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2 

Abstract 28 

The incidence of type 2 diabetes (T2D) has been increasing globally and a growing body of 29 

evidence links type 2 diabetes with altered microbiota composition. Type 2 diabetes is preceded 30 

by a long pre-diabetic state characterized by changes in various metabolic parameters. We tested 31 

whether the gut microbiome could have predictive potential for T2D development during the 32 

healthy and pre-diabetic disease stages. We used prospective data of 608 well-phenotyped Finnish 33 

men collected from the population-based Metabolic Syndrome In Men (METSIM) study to build 34 

machine learning models for predicting continuous glucose and insulin measures in a shorter (1.5 35 

year) and longer (4.5 year) period. Our results show that the inclusion of gut microbiome improves 36 

prediction accuracy for modelling T2D associated parameters such as glycosylated hemoglobin 37 

and insulin measures. We identified novel microbial biomarkers and described their effects on the 38 

predictions using interpretable machine learning techniques, which revealed complex linear and 39 

non-linear associations. Additionally, the modelling strategy carried out allowed us to compare the 40 

stability of model performances and biomarker selection, also revealing differences in short-term 41 

and long-term predictions. The identified microbiome biomarkers provide a predictive measure 42 

for various metabolic traits related to T2D, thus providing an additional parameter for personal 43 

risk assessment. Our work also highlights the need for robust modelling strategies and the value 44 

of interpretable machine learning. 45 

Importance 46 

Recent studies have shown a clear link between gut microbiota and type 2 diabetes. However, 47 

current results are based on cross-sectional studies that aim to determine the microbial dysbiosis 48 

when the disease is already prevalent. In order to consider microbiome as a factor in disease risk 49 

assessment, prospective studies are needed. Our study is the first study that assesses the gut 50 

microbiome as a predictive measure for several type 2 diabetes associated parameters in a 51 

longitudinal study setting. Our results revealed a number of novel microbial biomarkers that can 52 

improve the prediction accuracy for continuous insulin measures and glycosylated hemoglobin 53 

levels. These results make the prospect of using microbiome in personalized medicine promising. 54 
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Background 55 

The prevalence of type 2 diabetes (T2D) has more than doubled since 1980, resulting in a huge 56 

burden on the health care system worldwide (1). In order to fight the epidemic of T2D and improve 57 

public health, understanding of the first stages of this disease is necessary for preventive actions. 58 

Recently, the bacterial communities residing in our intestines have become a topic of interest as a 59 

potential way to prevent the development of glucose dysregulation. The microbiome has been 60 

shown to modulate a variety of physiological functions, such as gut permeability, inflammation, 61 

glucose metabolism and fatty acid oxidation, supporting an important role of the microbiome in 62 

the pathophysiology of T2D (2). 63 

Numerous studies have already reported changes in the gut microbiome in subjects with T2D or 64 

prediabetes compared to healthy individuals (3–5). Although there is information that the 65 

abundance of bacteria such as Roseburia and Bifidobacteria is altered  in subjects with T2D (2), 66 

compelling evidence that supports the use of gut microbiome as a predictive tool for T2D is 67 

lacking, as a majority of the findings are based on cross-sectional studies. However, in order to 68 

assess the microbiome as a prognostic tool for T2D, prospective studies are needed. 69 

T2D is a heterogeneous disease with multiple pathophysiological pathways involved (6). Thus, in 70 

order to fully understand the role of microbiome in the risk of T2D, a case-control design might 71 

not be sufficient. As the progression of the disease is a continuous process, detailed data about 72 

metabolic outcomes such as continuous glucose and insulin measurements could help to unravel 73 

the disease mechanisms involving the microbiome. 74 

Together with heterogeneity in the first stages T2D, the gut microbiome itself is known to be highly 75 

personalized (7, 8). Variability in continuous metabolic outcomes and gut microbiome lead to 76 

difficulties in reproducing the results obtained and raises the need for robust modelling strategies. 77 

Machine learning methods have been shown to capture various complex association patterns from 78 

different data types. Although machine learning has become popular in microbiome studies as 79 

well, the ability of the algorithms to provide robust results remains unclear (9, 10). 80 

We now report the application of a random forest algorithm on microbiome data to predict multiple 81 

continuous metabolic outcomes that influence the development of T2D in a longitudinal study 82 
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setting. We identify microbial biomarkers for the metabolic outcomes and describe their effects on 83 

the predictions using interpretable machine learning techniques. In addition, we show that there 84 

are significant differences in the identified biomarkers between long- and short follow-up periods. 85 

We also show how the modelling procedure significantly influences the results. 86 

Results 87 

Study design 88 

We used prospective data of well phenotyped Finnish men collected from a population-based 89 

Metabolic Syndrome In Men (METSIM) study. A comprehensive machine learning strategy was 90 

implemented to identify microbial biomarkers and their effect on numerous metabolic traits. 91 

Graphical overview of the study design and modelling procedure is shown in Figure 1. Random 92 

forest models were trained to predict the metabolic outcomes of interest in the follow-up using 93 

baseline microbiome (MB), metabolic outcomes (MO) and additional covariates (CoV) such as 94 

body mass index and age as predictors. To evaluate the effect of microbiome, models including 95 

microbial predictors were compared to models excluding microbial predictors. In order to assess 96 

the temporal changes in biomarker selection and predictive performance, independent prospective 97 

models were trained for the 18-month and 48-month follow-up period. To evaluate the model 98 

generalizability and stability, model training was repeated 200 times with different train-test split 99 

made each run. Permutation feature importance metrics were used to identify microbial 100 

biomarkers. Finally, accumulated local effects methodology was used to plot the effect of the 101 

microbial biomarkers for predicting the corresponding metabolic trait. 102 

Model stability and generalizability  103 

In the first step we tested whether we could improve the prediction of metabolic outcomes using 104 

microbiome data as an additional predictor. Human gut microbiome is known to be highly variable 105 

and personalized (7, 8). Thus, estimating the robustness of the predictive models is essential. The 106 

problem with microbiome data based on our experience is that the performance of the model might 107 

be highly dependent on the initial data split to training and test sets. The models were run 200 108 

times with different initial splits to assess the impact of the data split. Table 1 summarizes the 109 

obtained results.  110 
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These results highlight the variability in performance estimates occurring due to the data split. Out 111 

of 200 data splits, the number of models that took advantage of using microbial predictors varies 112 

around 100 which implies that the data split plays an important role in the outcome. Our results 113 

suggest that for the 18-month time frame, microbiome as a predictor can improve the prediction 114 

accuracy for secretion index, glycosylated hemoglobin (HbA1c) and 2h insulin levels. For 115 

secretion index, models including microbial predictors outperformed simpler models in 61% of 116 

the cases, for 2h insulin in 70.5% of the cases and for HbA1c in 64.5% of the cases. For a 48-117 

month time frame the microbiome improves the prediction model for the secretion index, fasting 118 

insulin and 2h insulin. For secretion index, models including microbial predictors outperformed 119 

simpler models in 69% of the cases, for 2h insulin in 61% of the cases, and for fasting insulin in 120 

68.5% of the cases.  121 

Remarkably, the variation in differences in root-mean-square error (RMSE) between the model 122 

including microbial predictors and model excluding microbial predictors over the 200 runs is large. 123 

Due to the high variability, the level of improvement in prediction accuracy when microbiome 124 

data are used remains unclear. 125 

Novel predictive microbial biomarkers for metabolic outcomes 126 

In order to find microbial markers that are predictive for the metabolic outcomes, average feature 127 

importance scores over 200 runs were compared. Figure 2 shows the average importance score of 128 

top 50 microbial predictors for metabolic outcomes that took advantage of using microbial 129 

predictors. It can be seen that certain microbial predictors significantly stand out for each metabolic 130 

outcome and time frame combination.  131 

For a 18-month time frame (Figure 2A, Supplementary Table S2), the most important microbial 132 

predictors for 2h insulin include genus Methanobrevibacter and numerous genera from phylum 133 

Firmicutes such as [Ruminococcus] torques group, UC5-1-2E3, Subdoligranulum and 134 

Christensenellaceae R-7 group. Predictors for HbA1c are genus Ruminiclostridium 5, genus 135 

Paraprevotella, unclassified member of family Muribaculaceae and members of Clostridiales 136 

vadinBB60 group. Unclassified member of the family Muribaculaceae together with Papillibacter 137 

and Oscillospira are significant predictors for secretion index. 138 
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For the 48-month time frame (Figure 2B, Supplementary Table S3), top predictors for 2h insulin 139 

include uncultured Rhodospirillales and UC5-1-2E3. Distinguishable genera according to the 140 

average importance score are also Family XIII AD3011 group, Shuttleworthia and Odoribacter. 141 

Significant predictors for fasting insulin are uncultured Rhodospirillales, uncultured 142 

Prevotellaceae and genus Alistipes. For secretion index, genus Enterohabdus together with 143 

Asteroleplasma prove to be the most important predictors, with Family XIII AD3011 group slightly 144 

standing out. 145 

There is overlap in the most important microbial markers found for predicting different metabolic 146 

outcomes. In the 18-month follow-up period, unclassified Muribaculaceae is a significant 147 

predictor for secretion index and HbA1c. For 48-month follow-up period, Family XIII AD3011 148 

group is a predictor for secretion index and 2h insulin and uncultured Rhodospirillales is an 149 

important predictor for fasting insulin and 2h insulin.  Additional overlap can be seen among top 150 

10 microbial predictors according to average permutation importance score (Supplementary 151 

Tables S2 and S3).  152 

 153 

Interpreting the effect of microbial biomarkers on the predictions 154 

Together with finding the relevant biomarkers, understanding how they influence the predictions 155 

is necessary. This task is complicated for most of the machine learning algorithms, which is why 156 

they are considered "gray-box" or "black-box" methods. Recently, much attention has been put 157 

into explaining the predictions of such models. Here, we implemented accumulated local effect 158 

(ALE) plots that aim to describe the effect of a certain predictor on the metabolic outcome 159 

independently of the remaining predictors (11). Accumulated local effect plots for previously 160 

highlighted most significant microbial biomarkers are shown in Figure 3. Accumulated local 161 

effect plots for top 10 microbial predictors are shown in Supplementary Figures 1 and 2. In most 162 

cases, ALE plots show nonlinear associations between a microbial predictor and metabolic 163 

outcome of interest. Although large variability in the effect estimates between the different data-164 

splits can be seen, the shape of the effect stays relatively stable for all microbial predictors. 165 
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Considering the 18-month time frame (Figure 3A, Supplementary Figure 1), higher CLR-166 

transformed abundances of genera from the Lachnospiraceae family - [Ruminococcus] torques 167 

group and UC5-1-2E3 lead to higher predictions for 2h insulin. High CLR-transformed 168 

abundances of genera Subdoligranulum, Methanobrevibacter and Christensenellaceae R-7 group 169 

lower the predictions for 2h insulin. For HbA1c, higher CLR-transformed abundance of 170 

Ruminiclostridium 5 leads to higher predictions. On the contrary, high CLR-transformed 171 

abundances of bacteria from family Muribaculaceae, members of Clostridiales vadinBB60 group 172 

and Paraprevotella reduce the levels of HbA1c. For secretion index, the prediction might depend 173 

on the presence-absence of the unclassified genus from family Muribaculaceae, because the ALE 174 

plot stays relatively stable after an initial decrease from the minimum values of CLR-transformed 175 

abundances. High CLR-transformed abundances of Oscillospira and Papillibacter decrease the 176 

predictions for secretion index. 177 

Considering 48-month follow-up period (Figure 3A, Supplementary Figure 2), high CLR-178 

transformed abundances of genera Firmicutes Family XIII AD3011 group, Odoribacter and 179 

unclassified Rhodospirillales lead to lower predictions for 2h insulin. In contrast, extremely high 180 

CLR-transformed values of genus UC5-1-2E3 lead to higher predictions. Shuttleworthia seems to 181 

show presence-absence effect as the drop from the lowest CLR-transformed values lowers the 182 

predictions for 2h insulin. For fasting insulin, higher CLR-transformed abundances of unclassified 183 

Rhodospirillales and Alistipes lower the predictions. In contrast, high CLR-transformed 184 

abundances of unclassified genus from Prevotellaceae family leads to higher predictions for 185 

fasting insulin. Interestingly, extremely low values of Alistipes lead to higher predictions for 186 

fasting insulin compared to when Alistipes levels are within 2.5% and 97.5% quantiles. Similar 187 

effect for genus Asteroleplasma on secretion index can be seen as extremely high CLR-188 

transformed abundance of Asteroleplasma leads to drastically higher predictions. Genus 189 

Enterorhabdus might show presence-absence effects with presence of Enterorhabdus leading to 190 

decreased predictions. Lastly, high CLR-transformed abundance of genus Family XIII AD3011 191 

group leads to higher predictions. 192 
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Comparison of microbial predictors in different time-points 193 

Independently modelling the two scenarios with varying follow-up time allowed us to compare 194 

the most relevant predictors to see if the effect and choice of microbial biomarkers remains the 195 

same. Considering metabolic outcomes that the microbiome data helped to predict, only one 196 

microbial predictor for the same metabolic outcome was shared (Figure 3B). Genus UC5-1-2E3 197 

from the Lachnospiraceae family was found to be among the top predictors for 2h insulin in the 198 

18-month and 48-month time frame. Amongst the top 10 predictors for each target variable, 199 

Escherichia-Shigella was also shared for 2h insulin (Supplementary Figures 1 and 2). 200 

The shape of the effect for UC5-1-2E3 stays relatively stable, with extreme values for the genus 201 

showing higher predictions for both follow-up periods. This suggests that genus UC5-1-2E3 could 202 

be considered a robust biomarker for predicting 2h insulin. Nevertheless, all other genera from the 203 

top microbial predictors were specific for a certain time frame. 204 

Discussion 205 

We used machine learning to predict multiple metabolic outcomes (continuous glucose and insulin 206 

measures, HbA1c) over time periods of varying length using gut microbiome as a predictive 207 

measure. Furthermore, the modelling strategy carried out allowed us to understand the variability 208 

in performance estimates and biomarker selection. We described how high variability and 209 

personalization of the human gut microbiome leads to large variations in the performance 210 

estimates. We showed that microbial predictors can improve the prediction accuracy for 211 

continuous insulin measures and glycosylated hemoglobin, additionally highlighting differences 212 

in short and long-term cases. Finally, we identified microbial biomarkers that contribute to the 213 

improved performance and described their effect on the outcome.  214 

Most of the current studies describing the role of bacteria in diabetes have been case-control studies 215 

with diabetes being a binary trait defined by setting a cut-off to some continuous glucose measure 216 

(3, 4, 12). Type 2 diabetes however is a disease preceded by a long-lasting prediabetic state and 217 

the development of the disease is a continuous process (13). Detailed phenotyping is definitely a 218 

strength of this study as it allows us to study the first stages of disease progression. Our results 219 

suggest that bacteria provide means for predicting changes in insulin secretion and insulin response 220 
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to glucose intake. A causal effect of microbiome produced short chain fatty acids (SCFA) has been 221 

confirmed with respect to various insulin measures, primarily insulin secretion (14). 222 

Supplementary Figure 3 shows that 2h insulin levels first increase in subjects with prediabetes, 223 

defined by the WHO classification, as a compensatory mechanism to keep glucose levels in the 224 

normal range. 2h insulin values are thus amongst the first indicators for the development of 225 

diabetes. Therefore, our results provide valuable insight into the potential application of 226 

microbiome as a predictive measure for T2D and highlight the need for detailed phenotyping in 227 

order to fully understand the role of microbiome in this disease. 228 

Recently, Gou et al. (12) used a similar interpretable machine learning strategy and found bacteria 229 

that effectively differentiated type 2 diabetes cases from healthy controls in the Chinese 230 

population. Additionally, they built a microbiome risk score (MRS) and showed the causal role of 231 

identified bacteria on diabetes development after fecal microbiota transplantation to mice. The 232 

microbial predictors found do not show significant overlap with our findings. Only 233 

Alphaproteobacteria found by Gou et al. can be considered overlapping. We found one taxa from 234 

class Alphaproteobacteria – an uncultured genus from Rhodospirillales order to predict fasting 235 

insulin and 2h insulin in a 48-month time frame. We found a higher CLR-transformed abundance 236 

of unclassified Rhodospirillales genus decreasing type 2 diabetes risk, which is consistent with the 237 

findings of Gou et al. Multiple reasons might explain the observed inconsistencies. Importantly, 238 

our study was specifically designed to find prospective predictors for continuous measures. 239 

Another possible difference is the cohort structure. Our study included exclusively men, compared 240 

to 33.1% in Gou et al. The effect of sex on the gut microbiome is not clear, but cannot be ruled 241 

out (15, 16). Also, the metagenomic analyses of European women and Chinese subjects have 242 

shown differences which is why geographic  differences in microbiome is also a possibility (3, 4). 243 

Rhodospirillales, one of the strongest predictors in current study, was found to be predictive for 244 

fasting and 2h insulin in a 48-month follow-up.  Order Rhodospirillales consists of bacteria that 245 

are known to produce acetic acid (17), which has been shown to improve insulin sensitivity (18, 246 

19). Several other detected microbial predictors have been previously described elsewhere being 247 

associated with T2D or glucose regulation. Zhou et al. (20) showed that genus Odoribacter was 248 

negatively associated with steady-state plasma glucose which is consistent with our results for 249 

predicting 2h insulin. Krych et al. carried out a study on mice and identified Muribaculaceae 250 
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(previously classified as S24-7) to be protective against T2D  (21), which corresponds to the 251 

protective effect for HbA1c seen in our study. 252 

Previously inconsistent associations have also been reported. We found a higher CLR-transformed 253 

abundance of Alistipes to predict lower values for fasting insulin, which is not consistent with the 254 

results obtained by Wu et al. (22), who showed positive associations with type 2 diabetes. 255 

Subdoligranulum has been found to be enriched in type 2 diabetes cases (23), which is inconsistent 256 

with our results as higher CLR-transformed abundance predicts lower values for 2h insulin. 257 

Similarly to the work by Gou et al. (12), the main reasons behind these inconsistencies are likely 258 

study design and population structure. We are not aware of any population with similar follow-up 259 

period and where microbiome data is available and oral glucose tolerance test has been carried out 260 

at the baseline and at the follow-up. Therefore, we could not replicate our findings in other 261 

populations using similar study design.   262 

How machine learning techniques can best utilize microbiome data is still an open question (24). 263 

Therefore, the true potential of the gut microbiome for predicting T2D remains unknown. 264 

Additionally, taking the compositional nature of microbiome data into account is crucial for all 265 

types of analysis and machine learning applications (24). Previous studies have shown the 266 

advantage of using log-ratio transformations for overcoming the limitations of working with 267 

compositional data. For example, Quinn & Erb (25) and  Tolosana-Delgado et al. (26) showed 268 

how centered log-ratio (CLR) transformed data can outperform raw proportions. Moreover, 269 

Tolosana-Delgado et al. (26) showed how pairwise log-ratio transformation can greatly 270 

outperform CLR transformation when a random forest algorithm is used. Thus, novel methods and 271 

strategies for handling compositionality might substantially improve the prediction accuracy for 272 

continuous metabolic outcomes. 273 

The high variability in performance estimates shows the necessity for robust modelling strategies 274 

to achieve reliable and generalizable performance. Microbiome data are highly variable and need 275 

to be carefully analyzed. Our results show that robust model training approaches are needed for 276 

using machine learning on microbiome data. Conventionally used 10-fold cross-validation might 277 

not be sufficient to obtain generalizable models when sample sizes stay relatively small compared 278 

to the number of microbial features. 279 
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Conclusions 280 

In summary, our findings provide a clear indication that the microbiome can be used to predict 281 

multiple metabolic outcomes. The detailed clinical characterization and longitudinal study design 282 

of the METSIM cohort make it particularly useful for understanding host-microbiome 283 

relationships. We have identified a number of novel microbial biomarkers which could predict 284 

metabolic traits associated with pre-diabetic state. Our data provide a significant resource for 285 

further studies to determine the causal relationship of the identified biomarkers to the progression 286 

of T2D. Therefore, the prospect of using microbiome in personalized medicine is promising.  287 

Methods 288 

Study population and characterization 289 

METSIM (Metabolic Syndrome in Men) is a randomly selected cohort of men from Eastern 290 

Finland aged 45-73 years who have been carefully phenotyped for different metabolic traits such 291 

as T2D, hypertension and obesity. We investigated a subset of the METSIM cohort that took part 292 

of the METSIM follow-up study and from whom stool samples were collected (N = 608). The data 293 

resource consists of samples taken from three time points - at baseline (baseline of METSIM  5-294 

year follow-up study), at 18-month and at 48-month follow-up. At each time point the subjects 295 

went through a 1-day outpatient visit, during which they provided blood samples after an overnight 296 

fast and various parameters such as height, weight and blood pressure were measured and oral 297 

glucose tolerance test (OGTT) was performed. Additionally, at the baseline visit the subjects were 298 

interviewed about their history of diseases and drug usage. Full study protocol and data resources 299 

are described in Laakso et al. 2017 (27).  All subjects have given written informed consent and the 300 

study was approved by the Ethics Committee of the University of Kuopio and was in accordance 301 

with the Helsinki Declaration. 302 

In contrast to case-control studies, continuous "metabolic outcomes'' (MO) were used as target 303 

variables in the modelling framework. The advantage of using continuous metabolic outcomes is 304 

that the phenotype is more distinct and there are no borderline cases with similar abilities of 305 

handling glucose as there likely are in the case-control setting (6). In total, two glucose measures, 306 

two insulin measures, glycosylated hemoglobin and three calculated glucose regulation indexes 307 
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were considered (Figure 1). Glycosylated hemoglobin (HbA1c), fasting insulin, 2h insulin, fasting 308 

glucose and 2h glucose were measured according to the study protocol (27). Matsuda insulin 309 

sensitivity index was calculated according to (28). Insulin secretion index was calculated as 310 

Secretion index = 𝐴𝑈𝐶𝐼𝑛𝑠𝑢𝑙𝑖𝑛(0−30min)/𝐴𝑈𝐶𝐺𝑙𝑢𝑐𝑜𝑠𝑒(0−30min), where area under curve (AUC) 311 

was calculated using the trapezoidal formula. Disposition index was calculated as 312 

Disposition index =  Secretion index ∗  Matsuda.  Matsuda insulin sensitivity index and insulin 313 

secretion index have been previously shown to be best estimates for insulin sensitivity and insulin 314 

secretion in the METSIM cohort (29). Summary statistics for metabolic outcomes and additional 315 

covariates considered as predictors in the machine learning models are shown in Supplementary 316 

Table 1. 317 

Microbiome data collection, sequencing and data processing 318 

Stool samples were collected at baseline visit during the evaluation at University of Kuopio 319 

Hospital and immediately stored at - 80ºC.  Microbial DNA was extracted using the PowerSoil 320 

DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA) following the manufacturer's 321 

instructions. Fecal microbiota composition was profiled by amplifying the V4 region of the 16S 322 

rRNA gene with 515F and 806R primers as previously described (30). PCR products were 323 

quantified with Quant-iTTM PicoGreen® dsDNA Assay Kit (Thermo Fisher). Samples were 324 

combined in equal amounts (~250 ng per sample) into pools and purified with the UltraClean 325 

PCR® Clean-Up Kit (MO BIO).  Sequencing was performed on an Illumina HiSeq 3000 326 

Instrument. 327 

Raw demultiplexed data were imported into open-source software QIIME2 (version 2019.7) using 328 

the q2-tools-import script with CasavaOneEightSingleLanePerSampleDirFmt input format (31). 329 

DADA2 software was used for denoising (32). DADA2 uses a quality-aware model of Illumina 330 

amplicon errors to attain an abundance distribution of sequence variance, which has a difference 331 

of a single nucleotide. q2-dada2-denoise-single script was used to truncate the reads at position 332 

123, trimming was not applied. Chimera removal was done with the “consensus” filter in which 333 

chimeras are detected in each sample individually and sequences established as chimeric in a 334 

certain fraction of samples are removed. After denoising step, amplicon sequence variants (ASVs), 335 

equivalent to OTUs, were aligned using MAFFT (33) and phylogeny was constructed with the 336 
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FASTTREE (34). Taxonomy assignment was done using the q2-feature-classifier with the pre-337 

trained naïve Bayes classifier based on reference reads from SILVA 16S V3-V4 v132_99 database 338 

with similarity threshold of 99%. Seven samples didn’t pass quality control during the sequencing 339 

process and were removed from further analysis.  340 

The average number of reads per sample was 1.351.289, samples with less than 100.000 reads 341 

were excluded from further analysis. Rest of the samples were aggregated to genus level which 342 

resulted in 553 genera. Further filtering procedure was carried out, to include only the most 343 

common genera for the prediction task. Genera that appeared in at least 50% of the samples were 344 

included in the final modelling task, 172 in total. 345 

Due to the nature of sequencing, read counts are uninformative and must be considered relative to 346 

the total sum of reads for a given sample (35). In order to compensate for the compositional nature 347 

of the data, centered log-ratio (CLR) transformation was used as first proposed by Aitchison (36): 348 

𝐶𝐿𝑅(𝒙⃗⃗ ) = ln [
𝑥1

𝑔(𝒙⃗⃗ )
,

𝑥2

𝑔(𝒙⃗⃗ )
, … ,

𝑥𝐷

𝑔(𝒙⃗⃗ )
], where 𝑔(𝒙⃗⃗ ) =  √𝑥1 ∗ 𝑥2 ∗ … ∗ 𝑥𝐷

𝐷  349 

Zero replacement was carried out using R package zCompositions (37). 350 

Random forest implementation and statistical analysis  351 

For modelling, we used samples with microbiome data available at the study baseline that did not 352 

include missing values on any of the metabolic parameters considered. In addition, subjects who 353 

had reimbursement for drug treatment of diabetes were excluded. This resulted in 529 participants 354 

for the 18-month follow-up visit and 482 participants for 48-month follow-up visit. 355 

All random forest models were implemented in R using caret package and fast implementation of 356 

the random forest algorithm named ranger (38). Datasets were repeatedly split in 75-25 ratio to 357 

training/test datasets respectively using different seed each time. Models were tuned on training 358 

data using 10-fold cross-validation and random hyperparameter search with 100 hyperparameter 359 

combinations. Performance of the models was evaluated on the test dataset using root-mean-square 360 

error (RMSE). In case of random forest models, out-of-bag (OOB) error is also widely used to 361 

evaluate model performance. Although using out-of-bag error for evaluation can increase the 362 

sample size for model training, it has been shown that in some cases the OOB-error is largely 363 
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overestimated and unreliable (39). Thus, for robust estimates, test data were used for evaluation. 364 

Permutation feature importance was used for selecting the microbial biomarkers. For explaining 365 

the obtained random forest models, accumulated local effects (ALE) plots were implemented using 366 

R package DALEX (40). ALE plots aim to describe the effect of a certain predictor on the metabolic 367 

outcome independently of the remaining predictors (11). 368 

A one-tailed binomial test was carried out to test whether the probability of the model including 369 

microbial predictors outperforming the model excluding microbial predictors is greater than 0.5. 370 

Bonferroni correction was applied to assess significance (8 metabolic outcomes and two 371 

timepoints; P<0.05/16).  372 
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Tables 553 

Table 1. Model stability and generalizability.  554 

 18-month time frame 48-month time frame 

 

Trait 

Mean  (sd) 

difference in 

RMSE 

# models 

including 

microbiome 

performing better 

Mean (sd) 

difference in RMSE 

# models including 

microbiome 

performing better 

Fasting glucose 0.001 (0.0594) 99 (49.5%) -0.006 (0.0641) 112 (56%) 

2h glucose -0.02 (0.217) 118 (59%) 0.07 (0.332) 73 (36.5%) 

Fasting insulin 0.20 (1.04) 73 (36.5%) -0.29 (1.080) 137 (68.5%) * 

2h  insulin -3.23 (10.840) 141 (70.5%) * -1.42 (12.304) 122 (61%) * 

HbA1c -0.005 (0.0305)  129 (64.5%) * -0.002 (0.0360) 111 (55.5%) 

Secretion index -0.36 (4.949) 122 (61%) * -0.77 (3.254) 138 (69%) * 

Matsuda index 0.07 (0.573) 90 (45%) -0.01 (0.569) 103 (51.5%) 

Disposition index 4.42 (26.590) 77 (38.5%) 2.01 (16.251) 86 (43%) 

Mean differences in root-mean-square error (RMSE) between models including microbial predictors and models 555 

excluding microbial predictors. Negative value indicates a model including microbial predictors outperforming the 556 

model excluding microbial predictors. * shows statistically significant results according to the binomial test after 557 

Bonferroni correction.   558 
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Figures 559 

 560 

Figure 1. Study design and modelling procedure.  561 
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 562 

Figure 2. Average feature importance scores for top 50 microbial markers. Highlighted taxa are 563 

considered the most significant biomarkers. (A) Predictors for 18-month follow-up.  (B) Predictors 564 

for 48-month follow-up.   565 
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 566 

Figure 3. Accumulated local effect (ALE) plots. (A) ALE plots for the found microbial 567 

biomarkers. (B) ALE plots for genus UC5-1-2E3 found to predict 2h insulin in an 18-month and 568 

48-month follow-up. Blue lines represent effects for each run out of 200, orange lines represent 569 

aggregated effects. Aggregated effect is displayed between the 2.5% and 97.5% quantiles of CLR-570 

transformed abundance for the corresponding microbial marker.  571 
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 572 

Supplemental Material 573 

 574 

Supplementary Table 1. Summary statistics for the metabolic outcomes and additional covariates 575 

included in the modelling (N = 601, seven samples were excluded in the sequencing quality control 576 

phase).  577 

 Baseline 

Mean (sd) 

18-months from baseline 

Mean (sd) 

48-months from baseline 

Mean (sd) 

Age 62.0 (5.38) 63.6 (5.40) 66.1 (5.36) 

BMI 27.8 (3.56) 27.6 (3.63) 27.7 (3.79) 

HbA1c (%) 5.6 (0.29) 5.6 (0.27) 5.7 (0.28) 

Fasting glucose (mmol/l) 5.8 (0.49) 5.8 (0.53) 6.0 (0.52) 

2h glucose (mmol/l) 6.0 (1.99) 5.9 (1.63) 6.4 (1.92) 

Fasting insulin (mU/l) 9.5 (6.19) 9.9 (7.12) 10.1 (6.29) 

2h insulin (mU/l) 47.8 (47.06) 49.2 (45.29) 55.6 (52.58) 

Secretion index 34.0 (20.24) 35.6 (21.96) 35 (20.39) 

Matsuda index  4.8 (3.01) 4.7 (3.17) 4.4 (2.95) 

Disposition index 125.7 (57.28) 127.5 (67.15) 120.9 (63.08) 

History of elevated blood glucose 237 (39%)   

Diabetes in family 222 (37%)   

 578 

 579 

  580 
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Supplementary Table 2. Top 10 most important microbial markers for 18-month follow-up. 581 

Importance score is average permutation performance score for the variable over 200 runs.  582 

* represents taxa which were considered significant according to the average importance score.  583 

Trait Phylum Family Genus Average 

importance score 

 

 

 

 

 

 

 

2h insulin 

Euryarchaeota Methanobacteriaceae Methanobrevibacter 1,64* 

Firmicutes Lachnospiraceae [Ruminococcus] torques group 1,46* 

Firmicutes Lachnospiraceae UC5-1-2E3 1,38* 

Firmicutes Ruminococcaceae Subdoligranulum 1,33* 

Firmicutes Christensenellaceae Christensenellaceae R-7 group 1,24* 

Firmicutes Ruminococcaceae Ruminococcaceae UCG-005 1,15 

Firmicutes Lachnospiraceae Fusicatenibacter 1,12 

Firmicutes Erysipelotrichaceae Holdemania 1,11 

Firmicutes Peptostreptococcaceae Terrisporobacter 1,04 

Proteobacteria Enterobacteriaceae Escherichia-Shigella 1,03 

 

 

 

 

 

 

 

HbA1c 

Firmicutes Ruminococcaceae Ruminiclostridium 5 1,11* 

Firmicutes Clostridiales vadinBB60 group uncultured bacterium 1,07* 

Bacteroidetes Muribaculaceae metagenome 1,04* 

Bacteroidetes Prevotellaceae Paraprevotella 1,02* 

Firmicutes Clostridiales vadinBB60 group gut metagenome 0,99* 

Bacteroidetes Muribaculaceae uncultured bacterium 0,84 

Firmicutes Clostridiales vadinBB60 group Uncultured 

Thermoanaerobacterales bacterium 

0,82 

Tenericutes uncultured organism uncultured organism 0,81 

Firmicutes Clostridiales vadinBB60 group uncultured organism 0,78 

Firmicutes Erysipelotrichaceae Dielma 0,78 

 

 

 

 

 

Secretion 

index 

Bacteroidetes Muribaculaceae metagenome 0,95* 

Firmicutes Ruminococcaceae Papillibacter 0,79* 

Firmicutes Ruminococcaceae Oscillospira 0,76* 

Proteobacteria Burkholderiaceae Parasutterella 0,67 

Firmicutes Ruminococcaceae Butyricicoccus 0,67 

Bacteroidetes Prevotellaceae Alloprevotella 0,65 

Actinobacteria Eggerthellaceae uncultured 0,64 

Firmicutes Peptococcaceae Peptococcus 0,63 

Firmicutes Lachnospiraceae Agathobacter 0,63 

Firmicutes Lachnospiraceae Lachnospiraceae UCG-004 0,62 

 584 

  585 
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Supplementary Table 3. Top 10 most important microbial markers for 48-month follow-up. 586 

Importance score is average permutation performance score for the variable over 200 runs.  587 

* represents taxa which were considered significant according to the average importance score.  588 

Trait phylum family genus Average 

importance score 

 

 

 

 

2h insulin 

Proteobacteria Rhodospirillales (uncultured) gut metagenome 1,79* 

Firmicutes Lachnospiraceae UC5-1-2E3 1,73* 

Firmicutes Family XIII Family XIII AD3011 group 1,56* 

Firmicutes Lachnospiraceae Shuttleworthia 1,52* 

Bacteroidetes Marinifilaceae Odoribacter 1,50* 

Bacteroidetes Rikenellaceae Alistipes 1,46 

Firmicutes Lachnospiraceae CAG-56 1,44 

Firmicutes Ruminococcaceae CAG-352 1,44 

Proteobacteria Enterobacteriaceae Escherichia-Shigella 1,42 

Firmicutes Ruminococcaceae Phocea 1,40 

 

 

 

 

Fasting 

insulin 

Proteobacteria Rhodospirillales (uncultured) gut metagenome 0,74* 

Bacteroidetes Prevotellaceae uncultured 0,65* 

Bacteroidetes Rikenellaceae Alistipes 0,62* 

Bacteroidetes Prevotellaceae Prevotellaceae NK3B31 group 0,52 

Firmicutes Lachnospiraceae Shuttleworthia 0,52 

Firmicutes Lachnospiraceae GCA-900066575 0,51 

Proteobacteria Desulfovibrionaceae Desulfovibrio 0,51 

Firmicutes Christensenellaceae Christensenellaceae R-7 group 0,51 

Firmicutes Christensenellaceae uncultured 0,49 

Bacteroidetes Prevotellaceae Alloprevotella 0,49 

 

 

 

 

Secretion 

index 

Actinobacteria Eggerthellaceae Enterorhabdus 0,56* 

Firmicutes Erysipelotrichaceae Asteroleplasma 0,45* 

Firmicutes Family XIII Family XIII AD3011 group 0,42* 

Bacteroidetes Prevotellaceae Prevotellaceae NK3B31 group 0,40 

Firmicutes Family XIII Family XIII UCG-001 0,40 

Bacteroidetes Muribaculaceae uncultured organism 0,40 

Firmicutes Lachnospiraceae [Eubacterium] xylanophilum group 0,39 

Proteobacteria uncultured Azospirillum sp. 47_25 0,38 

Firmicutes Ruminococcaceae Hydrogenoanaerobacterium 0,37 

Firmicutes Ruminococcaceae Ruminococcaceae UCG-010 0,37 

 589 

  590 
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A 591 

 592 
B 593 

 594 
C 595 

 596 

Supplementary Figure 1. Accumulated local effect plots for the 18-month follow-up. Top 10 597 

microbial predictors according to the average permutation importance score are displayed. Blue 598 

lines represent variable importance for each run out of 200, orange lines represent aggregated 599 

effect. Aggregated effect is displayed between the 2.5% and 97.5% quantiles of CLR-transformed 600 

abundance for the corresponding microbial marker. 601 

602 
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B 605 

 606 

C 607 

 608 

Supplementary Figure 2. Accumulated local effect plots for the 48-month follow-up. Top 10 609 

microbial predictors according to the average permutation importance score are displayed. Blue 610 

lines represent variable importance for each run out of 200, orange lines represent aggregated 611 

effect. Aggregated effect is displayed between the 2.5% and 97.5% quantiles of CLR-transformed 612 

abundance for the corresponding microbial marker. 613 
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 614 

Supplementary Figure 3. Insulin and glucose trajectories for diabetes states during oral glucose 615 

tolerance test (OGTT).  616 

 617 

 618 

 619 
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