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Abstract 

Human parechoviruses (PeV-A) can cause severe sepsis and neurological syndromes in 

neonates and children and are currently classified into 19 genotypes based on genetic 

divergence in the VP1 gene. However, the genotyping system has notable limitations including 

an arbitrary distance threshold and reliance on insufficiently robust phylogenetic 

reconstruction approaches leading to inconsistent genotype definitions. In order to improve the 

genotyping system, we investigated the molecular epidemiology of human parechoviruses, 

including the evolutionary history of the different PeV-A lineages as far as is possible. We 

found that PeV-A lineages suffer from severe substitution saturation in the VP1 gene which 

limit the inference of deep evolutionary timescales among the extant PeV-A and suggest that 

the degree of evolutionary divergence among current PeV-A lineages has been substantially 

underestimated, further confounding the current genotyping system. We propose an alternative 

nomenclature system based on robust, amino-acid level phylogenetic reconstruction and 

clustering with the PhyCLIP algorithm which delineates highly divergent currently designated 

genotypes more informatively. We also describe a dynamic nomenclature framework that 

combines PhyCLIP’s progressive clustering with phylogenetic placement for genotype 

assignment.  

Introduction 1 

Human parechoviruses (PeV) of the species Parechovirus A of the Picornaviridae family 2 
(PeV-A) are globally prevalent pathogens that largely cause subclinical, mild respiratory or 3 
gastrointestinal disease in neonates and children. However, these viruses are also associated 4 
with more severe conditions including sepsis and neurological syndromes.1 The two prototypic 5 
strains of PeV-A were first isolated in the United States of America in 1956 from infants with 6 
diarrhoea.2 The two serologically distinct prototypes were initially classified as echovirus 22 7 
and 23 in the Enterovirus genus, owing to similar clinical properties and cytopathology to other 8 
enteroviruses.2 Further investigation revealed that these viruses had distinctive molecular 9 
properties to enteroviruses, including high levels of sequence divergence as well as 10 
dissimilarities in genome structure and host cell protein interaction, and they were reclassified 11 
into a distinct Picornaviridae genus Parechovirus as the genotypes PeV-1 and PeV-2.3 12 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.14.251231doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.14.251231
http://creativecommons.org/licenses/by-nc/4.0/


To date, 19 genotypes have been proposed for PeV-As based on a 25% nucleotide sequence 13 
divergence threshold in the VP1 gene. The VP1 gene encodes the major structural protein of 14 
the icosahedral capsid. Notably, the VP1 protein of some PeV-A genotypes has an arginine-15 
glycine-glutamic acid sequence (the canonical RGD motif found in several other 16 
picornaviruses) near the C terminus which mediates attachment to cell surface integrins.1 17 
Genotypes PeV-3 and PeV-7 through 19 consistently lack the RGD motif in the VP1 gene and 18 
are presumed to be integrin-independent.1 The region encompassing the receptor binding site 19 
contains antigenic sites and is highly immunogenic.4–6  20 

Of the 19 current PeV-A genotypes, PeV-1 and 3 are the predominant genotypes globally both 21 
in seroepidemiological studies and clinical settings, but prevalence of the individual genotypes 22 
vary widely across countries.1,7–9  PeV-1 is associated with mild gastrointestinal or respiratory 23 
symptoms, in children between 6 months and 5 years of age, whereas PeV-3 is more likely to 24 
cause severe disease in children under the age of 3 months.7 Central nervous system conditions 25 
such as acute flaccid paralysis, meningitis and encephalitis are more often associated with PeV-26 
3.10–13 Inference about differential clinical manifestations is limited for most of the other PeV-27 
A genotypes as they have only been isolated from a few cases. 28 

The PeV-A genotyping criteria have changed over time.14 For example, the PeV-3 genotype 29 
was first classified based on an uncorrected nucleotide sequence distance to other PeV-A 30 
genotypes of more than 30% in the VP1 genomic region, a threshold that is also used for strain 31 
classification of enteroviruses.15 Several other thresholds on the nucleotide (23%, 27%) and 32 
amino acid level (13%, 19% ) have been proposed for the VP1 gene as well as the VP3/VP1 33 
junction (18% nt and 8% aa distance), but these thresholds have not uniformly applied.15–17  34 

It is unclear if the current genetic distance based genotyping system delineates the population 35 
structure of PeVs at the appropriate resolution to capture the epidemiological and/or 36 
evolutionary processes underlying PeV-A diversity. The use of a distance threshold from a 37 
closely related pathogen to classify genotypes is a prevalent convention for less well-38 
characterized viruses on discovery. This is typically because there is rarely any additional, 39 
systematic information on the epidemiology or serology of the virus to calibrate biologically 40 
meaningful limits on the genetic divergence allowed within demarcated groups. However, the 41 
assumption that information used to delineate thresholds in one virus may be generalizable to 42 
others is problematic. The high degree of amino acid sequence divergence in the capsid protein 43 
between PeV-1 and PeV-2 is comparable to the threshold delineating serotypes in better 44 
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characterized picornaviruses such as enteroviruses and foot-and-mouth disease viruses.1 45 
However, there has been no systematic characterization of the serological properties of PeVs, 46 
especially with the discovery of several novel, divergent lineages in recent years.18,19 It is 47 
therefore unclear whether genotypes characterized by high degrees of genetic heterogeneity in 48 
the VP1 region are capable of cross-neutralization. Cross neutralization has been reported 49 
between PeV1-2 and PeV4-6, with only PeV-3 being consistently antigenically unique. 18,19 50 
The inconsistent information between antigenic and genetic diversity as currently described 51 
along with the lack of systematic antigenic characterization of PeVs suggest that antigenic 52 
information cannot be used to underlie the genotyping nomenclature PeV-A.  53 

The current genotyping system also has other limitations. It operates on uncorrected genetic 54 
distances, which severely underestimates the true evolutionary distance between viruses in the 55 
presence of substitution saturation and high heterogeneity in lineage-specific evolutionary 56 
rates.20,21 Given the extent of genetic divergence among extant PeV-A, saturation is likely to 57 
be a substantial issue. The current genotyping system also relies on phylogenetic reconstruction 58 
approaches such as neighbor joining that can result in severe branch underestimation and 59 
topological inconsistencies across studies, which has resulted in inconsistent typing of PeV-60 
A.22–29 It has also resulted in the designation of PeV-1 subtypes A and B, which do not 61 
consistently group as a clade.30 Many studies also employ BLAST-based nucleotide searches 62 
to compare query sequence to a reference dataset representing different genotypes.22–28 63 
However, many of these reference sequences are not representative of the high internal 64 
divergence of some genotypes. This is especially pronounced for the progenitor sequences of 65 
some genotypes such as PeV- 1 and 3, which are genetically and antigenically distinct.22–28 66 
Inconsistently typed viruses are incorrectly annotated in public sequence databases, 67 
propagating the error into subsequent studies. 68 

The inconsistent discriminatory information in the presently designated genotypes highlights 69 
fundamental limitations of the current genotyping system. Nomenclature systems should aim 70 
to delineate populations into units of genotypic similarity that carry cohesive and consistent 71 
information about the evolutionary dynamics of pathogen variants that result in differences in 72 
epidemiological and virologic characteristics. Here, we describe and quantify the evolutionary 73 
history of the different PeV-A lineages as far as is possible with currently available data and 74 
tools and propose an alternative, dynamic PeV-A nomenclature system based on robust 75 
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phylogenetic reconstruction methods and clustering with PhyCLIP in combination with a 76 
phylogenetic placement algorithm for the assignment of genotypes to newly sequenced viruses. 77 

Though demarcations of genotypes or lineages are often vague and boundaryless, the 78 
phylogenetic clustering algorithm PhyCLIP offers a statically principled and phylogenetically 79 
informed framework to partition phylogenies into discontinuous clusters that may represent 80 
independent evolutionary and epidemiological phylogenetic units.31  81 

Methods 82 

Dataset curation  83 

All available nucleotide sequences (as of 01/06/2019) of the VP1 gene (±700 nt) with known 84 
dates of isolation were collated from Genbank (N=1655; i.e. the complete undownsampled 85 
dataset). The sequences were classified according to genotype identity annotated in the 86 
Genbank metadata or the associated literature. Unannotated sequences were classified as 87 
“unknown”. Sequences obtained from a recent Malawian cohort study (n=123) were excluded 88 
from this complete dataset, as they were reserved as a test dataset to assess the validity of the 89 
proposed dynamic nomenclature system (see phylogenetic placement section below and 90 
Results).22 Genbank accession numbers available at https://github.com/AMC-LAEB/parecho. 91 

The sequences in the complete dataset are not uniformly distributed across the current 92 
genotypes, with representation skewed towards PeV-1 (n=608) and PeV-3 (n=614) (SFigure 93 
1). To account for sampling biases, we downsampled PeV-1 and PeV-3 viruses from the 94 
complete dataset to the equivalent number of the next largest genotype (PeV-4: n=115; final 95 
included dataset of PeV-1: 117; PeV-3: 120) in the complete dataset to generate a primary 96 
dataset that was used for all subsequent analyses other than the molecular dating analyses. To 97 
obtain the primary dataset, we downsampled PeV-1 and PeV-3 viruses from the complete 98 
dataset to the equivalent number of the next largest genotype (PeV-4: n=115; final included 99 
dataset of PeV-1: 117; PeV-3: 120). Sequences were sampled at random but were drawn to 100 
maintain the genetic distance distribution of the complete dataset (Figure 1). We also removed 101 
three sequences (GenBank accessions: KM407606, KY931551 and KM407607) that were 102 
highly divergent (inferred branch length >0.4 substitutions/site) based on a preliminary 103 
maximum-likelihood phylogeny reconstructed under the GTRGAMMA substitution model in 104 
RAxML from a MAFFT-derived codon alignment of the primary dataset.32,33  105 
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A sub-dataset consisting of all PeVs isolated before 2006 (referred to as the pre-2006 dataset) 106 

was used to assess the phylogenetic clustering algorithm PhyCLIP’s sensitivity to sampling 107 

(see Supplementary Information). Finally, a set of all available whole genome sequences 108 
(n=158) was collated from Genbank for recombination analysis.  109 

Sequence alignment and phylogenetic reconstruction  110 

PeV-As are characterized by a high degree of genetic heterogeneity (Figure 1). The high level 111 
of sequence divergence in the VP1 region, particularly the C terminal region, (mean genetic 112 
distance of 28%) can result in ambiguously aligned regions, rendering the alignment unreliable 113 
and introducing systematic error into phylogenetic reconstruction and downstream 114 
phylogenetic-based genotyping inferences. However, removing potentially unreliable regions 115 
of the alignment results in a loss of information that could decrease phylogenetic signal 116 
substantially, which is of particular concern when working with very short subgenomic regions 117 
such as VP1 (~700nt). We constructed four different nucleotide alignments subject to various 118 
quality filtering specifications from the primary dataset, as well as an amino acid alignment, to 119 
investigate the robustness of phylogenetic inference in the trade-off between the potential loss 120 
of phylogenetic information and bias introduced by potentially misaligned regions or other 121 
model misspecifications:   122 

1) A nucleotide alignment with no additional editing 123 
2) A nucleotide alignment with the last 70 nucleotide positions encompassing the 124 

hypervariable, often ambiguously aligned RGD-motif region removed 125 
3) A nucleotide alignment filtered to sites that passed TrimAL’s heuristic selection of 126 

quality control parameters based on similarity statistics.34 127 
4) A nucleotide alignment filtered to sites extracted using GBlocks, allowing small blocks 128 

and gaps (b4=2 and b5=all).35 129 
5) An amino-acid alignment, translated from the unedited alignment (alignment 1) 130 

All nucleotide alignments were constructed using the codon model in PRANK and manually 131 
edited. PRANK is a phylogeny-aware alignment algorithm that employs ancestral 132 
reconstruction and has shown improved performances on alignments with insertions and 133 
deletions.36 134 
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We performed model adequacy tests to prevent substitution model underparameterization and 135 
model assumption violation, which are the primary sources of bias in phylogenetic 136 
reconstruction.37 Potential sources of error include substitution saturation and model 137 
misspecification regarding stationarity, rate variation across branches and sites as well as base 138 
composition heterogeneity. We used the chi-squared test implemented in IQ-TREE to 139 
investigate heterogenous base composition among lineages, which would violate model 140 
assumptions of stationarity.37,38 We performed model fit tests to identify the substitution model 141 
with the highest statistical fit by Bayesian Information Criterion (BIC) for each alignment 142 
within IQTree (Table 1).39 Phylogenetic trees were reconstructed for each of the alignments in 143 
IQTree under the best performing models, with 1000 ultrafast bootstrap approximation 144 
(UFBoot) replicates employing the BNNI hill-climbing nearest neighbour interchange search 145 
for further optimization of each bootstrap tree to reduce the risk of nodal support 146 
overestimation.40 Additionally, a phylogenetic tree was reconstructed with Neighbour Joining 147 
under the Kimura 2-parameter substitution model in MEGA to investigate the systematic 148 
underestimation of branch lengths by more simple phylogenetic approaches.41 Phylogenies 149 
constructed from the different alignments were compared with tanglegrams produced with the 150 
Baltic module (https://github.com/evogytis/baltic). All calculations of phylogenetic statistics, 151 
including patristic distance, were performed with the ape package in R.42  152 
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Figure 1: A) Density of pairwise genetic distance distribution in the nucleotide alignments. All alignments are of 153 
the primary dataset (green), except for the full undownsampled complete dataset (in yellow). B) Density of 154 
pairwise patristic distance distribution in the reconstructed nucleotide phylogenies. C) Within-genotype pairwise 155 
patristic distance, as designated by the current nomenclature in the primary and undownsampled dataset.  156 
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Table 1: Model fit for phylogenetic reconstruction of the primary dataset 157 

Alignment Best model BIC Description 

Unedited NT  TIM2+F+R7 AC=AT, CG=GT and unequal base freq. 

Empirical base frequencies 

FreeRate model with seven rate categories43 

 

Trimmed NT TIM2+F+R7 
Trimal NT TIM2+F+R7 
GBlocks NT TIM2+F+R7 

AA FLU+R5 Empirical amino-acid exchange rate matrices.44 

Empirical AA frequencies 

FreeRate model with five rate categories 

Due to the high degree of genetic divergence among PeV-A genotypes, we used three 158 
approaches to evaluate the extent of mutation saturation in the nucleotide alignments. 159 
Substitution saturation occurs when there are multiple unobserved substitutions at a single site 160 
which are not accounted for when modelling sequence divergence to branch lengths, resulting 161 
in systematic underestimation of the branches in the tree.45 Saturation mostly occurs at the 162 
rapidly evolving third codon position of nucleotide sequences where there is a high probability 163 
of synonymous substitution. Standard evolutionary models that do not account for variation of 164 
selective pressure and the associated rate heterogeneity across sites and branches are known to 165 
significantly underestimate branch lengths, especially branches under strong purifying 166 
selection.20 However, conventional model fit tests applied in phylogenetic reconstruction do 167 
not assess how models accounts for substitution saturation, and do not allow for the rejection 168 
of all models if all models are poor descriptions of the evolutionary process that generated the 169 
data. 37,45  170 

First, transition and transversion frequencies were plotted against genetic distance to visualise 171 
the extent of saturation. Second, we formally tested for saturation with the information entropy-172 
based index of substitution saturation using the Xia’s test as implemented in DAMBE.46 The 173 
alignment was partitioned into a combination of the first and second codon site and the third 174 
codon site separately, to account the different rates of synonymous and non-synonymous 175 
substitutions and saturation at the different sites. In the third approach, the branch lengths for 176 
the maximum-likelihood phylogenies constructed from the different nucleotide alignments 177 
were re-estimated in HyPhy under two different models of evolution: the standard GTR 178 
substitution model with gamma-distributed site rate variation across four categories and the 179 
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selection-aware aBSREL model.47 aBSREL is a branch-site random effects likelihood 180 
(BSREL) model that estimates the effects of varying selection pressure across codon sites and 181 
branches by inferring dN/dS (non-synonymous or non-silent to synonymous or silent 182 
substitution rate ratio) rate classes for each branch and estimating the proportion of sites 183 
evolving under each rate class.47 184 

Selection analysis 185 

Selection analysis was performed with a set of codon models implemented in HyPhy.48 Fast, 186 
Unconstrained Bayesian AppRoximation (FUBAR) was used to detect pervasive positive or 187 
purifying selection at individual sites.49 Site-specific selection was investigated with the Mixed 188 
Effects Model of Evolution (MEME).50 MEME is currently the most robust site-to-site 189 
selection approach and is more comprehensive than FUBAR as it accounts for both pervasive 190 
and episodic selection.50 As above, the adaptive Branch-Site Random Effects Likelihood 191 
(aBSREL) was used as a branch-site model of selection, allowing evolutionary rates to vary 192 
across lineages and sites to detect lineage-specific positive diversifying selection.47  193 

Recombination analysis 194 

Alignments of the primary dataset were screened for recombinant sequences with the RDP, 195 
GENECONV, MAXCHI, CHIMAERA, 3SEQ, BOOTSCAN and SISCAN tests implemented 196 
in the RDP program suite.51 Default settings were used, excluding the window size, which was 197 
set to 30bp across tests. Potential recombinants were defined as those with Bonferonni 198 
corrected p-values below 0.05 in more than three detection methods. The full genome dataset 199 
was screened for recombination with the Genetic Algorithm for Recombination Detection 200 
GARD, implemented in Hyphy.52 201 

Evolutionary history of PeV 202 

We wanted to investigate the evolutionary timescale and relationship of the divergent PeV-A 203 
genotypes, with particular interest in dating the divergence between the co-circulating 204 
genotypes. Divergence dating requires that the genetic divergence of sequences be scaled to 205 
units of absolute time by assuming a molecular clock model, informed by tip-calibrations.53 206 
Molecular clock models are a statistical description of the relationship between observed 207 
genetic distances and time. In other words, prior to divergence dating, we must ensure that 208 
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there is sufficient temporal signal in the dataset to inform clock models.54 The strength of the 209 
temporal signal required for molecular clock analyses was investigated in three different 210 
datasets: 211 

1) The complete, non-downsampled dataset 212 
2) The primary dataset downsampled to maintain extant diversity, in both amino acid and 213 

nucleotide reconstructed phylogenies 214 
3) The individual sublineages of PeVs, here defined by the existing PeV-A genotyping 215 

system prevalently used.  216 

Phylogenetic trees were reconstructed for each of the sub-lineage datasets with RAxML 217 
v8.2.1.1 under the GTR+gamma4 model.32 The temporal information for each dataset was 218 
quantified with root-to-tip regression, performed in R with the ape package.42 Calibration was 219 
based on sampling times, resolved to the year. Clocklike structure was evaluated for 220 
hypothetical roots including midpoint rooting and root positions placed to maximize the 221 
correlation between tip sampling dates and distance to root and minimize the sum of the 222 
squared residuals in the regression.  223 

The evolutionary rate and history of the individual PeVs genotypes was estimated using 224 
Bayesian Evolutionary Sampling Trees (BEAST) software package version 2.5.1.55 The 225 
alignments were partitioned into codon positions 1+2 and 3 to account for variation in rates 226 
across sites, with a GTR gamma model with 4 rate categories as substitution model in 227 
respective partitions but shared clock and tree models. A lognormal relaxed clock was 228 
employed to account for the high variation in rates across branches suggested in temporal 229 
regression. A Bayesian skyline and constant size coalescent model were used as tree model 230 
priors respectively (See Supplementary files). Chains were run for 500 million steps across the 231 
datasets (Stable 7), with convergence diagnosed as an estimated sample size in all parameters 232 
> 200 in Tracer v 1.7.1.56 Log- and tree-files from individual runs were combined and sub-233 
sampled with LogCombiner were necessary. All runs were also completed by sampling from 234 
the prior as diagnoses.  235 

Phylogenetic clustering with PhyCLIP to define genotypes 236 

Phylogenetic clustering was performed on the phylogenies constructed from the primary, pre-237 
2006 and primary with Malawian test sequence datasets using PhyCLIP.31 PhyCLIP operates 238 
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on the distribution of all branch lengths in the phylogeny, using this global patristic distance 239 
distribution as a pseudo-null distribution to test the within-cluster distance distribution of 240 
putative clusters against. PhyCLIP also incorporates the branching order of the phylogeny into 241 
cluster definition through its distal dissociation approach, which accommodates the designation 242 
of paraphyletic clusters and performs outlier testing. PhyCLIP was run with different sets of 243 
the parameters varying over the ranges: a minimum cluster size of 2–10, a multiple of deviation 244 
(γ) of 1–3, and an FDR of 0.05, 0.1, 0.15, or 0.2. The optimization criteria were ranked as 1) 245 
percentage of sequences clustered, 2) grand mean of within-cluster patristic distance 246 
distribution, 3) mean of the intercluster distances. Percentage sequences clustered was 247 
prioritized as optimization criteria to assign the maximum number of sequences to clusters. 248 
Mean within-cluster distance was minimized to ensure clusters of closely related sequences 249 
were recovered, while inter-cluster distance was maximized to ensure well-separated clusters.31  250 

Phylogenetic placement to rapidly genotype new viruses 251 

While PhyCLIP can be used to delineate diversity into statistically supported units and 252 
progressively update the nomenclature system when additional PeV-A diversity is sampled, 253 
rerunning the entire phylogenetic and PhyCLIP to genotype new individual or small numbers 254 
of viruses is very time consuming. Alternatively, phylogenetic placement can be used to rapidly 255 
genotype newly sampled viruses to mitigate the need to conduct full phylogenetic 256 
reconstruction and PhyCLIP clustering analyses for every new query sequence. 257 

We employed a leave-out testing approach to validate phylogenetic placement on the Malawian 258 
cohort test dataset that included 123 viruses from a Malawian cohort.22 The RAxML-EPA 259 
PROTGAMMAGTR substitution model was used to phylogenetically place the Malawian 260 
sequences on the primary phylogenetic tree based on amino acid sequence alignment. The 261 
RAxML-EPA approach was originally developed for rapid phylogenetic classification of short-262 
read sequences obtained from metagenomic studies but can also be applied to longer sequences. 263 
The algorithm traverses along all edges of the reference phylogenetic tree and computes a tree 264 
likelihood score under the maximum-likelihood model as it inserts the query sequence along 265 
each edge. The query sequence is phylogenetically placed on the best scoring edge and the 266 
corresponding normalized likelihood score (i.e. likelihood weight ratio, LWR) can be used as 267 
a measure of placement uncertainty.57 Under our framework (Figure 2), a query sequence 268 
would be typed to a cluster if it is topologically placed on an edge that was subtended within 269 
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the cluster in the reference phylogeny and if the length of the inserted query branch estimated 270 
by RAxML-EPA does not exceed the maximum within-cluster pairwise divergence across all 271 
clusters. A cluster wide LWR is also computed by summing the LWR score of all edges within 272 
the cluster.   273 

 274 

Figure 2: Types of query sequence (QS) based on its phylogenetic placement relative to PhyCLIP-defined clusters. 275 
(a) QS is closely related to reference viruses clustered as a single phylogenetic unit by PhyCLIP (grey triangle). 276 
(b) QS is placed on an unclustered outlying (UO) sequence relative to a PhyCLIP cluster (grey triangle). (c) QS 277 
is placed on any UO sequence or lineage that topologically lies between different PhyCLIP clusters.  278 

To assess the accuracy of the phylogenetic placement as well as consistency of clustering 279 
topology between the reference and test phylogenies, a phylogenetic tree was reconstructed 280 
from the amino acid alignment of the test data with the additional Malawian sequences in 281 
IQTree under the best performing model selected by BIC, with 1000 ultrafast bootstrap 282 
replicates and bootstrap tree optimization with the BNNI algorithm.38 The phylogenetic 283 
placement of each query sequence was compared to its position in the reconstructed phylogeny.  284 
Code and data are available at https://github.com/AMC-LAEB/parecho 285 

Results 286 

Alignment quality and model adequacy in phylogenetic reconstruction of highly 287 
divergent viruses 288 

All alignments showed extensive genetic divergence among genotypes and even within some 289 
genotypes (Figure 1).  For each of the four nucleotide and one amino acid alignments, chi-290 
square tests did not find evidence that any sequence or lineage significantly deviated in base 291 
composition from the dataset average. All of the substitution models ranked as best-performing 292 
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by the Bayesian information Criterion (Table 1) included the FreeRate model of rate 293 
heterogeneity across sites with seven rate categories, as this extremely flexible site-to-site 294 
variation improves the accuracy of branch length estimation.20,43,58 295 

A robust root is required to interpret directionality of evolutionary events in phylogenies and 296 
for the reconstruction of ancestral states. Well-resolved rooting of the PeV-A phylogeny was 297 
problematic, as conventional approaches showed severe violations of necessary assumptions. 298 
The phylogeny could not be rooted by temporal structure as there was no temporal signal in 299 
the dataset (see ‘Evolutionary History’ section below). There was also no clear outgroup to the 300 
full phylogeny, as large evolutionary distances to its closest potential outgroup virus, the 301 
Llungan parecho B virus isolated from bank voles, risks the introduction of rooting 302 
artefacts.59,60 This also extends to rooting to precursors of specific genotypes, such as the Harris 303 
strain. Long branch attraction from large evolutionary distances can be overcome by 304 
approaches limiting substitution saturation, including the exclusion of the rapidly evolving 305 
third-codon site, but the potential loss of information from the already short VP1 subgenomic 306 
region precluded this option.61 We opted for midpoint rooting, which assumes that all lineages 307 
evolve at the same rate. This assumption is highly likely to be violated in the dataset (see 308 
following section) but was chosen as the least problematic option.  309 

The phylogenies reconstructed from all four nucleotide alignments were characterized by 310 
deeply divergent lineages, separating major clades with long interior branches (Figure 3A). 311 
The branching order of the major clades across the phylogenies reconstructed from the different 312 
nucleotide alignments were similar, although branch lengths varied (Sfigure 2). One exception 313 
was that Genotype 13 was incongruently placed between the phylogenies constructed from the 314 
unedited/Gblocks alignment and the trimmed/Trimal alignments. In the unedited/Gblocks 315 
phylogenies genotype 13 is basal to the subtree encompassing genotypes 1, 6, 16 and 18, 316 
whereas it is placed as a sister clade to genotypes 8 and 9 in the trimmed/Trimal reconstructed 317 
alignment. Both these bifurcations have low nodal support (40-44) across the trees. Notably, 318 
the phylogenetic trees reconstructed from the unedited alignment, which retains the most 319 
information, and GBlocks alignment, which had the most conservative filter for alignment 320 
quality, had identical topologies. Resultantly, we focused on the unedited alignment in the 321 
subsequent section as it retains the variable C terminus but yielded phylogenetic topologies 322 
that were consistent with more conservative approaches.  323 
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Figure 3: PeV-A phylogeny reconstructed from A) unedited nucleotide and B) amino acid alignment of the 324 
primary dataset. Tips colored by genotype defined under current system with associated labels. Light orange tips 325 
indicate sequences unclassified in Genbank metadata. 326 

The number of long internal branches in the phylogeny (Figure 3A) strongly suggests potential 327 
biases in branch length estimation, including the possibility that phylogenetic signal has been 328 
confounded by substantial substitution saturation. We partitioned the alignment by codon 329 
positions (positions 1+2 and position 3 by itself) and found strong evidence for saturation at 330 
the third position using Xia’s test (p=0.001, see Methods). Phylogenetic analysis can be 331 
restricted to the first and second position to limit confounding by saturation.62 However, we 332 
excluded this option as phylogenetic information was already limited by the short length of the 333 
VP1 subgenomic region.  334 

The systematic underestimation of branch lengths by conventional substitution models was 335 
investigated with branch re-estimation under the aBSREL model in Hyphy, following previous 336 
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methods.20 There was strong evidence for variation in selection pressure across sites and 337 
branches over time, with the adaptive branch site-model that infers the optimal number of 338 
omega rate categories per branch showing the best fit by AICc (STable 1). The majority of 339 
branches in the tree could be sufficiently modelled with all sites evolving at a single rate, with 340 
a small proportion of branches (8.8%) best described with site-to-site variation modelled as 341 
two rate categories (STable 2). This includes the deepest branch defining two major clades: 342 
one encompassing genotypes 1, 6, 8, 9, 13, 16 and 18, which is under strong purifying selection 343 
(dN/dS = 0) at 96% of its sites, and incredibly strong diversifying pressure (dN/dS > 500) at 344 
the rest, the other encompassing genotypes 3, 7, 11-12, 14 and 17 (dN/dS =0, 92%, dN/dS > 345 
200, 8% (STable 2).  346 

There was no evidence for episodic diversifying selection in the full phylogeny, after correction 347 
for multiple testing across all branches. Exploratory testing of all branches for positive 348 
selection under aBSREL substantially reduces the statistical power of the test, particularly after 349 
conservative multiple test correction.47 Under the less conservative Benjamini-Hochberg FDR 350 
correction, seven branches approached significance (q<0.08), though interpretation is limited 351 
by the lack of statistical power owing to the penalty of multiple testing. This included two 352 
terminal branches, which is likely a result of model overfitting, the two long interior branches 353 
segregating the major clades in the deep topology of the tree, and branches that belonged to 354 
PeV-10 and 15 (STable 2). Selection analysis with FUBAR found no statistically significant 355 
evidence of pervasive diversifying selection, i.e. selective pressure aggregated over all 356 
branches, with posterior probability of 0.9.49 Episodic positive selection was detected at several 357 
individual sites by MEME (STable 4) when selection was performed for each genotype with 358 
sufficient samples (1-6) individually (p<0.05), though statistical power was limited.50 Signals 359 
for positive selection were found in the structured C-terminus as well as in a region that forms 360 
part of an epitope extending across subunits. However, detailed structural analyses of the 361 
capsid and its interactions have only been undertaken for PeV-1 and 3 thus limiting inferences 362 
about what phenotypes might be subject to selection.63–65 363 

Branch length estimates were reasonably congruent between models for shorter branches 364 

(≤0.05 expected substitutions per site) across all datasets (Figure 4). The long internal 365 

branches were systematically underestimated by the GTR model compared to estimates under 366 
aBSREL. The expected number of substitutions per site along these branches suggest severe 367 
saturation, with branch length estimates approaching numerical infinity (Figure 4A).58 This 368 
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includes the branches defining PeV-6, 13, 16 as well as the internal branches separating two 369 
major clades of PeV-5. Terminal branches estimated to have infinite lengths only have non-370 
synonymous substitutions, resulting in an infinite omega parameter. Notably, these point 371 
estimates are likely to have extremely wide confidence limits, as modelling severe saturation 372 
can be imprecise.20 However, the result strongly supports that the depth of the PeV-A 373 
phylogeny is substantially underestimated by conventional substitution models.  374 

 

Figure 4: Branch length re-estimation under the aBSREL model. Branch lengths > 5 expected substitutions per 375 
site were coded as infinity for visualisation. A) All branches in the phylogeny. B) Short branches (<0.05 376 
substitutions/site) 377 

It is clear that numerous branches in the nucleotide-level phylogeny of PeV-A cannot be 378 
estimated with confidence due to the systematic underestimation of deep branches.20  This is 379 
likely to lead to systematic biases in phylogenetic reconstruction and subsequent inference of 380 
relatedness. This is particularly problematic for PeV-A as the current nomenclature system is 381 
predicated on reliable inference of extent of nucleotide divergence among genotypes. It is 382 
therefore more reliable to reconstruct PeV-A phylogenies from amino acid distances, which 383 
have a lower rate of evolution and are less likely to be affected by saturation.37 Phylogenies 384 
reconstructed from amino acid sequences are therefore more likely to accurately resolve the 385 
true evolutionary relationship of PeVs, even with the associated loss of information moving 386 
from nucleotide to amino acid data.  387 
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Phylogenetic structure and diversity of PeVs partitioned by the current nomenclature 388 
system 389 

As observed in the nucleotide-level phylogeny (Figure 3A), the amino-acid level phylogeny of 390 
the VP1 gene is characterized by long interior branches segregating major clades (Figure 3B). 391 
The two major clades stemming from the root bifurcation encompass currently defined PeV-A 392 
genotypes 1, 2, 4, 5, 6, 8, 9, 13, 16 and 18 and genotypes 3, 7, 10, 11, 12, 14, 15 and 17 393 
respectively. The two distinct lineages are not differentiated by the presence of the RGD motif, 394 
as the second distinctive lineage (3, 7, 10, 11, 12, 14, 15 and 17) all lack the RGD motif, but 395 
as do genotypes 8, 9, 13, 16 and 18. The nodes defining the currently designated genotypes and 396 
the deeper bifurcations in the tree are supported by high ultrafast bootstrap approximation 397 
(aBS) bifurcation support values (aBS >0.7), though the bifurcation of PeV-1 from the clade 398 
encompassing current genotypes 4, 5, 9, 8 , 13 and 16 is less well resolved, alongside some of 399 
longer internal branches within that subclade. Some lineages, such as the clade currently 400 
designated as PeV-3, consists of closely related contemporaneous sequences, whereas other 401 
clades, such as the clade designated PeV4, have long internal branching segregating the 402 
terminal branching structure.  403 

There are incongruencies in the topologies of the trees reconstructed from the nucleotide and 404 
amino acid alignments, including several poorly resolved major lineage placements (Figure 3, 405 
Sfigure 4). In the nucleotide tree, PeV-17 clade is a sister clade to PeV-3, with the PeV-10/14 406 
clade in a basal position (aBS 0.82). In the amino acid tree, the PeV-17 clade is basal to the 407 
sister clades PeV-3 and PeV-10/14, though this arrangement is less well-supported (aBS 0.55). 408 
The PeV-6/18 subtree is basal to the sister clades of PeV-1 and PeV-4/5/8/9/13/16 in the amino 409 
acid tree, whereas it is a sister clade to PeV-1 in the nucleotide tree, with both arrangements 410 
showing comparable bifurcation support. PeV-13 and 16 are basal to this clade in the 411 
nucleotide tree, incongruent with their basal position to PeV-4/5 on the amino acid level, which 412 
is marginally better supported (aBS 0.55 vs 0.4). It is clear that additional information is 413 
required to accurately resolve the phylogenetic structure of PeVs. However, given the extent 414 
of saturation in the nucleotide alignment, it is unlikely to represent a more accurate picture of 415 
the evolutionary relatedness of PeVs than the amino acid phylogeny.  416 

To investigate the likely biases introduced by the use of less robust tree reconstruction 417 
approaches such as neighbour joining in combination with inadequate evolutionary models or 418 
raw distances prevalently used in literature, we used the unedited nucleotide alignment to 419 
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reconstruct a neighbour joining tree under a Kimura-2 parameter model.22–28  This approach 420 
severely underestimates the branch lengths in the global phylogeny, as well as resulting in 421 
topological incongruencies for multiple lineages relative to the amino acid reconstructed tree 422 
(Figure 1B). The inadequacy of phylogenetic reconstruction methods and evolutionary models 423 
prevalently used to estimate PeV-A divergence has resulted in several documented incidents 424 
of inconsistent typing, including PeV-18 (KT879915) which groups with PeV3 and 425 
(KJ796882-3) often annotated as PeV-7, which groups with PeV14.22  426 

There is high variability within some of the currently designated genotypes (Figure 1A, 1C, 427 
SFigure 5). On both the nucleotide and amino acid level, the more internally divergent 428 
genotypes such as PeV-1, 4, and 14 have clear bi- or tri-modal distributions, reflecting long 429 
internal branches segregating terminal nodes as observed in the tree. Other distributions e.g. 430 
PeV-10 and PeV-15 are skewed by the inclusion of one or two putative genotype members on 431 
longer branches.  432 

The genotypes delineated in the current system largely have no spatiotemporal structure, 433 
though substantial undersampling limits interpretation. The sampling time frame is not 434 
equivalent across genotypes, with sampling globally biased towards the past two decades 435 
expectedly (Figure 5, STable 6). The few genotypes (e.g. PeV1 though 5) that span wider 436 
intervals have very sparse samples before 2000, with the progenitor strains of PeV-1 and 2 437 
sampled in the 1950s. PeV-A sequences have a very broad and well-mixed geographic 438 
distribution, with no clear geographic structure to the currently defined genotypes based on 439 
sequence dataset. This is supported by the Wang association index, which showed no 440 
significant evidence for geographic structure in the phylogeny of the full dataset (p<0.001). In 441 
most countries, multiple genotypes co-circulate contemporaneously, with no clear regional or 442 
temporal restrictions to genotypes (STable 5-6, Figure 5, SFigure 6). Globally, PeV-1 and 3 443 
are the predominantly circulating genotypes. Some countries such as Bolivia, India and Ghana, 444 
have a disproportionately high number of distinct genotypes circulating relative to the number 445 
of available sequences (14, 13 and 12 distinct genotypes respectively, SFigure 7), whereas 446 
countries with far higher sampling rates such as Japan, the USA and the Netherlands have five 447 
or six genotypes circulating for the equivalent sequence numbers or higher. Australia is the 448 
only country with multiple available sequences that all belong to a single genotype, though 449 
sampling in Australia is biased by large outbreaks of PeV-3 (STable 5). 450 
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Figure 5.  Prevalence of currently designated genotypes by country, indicated by proportion of overall country-451 
level population.  452 

To attempt to resolve possible geographic connections or dissemination networks in the better 453 
sampled genotypes, we plotted the geographic origin and date for all highly related virus pairs, 454 
defined as pairs of sequences with a pairwise patristic distance below 0.01 substitutions per 455 
site in the nucleotide phylogeny (SFigure 8). There appears to be a mild temporal and regional 456 
bias in the most closely related sequences, including potential regional networks between 457 
Japan, South Korea and Taiwan as well as France and the Netherlands respectively for PeV-3. 458 
However, the relatedness of the USA-isolated viruses to the global population supports high 459 
levels of geographic mixing, with extreme surveillance biases rendering quantification of these 460 
patterns unreliable at this point.  461 

Evolutionary history of currently defined PeV-A genotypes 462 

The deep divergence between PeV-A lineages, regardless of nomenclature, raises questions 463 
around the rate and time scale of the evolutionary history of human parechoviruses, including 464 
the divergence dates of the individual lineages.  465 

By root-to-tip regression, there was no evidence of temporal structure across the phylogenies 466 
reconstructed from the complete undownsampled and genotype-specific datasets, evident in 467 
the extremely low R2 values across the different temporal rerooting approaches, where the root 468 

is estimated simultaneously with the regression (Figure 6).66 Two of the ‘best-fit’ rerooting 469 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.14.251231doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.14.251231
http://creativecommons.org/licenses/by-nc/4.0/


approaches resulted in negative slopes, interpreted as a negative evolutionary rate. The negative 470 
slope was not consistent across different root position optimizations, indicating it is probably 471 
a result of the temporal rerooting method mispositioning the root owing to a lack of 472 
information. The signal was marginally stronger in the nondownsampled dataset, but still very 473 
low. The extent of over-dispersion around the regression line suggests that it may be 474 
inappropriate to assume that all branches evolve at the same rate i.e. follow a strict molecular 475 
clock model. In several of the rerooting operations, entire lineages e.g. PeV-5 lie below to 476 
regression line as clear outliers. We also reduced the sampling timeframe to only include 477 
sequences collected after 2006, to investigate the impact of the small number of older 478 
anchoring samples on the regression but similarly found a lack of temporal signal for the 479 
shorter-term evolution (SFigure 9).  480 
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Figure 6: Temporal regressions across re-rooting optimizations. A) Amino acid reconstructed phylogeny of the 481 
complete undownsampled dataset. B) Individual PeV-A genotypes as defined by the current genotyping system. 482 
RMS = residual mean square. 483 

The high levels of variation around the regression line suggests it would be far more appropriate 484 
to assume substantial rate-variation among branches, supported by selection analysis under the 485 
aBSREL model, and molecular dating analyses were subsequently conduced with the relaxed 486 
uncorrelated log normal clock model. Notably, some PeV-A genotypes including PeV-1 and 487 
PeV4-6 have high rates of recombination, whereas negligible rates are reported for PeV-3.30,67 488 
Different degrees of recombination among the lineages could result in rate variation. However, 489 
using a wide variety of tests provided by the RDP program suite (see Methods), there was no 490 
evidence of recombination in the VP1 subgenomic region in the current dataset.  491 

We investigated the temporal structure of the individual currently defined genotypes with 492 
sufficient number of samples (n>40), as the currently defined genotypes capture well-defined 493 
monophyletic phylogroups. Temporal regression was performed for the undownsampled 494 
dataset of PeV-1 and 3, and included the viruses from the test dataset, which were assigned 495 
putative genotypes based on their phylogenetic neighborhood.  496 

The temporal signal within the more numerously sequenced genotypes (1-6) was variable 497 
(Figure 6). After temporal rerooting to maximize correlation, PeV-1 was structured as two 498 
populations with weak temporal signal. The two populations correspond to the two segregated 499 
sublineages observed in the phylogeny and have stronger temporal signal when analyzed as 500 
two lineages. Genotypes 2, 3 and 5 defined by the current nomenclature system have weak but 501 
present temporal signal, with strongly deviating tips in genotypes 3 and 5. Both genotypes 4 502 
and 6 have negligible temporal signal and were not included in the molecular dating analysis. 503 
The slope, interpreted as a rough estimation of the rate, was also highly variable across the 504 
genotypes. However, root-to-tip regression is inappropriate for statistical hypothesis testing, as 505 
the data is correlated owing to shared ancestry, violating the assumption that the data is 506 
independently distributed and the current models generally explain little of the observed 507 
variance. Outlier tips in genotypes 3 and 5 were excluded from all subsequent analysis.  508 

The substitution rate and tree height (the age of the most recent common ancestor of all 509 
samples) estimates for PeV-2 and PeV-5 have very large credibility intervals across models, 510 
indicating high levels of uncertainty in these estimates and very slow clock rates (Table 2). 511 
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This was expected from the temporal regression: the dispersion of the contemporary tips was 512 
very high, with the older anchoring sequence inducing the mild linear signal as an artefact, 513 
with multiple outliers in PeV-5. The R2 signal for PeV-2 weakens to 0.19 when the anchoring 514 
sequences from 1956 is removed (data not shown). This emphasizes that signals from temporal 515 
regression should be treated with caution, and divergence dating should be subject to prior 516 
diagnoses even if runs converge. The rate distribution sampled exclusively from the prior 517 
(ignoring the sequence data) also overlaps largely with the recovered rate, suggesting the 518 
sequence data may not have sufficient signal to disentangle the tree height and clock rate 519 
robustly or  recover estimates independent from the specified priors (SFigure 10).53 PeV-1 520 
sublineage 2 failed to converged after two combined runs of 500 million steps each.  521 

PeV-1 sublineage 1 and PeV-3 have less uncertainty in their estimates. The median tree height, 522 
or the age of the most recent common ancestor of all samples, for PeV-1 sublineage 1 and PeV-523 
3 is estimated at 115.57 [95% highest posterior density (HPD), 75.05 -158.27] and 102.96 524 
[68.87 – 143.6] years respectively (Table 2, SFigure 11). The median evolutionary rates for 525 
PeV-1 sublineage 1 and PeV-3 fall within the order of magnitude expected of RNA viruses 526 
(10−3 subst/site/year) but are higher than expected, which may lead to underestimation of the 527 
true height of the tree (Table 2).53,68 528 

Table 2: Tree height and evolutionary rate estimates for currently defined PeV-A genotypes 

Currently defined 
genotype 

Model Mean evolutionary rate 
(subst/site/year) [95% HPD]  

Tree height (years) [95% 
HPD] 

PeV-1  
lineage 1 

Partitioned – 1+2, 3 GTR on each  
Relaxed lognormal clock 
Bayesian Skyline 
1 chain of 500 million steps 

7 x 10-3 [5.78  x 10-3 – 8.16 x 10-3] 115.57 [75.05 – 158.27] 

PeV-2 Partitioned – 1+2, 3 GTR on each  
Relaxed lognormal  clock 
Bayesian Skyline 
2 chains combined of 500 million steps each 

1.76 x 10-3 [1.64 x 10-4 – 3.63 x 10-3] 800.3 [147.56 - 2086.91] 

PeV-3 Partitioned – 1+2, 3 GTR on each  
Relaxed lognormal  clock 
Bayesian Skyline 
1 chain of 500 million steps 

6.07 x 10-3 [4.98  x 10-3 – 7.24 x 10-3] 102.96 [68.87 – 143.6] 

PeV-5 Partitioned – 1+2, 3 GTR on each  
Relaxed lognormal  clock 
Bayesian Skyline 
2 chains combined of 500 million steps each 

6.26 x 10-4 [2.56 x 10-5 – 1.59 x 10-3] 2812.08 [304.53 – 8153.8] 

95% highest posterior density [HPD] 
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PhyCLIP-resolved genotyping system 529 

The limitations of the current PeV-A genotyping system and its inconsistent discriminatory 530 
information emphasizes the need for a more robust, statistically and phylogenetically informed 531 
approach to partition the genetic diversity of PeVs. We used PhyCLIP to delineate 532 
evolutionarily relevant genotypes based on phylogenetic relationships of the PeV-A sequences 533 
into 26 clusters (Figure 7, STable 7) (compared to 19 in the current system) clustering 97% of 534 
all sequences under the optimal clustering configuration (i.e. minimum cluster size of 3, a false 535 
discovery rate of 0.2 and a gamma of 3).  536 

PhyCLIP’s cluster topology recapitulates several of the current nomenclature system’s 537 
genotypes as single, pure clusters, including PeV-2, 7-10, 11, 13, 15-18 (Figure 7, STable 7). 538 
These clusters are sparsely sampled and characterized by low internal divergence, with long 539 
interior branches separating them from the rest of the tree. Major genotype PeV-3 is also 540 
recapitulated as a single cluster, owing to its distribution of short terminal branches.  541 
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Figure 7:  Comparison of PhyCLIP clustering of the phylogeny reconstructed from amino acid alignment of the 542 
primary dataset to current nomenclature. Tips are coloured by PhyCLIP designated cluster. Textual annotation 543 
indicates PhyCLIP’s clustering in the first set of labels in blue, with the å PeV-A genotype by current system in 544 
the second set of labels in red, indicated as e.g. “G1”. Outlier sequences designated by PhyCLIP are indicated in 545 
black. See Supplementary table 7 for mapping of current genotypes to PhyCLIP clusters. 546 

Notably, PhyCLIP delineates multiple distinct genotypes in the divergent PeV-A genotypes 1, 547 
4, 5 and 14. For PeV-1, 4 and 14, there are clear phylogenetic separations by long internal 548 
branches of the genotypes into two distinct lineages respectively, which PhyCLIP captures 549 
(Figures 7, 8). For PeV-1 and 4, PhyCLIP also recovers an additional genotype within each, as 550 
the local statistics of the branching pattern supports the initiation of statistically significant 551 
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divergence at that approximate branch in the lineage. The prototypical PeV-1 Harris strain, 552 
which has divergent genetic and antigenic properties from several other PeV-1 strains, forms 553 
part of the top PeV-1 lineages.69 PeV-5 is phylogenetically structured as one extremely 554 
divergent, ladder-like lineage, which PhyCLIP designates into genotypes that step-wise 555 
delineate the divergence along the branch owing to its distal dissociation approach.31 Even 556 
though PhyCLIP increased the clustering resolution within the currently defined genotypes, it 557 
did not resolve them into spatiotemporally structured lineages (STable 7) owing to surveillance 558 
bias and extensive mixing of PeV-A genotypes globally. 559 

PeV-12 was designated as unclustered by PhyCLIP, as it is currently only represented by two 560 
sequences and fell below the minimum cluster size of 3. PeV-12 was putatively annotated as 561 
PhyCLIP cluster 27, to ensure all lineages have a PhyCLIP genotyping identity. Seventeen 562 
sequences interspersed through the tree were classified as outliers under PhyCLIP’s distal 563 
dissociation approach, which defines an outlier as a sequence that is more than three times the 564 
pairwise absolute deviation away from the median patristic distance to the subtending node. 565 
Some were classified outliers as a result of the algorithm’s sensitivity in the distal dissociation 566 
process, with these sequences showing mild violations of the local branching statistics used to 567 
set a divergence limit. This is especially prevalent in regions of the tree with a 568 
disproportionately high frequency of identical sequences in small clades e.g. the three 569 
sequences in PeV-15. For these sequences, post-hoc absorption into defined clusters is 570 
discretionary. Unclustered sequences such as the ones in PeV-1, 3 and 10 show marked 571 
divergence to their closest neighbours and are probably true outliers that may represent under-572 
sampled populations or lower quality sequences.  573 
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Figure 8: PhyCLIP cluster configuration of the most divergent currently designated PeV-A genotypes 1, 4, 5 and 574 
14. Colored circles below each panel indicate the PhyCLIP genotype.  575 

A new dynamic nomenclature system for PeV-A 576 

The PhyCLIP analyses above provide new genotype identifiers for viruses sequenced up to 577 
2019, but newly sequenced viruses in the coming years will require genotyping. Here, we 578 
propose a dynamic nomenclature system that can classify viruses within known diversity as 579 
well as be progressively updated to account for both the continual evolution of currently known 580 
genotypes and the discovery of new, divergent sequences and lineages. As previously noted, 581 
the diversity of PeVs is likely severely underrepresented by sequences in publicly available 582 
databases. It is therefore entirely likely that additional surveillance and sampling will reveal 583 
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extensive undetected diversity, thus shifting the ensemble statistical properties of the inferred 584 
phylogeny that inform PhyCLIP’s clustering results. To illustrate this, we subsampled the 585 
primary dataset, retaining only viruses collected before 2006 (pre-2006 dataset) and compared 586 
its phylogeny as well as its PhyCLIP clustering results to those derived from the primary 587 
dataset (see Supplementary Information). Six additional divergent genotypes were detected 588 
between 2006 and 2016 (all of which are accounted for in the genotypes shown in Figure 7). 589 
Notably, the increased information in the 2016 phylogeny concerning the evolutionary 590 
trajectories and diversity of individual genotypes relative to the background diversity 591 
progressively improved PhyCLIP’s clustering. Phylogenetic clustering with the PhyCLIP 592 
algorithm is therefore a fitting approach to underlie a dynamic nomenclature system.  593 

Optimally, the genotyping tools employed in this nomenclature system would be automated 594 
and would not require full phylogenetic reconstruction for every sequence classification, as 595 
this will be computationally expensive as the number of PeV-A sequences increases. 596 
Phylogenetic placement tools such as RAxML-EPA are ideal for this as they are dependent on 597 
a reference phylogeny that incorporates the robust evolutionary models required to more 598 
accurately estimate relatedness from sequences as divergent as PeVs while not requiring full 599 
phylogenetic reconstruction for every query virus typed.57  600 

We broadly categorize the placement results of query viruses into three types with respect to 601 
their relative placements against PhyCLIP-defined clusters (Figure 2). Expectedly, untyped 602 
viruses that are closely related to viruses within the reference phylogeny will cluster within 603 
clusters designated on the reference phylogeny (Figure 2A). These single queries can reliably 604 
be genotyped on the reference phylogeny with phylogenetic placement. On the other hand, 605 
query sequences that are placed as outliers to designated reference clusters or grouped with 606 
outlier lineages designated in the reference phylogeny by PhyCLIP’s distal dissociation would 607 
not be nested within known diversity and may warrant the designation of a new genotype 608 
(Figure 2B&C). If this type of query begins to dominate with the addition of new sequences, a 609 
full phylogenetic reconstruction and clustering should be performed to partition the new 610 
standing diversity. Phylogenetic reconstruction is also advisable to reliably resolve the 611 
phylogenetic placement of putatively more diverse viruses, as these queries may be placed with 612 
lower LWR scores. Full reconstruction and updated clustering will be required if a large 613 
amount of sequences is added to databases at once or progressively, as this will shift the global 614 
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statistics of the underlying dataset PhyCLIP’s operates on, and phylogenetic placement only 615 
resolves one query sequence at a time.  616 

Using 123 sequences collected from a recent Malawian cohort study as a test dataset and the 617 
primary sequence dataset as reference (see Methods), we investigated 1) if phylogenetic 618 
placement could reliably place viruses within known diversity, 2) if phylogenetic placement as 619 
outliers to reference clusters or with reference outlier lineages could reliably identify putatively 620 
novel divergent lineages or viruses and 3) how the addition of a new, large set of viruses 621 
changed PhyCLIP’s reference clustering configuration. The additional sequences from the 622 
Malawian cohort were not uniformly distributed across the currently designated or PhyCLIP-623 
derived genotypes (SFigure 12B).  624 

There was a minor topological inconsistency between the phylogeny inclusive of the Malawian 625 
sequences (test phylogeny) and the primary phylogeny, with PeV-17/PhyCLIP cluster 25 at an 626 
unstable sister clade position to the subtree consisting of PeV-1/PhyCLIP clusters 1-3 in the 627 
test phylogeny. However, this bipartition showed very low support (aBS 38). The global 628 
patristic distance distribution shifted right significantly relative to the reference phylogeny on 629 
the addition of the set of highly divergent viruses from Malawi, increasing the distribution 630 
derived within-cluster limit (SFigure 12A). This significant change in the underlying ensemble 631 
statistics of the dataset would indicate a nomenclature update is required.  632 

83% of the test sequences were consistently located within a lineage between phylogenetic 633 
placement and reconstruction of the test dataset (i.e. query sequences as per the type 634 
represented in Figure 2A) with high confidence (average cluster-wise LWR across all queries 635 
= 94.9%, standard deviation = 10.8%), indicating accurate phylogenetic placement within 636 
known diversity, which is unlikely to require an update (Figure 9, SFigure 13). Divergent 637 
sequences are correctly designated as outliers to reference clusters or outlying lineages, which 638 
may necessitate phylogenetic reconstruction to confirm placement. The addition of a set of 639 
sequences, including divergent sequences, changes the clustering properties with reliable 640 
behaviour: divergent sequences are captured as outliers or separate lineages by distal 641 
dissociation, which in turn consolidates more closely related clusters (See Supplementary 642 
results for details).  643 
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Figure 9: Changes in the clustering topology between optimal phylogenetic clustering of the reference and test phylogenies. Subtrees 

depicted are from the test phylogeny. Transparent tips indicate the additional viruses. Tips coloured by phylogenetic clustering of primary 

(reference) phylogeny, which is also the first column of the heat map. Second column is clustering of test phylogeny.  
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Discussion  644 

There is a considerable amount of genotypic diversity in PeVs, with notable differences 645 
between the currently defined genotypes in terms of their pathogenicity, epidemiology 646 
(including the age-distribution of infections), and biological properties, such as receptor usage. 647 
However, inference in the genomic epidemiology of PeVs is limited owing to the deep 648 
divergence of the lineages and severe substitution saturation in the VP1 gene, which is most 649 
commonly sequenced and used for genotyping. There are limited and cautious inferences to be 650 
made for the molecular epidemiology of PeVs, each of which is discussed in detail below. 1) 651 
Nucleotide-level phylogenetic reconstruction with neighbor joining methods that are currently 652 
used for PeV-A genotyping substantially underestimate the evolutionary relationship and the 653 
uncertainty thereof between PeV-A lineages. 2) PeVs are substantially undersampled by 654 
current surveillance frameworks. 3) It is not possible to recover reliable estimates of the 655 
evolutionary history of PeVs with currently available data and tools. Finally, we have 656 
introduced our PhyCLIP derived nomenclature system which recovers deep divergences in 657 
currently identified PeV-A genotypes in a statistically principled way and provides a reliable 658 
basis for genotyping of future PeV-A using phylogenetic placement based on robust, amino-659 
acid level phylogenetic reconstructions. This system recapitulates the currently designated 660 
genotypes along long terminal branches, but delineates the internally divergent genotypes more 661 
informatively.  662 

1. Uncertainty and underestimation in the PeV-A phylogeny require robust 663 

phylogenetic reconstruction methods 664 

Our current understanding of the evolutionary relationships between the extant PeV-A lineages 665 
is limited by phylogenetic uncertainty in estimation of the deep interior branch lengths and the 666 
deep phylogenetic structure. Topological uncertainty owing to artefacts such as long branch 667 
attraction introduced by large evolutionary distances restricts our ability to make inferences 668 
about the ancestral relatedness of the genotypes. The presence of substitution saturation in the 669 
nucleotide alignment emphasizes the need to reconstruct PeV-A phylogenies from amino acid 670 
alignments, which are more robust to saturation, as additional caution is required when 671 
performing phylogenetic analyses of deep evolutionary time scales in rapidly evolving 672 
pathogens, especially on a nucleotide-level.20,45,58,70 673 
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Additional information is required to resolve the phylogenetic structure of PeVs with more 674 
confidence.71 Phylogenetic signal from short, subgenomic regions like VP1 is often 675 
insufficient, especially as saturation is more pronounced in shorter sequences.45 Additionally, 676 
the VP1 region is also sometimes just partially sequenced.23,29,72  Whole genome sequences 677 
could offer valuable additional genetic information to better resolve the phylogenetic 678 
relationships of PeV.73 However, PeVs have high rates of recombination. With GARD we 679 
found 2098 potential breakpoints in the whole genome alignment, and this implies that even 680 
with whole genome data unravelling the evolutionary history of PeV-A is likely to be difficult. 681 
Increased surveillance and sequencing of quality, full-length VP1 sequences will help resolve 682 
the ancestry and relationships between the genotypes.  683 

2. PeVs are significantly undersampled by current surveillance strategies 684 

The long internal branches of the phylogeny, both in the deep tree and among more 685 
contemporaneous sequences, suggest severe under-sampling of the true diversity of PeVs. 686 
Sampling for PeVs is sparse and biased, with differences in study design greatly limiting 687 
generalisation and inference. Most available PeV-A sequences are derived from 688 
epidemiological studies reporting PeV-A prevalence in cohorts of patients with specific 689 
symptoms (e.g. acute gastroenteritis, respiratory or neurological symptoms)17,22,27,74–79 and 690 
from national enterovirus surveillance programs reporting on PeV-A infections detected in 691 
clinical settings.7,80–82 The data obtained in these studies and programs are influenced by 692 
disease severity, care seeking behavior and the inclusion of specific sample types (e.g. fecal 693 
samples, nasopharyngeal swabs or cerebrospinal fluid), and may be biased to genotypes with 694 
a higher pathogenicity or a specific tissue tropism. It is thus unclear whether the combination 695 
of these passive and active forms of surveillance accurately reflect circulating genotypic 696 
diversity.  697 

3. Deep evolutionary timescale estimates for PeVs are not possible with available 698 

data and tools 699 

Previous molecular clock analysis based on the VP1 region suggests a time to the most recent 700 
common ancestor (tMRCA) of 1600.83 However, it is likely that these estimates of the 701 
evolutionary history of PeVs are substantially underestimated owing to time-dependence in the 702 
evolutionary rates, rate heterogeneity among divergent lineages and strong purifying selection 703 
along deep-tree branches.20,84 704 
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The observed genetic diversity of PeVs is likely generated and maintained by a complex 705 
interaction of immune dynamics and selection, recombination and co-divergence over deep 706 
evolutionary scales. Strong purifying selection acting on most sites results in a high rate of 707 
synonymous substitutions as selection functions to constrain changes in the functional sites of 708 
VP1.4–6 However, there is evidence for diversifying selection in the structured C terminus 709 
around the RGD motif and subunit interface region of the VP1 protein as well as suggestively 710 
along certain lineages, though statistical power in the current dataset is limited and reduced by 711 
conservative multiple testing correction.1,63–65 A possible explanation for the deep divergences 712 
in the VP1 capsid region phylogeny and the differential presence of the RGD motif could in 713 
part be immune-mediated positive selection driving the divergence on a deep evolutionary 714 
scale. Use of a different, unknown receptor may result in differences in cell tropisms and the 715 
differential diseases severity and epidemiological properties observed for the different 716 
genotypes.85,86 However, receptor usage for most genotypes has not been characterized.  717 

Estimates of the evolutionary rate and history of PeVs should be treated with caution, as the 718 
current full and lineage-specific datasets (excluding current genotypes PeV-1 sublineage 1 and 719 
PeV-3) do not have enough information to recover trustworthy parameters robust to prior 720 
settings. The extant diversity of current genotype PeV1 sublineage 1 and PeV-3 are estimated 721 
to have respective most recent common ancestors within the past two centuries. These two 722 
genotypes are also the best sampled, and further sampling may enable more precise molecular 723 

dating of the individual additional genotypes, especially if PhyCLIP’s delineation of highly 724 

divergent groups proves informative. However, further inference about the evolutionary 725 
dynamics of the complete PeV-A phylogeny and the collective divergence dating of the 726 
genotypes is limited by the fact that the likely phylogenetic root of PeVs is very deep, with a 727 
long evolutionary history of diversification of the genotypes based on the VP1 phylogeny. 728 
Resultantly, deep evolutionary relationships among highly divergent viruses may not be 729 
resolved with molecular clock analyses that are calibrated on the terminal branches of recent 730 
sequences.20,58,70 731 

PeVs are RNA viruses, and therefore evolve measurably over shorter timescales owing to 732 
substitutions introduced by its error-prone polymerase. It is therefore expected that sequences 733 
from a PeV-A dataset serially sampled over 62 years would have accumulated a sufficiently 734 
large number of substitution to reliably provide signal for evolutionary history and rate 735 
estimation.66 However, even if the sampling timescale for PeVs spans 60 years, the sampled 736 
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time range is highly biased towards the past 20 years and might still be too short relative to the 737 
evolutionary timescale of the virus to capture long-term evolutionary processes on those deep 738 
time scales.87 Time-dependence of rate is particularly prevalent in datasets of deep-time scale 739 
pathogens where recent sampling is used to extrapolate back in time. This can lead to bias in 740 
molecular dating as shorter, terminal branches have relatively high dN/dS values owing to 741 
transient and unfixed substitutions, in contrast to the low dN/dS values for deep interior 742 
branches that are under strong purifying selection.58,84 Standard GTR+G models do not 743 
adequately account for variation in selection pressure across sites and lineages of the phylogeny 744 
and will result in under-estimated branch lengths in the presence of strong purifying 745 
selection.47,58,88 Increased purifying selection at deep evolutionary time scales can lead to an 746 
underestimation of the evolutionary history of a phylogeny, as it maintains sequence homology 747 
even if synonymous sites are completely saturated.20,58,84  Recent work on site-specific models 748 
that account for skewed site-specific preferences, both inferred from sequence data and 749 
experimentally derived, and the associated saturation have shown marked improvement in 750 
phylogenetic fit and branch length estimation accuracy.89 However, it is unlikely that there is 751 
enough information in the current PeV-A dataset to attempt these parameter-rich models.90 752 

The exploratory temporal regression suggests that there is substantial variation in rates 753 
(heterotachy) across PeV-A lineages.70 This heterogeneity may be due to variation in the 754 
strength of selective pressure acting on different lineages, as suggested by the aBSREL 755 
analysis. Differential selective constraints may arise from differences in life cycle, including 756 
genotype-dependent differential immune pressure and receptor and tissue tropism, resulting in 757 
different ratios of synonymous to nonsynonymous substitutions.89 Variation of rates may also 758 
arise from inherent differences in substitution rates, i.e. differences in synonymous rates, 759 
among lineages.89,91  The rate variation is unlikely to be a result of different levels of 760 
recombination among the lineages, as we did not detect any breakpoints in our VP1 dataset. 761 
Rate variation can be modelled with relaxed molecular clock models, which allows for branch-762 
specific rates drawn from an underlying distribution.25 However, simulation studies have 763 
suggested that a single uncorrelated relaxed clock is not flexible enough to adequately model 764 
heterotachy across subtype clades, recovering inaccurate rate estimates and biasing the 765 
evolutionary history.71,91 Lineage-specific relative rates can also be accommodated with 766 
autocorrelated random local clocks, which allows for rate changes on host-specific lineages.92 767 
However, these models are biased by definitions of specific lineages and do not account for 768 
other sources of rate variation. Recently developed mixed effect clocks combine relaxed and 769 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.14.251231doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.14.251231
http://creativecommons.org/licenses/by-nc/4.0/


local clocks to model both fixed and random effects in rate variation and have been shown to 770 
improve rate estimate accuracy in the presence of heterotachy from mixed sources.21 The 771 
pronounced sparsity of temporal signal in the primary phylogeny with the presence of purifying 772 
selection on a deep evolutionary scale as a confounding factor limited any attempt to reliably 773 
estimate evolutionary rates or the dates of divergence in the full PeV-A phylogeny. As 774 
estimates of branch length underestimation from the aBSREL model are unlikely to be precise 775 
and will have confidence intervals of orders of magnitude, we also refrained from adjusting 776 
known estimates of the most recent common ancestor using this information.20,83 777 

4. New PhyCLIP based genotype nomenclature recovers deep divergences in 778 

currently defined genotypes 779 

The current PeV-A nomenclature system falls prey to many of issues described above because 780 
of the reliance on neighbour-joining phylogenetic trees and uncorrected genetic distance based 781 
thresholds for classifying virus genotypes. The new nomenclature system that we describe here 782 
minimises these issues by using the best available phylogenetic methods and the statistically 783 
principled PhyCLIP framework to delineate genotypes within the resulting trees. PhyCLIP 784 
operates on the long deep and terminal branches of the phylogeny to recapitulate much of the 785 
current nomenclature system and to capture clear phylogenetic distinctions in divergent PeV-786 
1, 4, 5 and 14 genotypes. It is unclear if the demarcation of these divergent genotypes into more 787 
clusters is informative with regards to the epidemiological or antigenic characterisation of the 788 
phylogenetic unit without additional information on serology, life cycle and clinical properties 789 
of PeVs. PhyCLIP is sensitive to variation in sampling rates, as its clustering is dependent on 790 
the diversity present in the phylogeny. PhyCLIP will perform optimally when the background 791 
diversity of the population tested against is comprehensive or well representative. The 792 
evolutionary continuum of genotypes PeV-1 and 3 is far better approximated in the current 793 
dataset than less sampled genotypes. Nonetheless, the long interior branches separating deep 794 
and more terminal clades enables PhyCLIP to delineate clusters.  795 

The dynamic nomenclature system combining progressive clustering by PhyCLIP with 796 
phylogenetic placement shows promise. Phylogenetic placement with RAxML-EPA accurately 797 
places sequences with close relatives within existing diversity and is capable of correctly 798 
designating divergent sequences as outliers to reference clusters. The addition of a number of 799 
divergent sequences or a large set of sequences to the existing diversity will likely require that 800 
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our PhyCLIP based pipeline be re-run as PhyCLIP specifically operates on the underlying 801 
distribution of genetic divergence in the phylogenetic tree. The exact timing of such a re-802 
evaluation will depend on the rate of new sequencing data generation. 803 
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