoptic area
Retrochiasmatic area
Paraventricular nucleus
Arcuate nucleus
Ventromedial nucleus
Dorsomedial nucleus

Lateral hypothalamic area
Dorsal hypothalamic area
Posterior hypothalamic area

Ventral premammillary nucleus
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Table 2
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