

Genotypic diversity and dynamic nomenclature of *Parechovirus A*

Edyth Parker*^{1,2}, Alvin Han², Lieke Brouwer³, Katja Wolthers³, Kimberley Benschop⁴, Colin A. Russell*²

¹Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom CB3 0ES

² Laboratory of Applied Evolutionary Biology, Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands 1105 AZ

³Department of Medical Microbiology, Amsterdam University Medical Centers, , University of Amsterdam, Amsterdam, The Netherlands 1105 AZ

⁴National Institute for Public Health and the Environment, Bilthoven, Netherlands 3721 MA

*corresponding author: EP: ep484@cam.ac.uk; CAR c.a.russell@amsterdamumc.nl

Abstract

Human parechoviruses (PeV-A) can cause severe sepsis and neurological syndromes in neonates and children and are currently classified into 19 genotypes based on genetic divergence in the VP1 gene. However, the genotyping system has notable limitations including an arbitrary distance threshold and reliance on insufficiently robust phylogenetic reconstruction approaches leading to inconsistent genotype definitions. In order to improve the genotyping system, we investigated the molecular epidemiology of human parechoviruses, including the evolutionary history of the different PeV-A lineages as far as is possible. We found that PeV-A lineages suffer from severe substitution saturation in the VP1 gene which limit the inference of deep evolutionary timescales among the extant PeV-A and suggest that the degree of evolutionary divergence among current PeV-A lineages has been substantially underestimated, further confounding the current genotyping system. We propose an alternative nomenclature system based on robust, amino-acid level phylogenetic reconstruction and clustering with the PhyCLIP algorithm which delineates highly divergent currently designated genotypes more informatively. We also describe a dynamic nomenclature framework that combines PhyCLIP's progressive clustering with phylogenetic placement for genotype assignment.

1 Introduction

2 Human parechoviruses (PeV) of the species *Parechovirus A* of the *Picornaviridae* family
3 (PeV-A) are globally prevalent pathogens that largely cause subclinical, mild respiratory or
4 gastrointestinal disease in neonates and children. However, these viruses are also associated
5 with more severe conditions including sepsis and neurological syndromes.¹ The two prototypic
6 strains of PeV-A were first isolated in the United States of America in 1956 from infants with
7 diarrhoea.² The two serologically distinct prototypes were initially classified as echovirus 22
8 and 23 in the *Enterovirus* genus, owing to similar clinical properties and cytopathology to other
9 enteroviruses.² Further investigation revealed that these viruses had distinctive molecular
10 properties to enteroviruses, including high levels of sequence divergence as well as
11 dissimilarities in genome structure and host cell protein interaction, and they were reclassified
12 into a distinct *Picornaviridae* genus *Parechovirus* as the genotypes PeV-1 and PeV-2.³

13 To date, 19 genotypes have been proposed for PeV-As based on a 25% nucleotide sequence
14 divergence threshold in the VP1 gene. The VP1 gene encodes the major structural protein of
15 the icosahedral capsid. Notably, the VP1 protein of some PeV-A genotypes has an arginine-
16 glycine-glutamic acid sequence (the canonical RGD motif found in several other
17 picornaviruses) near the C terminus which mediates attachment to cell surface integrins.¹
18 Genotypes PeV-3 and PeV-7 through 19 consistently lack the RGD motif in the VP1 gene and
19 are presumed to be integrin-independent.¹ The region encompassing the receptor binding site
20 contains antigenic sites and is highly immunogenic.⁴⁻⁶

21 Of the 19 current PeV-A genotypes, PeV-1 and 3 are the predominant genotypes globally both
22 in seroepidemiological studies and clinical settings, but prevalence of the individual genotypes
23 vary widely across countries.^{1,7-9} PeV-1 is associated with mild gastrointestinal or respiratory
24 symptoms, in children between 6 months and 5 years of age, whereas PeV-3 is more likely to
25 cause severe disease in children under the age of 3 months.⁷ Central nervous system conditions
26 such as acute flaccid paralysis, meningitis and encephalitis are more often associated with PeV-
27 3.¹⁰⁻¹³ Inference about differential clinical manifestations is limited for most of the other PeV-
28 A genotypes as they have only been isolated from a few cases.

29 The PeV-A genotyping criteria have changed over time.¹⁴ For example, the PeV-3 genotype
30 was first classified based on an uncorrected nucleotide sequence distance to other PeV-A
31 genotypes of more than 30% in the VP1 genomic region, a threshold that is also used for strain
32 classification of enteroviruses.¹⁵ Several other thresholds on the nucleotide (23%, 27%) and
33 amino acid level (13%, 19%) have been proposed for the VP1 gene as well as the VP3/VP1
34 junction (18% nt and 8% aa distance), but these thresholds have not uniformly applied.¹⁵⁻¹⁷

35 It is unclear if the current genetic distance based genotyping system delineates the population
36 structure of PeVs at the appropriate resolution to capture the epidemiological and/or
37 evolutionary processes underlying PeV-A diversity. The use of a distance threshold from a
38 closely related pathogen to classify genotypes is a prevalent convention for less well-
39 characterized viruses on discovery. This is typically because there is rarely any additional,
40 systematic information on the epidemiology or serology of the virus to calibrate biologically
41 meaningful limits on the genetic divergence allowed within demarcated groups. However, the
42 assumption that information used to delineate thresholds in one virus may be generalizable to
43 others is problematic. The high degree of amino acid sequence divergence in the capsid protein
44 between PeV-1 and PeV-2 is comparable to the threshold delineating serotypes in better

45 characterized picornaviruses such as enteroviruses and foot-and-mouth disease viruses.¹
46 However, there has been no systematic characterization of the serological properties of PeVs,
47 especially with the discovery of several novel, divergent lineages in recent years.^{18,19} It is
48 therefore unclear whether genotypes characterized by high degrees of genetic heterogeneity in
49 the VP1 region are capable of cross-neutralization. Cross neutralization has been reported
50 between PeV1-2 and PeV4-6, with only PeV-3 being consistently antigenically unique.^{18,19}
51 The inconsistent information between antigenic and genetic diversity as currently described
52 along with the lack of systematic antigenic characterization of PeVs suggest that antigenic
53 information cannot be used to underlie the genotyping nomenclature PeV-A.

54 The current genotyping system also has other limitations. It operates on uncorrected genetic
55 distances, which severely underestimates the true evolutionary distance between viruses in the
56 presence of substitution saturation and high heterogeneity in lineage-specific evolutionary
57 rates.^{20,21} Given the extent of genetic divergence among extant PeV-A, saturation is likely to
58 be a substantial issue. The current genotyping system also relies on phylogenetic reconstruction
59 approaches such as neighbor joining that can result in severe branch underestimation and
60 topological inconsistencies across studies, which has resulted in inconsistent typing of PeV-
61 A.²²⁻²⁹ It has also resulted in the designation of PeV-1 subtypes A and B, which do not
62 consistently group as a clade.³⁰ Many studies also employ BLAST-based nucleotide searches
63 to compare query sequence to a reference dataset representing different genotypes.²²⁻²⁸
64 However, many of these reference sequences are not representative of the high internal
65 divergence of some genotypes. This is especially pronounced for the progenitor sequences of
66 some genotypes such as PeV- 1 and 3, which are genetically and antigenically distinct.²²⁻²⁸
67 Inconsistently typed viruses are incorrectly annotated in public sequence databases,
68 propagating the error into subsequent studies.

69 The inconsistent discriminatory information in the presently designated genotypes highlights
70 fundamental limitations of the current genotyping system. Nomenclature systems should aim
71 to delineate populations into units of genotypic similarity that carry cohesive and consistent
72 information about the evolutionary dynamics of pathogen variants that result in differences in
73 epidemiological and virologic characteristics. Here, we describe and quantify the evolutionary
74 history of the different PeV-A lineages as far as is possible with currently available data and
75 tools and propose an alternative, dynamic PeV-A nomenclature system based on robust

76 phylogenetic reconstruction methods and clustering with PhyCLIP in combination with a
77 phylogenetic placement algorithm for the assignment of genotypes to newly sequenced viruses.

78 Though demarcations of genotypes or lineages are often vague and boundaryless, the
79 phylogenetic clustering algorithm PhyCLIP offers a statically principled and phylogenetically
80 informed framework to partition phylogenies into discontinuous clusters that may represent
81 independent evolutionary and epidemiological phylogenetic units.³¹

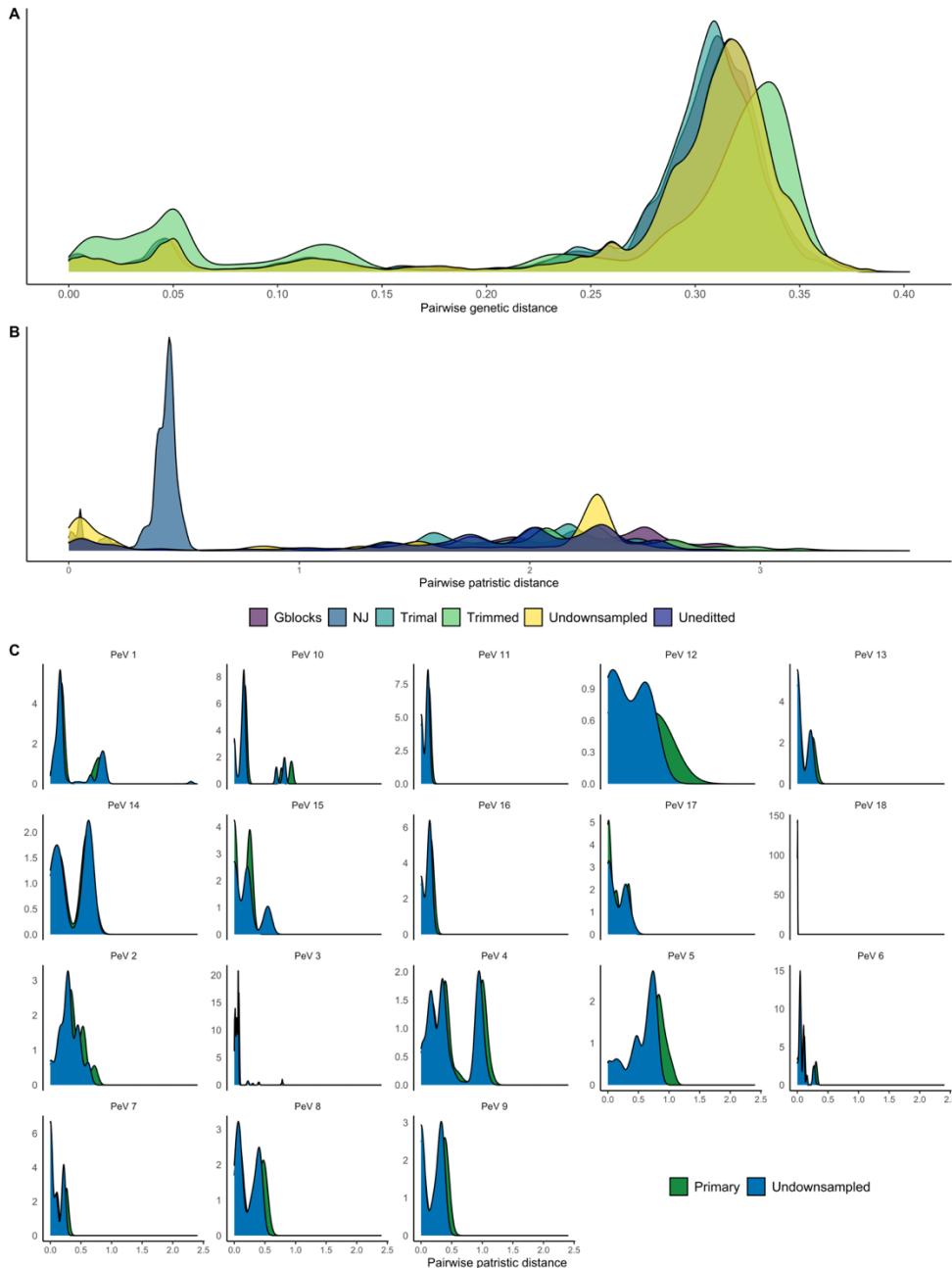
82 Methods

83 Dataset curation

84 All available nucleotide sequences (as of 01/06/2019) of the VP1 gene (± 700 nt) with known
85 dates of isolation were collated from Genbank (N=1655; i.e. the complete undownscaled
86 dataset). The sequences were classified according to genotype identity annotated in the
87 Genbank metadata or the associated literature. Unannotated sequences were classified as
88 “unknown”. Sequences obtained from a recent Malawian cohort study (n=123) were excluded
89 from this complete dataset, as they were reserved as a test dataset to assess the validity of the
90 proposed dynamic nomenclature system (see phylogenetic placement section below and
91 Results).²² Genbank accession numbers available at <https://github.com/AMC-LAEB/parecho>.

92 The sequences in the complete dataset are not uniformly distributed across the current
93 genotypes, with representation skewed towards PeV-1 (n=608) and PeV-3 (n=614) (SFigure
94 1). To account for sampling biases, we downsampled PeV-1 and PeV-3 viruses from the
95 complete dataset to the equivalent number of the next largest genotype (PeV-4: n=115; final
96 included dataset of PeV-1: 117; PeV-3: 120) in the complete dataset to generate a *primary*
97 *dataset* that was used for all subsequent analyses other than the molecular dating analyses. To
98 obtain the primary dataset, we downsampled PeV-1 and PeV-3 viruses from the complete
99 dataset to the equivalent number of the next largest genotype (PeV-4: n=115; final included
100 dataset of PeV-1: 117; PeV-3: 120). Sequences were sampled at random but were drawn to
101 maintain the genetic distance distribution of the complete dataset (Figure 1). We also removed
102 three sequences (GenBank accessions: KM407606, KY931551 and KM407607) that were
103 highly divergent (inferred branch length >0.4 substitutions/site) based on a preliminary
104 maximum-likelihood phylogeny reconstructed under the GTRGAMMA substitution model in
105 RAxML from a MAFFT-derived codon alignment of the primary dataset.^{32,33}

106 A sub-dataset consisting of all PeVs isolated before 2006 (referred to as the pre-2006 dataset)
107 was used to assess the phylogenetic clustering algorithm PhyCLIP's sensitivity to sampling
108 (see Supplementary Information). Finally, a set of all available whole genome sequences
109 (n=158) was collated from Genbank for recombination analysis.


110 **Sequence alignment and phylogenetic reconstruction**

111 PeV-As are characterized by a high degree of genetic heterogeneity (Figure 1). The high level
112 of sequence divergence in the VP1 region, particularly the C terminal region, (mean genetic
113 distance of 28%) can result in ambiguously aligned regions, rendering the alignment unreliable
114 and introducing systematic error into phylogenetic reconstruction and downstream
115 phylogenetic-based genotyping inferences. However, removing potentially unreliable regions
116 of the alignment results in a loss of information that could decrease phylogenetic signal
117 substantially, which is of particular concern when working with very short subgenomic regions
118 such as VP1 (~700nt). We constructed four different nucleotide alignments subject to various
119 quality filtering specifications from the primary dataset, as well as an amino acid alignment, to
120 investigate the robustness of phylogenetic inference in the trade-off between the potential loss
121 of phylogenetic information and bias introduced by potentially misaligned regions or other
122 model misspecifications:

- 123 1) A nucleotide alignment with no additional editing
- 124 2) A nucleotide alignment with the last 70 nucleotide positions encompassing the
125 hypervariable, often ambiguously aligned RGD-motif region removed
- 126 3) A nucleotide alignment filtered to sites that passed TrimAL's heuristic selection of
127 quality control parameters based on similarity statistics.³⁴
- 128 4) A nucleotide alignment filtered to sites extracted using GBlocks, allowing small blocks
129 and gaps (b4=2 and b5=all).³⁵
- 130 5) An amino-acid alignment, translated from the unedited alignment (alignment 1)

131 All nucleotide alignments were constructed using the codon model in PRANK and manually
132 edited. PRANK is a phylogeny-aware alignment algorithm that employs ancestral
133 reconstruction and has shown improved performances on alignments with insertions and
134 deletions.³⁶

135 We performed model adequacy tests to prevent substitution model underparameterization and
136 model assumption violation, which are the primary sources of bias in phylogenetic
137 reconstruction.³⁷ Potential sources of error include substitution saturation and model
138 misspecification regarding stationarity, rate variation across branches and sites as well as base
139 composition heterogeneity. We used the chi-squared test implemented in IQ-TREE to
140 investigate heterogenous base composition among lineages, which would violate model
141 assumptions of stationarity.^{37,38} We performed model fit tests to identify the substitution model
142 with the highest statistical fit by Bayesian Information Criterion (BIC) for each alignment
143 within IQTree (Table 1).³⁹ Phylogenetic trees were reconstructed for each of the alignments in
144 IQTree under the best performing models, with 1000 ultrafast bootstrap approximation
145 (UFBoot) replicates employing the BNNI hill-climbing nearest neighbour interchange search
146 for further optimization of each bootstrap tree to reduce the risk of nodal support
147 overestimation.⁴⁰ Additionally, a phylogenetic tree was reconstructed with Neighbour Joining
148 under the Kimura 2-parameter substitution model in MEGA to investigate the systematic
149 underestimation of branch lengths by more simple phylogenetic approaches.⁴¹ Phylogenies
150 constructed from the different alignments were compared with tanglegrams produced with the
151 Baltic module (<https://github.com/evogytis/baltic>). All calculations of phylogenetic statistics,
152 including patristic distance, were performed with the *ape* package in R.⁴²

153 Figure 1: A) Density of pairwise genetic distance distribution in the nucleotide alignments. All alignments are of
154 the primary dataset (green), except for the full undownsampling complete dataset (in yellow). B) Density of
155 pairwise patristic distance distribution in the reconstructed nucleotide phylogenies. C) Within-genotype pairwise
156 patristic distance, as designated by the current nomenclature in the primary and undownsampling dataset.

157 Table 1: Model fit for phylogenetic reconstruction of the primary dataset

Alignment	Best model BIC	Description
Unedited NT	TIM2+F+R7	AC=AT, CG=GT and unequal base freq.
Trimmed NT	TIM2+F+R7	Empirical base frequencies
Trimal NT	TIM2+F+R7	
GBlocks NT	TIM2+F+R7	FreeRate model with seven rate categories ⁴³
AA	FLU+R5	Empirical amino-acid exchange rate matrices. ⁴⁴
		Empirical AA frequencies
		FreeRate model with five rate categories

158 Due to the high degree of genetic divergence among PeV-A genotypes, we used three
159 approaches to evaluate the extent of mutation saturation in the nucleotide alignments.
160 Substitution saturation occurs when there are multiple unobserved substitutions at a single site
161 which are not accounted for when modelling sequence divergence to branch lengths, resulting
162 in systematic underestimation of the branches in the tree.⁴⁵ Saturation mostly occurs at the
163 rapidly evolving third codon position of nucleotide sequences where there is a high probability
164 of synonymous substitution. Standard evolutionary models that do not account for variation of
165 selective pressure and the associated rate heterogeneity across sites and branches are known to
166 significantly underestimate branch lengths, especially branches under strong purifying
167 selection.²⁰ However, conventional model fit tests applied in phylogenetic reconstruction do
168 not assess how models accounts for substitution saturation, and do not allow for the rejection
169 of all models if all models are poor descriptions of the evolutionary process that generated the
170 data.^{37,45}

171 First, transition and transversion frequencies were plotted against genetic distance to visualise
172 the extent of saturation. Second, we formally tested for saturation with the information entropy-
173 based index of substitution saturation using the Xia's test as implemented in DAMBE.⁴⁶ The
174 alignment was partitioned into a combination of the first and second codon site and the third
175 codon site separately, to account the different rates of synonymous and non-synonymous
176 substitutions and saturation at the different sites. In the third approach, the branch lengths for
177 the maximum-likelihood phylogenies constructed from the different nucleotide alignments
178 were re-estimated in HyPhy under two different models of evolution: the standard GTR
179 substitution model with gamma-distributed site rate variation across four categories and the

180 selection-aware aBSREL model.⁴⁷ aBSREL is a branch-site random effects likelihood
181 (BSREL) model that estimates the effects of varying selection pressure across codon sites and
182 branches by inferring dN/dS (non-synonymous or non-silent to synonymous or silent
183 substitution rate ratio) rate classes for each branch and estimating the proportion of sites
184 evolving under each rate class.⁴⁷

185 **Selection analysis**

186 Selection analysis was performed with a set of codon models implemented in HyPhy.⁴⁸ Fast,
187 Unconstrained Bayesian AppRoximation (FUBAR) was used to detect pervasive positive or
188 purifying selection at individual sites.⁴⁹ Site-specific selection was investigated with the Mixed
189 Effects Model of Evolution (MEME).⁵⁰ MEME is currently the most robust site-to-site
190 selection approach and is more comprehensive than FUBAR as it accounts for both pervasive
191 and episodic selection.⁵⁰ As above, the adaptive Branch-Site Random Effects Likelihood
192 (aBSREL) was used as a branch-site model of selection, allowing evolutionary rates to vary
193 across lineages and sites to detect lineage-specific positive diversifying selection.⁴⁷

194 **Recombination analysis**

195 Alignments of the primary dataset were screened for recombinant sequences with the RDP,
196 GENECONV, MAXCHI, CHIMAERA, 3SEQ, BOOTSCAN and SISCAN tests implemented
197 in the RDP program suite.⁵¹ Default settings were used, excluding the window size, which was
198 set to 30bp across tests. Potential recombinants were defined as those with Bonferroni
199 corrected p-values below 0.05 in more than three detection methods. The full genome dataset
200 was screened for recombination with the Genetic Algorithm for Recombination Detection
201 GARD, implemented in Hyphy.⁵²

202 **Evolutionary history of PeV**

203 We wanted to investigate the evolutionary timescale and relationship of the divergent PeV-A
204 genotypes, with particular interest in dating the divergence between the co-circulating
205 genotypes. Divergence dating requires that the genetic divergence of sequences be scaled to
206 units of absolute time by assuming a molecular clock model, informed by tip-calibrations.⁵³
207 Molecular clock models are a statistical description of the relationship between observed
208 genetic distances and time. In other words, prior to divergence dating, we must ensure that

209 there is sufficient temporal signal in the dataset to inform clock models.⁵⁴ The strength of the
210 temporal signal required for molecular clock analyses was investigated in three different
211 datasets:

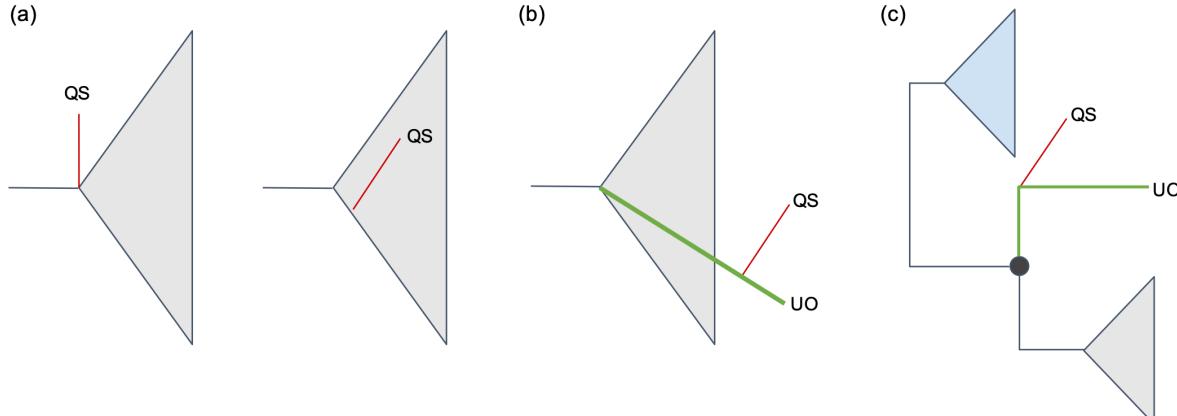
212 1) The complete, non-downsampled dataset
213 2) The primary dataset downsampled to maintain extant diversity, in both amino acid and
214 nucleotide reconstructed phylogenies
215 3) The individual sublineages of PeVs, here defined by the existing PeV-A genotyping
216 system prevalently used.

217 Phylogenetic trees were reconstructed for each of the sub-lineage datasets with RAxML
218 v8.2.1.1 under the GTR+gamma4 model.³² The temporal information for each dataset was
219 quantified with root-to-tip regression, performed in R with the *ape* package.⁴² Calibration was
220 based on sampling times, resolved to the year. Clocklike structure was evaluated for
221 hypothetical roots including midpoint rooting and root positions placed to maximize the
222 correlation between tip sampling dates and distance to root and minimize the sum of the
223 squared residuals in the regression.

224 The evolutionary rate and history of the individual PeVs genotypes was estimated using
225 Bayesian Evolutionary Sampling Trees (BEAST) software package version 2.5.1.⁵⁵ The
226 alignments were partitioned into codon positions 1+2 and 3 to account for variation in rates
227 across sites, with a GTR gamma model with 4 rate categories as substitution model in
228 respective partitions but shared clock and tree models. A lognormal relaxed clock was
229 employed to account for the high variation in rates across branches suggested in temporal
230 regression. A Bayesian skyline and constant size coalescent model were used as tree model
231 priors respectively (See Supplementary files). Chains were run for 500 million steps across the
232 datasets (Stable 7), with convergence diagnosed as an estimated sample size in all parameters
233 > 200 in Tracer v 1.7.1.⁵⁶ Log- and tree-files from individual runs were combined and sub-
234 sampled with LogCombiner were necessary. All runs were also completed by sampling from
235 the prior as diagnoses.

236 **Phylogenetic clustering with PhyCLIP to define genotypes**

237 Phylogenetic clustering was performed on the phylogenies constructed from the primary, pre-
238 2006 and primary with Malawian test sequence datasets using PhyCLIP.³¹ PhyCLIP operates


239 on the distribution of all branch lengths in the phylogeny, using this global patristic distance
240 distribution as a pseudo-null distribution to test the within-cluster distance distribution of
241 putative clusters against. PhyCLIP also incorporates the branching order of the phylogeny into
242 cluster definition through its distal dissociation approach, which accommodates the designation
243 of paraphyletic clusters and performs outlier testing. PhyCLIP was run with different sets of
244 the parameters varying over the ranges: a minimum cluster size of 2–10, a multiple of deviation
245 (γ) of 1–3, and an FDR of 0.05, 0.1, 0.15, or 0.2. The optimization criteria were ranked as 1)
246 percentage of sequences clustered, 2) grand mean of within-cluster patristic distance
247 distribution, 3) mean of the intercluster distances. Percentage sequences clustered was
248 prioritized as optimization criteria to assign the maximum number of sequences to clusters.
249 Mean within-cluster distance was minimized to ensure clusters of closely related sequences
250 were recovered, while inter-cluster distance was maximized to ensure well-separated clusters.³¹

251 **Phylogenetic placement to rapidly genotype new viruses**

252 While PhyCLIP can be used to delineate diversity into statistically supported units and
253 progressively update the nomenclature system when additional PeV-A diversity is sampled,
254 rerunning the entire phylogenetic and PhyCLIP to genotype new individual or small numbers
255 of viruses is very time consuming. Alternatively, phylogenetic placement can be used to rapidly
256 genotype newly sampled viruses to mitigate the need to conduct full phylogenetic
257 reconstruction and PhyCLIP clustering analyses for every new query sequence.

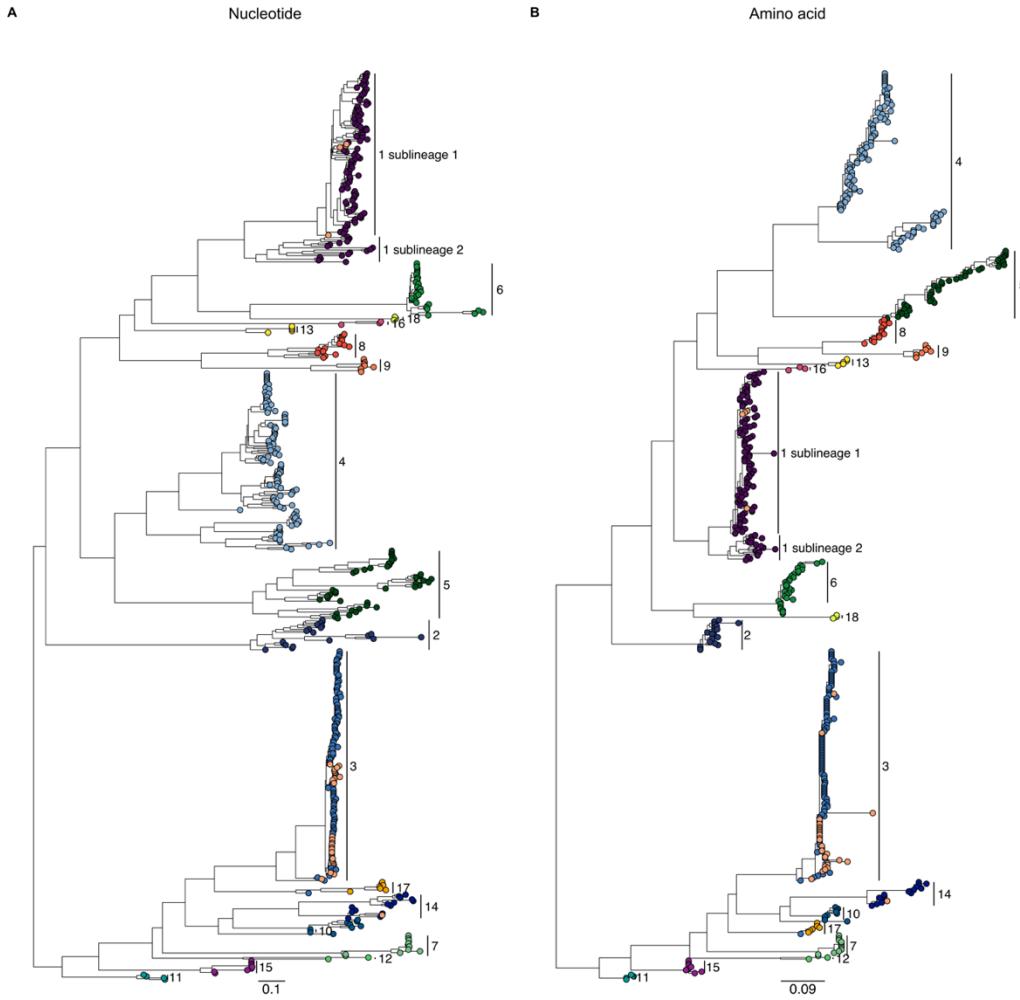
258 We employed a leave-out testing approach to validate phylogenetic placement on the Malawian
259 cohort test dataset that included 123 viruses from a Malawian cohort.²² The RAxML-EPA
260 PROTGAMMAGTR substitution model was used to phylogenetically place the Malawian
261 sequences on the primary phylogenetic tree based on amino acid sequence alignment. The
262 RAxML-EPA approach was originally developed for rapid phylogenetic classification of short-
263 read sequences obtained from metagenomic studies but can also be applied to longer sequences.
264 The algorithm traverses along all edges of the reference phylogenetic tree and computes a tree
265 likelihood score under the maximum-likelihood model as it inserts the query sequence along
266 each edge. The query sequence is phylogenetically placed on the best scoring edge and the
267 corresponding normalized likelihood score (i.e. likelihood weight ratio, LWR) can be used as
268 a measure of placement uncertainty.⁵⁷ Under our framework (Figure 2), a query sequence
269 would be typed to a cluster if it is topologically placed on an edge that was subtended within

270 the cluster in the reference phylogeny and if the length of the inserted query branch estimated
271 by RAxML-EPA does not exceed the maximum within-cluster pairwise divergence across all
272 clusters. A cluster wide LWR is also computed by summing the LWR score of all edges within
273 the cluster.

274
275 Figure 2: Types of query sequence (QS) based on its phylogenetic placement relative to PhyCLIP-defined clusters.
276 (a) QS is closely related to reference viruses clustered as a single phylogenetic unit by PhyCLIP (grey triangle).
277 (b) QS is placed on an unclustered outlying (UO) sequence relative to a PhyCLIP cluster (grey triangle). (c) QS
278 is placed on any UO sequence or lineage that topologically lies between different PhyCLIP clusters.

279 To assess the accuracy of the phylogenetic placement as well as consistency of clustering
280 topology between the reference and test phylogenies, a phylogenetic tree was reconstructed
281 from the amino acid alignment of the test data with the additional Malawian sequences in
282 IQTree under the best performing model selected by BIC, with 1000 ultrafast bootstrap
283 replicates and bootstrap tree optimization with the BNNI algorithm.³⁸ The phylogenetic
284 placement of each query sequence was compared to its position in the reconstructed phylogeny.
285 Code and data are available at <https://github.com/AMC-LAEB/parecho>

286 Results


287 Alignment quality and model adequacy in phylogenetic reconstruction of highly 288 divergent viruses

289 All alignments showed extensive genetic divergence among genotypes and even within some
290 genotypes (Figure 1). For each of the four nucleotide and one amino acid alignments, chi-
291 square tests did not find evidence that any sequence or lineage significantly deviated in base
292 composition from the dataset average. All of the substitution models ranked as best-performing

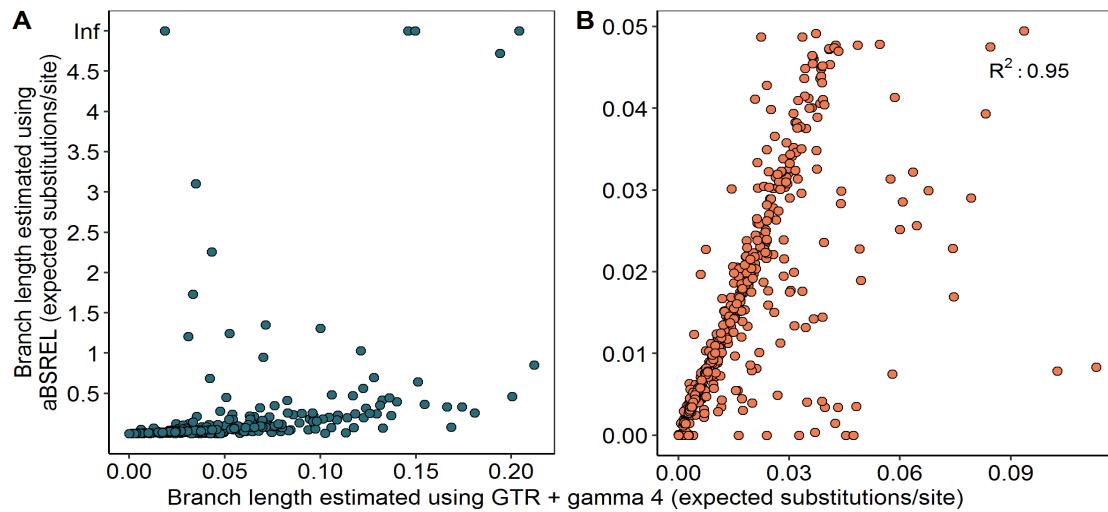
293 by the Bayesian information Criterion (Table 1) included the FreeRate model of rate
294 heterogeneity across sites with seven rate categories, as this extremely flexible site-to-site
295 variation improves the accuracy of branch length estimation.^{20,43,58}

296 A robust root is required to interpret directionality of evolutionary events in phylogenies and
297 for the reconstruction of ancestral states. Well-resolved rooting of the PeV-A phylogeny was
298 problematic, as conventional approaches showed severe violations of necessary assumptions.
299 The phylogeny could not be rooted by temporal structure as there was no temporal signal in
300 the dataset (see ‘Evolutionary History’ section below). There was also no clear outgroup to the
301 full phylogeny, as large evolutionary distances to its closest potential outgroup virus, the
302 Llungan parecho B virus isolated from bank voles, risks the introduction of rooting
303 artefacts.^{59,60} This also extends to rooting to precursors of specific genotypes, such as the Harris
304 strain. Long branch attraction from large evolutionary distances can be overcome by
305 approaches limiting substitution saturation, including the exclusion of the rapidly evolving
306 third-codon site, but the potential loss of information from the already short VP1 subgenomic
307 region precluded this option.⁶¹ We opted for midpoint rooting, which assumes that all lineages
308 evolve at the same rate. This assumption is highly likely to be violated in the dataset (see
309 following section) but was chosen as the least problematic option.

310 The phylogenies reconstructed from all four nucleotide alignments were characterized by
311 deeply divergent lineages, separating major clades with long interior branches (Figure 3A).
312 The branching order of the major clades across the phylogenies reconstructed from the different
313 nucleotide alignments were similar, although branch lengths varied (Sfigure 2). One exception
314 was that Genotype 13 was incongruently placed between the phylogenies constructed from the
315 unedited/Gblocks alignment and the trimmed/Trimal alignments. In the unedited/Gblocks
316 phylogenies genotype 13 is basal to the subtree encompassing genotypes 1, 6, 16 and 18,
317 whereas it is placed as a sister clade to genotypes 8 and 9 in the trimmed/Trimal reconstructed
318 alignment. Both these bifurcations have low nodal support (40-44) across the trees. Notably,
319 the phylogenetic trees reconstructed from the unedited alignment, which retains the most
320 information, and GBlocks alignment, which had the most conservative filter for alignment
321 quality, had identical topologies. Resultantly, we focused on the unedited alignment in the
322 subsequent section as it retains the variable C terminus but yielded phylogenetic topologies
323 that were consistent with more conservative approaches.

324 Figure 3: PeV-A phylogeny reconstructed from A) unedited nucleotide and B) amino acid alignment of the
325 primary dataset. Tips colored by genotype defined under current system with associated labels. Light orange tips
326 indicate sequences unclassified in Genbank metadata.

327 The number of long internal branches in the phylogeny (Figure 3A) strongly suggests potential
328 biases in branch length estimation, including the possibility that phylogenetic signal has been
329 confounded by substantial substitution saturation. We partitioned the alignment by codon
330 positions (positions 1+2 and position 3 by itself) and found strong evidence for saturation at
331 the third position using Xia's test ($p=0.001$, see Methods). Phylogenetic analysis can be
332 restricted to the first and second position to limit confounding by saturation.⁶² However, we
333 excluded this option as phylogenetic information was already limited by the short length of the
334 VP1 subgenomic region.


335 The systematic underestimation of branch lengths by conventional substitution models was
336 investigated with branch re-estimation under the aBSREL model in Hyphy, following previous

337 methods.²⁰ There was strong evidence for variation in selection pressure across sites and
338 branches over time, with the adaptive branch site-model that infers the optimal number of
339 omega rate categories per branch showing the best fit by AICc (STable 1). The majority of
340 branches in the tree could be sufficiently modelled with all sites evolving at a single rate, with
341 a small proportion of branches (8.8%) best described with site-to-site variation modelled as
342 two rate categories (STable 2). This includes the deepest branch defining two major clades:
343 one encompassing genotypes 1, 6, 8, 9, 13, 16 and 18, which is under strong purifying selection
344 ($dN/dS = 0$) at 96% of its sites, and incredibly strong diversifying pressure ($dN/dS > 500$) at
345 the rest, the other encompassing genotypes 3, 7, 11-12, 14 and 17 ($dN/dS = 0, 92\%$, $dN/dS >$
346 200, 8% (STable 2).

347 There was no evidence for episodic diversifying selection in the full phylogeny, after correction
348 for multiple testing across all branches. Exploratory testing of all branches for positive
349 selection under aBSREL substantially reduces the statistical power of the test, particularly after
350 conservative multiple test correction.⁴⁷ Under the less conservative Benjamini-Hochberg FDR
351 correction, seven branches approached significance ($q < 0.08$), though interpretation is limited
352 by the lack of statistical power owing to the penalty of multiple testing. This included two
353 terminal branches, which is likely a result of model overfitting, the two long interior branches
354 segregating the major clades in the deep topology of the tree, and branches that belonged to
355 PeV-10 and 15 (STable 2). Selection analysis with FUBAR found no statistically significant
356 evidence of pervasive diversifying selection, i.e. selective pressure aggregated over all
357 branches, with posterior probability of 0.9.⁴⁹ Episodic positive selection was detected at several
358 individual sites by MEME (STable 4) when selection was performed for each genotype with
359 sufficient samples (1-6) individually ($p < 0.05$), though statistical power was limited.⁵⁰ Signals
360 for positive selection were found in the structured C-terminus as well as in a region that forms
361 part of an epitope extending across subunits. However, detailed structural analyses of the
362 capsid and its interactions have only been undertaken for PeV-1 and 3 thus limiting inferences
363 about what phenotypes might be subject to selection.⁶³⁻⁶⁵

364 Branch length estimates were reasonably congruent between models for shorter branches
365 (≤ 0.05 expected substitutions per site) across all datasets (Figure 4). The long internal
366 branches were systematically underestimated by the GTR model compared to estimates under
367 aBSREL. The expected number of substitutions per site along these branches suggest severe
368 saturation, with branch length estimates approaching numerical infinity (Figure 4A).⁵⁸ This

369 includes the branches defining PeV-6, 13, 16 as well as the internal branches separating two
370 major clades of PeV-5. Terminal branches estimated to have infinite lengths only have non-
371 synonymous substitutions, resulting in an infinite omega parameter. Notably, these point
372 estimates are likely to have extremely wide confidence limits, as modelling severe saturation
373 can be imprecise.²⁰ However, the result strongly supports that the depth of the PeV-A
374 phylogeny is substantially underestimated by conventional substitution models.

375 Figure 4: Branch length re-estimation under the aBSREL model. Branch lengths > 5 expected substitutions per
376 site were coded as infinity for visualisation. A) All branches in the phylogeny. B) Short branches (<0.05
377 substitutions/site)

378 It is clear that numerous branches in the nucleotide-level phylogeny of PeV-A cannot be
379 estimated with confidence due to the systematic underestimation of deep branches.²⁰ This is
380 likely to lead to systematic biases in phylogenetic reconstruction and subsequent inference of
381 relatedness. This is particularly problematic for PeV-A as the current nomenclature system is
382 predicated on reliable inference of extent of nucleotide divergence among genotypes. It is
383 therefore more reliable to reconstruct PeV-A phylogenies from amino acid distances, which
384 have a lower rate of evolution and are less likely to be affected by saturation.³⁷ Phylogenies
385 reconstructed from amino acid sequences are therefore more likely to accurately resolve the
386 true evolutionary relationship of PeVs, even with the associated loss of information moving
387 from nucleotide to amino acid data.

388 **Phylogenetic structure and diversity of PeVs partitioned by the current nomenclature**
389 **system**

390 As observed in the nucleotide-level phylogeny (Figure 3A), the amino-acid level phylogeny of
391 the VP1 gene is characterized by long interior branches segregating major clades (Figure 3B).
392 The two major clades stemming from the root bifurcation encompass currently defined PeV-A
393 genotypes 1, 2, 4, 5, 6, 8, 9, 13, 16 and 18 and genotypes 3, 7, 10, 11, 12, 14, 15 and 17
394 respectively. The two distinct lineages are not differentiated by the presence of the RGD motif,
395 as the second distinctive lineage (3, 7, 10, 11, 12, 14, 15 and 17) all lack the RGD motif, but
396 as do genotypes 8, 9, 13, 16 and 18. The nodes defining the currently designated genotypes and
397 the deeper bifurcations in the tree are supported by high ultrafast bootstrap approximation
398 (aBS) bifurcation support values (aBS >0.7), though the bifurcation of PeV-1 from the clade
399 encompassing current genotypes 4, 5, 9, 8 , 13 and 16 is less well resolved, alongside some of
400 longer internal branches within that subclade. Some lineages, such as the clade currently
401 designated as PeV-3, consists of closely related contemporaneous sequences, whereas other
402 clades, such as the clade designated PeV4, have long internal branching segregating the
403 terminal branching structure.


404 There are incongruencies in the topologies of the trees reconstructed from the nucleotide and
405 amino acid alignments, including several poorly resolved major lineage placements (Figure 3,
406 Sfigure 4). In the nucleotide tree, PeV-17 clade is a sister clade to PeV-3, with the PeV-10/14
407 clade in a basal position (aBS 0.82). In the amino acid tree, the PeV-17 clade is basal to the
408 sister clades PeV-3 and PeV-10/14, though this arrangement is less well-supported (aBS 0.55).
409 The PeV-6/18 subtree is basal to the sister clades of PeV-1 and PeV-4/5/8/9/13/16 in the amino
410 acid tree, whereas it is a sister clade to PeV-1 in the nucleotide tree, with both arrangements
411 showing comparable bifurcation support. PeV-13 and 16 are basal to this clade in the
412 nucleotide tree, incongruent with their basal position to PeV-4/5 on the amino acid level, which
413 is marginally better supported (aBS 0.55 vs 0.4). It is clear that additional information is
414 required to accurately resolve the phylogenetic structure of PeVs. However, given the extent
415 of saturation in the nucleotide alignment, it is unlikely to represent a more accurate picture of
416 the evolutionary relatedness of PeVs than the amino acid phylogeny.

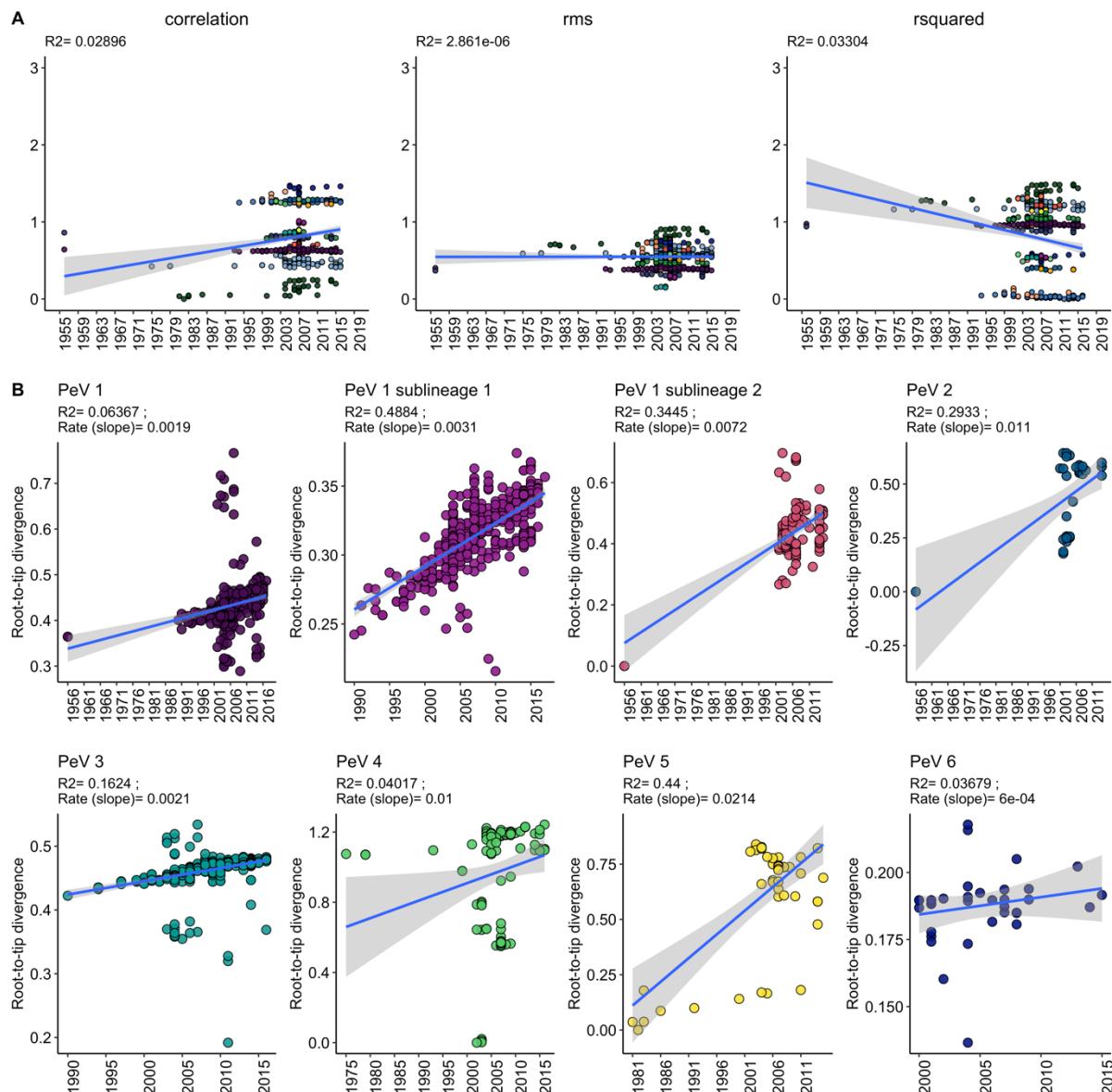
417 To investigate the likely biases introduced by the use of less robust tree reconstruction
418 approaches such as neighbour joining in combination with inadequate evolutionary models or
419 raw distances prevalently used in literature, we used the unedited nucleotide alignment to

420 reconstruct a neighbour joining tree under a Kimura-2 parameter model.²²⁻²⁸ This approach
421 severely underestimates the branch lengths in the global phylogeny, as well as resulting in
422 topological incongruencies for multiple lineages relative to the amino acid reconstructed tree
423 (Figure 1B). The inadequacy of phylogenetic reconstruction methods and evolutionary models
424 prevalently used to estimate PeV-A divergence has resulted in several documented incidents
425 of inconsistent typing, including PeV-18 (KT879915) which groups with PeV3 and
426 (KJ796882-3) often annotated as PeV-7, which groups with PeV14.²²

427 There is high variability within some of the currently designated genotypes (Figure 1A, 1C,
428 SFigure 5). On both the nucleotide and amino acid level, the more internally divergent
429 genotypes such as PeV-1, 4, and 14 have clear bi- or tri-modal distributions, reflecting long
430 internal branches segregating terminal nodes as observed in the tree. Other distributions e.g.
431 PeV-10 and PeV-15 are skewed by the inclusion of one or two putative genotype members on
432 longer branches.

433 The genotypes delineated in the current system largely have no spatiotemporal structure,
434 though substantial undersampling limits interpretation. The sampling time frame is not
435 equivalent across genotypes, with sampling globally biased towards the past two decades
436 expectedly (Figure 5, STable 6). The few genotypes (e.g. PeV1 though 5) that span wider
437 intervals have very sparse samples before 2000, with the progenitor strains of PeV-1 and 2
438 sampled in the 1950s. PeV-A sequences have a very broad and well-mixed geographic
439 distribution, with no clear geographic structure to the currently defined genotypes based on
440 sequence dataset. This is supported by the Wang association index, which showed no
441 significant evidence for geographic structure in the phylogeny of the full dataset ($p<0.001$). In
442 most countries, multiple genotypes co-circulate contemporaneously, with no clear regional or
443 temporal restrictions to genotypes (STable 5-6, Figure 5, SFigure 6). Globally, PeV-1 and 3
444 are the predominantly circulating genotypes. Some countries such as Bolivia, India and Ghana,
445 have a disproportionately high number of distinct genotypes circulating relative to the number
446 of available sequences (14, 13 and 12 distinct genotypes respectively, SFigure 7), whereas
447 countries with far higher sampling rates such as Japan, the USA and the Netherlands have five
448 or six genotypes circulating for the equivalent sequence numbers or higher. Australia is the
449 only country with multiple available sequences that all belong to a single genotype, though
450 sampling in Australia is biased by large outbreaks of PeV-3 (STable 5).

451 Figure 5. Prevalence of currently designated genotypes by country, indicated by proportion of overall country-
452 level population.


453 To attempt to resolve possible geographic connections or dissemination networks in the better
454 sampled genotypes, we plotted the geographic origin and date for all highly related virus pairs,
455 defined as pairs of sequences with a pairwise patristic distance below 0.01 substitutions per
456 site in the nucleotide phylogeny (SFigure 8). There appears to be a mild temporal and regional
457 bias in the most closely related sequences, including potential regional networks between
458 Japan, South Korea and Taiwan as well as France and the Netherlands respectively for PeV-3.
459 However, the relatedness of the USA-isolated viruses to the global population supports high
460 levels of geographic mixing, with extreme surveillance biases rendering quantification of these
461 patterns unreliable at this point.

462 Evolutionary history of currently defined PeV-A genotypes

463 The deep divergence between PeV-A lineages, regardless of nomenclature, raises questions
464 around the rate and time scale of the evolutionary history of human parechoviruses, including
465 the divergence dates of the individual lineages.

466 By root-to-tip regression, there was no evidence of temporal structure across the phylogenies
467 reconstructed from the complete undownsampling and genotype-specific datasets, evident in
468 the extremely low R^2 values across the different temporal rerooting approaches, where the root
469 is estimated simultaneously with the regression (Figure 6).⁶⁶ Two of the 'best-fit' rerooting

470 approaches resulted in negative slopes, interpreted as a negative evolutionary rate. The negative
 471 slope was not consistent across different root position optimizations, indicating it is probably
 472 a result of the temporal rerooting method mispositioning the root owing to a lack of
 473 information. The signal was marginally stronger in the nondownsampled dataset, but still very
 474 low. The extent of over-dispersion around the regression line suggests that it may be
 475 inappropriate to assume that all branches evolve at the same rate i.e. follow a strict molecular
 476 clock model. In several of the rerooting operations, entire lineages e.g. PeV-5 lie below to
 477 regression line as clear outliers. We also reduced the sampling timeframe to only include
 478 sequences collected after 2006, to investigate the impact of the small number of older
 479 anchoring samples on the regression but similarly found a lack of temporal signal for the
 480 shorter-term evolution (SFigure 9).

481 Figure 6: Temporal regressions across re-rooting optimizations. A) Amino acid reconstructed phylogeny of the
482 complete undownsampling dataset. B) Individual PeV-A genotypes as defined by the current genotyping system.
483 RMS = residual mean square.

484 The high levels of variation around the regression line suggests it would be far more appropriate
485 to assume substantial rate-variation among branches, supported by selection analysis under the
486 aBSREL model, and molecular dating analyses were subsequently conducted with the relaxed
487 uncorrelated log normal clock model. Notably, some PeV-A genotypes including PeV-1 and
488 PeV4-6 have high rates of recombination, whereas negligible rates are reported for PeV-3.^{30,67}
489 Different degrees of recombination among the lineages could result in rate variation. However,
490 using a wide variety of tests provided by the RDP program suite (see Methods), there was no
491 evidence of recombination in the VP1 subgenomic region in the current dataset.

492 We investigated the temporal structure of the individual currently defined genotypes with
493 sufficient number of samples (n>40), as the currently defined genotypes capture well-defined
494 monophyletic phylogroups. Temporal regression was performed for the undownsampling
495 dataset of PeV-1 and 3, and included the viruses from the test dataset, which were assigned
496 putative genotypes based on their phylogenetic neighborhood.

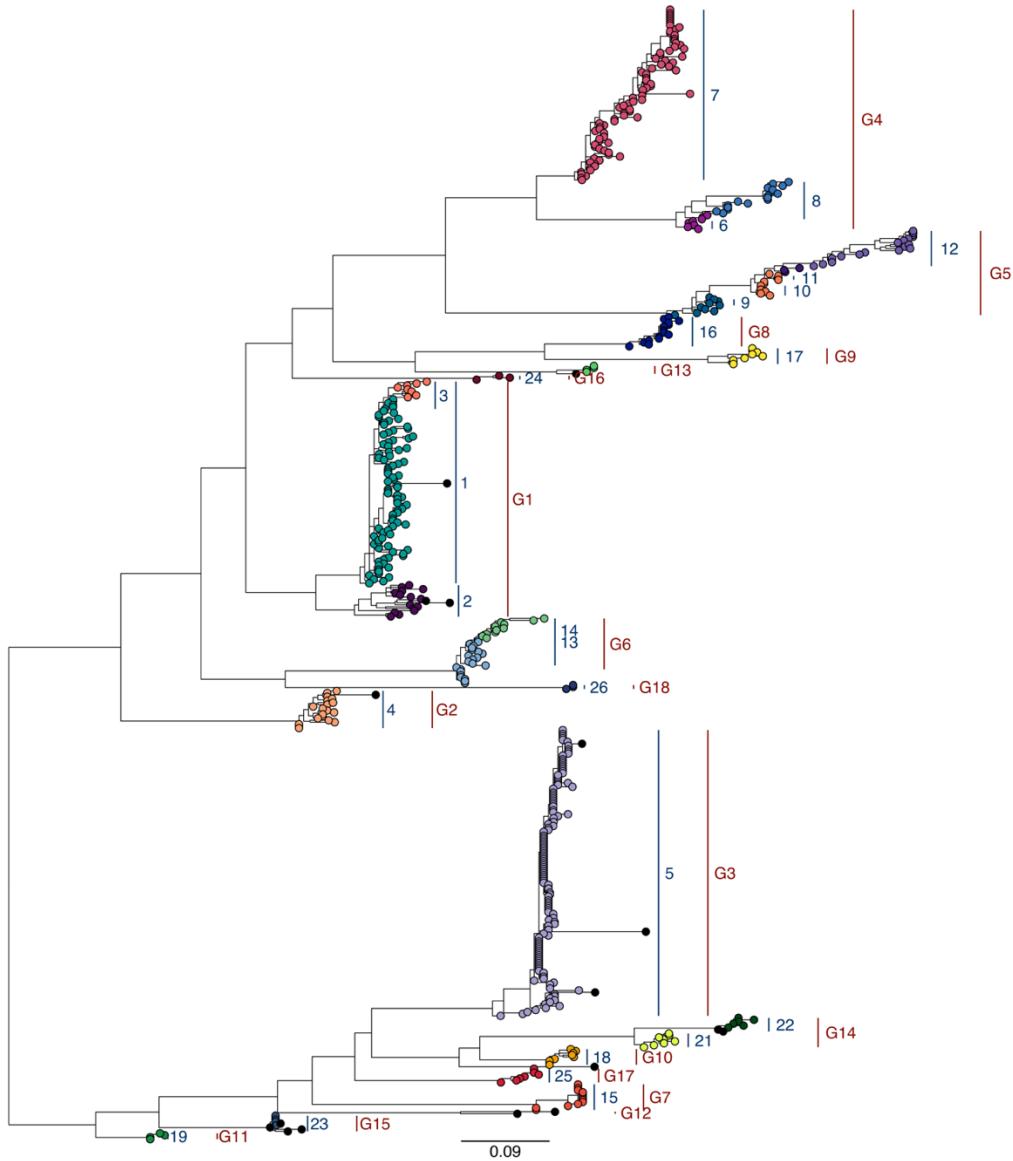
497 The temporal signal within the more numerously sequenced genotypes (1-6) was variable
498 (Figure 6). After temporal rerooting to maximize correlation, PeV-1 was structured as two
499 populations with weak temporal signal. The two populations correspond to the two segregated
500 sublineages observed in the phylogeny and have stronger temporal signal when analyzed as
501 two lineages. Genotypes 2, 3 and 5 defined by the current nomenclature system have weak but
502 present temporal signal, with strongly deviating tips in genotypes 3 and 5. Both genotypes 4
503 and 6 have negligible temporal signal and were not included in the molecular dating analysis.
504 The slope, interpreted as a rough estimation of the rate, was also highly variable across the
505 genotypes. However, root-to-tip regression is inappropriate for statistical hypothesis testing, as
506 the data is correlated owing to shared ancestry, violating the assumption that the data is
507 independently distributed and the current models generally explain little of the observed
508 variance. Outlier tips in genotypes 3 and 5 were excluded from all subsequent analysis.

509 The substitution rate and tree height (the age of the most recent common ancestor of all
510 samples) estimates for PeV-2 and PeV-5 have very large credibility intervals across models,
511 indicating high levels of uncertainty in these estimates and very slow clock rates (Table 2).

512 This was expected from the temporal regression: the dispersion of the contemporary tips was
513 very high, with the older anchoring sequence inducing the mild linear signal as an artefact,
514 with multiple outliers in PeV-5. The R^2 signal for PeV-2 weakens to 0.19 when the anchoring
515 sequences from 1956 is removed (data not shown). This emphasizes that signals from temporal
516 regression should be treated with caution, and divergence dating should be subject to prior
517 diagnoses even if runs converge. The rate distribution sampled exclusively from the prior
518 (ignoring the sequence data) also overlaps largely with the recovered rate, suggesting the
519 sequence data may not have sufficient signal to disentangle the tree height and clock rate
520 robustly or recover estimates independent from the specified priors (SFigure 10).⁵³ PeV-1
521 sublineage 2 failed to converge after two combined runs of 500 million steps each.

522 PeV-1 sublineage 1 and PeV-3 have less uncertainty in their estimates. The median tree height,
523 or the age of the most recent common ancestor of all samples, for PeV-1 sublineage 1 and PeV-
524 3 is estimated at 115.57 [95% highest posterior density (HPD), 75.05 - 158.27] and 102.96
525 [68.87 – 143.6] years respectively (Table 2, SFigure 11). The median evolutionary rates for
526 PeV-1 sublineage 1 and PeV-3 fall within the order of magnitude expected of RNA viruses
527 (10^{-3} subst/site/year) but are higher than expected, which may lead to underestimation of the
528 true height of the tree (Table 2).^{53,68}

Table 2: Tree height and evolutionary rate estimates for currently defined PeV-A genotypes

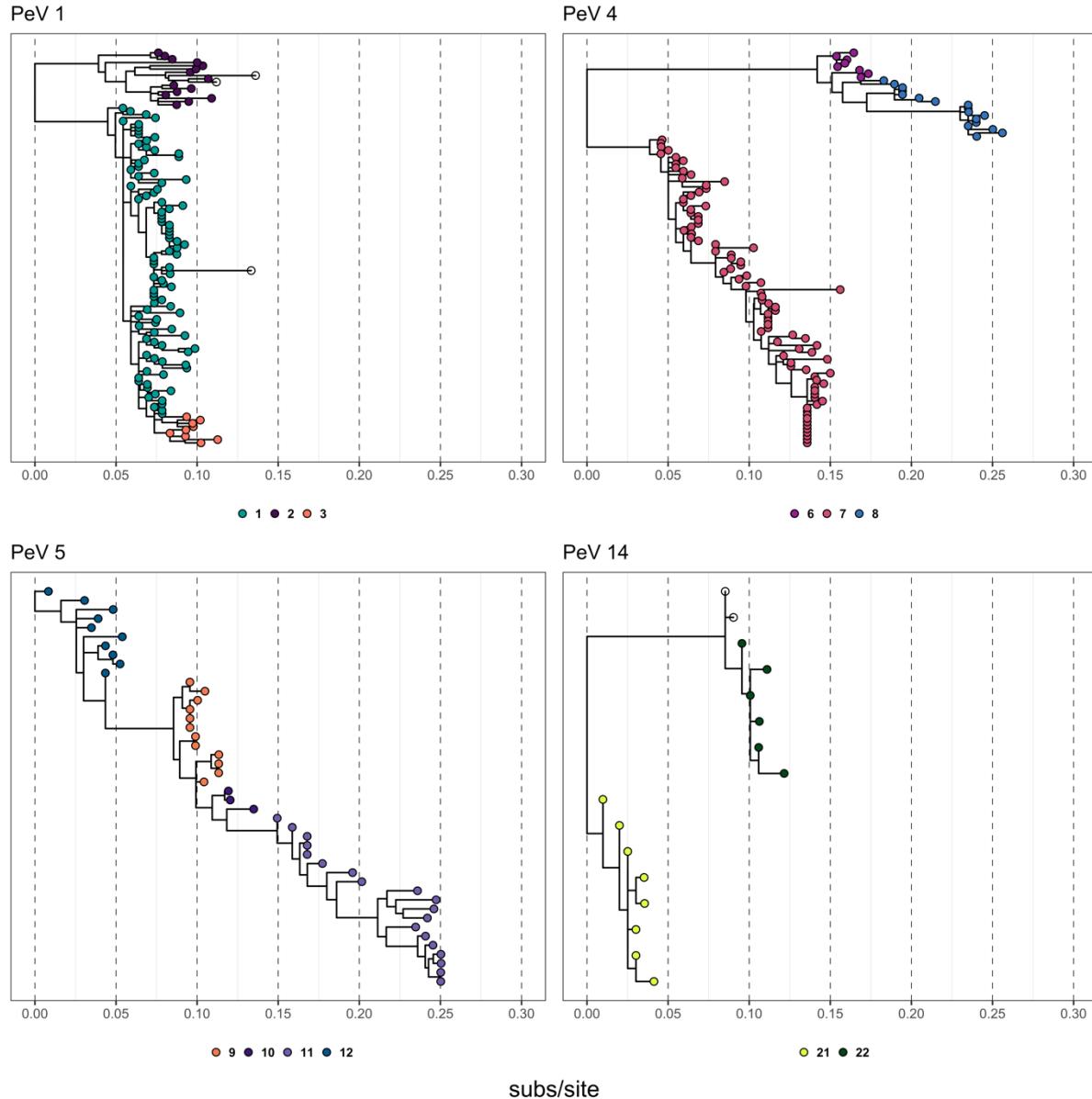

Currently defined genotype	Model	Mean evolutionary rate (subst/site/year) [95% HPD]	Tree height (years) [95% HPD]
PeV-1 lineage 1	Partitioned – 1+2, 3 GTR on each Relaxed lognormal clock Bayesian Skyline 1 chain of 500 million steps	7×10^{-3} [5.78×10^{-3} – 8.16×10^{-3}]	115.57 [75.05 – 158.27]
PeV-2	Partitioned – 1+2, 3 GTR on each Relaxed lognormal clock Bayesian Skyline 2 chains combined of 500 million steps each	1.76×10^{-3} [1.64×10^{-4} – 3.63×10^{-3}]	800.3 [147.56 - 2086.91]
PeV-3	Partitioned – 1+2, 3 GTR on each Relaxed lognormal clock Bayesian Skyline 1 chain of 500 million steps	6.07×10^{-3} [4.98×10^{-3} – 7.24×10^{-3}]	102.96 [68.87 – 143.6]
PeV-5	Partitioned – 1+2, 3 GTR on each Relaxed lognormal clock Bayesian Skyline 2 chains combined of 500 million steps each	6.26×10^{-4} [2.56×10^{-5} – 1.59×10^{-3}]	2812.08 [304.53 – 8153.8]

95% highest posterior density [HPD]

529 **PhyCLIP-resolved genotyping system**

530 The limitations of the current PeV-A genotyping system and its inconsistent discriminatory
531 information emphasizes the need for a more robust, statistically and phylogenetically informed
532 approach to partition the genetic diversity of PeVs. We used PhyCLIP to delineate
533 evolutionarily relevant genotypes based on phylogenetic relationships of the PeV-A sequences
534 into 26 clusters (Figure 7, STable 7) (compared to 19 in the current system) clustering 97% of
535 all sequences under the optimal clustering configuration (i.e. minimum cluster size of 3, a false
536 discovery rate of 0.2 and a gamma of 3).

537 PhyCLIP's cluster topology recapitulates several of the current nomenclature system's
538 genotypes as single, pure clusters, including PeV-2, 7-10, 11, 13, 15-18 (Figure 7, STable 7).
539 These clusters are sparsely sampled and characterized by low internal divergence, with long
540 interior branches separating them from the rest of the tree. Major genotype PeV-3 is also
541 recapitulated as a single cluster, owing to its distribution of short terminal branches.



542 Figure 7: Comparison of PhyCLIP clustering of the phylogeny reconstructed from amino acid alignment of the
543 primary dataset to current nomenclature. Tips are coloured by PhyCLIP designated cluster. Textual annotation
544 indicates PhyCLIP's clustering in the first set of labels in blue, with the \AA PeV-A genotype by current system in
545 the second set of labels in red, indicated as e.g. “G1”. Outlier sequences designated by PhyCLIP are indicated in
546 black. See Supplementary table 7 for mapping of current genotypes to PhyCLIP clusters.

547 Notably, PhyCLIP delineates multiple distinct genotypes in the divergent PeV-A genotypes 1,
548 4, 5 and 14. For PeV-1, 4 and 14, there are clear phylogenetic separations by long internal
549 branches of the genotypes into two distinct lineages respectively, which PhyCLIP captures
550 (Figures 7, 8). For PeV-1 and 4, PhyCLIP also recovers an additional genotype within each, as
551 the local statistics of the branching pattern supports the initiation of statistically significant

552 divergence at that approximate branch in the lineage. The prototypical PeV-1 Harris strain,
553 which has divergent genetic and antigenic properties from several other PeV-1 strains, forms
554 part of the top PeV-1 lineages.⁶⁹ PeV-5 is phylogenetically structured as one extremely
555 divergent, ladder-like lineage, which PhyCLIP designates into genotypes that step-wise
556 delineate the divergence along the branch owing to its distal dissociation approach.³¹ Even
557 though PhyCLIP increased the clustering resolution within the currently defined genotypes, it
558 did not resolve them into spatiotemporally structured lineages (STable 7) owing to surveillance
559 bias and extensive mixing of PeV-A genotypes globally.

560 PeV-12 was designated as unclustered by PhyCLIP, as it is currently only represented by two
561 sequences and fell below the minimum cluster size of 3. PeV-12 was putatively annotated as
562 PhyCLIP cluster 27, to ensure all lineages have a PhyCLIP genotyping identity. Seventeen
563 sequences interspersed through the tree were classified as outliers under PhyCLIP's distal
564 dissociation approach, which defines an outlier as a sequence that is more than three times the
565 pairwise absolute deviation away from the median patristic distance to the subtending node.
566 Some were classified outliers as a result of the algorithm's sensitivity in the distal dissociation
567 process, with these sequences showing mild violations of the local branching statistics used to
568 set a divergence limit. This is especially prevalent in regions of the tree with a
569 disproportionately high frequency of identical sequences in small clades e.g. the three
570 sequences in PeV-15. For these sequences, post-hoc absorption into defined clusters is
571 discretionary. Unclustered sequences such as the ones in PeV-1, 3 and 10 show marked
572 divergence to their closest neighbours and are probably true outliers that may represent under-
573 sampled populations or lower quality sequences.

574 Figure 8: PhyCLIP cluster configuration of the most divergent currently designated PeV-A genotypes 1, 4, 5 and
575 14. Colored circles below each panel indicate the PhyCLIP genotype.

576 A new dynamic nomenclature system for PeV-A

577 The PhyCLIP analyses above provide new genotype identifiers for viruses sequenced up to
578 2019, but newly sequenced viruses in the coming years will require genotyping. Here, we
579 propose a dynamic nomenclature system that can classify viruses within known diversity as
580 well as be progressively updated to account for both the continual evolution of currently known
581 genotypes and the discovery of new, divergent sequences and lineages. As previously noted,
582 the diversity of PeVs is likely severely underrepresented by sequences in publicly available
583 databases. It is therefore entirely likely that additional surveillance and sampling will reveal

584 extensive undetected diversity, thus shifting the ensemble statistical properties of the inferred
585 phylogeny that inform PhyCLIP's clustering results. To illustrate this, we subsampled the
586 primary dataset, retaining only viruses collected before 2006 (pre-2006 dataset) and compared
587 its phylogeny as well as its PhyCLIP clustering results to those derived from the primary
588 dataset (see Supplementary Information). Six additional divergent genotypes were detected
589 between 2006 and 2016 (all of which are accounted for in the genotypes shown in Figure 7).
590 Notably, the increased information in the 2016 phylogeny concerning the evolutionary
591 trajectories and diversity of individual genotypes relative to the background diversity
592 progressively improved PhyCLIP's clustering. Phylogenetic clustering with the PhyCLIP
593 algorithm is therefore a fitting approach to underlie a dynamic nomenclature system.

594 Optimally, the genotyping tools employed in this nomenclature system would be automated
595 and would not require full phylogenetic reconstruction for every sequence classification, as
596 this will be computationally expensive as the number of PeV-A sequences increases.
597 Phylogenetic placement tools such as RAxML-EPA are ideal for this as they are dependent on
598 a reference phylogeny that incorporates the robust evolutionary models required to more
599 accurately estimate relatedness from sequences as divergent as PeVs while not requiring full
600 phylogenetic reconstruction for every query virus typed.⁵⁷

601 We broadly categorize the placement results of query viruses into three types with respect to
602 their relative placements against PhyCLIP-defined clusters (Figure 2). Expectedly, untyped
603 viruses that are closely related to viruses within the reference phylogeny will cluster within
604 clusters designated on the reference phylogeny (Figure 2A). These single queries can reliably
605 be genotyped on the reference phylogeny with phylogenetic placement. On the other hand,
606 query sequences that are placed as outliers to designated reference clusters or grouped with
607 outlier lineages designated in the reference phylogeny by PhyCLIP's distal dissociation would
608 not be nested within known diversity and may warrant the designation of a new genotype
609 (Figure 2B&C). If this type of query begins to dominate with the addition of new sequences, a
610 full phylogenetic reconstruction and clustering should be performed to partition the new
611 standing diversity. Phylogenetic reconstruction is also advisable to reliably resolve the
612 phylogenetic placement of putatively more diverse viruses, as these queries may be placed with
613 lower LWR scores. Full reconstruction and updated clustering will be required if a large
614 amount of sequences is added to databases at once or progressively, as this will shift the global

615 statistics of the underlying dataset PhyCLIP's operates on, and phylogenetic placement only
616 resolves one query sequence at a time.

617 Using 123 sequences collected from a recent Malawian cohort study as a test dataset and the
618 primary sequence dataset as reference (see Methods), we investigated 1) if phylogenetic
619 placement could reliably place viruses within known diversity, 2) if phylogenetic placement as
620 outliers to reference clusters or with reference outlier lineages could reliably identify putatively
621 novel divergent lineages or viruses and 3) how the addition of a new, large set of viruses
622 changed PhyCLIP's reference clustering configuration. The additional sequences from the
623 Malawian cohort were not uniformly distributed across the currently designated or PhyCLIP-
624 derived genotypes (SFigure 12B).

625 There was a minor topological inconsistency between the phylogeny inclusive of the Malawian
626 sequences (test phylogeny) and the primary phylogeny, with PeV-17/PhyCLIP cluster 25 at an
627 unstable sister clade position to the subtree consisting of PeV-1/PhyCLIP clusters 1-3 in the
628 test phylogeny. However, this bipartition showed very low support (aBS 38). The global
629 patristic distance distribution shifted right significantly relative to the reference phylogeny on
630 the addition of the set of highly divergent viruses from Malawi, increasing the distribution
631 derived within-cluster limit (SFigure 12A). This significant change in the underlying ensemble
632 statistics of the dataset would indicate a nomenclature update is required.

633 83% of the test sequences were consistently located within a lineage between phylogenetic
634 placement and reconstruction of the test dataset (i.e. query sequences as per the type
635 represented in Figure 2A) with high confidence (average cluster-wise LWR across all queries
636 = 94.9%, standard deviation = 10.8%), indicating accurate phylogenetic placement within
637 known diversity, which is unlikely to require an update (Figure 9, SFigure 13). Divergent
638 sequences are correctly designated as outliers to reference clusters or outlying lineages, which
639 may necessitate phylogenetic reconstruction to confirm placement. The addition of a set of
640 sequences, including divergent sequences, changes the clustering properties with reliable
641 behaviour: divergent sequences are captured as outliers or separate lineages by distal
642 dissociation, which in turn consolidates more closely related clusters (See Supplementary
643 results for details).

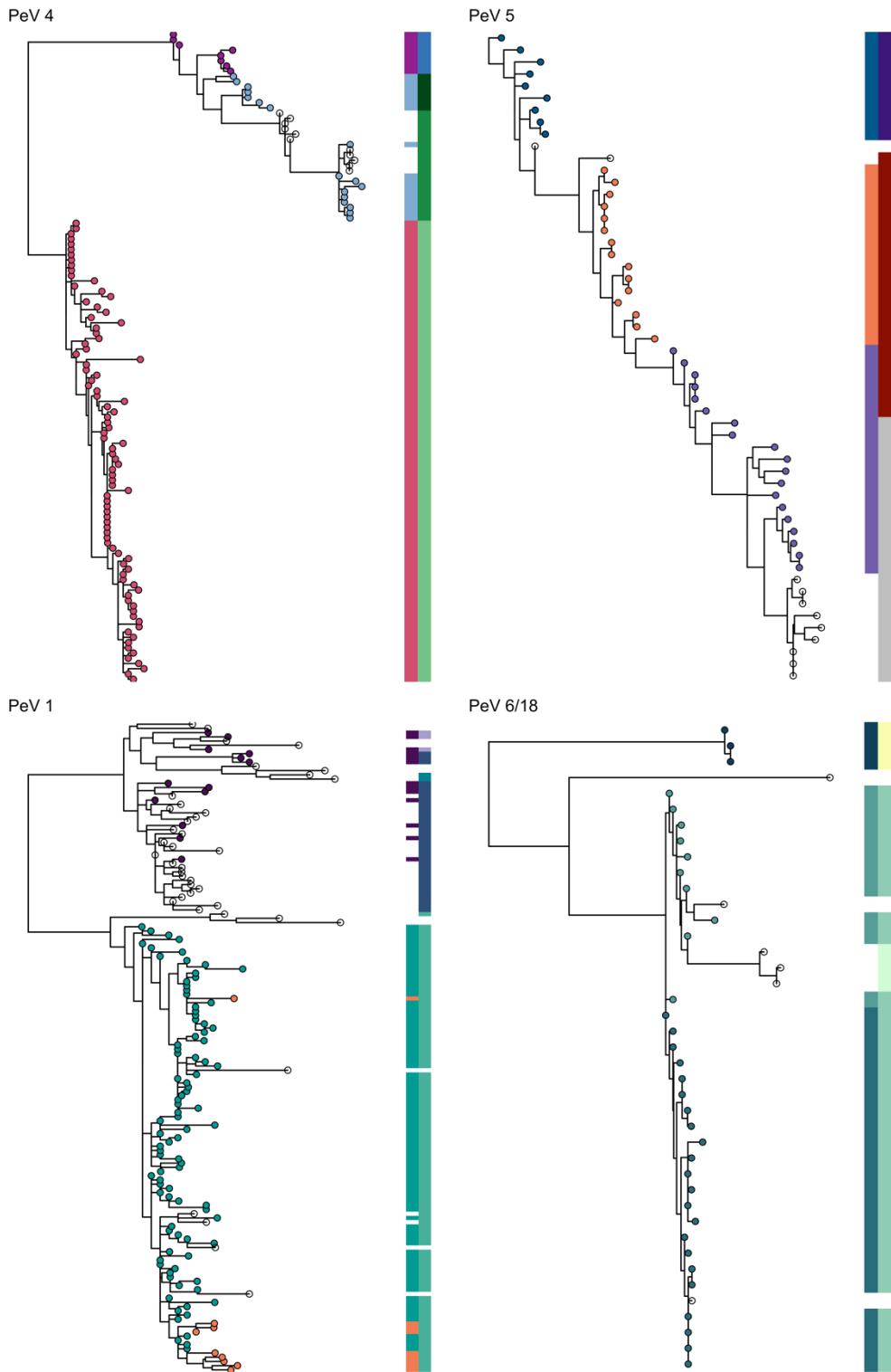


Figure 9: Changes in the clustering topology between optimal phylogenetic clustering of the reference and test phylogenies. Subtrees depicted are from the test phylogeny. Transparent tips indicate the additional viruses. Tips coloured by phylogenetic clustering of primary (reference) phylogeny, which is also the first column of the heat map. Second column is clustering of test phylogeny.

644 Discussion

645 There is a considerable amount of genotypic diversity in PeVs, with notable differences
646 between the currently defined genotypes in terms of their pathogenicity, epidemiology
647 (including the age-distribution of infections), and biological properties, such as receptor usage.
648 However, inference in the genomic epidemiology of PeVs is limited owing to the deep
649 divergence of the lineages and severe substitution saturation in the VP1 gene, which is most
650 commonly sequenced and used for genotyping. There are limited and cautious inferences to be
651 made for the molecular epidemiology of PeVs, each of which is discussed in detail below. 1)
652 Nucleotide-level phylogenetic reconstruction with neighbor joining methods that are currently
653 used for PeV-A genotyping substantially underestimate the evolutionary relationship and the
654 uncertainty thereof between PeV-A lineages. 2) PeVs are substantially undersampled by
655 current surveillance frameworks. 3) It is not possible to recover reliable estimates of the
656 evolutionary history of PeVs with currently available data and tools. Finally, we have
657 introduced our PhyCLIP derived nomenclature system which recovers deep divergences in
658 currently identified PeV-A genotypes in a statistically principled way and provides a reliable
659 basis for genotyping of future PeV-A using phylogenetic placement based on robust, amino-
660 acid level phylogenetic reconstructions. This system recapitulates the currently designated
661 genotypes along long terminal branches, but delineates the internally divergent genotypes more
662 informatively.

663 **1. Uncertainty and underestimation in the PeV-A phylogeny require robust 664 phylogenetic reconstruction methods**

665 Our current understanding of the evolutionary relationships between the extant PeV-A lineages
666 is limited by phylogenetic uncertainty in estimation of the deep interior branch lengths and the
667 deep phylogenetic structure. Topological uncertainty owing to artefacts such as long branch
668 attraction introduced by large evolutionary distances restricts our ability to make inferences
669 about the ancestral relatedness of the genotypes. The presence of substitution saturation in the
670 nucleotide alignment emphasizes the need to reconstruct PeV-A phylogenies from amino acid
671 alignments, which are more robust to saturation, as additional caution is required when
672 performing phylogenetic analyses of deep evolutionary time scales in rapidly evolving
673 pathogens, especially on a nucleotide-level.^{20,45,58,70}

674 Additional information is required to resolve the phylogenetic structure of PeVs with more
675 confidence.⁷¹ Phylogenetic signal from short, subgenomic regions like VP1 is often
676 insufficient, especially as saturation is more pronounced in shorter sequences.⁴⁵ Additionally,
677 the VP1 region is also sometimes just partially sequenced.^{23,29,72} Whole genome sequences
678 could offer valuable additional genetic information to better resolve the phylogenetic
679 relationships of PeV.⁷³ However, PeVs have high rates of recombination. With GARD we
680 found 2098 potential breakpoints in the whole genome alignment, and this implies that even
681 with whole genome data unravelling the evolutionary history of PeV-A is likely to be difficult.
682 Increased surveillance and sequencing of quality, full-length VP1 sequences will help resolve
683 the ancestry and relationships between the genotypes.

684 **2. PeVs are significantly undersampled by current surveillance strategies**

685 The long internal branches of the phylogeny, both in the deep tree and among more
686 contemporaneous sequences, suggest severe under-sampling of the true diversity of PeVs.
687 Sampling for PeVs is sparse and biased, with differences in study design greatly limiting
688 generalisation and inference. Most available PeV-A sequences are derived from
689 epidemiological studies reporting PeV-A prevalence in cohorts of patients with specific
690 symptoms (e.g. acute gastroenteritis, respiratory or neurological symptoms)^{17,22,27,74-79} and
691 from national enterovirus surveillance programs reporting on PeV-A infections detected in
692 clinical settings.^{7,80-82} The data obtained in these studies and programs are influenced by
693 disease severity, care seeking behavior and the inclusion of specific sample types (e.g. fecal
694 samples, nasopharyngeal swabs or cerebrospinal fluid), and may be biased to genotypes with
695 a higher pathogenicity or a specific tissue tropism. It is thus unclear whether the combination
696 of these passive and active forms of surveillance accurately reflect circulating genotypic
697 diversity.

698 **3. Deep evolutionary timescale estimates for PeVs are not possible with available 699 data and tools**

700 Previous molecular clock analysis based on the VP1 region suggests a time to the most recent
701 common ancestor (tMRCA) of 1600.⁸³ However, it is likely that these estimates of the
702 evolutionary history of PeVs are substantially underestimated owing to time-dependence in the
703 evolutionary rates, rate heterogeneity among divergent lineages and strong purifying selection
704 along deep-tree branches.^{20,84}

705 The observed genetic diversity of PeVs is likely generated and maintained by a complex
706 interaction of immune dynamics and selection, recombination and co-divergence over deep
707 evolutionary scales. Strong purifying selection acting on most sites results in a high rate of
708 synonymous substitutions as selection functions to constrain changes in the functional sites of
709 VP1.⁴⁻⁶ However, there is evidence for diversifying selection in the structured C terminus
710 around the RGD motif and subunit interface region of the VP1 protein as well as suggestively
711 along certain lineages, though statistical power in the current dataset is limited and reduced by
712 conservative multiple testing correction.^{1,63-65} A possible explanation for the deep divergences
713 in the VP1 capsid region phylogeny and the differential presence of the RGD motif could in
714 part be immune-mediated positive selection driving the divergence on a deep evolutionary
715 scale. Use of a different, unknown receptor may result in differences in cell tropisms and the
716 differential diseases severity and epidemiological properties observed for the different
717 genotypes.^{85,86} However, receptor usage for most genotypes has not been characterized.

718 Estimates of the evolutionary rate and history of PeVs should be treated with caution, as the
719 current full and lineage-specific datasets (excluding current genotypes PeV-1 sublineage 1 and
720 PeV-3) do not have enough information to recover trustworthy parameters robust to prior
721 settings. The extant diversity of current genotype PeV1 sublineage 1 and PeV-3 are estimated
722 to have respective most recent common ancestors within the past two centuries. These two
723 genotypes are also the best sampled, and further sampling may enable more precise molecular
724 dating of the individual additional genotypes, especially if PhyCLIP's delineation of highly
725 divergent groups proves informative. However, further inference about the evolutionary
726 dynamics of the complete PeV-A phylogeny and the collective divergence dating of the
727 genotypes is limited by the fact that the likely phylogenetic root of PeVs is very deep, with a
728 long evolutionary history of diversification of the genotypes based on the VP1 phylogeny.
729 Resultantly, deep evolutionary relationships among highly divergent viruses may not be
730 resolved with molecular clock analyses that are calibrated on the terminal branches of recent
731 sequences.^{20,58,70}

732 PeVs are RNA viruses, and therefore evolve measurably over shorter timescales owing to
733 substitutions introduced by its error-prone polymerase. It is therefore expected that sequences
734 from a PeV-A dataset serially sampled over 62 years would have accumulated a sufficiently
735 large number of substitution to reliably provide signal for evolutionary history and rate
736 estimation.⁶⁶ However, even if the sampling timescale for PeVs spans 60 years, the sampled

737 time range is highly biased towards the past 20 years and might still be too short relative to the
738 evolutionary timescale of the virus to capture long-term evolutionary processes on those deep
739 time scales.⁸⁷ Time-dependence of rate is particularly prevalent in datasets of deep-time scale
740 pathogens where recent sampling is used to extrapolate back in time. This can lead to bias in
741 molecular dating as shorter, terminal branches have relatively high dN/dS values owing to
742 transient and unfixed substitutions, in contrast to the low dN/dS values for deep interior
743 branches that are under strong purifying selection.^{58,84} Standard GTR+G models do not
744 adequately account for variation in selection pressure across sites and lineages of the phylogeny
745 and will result in under-estimated branch lengths in the presence of strong purifying
746 selection.^{47,58,88} Increased purifying selection at deep evolutionary time scales can lead to an
747 underestimation of the evolutionary history of a phylogeny, as it maintains sequence homology
748 even if synonymous sites are completely saturated.^{20,58,84} Recent work on site-specific models
749 that account for skewed site-specific preferences, both inferred from sequence data and
750 experimentally derived, and the associated saturation have shown marked improvement in
751 phylogenetic fit and branch length estimation accuracy.⁸⁹ However, it is unlikely that there is
752 enough information in the current PeV-A dataset to attempt these parameter-rich models.⁹⁰

753 The exploratory temporal regression suggests that there is substantial variation in rates
754 (heterotachy) across PeV-A lineages.⁷⁰ This heterogeneity may be due to variation in the
755 strength of selective pressure acting on different lineages, as suggested by the aBSREL
756 analysis. Differential selective constraints may arise from differences in life cycle, including
757 genotype-dependent differential immune pressure and receptor and tissue tropism, resulting in
758 different ratios of synonymous to nonsynonymous substitutions.⁸⁹ Variation of rates may also
759 arise from inherent differences in substitution rates, i.e. differences in synonymous rates,
760 among lineages.^{89,91} The rate variation is unlikely to be a result of different levels of
761 recombination among the lineages, as we did not detect any breakpoints in our VP1 dataset.
762 Rate variation can be modelled with relaxed molecular clock models, which allows for branch-
763 specific rates drawn from an underlying distribution.²⁵ However, simulation studies have
764 suggested that a single uncorrelated relaxed clock is not flexible enough to adequately model
765 heterotachy across subtype clades, recovering inaccurate rate estimates and biasing the
766 evolutionary history.^{71,91} Lineage-specific relative rates can also be accommodated with
767 autocorrelated random local clocks, which allows for rate changes on host-specific lineages.⁹²
768 However, these models are biased by definitions of specific lineages and do not account for
769 other sources of rate variation. Recently developed mixed effect clocks combine relaxed and

770 local clocks to model both fixed and random effects in rate variation and have been shown to
771 improve rate estimate accuracy in the presence of heterotachy from mixed sources.²¹ The
772 pronounced sparsity of temporal signal in the primary phylogeny with the presence of purifying
773 selection on a deep evolutionary scale as a confounding factor limited any attempt to reliably
774 estimate evolutionary rates or the dates of divergence in the full PeV-A phylogeny. As
775 estimates of branch length underestimation from the aBSREL model are unlikely to be precise
776 and will have confidence intervals of orders of magnitude, we also refrained from adjusting
777 known estimates of the most recent common ancestor using this information.^{20,83}

778 **4. New PhyCLIP based genotype nomenclature recovers deep divergences in**
779 **currently defined genotypes**

780 The current PeV-A nomenclature system falls prey to many of issues described above because
781 of the reliance on neighbour-joining phylogenetic trees and uncorrected genetic distance based
782 thresholds for classifying virus genotypes. The new nomenclature system that we describe here
783 minimises these issues by using the best available phylogenetic methods and the statistically
784 principled PhyCLIP framework to delineate genotypes within the resulting trees. PhyCLIP
785 operates on the long deep and terminal branches of the phylogeny to recapitulate much of the
786 current nomenclature system and to capture clear phylogenetic distinctions in divergent PeV-
787 1, 4, 5 and 14 genotypes. It is unclear if the demarcation of these divergent genotypes into more
788 clusters is informative with regards to the epidemiological or antigenic characterisation of the
789 phylogenetic unit without additional information on serology, life cycle and clinical properties
790 of PeVs. PhyCLIP is sensitive to variation in sampling rates, as its clustering is dependent on
791 the diversity present in the phylogeny. PhyCLIP will perform optimally when the background
792 diversity of the population tested against is comprehensive or well representative. The
793 evolutionary continuum of genotypes PeV-1 and 3 is far better approximated in the current
794 dataset than less sampled genotypes. Nonetheless, the long interior branches separating deep
795 and more terminal clades enables PhyCLIP to delineate clusters.

796 The dynamic nomenclature system combining progressive clustering by PhyCLIP with
797 phylogenetic placement shows promise. Phylogenetic placement with RAxML-EPA accurately
798 places sequences with close relatives within existing diversity and is capable of correctly
799 designating divergent sequences as outliers to reference clusters. The addition of a number of
800 divergent sequences or a large set of sequences to the existing diversity will likely require that

801 our PhyCLIP based pipeline be re-run as PhyCLIP specifically operates on the underlying
802 distribution of genetic divergence in the phylogenetic tree. The exact timing of such a re-
803 evaluation will depend on the rate of new sequencing data generation.

Acknowledgements

The authors would like to thank Sergei L. Kosakovsky Pond and Joel Wertheim for their help.

804
805

Funding

This work was support by the Gates Cambridge Trust [Grant number OPP1144] to EP and EU H2020 ITN [grant number 812673 OrganoVIR] to KW.

References

1. Human parechoviruses: Biology, epidemiology and clinical significance. *J. Clin. Virol.* **45**, 1–9 (2009).
2. Wigand, R. & Sabin, A. B. Properties of ECHO types 22, 23 and 24 viruses. *Arch. für die gesamte Virusforsch.* **11**, 224–247 (1961).
3. Stanway, G. *et al.* Molecular and biological characteristics of echovirus 22, a representative of a new picornavirus group. *J. Virol.* **68**, 8232–8 (1994).
4. Shakeel, S. *et al.* Structural Basis of Human Parechovirus Neutralization by Human Monoclonal Antibodies. *J. Virol.* **89**, 9571–9580 (2015).
5. Alho, A., Marttila, J., Ilonen, J. & Hyypiä, T. Diagnostic potential of parechovirus capsid proteins. *J. Clin. Microbiol.* **41**, 2294–9 (2003).
6. Roivainen, M., Lankinen, H., Pöyry, T., Hyypiä, T. & Joki-Korpela, P. Antigenic properties of human parechovirus 1. *J. Gen. Virol.* **81**, 1709–1718 (2000).
7. van der Sanden, S. *et al.* Prevalence of Human Parechovirus in The Netherlands in 2000 to 2007. *J. Clin. Microbiol.* **46**, 2884–2889 (2008).
8. Ito, M. *et al.* Detection of human parechoviruses from clinical stool samples in Aichi, Japan. *J. Clin. Microbiol.* **48**, 2683–8 (2010).
9. WATANABE, K., HIROKAWA, C. & TAZAWA, T. Seropositivity and epidemiology of human parechovirus types 1, 3, and 6 in Japan. *Epidemiol. Infect.* **144**, 3451–3460 (2016).
10. Britton, P. N. *et al.* Parechovirus Encephalitis and Neurodevelopmental Outcomes. *Pediatrics* **137**, e20152848 (2016).
11. Verboon-Maciolek, M. A. *et al.* Human parechovirus causes encephalitis with white matter injury in neonates. *Ann. Neurol.* **64**, 266–273 (2008).
12. Britton, P. N. *et al.* High prevalence of developmental concern amongst infants at 12 months following hospitalised parechovirus infection. *J. Paediatr. Child Health* **54**, 289–295 (2018).
13. Wolthers, K. C. *et al.* Human Parechoviruses as an Important Viral Cause of Sepsislike Illness and Meningitis in Young Children. *Clin. Infect. Dis.* **47**, 358–363 (2008).
14. Picornaviridae Study Group. Available at:

835 https://www.picornaviridae.com/parechovirus/parechovirus_a/parechovirus_a.htm.
836 (Accessed: 27th January 2020)

837 15. Benschop, K. S. M. *et al.* Fourth Human Parechovirus Serotype. *Emerg. Infect. Dis.*
838 **12**, 1572–1575 (2006).

839 16. Nix, W. A., Maher, K., Pallansch, M. A. & Oberste, M. S. Parechovirus typing in
840 clinical specimens by nested or semi-nested PCR coupled with sequencing. *J. Clin.*
841 *Virol.* **48**, 202–207 (2010).

842 17. Harvala, H. *et al.* Epidemiology and clinical associations of human parechovirus
843 respiratory infections. *J. Clin. Microbiol.* **46**, 3446–53 (2008).

844 18. Westerhuis, B. M., Jonker, S. C. M., Mattao, S., Benschop, K. S. M. & Wolthers, K. C.
845 Growth characteristics of human parechovirus 1 to 6 on different cell lines and cross-
846 neutralization of human parechovirus antibodies: a comparison of the cytopathic effect
847 and real time PCR. *Virol. J.* **10**, 146 (2013).

848 19. Westerhuis, B. M. *et al.* Human Memory B Cells Producing Potent Cross-Neutralizing
849 Antibodies against Human Parechovirus: Implications for Prevalence, Treatment, and
850 Diagnosis. *J. Virol.* **89**, 7457–64 (2015).

851 20. Wertheim, J. O., Chu, D. K. W., Peiris, J. S. M., Kosakovsky Pond, S. L. & Poon, L.
852 L. M. A case for the ancient origin of coronaviruses. *J. Virol.* **87**, 7039–45 (2013).

853 21. Bletsa, M. *et al.* Divergence dating using mixed effects clock modelling: An
854 application to HIV-1. *Virus Evol.* **5**, (2019).

855 22. Brouwer, L. *et al.* High frequency and diversity of parechovirus A in a cohort of
856 Malawian children. *Arch. Virol.* **164**, 799–806 (2019).

857 23. Guo, Y., Duan, Z. & Qian, Y. Changes in Human Parechovirus Profiles in
858 Hospitalized Children with Acute Gastroenteritis after a Three-Year Interval in
859 Lanzhou, China. *PLoS One* **8**, e68321 (2013).

860 24. PATIL, P. R., GANORKAR, N. N. & GOPALKRISHNA, V. Epidemiology and
861 genetic diversity of human parechoviruses circulating among children hospitalised
862 with acute gastroenteritis in Pune, Western India: a 5-years study. *Epidemiol. Infect.*
863 **146**, 11–18 (2018).

864 25. Cristanziano, V. Di *et al.* Detection and characterization of enteroviruses and
865 parechoviruses in healthy people living in the South of Côte d'Ivoire. *J. Clin. Virol.*
866 **71**, 40–43 (2015).

867 26. Graul, S. *et al.* High diversity of human parechovirus including novel types in stool
868 samples from Ghanaian children. *J. Clin. Virol.* **96**, 116–119 (2017).

869 27. Benschop, K., Thomas, X., Serpenti, C., Molenkamp, R. & Wolthers, K. High
870 prevalence of human Parechovirus (HPeV) genotypes in the Amsterdam region and
871 identification of specific HPeV variants by direct genotyping of stool samples. *J. Clin.*
872 *Microbiol.* **46**, 3965–70 (2008).

873 28. Cabrerizo, M. *et al.* Molecular epidemiology of enterovirus and parechovirus
874 infections according to patient age over a 4-year period in Spain. *J. Med. Virol.* **89**,
875 435–442 (2017).

876 29. Cremer, J. *et al.* Highly sensitive parechovirus CODEHOP PCR amplification of the
877 complete vp1 gene for typing directly from clinical specimens and correct typing
878 based on phylogenetic clustering. *J. Med. Microbiol.* **68**, 1194–1203 (2019).

879 30. Benschop, K. S. M. *et al.* Comprehensive full-length sequence analyses of human
880 parechoviruses: diversity and recombination. *J. Gen. Virol.* **91**, 145–154 (2010).

881 31. Han, A. X., Parker, E., Scholer, F., Maurer-Stroh, S. & Russell, C. A. Phylogenetic
882 Clustering by Linear Integer Programming (PhyCLIP). *Mol. Biol. Evol.* **36**, 1580–1595
883 (2019).

884 32. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
885 large phylogenies. *Bioinformatics* **30**, 1312–1313 (2014).

886 33. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7:
887 improvements in performance and usability. *Mol. Biol. Evol.* **30**, 772–80 (2013).

888 34. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for
889 automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics*
890 **25**, 1972–3 (2009).

891 35. Castresana, J. Selection of Conserved Blocks from Multiple Alignments for Their Use
892 in Phylogenetic Analysis. *Mol. Biol. Evol.* **17**, 540–552 (2000).

893 36. Löytynoja, A. Phylogeny-aware alignment with PRANK. in 155–170 (Humana Press,
894 Totowa, NJ, 2014). doi:10.1007/978-1-62703-646-7_10

895 37. Duchêne, S., Di Giallonardo, F. & Holmes, E. C. Substitution Model Adequacy and
896 Assessing the Reliability of Estimates of Virus Evolutionary Rates and Time Scales.
897 *Mol. Biol. Evol.* **33**, 255–267 (2016).

898 38. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and
899 effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol.*
900 *Biol. Evol.* **32**, 268–74 (2015).

901 39. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S.
902 ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat. Methods*
903 **14**, 587–589 (2017).

904 40. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2:
905 Improving the Ultrafast Bootstrap Approximation. *Mol. Biol. Evol.* **35**, 518–522
906 (2018).

907 41. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular
908 Evolutionary Genetics Analysis across Computing Platforms. *Mol. Biol. Evol.* **35**,
909 1547–1549 (2018).

910 42. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and
911 evolutionary analyses in R. *Bioinformatics* **35**, 526–528 (2019).

912 43. Soubrier, J. *et al.* The Influence of Rate Heterogeneity among Sites on the Time
913 Dependence of Molecular Rates. *Mol. Biol. Evol.* **29**, 3345–3358 (2012).

914 44. Dang, C. C., Le, Q. S., Gascuel, O. & Le, V. S. FLU, an amino acid substitution model
915 for influenza proteins. *BMC Evol. Biol.* **10**, (2010).

916 45. Duchêne, S., Ho, S. & Holmes, E. C. Declining transition/transversion ratios through
917 time reveal limitations to the accuracy of nucleotide substitution models. *BMC Evol.*
918 *Biol.* **15**, 36 (2015).

919 46. Xia, X. & Xie, Z. DAMBE: Software Package for Data Analysis in Molecular Biology
920 and Evolution. *J. Hered.* **92**, 371–373 (2001).

921 47. Smith, M. D. *et al.* Less Is More: An Adaptive Branch-Site Random Effects Model for
922 Efficient Detection of Episodic Diversifying Selection. *Mol. Biol. Evol.* **32**, 1342–1353

923 (2015).

924 48. Pond, S. L. K., Frost, S. D. W. & Muse, S. V. HyPhy: hypothesis testing using
925 phylogenies. *Bioinformatics* **21**, 676–679 (2005).

926 49. Murrell, B. *et al.* FUBAR: A Fast, Unconstrained Bayesian AppRoximation for
927 Inferring Selection. *Mol. Biol. Evol.* **30**, 1196–1205 (2013).

928 50. Murrell, B. *et al.* Detecting Individual Sites Subject to Episodic Diversifying
929 Selection. *PLoS Genet.* **8**, e1002764 (2012).

930 51. Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: Detection
931 and analysis of recombination patterns in virus genomes. *Virus Evol.* **1**, (2015).

932 52. Kosakovsky Pond, S. L., Posada, D., Gravenor, M. B., Woelk, C. H. & Frost, S. D. W.
933 Automated Phylogenetic Detection of Recombination Using a Genetic Algorithm.
934 *Mol. Biol. Evol.* **23**, 1891–1901 (2006).

935 53. Boskova, V., Stadler, T. & Magnus, C. The influence of phylodynamic model
936 specifications on parameter estimates of the Zika virus epidemic. *Virus Evol.* **4**,
937 (2018).

938 54. Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal
939 structure of heterochronous sequences using TempEst (formerly Path-O-Gen). *Virus*
940 *Evol.* **2**, vew007 (2016).

941 55. Bouckaert, R. *et al.* BEAST 2.5: An advanced software platform for Bayesian
942 evolutionary analysis. *PLOS Comput. Biol.* **15**, e1006650 (2019).

943 56. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior
944 Summarization in Bayesian Phylogenetics Using Tracer 1.7. *Syst. Biol.* **67**, 901–904
945 (2018).

946 57. Barbera, P. *et al.* EPA-ng: Massively Parallel Evolutionary Placement of Genetic
947 Sequences. *Syst. Biol.* **68**, 365–369 (2019).

948 58. Wertheim, J. O. & Kosakovsky Pond, S. L. Purifying selection can obscure the ancient
949 age of viral lineages. *Mol. Biol. Evol.* **28**, 3355–65 (2011).

950 59. Huelsenbeck, J. P., Bollback, J. P. & Levine, A. M. Inferring the Root of a
951 Phylogenetic Tree. *Syst. Biol.* **51**, 32–43 (2002).

952 60. Johansson, S., Niklasson, B., Maizel, J., Gorbalyena, A. E. & Lindberg, A. M.
953 Molecular analysis of three Ljungan virus isolates reveals a new, close-to-root lineage
954 of the Picornaviridae with a cluster of two unrelated 2A proteins. *J. Virol.* **76**, 8920–30
955 (2002).

956 61. Gerth, M., Gansauge, M.-T., Weigert, A. & Bleidorn, C. Phylogenomic analyses
957 uncover origin and spread of the Wolbachia pandemic. *Nat. Commun.* **5**, 5117 (2014).

958 62. Xia, X. & Lemey, P. Assessing substitution saturation with DAMBE. *Phylogenetic*
959 *Handb.* 615–630 (2012). doi:10.1017/cbo9780511819049.022

960 63. Karellehto, E. *et al.* Strain-dependent neutralization reveals antigenic variation of
961 human parechovirus 3. *Sci. Rep.* **7**, 12075 (2017).

962 64. Kalynych, S., Pálková, L. & Plevka, P. The Structure of Human Parechovirus 1
963 Reveals an Association of the RNA Genome with the Capsid. *J. Virol.* **90**, 1377–86
964 (2016).

965 65. Domanska, A., Flatt, J. W., Jukonen, J. J. J., Geraets, J. A. & Butcher, S. J. A 2.8-
966 Angstrom-Resolution Cryo-Electron Microscopy Structure of Human Parechovirus 3

967 in Complex with Fab from a Neutralizing Antibody. *J. Virol.* **93**, (2019).

968 66. Drummond, A., Pybus, O. G. & Rambaut, A. Inference of viral evolutionary rates from
969 molecular sequences. *Adv. Parasitol.* **54**, 331–58 (2003).

970 67. Benschop, K. S. M., Williams, C. H., Wolthers, K. C., Stanway, G. & Simmonds, P.
971 Widespread recombination within human parechoviruses: analysis of temporal
972 dynamics and constraints. *J. Gen. Virol.* **89**, 1030–1035 (2008).

973 68. Holmes, E. C. Molecular Clocks and the Puzzle of RNA Virus Origins. *J. Virol.* **77**,
974 3893–3897 (2003).

975 69. Williams, C. H. *et al.* Evolution and conservation in human parechovirus genomes. *J.*
976 *Gen. Virol.* **90**, 1702–1712 (2009).

977 70. Wertheim, J. O., Fourment, M. & Kosakovsky Pond, S. L. Inconsistencies in
978 Estimating the Age of HIV-1 Subtypes Due to Heterotachy. *Mol. Biol. Evol.* **29**, 451–
979 456 (2012).

980 71. Philippe, H. *et al.* Resolving Difficult Phylogenetic Questions: Why More Sequences
981 Are Not Enough. *PLoS Biol.* **9**, e1000602 (2011).

982 72. Selvarangan, R. *et al.* Human parechovirus 3 causing sepsis-like illness in children
983 from midwestern United States. *Pediatr. Infect. Dis. J.* **30**, 238–42 (2011).

984 73. Dudas, G. & Bedford, T. The ability of single genes vs full genomes to resolve time
985 and space in outbreak analysis. *BMC Evol. Biol.* **19**, 232 (2019).

986 74. Yip, C. C. Y. *et al.* Epidemiology of human parechovirus, Aichi virus and salivirus in
987 fecal samples from hospitalized children with gastroenteritis in Hong Kong. *Virol. J.*
988 **11**, 182 (2014).

989 75. Zhong, H. *et al.* Prevalence and genotypes of human parechovirus in stool samples
990 from hospitalized children in Shanghai, China, 2008 and 2009. *J. Med. Virol.* **83**,
991 1428–1434 (2011).

992 76. Pham, N. T. K. *et al.* Human parechovirus infection in children hospitalized with acute
993 gastroenteritis in Sri Lanka. *J. Clin. Microbiol.* **49**, 364–6 (2011).

994 77. Vollbach, S. *et al.* Prevalence, type and concentration of human enterovirus and
995 parechovirus in cerebrospinal fluid samples of pediatric patients over a 10-year period:
996 a retrospective study. *Virol. J.* **12**, 199 (2015).

997 78. Mladenova, Z. *et al.* Diversity of human parechoviruses in Bulgaria, 2011: Detection
998 of rare genotypes 8 and 10. *Infect. Genet. Evol.* **36**, 315–322 (2015).

999 79. Pellegrinelli, L. *et al.* Epidemiology and molecular characterization of influenza
1000 viruses, human parechoviruses and enteroviruses in children up to 5 years with
1001 influenza-like illness in Northern Italy during seven consecutive winter seasons (2010–
1002 2017). *J. Gen. Virol.* **98**, 2699–2711 (2017).

1003 80. Sanden, S. M. G., Koopmans, M. P. G. & Avoort, H. G. A. M. Detection of human
1004 enteroviruses and parechoviruses as part of the national enterovirus surveillance in the
1005 Netherlands, 1996–2011. *Eur. J. Clin. Microbiol. Infect. Dis.* **32**, 1525–1531 (2013).

1006 81. Khetsuriani, N., Lamonte, A., Oberste, M. S. & Pallansch, M. Neonatal enterovirus
1007 infections reported to the national enterovirus surveillance system in the United States,
1008 1983–2003. *Pediatr. Infect. Dis. J.* **25**, 889–93 (2006).

1009 82. Janes, V. A. *et al.* Presence of human non-polio enterovirus and parechovirus
1010 genotypes in an Amsterdam hospital in 2007 to 2011 compared to national and

1011 international published surveillance data: a comprehensive review. *Euro Surveill.* **19**,
1012 (2014).

1013 83. Faria, N. R., de Vries, M., van Hemert, F. J., Benschop, K. & van der Hoek, L.
1014 Rooting human parechovirus evolution in time. *BMC Evol. Biol.* **9**, 164 (2009).

1015 84. Duchene, S., Holmes, E. C. & Ho, S. Y. W. Analyses of evolutionary dynamics in
1016 viruses are hindered by a time-dependent bias in rate estimates. *Proc. R. Soc. B Biol.*
1017 *Sci.* **281**, 20140732–20140732 (2014).

1018 85. Westerhuis, B. M. *et al.* Specific cell tropism and neutralization of human
1019 parechovirus types 1 and 3: implications for pathogenesis and therapy development. *J.*
1020 *Gen. Virol.* **93**, 2363–2370 (2012).

1021 86. Harvala, H., Wolthers, K. C. & Simmonds, P. Parechoviruses in children:
1022 understanding a new infection. *Curr. Opin. Infect. Dis.* **23**, 224–30 (2010).

1023 87. Holmes, E. C. & Duchêne, S. Evolutionary stasis of viruses? *Nat. Rev. Microbiol.* **17**,
1024 329–329 (2019).

1025 88. Duchêne, S., Duchêne, D., Holmes, E. C. & Ho, S. Y. W. The Performance of the
1026 Date-Randomization Test in Phylogenetic Analyses of Time-Structured Virus Data.
1027 *Mol. Biol. Evol.* **32**, 1895–1906 (2015).

1028 89. Hilton, S. K. & Bloom, J. D. Modeling site-specific amino-acid preferences deepens
1029 phylogenetic estimates of viral sequence divergence. *Virus Evol.* **4**, vey033 (2018).

1030 90. Puller, V., Sagulenko, P. & Neher, R. Efficient inference, potential, and limitations of
1031 site-specific substitution model. *bioRxiv* 2020.01.18.911255 (2020).
1032 doi:10.1101/2020.01.18.911255

1033 91. Brayne, A. B., Dearlove, B. L., Lester, J. S., Kosakovsky Pond, S. L. & Frost, S. D. W.
1034 Genotype-Specific Evolution of Hepatitis E Virus. *J. Virol.* **91**, (2017).

1035 92. Worobey, M., Han, G.-Z. & Rambaut, A. A synchronized global sweep of the internal
1036 genes of modern avian influenza virus. *Nature* **508**, 254–7 (2014).

1037