

# 1 The Structural Basis of Rubisco Phase Separation in the Pyrenoid

2

3 Shan He<sup>1</sup>, Hui-Ting Chou<sup>2</sup>, Doreen Matthies<sup>2</sup>, Tobias Wunder<sup>3</sup>, Moritz T. Meyer<sup>1</sup>, Nicky  
4 Atkinson<sup>4</sup>, Antonio Martinez-Sanchez<sup>5,6</sup>, Philip D. Jeffrey<sup>1</sup>, Sarah A. Port<sup>1</sup>, Weronika Patena<sup>1</sup>,  
5 Guanhua He<sup>1</sup>, Vivian K. Chen<sup>7</sup>, Frederick M. Hughson<sup>1</sup>, Alistair J. McCormick<sup>4</sup>, Oliver Mueller-  
6 Cajar<sup>3</sup>, Benjamin D. Engel<sup>5,8</sup>, Zhiheng Yu<sup>2</sup>, Martin C. Jonikas<sup>1,\*</sup>

7

8 <sup>1</sup>Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA. <sup>2</sup>Janelia  
9 Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147,  
10 USA. <sup>3</sup>School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive,  
11 Singapore 637551, Singapore. <sup>4</sup>SynthSys & Institute of Molecular Plant Sciences, School of  
12 Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK. <sup>5</sup>Department of

13 Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried,  
14 Germany. <sup>6</sup>Institute of Neuropathology, University of Göttingen Medical Center, 37075  
15 Göttingen, Germany. <sup>7</sup>Department of Biology, Stanford University, Stanford, CA 94305, USA.  
16 <sup>8</sup>Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany.

17 \*Correspondence and Lead Contact: [mjonikas@princeton.edu](mailto:mjonikas@princeton.edu).

18

19 **Abstract**

20 Approximately one-third of global CO<sub>2</sub> fixation occurs in a phase separated algal organelle called  
21 the pyrenoid. Existing data suggest that the pyrenoid forms by the phase-separation of the CO<sub>2</sub>-  
22 fixing enzyme Rubisco with a linker protein; however, the molecular interactions underlying this  
23 phase-separation remain unknown. Here we present the structural basis of the interactions between  
24 Rubisco and its intrinsically disordered linker protein EPYC1 (Essential Pyrenoid Component 1)  
25 in the model alga *Chlamydomonas reinhardtii*. We find that EPYC1 consists of five evenly-spaced  
26 Rubisco-binding regions that share sequence similarity. Single-particle cryo-electron microscopy  
27 of one of these regions in complex with Rubisco indicates that each Rubisco holoenzyme has eight  
28 binding sites for EPYC1, one on each Rubisco small subunit. Interface mutations disrupt binding,  
29 phase separation, and pyrenoid formation. Cryo-electron tomography supports a model where  
30 EPYC1 and Rubisco form a co-dependent multivalent network of specific low-affinity bonds,  
31 giving the matrix liquid-like properties. Our results advance the structural and functional  
32 understanding of the phase separation underlying the pyrenoid, an organelle that plays a  
33 fundamental role in the global carbon cycle.

34 **Main Text**

35 The CO<sub>2</sub>-fixing enzyme Rubisco drives the global carbon cycle, mediating the assimilation  
36 of approximately 100 gigatons of carbon per year<sup>1</sup>. The gradual decrease of atmospheric CO<sub>2</sub> over  
37 billions of years<sup>2</sup> has made Rubisco's job increasingly difficult, to the point where CO<sub>2</sub>  
38 assimilation limits the growth rate of many photosynthetic organisms<sup>3</sup>. This selective pressure is  
39 thought to have led to the evolution of CO<sub>2</sub> concentrating mechanisms, which feed concentrated  
40 CO<sub>2</sub> to Rubisco to enhance growth<sup>4</sup>. Of these mechanisms, the most poorly understood relies on  
41 the pyrenoid, a phase separated organelle<sup>5</sup> found in the chloroplast of nearly all eukaryotic algae  
42 and some land plants (Fig. 1a, b)<sup>6,7</sup>. The pyrenoid enhances the activity of Rubisco by clustering  
43 it around modified thylakoid membranes that supply Rubisco with concentrated CO<sub>2</sub><sup>8,9</sup>.

44 For decades, the mechanism for packaging the Rubisco holoenzyme into the pyrenoid  
45 remained unknown. Recent work showed that in the leading model alga *Chlamydomonas*  
46 *reinhardtii* (Chlamydomonas hereafter), the clustering of Rubisco into the pyrenoid matrix  
47 requires the Rubisco-binding protein EPYC1<sup>10</sup>. EPYC1 and Rubisco are the most abundant  
48 components of the pyrenoid and bind to each other. Moreover, combining purified EPYC1 and  
49 Rubisco together produces phase-separated condensates<sup>11</sup> that mix internally at a rate similar to  
50 that observed for the matrix *in vivo*<sup>5</sup>, suggesting that these two proteins are sufficient to form the  
51 structure of the pyrenoid matrix. The sequence repeats within EPYC1 and eight-fold symmetry of  
52 the Rubisco holoenzyme led us to hypothesize that EPYC1 and Rubisco each have multiple  
53 binding sites for the other, allowing the two proteins to form a co-dependent condensate (Fig. 1c)<sup>10</sup>.

54 Here, we determined the structural basis that underlies the EPYC1-Rubisco condensate.  
55 Using biophysical approaches, we found that EPYC1 has five evenly spaced Rubisco-binding  
56 regions that share sequence homology and can bind to Rubisco as short peptides. We obtained a  
57 cryo-electron microscopy structure, which shows that each of EPYC1's Rubisco-binding regions  
58 forms an  $\alpha$ -helix that binds one of Rubisco's eight small subunits via salt bridges and hydrophobic  
59 interactions. Mapping of these binding sites onto Rubisco holoenzymes within the native pyrenoid  
60 matrix indicates that the linker sequences between Rubisco-binding regions on EPYC1 are  
61 sufficiently long to connect together adjacent Rubisco holoenzymes. These discoveries advance  
62 the understanding of the pyrenoid, and provide a high resolution structural view of a phase-  
63 separated organelle.

64

65 **Results**

66 **EPYC1 has five nearly-identical Rubisco-binding regions**

67 We could not directly determine the structure of full-length EPYC1 bound to Rubisco because  
68 mixing the two proteins together produces phase separated condensates<sup>11</sup>. We thus aimed to first  
69 identify Rubisco-binding regions on EPYC1, and subsequently to use a structural approach to  
70 determine how these regions bind to Rubisco.

71 The intrinsically disordered nature of purified EPYC1<sup>11</sup> led us to hypothesize that the  
72 Rubisco-binding regions of EPYC1 were short and could bind to Rubisco as peptides without a  
73 need for tertiary folds. Therefore, to identify EPYC1 regions that bind to Rubisco, we synthesized  
74 a peptide array consisting of 18 amino acid peptides tiling across the full length EPYC1 sequence  
75 (Fig. 1d), and probed this array with native Rubisco purified from Chlamydomonas cells (Fig. 1e,  
76 f).

77 Our tiling array revealed five evenly-spaced Rubisco-binding regions on EPYC1, each  
78 consisting of a predicted  $\alpha$ -helix and an upstream region (Fig. 1g, h). We confirmed the binding  
79 regions using surface plasmon resonance (SPR; Extended Data Fig. 1b, c). Sequence alignment  
80 guided by the five binding regions revealed that mature EPYC1 consists entirely of five sequence  
81 repeats (Fig. 1i), in contrast to the previously defined four repeats and two termini<sup>10</sup> (Extended  
82 Data Fig. 1a). Our alignment indicates that the previously defined EPYC1 N- and C- termini, which  
83 at the time were not considered part of the repeats, actually share sequence homology with the  
84 central repeats.

85 The presence of a Rubisco-binding region on each of the previously defined EPYC1 repeats  
86 (Extended Data Fig. 1a) explains our yeast two-hybrid observations<sup>12</sup> that a single EPYC1 repeat  
87 can interact with Rubisco, that knocking out the  $\alpha$ -helix in an EPYC1 repeat disrupts this  
88 interaction, and that decreasing the number of EPYC1 repeats leads to a proportional decrease in  
89 EPYC1 interaction with Rubisco. It also explains our observations that decreasing the number of  
90 EPYC1 repeats leads to a proportional decrease in the tendency of EPYC1 and Rubisco to phase  
91 separate together<sup>11</sup>.

92

93 **EPYC1 binds to Rubisco small subunits**

94 The sequence homology of the five Rubisco-binding regions suggests that each region binds to  
95 Rubisco in a similar manner. To identify the binding site of EPYC1 on Rubisco, we performed

96 single-particle cryo-electron microscopy on a complex of Rubisco and a peptide corresponding to  
97 the first Rubisco-binding region of EPYC1 (Fig. 2a). We selected this region of EPYC1 because  
98 in preliminary experiments it had the highest affinity to Rubisco, which was still low by protein  
99 interaction standards ( $K_D \sim 3$  mM; Extended Data Fig. 1d, e). This low affinity meant that  
100 millimolar concentrations of peptide were required to approach full occupancy of peptide bound  
101 to Rubisco, leading to challenges with peptide insolubility and high background signal in the  
102 electron micrographs. Despite these challenges, we successfully obtained a 2.62 Å structure of the  
103 complex (~2.9 Å EPYC1 peptide local resolution; Fig. 2, Extended Data Fig. 2 and 3; Extended  
104 Data Table 1). For reference purposes, we also obtained a 2.68 Å cryo-electron density map of  
105 Rubisco in the absence of EPYC1 peptide (Extended Data Fig. 2), which was nearly identical to  
106 the previously published X-ray crystallography structure<sup>13</sup>, with minor differences likely due to  
107 the absence of the substrate analog 2-CABP in the active site of Rubisco in our sample<sup>14</sup> (Extended  
108 Data Fig. 4).

109 The Rubisco holoenzyme consists of a core of eight catalytic large subunits in complex  
110 with eight small subunits, four of which cap each end of the holoenzyme (Fig. 2b-e). In our  
111 structure, an EPYC1 peptide was clearly visible bound to each Rubisco small subunit, suggesting  
112 that each Rubisco holoenzyme can bind up to eight EPYC1s (Fig. 2b-e).

113

#### 114 **Binding is mediated by salt bridges and a hydrophobic interface**

115 The EPYC1 peptide forms an extended chain that sits on top of the Rubisco small subunit's two  
116  $\alpha$ -helices (Fig. 3a, b). The structure explains our previous observations that mutations in the  
117 Rubisco small subunit  $\alpha$ -helices disrupted yeast two-hybrid interactions between EPYC1 and the  
118 Rubisco small subunit<sup>12</sup> and prevented Rubisco's assembly into a pyrenoid *in vivo*<sup>15</sup>. The C-  
119 terminal region of the EPYC1 peptide (NWRQELESLRN) is well-resolved and forms an  $\alpha$ -helix  
120 that runs parallel to helix B of the Rubisco small subunit (Fig. 3a, b). The peptide's N-terminus  
121 extends the trajectory of the helix and follows the surface of the Rubisco small subunit (Fig. 2b-e,  
122 3a-b and Extended Data Fig. 5a). The side chains of the peptide's N-terminus could not be well  
123 resolved, suggesting that this region is more conformationally flexible.

124 Our atomic model based on the density map suggests that binding is mediated by salt  
125 bridges and a hydrophobic interface. Three residue pairs likely form salt bridges (Fig. 3c, d and  
126 g): EPYC1 residues R64 and R71 interact with E24 and D23, respectively, of Rubisco small

127 subunit  $\alpha$ -helix A, and EPYC1 residue E66 interacts with R91 of Rubisco small subunit  $\alpha$ -helix B.  
128 Furthermore, a hydrophobic interface is formed by W63, L67 and L70 of EPYC1 and M87, L90  
129 and V94 of Rubisco small subunit helix B (Fig. 3e-g).

130

### 131 **Interface residues are required for binding and phase separation *in vitro***

132 To determine the importance of individual EPYC1 residues for binding, we investigated the impact  
133 on Rubisco binding of every possible single amino acid substitution for EPYC1's first Rubisco-  
134 binding region by using a peptide array (Fig. 4a) and SPR (Extended Data Fig. 5b). Consistent  
135 with our structural model, the peptide array indicated that EPYC1 salt bridge-forming residues  
136 R64, R71 and E66 and the hydrophobic interface residues W63, L67 and L70 were all required for  
137 normal EPYC1 binding to Rubisco. The strong agreement of our mutational analysis suggests that  
138 our structural model correctly represents EPYC1's Rubisco-binding interface.

139 To determine the importance of EPYC1's Rubisco-binding regions for pyrenoid matrix  
140 formation, we assayed the impact of mutations in these regions on formation of phase separated  
141 droplets by EPYC1 and Rubisco *in vitro*. The phase boundary was shifted by mutating R64 in the  
142 first Rubisco-binding region and the corresponding K or R in the other four Rubisco-binding  
143 regions of EPYC1 (Fig. 4b and Extended Data Fig. 5c-e), suggesting that the Rubisco-binding  
144 regions mediate condensate formation.

145

### 146 **The binding interface is required for pyrenoid matrix formation *in vivo***

147 We validated the importance of Rubisco residues for binding to EPYC1 by yeast two-hybrid assays  
148 (Fig. 5a and Extended Data Fig. 6). Rubisco small subunit D23A mutation, which eliminates the  
149 charge of that residue, had a severe impact on Rubisco small subunit interaction with EPYC1, as  
150 expected from the contribution of that residue to a salt bridge with R71 of EPYC1. Likewise, E24A  
151 and R91A each showed a moderate defect, consistent with the contributions of those residues to  
152 salt bridges with R64 and E66 of EPYC1, respectively. Additionally, M87D and V94D, which  
153 convert hydrophobic residues to bulky charged residues, each had a severe impact on interaction,  
154 as expected from the participation of those residues in the hydrophobic interface. Combinations of  
155 these mutations abolished the interactions completely (Extended Data Fig. 6).

156 To evaluate the importance of the binding interface *in vivo*, we generated Chlamydomonas  
157 strains with point mutations in the binding interface. Rubisco small subunit mutations D23A/E24A

158 or M87D/V94D caused a growth defect under conditions requiring a functional pyrenoid (Fig. 5b,  
159 Extended Data Fig. 7a-b). Furthermore, the mutants lacked a visible pyrenoid matrix (Fig. 5c, d  
160 and Extended Data Fig. 7c), indicating that those Rubisco small subunit residues are required for  
161 matrix formation *in vivo*. The Rubisco mutants retained pyrenoid tubules<sup>16</sup>, as previously observed  
162 in other matrix-deficient mutants<sup>10,17-19</sup>.

163 Together, our data demonstrate that EPYC1's Rubisco-binding regions bind to the Rubisco  
164 small subunit  $\alpha$ -helices via salt-bridge interactions and a hydrophobic interface, enabling the  
165 condensation of Rubisco into the phase separated matrix.

166

### 167 **The spacing between EPYC1's Rubisco-binding regions allows linking of adjacent Rubisco 168 holoenzymes in the native pyrenoid matrix**

169 The presence of multiple Rubisco-binding regions along the EPYC1 sequence supports a model  
170 where consecutive Rubisco-binding regions on the same EPYC1 polypeptide can bind to different  
171 Rubisco holoenzymes and thus hold them together to form the pyrenoid matrix. If this model is  
172 correct, we would expect that the ~40 amino acid "linker" regions between consecutive Rubisco-  
173 binding regions on EPYC1 (Fig. 1g, i) would be sufficient to span the distance between EPYC1-  
174 binding sites on neighboring Rubisco holoenzymes in the pyrenoid matrix. To test this aspect of  
175 the model, we combined our atomic structure of the EPYC1-Rubisco interaction with the precise  
176 positions and orientations of Rubisco holoenzymes within the pyrenoid matrix of native cells that  
177 we had previously obtained by *in-situ* cryo-electron tomography<sup>5</sup> (Fig. 6a, b). We mapped the  
178 positions of EPYC1 binding sites onto Rubisco holoenzymes in the matrix and measured the  
179 distances between nearest neighbor EPYC1 binding sites on adjacent holoenzymes (Fig. 6c). The  
180 observed distances ranged from ~2 nm to ~7 nm, with a median distance of ~4 nm (Fig. 6d).

181 A "linker" region of 40 amino acids is unlikely to be stretched to its maximum possible  
182 length of 14 nm *in vivo* due to the high entropic cost of this configuration. To determine whether  
183 a linker region can span the observed distances between nearest neighbor binding sites on adjacent  
184 Rubisco holoenzymes, we used a simple physics model to calculate the energy required to stretch  
185 a 40 amino acid chain to any given distance (Fig. 6d; see Methods). The model indicates that  
186 stretching the chain to ~7 nm requires an energy of  $3 k_B T$  (where  $k_B$  is the Boltzmann constant and  
187  $T$  is the temperature), which could reasonably be borrowed from thermal fluctuations. Thus, our  
188 data suggest that the linker region between consecutive Rubisco-binding sites on the EPYC1

189 polypeptide can span the distance between adjacent Rubisco holoenzymes to hold the pyrenoid  
190 matrix together *in vivo*. It also appears likely that, in addition to bridging neighboring Rubisco  
191 holoenzymes, consecutive Rubisco-binding regions on a given EPYC1 may bind multiple sites on  
192 one Rubisco holoenzyme, as the distance between the nearest binding sites on the same  
193 holoenzyme is < 9 nm.

194

## 195 **Discussion**

### 196 **Our data explain the structural basis of Rubisco condensation into a pyrenoid matrix**

197 In this study, we have determined the structural basis for pyrenoid matrix formation for the first  
198 time in any species. We found that in the model alga Chlamydomonas, the intrinsically disordered  
199 protein EPYC1 has five regions of similar sequence that can bind to Rubisco as short peptides.  
200 These EPYC1 regions form an  $\alpha$ -helix that binds to the Rubisco small subunit  $\alpha$ -helices via salt  
201 bridges and hydrophobic interactions. EPYC1's Rubisco-binding regions are spaced by linker  
202 sequences that are sufficiently long to span the distance between binding sites on adjacent Rubisco  
203 holoenzymes within the pyrenoid, allowing EPYC1 to serve as a molecular glue that clusters  
204 Rubisco together to form the pyrenoid matrix (Fig. 6e).

205 The multivalency of EPYC1 and the high  $K_D$  (~3 mM; Extended Data Fig. 1e) of individual  
206 Rubisco-binding regions are consistent with the emerging principle that cellular phase separation  
207 is mediated by weak multivalent interactions<sup>20</sup>. The high dissociation rate constant (>1/s; Extended  
208 Data Fig. 1d) of individual Rubisco-binding regions explains how the pyrenoid matrix can mix  
209 internally on the time scale of seconds<sup>5</sup> despite the multivalency of EPYC1. The even spacing of  
210 the five Rubisco-binding regions across EPYC1 is noteworthy and may be an indication of  
211 selective pressure for an optimal distance between binding regions, and thus of an optimal spacing  
212 between Rubisco holoenzymes in the matrix.

213 Knowledge of the EPYC1-Rubisco binding mechanism now opens doors to the molecular  
214 characterization of the regulation of this interaction, which may govern the dissolution and  
215 condensation of the matrix during cell division<sup>5</sup> and in response to environmental factors<sup>21</sup>. For  
216 example, phosphorylation of EPYC1<sup>22</sup> may provide a mechanism to rapidly change the binding  
217 affinity of EPYC1 to Rubisco. Inactivation of one of EPYC1's five Rubisco-binding regions would  
218 yield four binding regions, which would allow two EPYC1 molecules to form a mutually satisfied  
219 complex with each Rubisco, a configuration that is predicted to favor dissolution of the matrix<sup>5</sup>.

220

221 **The Rubisco-EPYC1 structure explains how other key pyrenoid proteins bind to Rubisco**

222 In a parallel study (Meyer et al., please see unpublished manuscript provided as reference  
223 material), we recently discovered that a common sequence motif is present on many pyrenoid-  
224 localized proteins. The motif binds Rubisco, enabling recruitment of motif-containing proteins to  
225 the pyrenoid and mediating adhesion between the matrix, pyrenoid tubules, and starch sheath. This  
226 motif, [D/N]W[R/K]XX[L/I/V/A], is serendipitously present in EPYC1's Rubisco-binding  
227 regions, and the motif residues mediate key binding interactions with Rubisco. In our structure,  
228 the R/K of the motif is represented by R64 of EPYC1, which forms a salt bridge with E24 of the  
229 Rubisco small subunit. The XX of the motif almost always includes a D or E; in our structure this  
230 feature is represented by E66 of EPYC1, which forms a salt bridge with R91 of the Rubisco small  
231 subunit. Finally, the W and [L/I/V/A] of the motif are represented by W63 and L67 of EPYC1,  
232 which contribute to the hydrophobic interactions with M87, L90 and V94 of the Rubisco small  
233 subunit. The key roles of the motif residues in the interface presented here strongly suggest that  
234 the structure we have obtained for one motif from EPYC1 also explains where and how all other  
235 variants of the motif, including those found on the key pyrenoid proteins SAGA1, SAGA2,  
236 RBMP1, RBMP2 and CSP41A, bind to Rubisco. Our observation that the Rubisco small subunit  
237 D23A/E24A and M87D/V94D mutants exhibit a more severe disruption of the pyrenoid than the  
238 *epyc1* mutant<sup>10</sup> supports the idea that this region of Rubisco interacts not only with EPYC1, but  
239 also with other proteins required for pyrenoid biogenesis, making this binding interaction a central  
240 hub of pyrenoid biogenesis.

241

242 **There are structural similarities and differences between the pyrenoid matrix and bacterial**  
243 **carboxysomes**

244 Although  $\alpha$ - and  $\beta$ -carboxysomes are morphologically, functionally and evolutionarily distinct  
245 from the pyrenoid, their Rubisco is also thought to be clustered by linker proteins. Like EPYC1,  
246 the  $\alpha$ -carboxysome linker protein CsoS2<sup>23</sup> is intrinsically disordered and is proposed to bind  
247 Rubisco as an unfolded peptide<sup>24</sup>. In contrast, the  $\beta$ -carboxysome linker protein CcmM has been  
248 proposed to bind Rubisco using folded globular domains<sup>25,26</sup>. The use of an unfolded peptide as in  
249 the case of EPYC1 and CsoS2 may provide the benefit of requiring fewer amino acids for  
250 achieving the desired binding function. A notable difference is the location of the binding site on

251 Rubisco: whereas both carboxysomal linker proteins bind to the interface between two Rubisco  
252 large subunits<sup>24,26</sup>, EPYC1 binds to the Rubisco small subunit. It remains to be seen whether this  
253 difference in binding site has functional consequences, such as impacts on the three-dimensional  
254 packing of Rubisco.

255

256 **Our findings advance the ability to engineer a pyrenoid into crops**

257 There is currently significant interest in engineering Rubisco condensates into monocotyledonous  
258 crops such as wheat and rice to enhance yields<sup>27-30</sup>. Binding of EPYC1 to the Rubisco small subunit  
259 presents a promising route for engineering a Rubisco condensate, as the Rubisco small subunit is  
260 encoded in the nuclear genome, making it more easily amenable to genetic modification in those  
261 crops than the chloroplast-encoded Rubisco large subunit<sup>31</sup>. Knowledge of the binding mechanism  
262 now allows engineering of minimal sequence changes into native crop Rubiscos to enable binding  
263 to EPYC1 and to other key proteins required to reconstitute a functional pyrenoid.

264

265 **Our work provides insights into pyrenoid matrix formation in other species**

266 Pyrenoids appear to have evolved independently in different lineages through convergent  
267 evolution<sup>7,32</sup>. EPYC1, its Rubisco-binding sequences, and the amino acid residues that form the  
268 EPYC1 binding site on the surface of Rubisco are conserved across the order Volvocales, as  
269 evidenced from the genome sequences of *Tetraebaena socialis*, *Gonium pectorale* and *Volvox*  
270 *carteri* (Extended Data Table 2). While the molecular mechanisms of matrix formation in other  
271 lineages remain to be uncovered, candidate linker proteins have been identified based on similarity  
272 of sequence properties to EPYC1<sup>10</sup>. We hypothesize that the matrix in other lineages is formed  
273 based on similar principles to those we observed in Chlamydomonas. Our experimental approach  
274 for characterizing the binding interaction provides a roadmap for future structural studies of  
275 pyrenoids across the tree of life.

276

277 **This study provides a high-resolution structural view of a phase separated organelle**

278 The pyrenoid matrix presents an unusual opportunity to study a two-component molecular  
279 condensate where one of the components, Rubisco, is large and rigid, and the other component,  
280 EPYC1, is a simple intrinsically disordered protein consisting of nearly identical tandem repeats.  
281 The rigidity and size of Rubisco holoenzymes previously enabled the determination of their

282 positions and orientations within the pyrenoid matrix of native cells by cryo-electron tomography<sup>5</sup>.  
283 The identification of EPYC1 binding sites on Rubisco in the present work and the modeling of  
284 linker regions between EPYC1's Rubisco binding regions now make the Chlamydomonas  
285 pyrenoid matrix one of the most structurally well-defined phase separated organelles. Thus,  
286 beyond advancing our structural understanding of pyrenoids, organelles that play a central role in  
287 the global carbon cycle, we hope that the findings presented here will also more broadly enable  
288 advances in the biophysical understanding of phase separated organelles.

289 **Methods**

290 **Strains and culture conditions**

291 Chlamydomonas wild-type (WT) strain cMJ030 was maintained in the dark or low light (~10  $\mu\text{mol}$   
292 photons  $\text{m}^{-2} \text{s}^{-1}$ ) on 1.5% agar plates containing Tris-Acetate-Phosphate medium with revised trace  
293 elements<sup>33</sup>. For Rubisco extraction, 500 mL Tris-Acetate-Phosphate medium in a 1 L flask was  
294 inoculated with a loopful of cells and the culture was grown to  $4 \times 10^6$  cells/mL at 22°C, shaking  
295 at 200 rpm under ~100  $\mu\text{mol}$  photons  $\text{m}^{-2} \text{s}^{-1}$  white light in 3% CO<sub>2</sub>. Chlamydomonas mutant T60-  
296 3<sup>34</sup> ( $\Delta rbcS$ ; containing a deletion of both *RBCS* genes) was used for generating Rubisco small  
297 subunit point mutants and a wild-type control in the same background. This strain was maintained  
298 on agar in the dark or low light (~10  $\mu\text{mol}$  photons  $\text{m}^{-2} \text{s}^{-1}$ ).

299

300 **Protein extraction**

301 Rubisco was purified from Chlamydomonas strain cMJ030<sup>35</sup>. Cells were disrupted by  
302 ultrasonication in lysis buffer (10 mM MgCl<sub>2</sub>, 50 mM Bicine, 10 mM NaHCO<sub>3</sub>, 1 mM  
303 dithiothreitol, pH 8.0) supplemented with Halt Protease Inhibitor Cocktail, EDTA-Free (Thermo  
304 Fisher Scientific). The soluble lysate was fractionated by ultracentrifugation on a 10-30% sucrose  
305 gradient in a SW 41 Ti rotor at a speed of 35,000 rpm for 20 hours at 4°C. Rubisco-containing  
306 fractions were applied to an anion exchange column (MONO Q 5/50 GL, GE Healthcare) and  
307 eluted with a linear salt gradient from 30 to 500 mM NaCl in lysis buffer.

308

309 **Peptide arrays**

310 Peptide arrays were purchased from the MIT Biopolymers Laboratory (Cambridge, MA). The  
311 tiling array was composed of 18-amino-acid peptides that tiled across the full-length EPYC1  
312 sequence with a step size of one amino acid. Each peptide was represented by at least two spots  
313 on the array, and these replicates were averaged during data analysis. The locations of peptides on  
314 the array were randomized. In the substitution arrays, peptides were designed to represent every  
315 possible one-amino-acid mutation of the indicated region on EPYC1 by substitution with one of  
316 the other 19 amino acids. The arrays were activated by methanol, then washed 3x10 min in binding  
317 buffer (50 mM HEPES, 50 mM KOAc, 2 mM Mg(OAc)<sub>2</sub>.4H<sub>2</sub>O, 1 mM CaCl<sub>2</sub> and 200 mM sorbitol,  
318 pH 6.8). The arrays were then incubated at 4°C with 1 mg purified Rubisco overnight. The arrays  
319 were washed in binding buffer to remove any unbound Rubisco. Using a semi-dry transfer

320 apparatus (BIO-RAD), bound Rubisco was transferred onto an Immobilon-P PVDF membrane  
321 (Millipore Sigma). Rubisco was immuno-detected with a polyclonal primary antibody raised  
322 against Rubisco<sup>15</sup> (1:10,000) followed by a HRP conjugated goat anti-rabbit (1:20,000;  
323 Invitrogen). Arrays were stripped with Restore<sup>TM</sup> Western Blot Stripping Buffer before re-use  
324 (Thermo Fisher Scientific).

325

### 326 **Surface plasmon resonance (SPR) experiments**

327 All the surface preparation experiments were performed at 25°C using a Biacore 3000 instrument  
328 (GE Healthcare). Purified Rubisco was immobilized on CM5 sensor chips using a Biacore Amine  
329 Coupling Kit according to the manufacturer's instructions. Briefly, the chip surface was activated  
330 by an injection of 1:1 N-hydroxysuccinimide (NHS)/1-ethyl-3-(3-  
331 dimethylaminopropyl)carbodiimide hydrochloride (EDC). Rubisco was diluted to ~100 µg/mL in  
332 10 mM acetate (pH 4.5; this pH had been previously optimized using the immobilization pH  
333 scouting wizard) and was injected over the chip surface. Excess free amine groups were then  
334 capped with an injection of 1 M ethanolamine. Typical immobilization levels were 8,000 to 10,000  
335 resonance units (RU), as recommended for binding experiments of small molecules. For kinetic  
336 experiments (for determining the binding affinities), the typical immobilization levels were ~5,000  
337 RU. The control surfaces were prepared in exactly the same manner as the experimental surfaces  
338 except that no Rubisco was injected. For immobilizations, the running buffer was the Biacore  
339 HBS-EP Buffer (0.01 M HEPES pH 7.4, 0.15 M NaCl, 3 mM EDTA, 0.005% v/v Surfactant P20).

340 All the binding assays were performed using the Biacore PBS-P+ Buffer (20 mM  
341 phosphate buffer, 2.7 mM KCl, 137 mM NaCl and 0.05% Surfactant P20, pH 6.8) as a running  
342 buffer, as recommended for small molecule analysis in Biacore systems. The analytes, consisting  
343 of EPYC1 peptides synthesized by Genscript (Piscataway, New Jersey), were dissolved in the  
344 same running buffer and diluted to 1 mM. The analytes were injected over the control surface and  
345 experimental surfaces at a flow rate of 26 µL/min for 2.5 minutes, followed by 2.5 minutes of the  
346 running buffer alone to allow for dissociation. The surfaces were then regenerated using running  
347 buffer at a flow rate of 30 µL/min for 10 minutes. In all cases, binding to the control surface was  
348 negligible.

349 For determining the  $K_D$  of EPYC1 peptide, the kinetic assays were performed with a  
350 running buffer consisting of 200 mM sorbitol, 50 mM HEPES, 50 mM KOAc, 2 mM

351 Mg(OAc)<sub>2</sub>.4H<sub>2</sub>O and 1 mM CaCl<sub>2</sub> at pH 6.8 (the same buffer as the peptide array assay). The  
352 EPYC1 peptide was dissolved in the same running buffer as the assay and the serial dilutions were  
353 also made in the same buffer. The analytes were injected over the control surface and experimental  
354 surfaces at a flow rate of 15  $\mu$ L/min for 2 minutes, followed by 10 minutes with the running buffer  
355 alone to allow for dissociation. The surfaces were then regenerated by the running buffer at a flow  
356 rate of 30  $\mu$ L/min for 10 minutes. In all cases, binding to the blank chip was negligible. The fitting  
357 and modeling were performed with the BIAevaluation software.

358

### 359 **Single-particle cryo-electron microscopy data collection and image processing**

360 Rubisco and peptide with the final concentration of 1.69mg/ml (=3.02  $\mu$ M) and 7.5 mM were  
361 incubated on ice for 20 minutes in buffer consisting of 200 mM sorbitol, 50 mM HEPES, 50 mM  
362 KOAc, 2 mM Mg(OAc)<sub>2</sub>.4H<sub>2</sub>O and 1 mM CaCl<sub>2</sub> at pH 6.8 (the same buffer as the peptide array  
363 assay and the SPR binding assay). For both apo Rubisco and Rubisco incubated with peptide,  
364 similar cryo grid-making procedures were used. 400-mesh Quantifoil 1.2/1.3 Cu grids (Quantifoil,  
365 Großlobichau, Germany) were made hydrophilic by glow discharging for 60 seconds with a  
366 current of 15 mA in a Pelico EasiGlow system. Samples on cryo grids were plunge-frozen using  
367 an FEI Mark IV Vitrobot (FEI company, part of Thermo Fisher Scientific, Hillsboro, OR). The  
368 chamber of the Vitrobot was kept at 4°C and 100% relative humidity. 3  $\mu$ l of sample was applied  
369 to the glow-discharged grid, blotted with filter paper for 3 seconds with the equipment-specific  
370 blotting force set at 3. After blotting, the grid was rapidly plunge-frozen into a liquid ethane bath.

371 Cryo grids were loaded into a 300 kV FEI Titan Krios cryo electron microscope (FEI  
372 Company) at HHMI Janelia Research Campus, Janelia Krios2, equipped with a Gatan K2 Summit  
373 camera. After initial screening and evaluation, fully automated data collection was carried out  
374 using SerialEM. The final exposure from each collection target was collected as a movie utilizing  
375 dose fractionation on the K2 Summit camera operated in super-resolution mode. The movie was  
376 collected at a calibrated magnification of 38,168x, corresponding to 1.31  $\text{\AA}$  per physical pixel in  
377 the image (0.655  $\text{\AA}$  per super-resolution pixel). The dose rate on the specimen was set to be 5.82  
378 electrons per  $\text{\AA}^2$  per second and total exposure time was 10 s, resulting in a total dose of 58.2  
379 electrons per  $\text{\AA}^2$ . With dose fractionation set at 0.2 s per frame, each movie series contained 50  
380 frames and each frame received a dose of 1.16 electrons per  $\text{\AA}^2$ . The spherical aberration constant

381 of the objective lens is 2.7 mm and an objective aperture of 100  $\mu$ m was used. The nominal defocus  
382 range for the automated data collection was set to be between -1.5  $\mu$ m and -3.0  $\mu$ m.

383 The movies were 2x binned and motion corrected using MotionCor2<sup>36</sup> and CTF was  
384 estimated using CTFFIND<sup>37</sup> in Relion 3.0<sup>38</sup>. The particles were selected using cisTEM<sup>39</sup> and  
385 1,809,869 peptide bound Rubisco particles and 677,071 particles in the apo state were extracted  
386 with a box size of 192x192pixels. 2D classification was performed using cisTEM 2D. The classes  
387 presenting detailed features in class averages were chosen for 3D classification on cryoSPARC<sup>40,41</sup>  
388 for peptide-bound Rubisco and on Relion for the apo state. The 3D class showing clear secondary  
389 structures was chosen for 3D auto-refine first without symmetry and then with D4 symmetry  
390 imposed. After CTF refinement and Bayesian polishing in Relion, the reconstructed map  
391 resolution is 2.68  $\text{\AA}$  for the apo state and 2.62  $\text{\AA}$  for the peptide bound state. Details for single-  
392 particle cryo-EM data collection and image processing are included in the Extended Data Table 1.  
393

#### 394 **Single-particle cryo-electron microscopy model building, fitting, and refinement**

395 A full model for Rubisco from Chlamydomonas was produced from an X-ray structure<sup>13</sup> (PDB  
396 entry 1GK8) and used for rigid body fitting into a local resolution filtered cryo-EM map with an  
397 average resolution of 2.62  $\text{\AA}$  using UCSF Chimera<sup>42</sup>. After rigid body fitting of the full complex,  
398 initial flexible fitting was performed in COOT<sup>43</sup> by manually going through the entire peptide  
399 chain of a single large and small Rubisco subunit before applying the changes to the other seven  
400 large and small subunits. The sequence of the peptide was used to predict secondary structure  
401 elements using JPred4<sup>44</sup> which resulted in the prediction that the C-terminal region (NWRQELES)  
402 is  $\alpha$ -helical. Guided by this prediction, the peptide was built manually into the density using  
403 COOT. Additional real space refinement of the entire complex was performed using Phenix<sup>45</sup>.  
404 Models were subjected to an all-atom structure validation using MolProbity<sup>46</sup>. Figures were  
405 produced using UCSF Chimera.

406

#### 407 **Liquid–liquid phase separation assay**

408 Proteins used in the liquid–liquid phase separation assay were obtained and stored essentially as  
409 described previously<sup>11</sup>. Briefly, Rubisco was purified from *C. reinhardtii* cells (CC-2677 cw15  
410 nit1-305 mt-5D, Chlamydomonas Resource Center) grown in Sueoka’s high-salt medium<sup>47</sup>, using  
411 a combination of anion exchange chromatography and gel filtration.

412 The EPYC1 full-length gene (encoding amino acids 1-317) and corresponding R/K mutant  
413 (EPYC1<sup>R64A/K127A/K187A/K248A/R314A</sup>) were synthesized by GenScript and cloned between the SacII  
414 and HindIII site of the pHue vector<sup>48</sup>. Proteins were produced in the *E. coli* strain BL21 (DE3)  
415 harbouring pBADES<sup>49</sup> for co-expression of the *E. coli* chaperonin GroEL/S. The purification  
416 was conducted with minor changes (dialysis for removal of high imidazol concentrations was  
417 skipped by running the gel-filtration column before the second IMAC). After the first IMAC step  
418 and cleavage<sup>50</sup> of the N-terminal His<sub>6</sub>-ubiquitin tag, proteins were separated by gel filtration.  
419 Finally, the peak fraction was passed a second time through an IMAC column, collecting EPYC1  
420 from the flow through.

421 EPYC1-Rubisco condensates were reconstituted *in vitro* in a buffer containing 20 mM  
422 Tris-HCl (pH 8.0) and NaCl concentrations as indicated. 5 µl reactions were incubated for 3 min  
423 at room temperature before monitoring the droplet formation by differential interference contrast  
424 (DIC) microscopy. DIC images were acquired with a Nikon Eclipse Ti Inverted Microscope using  
425 a 60× oil-immersion objective after allowing the droplets to settle on the coverslip (Superior  
426 Marienfeld, Germany) surface for about 3 min. For droplet sedimentation assays 10 µl reactions  
427 were incubated for 3 min at 20°C before separating the droplets from the bulk phase by spinning  
428 for 3 min at 21,000xg and 4°C. Pelleted droplets and supernatant fractions were analyzed using  
429 Coomassie-stained SDS-PAGE.

430

### 431 **Yeast two-hybrid assay**

432 Yeast two-hybrid to detect interactions between EPYC1 and RbcS1 was carried out as described  
433 previously<sup>12</sup>. EPYC1 was cloned into the two-hybrid vector pGBK7 to create a fusion with the  
434 GAL4 DNA binding domain. Point mutations were introduced by PCR into RbcS1, which was  
435 then cloned in the pGADT7 to create a fusion with the GAL4 activation domain. Yeast cells were  
436 then co-transformed with binding and activation domain vectors. Successful transformants were  
437 cultured, diluted to an optical density at 600 nm (OD600) of 0.5 or 0.1, and plated onto SD-L-W  
438 and SD-L-W-H containing increasing concentrations of the HIS3 inhibitor triaminotriazole (3-  
439 AT). Plates were imaged after 3 days. Spots shown in Fig. 5a were grown at 5 mM 3-AT from a  
440 starting OD600 of 0.5; they are a subset of the full dataset shown in Extended Data Fig. 6.

441

### 442 **Cloning of Rubisco small subunit point mutants**

443 The plasmid pSS1-ITP<sup>51</sup> which contains Chlamydomonas *RBCS1* including UTRs and introns 1  
444 and 2 was used as a starting point for generating plasmids pSH001 and pSH002, which encode  
445 *RBCS1*<sup>D23A/E24A</sup>, and *RBCS1*<sup>M87D/V94D</sup>, respectively. The point mutations were generated by  
446 Gibson assembly<sup>52</sup> of gBlocks (synthesized by Integrated DNA Technologies) containing the  
447 desired mutations into pSS-ITP that had been enzyme digested by restriction endonucleases (XcmI  
448 and BbvCI for the D23A/E24A mutations and BbvCI and BlpI for the M87D/V94D mutations).  
449 All constructs were verified by Sanger sequencing.

450 The fragment for making pSH001 (containing the D23A/E24A Rubisco small subunit  
451 mutant) had the following sequence:

452 GCAGGGCTGCCCGGCTCAGGCCAACAGATGATGGTCTGGACCCGGTCAACAAAC  
453 AAGATGTTCGAGACCTCTCCTACCTGCCTCCTTGACCGCCGCGCAGATGCCGCC  
454 CAGGTCGACTACATCGTCGCCAACGGCTGGATCCCCTGCCTGGAGTCGCTGAGGCC  
455 GACAAGGCCTACGTGTCCAAC

456 The fragment for making pSH002 (containing the M87D/V94D Rubisco small subunit  
457 mutant) had the following sequence:

458 CTGCCTGGAGTCGCTGAGGCCGACAAGGCCTACGTGTCCAACGAGTCGGCCATCC  
459 GCTTCGGCAGCGTGTCTGCCTGTACTACGACAACCGCTACTGGACCATGTGGAAGC  
460 TGCCCATGTTGGCTGCCCGACCCCGACCAGGTGCTGCGCGAGATCGACGCCCTGCA  
461 CCAAGGCCTTCCCCGATGCCTACGTGCGCCTGGTGGCCTTCGACAACCAGAAGCAG  
462 GTGCAGATCATGGGCTCCTGGTCCAGCGCCCCAAGACTGCCCGCGACTTCCAGCCC  
463 GCCAACAAAGCGCTCCGTAAATGGAGGCGCTCGATCTGAGCCGTGTGATGT  
464 TTGTTGGTGTGAGCGAGTGCAATGAGAGTGTGTGTGTTGGTGTG  
465 GCTAAGCCAAGCGTGATCGC

466

#### 467 **Transformation of Chlamydomonas to make the Rubisco small subunit point mutants**

468 Chlamydomonas strains *Δrbcs;RBCS<sup>WT</sup>*, *Δrbcs;RBCS<sup>D23A/E24A</sup>*, and *Δrbcs;RBCS<sup>M87D/V94D</sup>* were  
469 generated by transforming pSS1-ITP, pSH001, and pSH002 (encoding Rubisco small subunit  
470 constructs) into the Rubisco small subunit deletion mutant T60 (*Δrbcs*) by electroporation as  
471 described previously<sup>53</sup>. For each transformation, 29 ng kbp<sup>-1</sup> of KpnI linearized plasmid was mixed  
472 with 250 μL of 2 x 10<sup>8</sup> cells mL<sup>-1</sup> at 16°C and electroporated immediately. Transformant colonies  
473 were selected on Tris-Phosphate plates without antibiotics at 3% v/v CO<sub>2</sub> under ~50 μmol photons

474  $\text{m}^{-2} \text{ s}^{-1}$  light. The sequence of RbcS in the transformants was verified by PCR amplification and  
475 Sanger sequencing.

476

#### 477 **Spot tests**

478 *Δrbcs;RBCS<sup>WT</sup>*, *Δrbcs;RBCS<sup>D23A/E24A</sup>*, and *Δrbcs;RBCS<sup>M87D/V94D</sup>* were grown in Tris-Phosphate  
479 medium at 3% CO<sub>2</sub> until  $\sim 2 \times 10^6$  cells mL<sup>-1</sup>. Cells were diluted in Tris-Phosphate medium to a  
480 concentration of  $8.7 \times 10^7$  cells mL<sup>-1</sup>, then serially diluted 1:10 three times. 7.5  $\mu\text{L}$  of each dilution  
481 was spotted onto four TP plates and incubated in air or 3% CO<sub>2</sub> under 20 or 100  $\mu\text{mol}$  photons m<sup>-</sup>  
482  $^2 \text{s}^{-1}$  white light for 9 days before imaging.

483

#### 484 **Transmission electron microscopy**

485 Samples for electron microscopy were fixed for 1 hour at room temperature in 2.5% glutaraldehyde  
486 in Tris-Phosphate medium (pH 7.4), followed by 1 hour at room temperature in 1% OsO<sub>4</sub>, 1.5%  
487 K<sub>3</sub>Fe(CN)<sub>3</sub>, and 2 mM CaCl<sub>2</sub>. Fixed cells were then bulk stained for 1 hour in 2% uranyl acetate,  
488 0.05 M maleate buffer at pH 5.5. After serial dehydration (50%, 75%, 95%, and 100% ethanol,  
489 followed by 100% acetonitrile), samples were embedded in epoxy resin containing 34% Quetol  
490 651, 44% nonenyl succinic anhydride, 20% methyl-5- norbornene-2,3-dicarboxylic anhydride, and  
491 2% catalyst dimethylbenzylamine. Ultramicrotomy was done by the Core Imaging Lab, Medical  
492 School, Rutgers University. Imaging was performed at the Imaging and Analysis Center, Princeton  
493 University, on a CM100 transmission electron microscope (Philips, Netherlands) at 80 kV.

494

#### 495 **Measurement of nearest-neighbor distances between EPYC1-binding sites on Rubisco 496 holoenzymes within pyrenoids**

497 For detailed descriptions of the Chlamydomonas cell culture, vitrification of cells onto EM grids,  
498 thinning of cells by cryo-focused ion beam milling, 3D imaging of native pyrenoids by cryo-  
499 electron tomography, tomographic reconstruction, and subtomogram averaging, see our previous  
500 study<sup>5</sup>. In that study, we measured the distances between the center positions of Rubisco  
501 complexes within tomograms of five pyrenoids. The spatial parameters determined in that study  
502 were combined with the EPYC1-binding sites resolved here by cryo-EM single-particle analysis  
503 to measure the nearest-neighbor distances between EPYC1-binding sites on adjacent Rubisco  
504 complexes within the native pyrenoid matrix.

505 The *in situ* subtomogram average EMD-3694<sup>5</sup> was used as the reference for the Rubisco  
506 model. We extracted the isosurface from this density using the 0.5 contour level recommended in  
507 the Electron Microscopy Data Bank entry. We then fit the atomic model of EPYC1-bound Rubisco  
508 (Fig. 2) within the EMD-3694 density, and for each EPYC1-binding site, we marked the closest  
509 point on the isosurface to define the EPYC1 binding sites on this model. The positions and  
510 orientations previously determined by subtomogram averaging were used to place each Rubisco  
511 model and its corresponding binding sites into the pyrenoid tomograms using the PySeg program<sup>54</sup>.

512 To compute the nearest-neighbor distances between EPYC1-binding sites on two different  
513 Rubisco complexes, first, linkers were drawn between each EPYC1 binding site and all other  
514 binding sites within 25 nm. Binding sites on the same Rubisco complex were ignored. Next, the  
515 linkers were filtered by length (defined as the Euclidean distance between the two binding sites),  
516 and only the shortest linker was retained for each binding site. To prevent edge effects, linkers  
517 were discarded if they had a binding site <12 nm from the masked excluded volume (grey in Fig.  
518 6b), which marks the border of the analyzed pyrenoid matrix. Finally, linker distances were plotted  
519 in a histogram to show the distribution of lengths (normalized to 100%).

520

## 521 **Modeling of the energy required to stretch EPYC1-linker regions**

522 The energy required to stretch the linker regions between EPYC1's Rubisco-binding regions was  
523 determined as follows. The force  $F$  required to stretch a 40 amino acid linker region to any given  
524 length  $z$  was approximated using a wormlike chain model<sup>55</sup>:

$$525 F(z) = \frac{k_B T}{4L_p} \left[ \frac{1}{(1 - z/L_0)^2} - 1 + \frac{4z}{L_0} \right]$$

526 In the above equation,  $k_B$  is the Boltzmann constant,  $T$  is the temperature,  $L_p$  is the persistence  
527 length (assumed to be 1 nm, a representative value for disordered proteins), and  $L_0$  is the contour  
528 length (estimated as 40 amino acids \* 0.36 nm/amino acid). The energy required to stretch the  
529 linker to a length  $x$  is given by:

$$530 E(x) = \int_0^x F(z) dz$$

531 This energy was calculated and plotted in Fig. 6d.

532

## 533 References

534 1 Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the  
535 biosphere: integrating terrestrial and oceanic components. *Science* **281**, 237-240 (1998).

536 2 Hessler, A. M., Lowe, D. R., Jones, R. L. & Bird, D. K. A lower limit for atmospheric carbon  
537 dioxide levels 3.2 billion years ago. *Nature* **428**, 736-738 (2004).

538 3 Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO<sub>2</sub>  
539 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy  
540 properties and plant production to rising CO<sub>2</sub>. *New Phytol* **165**, 351-371, doi:10.1111/j.1469-  
541 8137.2004.01224.x (2005).

542 4 Raven, J. A., Cockell, C. S. & De La Rocha, C. L. The evolution of inorganic carbon  
543 concentrating mechanisms in photosynthesis. *Philosophical transactions of the Royal Society  
544 of London. Series B, Biological sciences* **363**, 2641-2650, doi:10.1098/rstb.2008.0020 (2008).

545 5 Freeman Rosenzweig, E. S. *et al.* The Eukaryotic CO<sub>2</sub>-Concentrating Organelle Is Liquid-  
546 like and Exhibits Dynamic Reorganization. *Cell* **171**, 148-162 e119,  
547 doi:10.1016/j.cell.2017.08.008 (2017).

548 6 Badger, M. R. *et al.* The diversity and coevolution of Rubisco, plastids, pyrenoids, and  
549 chloroplast-based CO<sub>2</sub>-concentrating mechanisms in algae. *Can J Bot* **76**, 1052-1071,  
550 doi:10.1139/b98-074 (1998).

551 7 Villarreal, J. C. & Renner, S. S. Hornwort pyrenoids, carbon-concentrating structures, evolved  
552 and were lost at least five times during the last 100 million years. *Proc Natl Acad Sci U S A*  
553 **109**, 18873-18878, doi:10.1073/pnas.1213498109 (2012).

554 8 Wang, Y., Stessman, D. J. & Spalding, M. H. The CO<sub>2</sub> concentrating mechanism and  
555 photosynthetic carbon assimilation in limiting CO<sub>2</sub> : how Chlamydomonas works against the  
556 gradient. *The Plant journal : for cell and molecular biology* **82**, 429-448,  
557 doi:10.1111/tpj.12829 (2015).

558 9 Raven, J. A. CO<sub>2</sub>-concentrating mechanisms: A direct role for thylakoid lumen acidification?  
559 *Plant Cell Environ* **20**, 147-154, doi:Doi 10.1046/J.1365-3040.1997.D01-67.X (1997).

560 10 Mackinder, L. C. *et al.* A repeat protein links Rubisco to form the eukaryotic carbon-  
561 concentrating organelle. *Proc Natl Acad Sci U S A* **113**, 5958-5963,  
562 doi:10.1073/pnas.1522866113 (2016).

563 11 Wunder, T., Cheng, S. L. H., Lai, S. K., Li, H. Y. & Mueller-Cajar, O. The phase separation  
564 underlying the pyrenoid-based microalgal Rubisco supercharger. *Nature communications* **9**,  
565 5076, doi:10.1038/s41467-018-07624-w (2018).

566 12 Atkinson, N. *et al.* The pyrenoidal linker protein EPYC1 phase separates with hybrid  
567 Arabidopsis-Chlamydomonas Rubisco through interactions with the algal Rubisco small  
568 subunit. *Journal of experimental botany* **70**, 5271-5285, doi:10.1093/jxb/erz275 (2019).

569 13 Taylor, T. C., Backlund, A., BJORHALL, K., Spreitzer, R. J. & Andersson, I. First crystal structure  
570 of Rubisco from a green alga, Chlamydomonas reinhardtii. *J Biol Chem* **276**, 48159-48164,  
571 doi:10.1074/jbc.M107765200 (2001).

572 14 Duff, A. P., Andrews, T. J. & Curmi, P. M. The transition between the open and closed states  
573 of rubisco is triggered by the inter-phosphate distance of the bound bisphosphate. *J Mol Biol*  
574 **298**, 903-916, doi:10.1006/jmbi.2000.3724 (2000).

575 15 Meyer, M. T. *et al.* Rubisco small-subunit  $\alpha$ -helices control pyrenoid formation in  
576 Chlamydomonas. *Proc Natl Acad Sci U S A* **109**, 19474-19479,  
577 doi:10.1073/pnas.1210993109. (2012).

578 16 Engel, B. D. *et al.* Native architecture of the *Chlamydomonas* chloroplast revealed by in situ  
579 cryo-electron tomography. *eLife* **4**, DOI: 10.7554/eLife.04889, doi:10.7554/eLife.04889  
580 (2015).

581 17 Goodenough, U. W. & Levine, R. P. Chloroplast structure and function in ac-20, a mutant  
582 strain of Chlamydomonas reinhardi. 3. Chloroplast ribosomes and membrane organization. *J  
583 Cell Biol.* **44**, 547-562, doi:10.1083/jcb.44.3.547 (1970).

584 18 Ma, Y., Pollock, S. V., Xiao, Y., Cunnusamy, K. & Moroney, J. V. Identification of a novel  
585 gene, CIA6, required for normal pyrenoid formation in Chlamydomonas reinhardtii. *Plant  
586 Physiol* **156**, 884-896, doi:10.1104/pp.111.173922 (2011).

587 19 Caspari, O. D. *et al.* Pyrenoid loss in Chlamydomonas reinhardtii causes limitations in CO<sub>2</sub>  
588 supply, but not thylakoid operating efficiency. *Journal of experimental botany* **68**, 3903-3913,  
589 doi:10.1093/jxb/erx197 (2017).

590 20 Li, P. *et al.* Phase transitions in the assembly of multivalent signalling proteins. *Nature* **483**,  
591 336-340, doi:10.1038/nature10879 (2012).

592 21 Borkhsenious, O. N., Mason, C. B. & Moroney, J. V. The Intracellular Localization of  
593 Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase in Chlamydomonas reinhardtii. *Plant  
594 Physiol* **116**, 1585-1591, doi:10.1104/pp.116.4.1585 (1998).

595 22 Turkina, M. V., Blanco-Rivero, A., Vainonen, J. P., Vener, A. V. & Villarejo, A. CO<sub>2</sub>  
596 limitation induces specific redox-dependent protein phosphorylation in Chlamydomonas  
597 reinhardtii. *Proteomics* **6**, 2693-2704, doi:10.1002/pmic.200500461 (2006).

598 23 Cai, F. *et al.* Advances in Understanding Carboxysome Assembly in Prochlorococcus and  
599 Synechococcus Implicate CsoS2 as a Critical Component. *Life (Basel)* **5**, 1141-1171,  
600 doi:10.3390/life5021141 (2015).

601 24 Oltrogge, L. M. *et al.* Multivalent interactions between CsoS2 and Rubisco mediate alpha-  
602 carboxysome formation. *Nat Struct Mol Biol* **27**, 281-287, doi:10.1038/s41594-020-0387-7  
603 (2020).

604 25 Long, B. M., Badger, M. R., Whitney, S. M. & Price, G. D. Analysis of carboxysomes from  
605 Synechococcus PCC7942 reveals multiple Rubisco complexes with carboxysomal proteins  
606 CcmM and CcaA. *J Biol Chem* **282**, 29323-29335, doi:10.1074/jbc.M703896200 (2007).

607 26 Wang, H. *et al.* Rubisco condensate formation by CcmM in beta-carboxysome biogenesis.  
608 *Nature* **566**, 131-135, doi:10.1038/s41586-019-0880-5 (2019).

609 27 Hennacy, J. H. & Jonikas, M. C. Prospects for Engineering Biophysical CO<sub>2</sub> Concentrating  
610 Mechanisms into Land Plants to Enhance Yields. *Annual review of plant biology*,  
611 doi:10.1146/annurev-arplant-081519-040100 (2020).

612 28 Long, B. M. *et al.* Carboxysome encapsulation of the CO<sub>2</sub>-fixing enzyme Rubisco in tobacco  
613 chloroplasts. *Nature communications* **9**, 3570, doi:10.1038/s41467-018-06044-0 (2018).

614 29 Lin, M. T., Occhialini, A., Andralojc, P. J., Parry, M. A. & Hanson, M. R. A faster Rubisco  
615 with potential to increase photosynthesis in crops. *Nature* **513**, 547-550,  
616 doi:10.1038/nature13776 (2014).

617 30 Atkinson, N. *et al.* Introducing an algal carbon-concentrating mechanism into higher plants:  
618 location and incorporation of key components. *Plant Biotechnol J* **14**, 1302-1315,  
619 doi:10.1111/pbi.12497 (2016).

620 31 Hanson, M. R., Gray, B. N. & Ahner, B. A. Chloroplast transformation for engineering of  
621 photosynthesis. *Journal of experimental botany* **64**, 731-742, doi:10.1093/jxb/ers325 (2013).

622 32 Raven, J. A., Beardall, J. & Sanchez-Baracaldo, P. The possible evolution and future of CO<sub>2</sub>-  
623 concentrating mechanisms. *J Exp Bot* **68**, 3701-3716, doi:10.1093/jxb/erx110 (2017).

624 33 Kropat, J. *et al.* A revised mineral nutrient supplement increases biomass and growth rate in  
625 *Chlamydomonas reinhardtii*. *The Plant journal : for cell and molecular biology* **66**, 770-780,  
626 doi:10.1111/j.1365-313X.2011.04537.x (2011).

627 34 Khrebukova, I. & Spreitzer, R. J. Elimination of the Chlamydomonas gene family that  
628 encodes the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. *Proc Natl  
629 Acad Sci U S A* **93**, 13689-13693, doi:10.1073/pnas.93.24.13689 (1996).

630 35 Zhang, R. *et al.* High-Throughput Genotyping of Green Algal Mutants Reveals Random  
631 Distribution of Mutagenic Insertion Sites and Endonucleolytic Cleavage of Transforming  
632 DNA. *Plant Cell* **26**, 1398-1409, doi:10.1105/tpc.114.124099 (2014).

633 36 Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-induced motion for improved  
634 cryo-electron microscopy. *Nat Methods* **14**, 331-332, doi:10.1038/nmeth.4193 (2017).

635 37 Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron  
636 micrographs. *J Struct Biol* **192**, 216-221, doi:10.1016/j.jsb.2015.08.008 (2015).

637 38 Zivanov, J. *et al.* New tools for automated high-resolution cryo-EM structure determination  
638 in RELION-3. *eLife* **7**, doi:10.7554/eLife.42166 (2018).

639 39 Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-particle  
640 image processing. *eLife* **7**, doi:10.7554/eLife.35383 (2018).

641 40 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for  
642 rapid unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290-296,  
643 doi:10.1038/nmeth.4169 (2017).

644 41 Punjani, A., Brubaker, M. A. & Fleet, D. J. Building Proteins in a Day: Efficient 3D Molecular  
645 Structure Estimation with Electron Cryomicroscopy. *IEEE Trans Pattern Anal Mach Intell*  
646 **39**, 706-718, doi:10.1109/TPAMI.2016.2627573 (2017).

647 42 Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research and  
648 analysis. *J Comput Chem* **25**, 1605-1612, doi:10.1002/jcc.20084 (2004).

649 43 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. *Acta  
650 Crystallogr D Biol Crystallogr* **66**, 486-501, doi:10.1107/S0907444910007493 (2010).

651 44 Drozdetskiy, A., Cole, C., Procter, J. & Barton, G. J. JPred4: a protein secondary structure  
652 prediction server. *Nucleic Acids Res* **43**, W389-394, doi:10.1093/nar/gkv332 (2015).

653 45 Adams, P. D. *et al.* PHENIX: a comprehensive Python-based system for macromolecular  
654 structure solution. *Acta Crystallogr D Biol Crystallogr* **66**, 213-221,  
655 doi:10.1107/S0907444909052925 (2010).

656 46 Chen, V. B. *et al.* MolProbity: all-atom structure validation for macromolecular  
657 crystallography. *Acta Crystallogr D Biol Crystallogr* **66**, 12-21,  
658 doi:10.1107/S0907444909042073 (2010).

659 47 Sueoka, N. Mitotic replication of deoxyribonucleic acid in *Chlamydomonas reinhardtii*. *Proc  
660 Natl Acad Sci U S A* **46**, 83-91, doi:10.1073/pnas.46.1.83 (1960).

661 48 Catanzariti, A. M., Soboleva, T. A., Jans, D. A., Board, P. G. & Baker, R. T. An efficient  
662 system for high-level expression and easy purification of authentic recombinant proteins.  
663 *Protein Sci* **13**, 1331-1339, doi:10.1110/ps.04618904 (2004).

664 49 Ewalt, K. L., Hendrick, J. P., Houry, W. A. & Hartl, F. U. In vivo observation of polypeptide  
665 flux through the bacterial chaperonin system. *Cell* **90**, 491-500, doi:10.1016/s0092-  
666 8674(00)80509-7 (1997).

667 50 Baker, R. T. *et al.* in *Ubiquitin and Protein Degradation, Part A Methods in Enzymology*  
668 540-554 (2005).

669 51 Genkov, T., Meyer, M., Griffiths, H. & Spreitzer, R. J. Functional hybrid rubisco enzymes  
670 with plant small subunits and algal large subunits: engineered rbcS cDNA for expression in  
671 chlamydomonas. *J Biol Chem* **285**, 19833-19841, doi:10.1074/jbc.M110.124230 (2010).

672 52 Gibson, D. G. *et al.* Enzymatic assembly of DNA molecules up to several hundred kilobases.  
673 *Nature methods* **6**, 343-345, doi:10.1038/nmeth.1318 (2009).

674 53 Li, X. *et al.* A genome-wide algal mutant library and functional screen identifies genes  
675 required for eukaryotic photosynthesis. *Nat Genet* **51**, 627-635, doi:10.1038/s41588-019-  
676 0370-6 (2019).

677 54 Martinez-Sanchez, A. *et al.* Template-free detection and classification of membrane-bound  
678 complexes in cryo-electron tomograms. *Nat Methods*, doi:10.1038/s41592-019-0675-5  
679 (2020).

680 55 Cheng, S., Cetinkaya, M. & Grater, F. How sequence determines elasticity of disordered  
681 proteins. *Biophys J* **99**, 3863-3869, doi:10.1016/j.bpj.2010.10.011 (2010).

682

683

684

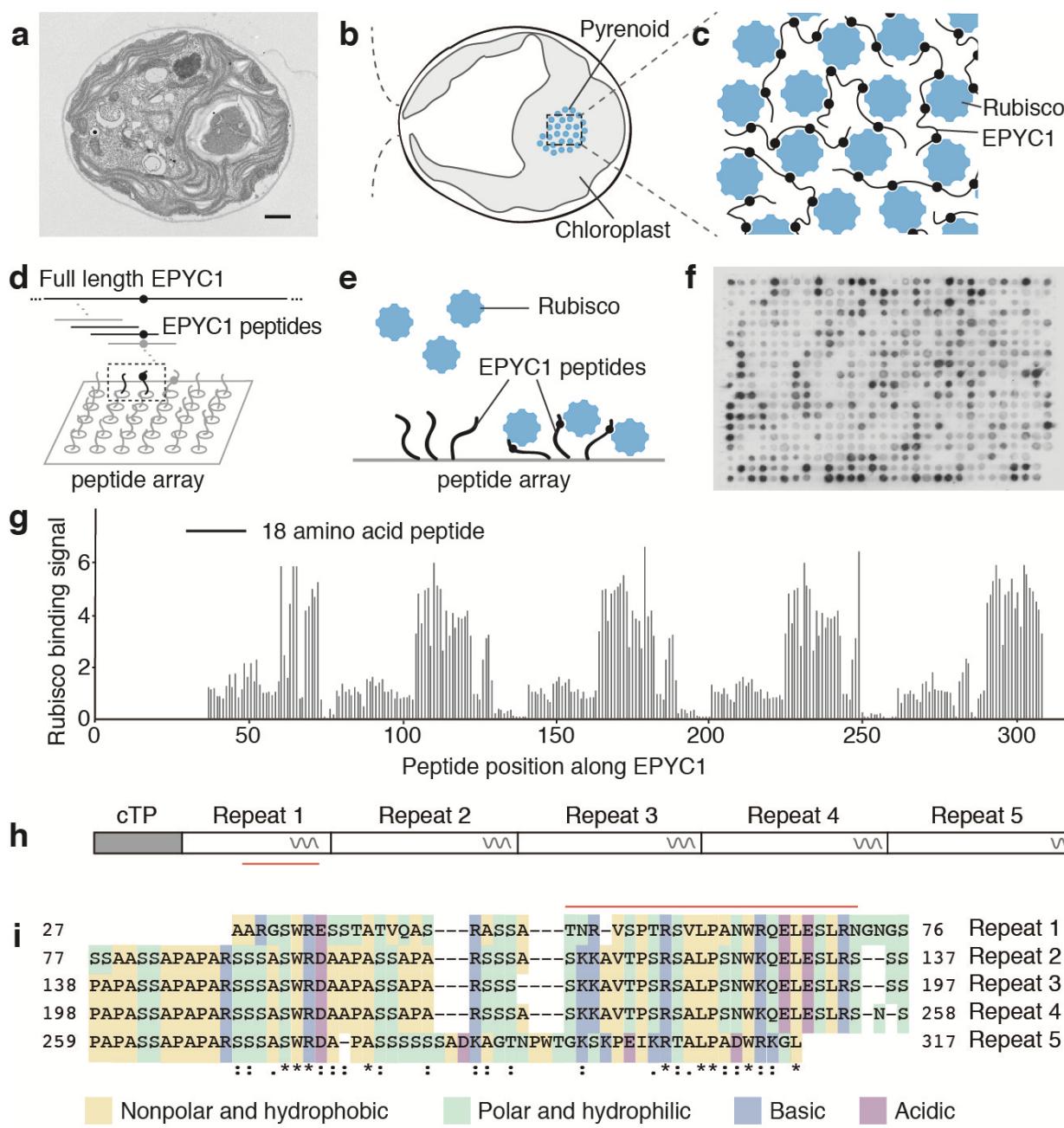
## 685 **Acknowledgements**

686 We thank Jianping Wu, Nieng Yan, Luke Mackinder, Cliff Brangwynne and members of the  
687 Jonikas laboratory for helpful discussions; Ned Wingreen, Silvia Ramundo, Jessi Hennacy, and  
688 Eric Franklin for constructive feedback on the manuscript; Wolfgang Baumeister and Jürgen  
689 Plitzko for providing support and cryo-ET instrumentation; and Miroslava Schaffer for help with  
690 acquiring the cryo-ET data, previously published in Freeman Rosenzweig *et al.*, 2017. This project  
691 was funded by National Science Foundation (IOS-1359682 and MCB-1935444), National  
692 Institutes of Health (DP2-GM-119137), and Simons Foundation and Howard Hughes Medical  
693 Institute (55108535) grants to M.C.J., Deutsche Forschungsgemeinschaft grant (EN 1194/1-1 as  
694 part of FOR2092) to B.D.E., Ministry of Education (MOE Singapore) Tier 2 grant (MOE2018-  
695 T2-2-059) to O.M.-C., UK Biotechnology and Biological Sciences Research Council  
696 (BB/S015531/1) and Leverhulme Trust (RPG-2017-402) grants to A.J.M and N.A., NIH grant  
697 R01GM071574 to F.M.H., Deutsche Forschungsgemeinschaft fellowship (PO2195/1-1) to S.A.P.,  
698 and National Institute of General Medical Sciences of the National Institutes of Health  
699 (T32GM007276) training grant to V.K.C.. The content is solely the responsibility of the authors  
700 and does not necessarily represent the official view of the National Institutes of Health.

701

702 **Author contributions**

703 S.H., P.D.J., V.C., F.M.H., T.W., O.M.-C., B.D.E., and M.C.J. designed experiments. S.H.  
704 identified EPYC1's Rubisco-binding regions on EPYC1 by peptide tiling array and SPR. S.H. and  
705 S.A.P. prepared the Rubisco and EPYC1 peptide sample for single-particle cryo-EM; S.H., S.A.P.  
706 and G.H. prepared the Rubisco samples for peptide tiling array and surface plasmon resonance.  
707 H.-T.C., D.M. and Z.Y. performed Cryo-EM grid preparation, sample screening, data acquisition,  
708 image processing, reconstruction and map generation. D.M. and P.D.J. carried out single-particle  
709 model building and fitting and refinement. S.H., H.-T.C., D.M., P.D.J., F.M.H. and M.C.J.  
710 analyzed the structures. S.H. and W.P. analyzed EPYC1 binding to Rubisco by peptide substitution  
711 array and SPR. T.W. performed in vitro reconstitution phase separation experiments. N.A. and  
712 A.J.M. performed yeast two-hybrid experiments. S.H. and M.T.M. made Rubisco small subunit  
713 point mutants. S.H. performed spot test experiments. M.T.M. performed TEM. A.M.-S. performed  
714 the cryo-ET data analysis and modeling. S.H. and M.C.J. wrote the manuscript. All authors read  
715 and commented on the manuscript.

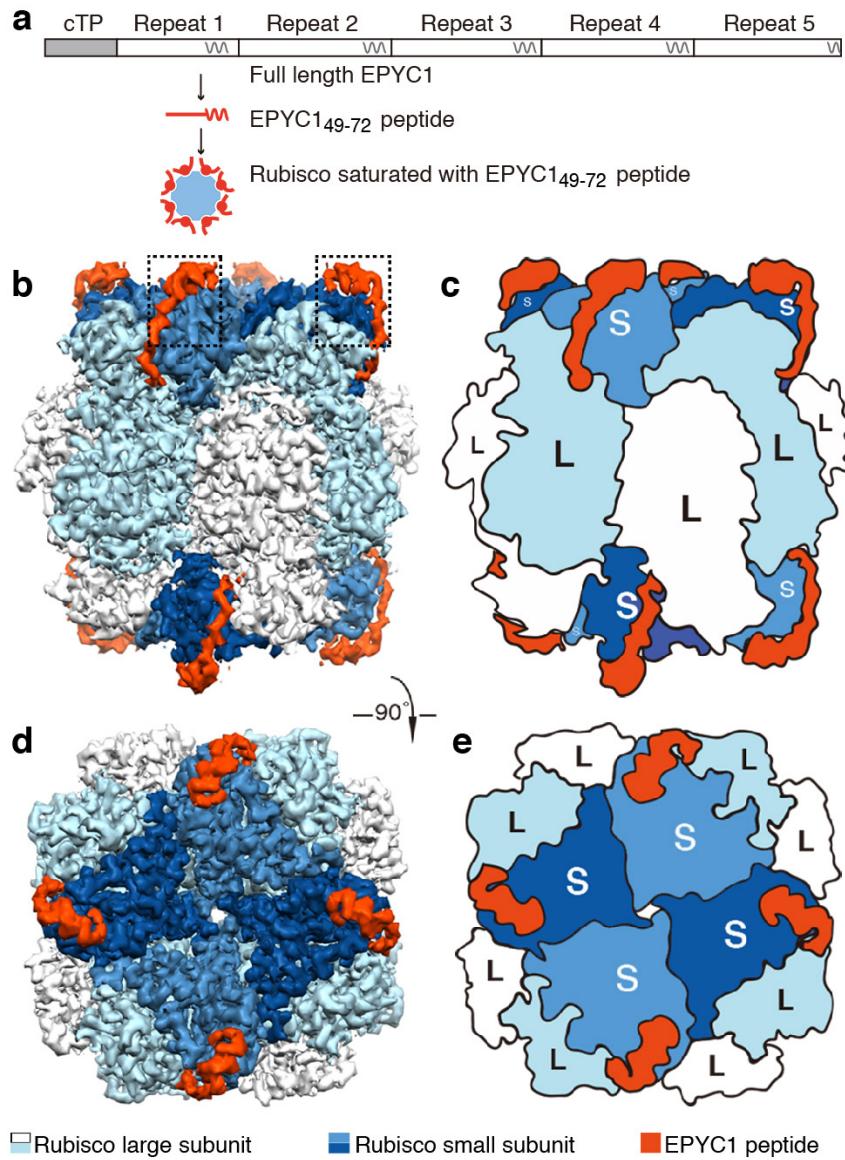

716

717 **Conflict of interest statement**

718 Princeton University and HHMI have submitted a provisional patent application on aspects of  
719 the findings.

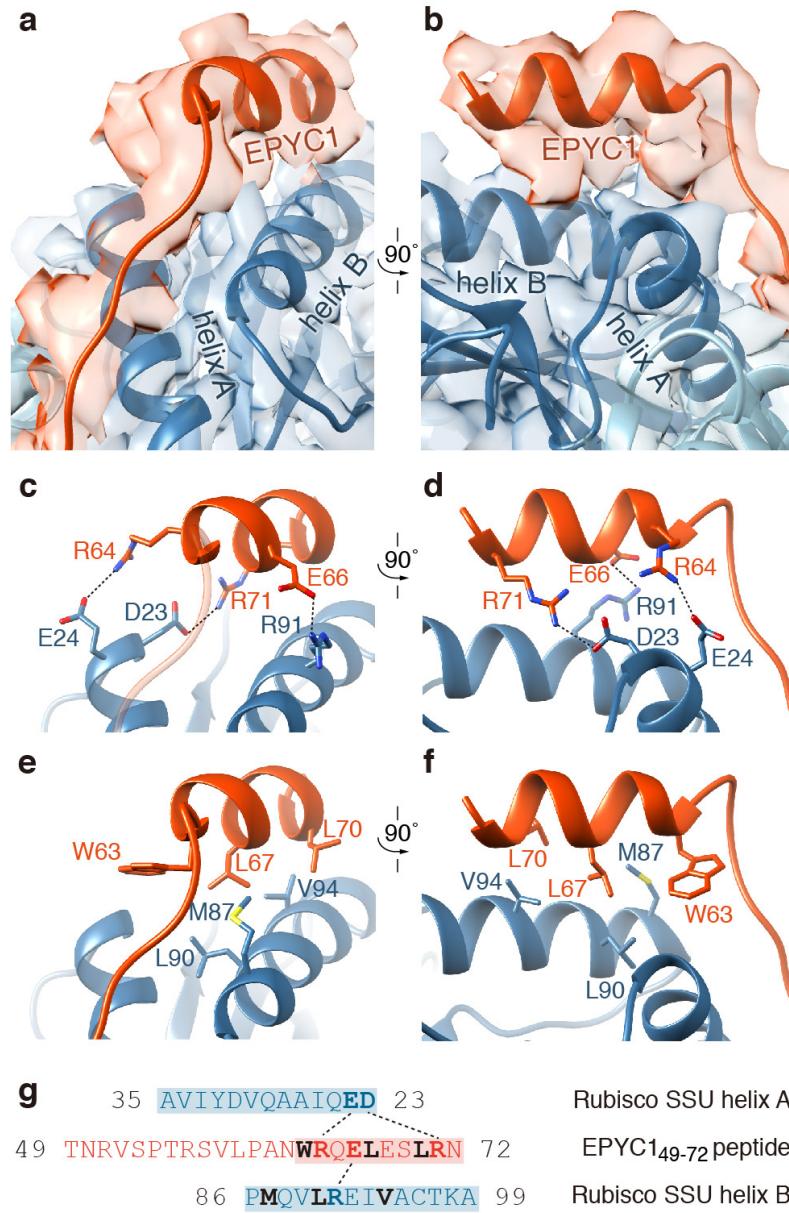
720 **Figures**

721



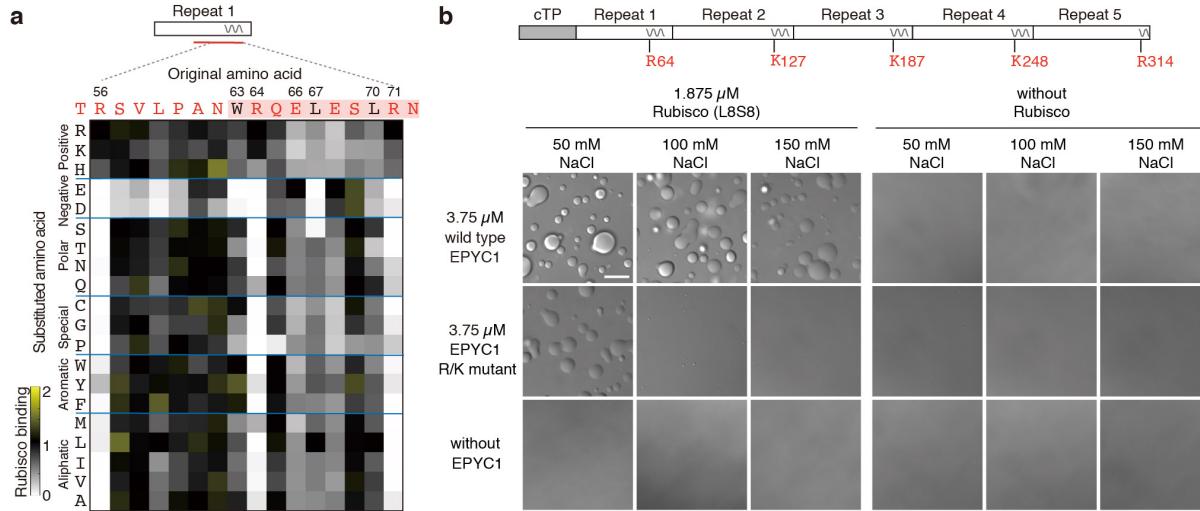

722

723


724 **Fig. 1 | EPYC1 consists of five tandem sequence repeats, each of which contains a Rubisco-  
725 binding region.** **a**, Transmission electron microscopy (TEM) image of a Chlamydomonas cell.  
726 Scale bar = 1  $\mu$ m. **b**, Cartoon depicting the chloroplast and pyrenoid in the image shown in panel  
727 a. The blue dots indicate the location of Rubisco enzymes clustered in the pyrenoid matrix. **c**, We

728 hypothesized that pyrenoid matrix formation is mediated by multivalent interactions between  
729 Rubisco and the intrinsically disordered protein EPYC1. **d**, We designed an array of 18 amino acid  
730 peptides tiling across the full length EPYC1 sequence. **e**, Incubation of the array with purified  
731 Rubisco allows identification of peptides that bind to Rubisco. **f**, Image of the Rubisco binding  
732 signal from the peptide tiling array. **g**, The Rubisco binding signal was quantified and plotted for  
733 each peptide as a function of the position of the middle of the peptide along the EPYC1 sequence.  
734 The initial 26 amino acids of EPYC1 correspond to a chloroplast targeting peptide (cTP), which  
735 is not present in the mature protein<sup>12</sup>. Results are representative of three independent experiments.  
736 **h**, The positions of EPYC1's five sequence repeats are shown to scale with panel g. Predicted  $\alpha$ -  
737 helical regions are shown as wavy lines. **i**, Primary sequence of EPYC1, with the five sequence  
738 repeats aligned. In panels h and i, the region used for structural studies (EPYC1<sub>49-72</sub>) is indicated  
739 by a red line.



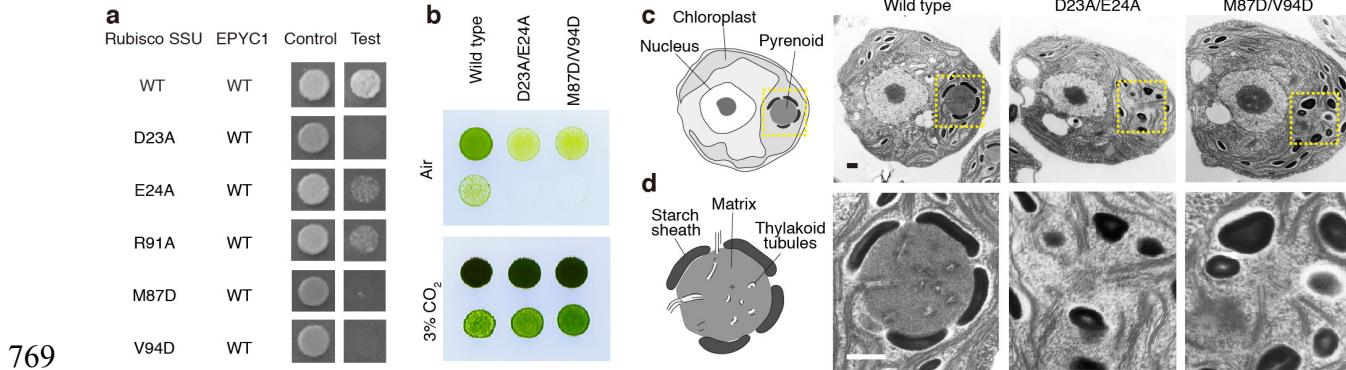

742 **Fig. 2 | EPYC1 binds to Rubisco small subunits.** **a**, Peptide EPYC1<sub>49-72</sub>, corresponding to the  
743 first Rubisco-binding region of EPYC1, was incubated at saturating concentrations with Rubisco  
744 prior to single particle cryo-electron microscopy. **b-e**, Density maps (b, d) and cartoons (c, e)  
745 illustrate the side views (b, c) and top views (d, e) of the density map of the EPYC1 peptide-  
746 Rubisco complex. Dashes in panel b indicate regions shown in Fig.3a-3f.

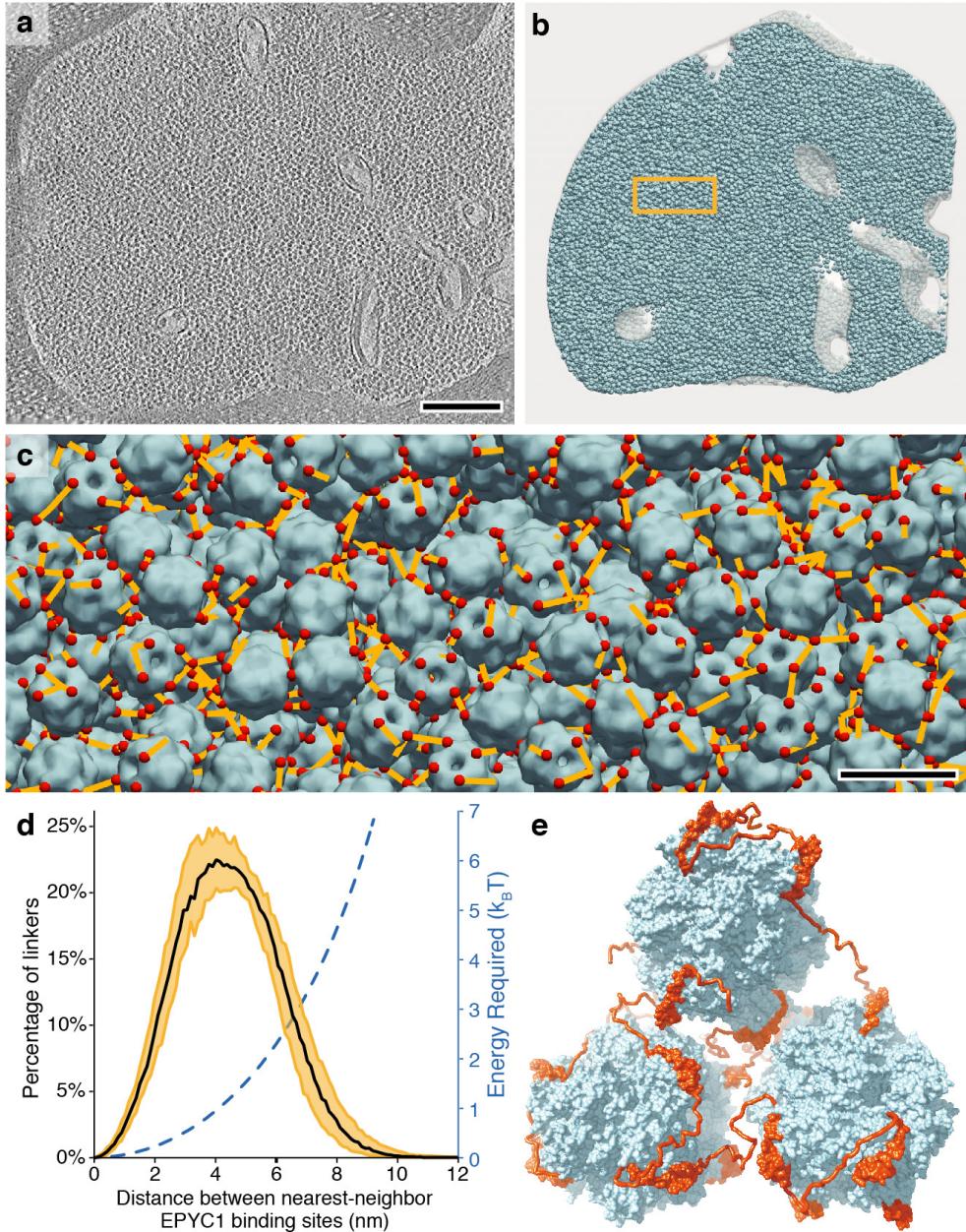
747



750 **Fig. 3 | EPYC1 binds to Rubisco small subunit  $\alpha$ -helices via salt bridges and a hydrophobic**  
 751 **pocket.** **a-b**, Front (a) and side (b) views of the EPYC1 peptide (red) bound to the two  $\alpha$ -helices  
 752 of the Rubisco small subunit (blue). **c-d**, Three pairs of residues form salt bridges between the  
 753 helix of the EPYC1 peptide and the helices on the Rubisco small subunit. Shown are front (c) and  
 754 side (d) views as in panel a and panel b. The distances from EPYC1 R64, R71 and E66 to Rubisco  
 755 small subunit E24, D23 and R91 are 3.06 Å, 3.23 Å, and 3.13 Å, respectively. **e-f**, A hydrophobic  
 756 pocket is formed by three residues of the EPYC1 peptide and three residues of helix B of the  
 757 Rubisco small subunit. Shown are front (e) and side (f) views as in panel a and panel b. **g**, Summary

758 of the interactions observed between the EPYC1 peptide and the two  $\alpha$ -helices of the Rubisco  
759 small subunit. Helices are highlighted; the residues mediating interactions are bold; salt bridges  
760 are shown as dotted lines; residues contributing to the hydrophobic pocket are shown in black.





761

762

763 **Fig. 4 | Interface residues on EPYC1 are required for binding and phase separation of**  
764 **EPYC1 and Rubisco *in vitro*. a**, Rubisco binding to a peptide array representing every possible

765 single amino acid substitution for amino acids 56-71 of EPYC1. The binding signal was  
766 normalized by the binding signal of the original sequence. **b**, The effect of mutating the central R  
767 or K in each of EPYC1's Rubisco-binding regions on *in vitro* phase separation of EPYC1 with  
768 Rubisco. Scale bar = 10  $\mu$ m.



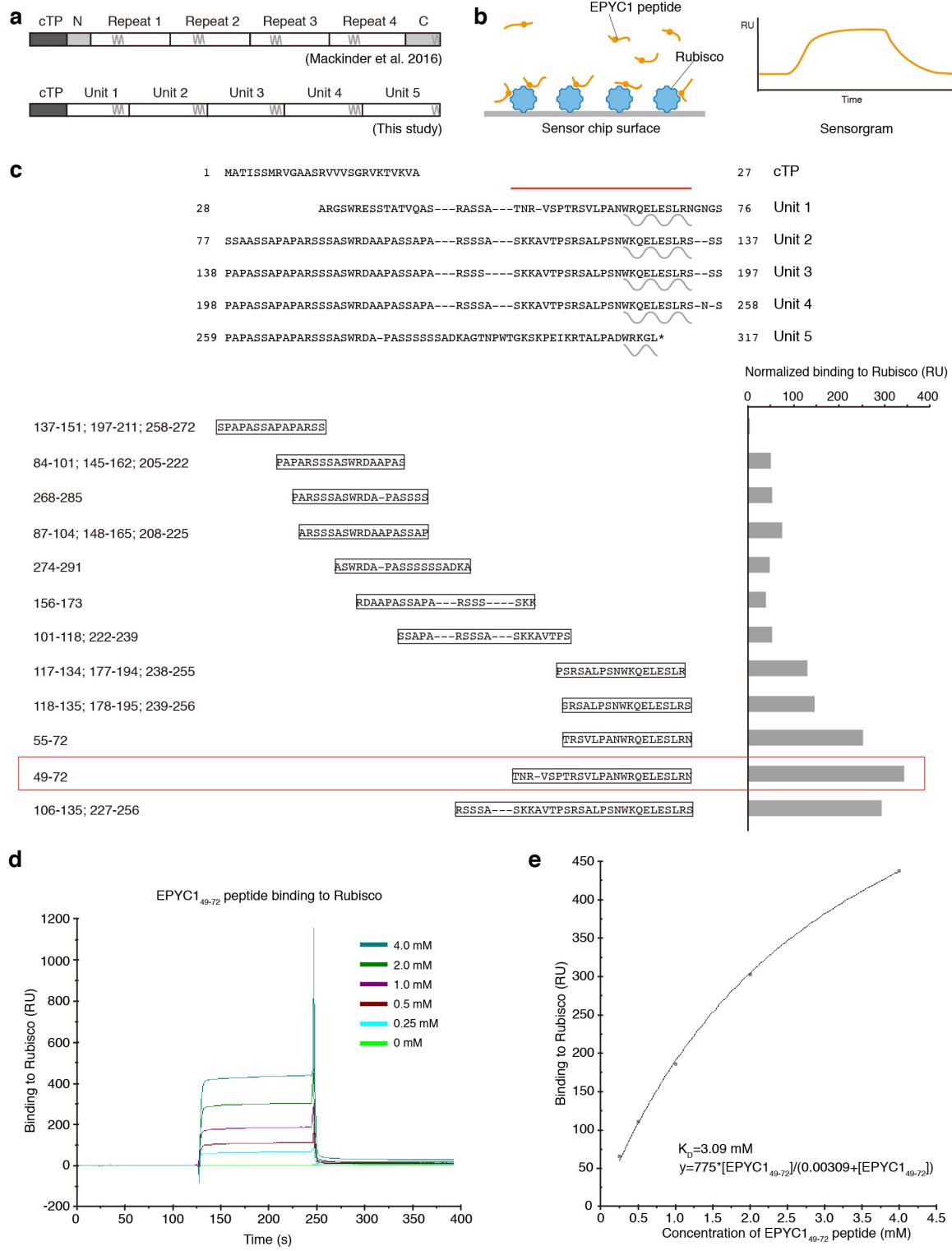


780

781

782 **Fig. 6 | A model for matrix structure consistent with *in situ* Rubisco positions and**  
783 **orientations.** a, The pyrenoid matrix was imaged by cryo-electron tomography<sup>5</sup>. An individual

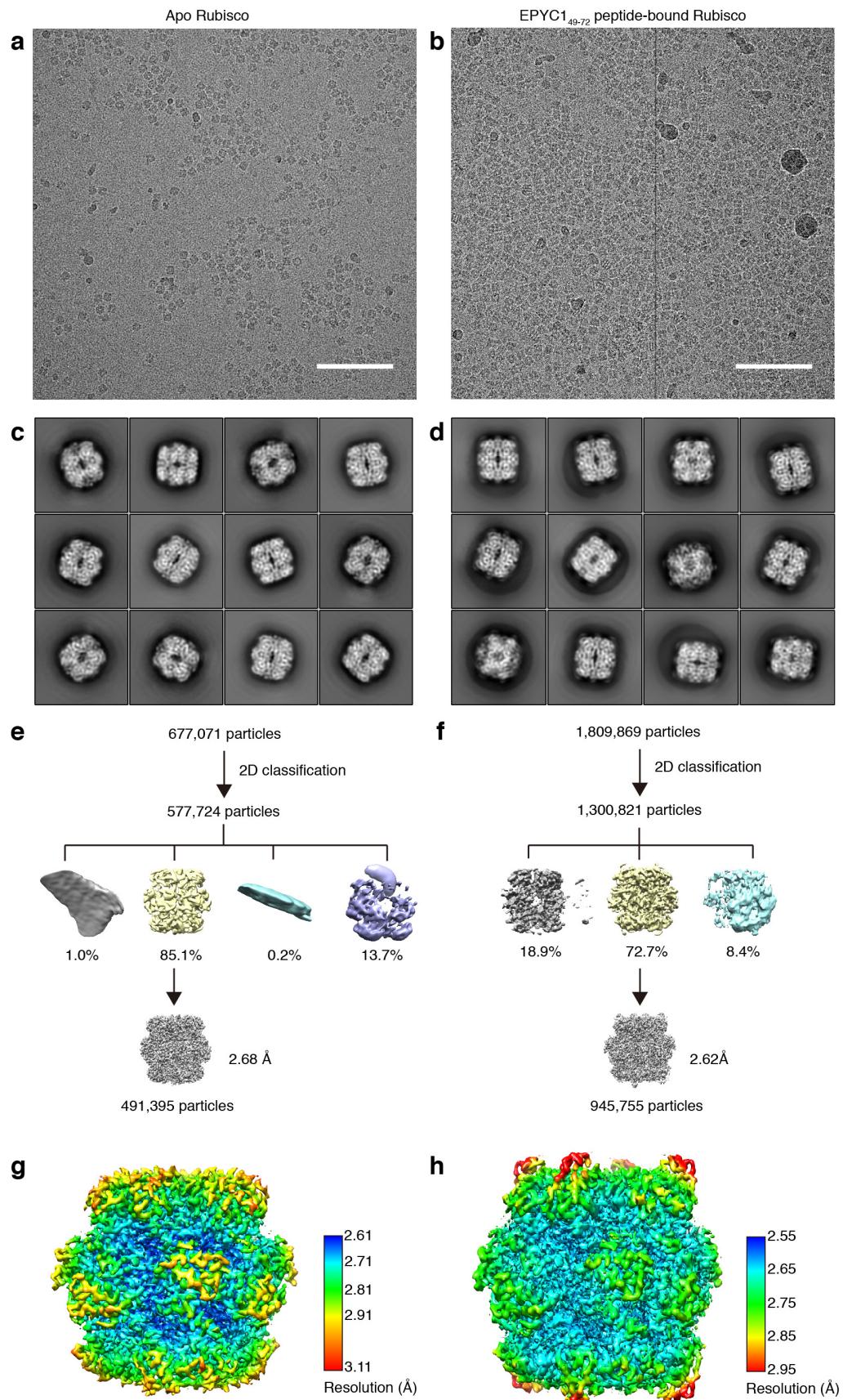
784 slice through the three-dimensional volume is shown. Scale bar = 200 nm. b, The positions and


785 orientations of individual Rubisco holoenzymes (blue) were determined by subtomogram

786 averaging and fit into the tomogram volume. c, The distances (yellow) between the nearest

787 EPYC1-binding sites (red) on neighboring Rubisco holoenzymes (blue) were measured. The view

788 is from inside the matrix; in some cases the nearest EPYC1 binding site is on a Rubisco that is out


789 of the field of view, causing some yellow lines to appear unconnected in this image. Scale bar =  
790 20 nm. **d**, Histogram showing the distances between the nearest EPYC1 binding sites on  
791 neighboring Rubisco holoenzymes. Shading indicates 95% confidence interval based on data from  
792 five independent tomograms. The estimated energy required for stretching a chain of 40 amino  
793 acids a given distance is shown in blue. **e**, A 3D model illustrates how EPYC1 (red) could crosslink  
794 multiple Rubisco holoenzymes (blue) to form the pyrenoid matrix. The conformations of the  
795 intrinsically disordered linkers between EPYC1 binding sites were modeled hypothetically.



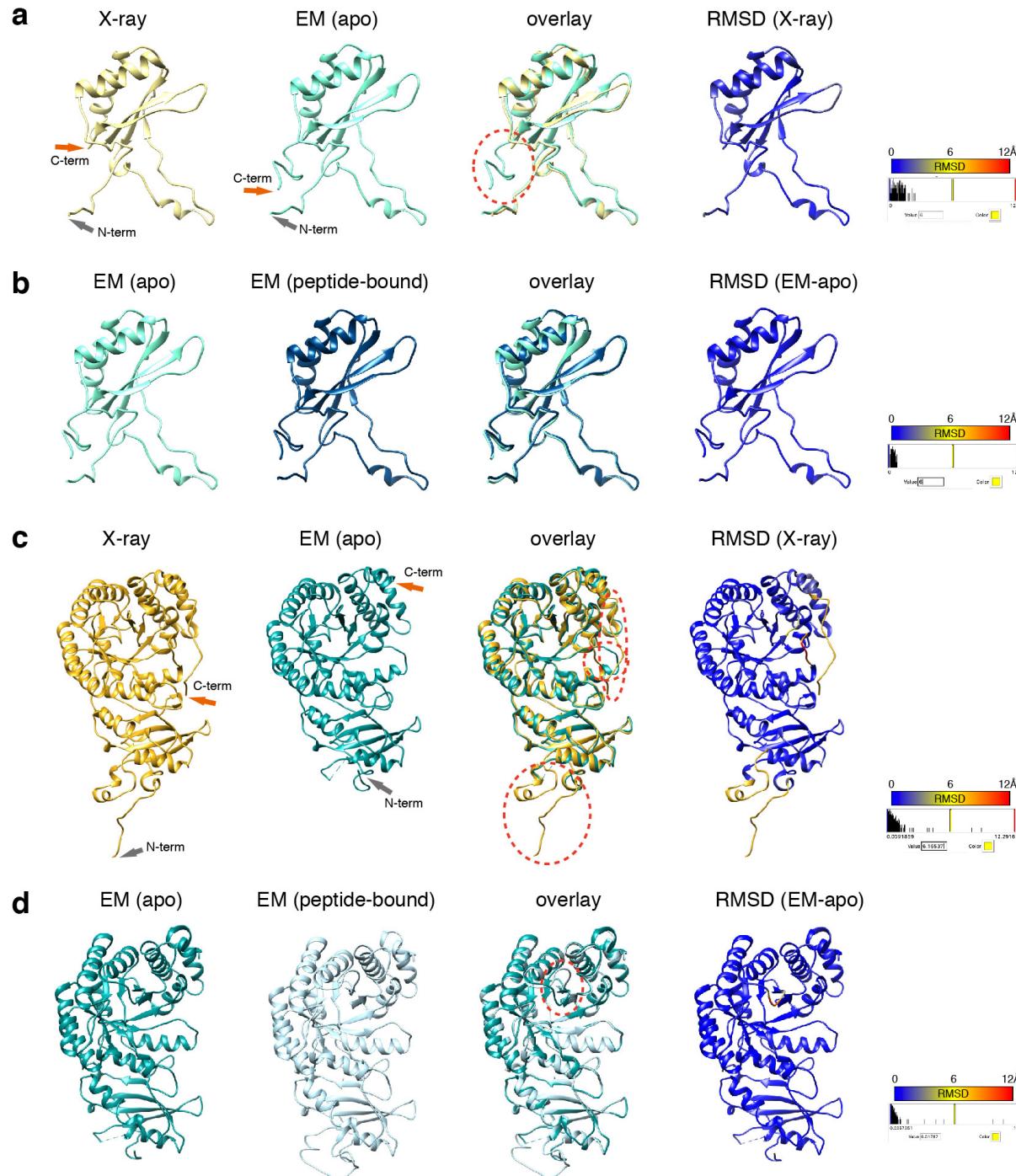
796

797 **Extended Data Fig. 1 | The EPYC1 peptide with the highest binding affinity to Rubisco was**  
 798 **chosen for structural studies.** a, Diagram indicating the differences between the previously  
 799 defined sequence repeats<sup>10</sup> and the newly defined sequence repeats on full-length EPYC1. b, To

800 verify the Rubisco-binding regions on EPYC1, surface plasmon resonance (SPR) was used to  
801 measure the binding of EPYC1 peptides to Rubisco. Purified Rubisco was immobilized on a sensor  
802 surface, and the EPYC1 peptides in solution were injected over the surface. The binding activity  
803 was recorded in real time in a sensorgram. **c**, The peptides used in SPR experiments are shown  
804 aligned to the sequence as shown in Fig. 1. The Rubisco-binding signal from the SPR experiment  
805 of each peptide is shown after normalization to the peptide's molecular weight. EPYC1<sub>49-72</sub> was  
806 chosen for structural studies based on its reproducible high Rubisco binding signal. **d**, The  
807 Rubisco-binding response of the EPYC1<sub>49-72</sub> peptide at different concentrations was measured by  
808 SPR. **e**, The binding responses shown in (d) were fitted to estimate the  $K_D$  of EPYC1<sub>49-72</sub> peptide  
809 binding to Rubisco.



811 **Extended Data Fig. 2 | Cryo-EM data collection and image processing procedure.** a,  
812 Representative micrograph of the apo Rubisco sample. Scale bar = 100 nm. b, Representative  
813 micrograph of Rubisco-EPYC1<sub>49-72</sub> complexes. Scale bar = 100 nm. c, Representative 2D class  
814 averages of the apo Rubisco sample. d, Representative 2D class averages of Rubisco-EPYC1<sub>49-72</sub>  
815 complexes. e, Overview of the workflow for single particle data processing for the apo Rubisco  
816 sample. f, Overview of the workflow for single particle data processing for the Rubisco-EPYC1<sub>49-</sub>  
817 <sub>72</sub> sample. g, Local resolution estimation diagram of the final refined apo Rubisco map. h, Local  
818 resolution estimation diagram of the final refined Rubisco-EPYC1<sub>49-72</sub> complexes map.



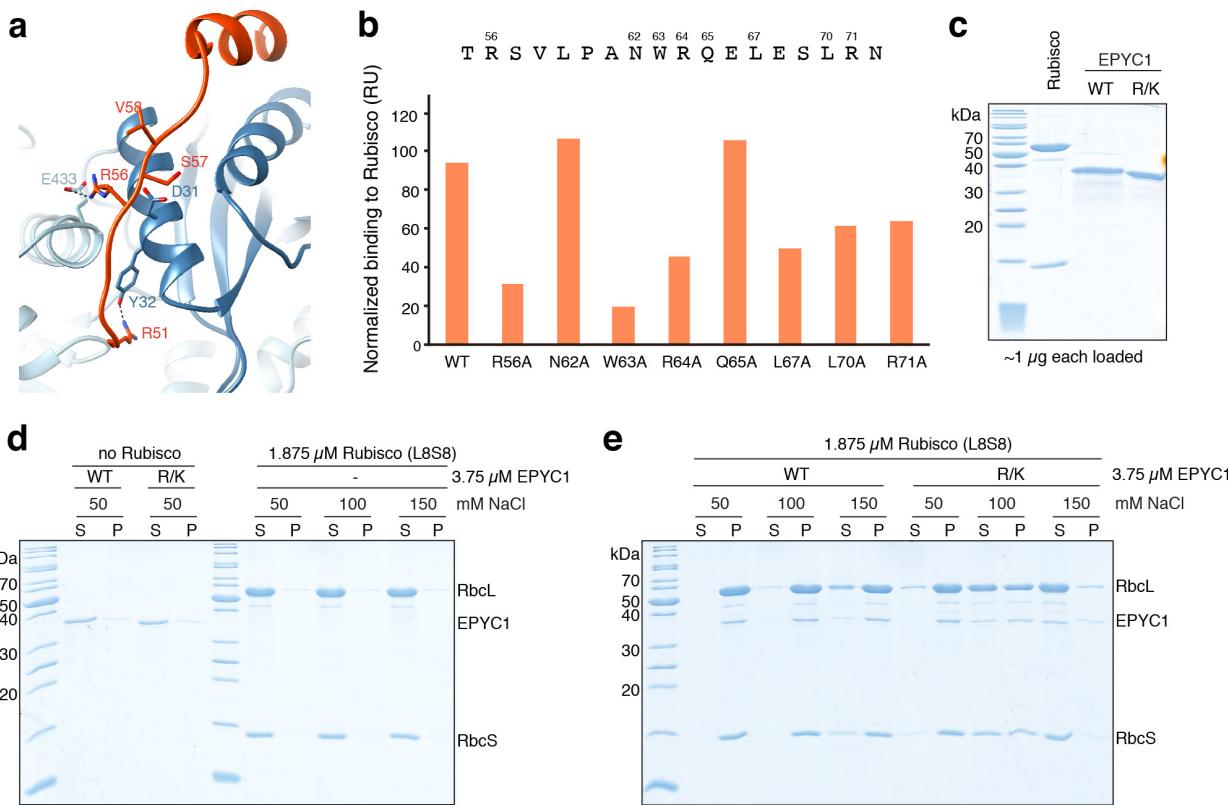

819

820

821 **Extended Data Fig. 3 | Cryo-EM analysis and resolution of Rubisco-EPYC1 peptide**  
822 **complexes in this study.** **a-b**, Representative cryo-EM density quality showing an  $\alpha$ -helix of  
823 residues 214-232 in chain A (a) (one of the Rubisco large subunits) and a  $\beta$ -sheet of residues 36-  
824 43 in chain A (b). The densities are shown as meshwork in gray. The backbones of the structural  
825 model are in ribbon representation, and side chains are shown in stick representation. **c-d**,  
826 Representative cryo-EM density quality showing water molecules as orange spheres. One water  
827 molecule between R312 and E136 on chain A is shown in panel c, and another water molecule  
828 between D137 and K316 on chain A is shown in panel d.

829




830

831 **Extended Data Fig. 4 | Comparison of our EM structure and the published X-ray**  
832 **crystallography structure (1gk8) of Rubisco purified from *Chlamydomonas reinhardtii*<sup>13</sup>, and**  
833 **comparison of our EM structure of native Rubisco and Rubisco bound with EPYC149-72**  
834 **peptide.** a, Comparison of the structure of the small subunit of apo Rubisco obtained here by EM

835 with 1gk8. The EM structure has additional C-terminus density past residue 126, circled by a red

836 dashed line. b, Comparison of our two EM structures of the small subunit: from apo Rubisco and  
837 from EPYC1 peptide-bound Rubisco. c, Comparison of the structure of the large subunit of apo  
838 Rubisco obtained here by EM with 1gk8. The three major differences found between the X-ray  
839 structure and the EM structure of the large subunit are circled with red dashed lines. d, Comparison  
840 of our two EM structures of the large subunit: from apo Rubisco and from EPYC1 peptide-bound  
841 Rubisco. The major difference found between the peptide-bound structure and the apo EM  
842 structure was the loop between K175 and L180 of the large subunit, which is shown circled by a  
843 red dashed line.

844



845

846

847 **Extended Data Fig. 5 | Interface residues on EPYC1 identified by Cryo-EM are important**  
 848 **for binding and phase separation of EPYC1 and Rubisco.** **a**, Our structure suggests that some

849 residues in addition to the ones shown in Fig. 4 may also contribute to the interaction between

850 EPYC1 and Rubisco. R56 of the EPYC1 peptide may interact with both D31 of the Rubisco small

851 subunit and E433 of the Rubisco large subunit. R51 of the EPYC1 peptide may form a salt bridge

852 with Y32 of the Rubisco small subunit. Residues S57 and V58 of the EPYC1 peptide are close to

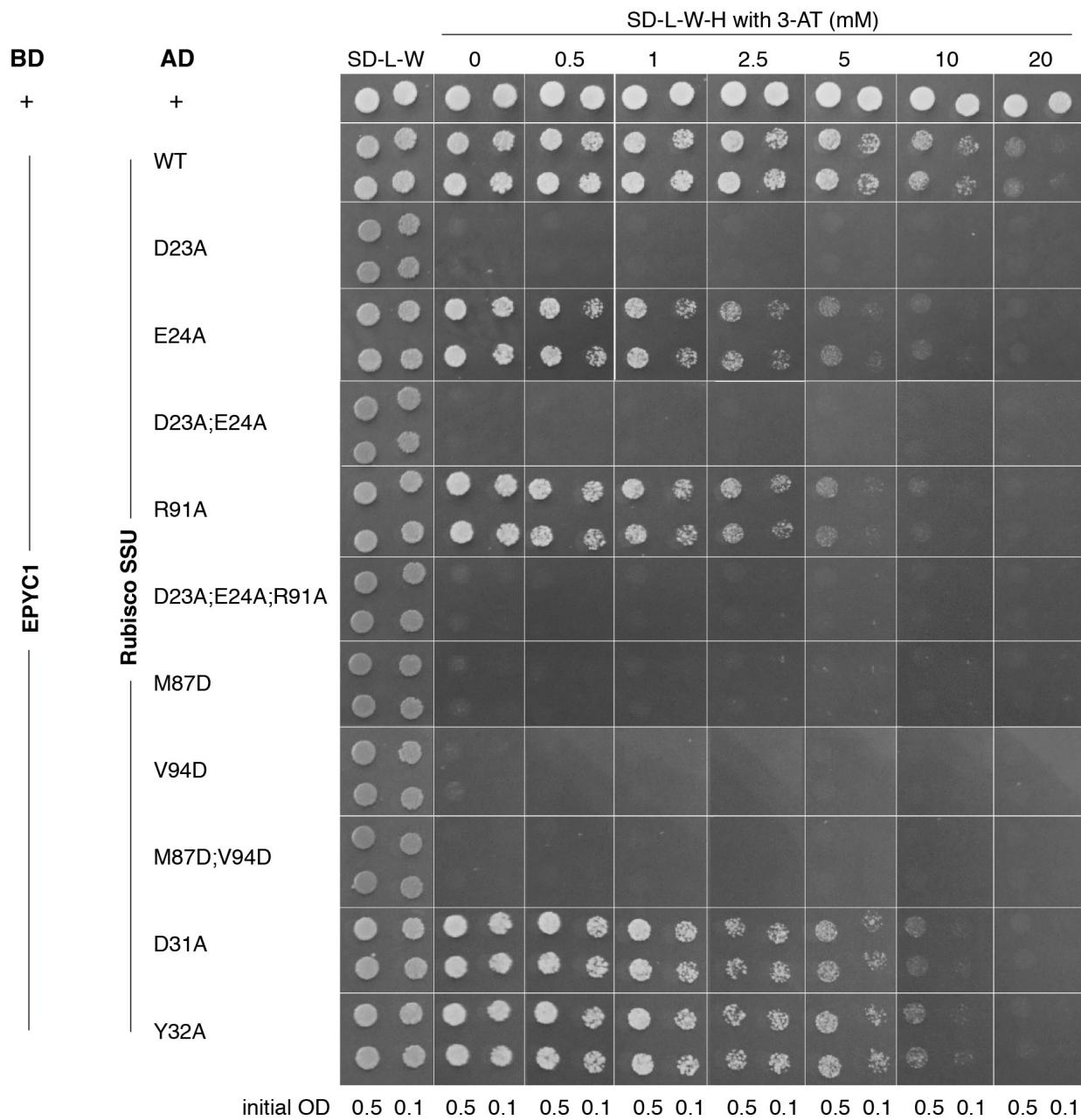
853 D31 in the structure, which may explain why replacing either of these residues with a negatively

854 charged residue disrupts binding (Fig. 4a). **b**, The wild-type (WT) EPYC1 peptide or EPYC1

855 peptides with the indicated point mutations were synthesized, and their Rubisco-binding signal

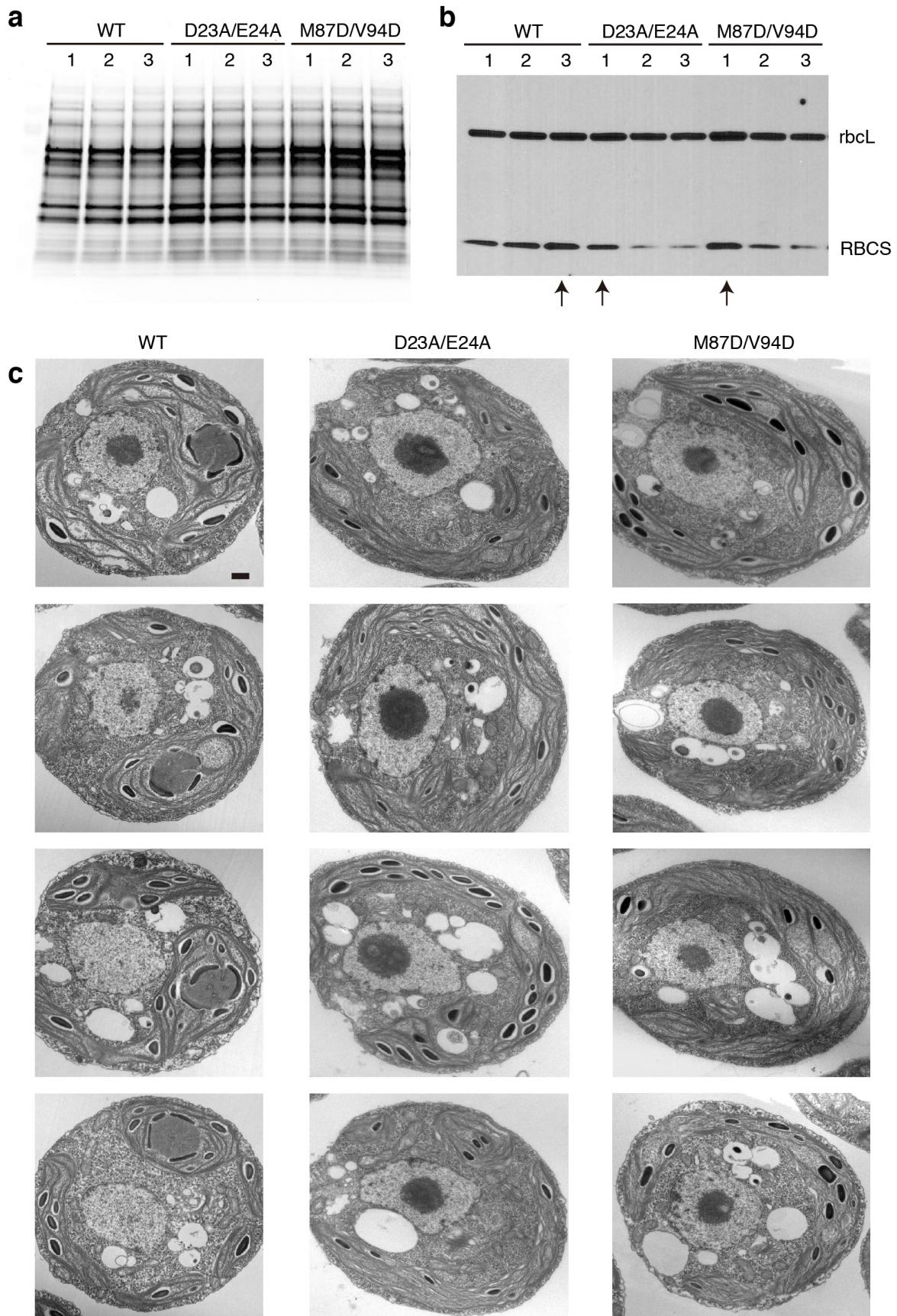
856 was measured by surface plasmon resonance. **c**, SDS-PAGE analysis of purified proteins used for

857 *In vitro* phase separation experiments. WT = wild-type EPYC1; R/K =


858 EPYC1<sup>R64A/K127A/K187A/K248A/R314</sup>. **d-e**, A droplet sedimentation assay was used as a readout of phase

859 separation complementary to the microscopy analyses shown in Fig. 4b. Proteins at indicated

860 concentrations were mixed and incubated for 10 minutes, then condensates were pelleted by


861 centrifugation. Supernatant (S) and pellet (P) fractions were run on a denaturing gel. The negative  
862 controls with no Rubisco or with no EPYC1 are shown in (d), and the wild-type Rubisco with  
863 wild-type EPYC1 or mutant EPYC1 are shown in (e).

864



866

867 **Extended Data Fig. 6 | Yeast Two-Hybrid assays of interactions between EPYC1 and wild-  
868 type or mutated Rubisco small subunit.** Colonies are shown after 3 days' growth on plates. A  
869 subset of the data shown in this figure are shown in Fig. 5a.



871 **Extended Data Fig. 7 | Selection of the Rubisco small subunit mutant strains for phenotype**  
872 **analysis.** **a**, The Rubisco small subunit-less mutant T60 (*Δrbcs*) was transformed with DNA  
873 encoding wild-type and mutant Rubisco small subunits (RBCS) to produce candidate  
874 transformants with the genotypes *Δrbcs;RBCS<sup>WT</sup>*, *Δrbcs;RBCS<sup>D23A/E24A</sup>*, and *Δrbcs;RBCS<sup>M87D/V94D</sup>*.  
875 Total protein extracts for three strains from each transformation were separated on a  
876 polyacrylamide gel. **b**, The gel shown in A was probed by Western Blot using a polyclonal  
877 antibody mixture that detects both large and small Rubisco subunits. The candidate transformants  
878 with highest RBCS expression level from each genotype are indicated by an arrow below the lanes  
879 and were used for the subsequent phenotypic analyses shown in Fig. 5 and panel c. **c**, Additional  
880 representative TEM images of whole cells of the strains expressing wild-type, D23A/E24A, and  
881 M87D/V94D Rubisco small subunit. Scale bar = 500 nm.

882 **Extended Data Table 1 | Cryo-EM data collection and refinement.**

883

|                                                  | #1 Apo Rubisco<br>(EMDB-xxxx)<br>(PDB xxxx) | 2# EPYC1 <sub>49-72</sub> peptide-bound Rubisco<br>(EMDB-xxxx)<br>(PDB xxxx) |
|--------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------|
| Voltage (kV)                                     | 300                                         | 300                                                                          |
| Magnification                                    | 22,500                                      | 22,500                                                                       |
| Defocus range (μm)                               | -1.5 to -3.0                                | -1.5 to -3.0                                                                 |
| Pixel size (Å)                                   | 1.31                                        | 1.31                                                                         |
| Exposure time (s)                                | 10                                          | 10                                                                           |
| No. movie frames                                 | 50                                          | 50                                                                           |
| Electron dose (e <sup>-</sup> /Å <sup>2</sup> )  | 58                                          | 58                                                                           |
| No. micrographs                                  | 2,500                                       | 2,500                                                                        |
| No. initial particles                            | 677,071                                     | 1,809,869                                                                    |
| No. final particle                               | 491,395                                     | 945,755                                                                      |
| Symmetry                                         | D4                                          | D4                                                                           |
| Resolution (Å)                                   | 2.68                                        | 2.62                                                                         |
| Map sharpening <i>B</i> factor (Å <sup>2</sup> ) | -147.233                                    | -154.161                                                                     |

884

885

886 **Extended Data Table 2 | The amino acid residues that form the Rubisco-binding regions on**  
887 **EPYC1 homologs, and the EPYC1 binding site on the surface of Rubisco, appear to be**  
888 **conserved across the order Volvocales.** Residues with roles in the binding interface are bolded.  
889 Residues that are different from the *Chlamydomonas reinhardtii* sequence are highlighted in grey.  
890

| Species                          | First Rubisco-binding region on<br>EPYC1 homolog | Rubisco SSU helix A    | Rubisco SSU helix B              |
|----------------------------------|--------------------------------------------------|------------------------|----------------------------------|
| <i>Chlamydomonas reinhardtii</i> | TRSVLPAN <b>WRQELESLRN</b>                       | <b>D</b> EQIAAQVVDYIVA | PMQVL <b>R</b> EIVACTKA          |
| <i>Tetrabaena socialis</i>       | TRSVLPAN <b>WRQELESLRG</b>                       | <b>D</b> EQIAAQVVDYIVA | PMQVL <b>R</b> EIV <b>S</b> CTRA |
| <i>Gonium pectorale</i>          | TRSVLPAN <b>WRQELESLRN</b>                       | <b>D</b> EQIAAQVVDYIVA | PMQVL <b>R</b> EIVACTKA          |
| <i>Volvox carteri</i>            | TRSVLPAN <b>WRQELESLRN</b>                       | <b>D</b> EQIAAQVVDYIVA | PMQVL <b>R</b> EIVACTKA          |

891