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Abstract

The incidence of type 2 diabetes (T2D) has been increasing globally and a growing body of
evidence links type 2 diabetes with altered microbiota composition. Type 2 diabetes is preceded
by a long pre-diabetic state characterized by changes in various metabolic parameters. We tested
whether the gut microbiome could have predictive potential for T2D development during the
healthy and pre-diabetic disease stages. We used prospective data of 608 well-phenotyped Finnish
men collected from the population-based Metabolic Syndrome In Men (METSIM) study to build
machine learning models for predicting continuous glucose and insulin measures in a shorter (1.5
year) and longer (4.5 year) period. Our results show that the inclusion of gut microbiome improves
prediction accuracy for modelling T2D associated parameters such as glycosylated hemoglobin
and insulin measures. We identified novel microbial biomarkers and described their effects on the
predictions using interpretable machine learning techniques, which revealed complex linear and
non-linear associations. Additionally, the modelling strategy carried out allowed us to compare the
stability of model performances and biomarker selection, also revealing differences in short-term
and long-term predictions. The identified microbiome biomarkers provide a predictive measure
for various metabolic traits related to T2D, thus providing an additional parameter for personal
risk assessment. Our work also highlights the need for robust modelling strategies and the value
of interpretable machine learning.

Importance

Recent studies have shown a clear link between gut microbiota and type 2 diabetes. However,
current results are based on cross-sectional studies that aim to determine the microbial dysbiosis
when the disease is already prevalent. In order to consider microbiome as a factor in disease risk
assessment, prospective studies are needed. Our study is the first study that assesses the gut
microbiome as a predictive measure for several type 2 diabetes associated parameters in a
longitudinal study setting. Our results revealed a number of novel microbial biomarkers that can
improve the prediction accuracy for continuous insulin measures and glycosylated hemoglobin

levels. These results make the prospect of using microbiome in personalized medicine promising.
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Background

The prevalence of type 2 diabetes (T2D) has more than doubled since 1980, resulting in a huge
burden on the health care system worldwide (1). In order to fight the epidemic of T2D and improve
public health, understanding of the first stages of this disease is necessary for preventive actions.
Recently, the bacterial communities residing in our intestines have become a topic of interest as a
potential way to prevent the development of glucose dysregulation. The microbiome has been
shown to modulate a variety of physiological functions, such as gut permeability, inflammation,
glucose metabolism and fatty acid oxidation, supporting an important role of the microbiome in
the pathophysiology of T2D (2).

Numerous studies have already reported changes in the gut microbiome in subjects with T2D or
prediabetes compared to healthy individuals (3-5). Although there is information that the
abundance of bacteria such as Roseburia and Bifidobacteria is altered in subjects with T2D (2),
compelling evidence that supports the use of gut microbiome as a predictive tool for T2D is
lacking, as a majority of the findings are based on cross-sectional studies. However, in order to

assess the microbiome as a prognostic tool for T2D, prospective studies are needed.

T2D is a heterogeneous disease with multiple pathophysiological pathways involved (6). Thus, in
order to fully understand the role of microbiome in the risk of T2D, a case-control design might
not be sufficient. As the progression of the disease is a continuous process, detailed data about
metabolic outcomes such as continuous glucose and insulin measurements could help to unravel

the disease mechanisms involving the microbiome.

Together with heterogeneity in the first stages T2D, the gut microbiome itself is known to be highly
personalized (7, 8). Variability in continuous metabolic outcomes and gut microbiome lead to
difficulties in reproducing the results obtained and raises the need for robust modelling strategies.
Machine learning methods have been shown to capture various complex association patterns from
different data types. Although machine learning has become popular in microbiome studies as
well, the ability of the algorithms to provide robust results remains unclear (9, 10).

We now report the application of a random forest algorithm on microbiome data to predict multiple

continuous metabolic outcomes that influence the development of T2D in a longitudinal study
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83  setting. We identify microbial biomarkers for the metabolic outcomes and describe their effects on
84  the predictions using interpretable machine learning techniques. In addition, we show that there
85  are significant differences in the identified biomarkers between long- and short follow-up periods.
86  We also show how the modelling procedure significantly influences the results.

s7  Results

88  Study design
89  We used prospective data of well phenotyped Finnish men collected from a population-based

90  Metabolic Syndrome In Men (METSIM) study. A comprehensive machine learning strategy was
91 implemented to identify microbial biomarkers and their effect on numerous metabolic traits.
92  Graphical overview of the study design and modelling procedure is shown in Figure 1. Random
93  forest models were trained to predict the metabolic outcomes of interest in the follow-up using
94  baseline microbiome (MB), metabolic outcomes (MO) and additional covariates (CoV) such as
95  body mass index and age as predictors. To evaluate the effect of microbiome, models including
96  microbial predictors were compared to models excluding microbial predictors. In order to assess
97  the temporal changes in biomarker selection and predictive performance, independent prospective
98 models were trained for the 18-month and 48-month follow-up period. To evaluate the model
99  generalizability and stability, model training was repeated 200 times with different train-test split
100 made each run. Permutation feature importance metrics were used to identify microbial
101  biomarkers. Finally, accumulated local effects methodology was used to plot the effect of the

102  microbial biomarkers for predicting the corresponding metabolic trait.

103  Model stability and generalizability

104 In the first step we tested whether we could improve the prediction of metabolic outcomes using
105 microbiome data as an additional predictor. Human gut microbiome is known to be highly variable
106  and personalized (7, 8). Thus, estimating the robustness of the predictive models is essential. The
107  problem with microbiome data based on our experience is that the performance of the model might
108  be highly dependent on the initial data split to training and test sets. The models were run 200
109 times with different initial splits to assess the impact of the data split. Table 1 summarizes the

110  obtained results.
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111  These results highlight the variability in performance estimates occurring due to the data split. Out
112  of 200 data splits, the number of models that took advantage of using microbial predictors varies
113 around 100 which implies that the data split plays an important role in the outcome. Our results
114  suggest that for the 18-month time frame, microbiome as a predictor can improve the prediction
115 accuracy for secretion index, glycosylated hemoglobin (HbAlc) and 2h insulin levels. For
116  secretion index, models including microbial predictors outperformed simpler models in 61% of
117  the cases, for 2h insulin in 70.5% of the cases and for HbAlc in 64.5% of the cases. For a 48-
118  month time frame the microbiome improves the prediction model for the secretion index, fasting
119 insulin and 2h insulin. For secretion index, models including microbial predictors outperformed
120  simpler models in 69% of the cases, for 2h insulin in 61% of the cases, and for fasting insulin in
121 68.5% of the cases.

122  Remarkably, the variation in differences in root-mean-square error (RMSE) between the model
123 including microbial predictors and model excluding microbial predictors over the 200 runs is large.
124  Due to the high variability, the level of improvement in prediction accuracy when microbiome

125 data are used remains unclear.

126  Novel predictive microbial biomarkers for metabolic outcomes

127  In order to find microbial markers that are predictive for the metabolic outcomes, average feature
128  importance scores over 200 runs were compared. Figure 2 shows the average importance score of
129  top 50 microbial predictors for metabolic outcomes that took advantage of using microbial
130 predictors. It can be seen that certain microbial predictors significantly stand out for each metabolic

131  outcome and time frame combination.

132  For a 18-month time frame (Figure 2A, Supplementary Table S2), the most important microbial
133  predictors for 2h insulin include genus Methanobrevibacter and numerous genera from phylum
134  Firmicutes such as [Ruminococcus] torques group, UC5-1-2E3, Subdoligranulum and
135 Christensenellaceae R-7 group. Predictors for HbAlc are genus Ruminiclostridium 5, genus
136  Paraprevotella, unclassified member of family Muribaculaceae and members of Clostridiales
137  vadinBB60 group. Unclassified member of the family Muribaculaceae together with Papillibacter

138 and Oscillospira are significant predictors for secretion index.
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139  For the 48-month time frame (Figure 2B, Supplementary Table S3), top predictors for 2h insulin
140 include uncultured Rhodospirillales and UC5-1-2E3. Distinguishable genera according to the
141  average importance score are also Family XI1l AD3011 group, Shuttleworthia and Odoribacter.
142  Significant predictors for fasting insulin are uncultured Rhodospirillales, uncultured
143  Prevotellaceae and genus Alistipes. For secretion index, genus Enterohabdus together with
144  Asteroleplasma prove to be the most important predictors, with Family X111 AD3011 group slightly
145  standing out.

146  There is overlap in the most important microbial markers found for predicting different metabolic
147  outcomes. In the 18-month follow-up period, unclassified Muribaculaceae is a significant
148  predictor for secretion index and HbAlc. For 48-month follow-up period, Family XII1 AD3011
149 group is a predictor for secretion index and 2h insulin and uncultured Rhodospirillales is an
150  important predictor for fasting insulin and 2h insulin. Additional overlap can be seen among top
151 10 microbial predictors according to average permutation importance score (Supplementary
152  Tables S2 and S3).

153

154  Interpreting the effect of microbial biomarkers on the predictions

155  Together with finding the relevant biomarkers, understanding how they influence the predictions
156 is necessary. This task is complicated for most of the machine learning algorithms, which is why
157  they are considered "gray-box" or "black-box" methods. Recently, much attention has been put
158 into explaining the predictions of such models. Here, we implemented accumulated local effect
159 (ALE) plots that aim to describe the effect of a certain predictor on the metabolic outcome
160 independently of the remaining predictors (11). Accumulated local effect plots for previously
161  highlighted most significant microbial biomarkers are shown in Figure 3. Accumulated local
162  effect plots for top 10 microbial predictors are shown in Supplementary Figures 1 and 2. In most
163  cases, ALE plots show nonlinear associations between a microbial predictor and metabolic
164  outcome of interest. Although large variability in the effect estimates between the different data-
165  splits can be seen, the shape of the effect stays relatively stable for all microbial predictors.
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166  Considering the 18-month time frame (Figure 3A, Supplementary Figure 1), higher CLR-
167  transformed abundances of genera from the Lachnospiraceae family - [Ruminococcus] torques
168 group and UC5-1-2E3 lead to higher predictions for 2h insulin. High CLR-transformed
169  abundances of genera Subdoligranulum, Methanobrevibacter and Christensenellaceae R-7 group
170  lower the predictions for 2h insulin. For HbAlc, higher CLR-transformed abundance of
171  Ruminiclostridium 5 leads to higher predictions. On the contrary, high CLR-transformed
172  abundances of bacteria from family Muribaculaceae, members of Clostridiales vadinBB60 group
173 and Paraprevotella reduce the levels of HbAlc. For secretion index, the prediction might depend
174  on the presence-absence of the unclassified genus from family Muribaculaceae, because the ALE
175  plot stays relatively stable after an initial decrease from the minimum values of CLR-transformed
176  abundances. High CLR-transformed abundances of Oscillospira and Papillibacter decrease the
177  predictions for secretion index.

178  Considering 48-month follow-up period (Figure 3A, Supplementary Figure 2), high CLR-
179 transformed abundances of genera Firmicutes Family XIII AD3011 group, Odoribacter and
180 unclassified Rhodospirillales lead to lower predictions for 2h insulin. In contrast, extremely high
181  CLR-transformed values of genus UC5-1-2E3 lead to higher predictions. Shuttleworthia seems to
182  show presence-absence effect as the drop from the lowest CLR-transformed values lowers the
183  predictions for 2h insulin. For fasting insulin, higher CLR-transformed abundances of unclassified
184  Rhodospirillales and Alistipes lower the predictions. In contrast, high CLR-transformed
185 abundances of unclassified genus from Prevotellaceae family leads to higher predictions for
186  fasting insulin. Interestingly, extremely low values of Alistipes lead to higher predictions for
187  fasting insulin compared to when Alistipes levels are within 2.5% and 97.5% quantiles. Similar
188  effect for genus Asteroleplasma on secretion index can be seen as extremely high CLR-
189 transformed abundance of Asteroleplasma leads to drastically higher predictions. Genus
190 Enterorhabdus might show presence-absence effects with presence of Enterorhabdus leading to
191  decreased predictions. Lastly, high CLR-transformed abundance of genus Family XI1I AD3011
192  group leads to higher predictions.
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193 Comparison of microbial predictors in different time-points

194  Independently modelling the two scenarios with varying follow-up time allowed us to compare
195 the most relevant predictors to see if the effect and choice of microbial biomarkers remains the
196  same. Considering metabolic outcomes that the microbiome data helped to predict, only one
197  microbial predictor for the same metabolic outcome was shared (Figure 3B). Genus UC5-1-2E3
198  from the Lachnospiraceae family was found to be among the top predictors for 2h insulin in the
199  18-month and 48-month time frame. Amongst the top 10 predictors for each target variable,

200  Escherichia-Shigella was also shared for 2h insulin (Supplementary Figures 1 and 2).

201  The shape of the effect for UC5-1-2E3 stays relatively stable, with extreme values for the genus
202  showing higher predictions for both follow-up periods. This suggests that genus UC5-1-2E3 could
203  be considered a robust biomarker for predicting 2h insulin. Nevertheless, all other genera from the

204  top microbial predictors were specific for a certain time frame.

205 DIiscussion

206  We used machine learning to predict multiple metabolic outcomes (continuous glucose and insulin
207  measures, HbAlc) over time periods of varying length using gut microbiome as a predictive
208  measure. Furthermore, the modelling strategy carried out allowed us to understand the variability
209 in performance estimates and biomarker selection. We described how high variability and
210  personalization of the human gut microbiome leads to large variations in the performance
211  estimates. We showed that microbial predictors can improve the prediction accuracy for
212  continuous insulin measures and glycosylated hemoglobin, additionally highlighting differences
213  in short and long-term cases. Finally, we identified microbial biomarkers that contribute to the

214  improved performance and described their effect on the outcome.

215  Most of the current studies describing the role of bacteria in diabetes have been case-control studies
216  with diabetes being a binary trait defined by setting a cut-off to some continuous glucose measure
217 (3, 4, 12). Type 2 diabetes however is a disease preceded by a long-lasting prediabetic state and
218  the development of the disease is a continuous process (13). Detailed phenotyping is definitely a
219  strength of this study as it allows us to study the first stages of disease progression. Our results

220  suggest that bacteria provide means for predicting changes in insulin secretion and insulin response
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221  toglucose intake. A causal effect of microbiome produced short chain fatty acids (SCFA) has been
222  confirmed with respect to various insulin measures, primarily insulin secretion (14).
223  Supplementary Figure 3 shows that 2h insulin levels first increase in subjects with prediabetes,
224 defined by the WHO classification, as a compensatory mechanism to keep glucose levels in the
225 normal range. 2h insulin values are thus amongst the first indicators for the development of
226  diabetes. Therefore, our results provide valuable insight into the potential application of
227  microbiome as a predictive measure for T2D and highlight the need for detailed phenotyping in
228  order to fully understand the role of microbiome in this disease.

229  Recently, Gou et al. (12) used a similar interpretable machine learning strategy and found bacteria
230 that effectively differentiated type 2 diabetes cases from healthy controls in the Chinese
231 population. Additionally, they built a microbiome risk score (MRS) and showed the causal role of
232  identified bacteria on diabetes development after fecal microbiota transplantation to mice. The
233  microbial predictors found do not show significant overlap with our findings. Only
234  Alphaproteobacteria found by Gou et al. can be considered overlapping. We found one taxa from
235 class Alphaproteobacteria — an uncultured genus from Rhodospirillales order to predict fasting
236 insulin and 2h insulin in a 48-month time frame. We found a higher CLR-transformed abundance
237  of unclassified Rhodospirillales genus decreasing type 2 diabetes risk, which is consistent with the
238 findings of Gou et al. Multiple reasons might explain the observed inconsistencies. Importantly,
239  our study was specifically designed to find prospective predictors for continuous measures.
240  Another possible difference is the cohort structure. Our study included exclusively men, compared
241 to 33.1% in Gou et al. The effect of sex on the gut microbiome is not clear, but cannot be ruled
242  out (15, 16). Also, the metagenomic analyses of European women and Chinese subjects have

243  shown differences which is why geographic differences in microbiome is also a possibility (3, 4).

244  Rhodospirillales, one of the strongest predictors in current study, was found to be predictive for
245  fasting and 2h insulin in a 48-month follow-up. Order Rhodospirillales consists of bacteria that
246  are known to produce acetic acid (17), which has been shown to improve insulin sensitivity (18,
247  19). Several other detected microbial predictors have been previously described elsewhere being
248  associated with T2D or glucose regulation. Zhou et al. (20) showed that genus Odoribacter was
249  negatively associated with steady-state plasma glucose which is consistent with our results for

250  predicting 2h insulin. Krych et al. carried out a study on mice and identified Muribaculaceae
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251  (previously classified as S24-7) to be protective against T2D (21), which corresponds to the
252  protective effect for HbAlc seen in our study.

253  Previously inconsistent associations have also been reported. We found a higher CLR-transformed
254  abundance of Alistipes to predict lower values for fasting insulin, which is not consistent with the
255  results obtained by Wu et al. (22), who showed positive associations with type 2 diabetes.
256  Subdoligranulum has been found to be enriched in type 2 diabetes cases (23), which is inconsistent
257  with our results as higher CLR-transformed abundance predicts lower values for 2h insulin.
258  Similarly to the work by Gou et al. (12), the main reasons behind these inconsistencies are likely
259  study design and population structure. We are not aware of any population with similar follow-up
260  period and where microbiome data is available and oral glucose tolerance test has been carried out
261 at the baseline and at the follow-up. Therefore, we could not replicate our findings in other
262  populations using similar study design.

263  How machine learning techniques can best utilize microbiome data is still an open question (24).
264  Therefore, the true potential of the gut microbiome for predicting T2D remains unknown.
265  Additionally, taking the compositional nature of microbiome data into account is crucial for all
266  types of analysis and machine learning applications (24). Previous studies have shown the
267 advantage of using log-ratio transformations for overcoming the limitations of working with
268  compositional data. For example, Quinn & Erb (25) and Tolosana-Delgado et al. (26) showed
269  how centered log-ratio (CLR) transformed data can outperform raw proportions. Moreover,
270  Tolosana-Delgado et al. (26) showed how pairwise log-ratio transformation can greatly
271  outperform CLR transformation when a random forest algorithm is used. Thus, novel methods and
272  strategies for handling compositionality might substantially improve the prediction accuracy for

273  continuous metabolic outcomes.

274  The high variability in performance estimates shows the necessity for robust modelling strategies
275  to achieve reliable and generalizable performance. Microbiome data are highly variable and need
276  to be carefully analyzed. Our results show that robust model training approaches are needed for
277  using machine learning on microbiome data. Conventionally used 10-fold cross-validation might
278  not be sufficient to obtain generalizable models when sample sizes stay relatively small compared

279  to the number of microbial features.

10
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280 Conclusions

281  In summary, our findings provide a clear indication that the microbiome can be used to predict
282  multiple metabolic outcomes. The detailed clinical characterization and longitudinal study design
283 of the METSIM cohort make it particularly useful for understanding host-microbiome
284  relationships. We have identified a number of novel microbial biomarkers which could predict
285 metabolic traits associated with pre-diabetic state. Our data provide a significant resource for
286  further studies to determine the causal relationship of the identified biomarkers to the progression

287  of T2D. Therefore, the prospect of using microbiome in personalized medicine is promising.

288 Methods

289  Study population and characterization

290 METSIM (Metabolic Syndrome in Men) is a randomly selected cohort of men from Eastern
291  Finland aged 45-73 years who have been carefully phenotyped for different metabolic traits such
292  as T2D, hypertension and obesity. We investigated a subset of the METSIM cohort that took part
293  of the METSIM follow-up study and from whom stool samples were collected (N = 608). The data
294  resource consists of samples taken from three time points - at baseline (baseline of METSIM 5-
295  year follow-up study), at 18-month and at 48-month follow-up. At each time point the subjects
296  wentthrough a 1-day outpatient visit, during which they provided blood samples after an overnight
297  fast and various parameters such as height, weight and blood pressure were measured and oral
298  glucose tolerance test (OGTT) was performed. Additionally, at the baseline visit the subjects were
299 interviewed about their history of diseases and drug usage. Full study protocol and data resources
300 aredescribed in Laakso et al. 2017 (27). All subjects have given written informed consent and the
301  study was approved by the Ethics Committee of the University of Kuopio and was in accordance
302  with the Helsinki Declaration.

303 In contrast to case-control studies, continuous "metabolic outcomes” (MO) were used as target
304  variables in the modelling framework. The advantage of using continuous metabolic outcomes is
305 that the phenotype is more distinct and there are no borderline cases with similar abilities of
306 handling glucose as there likely are in the case-control setting (6). In total, two glucose measures,

307 two insulin measures, glycosylated hemoglobin and three calculated glucose regulation indexes

11
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308  were considered (Figure 1). Glycosylated hemoglobin (HbALc), fasting insulin, 2h insulin, fasting
309 glucose and 2h glucose were measured according to the study protocol (27). Matsuda insulin
310 sensitivity index was calculated according to (28). Insulin secretion index was calculated as
311  Secretion index = AUC nsyiin(0-30min)/ AU Cgrucose(o-30min), Where area under curve (AUC)
312 was calculated using the trapezoidal formula. Disposition index was calculated as
313 Disposition index = Secretion index * Matsuda. Matsuda insulin sensitivity index and insulin
314  secretion index have been previously shown to be best estimates for insulin sensitivity and insulin
315  secretion in the METSIM cohort (29). Summary statistics for metabolic outcomes and additional
316  covariates considered as predictors in the machine learning models are shown in Supplementary
317 Table 1.

318 Microbiome data collection, sequencing and data processing

319  Stool samples were collected at baseline visit during the evaluation at University of Kuopio
320 Hospital and immediately stored at - 80°C. Microbial DNA was extracted using the PowerSoil
321 DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA) following the manufacturer's
322  instructions. Fecal microbiota composition was profiled by amplifying the V4 region of the 16S
323  rRNA gene with 515F and 806R primers as previously described (30). PCR products were
324  quantified with Quant-iTTM PicoGreen® dsDNA Assay Kit (Thermo Fisher). Samples were
325 combined in equal amounts (~250 ng per sample) into pools and purified with the UltraClean
326 PCR® Clean-Up Kit (MO BIO). Sequencing was performed on an lllumina HiSeq 3000
327  Instrument.

328 Raw demultiplexed data were imported into open-source software QIIME2 (version 2019.7) using
329 the g2-tools-import script with CasavaOneEightSingleLanePerSampleDirFmt input format (31).
330 DADAZ2 software was used for denoising (32). DADAZ2 uses a quality-aware model of Illumina
331 amplicon errors to attain an abundance distribution of sequence variance, which has a difference
332  of asingle nucleotide. g2-dada2-denoise-single script was used to truncate the reads at position
333 123, trimming was not applied. Chimera removal was done with the “consensus” filter in which
334  chimeras are detected in each sample individually and sequences established as chimeric in a
335 certain fraction of samples are removed. After denoising step, amplicon sequence variants (ASVs),

336  equivalent to OTUs, were aligned using MAFFT (33) and phylogeny was constructed with the
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337 FASTTREE (34). Taxonomy assignment was done using the g2-feature-classifier with the pre-
338 trained naive Bayes classifier based on reference reads from SILVA 16S V3-V4 v132_99 database
339  with similarity threshold of 99%. Seven samples didn’t pass quality control during the sequencing
340  process and were removed from further analysis.

341  The average number of reads per sample was 1.351.289, samples with less than 100.000 reads
342  were excluded from further analysis. Rest of the samples were aggregated to genus level which
343  resulted in 553 genera. Further filtering procedure was carried out, to include only the most
344  common genera for the prediction task. Genera that appeared in at least 50% of the samples were
345 included in the final modelling task, 172 in total.

346  Due to the nature of sequencing, read counts are uninformative and must be considered relative to
347  the total sum of reads for a given sample (35). In order to compensate for the compositional nature
348  of the data, centered log-ratio (CLR) transformation was used as first proposed by Aitchison (36):

349 CLR(X) = ln[ﬁ,%, ...,%], where g(X) = R/x; * x5 * ... * xp

350  Zero replacement was carried out using R package zCompositions (37).

351 Random forest implementation and statistical analysis

352  For modelling, we used samples with microbiome data available at the study baseline that did not
353 include missing values on any of the metabolic parameters considered. In addition, subjects who
354  had reimbursement for drug treatment of diabetes were excluded. This resulted in 529 participants

355  for the 18-month follow-up visit and 482 participants for 48-month follow-up visit.

356  All random forest models were implemented in R using caret package and fast implementation of
357 the random forest algorithm named ranger (38). Datasets were repeatedly split in 75-25 ratio to
358 training/test datasets respectively using different seed each time. Models were tuned on training
359 data using 10-fold cross-validation and random hyperparameter search with 100 hyperparameter
360 combinations. Performance of the models was evaluated on the test dataset using root-mean-square
361 error (RMSE). In case of random forest models, out-of-bag (OOB) error is also widely used to
362 evaluate model performance. Although using out-of-bag error for evaluation can increase the

363  sample size for model training, it has been shown that in some cases the OOB-error is largely
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364  overestimated and unreliable (39). Thus, for robust estimates, test data were used for evaluation.
365 Permutation feature importance was used for selecting the microbial biomarkers. For explaining
366 the obtained random forest models, accumulated local effects (ALE) plots were implemented using
367 R package DALEX (40). ALE plots aim to describe the effect of a certain predictor on the metabolic
368 outcome independently of the remaining predictors (11).

369 A one-tailed binomial test was carried out to test whether the probability of the model including
370  microbial predictors outperforming the model excluding microbial predictors is greater than 0.5.
371 Bonferroni correction was applied to assess significance (8 metabolic outcomes and two
372  timepoints; P<0.05/16).
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553 1ables

554  Table 1. Model stability and generalizability.

18-month time frame 48-month time frame

Mean (sd) # models Mean (sd) # models including

Trait difference in including difference in RMSE microbiome
RMSE microbiome performing better
performing better

Fasting glucose 0.001 (0.0594) 99 (49.5%) -0.006 (0.0641) 112 (56%)
2h glucose -0.02 (0.217) 118 (59%) 0.07 (0.332) 73 (36.5%)
Fasting insulin 0.20 (1.04) 73 (36.5%) -0.29 (1.080) 137 (68.5%) *
2h insulin -3.23 (10.840) 141 (70.5%) * -1.42 (12.304) 122 (61%) *
HbAlc -0.005 (0.0305) 129 (64.5%) * -0.002 (0.0360) 111 (55.5%)
Secretion index -0.36 (4.949) 122 (61%) * -0.77 (3.254) 138 (69%) *
Matsuda index 0.07 (0.573) 90 (45%) -0.01 (0.569) 103 (51.5%)
Disposition index 4.42 (26.590) 77 (38.5%) 2.01 (16.251) 86 (43%)

555 Mean differences in root-mean-square error (RMSE) between models including microbial predictors and models
556 excluding microbial predictors. Negative value indicates a model including microbial predictors outperforming the
557 model excluding microbial predictors. * shows statistically significant results according to the binomial test after
558  Bonferroni correction.
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561  Figure 1. Study design and modelling procedure.
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Figure 2. Average feature importance scores for top 50 microbial markers. Highlighted taxa are

considered the most significant biomarkers. (A) Predictors for 18-month follow-up. (B) Predictors

for 48-month follow-up.
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Figure 3. Accumulated local effect (ALE) plots. (A) ALE plots for the found microbial
biomarkers. (B) ALE plots for genus UC5-1-2E3 found to predict 2h insulin in an 18-month and
48-month follow-up. Blue lines represent effects for each run out of 200, orange lines represent
aggregated effects. Aggregated effect is displayed between the 2.5% and 97.5% quantiles of CLR-

transformed abundance for the corresponding microbial marker.
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572
s73  Supplemental Material
574
575  Supplementary Table 1. Summary statistics for the metabolic outcomes and additional covariates
576  included in the modelling (N = 601, seven samples were excluded in the sequencing quality control
577  phase).
Baseline 18-months from baseline  48-months from baseline
Mean (sd) Mean (sd) Mean (sd)
Age 62.0 (5.38) 63.6 (5.40) 66.1 (5.36)
BMI 27.8 (3.56) 27.6 (3.63) 27.7 (3.79)
HbALc (%) 5.6 (0.29) 5.6 (0.27) 5.7 (0.28)
Fasting glucose (mmaol/l) 5.8 (0.49) 5.8 (0.53) 6.0 (0.52)
2h glucose (mmol/l) 6.0 (1.99) 5.9 (1.63) 6.4 (1.92)
Fasting insulin (mU/I) 9.5 (6.19) 9.9 (7.12) 10.1 (6.29)
2h insulin (mU/I) 47.8 (47.06) 49.2 (45.29) 55.6 (52.58)
Secretion index 34.0 (20.24) 35.6 (21.96) 35 (20.39)
Matsuda index 4.8 (3.01) 4.7 (3.17) 4.4 (2.95)
Disposition index 125.7 (57.28) 127.5 (67.15) 120.9 (63.08)
History of elevated blood glucose 237 (39%)
Diabetes in family 222 (37%)
578
579
580
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Supplementary Table 2. Top 10 most important microbial markers for 18-month follow-up.

Importance score is average permutation performance score for the variable over 200 runs.

* represents taxa which were considered significant according to the average importance score.

Trait

2h insulin

HbAlc

Secretion
index

Phylum

Euryarchaeota
Firmicutes
Firmicutes
Firmicutes
Firmicutes

Firmicutes

Firmicutes
Firmicutes

Firmicutes
Proteobacteria

Firmicutes
Firmicutes
Bacteroidetes
Bacteroidetes
Firmicutes
Bacteroidetes
Firmicutes

Tenericutes
Firmicutes
Firmicutes
Bacteroidetes
Firmicutes
Firmicutes
Proteobacteria
Firmicutes
Bacteroidetes
Actinobacteria
Firmicutes
Firmicutes
Firmicutes

Family

Methanobacteriaceae
Lachnospiraceae
Lachnospiraceae
Ruminococcaceae
Christensenellaceae

Ruminococcaceae

Lachnospiraceae
Erysipelotrichaceae

Peptostreptococcaceae
Enterobacteriaceae

Ruminococcaceae
Clostridiales vadinBB60 group
Muribaculaceae

Prevotellaceae

Clostridiales vadinBB60 group
Muribaculaceae

Clostridiales vadinBB60 group

uncultured organism
Clostridiales vadinBB60 group
Erysipelotrichaceae
Muribaculaceae
Ruminococcaceae
Ruminococcaceae
Burkholderiaceae
Ruminococcaceae
Prevotellaceae
Eggerthellaceae
Peptococcaceae
Lachnospiraceae
Lachnospiraceae

Genus

Methanobrevibacter
[Ruminococcus] torques group
UC5-1-2E3

Subdoligranulum
Christensenellaceae R-7 group

Ruminococcaceae UCG-005

Fusicatenibacter
Holdemania

Terrisporobacter
Escherichia-Shigella

Ruminiclostridium 5
uncultured bacterium
metagenome
Paraprevotella

gut metagenome
uncultured bacterium
Uncultured

Thermoanaerobacterales bacterium

uncultured organism
uncultured organism
Dielma
metagenome
Papillibacter
Oscillospira
Parasutterella
Butyricicoccus
Alloprevotella
uncultured
Peptococcus
Agathobacter
Lachnospiraceae UCG-004

Average
importance score
1,64*

1,46*

1,38*

1,33*

1,24*

1,15

1,12
1,11

1,04
1,03

1,11*
1,07*
1,04*
1,02*
0,99*
0,84

0,82

0,81
0,78
0,78
0,95*
0,79*
0,76*
0,67
0,67
0,65
0,64
0,63
0,63
0,62
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Supplementary Table 3. Top 10 most important microbial markers for 48-month follow-up.

Importance score is average permutation performance score for the variable over 200 runs.

* represents taxa which were considered significant according to the average importance score.

Trait

2h insulin

Fasting

insulin

Secretion

index

phylum

Proteobacteria
Firmicutes
Firmicutes
Firmicutes
Bacteroidetes
Bacteroidetes
Firmicutes
Firmicutes
Proteobacteria
Firmicutes
Proteobacteria
Bacteroidetes
Bacteroidetes
Bacteroidetes
Firmicutes
Firmicutes
Proteobacteria
Firmicutes
Firmicutes
Bacteroidetes
Actinobacteria
Firmicutes
Firmicutes
Bacteroidetes
Firmicutes
Bacteroidetes
Firmicutes
Proteobacteria
Firmicutes

Firmicutes

family

Rhodospirillales (uncultured)
Lachnospiraceae
Family X111
Lachnospiraceae
Marinifilaceae
Rikenellaceae
Lachnospiraceae
Ruminococcaceae
Enterobacteriaceae
Ruminococcaceae
Rhodospirillales (uncultured)
Prevotellaceae
Rikenellaceae
Prevotellaceae
Lachnospiraceae
Lachnospiraceae
Desulfovibrionaceae
Christensenellaceae
Christensenellaceae
Prevotellaceae
Eggerthellaceae
Erysipelotrichaceae
Family X111
Prevotellaceae
Family X111
Muribaculaceae
Lachnospiraceae
uncultured
Ruminococcaceae

Ruminococcaceae

genus

gut metagenome

UC5-1-2E3

Family XI11 AD3011 group
Shuttleworthia

Odoribacter

Alistipes

CAG-56

CAG-352
Escherichia-Shigella

Phocea

gut metagenome

uncultured

Alistipes

Prevotellaceae NK3B31 group
Shuttleworthia
GCA-900066575
Desulfovibrio
Christensenellaceae R-7 group
uncultured

Alloprevotella

Enterorhabdus
Asteroleplasma

Family XI11 AD3011 group
Prevotellaceae NK3B31 group
Family XI11 UCG-001
uncultured organism
[Eubacterium] xylanophilum group
Azospirillum sp. 47_25
Hydrogenoanaerobacterium

Ruminococcaceae UCG-010

Average
importance score
1,79*
1,73*
1,56*
1,52*
1,50*
1,46
1,44
1,44
1,42
1,40
0,74*
0,65*
0,62*
0,52
0,52
0,51
0,51
0,51
0,49
0,49
0,56*
0,45*
0,42*
0,40
0,40
0,40
0,39
0,38
0,37
0,37
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597  Supplementary Figure 1. Accumulated local effect plots for the 18-month follow-up. Top 10
598  microbial predictors according to the average permutation importance score are displayed. Blue
599 lines represent variable importance for each run out of 200, orange lines represent aggregated
600 effect. Aggregated effect is displayed between the 2.5% and 97.5% quantiles of CLR-transformed
601 abundance for the corresponding microbial marker.
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609  Supplementary Figure 2. Accumulated local effect plots for the 48-month follow-up. Top 10
610  microbial predictors according to the average permutation importance score are displayed. Blue
611 lines represent variable importance for each run out of 200, orange lines represent aggregated
612  effect. Aggregated effect is displayed between the 2.5% and 97.5% quantiles of CLR-transformed
613  abundance for the corresponding microbial marker.
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615 Supplementary Figure 3. Insulin and glucose trajectories for diabetes states during oral glucose

616 tolerance test (OGTT).
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