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Abbreviations 39 

CNS, central nervous system; GH, growth hormone; GHR, growth hormone receptor; STAT5, 40 

signal transducer and activator of transcription 5; POMC, proopiomelanocortin; ARC, arcuate nucleus 41 

of the hypothalamus; DMH, dorsomedial hypothalamic nucleus; LHA, lateral hypothalamus; PVH, 42 

paraventricular hypothalamic nucleus; SST, somatostatin; GHRH, growth hormone releasing 43 

hormone; AgRP, agouti-related peptide    44 
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48TAbstract 46 

Growth hormone (GH) receptor (GHR), expressed in different brain regions, is known to 47 

participate in the regulation of whole-body energy homeostasis and glucose metabolism. However, 48 

GH activation of these GHR-expressing neurons is less studied. We have generated a novel GHR-49 

driven Cre recombinase transgenic mouse line (GHRcre) in combination with the floxed tdTomato 50 

reporter mouse line we tracked and activated GHR-expressing neurons in different regions of the 51 

brain. We focused on neurons of the hypothalamic arcuate nucleus (ARC) where GHR was shown to 52 

elicit a negative feedback loop that regulates GH production. We found that ARCGHR+ neurons are co-53 

localized with AgRP, GHRH, and somatostatin neurons, which were activated by GH stimulation. 54 

Using designer receptors exclusively activated by designer drugs (DREADDs) to control GHRARC 55 

neuronal activity, we revealed that activation of GHRARC neurons was sufficient in regulating distinct 56 

aspects of energy balance and glucose metabolism. Overall, our study provides a novel mouse model 57 

to study in vivo regulation and physiological function of GHR-expressing neurons in various brain 58 

regions. Furthermore, we identified for the first time specific neuronal population that responds to GH 59 

and directly linked it to metabolic responses in vivo. 60 
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Introduction 75 

A cumulative body of evidence established that growth hormone (GH) plays pivotal roles in 76 

the regulation of systemic metabolism, through activation of the GH receptor (GHR) in the liver, 77 

muscle, adipose, and other tissues (1-6). In the central nervous system (CNS), GH is present in 78 

regions known to participate in the regulation of feeding, energy balance, and glucose metabolism, 79 

including the hypothalamus, hippocampus, and amygdala (7-11). The expression of GHR within the 80 

CNS has been mapped by in situ hybridization and by detection of the downstream target, the 81 

phosphorylated activator of transcription (STAT) 5, revealing large numbers of GH-responsive 82 

neurons in various brain regions (8,12,13). While these studies detected GHR expression within the 83 

CNS, the functional assessment of the GHR-expressing neurons in various brain regions was lacking.  84 

GHR expression in the brain is critical for the neuroendocrine neurons to sense and regulate 85 

GH production by the pituitary (8,14,15). In the arcuate nucleus of the hypothalamus (ARC), the GHR 86 

is involved in a negative feedback loop that regulates GH production and secretion by GH-releasing 87 

hormone (GHRH) (8). As part of this negative feedback, GH inhibits it’s own secretion acting on the 88 

GHR in neuropeptide Y (NPY) neurons in the ARC and somatostatin (SST) neurons in the 89 

paraventricular nucleus (PVN). Activation of these neurons augments SST release and inhibits GH 90 

secretion (16,17). In recent years, it became clear that GH action in the ARC represents an important 91 

component of energy homeostasis (13). We have recently shown that neuronal-specific deletion of 92 

GHR in leptin receptor (LepRb)-expressing neurons in the hypothalamus impaired hepatic glucose 93 

production and systemic lipid metabolism (18). Additionally, mice lacking GHR specifically in the 94 

orexigenic agouti-related peptide (AgRP) expressing neurons in the ARC display impaired responses 95 

to fasting and food restriction, while deletion of GHR from anorexigenic proopiomelanocortin (POMC) 96 

neurons in the ARC did not produce significant metabolic phenotype (19,20). Collectively, these 97 

results indicated unique roles of GHR-expressing neurons in the ARC in metabolic control. However, 98 

in vivo GH-mediated activation of GHR-expressing neurons were not studied. 99 

In the current study, we specifically aimed at studying in vivo activation of these complex 100 

neural circuitry of the GHR-expressing neurons in the ARC. To that end, we developed a novel GHR-101 
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driven cre mouse (GHRcre) using the CRISPR/Cas9 gene-editing technology.  The new GHRcre model 102 

allowed us to both track and activate GHR-expressing neurons. Utilizing these mice, we studied the 103 

functional roles of GHR neurons in the ARC in the regulation of systemic glucose metabolism and 104 

energy homeostasis. We found that activation of GHRARC neurons acutely increased systemic glucose 105 

sensitivity, energy expenditure, and heat production. Overall, our study revealed a novel network of 106 

metabolic regulation through the hypothalamic GH axis in the ARC. Finally, our mouse model provides 107 

a novel tool to identify specific neuronal populations mediating the effects of GH in different brain 108 

regions. 109 

 110 
 111 

 112 

113 
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Materials and Methods 114 

 115 
Experimental Animals: 116 

GHRcre mice were generated using the Clustered Regularly Interspaced Short Palindromic 117 

Repeats associated protein Cas9 (CRISPR/Cas9) technology (21,22). All procedures were performed 118 

at the University of Michigan Transgenic Core as before (22). A detailed description of the procedures 119 

is described in Supplementary Materials and Methods. tdTomato mice on the ROSA26 background 120 

(B6.Cg-Gt(ROSA)26SortP

m14(CAG-tdTomato)Hze
P/J, (stock 007914) were purchased from The Jackson 121 

Laboratory.  Adult male mice (8-12 weeks old) were used for all studies.  All mice were provided 19Tad 122 

libitum 19T access to standard chow diet (Purina Lab Diet 5001) and housed in temperature-controlled 123 

rooms on a 12-hour/12-hour light-dark cycle. Mice were bred and housed within our colony according 124 

to guidelines approved by the Wayne State University Committee on the Care and Use of Animals.   125 

 126 

Perfusion and Histology:  127 

Mice were anesthetized (IP) with avertin and transcardially perfused with phosphate-buffered 128 

saline (PBS) (pH 7.5) followed by 4% paraformaldehyde (PFA). Brains were post-fixed, sank in 30% 129 

sucrose, frozen in OCT medium, and then sectioned coronally (30 µm) and processed for 130 

immunohistochemistry as previously described (23,24). For immunohistochemistry, free-floating 131 

brain sections were washed in PBS, blocked using 3% normal donkey serum (NDS) and 0.3% Triton 132 

X-100 in PBS and then stained with a primary antibody for 48 hours at 4°C with agitation in blocking 133 

buffer: DsRed (anti-rabbit, 1:5000, cat. number NC9580775, Takara), GFP (anti-chicken, 1:1000, cat. 134 

number ab13970, Abcam), anti-tdTom (anti-goat, 1:500, cat. number AB8181-200, Scigen), pSTAT5 135 

(anti-rabbit, 1:500, cat. number 9359, Cell Signaling), GFAP (anti-chicken, 1:500, cat. number 136 

Ab5541, Millipore), Iba-1 (anti-goat, 1:1000, cat. number ab5076, Abcam) and cFos (anti-sheep, 137 

1:500, cat. number ab6167, Abcam) For pSTAT5 staining sections were pretreated for 10 min in 90% 138 

Methanol and 10% H2O2 in PBS before blocking buffer incubation. On the following day, all floating 139 

brain sections were washed with PBS 0.1M and incubated with the following secondary antibodies for 140 
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2 hours: donkey anti-rabbit, anti-goat, anti-sheep, anti-chicken Alexa Fluor 488 and/or 568 (Invitrogen, 141 

1:200). For the staining specificity control, the immunohistochemical experiments were performed 142 

with brain sections in which the primary antibody was omitted and substituted with serum. 143 

 144 

Two-plex fluorescent in-situ hybridization: 145 

Fixed-frozen ARC-containing GHRcre brain sections of 12-week old male mice (10µm) were 146 

processed for the RNAscope Fluorescent Multiplex assay (Advanced Cell Diagnostics, Inc). The 147 

samples were double-labeled with probes for GHR (Mm-Ghr-C2 464951), GHRH (Mm-Ghrh-C2 148 

470991), or SST (Mm-Sst-C2 404631) together with tdTom (tdTomato-C3 317041). 149 

 150 

Images and data analysis:  151 

All sections used for ISH were visualized with a Zeiss M2 microscope blindly. All other 152 

fluorescent sections were visualized with a Nikon Eclipse Ni microscope coupled to a Nikon DS-Ri2 153 

camera. Photomicrographs were captured using the NIS-Elements Br 5.0 Zen software. Fiji ImageJ 154 

image-editing software was used to overlay photomicrographs to construct merged images and to 155 

mount plates. Only sharpness, contrast, and brightness were adjusted and the same values for each 156 

target labeled were applied.  157 

 158 

Surgery and viral injections: 159 

Stereotaxic viral injections were performed as described (25). Briefly, animals were 160 

anesthetized using 1-3% isoflurane, their head shaved and placed in a three-dimensional stereotaxic 161 

frame (Kopf 1900, Cartesian Research Inc., CA). The skull was exposed with a small incision, and 162 

two small holes were drilled for bilateral microinjection (200 nL/side) of the excitatory DREADD, AAV8-163 

hSyn-DIO-hM3DGq-mCherry (cat. number # 44361-AAV8, Addgene) into the ARC of GHRcre mice at 164 

stereotaxic coordinates based on the Mouse Brain Atlas: A/P: -1.3, M/L: +/-0.2, D/V: -5.85 (26). 165 

Animals received a pre-operative dose of buprenorphine hydrochloride (1 mg/kg). After surgery, mice 166 

were allowed 2 weeks of recovery to maximize virally-transduced gene expression and to acclimate 167 
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animals to handling and experimental paradigms before the study. Activation of the DREADD receptor 168 

was induced by intraperitoneal administration of the agonist, clozapine-N-oxide (CNO, 0.3 mg/kg, ip, 169 

cat. number 4936, Tocris). Expression was verified post hoc in all animals, and any data from animals 170 

in which the transgene expression was located outside the targeted area were excluded from analysis.  171 

 172 

Metabolic Analysis:  173 

Following recovery, GHRcre mice with activating DREADD (hM3Dq) underwent glucose 174 

metabolism and energy expenditure assays as previously described (27). Intraperitoneal glucose 175 

tolerance tests were performed on mice fasted for 6 hours. Mice were administered with 0.9% saline 176 

or CNO 1 hour before glucose (2 g/kg BW) injection. GTTs tests were performed one week apart and 177 

blood glucose levels were measured as before (28). Blood insulin was determined using a Mouse 178 

Insulin ELISA kit (cat. number 50-194-7920, Crystal Chem. Inc.).  For peripheral GH stimulation 179 

(recombinant mouse GH, 12.5 µg/100g BW, National Hormone & Peptide Program, Harbor-UCLA 180 

Medical Center, CA), mice were injected i.p. and perfused 1.5 hours later, for pSTAT5 immunostaining 181 

as described before (18). Metabolic measurements of energy homeostasis were obtained using an 182 

indirect calorimetry system (PhenoMaster, TSE system, Bad Homburg, Germany). The mice were 183 

acclimatized to the cages for 3 days and monitored for 5 days, food and water were provided ad 184 

libitum. Following acclimatization, GHRcre excitatory DREADD-expressing mice received an i.p. 185 

injection of vehicle (0.9% saline) and measurements were analyzed for the following 8 hours. Mice 186 

remained in the chambers with food and water ad libitum and 72 hours later the same experimental 187 

design was repeated, and animals were treated with an i.p. injection of CNO (0.3 mg/kg). Data were 188 

analyzed vehicle vs CNO per mouse.   189 

 190 

Statistical analysis: 191 

Unless otherwise stated mean values ± SEM is presented in graphics. GTT data were 192 

analyzed by residual maximum likelihood (REML) mixed model followed by Sidak’s post hoc while 193 

cumulative RER, heat production, ambulatory activity, food intake, and water intake data were 194 
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analyzed through paired t-test. Post‐hoc comparisons were only carried out when the p‐value was 195 

significant for effect and/or interactions. p < 0.05 was considered statistically significant. 196 

  197 
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Results 198 

Characterization of the GHRcre mice. To characterize the role of GHR-expressing neurons in the 199 

ARC, we have developed a GHR cell-specific molecular tool (GHRcre) using CRISPR/Cas9 gene-200 

editing technology (Supplementary Figure 1A). The GHRcre mice reproduced in Mendelian ratio and 201 

both male and female mice exhibited normal body weight, and fed/fasting blood glucose levels 202 

(Supplementary Figure 1B and 2).  GHRcre mouse line was validated by a cre-dependent Rosa26-203 

tdTomato reporter mouse. The expression pattern of tdTomato reporter revealed the presence of 204 

GHRcre-expressing neurons in the several areas of the hypothalamus (Figure 1A), including the 205 

midbrain and hindbrain (Supplementary Figure 1C and Supplementary Table 1 and 2) (8,13). To 206 

validate the expression of GHR in our GHRtdTom mice, we performed RNA in situ hybridization with 207 

RNAscope, using probes against GHR and tdTomato in the hypothalamic arcuate nucleus (ARC). As 208 

seen in Figure 1B, the majority of TdTomato+ neurons were positive for the expression of the GHR 209 

gene.  210 

Upon binding to the GHR, GH triggers the activation of the JAK/Stat5 pathway (4,29,30). To 211 

track GH-mediated STAT5 phosphorylation (pSTAT5), acute intraperitoneal GH injection was given 212 

to the GHRtdTom mice. We found that pStat5 was colocalized with the majority of the ARCGHR+ neurons 213 

(Figure 2A). We did not detect the colocalization of GHRtdTom+ cells in astrocytes positive to glial 214 

fibrillary acidic protein (GFAP). Additionally, the Iba1, a marker of microglia, did not co-localize with 215 

tdTomato (Figure 2B), indicating that GHR signaling is principally targeting neurons and not glia cells.  216 

To determine whether GHRARC+ neurons overlap with other known ARC populations that are 217 

involved in neuroendocrine regulation, we further examined the expression of SST and GHRH in 218 

identified GHRARC+ neurons using double IHC and ISH. We found two-plex fluorescent ISH for GHRH 219 

or SST and tdTomato mRNAs colocalized in the ARC of GHRtdTom mice (Figure 3), as previously 220 

reported (12). In support of previous studies (19,31), we further confirmed a substantial overlap of 221 

GHR+ neurons in the ARC with AgRP-expressing neurons in the GHRtdTom 
Pmice (Supplementary 222 

Figure 3A). Additionally, in support of the single-cell sequencing data (31), we found a minimal 223 
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colocalization with dopaminergic neurons (GHRtdTom+/TH+ cells), and with POMC neurons 224 

(GHRtdTom+/β-endorphin+ cells) in the ARC (Supplementary Figure 3B and 3C).  225 

 226 

GHRARC+ neurons regulate glucose metabolism. The hypothalamic GHR-expressing 227 

neuronal circuits operate within complex physiological settings involving the interrelationships 228 

between SST, GHRH, and AgRP-expressing neurons. We aimed to directly assess the contribution 229 

of ARC GHR-expressing neuronal populations to glucose metabolism and energy homeostasis. To 230 

achieve that, we employed a Cre-dependent DREADD (Designer Receptors Exclusively Activated by 231 

Designer Drugs) virus to acutely modulate neuronal activity in response to peripheral injection of an 232 

otherwise inert compound, clozapine N-oxide (CNO) (32-34). To determine whether activation of 233 

GHRARC+ neurons can influence blood glucose levels, we enhanced the GHRARC+ neuronal activity of 234 

GHRCre mice by stereotactically injecting AAV8-DIO-hM3Dq-mCherry into the ARC and activated the 235 

transduced cells with CNO (Figure 4A).  Specific activation of GHRARC neurons was demonstrated by 236 

nuclear c-Fos expression as a marker of neuronal activation in AAV8-DIO-hM3Dq-mCherry-ARC-237 

injected GHRcre mice treated with vehicle (data not shown) or CNO (Figure 4A) before perfusion. CNO 238 

administration resulted in a significant increase in c-Fos expression in hM3Dq-expressing ARC 239 

neurons. Basal blood glucose and serum insulin concentrations were indistinguishable between 240 

baseline and CNO injected mice (Figure 4B and D).  Each animal served as its own control (e.g., 241 

saline versus CNO). Despite unchanged fasting blood glucose levels, AAV8-DIO-hM3Dq-mCherry-242 

ARC CNO-treated GHRcre mice displayed significantly increased glucose disposal, indicating 243 

increased sensitivity in response to an intraperitoneal glucose load (AUC baseline: 1234 ± 88. 67 vs 244 

AUC CNO: 1049 ± 84. 27, t-test p < 0.05, Figure 4B and C). Of note, the DREADD virus per se (off-245 

target infection, with or without CNO) did not affect glucose tolerance (data not shown).  246 

GHRARC+ neurons regulate energy balance and heat production. To establish the 247 

significance of GHRARC+ neurons in the control of energy utilization, we analyzed components of 248 

energy expenditure in ad libitum-fed 12-week-old male GHRcre mice. We injected mice with CNO in 249 

the morning during the light cycle, a time in which mice normally refrain from eating. Using a single-250 
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subject approach where each mouse serves as its own control, we showed that stimulation of 251 

GHRARC+ neurons produced a significant increase in energy expenditure (Figure 5A), which lasted for 252 

approximately 8 hours. This effect was also associated with a significant increase in heat production 253 

in these CNO stimulated hM3Dq-ARC-injected GHRcre mice (paired t-test, p < 0.05) (Figure 5B). CNO 254 

stimulated locomotor activity was equivalent to the baseline measurements (Figure 5C). Notably, 255 

acute activation of AgRP neurons markedly reduces energy expenditure (25), emphasizing the 256 

complexity of ARC GH-responsive neurons, and suggesting that GHRARC+/AgRP- neurons are critical 257 

to driving energy homeostasis.  258 

Surprisingly, administering CNO to these mice acutely and significantly increased feeding and 259 

drinking responses (Figure 6A and B), suggesting that GHRARC+ neurons are orexigenic neurons 260 

functionally similar to AgRP/SST neuronal cluster in the ARC (31). 261 

 262 

 263 
 264 
 265 
 266 

267 
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Discussion 268 

We present herein a novel mouse model that expresses cre recombinase driven by 269 

the GHR promoter. Specifically, using tdTomato immunoreactivity as a marker of GHR expression in 270 

GHRtdTom mice, we unraveled the uncharacterized population of GHR expressing neurons in the ARC. 271 

Further, using a site-specificity approach we have characterized the function of GHR+ population in 272 

the ARC. Using a combination of a genetic mouse model with site-specific delivery of chemogenetic 273 

agent (CNO) we identified, for the first time, a GHRARC+ neuronal population that plays a critical role 274 

in the maintenance of peripheral glucose metabolism and energy homeostasis.  275 

The distribution of GHR-expressing neurons in the brain by GHRdTom reporter  resembles that 276 

determined by in situ hybridization and by systemic GH injections followed by pSTAT5 expression 277 

pattern in the brain (8,12,13). Large populations of GHR-expressing neurons lay in the hypothalamus, 278 

especially in the ARC, DMH, and VMH; other substantial populations reside in the posterior 279 

hypothalamic area and ventral pre-mammillary nucleus. The hippocampus areas, the cortex, the 280 

cerebellum, and the olfactory area also contain substantial concentrations of GHR-expressing 281 

neurons. The nucleus tractus solitarius (NTS) represents the hindbrain site with significant numbers 282 

of GHR-expressing neurons. Another substantial number of GHR- expressing neurons were 283 

distributed in the thalamus region. These observations are consistent with the expected expression 284 

pattern of GHR in the brain (8,12,13), and for the first time enabled us to study the function of specific 285 

GHR populations throughout the brain.  286 

Evidence for the importance of GH-responsive neurons in the hypothalamus in modulating 287 

metabolism was reported in several studies (35-38). We have recently identified a unique population 288 

of nutrient-sensing leptin receptor (LepRb)-GHR expressing neurons that regulate hepatic glucose 289 

production and lipid metabolism, suggesting that these neurons are crucial for the metabolic functions 290 

of GHR-neurocircuitry (18). LepRb neurons co-express GHR in the ARC, DMH, and LHA, suggesting 291 

the role of GHR in these neurons as an integrating site of glucose metabolism regulation. In the ARC 292 

there is minimal overlap between AgRP neurons and SST neurons, with some transcriptional 293 

similarities between these neurons such as in their synaptic circuitry and function (31,39). Recent 294 
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single-cell analysis of ARC neurons demonstrated that GHR is highly expressed in the tight cluster of 295 

AgRP+/SST+ neurons together with corticotropin-releasing factor receptor 1 (Crhr1) (31), suggesting 296 

the potential role of these ARC neurons in GH neurocircuitry.  297 

The circuitries engaged by GHRARC neurons involve several neuroendocrine populations such 298 

as the SST, GHRH, and AgRP since GHRARC neurons are co-localized with these cells in the ARC. 299 

The majority of GHRARC+ neurons in the ARC are also pSTAT5 immunoreactive after GH treatment, 300 

confirming their sensitivity to GH. We showed that chemogenetic activation of GHRARC+ neurons 301 

modulated both glucose metabolism and energy homeostasis indicating that GHRARC+ neurons lie 302 

within energy balance and glucoregulatory neurocircuits. While our current studies do not indicate 303 

which specific neuronal subpopulations within GHRARC are responsible for controlling each of these 304 

distinct physiological responses, genetic deletion of GHR in AgRP neurons did not affect glucose 305 

metabolism or energy homeostasis (19), indicating that the role of GHR in AgRP- populations in the 306 

ARC is to coordinate these responses. GHRARC neurons only partially overlap with SST and GHRH 307 

neurons, thus the contribution of these ARC neuronal populations to GHRARC-mediated glucose 308 

metabolism and energy homeostasis modulation remains to be clarified. 309 

One of the established effects of GH in the ARC - is inhibition of its own secretion, as part of 310 

an auto-feedback circuit, involving the interrelationships between SST, GHRH, and AgRP/NPY -311 

expressing neurons through GHR (40). This might be particularly important as properly regulated 312 

neural circuits within the GH axis modulate GH release under fed and fasting states (41), while the 313 

imbalance between these networks might be part of multiple maladaptive endocrine changes 314 

responsible for metabolic alterations in obesity. Our chemogenetic studies indicate that the 315 

hypothalamic GHR axis in ARC promotes glucoregulatory responses by enhancing glucose tolerance, 316 

and suggest that GHRARC neurons represent a distinct neuronal population within the GH axis that 317 

play a crucial role in the regulation of glucose metabolism. This effect is complementary to the counter-318 

regulatory enhancing effect of GH axis during hypoglycemia (42).  319 

GHRARC neurons represent a heterogeneous population, which includes neurochemically-320 

defined neurons that control specific physiologic functions. For example, acute chemogenetic 321 
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activation of AgRP neurons alters food intake and decreases energy expenditure (25). Additionally, 322 

activation of AgRP neurons acutely impairs systemic insulin sensitivity by inhibiting glucose uptake in 323 

brown adipose tissue (43). However, while the majority of GHR+ neurons in the ARC colocalize with 324 

AgRP neurons, GHR represents only a very small cluster within AgRP neuronal population (31); 325 

therefore, it remains possible that other GHR+ neuronal populations in the ARC contribute to GHRARC-326 

mediated modulation of energy balance. In support, chemogenetic activation of ARC-SST neurons, 327 

or intracerebroventricular (i.c.v.) infusion of SST analog acutely and significantly increases feeding 328 

responses (31,44). Infusion of SST analog also increases energy expenditure, drinking behavior, and 329 

lowers glycemic values (44), similar to the chemogenetic activation of GHRARC neurons. These 330 

findings indicate some functional similarities between SST and GHRARC neurons whose activation is 331 

sufficient in driving feeding, glucoregulation, and energy balance.  332 

 333 
In summary, we have generated the GHRtdTom mouse model to characterize the anatomical 334 

localization of brain-wide GHR expression. Using the GHRtdTom mouse model we demonstrate that 335 

GHRARC comprises a unique neuronal population capable of controlling energy balance and glucose 336 

metabolism. While the significance of this ARC subpopulation of GH-responsive neurons in the control 337 

of certain aspects of energy balance and glucose regulation remains to be elucidated, our study 338 

emphasizes the role of GH axis as an essential hypothalamic center in regulating metabolic functions 339 

and provides a resource for studying the biology and functionality of GH-responsive neuronal 340 

populations in the brain. 341 

 342 
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Figure Legends: 513 

Figure 1. GHR-expressing neurons in the hypothalamus. To visualize cre-expressing 514 

neurons, mice were crossed with tdTomato reporter mice. (A) Immunofluorescent image of GHR+ 515 

neurons in the hypothalamus (red, TdTomato). The dashed box indicates a region of the arcuate 516 

nucleus of the hypothalamus (ARC) that is digitally enlarged and shown as an inset. (B) Two-plex 517 

fluorescent in situ hybridization of GHR mRNA (green) and tdTomato mRNA (red) was performed on 518 

coronal slices in the ARC. The dashed box indicates the region of the ARC that is digitally enlarged 519 

and shown as inset demonstrating the colocalization of GHR and tdTomato mRNA (white arrows). 3V 520 

= Third ventricle. Scale bar: 100 µm.   521 

Figure 2. Characterization of GHR-expressing neurons in the ARC. (A) GH signaling in 522 

GHR-expressing neurons in the ARC. Immunofluorescence for pSTAT5 in 12-week-old GHRtdTom 523 

mice injected IP with vehicle (saline) or GH (12.5µg/100g BW; 1.5 hr). Representative images from 524 

the ARC of GHRtdTom mice are shown. pSTAT5 (green), TdTomato (red), and merged images of the 525 

indicated mice (colocalization is shown by arrows). (B) Representative images of astrocytes identified 526 

by immunofluorescent detection of GFAP protein (green, upper panel) and microglia evaluated by 527 

Iba1 immunostaining (green, lower panel) in the ARC obtained from GHRtdTom mice (red, TdTomato). 528 

3V = Third ventricle. Scale bar: 100 µm. 529 

Figure 3. GHR-expressing neurons colocalization with SST and GHRH in the ARC. Two-530 

plex fluorescent in situ hybridization of (A) SST mRNA (green), tdTomato mRNA (red) and DAPI 531 

(blue), and (B) GHRH mRNA (green), tdTomato mRNA (red) and DAPI (blue) was performed on 532 

coronal slices containing the ARC. Dashed box indicates the region of the ARC that is digitally 533 

enlarged and shown as inset demonstrating the colocalization of SST and tdTomato mRNA or GHRH 534 

and tdTomato. 3V = Third ventricle. Scale bar: 100 µm.  535 

Figure 4. Acute activation of GHRARC neurons increases glucose tolerance. (A) Neuronal 536 

activation by cFos (green) was assessed 90 minutes after CNO stimulation. IHC for mCherry (red) 537 

identifies AAV-hM3Dq expression in GHRARC neurons in the ARC. Merged image (green/red) and 538 

dashed box indicate the region of the ARC that is digitally enlarged and shown as inset demonstrating 539 
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the colocalization of cFos and mCherry. 3V =Third ventricle. Scale bar: 100 µm.  (B) Glucose tolerance 540 

tests (GTT) of 12-week old male mice performed one week apart. Saline (0.1 mL/10 g BW – Baseline) 541 

or CNO (0.3 mg/kg BW i.p) was injected 1 hour before i.p. GTT. The effect of GHRARC activation was 542 

analyzed by residual maximum likelihood (REML) mixed model followed by Sidak’s post hoc. (C) GTT 543 

area under the curve (AUC) was analyzed by a paired t-test. (D) Fasted insulin levels. Results are 544 

presented as mean ± SEM, n=7; * p < 0.05 compared to vehicle values 545 

Figure 5. Acute activation of GHRARC neurons increases energy homeostasis but not 546 

ambulatory activity. (A) Respiratory exchange ratio (RER). (B) Heat production. (C) Ambulatory 547 

activity assessed by a total of beam breaks. Mice were acclimated in metabolic cages and i.p. injected 548 

with either saline (grey) or CNO (red) at 10:30 am. On the right side, AUC of the light cycle period 549 

from the treatment time. Data are from male mice, analyzed by paired t-test (mean ± SEM, n = 7;         550 

* p < 0.05 compared to vehicle values) 551 

Figure 6. Acute activation of GHRARC neurons increases food and water intake. (A) Food 552 

intake. (B) Water intake. Mice were acclimated in metabolic cages and i.p. injected with either saline 553 

(grey) or CNO (red) at 10:30 am. Results are presented as mean ± SEM (filled area). On the right 554 

side, AUC of the light cycle period from the treatment time. Data are from male mice, analyzed by 555 

paired t-test (mean ± SEM, n = 7; * p < 0.05 compared to vehicle values 556 
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Distribution of GHRcre/cre TDTom immunoreactive neurons 

Brain areas and nuclei GHRcre/cre tdTom-ir 

LO Lateral orbital cortex ++++ 

AO Anterior olfactory area ++++ 

OC Orbital cortex ++ 

PrL Prelimbic cortex +++ 

M2 Secondary motor cortex ++ 

Cg Cingulate cortex ++ 

Pir Piriform cortex ++ 

Acb Accumbens nucleus ++ 

LS Lateral septal nucleus +++ 

BNST Bed nucleus of the stria terminalis ++ 

SFO Subfornical organ ++++ 

PVA Paraventricular thalamic nucleus +++ 

DG Dentate gyrus +++ 

CA3 Field CA3 hippocampus ++ 

LaA Lateral amygdala ++ 

BLA Basolateral amygdala ++ 

PMd Dorsal premammillary nucleus  + 

PAG Periaqueductal gray ++ 

MM Mammillary nucleus ++ 

IP Interpeduncular nucleus + 

CRL Cerebellum ++++ 

NTS Nucleus of solitary tract ++ 

AP Area postrema ++ 

 

Table 1
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Distribution of GHRcre/cre TDTom immunoreactive neurons 

hypothalamic areas and nuclei GHRcre/cre tdTom-ir 

MPOa Medial preoptic area + 

RCH Retrochiasmatic area ++ 

PVH Paraventricular nucleus ++ 

ARH Arcuate nucleus ++ 

VMH Ventromedial nucleus +++ 

DMh Dorsomedial nucleus +++ 

LHA Lateral hypothalamic area + 

DA Dorsal hypothalamic area + 

pHA Posterior hypothalamic area +++ 

pmV Ventral premammillary nucleus ++ 

 

Table 2
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