

25 **ABSTRACT**

26

27 The DREAM (DP, Retinoblastoma [Rb]-like, E2F, and MuvB) complex controls cellular
28 quiescence by repressing cell cycle and other genes, but its mechanism of action is
29 unclear. Here we demonstrate that two *C. elegans* THAP domain proteins, LIN-15B
30 and LIN-36, co-localize with DREAM and function by different mechanisms for
31 repression of distinct sets of targets. LIN-36 represses classical cell cycle targets by
32 promoting DREAM binding and gene body enrichment of H2A.Z, and we find that
33 DREAM subunit EFL-1/E2F is specific for LIN-36 targets. In contrast, LIN-15B
34 represses germline specific targets in the soma by facilitating H3K9me2 promoter
35 marking. We further find that LIN-36 and LIN-15B differently regulate DREAM
36 binding. In humans, THAP proteins have been implicated in cell cycle regulation by
37 poorly understood mechanisms. We propose that THAP domain proteins are key
38 mediators of Rb/DREAM function.

39

40 **Key words**

41 Transcriptional repression, Retinoblastoma, quiescence, THAP, DREAM, H2A.Z,
42 H3K9me2, *lin-36*, *lin-15B*, *lin-35*

43

44 **INTRODUCTION**

45 During animal development, cell proliferation is tightly controlled and differentiated
46 cells spend the majority of the time in a quiescent, non-dividing, state. The
47 regulation of quiescence is crucial, as uncontrolled proliferation can lead to tumour
48 formation, whilst premature senescence is associated with ageing. Despite its
49 importance, mechanisms of quiescence regulation remain poorly understood.

50

51 The Retinoblastoma family of pocket proteins (Rb, p130, p107) are key regulators of
52 the cell division cycle, regulating progression from G₁-S phase and maintaining the G₀
53 state via transcriptional repression of proliferation promoting genes (Dick and Rubin,
54 2013). The majority of cancers disable Rb protein function or alter its regulation (Liu
55 et al., 2013; Rashid et al., 2011; Sadasivam and DeCaprio, 2013). Loss of Rb also leads
56 to developmental defects (Du et al., 1996; Lee et al., 1992; Lu and Robert Horvitz,
57 1998). A mechanistic understanding of Rb proteins is essential for understanding
58 their roles in normal development and in cancerous transformations.

59

60 Of the Rb family of proteins p130 is the most highly expressed during stable cell
61 cycle arrest, such as quiescence and senescence, through which it represses
62 proliferation-promoting genes as part of a repressive complex called DREAM (Lewis
63 et al., 2004; Litovchick et al., 2007) Litovchick et al., 2007, 2011; Schmit et al., 2007).
64 In different organisms, disruption of DREAM leads to developmental defects, an
65 increase in genomic instability, tumorigenesis and lethality (Hauser et al., 2012;
66 Malumbres and Barbacid, 2009; Reichert et al., 2010; Schade et al., 2019). The
67 mechanisms by which DREAM functions in these different processes is unclear.

68

69 The DREAM complex is highly conserved in subunit composition and function in
70 animals (Sadasivam and DeCaprio, 2013). Mammalian DREAM is composed of an Rb-
71 like protein p130 (or p107 in the absence of p130), an E2F (E2F4/E2F5), a
72 dimerization partner (DP) protein, and MuvB proteins (LIN9, LIN54, LIN52, LIN37,
73 RBBP4) (Litovchick et al., 2007; Schmit et al., 2007). As in mammals, *C. elegans*
74 DREAM (LIN-35/Rb, DPL-1/DP, EFL-1/E2F, LIN-9, LIN-37, LIN-53, LIN-54 and LIN-52)
75 represses cell cycle specific genes and others, including germline genes in somatic

76 tissues (Goetsch et al., 2017; Korenjak et al., 2004; Latorre et al., 2015; Rechtsteiner
77 et al., 2019). Since DREAM itself contains no known enzymatic activity, it is thought
78 to repress targets through effector proteins. Indeed, such a role has been proposed
79 for the Sin3B-HDAC complex in mammalian cells (Bainor et al., 2018; Rayman et al.,
80 2002). In addition, we previously showed that repression of a subset of *C. elegans*
81 DREAM targets involves deposition of HTZ-1/H2A.Z on their gene bodies (Latorre et
82 al., 2015). To further mechanistic understanding, we undertook an RNAi screen for
83 additional factors needed for repression of a DREAM target. Here we show that two
84 THAP domain proteins function with DREAM by different mechanisms to repress
85 distinct sets of targets.

86

87 RESULTS

88 An RNAi screen identifies novel regulators of Rb/DREAM targets

89 To identify proteins involved in DREAM transcriptional repression, we constructed a
90 DREAM regulated reporter gene by fusing the promoter of the target *sep-1* to a
91 histone-eGFP coding region, and then carried out an RNAi screen for genes needed
92 for reporter repression (Figure 1A). The screen was carried out in quiescent starved
93 L1 larvae, which contain 550 non-dividing somatic cells and 2 germ cells. In wildtype
94 starved L1s the *P-sep-1::his-58::eGFP* transgene is expressed in the germline and
95 largely repressed in the soma (Figure 1B). In *lin-35/Rb* mutants, reporter expression
96 is increased in the soma compared to the wildtype (Figure 1B). The RNAi screen
97 targeted 1104 genes encoding nuclear proteins to identify genes that are required to
98 prevent somatic expression of the *P-sep-1::his-58::eGFP* reporter (see Methods).
99 Following RNAi knockdown, eGFP expression was measured using a worm sorter,
100 which identified 36 genes for which knockdown caused reporter de-repression
101 (Table S1), including seven out of eight DREAM components (*lin-35/Rb*, *efl-1*, *dpl-1*,
102 *lin-54*, *lin-9*, *lin-37* and *lin-53*), validating the screen. Others include components of
103 the MCM complex, a number of RNA binding proteins, proteins required for
104 kinetochore function and *lin-36*, which encodes a THAP domain containing protein.

105

106 *LIN-36* was of particular interest, as its loss has been shown to cause cell cycle
107 defects similar to those of DREAM mutants (Boxem and Van den Heuvel, 2002), but

108 it has not been well characterized. LIN-36 contains a THAP domain, which is an
109 atypical zinc finger DNA binding domain derived from a transposase (Clouaire et al.,
110 2005; Roussigne et al., 2003). *C. elegans* has seventeen THAP or THAP-like domain-
111 containing proteins, of which seven have been shown to genetically interact with *lin-*
112 *35/Rb* (Table S1)(Boxem and Van den Heuvel, 2002; Ceron et al., 2007; Chesney et
113 al., 2006; Ouellet and Roy, 2007; Poulin et al., 2005; Reddy and Villeneuve, 2004;
114 Saito et al., 2004), suggesting a broad relationship between THAP domain proteins
115 and LIN-35/Rb. Humans have 12 THAP domain proteins, THAPO to THAP11, which
116 have been implicated in diverse cellular processes, including the regulation of cell
117 cycle genes (Cayrol et al., 2007; Ceron et al., 2007). Disruption of THAP proteins has
118 also been linked to various diseases, including cancers (Balakrishnan et al., 2009;
119 Gervais et al., 2013; Richter et al., 2017). We used RNAi to test whether other THAP
120 domain genes are required for repression of the *P-scp-1::his-58::eGFP* reporter and
121 found that LIN-15B is also needed (Table S1). Previous work showed that LIN-15B
122 and LIN-35 share some transcriptional targets (Rechtsteiner et al., 2019), and LIN-
123 15B has been implicated in negative regulation of the G₁/S transition of the cell cycle
124 (Boxem and Van den Heuvel, 2002). Here we investigate the roles of LIN-36 and LIN-
125 15B in the repression of DREAM targets.

126

127 **LIN-36 and LIN-15B co-localize with LIN-35**

128 To explore the relationship between LIN-35, LIN-36 and LIN-15B, we first compared
129 their genome-wide binding patterns using ChIP-seq in wildtype starved L1 animals
130 using antibodies to LIN-35 and LIN-15B and detecting LIN-36 by an endogenous GFP-
131 tag (see Methods). We found that LIN-36 and LIN-15B both show a high degree of
132 overlap with LIN-35, with 95% of LIN-36 and 72% of LIN-15B peaks overlapping a LIN-
133 35 peak (Figures 1C, D, S1A, and Table S2). For each factor, most (59-69%) peaks
134 overlap a promoter or enhancer with much of the remainder localising to repetitive
135 elements (Figure S1B). Many of the repeat regions are marked by H3K9me2,
136 supporting a possible connection between H3K9me2 and DREAM (Figure S1C;
137 Rechtsteiner et al., 2019).

138

139 **LIN-36 and LIN-15B repress discrete sets of LIN-35 targets**

140 We next compared the effects of loss of LIN-35, LIN-36 and LIN-15B on gene
141 expression (Table S3). We used available null alleles *lin-35(n745)* and *lin-15B(n744)*
142 and generated full deletion allele *lin-36(we36)* using CRISPR/Cas9 gene editing (see
143 Methods). We also profiled the partial loss-of-function allele *lin-36(n766)*. For all
144 mutants, we observed that the primary effect was loss of repression (Table S3), and
145 hence focused our work on direct repressed targets, which are defined as genes
146 upregulated in *lin-35*, *lin-36*, or *lin-15B* mutants and bound by the corresponding
147 factor (see Methods).

148

149 We observed that repressed targets of LIN-36 or LIN-15B each significantly overlap
150 LIN-35/Rb targets (>21-fold enrichment, hypergeometric test $P < 10^{-76}$), but
151 strikingly, genes regulated by LIN-36 and LIN-15B are mostly distinct (Figure 1E, F).
152 Here, we focus on genes directly regulated by LIN-35 and LIN-36 (LIN-36-shared
153 targets; n=171) or regulated by LIN-35 and LIN-15B (LIN-15B-shared targets; n=51)
154 (Table S3). Using gene ontology (GO) analyses, we found that LIN-36-shared targets
155 are highly enriched for cell cycle and cell division terms (Table S3). No enriched GO
156 terms were found for LIN-15B-shared targets (Table S3), however we observed that
157 they have high germline expression specificity (Figure S2A, B; Table S3). LIN-36-
158 shared targets and LIN-15B-shared targets also dramatically differ in the binding
159 profiles of LIN-35, LIN-36 and LIN-15B, with higher signal for all three factors at LIN-
160 36-shared targets compared to LIN-15B-shared targets (Figure S2C, D). Altogether,
161 these observations suggest that LIN-15B-shared and LIN-36-shared genes represent
162 two distinct classes of DREAM targets with potentially different regulation and
163 functional roles.

164

165 **LIN-36 maintains gene body HTZ-1**

166 We previously showed that transcriptional repression of a subset of DREAM target
167 genes involves LIN-35-dependent enrichment of the histone variant H2A.Z/HTZ-1
168 over their gene bodies (gbHTZ-1) (Latorre et al., 2015). To assess whether LIN-36
169 and/or LIN-15B act with LIN-35 in facilitating gbHTZ-1, we first asked whether gene
170 body enrichment of HTZ-1 was associated with either set of shared targets. Indeed,

171 we observed that LIN-36-shared targets were more enriched for high gbHTZ-1 than
172 LIN-15B-shared targets (Figures 2A, S3A; Table S4).

173

174 Evaluating gbHTZ-1 levels on targets in wildtype and mutant starved L1s, we found
175 that the majority of LIN-36-shared targets require both LIN-35 and LIN-36 for high
176 gbHTZ-1 levels, but loss of LIN-15B had no obvious effect at these loci. (Figures 2B-C,
177 S3B; Table S4). In contrast, although some LIN-15B shared targets required LIN-35
178 and LIN-15B for gbHTZ-1, these were in the minority (Figures 2B, D). Overall, around
179 half (144/293) of all DREAM targets characterised by high gbHTZ-1 correspond to
180 LIN-36-shared targets, and both LIN-36 and LIN-35 function facilitate the recruitment
181 or maintenance of HTZ-1 over these targets.

182

183 **LIN-15B promotes H3K9me2 marking for repression of its targets**

184 In addition to differences in gbHTZ-1, we observed a substantial difference in the
185 HTZ-1 profiles over the promoters of different sets of DREAM targets. While LIN-36-
186 shared targets have a bimodal distribution of HTZ-1 flanking the associated LIN-35
187 and LIN-36 peaks in wild-type animals, HTZ-1 was instead centrally enriched at LIN-
188 15B-shared target peaks (Figure S3C). The HTZ-1 profiles suggest that promoters of
189 LIN-36-shared and LIN-15B-shared targets have different chromatin states. Indeed,
190 whereas LIN-36-shared target peaks showed high DNA accessibility, peaks associated
191 with promoters of LIN-15B-shared targets had low DNA accessibility, indicative of a
192 generally closed chromatin conformation (Figure S3D).

193

194 We considered that repression of LIN-15B-shared targets could involve a chromatin-
195 based repression mechanism involving H3K9me2, as previous work showed that LIN-
196 15B facilitates H3K9me2 marking of some DREAM target promoters, although the
197 relevance of H3K9me2 at these genes was not determined (Rechtsteiner et al.,
198 2019). In addition, we observed that LIN-35, LIN-36, and LIN-15B associate with
199 H3K9me2 marked repeats (Figure S1C).

200

201 Investigating this connection, we found that H3K9me2 was strongly enriched at LIN-
202 15B-shared, but not LIN-36-shared target promoters (Figure 2F, Table S4). We

203 further found that H3K9me2 marking at LIN-15B-shared target promoters is
204 dependent on LIN-15B (Figure 2G). Notably, H3K9me2 was significantly reduced at
205 50% of LIN-15B-shared target promoters in *lin-15B* mutants, and to a lower extent in
206 *lin-35* mutants (Figure 2G), whereas little effect was seen in *lin-36* mutants or at LIN-
207 36-shared targets.

208

209 To test the functional relevance of H3K9me2 in target repression, we profiled gene
210 expression in mutants of *met-2*, which encodes the major H3K9me2 histone
211 methyltransferase (Bessler et al., 2010). We found that LIN-15B-shared targets had
212 higher expression in *met-2* mutants, with 43% being significantly upregulated,
213 whereas *met-2* loss had little effect on LIN-36-shared targets (Figure 2H, Table S3).
214 Mechanistically, these results implicate LIN-15B and DREAM in directing repression
215 of their shared targets via MET-2 dependent H3K9me2 promoter marking.

216

217 **EFL-1/E2F function is specific for LIN-36-shared targets**

218 We next investigated whether repression of LIN-36-shared and LIN-15B-shared
219 targets differed in their requirement for DREAM components. The DREAM complex
220 consists of DNA binding protein EFL-1/E2F and partner DPL-1/DP1, which are
221 proposed to be bridged to the MuvB sub-complex (LIN-9, LIN-37, LIN-53, LIN-54 and
222 LIN-52) by LIN-35/Rb (Goetsch et al., 2017). To evaluate requirements for different
223 components, we compared gene expression changes among mutants of *lin-35/Rb*,
224 *efl-1*, *dpl-1*, and MuvB sub-complex component *lin-37* (Table S3). We found that
225 changes in *dpl-1* and *lin-37* mutants were similar to those of *lin-35* mutants,
226 suggesting a common mechanism. Both LIN-36-shared and LIN-15B-shared targets
227 were derepressed in the two mutants, suggesting that DPL-1 and LIN-37 participate
228 in LIN-35 core roles (Figure S4). In stark contrast, *efl-1* mutants only derepressed LIN-
229 36-shared targets (Figure S4). The striking similarities between the *lin-36* and *efl-1*
230 transcriptomes suggest that EFL-1 functions as a transcriptional repressor specifically
231 at LIN-36-shared DREAM targets.

232

233 **E2F motif variants distinguish promoters of LIN-36-shared from LIN-15B-shared 234 targets**

235 To investigate the nature of the differential regulation of the LIN-36-shared versus
236 LIN-15B-shared targets, we searched for DNA sequence motifs that might distinguish
237 their respective promoters (see Methods). We found no motifs specific to either set,
238 however as expected a motif similar to the annotated E2F binding sequence was
239 obtained from searches of each set of direct target promoters (Kirienko and Fay,
240 2007; Latorre et al., 2015) (Figure S5A). The two E2F motifs showed differences in
241 their consensus sequences, which we named E2F-a (found in LIN-36-shared
242 promoters) and E2F-b (found in LIN-15B-shared promoters). We observed that the
243 strength and enrichment of E2F-a was significantly higher at LIN-36-shared
244 compared to LIN-15B-shared target promoters, and though not significant
245 (Wilcoxon's rank sum test $P = 0.06$), there is a trend for E2F-b to be stronger at LIN-
246 15B-shared target promoters (Figures S5B-C). These results suggest that differences
247 in E2F binding sites might explain in part the distinct regulation of LIN-15B-shared
248 and LIN-36-shared target genes.

249

250 **LIN-36 and LIN-15B require their THAP domains for function**

251 LIN-36 and LIN-15B both harbor a THAP domain. We assessed the requirements for
252 the THAP domains by creating in-frame deletion alleles (Figure S6A). The LIN-
253 36(Δ THAP) and LIN-15B(Δ THAP) mutant proteins were both translated as assessed
254 by western blotting or immunofluorescence (Figures 3B, S6B). We found that
255 deletion of the LIN-36 THAP domain caused loss of nuclear localisation (Figure 3A). In
256 line with this defect, gene expression changes in *lin-36*(Δ THAP) mutants are similar
257 to those of the full deletion mutant (Figure S6C; Table S3). Therefore, the LIN-36
258 THAP domain is necessary for LIN-36 function, potentially by facilitating nuclear
259 localisation or preventing nuclear export.

260

261 Surprisingly, LIN-15B(Δ THAP) localized normally to the nucleus and displayed a ChIP
262 binding pattern similar to that of the wild-type protein, with 6774/8861 (~76%) LIN-
263 15B peaks found in wild-type also called in *lin-15B*(Δ THAP) (Figures 3B-C; Table S2).
264 Despite the relatively normal localisation pattern, 160 genes were derepressed in *lin-*
265 *15B*(Δ THAP) mutants, including 29% of LIN-15B-shared targets, all of which retained

266 LIN-15B(Δ THAP) binding (Figures 3D, S6D, Table S3). We conclude that the LIN-15B
267 THAP domain is important but not essential for LIN-15B function. The finding that
268 LIN-15B(Δ THAP) localises to LIN-15B sites suggests a recruitment mechanism
269 independent of direct DNA binding.

270

271 **LIN-36 and LIN-35 co-facilitate binding, whereas LIN-15B and LIN-35 mutually
272 inhibit binding**

273 To investigate potential interdependencies in chromatin binding at the LIN-36 and
274 LIN-15B specific targets, we conducted ChIP-seq analyses in mutants (Table S4). We
275 found that LIN-35 and LIN-36 promote the association of EFL-1 and each other at
276 LIN-36-shared targets, with >50% of sites dropping in signal in *lin-36* and *lin-35*
277 mutants (Figure 4A-B, left panels). In contrast, LIN-36-shared targets showed normal
278 levels of LIN-35, LIN-36, and EFL-1 in *lin-15B* mutants, consistent with the lack of
279 requirement for LIN-15B at these targets (Figure 5C, left panel). We also found that
280 LIN-15B binding at LIN-36-shared targets was independent of LIN-36 (Figure 4A, left
281 panel). Therefore, LIN-35 and LIN-36 appear to mutually facilitate complex formation
282 and/or stability at LIN-36-shared targets.

283

284 The LIN-15B-shared targets are strikingly different. At many of these sites, the loss of
285 LIN-15B resulted in an unexpected increase of LIN-35, LIN-36, and EFL-1 signals
286 (Figure 4B, C, right panels). Similarly, *lin-35* mutants showed a significant increase in
287 LIN-15B occupancy at LIN-15B shared targets (Figure 5B, C, right panels). In contrast,
288 loss of LIN-36 caused only minor, mostly not significant differences in LIN-35, LIN-
289 15B and EFL-1 binding, (Figure 4A, B, right panel). Intriguingly, we found that the
290 strength of LIN-15B(Δ THAP) binding was significantly increased at ~38% of LIN-15B-
291 shared targets (Figure S6E, F), suggesting that the THAP domain may de-stabilise LIN-
292 15B binding. The finding that LIN-35 and LIN-15B repress LIN-15B-shared targets
293 while mutually antagonising chromatin association suggest a potential dynamic
294 cycling of DREAM and LIN-15B which may involve the LIN-15B THAP domain.

295

296

297 **DISCUSSION**

298 The DREAM complex represses cell cycle genes to enforce cellular quiescence, as
299 well as repressing developmental genes to ensure correct patterns of gene
300 expression. While the roles of DREAM have been described in different animals, its
301 mechanism of action is still unclear. Here we show that two THAP domain proteins,
302 LIN-36 and LIN-15B, act with DREAM to repress different sets of target genes
303 through distinct mechanisms.

304

305 We found that LIN-36 and LIN-15B bind to thousands of genomic sites shared with
306 LIN-35/Rb. Despite the similarity in binding patterns, genes derepressed upon loss of
307 LIN-36 and LIN-15B are mostly distinct. Consistent with our finding that direct LIN-36
308 targets are highly enriched for cell-cycle functions, previous work has highlighted a
309 role for LIN-36 in the *lin-35* pathway to prevent S-phase entry (Boxem and Van den
310 Heuvel, 2002). Through mutant analyses, we showed that LIN-36 and DREAM
311 mutually stabilise their chromatin association at shared direct targets, and both
312 facilitate high levels of H2A variant HTZ-1 on gene bodies, which we previously found
313 exerts a repressive role on gene expression (Latorre et al., 2015).

314

315 The targets that LIN-15B represses with DREAM largely have germline-specific
316 expression. In starved L1 larvae, which are essentially comprised of somatic cells, the
317 promoters of LIN-15B shared-targets have a closed chromatin environment and high
318 levels of H3K9me2. LIN-15B, LIN-35/Rb, and the histone methyltransferase MET-2
319 are required for H3K9me2 marking and the repression of many of these LIN-15B-
320 shared targets. LIN-35 and LIN-15B ChIP signal at these targets is considerably lower
321 than at LIN-36-shared targets. In contrast to the mutual dependence of LIN-36 and
322 DREAM, LIN-15B and DREAM appear to destabilise each other at shared target
323 promoters. We suggest that mutual destabilisation of LIN-15B and DREAM factors
324 may enable repression by facilitating access of MET-2 and its deposition of
325 repressive H3K9me2.

326

327 The presence of a THAP domain in both LIN-36 and LIN-15B suggests a special
328 relationship between DREAM and THAP domain containing proteins. In support of

329 this idea, the human Rb protein shares targets with the THAP1 protein, whose
330 ectopic expression inhibits proliferation in primary human endothelial cells through
331 the transcriptional repression of E2F/Rb targets (Cayrol et al., 2007). Moreover,
332 endogenous THAP1 is necessary for proliferation, suggesting that optimal THAP1
333 levels are critical. The human THAP11 protein has also been implicated in the
334 regulation of E2F targets and cell proliferation, although its activity is mediated by
335 the interaction with other factors (Brandon Parker et al., 2014). The lack of clear
336 conservation of THAP domain proteins outside this domain suggests that the THAP
337 domain may mediate interactions with DREAM complex. Future work in different
338 systems will further clarify the mechanisms of gene repression employed by the
339 THAP domain protein – DREAM network.

340

341 **ACKNOWLEDGMENTS**

342 The work was supported by an SNF Fellowship to FNC (P400PB_180795) and a
343 Wellcome Trust Senior Research Fellowship to JA (101863). We also acknowledge
344 core support from the Wellcome Trust (092096) and Cancer Research UK
345 (C6946/A14492).

346

347 **AUTHOR CONTRIBUTIONS**

348 Conceptualization and methodology: C.G. and J.A.; Software and Formal analysis:
349 C.G., F.N.C. and N.H.; Investigation: C.G., F.N.C., A.A., C.C., Y.D. and J.M.; Writing –
350 original draft preparation: C.G., F.N.C. and J.A.; Supervision and Funding acquisition:
351 J.A.

352

353 **DECLARATION OF INTERESTS**

354 The authors declare no competing interests.

355

356 **FIGURE LEGENDS**

357 **Figure 1. THAP-domain proteins LIN-36 and LIN-15B regulate Rb/DREAM targets.**
358 (A) *p-sep-1::eGFP* DREAM target reporter gene used for the RNAi screen. (B) *lin-35*
359 mutant animals have increased expression the *p-sep-1::eGFP* reporter relative to
360 wild-type. Arrows indicate the two germ cells in starved L1 animals. (C) IGV view of

361 linear BEADS normalised ChIP sequencing data for the indicated factors. (D) Overlap
362 of ChIP peaks called for the indicated factors. (E) Overlap between direct targets in
363 the indicated mutants. Number in parentheses indicate LIN-36-shared targets
364 (green) and LIN-15B-shared targets (purple) (see Methods). (F) and (G) IGV view of
365 RNA sequencing data of (E) a LIN-36-shared and (F) a LIN-15B-shared target.

366

367 **Figure 2. Gene body HTZ-1 and promoter H3K9me2 at LIN-36-shared and LIN-15B-
368 shared targets.** (A) HTZ-1 coverage over gene bodies of LIN-36-shared and LIN-15B-
369 shared targets. *** $P<0.001$, Wilcoxon rank sum test. (B) Fraction (and number) of
370 LIN-36-shared and LIN-15B-shared direct targets showing a significant loss of gbHTZ-
371 1 in the respective mutants. * $P<0.05$, ** $P<0.01$, *** $P<0.001$, over-representation of
372 gbHTZ-1 loss by hypergeometric test with BH correction. (C) gbHTZ-1 coverage in
373 wild type, *lin-35*, *lin-36* and *lin-15B* mutants over LIN-36-shared and LIN-15B-shared
374 direct targets. (D) and (E) IGV view of HTZ-1 ChIP-seq and RNA-seq profiles over (D) a
375 LIN-36-shared and (E) a LIN-15B-shared direct target. (F) H3K9me2 coverage at
376 promoters of LIN-36-shared and LIN-15B-shared targets, respectively. *** $P<0.001$,
377 Wilcoxon rank sum test. (G) Fraction (and number) of LIN-36-shared and LIN-15B-
378 shared direct target promoters showing a significant loss of H3K9me2 in the
379 respective mutants. * $P<0.05$, *** $P<0.001$, over-representation of gbHTZ-1 loss by
380 hypergeometric test with BH correction. (H) Log2-fold change of LIN-36-shared and
381 LIN-15B-shared target expression between *met-2* mutant and wild-type. *** $P<$
382 0.001; * $P<0.05$ by t-test.

383

384 **Figure 3. LIN-36 and LIN-15B require their THAP domains for proper function.** (A)
385 and (B) Immunofluorescence analysis of LIN-15B and LIN-36 in wildtype and THAP
386 domain deletion mutants. Antibodies used are listed in the Methods section. (C)
387 Heatmap of linear BEADS-normalized LIN-15B ChIP sequencing signal in wild-type
388 and *lin-15B*(Δ THAP) mutant centred over wild-type LIN-15B peaks. (D) Venn diagram
389 of the overlap between direct targets in the indicated mutants. Direct targets shared
390 with LIN-36 were excluded from the total count.

391

392 **Figure 4. LIN-36 and LIN-35 facilitate, whereas LIN-15B and LIN-35 mutually inhibit**
393 **each other's binding.** Fraction of LIN-36-shared (left) and LIN-15B-shared (right)
394 promoter-associated peaks showing a significant increase or decrease in ChIP-seq
395 signal in (A) *lin-36*, (B) *lin-35* and (C) *lin-15B* mutants compared to wt. ***: $P<0.001$;
396 *: $P<0.05$; ns: $P>0.05$, Fisher's exact test with Benjamini-Hochberg correction.

397

398

399 **Methods**

400 **Worm culture and strains**

401 Strains were cultured using standard methods (Brenner, 1974). Strains used in the
402 paper are given in Table S1.

403

404 **Generation of *psep-1::his-58::eGFP*, *lin-36::eGFP*, *lin-36* deletion, and THAP domain**
405 **deletion alleles**

406 The *psep-1::his-58::eGFP* transgene was generated using three-site Gateway cloning
407 (Invitrogen) in the MosSCI compatible vector pCFJ150, which targets Mos site
408 Mos1(ttTi5605) (Frøkjær-Jensen et al., 2008). The *sep-1* promoter (chr I: 3439109-
409 3438531) was cloned into site one. Plasmids pJA273 and pJA257 (Zeiser et al., 2011)
410 were used to put *his-58* into site 2 and *eGFP::tbb-2-3'UTR* into site three,
411 respectively. MosSCI lines were generated as described (Frøkjær-Jensen et al., 2008).

412

413 CRISPR-Cas9 genome editing was used to generate the following strains: JA1798: *lin-*
414 *15B*(*we23[ΔTHAP]*) X, JA1810: *lin-36*(*we30[lin-36::eGFP]*) III, JA1811: *lin-36*(*we30[lin-*
415 *36::eGFP]*, *we31[ΔTHAP]*) III, and JA1850: *lin-36*(*we36*) III (Table S1). Injections were
416 performed using gRNA-Cas9 ribonucleoprotein (RNP) complexes preassembled *in*
417 *vitro* (Paix et al., 2017). *dpy-10* co-CRISPR method was used to enrich for desired edit
418 (Arribere et al., 2014; Paix et al., 2015). Cas9 protein was made in-house (Paix et al.,
419 2015); tracrRNA and crRNAs were purchased from Dharmacon or Integrated DNA
420 Technologies; repair templates were purchased from IDT as Ultramer
421 oligonucleotides; eGFP double stranded amplicons were generated by standard PCR
422 (Paix et al., 2017). crRNAs were designed using the online CRISPOR tool (Haeussler et

423 al., 2016). JA1798, JA1810 and JA1850 were made in the Bristol wild-type N2
424 background; JA1811 was made in JA1810.

425

426 **RNAi Screen**

427 An RNAi sub-library targeting 1104 known or predicted nuclear proteins was used for
428 the RNAi (Table S1). The primary screen was carried out in four replicates, two
429 feeding from the L3 stage and two feeding from the YA stage, the latter to avoid the
430 high embryonic lethality induced by some clones. Bacteria were grown at 37°C
431 overnight in 900 µl LB (supplemented with 10 µg/ml carbenicillin, 10 µg/ml
432 tetracycline, and 100 U/ml nystatin) in 96 well plates. RNAi expression was induced
433 through the addition of 4 mM IPTG, and bacteria were further incubated for 3 hours
434 at 37°C. Bacteria were then pelleted and resuspended in 450 µl of S medium
435 (Stiernagle, 2006), 50 µl was transferred into each well of a new 96-well plate, and
436 approximately 10-15 L3 or YA *psep-1::his-58::eGFP* animals were placed into each
437 well. The animals were monitored and when most had L1 progeny the L1s were
438 analysed for increased expression of the reporter using a COPAS (Union Biometrica)
439 profiler by measuring fluorescence intensity of L1 sized progeny. In the primary
440 screen, 210 clones induced de-repression of the reporter in two out of the four
441 replicates and were included in four replicates of a secondary screen conducted
442 using YA animals. Of these, 36 showed de-repression in three out of four replicates
443 and were considered to be hits (see Table S1). These clones were sequenced and
444 verified.

445

446 **RNAi screen of THAP genes**

447 RNAi plates targeting THAP domain genes were prepared as in (Ahringer, 2006).
448 Synchronized L3 *psep-1::his-58::eGFP* animals were placed onto RNAi plates and
449 their progeny assessed daily for somatic GFP expression through visual observation
450 under a fluorescent microscope, qualitatively compared to control RNAi.
451 Experiments were carried out three times.

452

453 **Collection of starved L1 animals for RNA-seq and ChIP-seq**

454 Synchronized adults were grown at 20°C in liquid culture using standard S-basal
455 medium and HB101 *E. coli*, bleached to isolate embryos, the eggs hatched 20-22
456 hours at 25°C in M9 buffer, and then the starved L1s were sucrose floated and
457 collected by flash freezing in liquid nitrogen. The *efl-1(se1ts)* mutants were hatched
458 at 26°C (Page et al., 2001).

459

460 **ChIP-seq**

461 Frozen starved L1 worms were ground to a powder, which was incubated in 1.5 mM
462 EGS (Pierce 21565) in PBS for 8 minutes, followed by the addition of formaldehyde
463 to a final concentration of 1%, and incubated for a further 8 minutes. The fixation
464 was quenched for 5 minutes by the addition of 0.125 M glycine. Fixed tissue was
465 washed 2X with PBS with protease inhibitors (Roche EDTA-free protease inhibitor
466 cocktail tablets 05056489001) and once in FA buffer (50 mM Hepes pH7.5, 1 mM
467 EDTA, 1% TritonX-100, 0.1% sodium deoxycholate, and 150 mM NaCl) with protease
468 inhibitors (FA+), then resuspended in 1 ml FA+ buffer per 1 ml of ground worm
469 powder. The extract was sonicated to an average size of ~250 base pairs using a
470 Bioruptor Pico (Diagenode), and 10-20 ug of DNA was used per ChIP reaction,
471 together with ~1ug DNA from *C. briggsae* ChIP extract. Antibodies used for ChIP are
472 provided in Table S1 and ChIP-seq datasets are described in Table S5. ChIP and
473 library preparations were done as described in (Jänes et al., 2018).

474

475 **RNA-seq**

476 A single ball of frozen worms was used for RNA extractions. Total RNA was extracted
477 using TriPure (Roche) and further purified using an RNeasy column (Qiagen). RNA-
478 seq libraries were prepared from 100-1000 ng of total RNA using the Illumina TruSeq
479 RNA kit according to the manufacturers' instructions. RNA-seq datasets are given in
480 Table S5.

481

482 **Data processing**

483 ChIP-seq and RNA-seq libraries were sequenced using Illumina HiSeq1500. ChIP-seq
484 reads were aligned to a concatenated WS235/ce11 + cb3 assembly of the *C.*
485 *elegans* and *C. briggsae* genomes using BWA v. 0.7.7 with default settings (BWA-

486 backtrack algorithm) (Li and Durbin, 2010), but only *C. elegans* data were analysed
487 here. The SAMtools v. 0.1.19 ‘view’ utility (Li et al., 2009) was used to convert the
488 alignments to BAM format. Normalized mapq10 ChIP-seq coverage tracks were
489 generated using the BEADS algorithm (Cheung et al., 2011). RNA-seq reads were
490 aligned using STAR (Dobin et al., 2013) with the two-pass mode using the *C. elegans*
491 gene annotation from Wormbase (version WS260) as a guide (after removing any
492 gene annotation from the mitochondrial DNA). BigWig tracks were generated using
493 the wigToBigWig tool downloaded from the UCSC website
494 (<http://hgdownload.soe.ucsc.edu/>).

495

496 **Differential expression analysis**

497 A gene model was built based on the WS260 annotation. Tag counts for each gene
498 were extracted from STAR aligned BAM files, and differential gene expression
499 between N2 and mutant backgrounds was tested using DESeq2 (Love et al., 2014). A
500 false discovery rate (FDR) < 0.01 and $LFC > 0.5849$ was used to define genes as up-
501 regulated, and $FDR < 0.01$ and $LFC < -1$ was used to define genes as down-regulated.
502 Table S3 contains the DESeq2 log2 fold change and FDR for each mutant vs. wildtype
503 comparison.

504

505 **Peak calls and annotation to genes**

506 ChIP-seq peaks were called for each factor using YAPC
507 (<https://github.com/jurgin/yapc>) (Jänes et al., 2018). Briefly, peak calls were
508 generated through identification of concave regions (regions with negative
509 smoothed second derivative) using the BEADS normalized bigwig tracks. The
510 candidate peaks were tested for statistical significance between replicates using IDR
511 (Li et al., 2011), and only peaks with $FDR < 0.001$ were kept in our datasets. For three
512 factors (LIN-35, LIN-15B, and EFL-1) we had validated antibodies against the protein;
513 however, to determine LIN-36 binding, we endogenously CRISPR tagged it using GFP.
514 To test that the GFP tag did not disturb the binding of the other factors, we also
515 chromatin immunoprecipitated the other factors in the *lin-36::eGFP* strain. For each
516 factor the Spearman correlation (calculated using DeepTools (Ramírez et al., 2016))
517 over the peak calls is between 0.76 and 0.98 (Table S2). Therefore, to call wildtype

518 peaks for LIN-35, LIN-15B and EFL-1 we have used all four of our biological replicates,
519 whilst we have used two for LIN-36. We further redefined these calls by merging
520 overlapping LIN-35, LIN-36 and/or LIN-15B peaks, and then re-scaling merged and
521 factor specific peaks to +/-100bp around their midpoint. The resulting peaks were
522 assigned to genes, if they were within the furthest upstream promoter (Jänes et al.,
523 2018) and the end of the gene (Table S2). Peak overlap with regulatory elements or
524 Dfam2.0 annotated repeats (Hubley et al., 2016) was determined using BEDTools
525 (Quinlan and Hall, 2010).

526

527 **Identification of direct targets**

528 Direct targets of a given protein were defined as genes up-regulated in a mutant
529 condition and that have an associated peak for that protein. The LIN-36-shared and
530 LIN-15B-shared direct targets are direct targets of both LIN-36 and LIN-35, or both
531 LIN-15B and LIN-35, respectively, but not upregulated in *lin-15B* or *lin-36*,
532 respectively (Table S3).

533

534 **GO enrichment analysis**

535 Enrichment for specific gene ontology terms was obtained using the Gene
536 Enrichment Analysis (GEA) tool (Angeles-Albores et al., 2018) available on
537 Wormbase.

538

539 **Gene body HTZ-1 enrichment**

540 Average gene body HTZ-1 (gbHTZ-1) read coverage was calculated from the region
541 from the most upstream Wormbase TSS +500bp to the most downstream TTS. We
542 identified genes showing a significant loss of HTZ-1 (LFC vs N2 < 0, adjusted $P <$
543 0.001) by running DESeq2 on the coding genes in the top 90% of gbHTZ-1 coverage
544 in N2. Genes shorter than 500 bp in length were excluded from the analysis.

545

546 **H3K9me2 enrichment**

547 Average H3K9me2 signal (BEADS normalized linear coverage) was calculated over
548 LIN-35 + LIN-36 or LIN-35 + LIN-15B ChIP peaks associated to the putative promoter
549 region (i.e. -500 – 0bp upstream of any Wormbase coding transcript) of their

550 respective LIN-36-shared or LIN15B-shared direct targets. Peaks showing a significant
551 loss of H3K9me2 (LFC vs N2 < 0, adjusted $P < 0.01$) were identified using DESeq2 on
552 LIN-35, LIN-36 and/or LIN-15B peaks overlapping a wild-type H3K9me2 peak (called
553 using MACS (Zhang et al., 2008) with standard settings).

554

555 **Motif enrichment analysis**

556 DNA motifs enriched at LIN-36-shared and LIN-15B-shared promoter-associated
557 peaks were detected using MEME (Bailey et al., 2009) (with: -objfun de). Enriched
558 motifs were then re-annotated using FIMO (with: --thresh 1e-2). Similarity to known
559 motifs was evaluated using TOMTOM.

560

561 **Identification of differentially bound peaks**

562 DESeq2 was used to identify peaks differentially bound between wild type and a
563 mutant background by comparing the read counts from the bwa aligned BAM files
564 mapped in wild-type peak regions. Peaks with increased signal in mutants have
565 adjusted P -value < 0.001 and $LFC > 0$. Peaks with decreased signal in mutants have
566 adjusted $P < 0.001$ and $LFC < 0$.

567

568 **Data and Code availability**

569 Raw and processed data generated during this study are available at NCBI Gene
570 Expression Omnibus (GEO) under accession code GSE155191. Processing of genomic
571 coordinates was performed using the BEDTools suite (version 2.27.1) and in-house
572 scripts. Statistical analyses were performed in R (Yan et al., 2011). Commands used
573 to process data are available as Supplementary file.

574

575 **SUPPLEMENTARY FIGURE LEGENDS**

576 **Figure S1. LIN-35, LIN-36 and LIN-15B co-localize extensively on chromatin. (A)**

577 Heatmaps of BEADS normalized linear ChIP tracks centred over the indicated
578 regions. Tracks are of combined replicates. We note that signal at single factor sites
579 is generally weak and therefore confidence that other factors are not present is not
580 high. (B) Assignments of peaks to features in the genome. Peaks were first
581 overlapped with regulatory elements identified in Janes *et al.* 2018, then with
582 repetitive elements from Dfam2.0. (C) Fraction of LIN-35, LIN-15B and LIN-36-bound
583 repeats (from Dfam 2.0) showing enrichment for H3K9me2.

584

585 **Figure S2. Expression and binding profile of LIN-35, LIN-36 and LIN-15B targets. (A)**

586 Expression level (measured as log2 TPM) of genes upregulated in *lin-35*, *lin-*
587 *36*(*we36*), and *lin-15B* in the germline and in different types of dividing (SGP: somatic
588 gonad precursors, SC: seam cells, I: intestine) and non-dividing (NSH: non-seam
589 hypodermis, BWM: body wall muscle) cell types. The dashed grey line indicates a
590 TPM value of 1. Expression difference between germline and any other tissue was
591 significant for LIN-35, LIN-36 and LIN-15B targets (Benjamini-Hochberg adjusted
592 Mann-Whitney test $P < 10^{-3}$) (B) Germline expression specificity (calculated as
593 expression in germline / sum of expression in any cell type) of LIN-35-specific, LIN-
594 36-shared and LIN-15B-shared direct targets. (C) and (D) Heatmaps of BEADS
595 normalized linear ChIP tracks centred over the LIN-35+LIN-36 and LIN35+LIN-15B
596 peaks associated to the promoters of LIN-36-shared (C) and LIN-15B-shared (C and D,
597 in different scales) direct targets. Significant differences (Wilcoxon rank sum test):
598 ***: $P < 0.001$. Data for panels (A, B) are from Cao *et al.*, 2017.

599

600 **Figure S3. Different silencing mechanisms of LIN-36-shared targets and LIN-15B-**

601 **shared targets. (A)** fraction of LIN-35-specific, LIN-36-shared and LIN-15B-shared
602 direct targets with high (dark grey) or low (light grey) levels of gbHTZ-1. (B) Number
603 of coding genes showing a significant reduction in gbHTZ-1 levels in the respective
604 mutants. Dark grey bars indicate direct targets. (C) Signal plot of Z-scored HTZ-1
605 coverage calculated over the LIN-35+LIN-36 and LIN35+LIN-15B peaks associated to
606 the promoters of LIN-36-shared (green) and LIN-15B-shared (purple) direct targets.

607 (D) Signal plot of ATAC-seq signal (in RPM coverage) from L1-staged larvae over the
608 LIN-35+LIN-36 and LIN35+LIN-15B peaks associated to the promoters of LIN-36-
609 shared (green) and LIN-15B-shared (purple) direct targets. Data from Janes et al.,
610 2018. (E) Number of LIN-35, LIN-36 and/or LIN-15B peaks showing a significant
611 reduction in H3K9me2 levels in mutants.

612

613 **Figure S4. Distinct set of direct targets are upregulated in other DREAM factor**
614 **mutants.** Fraction of LIN-36-shared (green) and LIN-15B-shared (purple) direct
615 targets showing upregulated expression in *dpl-1*, *efl-1* and *lin-37* mutants. Significant
616 differences (LIN-36-shared vs LIN-15B-shared fraction, Fisher's exact test with
617 Benjamini-Hochberg correction): ***: $P < 0.001$; ns: $P > 0.05$.

618

619 **Figure S5. E2F binding motif variants enriched at LIN-36-shared and LIN-15B-shared**
620 **target promoters.** (A) Motif E2F-a was derived from LIN-36-shared sites and E2F-b
621 from LIN-15B shared sites. (B) Fraction of LIN-36-shared and LIN-15B-shared
622 promoter-associated peaks bearing a strong (FIMO $P < 0.001$) E2F-a or E2F-b variant.
623 Significant differences (Fisher's exact test with Benjamini-Hochberg correction): *: P
624 < 0.05 ; ns: $P > 0.05$. (C) strength of E2F-a and E2F-b motifs found at LIN-36-shared
625 and LIN-15B-shared promoter-associated peaks. Significant differences (Wilcoxon
626 rank sum test): ***: $P < 0.001$; ns: $P > 0.05$.

627

628 **Figure S6. Effects of THAP domain deletion in LIN-36 and LIN-15B.** (A) Diagram of
629 the LIN-15B and LIN-36 proteins, illustrating their THAP domains and the deletions
630 generated in this study. Arrows indicate the positions of the premature stop codons
631 in the corresponding alleles. (B) Western blot of LIN-36 and LIN-36(Δ THAP). Anti-GFP
632 antibody was used to detect both proteins. (C) and (D) Overlap between genes
633 upregulated in (C) *lin-36* or (D) *lin-15B* mutant strains used in this study. (E) IGV view
634 of a representative LIN-15B-shared direct target. Factor-specific ChIP-seq enrichment
635 shown as linear BEADS-normalized tracks. RNA sequencing data depict read-depth
636 normalized combined replicates. (F) Fraction of LIN-36-shared (left) and LIN-15B-
637 shared (right) promoter-associated LIN15B(Δ THAP) peaks showing a significant
638 difference in occupancy in *lin-15B*(Δ THAP) mutants. Significant differences (up- vs

639 downregulated fraction, Fisher's exact test with Benjamini-Hochberg correction):

640 ***: $P < 0.001$; ns: $P > 0.05$.

641 REFERENCES

642 Ahringer, J. (2006). Reverse genetics. *WormBook* 1–43.

643 Angeles-Albores, D., Lee, R.Y.N., Chan, J., and Sternberg, P.W. (2018). Two new
644 functions in the WormBase Enrichment Suite. *MicroPublication Biol.*

645 Arribere, J.A., Bell, R.T., Fu, B.X.H., Artiles, K.L., Hartman, P.S., and Fire, A.Z. (2014).
646 Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in
647 *caenorhabditis elegans*. *Genetics* 198, 837–846.

648 Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li,
649 W.W., and Noble, W.S. (2009). MEME Suite: Tools for motif discovery and searching.
650 *Nucleic Acids Res.* 37, 202–208.

651 Bainor, A.J., Saini, S., Calderon, A., Casado-Polanco, R., Giner-Ramirez, B., Moncada,
652 C., Cantor, D.J., Ernlund, A., Litovchick, L., and David, G. (2018). The HDAC-Associated
653 Sin3B Protein Represses DREAM Complex Targets and Cooperates with APC/C to
654 Promote Quiescence. *Cell Rep.* 25, 2797-2807.e8.

655 Balakrishnan, M.P., Cilenti, L., Mashak, Z., Popat, P., Alnemri, E.S., and Zervos, A.S.
656 (2009). THAP5 is a human cardiac-specific inhibitor of cell cycle that is cleaved by the
657 proapoptotic Omi/HtrA2 protease during cell death. *Am. J. Physiol. - Hear. Circ.*
658 *Physiol.* 297, 643–653.

659 Bessler, J.B., Andersen, E.C., and Villeneuve, A.M. (2010). Differential localization and
660 independent acquisition of the H3K9me2 and H3K9me3 chromatin modifications in
661 the *Caenorhabditis elegans* adult germ line. *PLoS Genet.* 6.

662 Boxem, M., and Van den Heuvel, S. (2002). *C. elegans* class B synthetic multivulva
663 genes act in G1 regulation. *Curr. Biol.*

664 Brandon Parker, J., Yin, H., Vinckevicius, A., and Chakravarti, D. (2014). Host cell
665 factor-1 recruitment to E2F-bound and cell-cycle-control genes is mediated by
666 THAP11 and ZNF143. *Cell Rep.*

667 Brenner, S. (1974). The genetics of *Caenorhabditis elegans*. *Genetics* 77, 71–94.

668 Cayrol, C., Lacroix, C., Mathe, C., Ecochard, V., Ceribelli, M., Loreau, E., Lazar, V.,
669 Dessen, P., Mantovani, R., Aguilar, L., et al. (2007). The THAP-zinc finger protein
670 THAP1 regulates endothelial cell proliferation through modulation of pRB/E2F cell-
671 cycle target genes. *Blood* 109, 584–594.

672 Ceron, J., Rual, J.F., Chandra, A., Dupuy, D., Vidal, M., and Van Den Heuvel, S. (2007).

673 Large-scale RNAi screens identify novel genes that interact with the *C. elegans*
674 retinoblastoma pathway as well as splicing-related components with synMuv B
675 activity. *BMC Dev. Biol.* **7**, 1–16.

676 Chesney, M.A., Kidd, A.R., and Kimble, J. (2006). *gon-14* functions with class B and
677 class C synthetic multivulva genes to control larval growth in *Caenorhabditis elegans*.
678 *Genetics* **172**, 915–928.

679 Cheung, M.S., Down, T.A., Latorre, I., and Ahringer, J. (2011). Systematic bias in high-
680 throughput sequencing data and its correction by BEADS. *Nucleic Acids Res.* **39**.

681 Clouaire, T., Roussigne, M., Ecochard, V., Mathe, C., Amalric, F., and Girard, J.P.
682 (2005). The THAP domain of THAP1 is a large C2CH module with zinc-dependent
683 sequence-specific DNA-binding activity. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 6907–
684 6912.

685 Dick, F.A., and Rubin, S.M. (2013). Molecular mechanisms underlying RB protein
686 function. *Nat. Rev. Mol. Cell Biol.* **14**, 297–306.

687 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P.,
688 Chaisson, M., and Gingeras, T.R. (2013). STAR: Ultrafast universal RNA-seq aligner.
689 *Bioinformatics* **29**, 15–21.

690 Du, W., Vidal, M., Xie, J.E., and Dyson, N. (1996). RBF, a novel RB-related gene that
691 regulates E2F activity and interacts with cyclin E in *Drosophila*. *Genes Dev.* **10**, 1206–
692 1218.

693 Frøkjær-Jensen, C., Wayne Davis, M., Hopkins, C.E., Newman, B.J., Thummel, J.M.,
694 Olesen, S.P., Grunnet, M., and Jorgensen, E.M. (2008). Single-copy insertion of
695 transgenes in *Caenorhabditis elegans*. *Nat. Genet.* **40**, 1375–1383.

696 Gervais, V., Campagne, S., Durand, J., Muller, I., and Milon, A. (2013). NMR studies of
697 a new family of DNA binding proteins: The THAP proteins. *J. Biomol. NMR* **56**, 3–15.

698 Goetsch, P.D., Garrigues, J.M., and Strome, S. (2017). Loss of the *Caenorhabditis*
699 *elegans* pocket protein LIN-35 reveals MuvB's innate function as the repressor of
700 DREAM target genes. *PLoS Genet.* **13**, 1–25.

701 Haeussler, M., Schönig, K., Eckert, H., Eschstruth, A., Mianné, J., Renaud, J.B.,
702 Schneider-Maunoury, S., Shkumatava, A., Teboul, L., Kent, J., et al. (2016). Evaluation
703 of off-target and on-target scoring algorithms and integration into the guide RNA
704 selection tool CRISPOR. *Genome Biol.* **17**, 1–12.

705 Hauser, S., Ulrich, T., Wurster, S., Schmitt, K., Reichert, N., and Gaubatz, S. (2012).
706 Loss of LIN9, a member of the DREAM complex, cooperates with SV40 large T
707 antigen to induce genomic instability and anchorage-independent growth. *Oncogene*
708 31, 1859–1868.

709 Hubley, R., Finn, R.D., Clements, J., Eddy, S.R., Jones, T.A., Bao, W., Smit, A.F.A., and
710 Wheeler, T.J. (2016). The Dfam database of repetitive DNA families. *Nucleic Acids*
711 *Res.* 44, D81–D89.

712 Jänes, J., Dong, Y., Schoof, M., Serizay, J., Appert, A., Cerrato, C., Woodbury, C., Chen,
713 R., Gemma, C., Huang, N., et al. (2018). Chromatin accessibility dynamics across *C.*
714 *Elegans* development and ageing. *Elife* 7, 1–24.

715 Kirienko, N. V., and Fay, D.S. (2007). Transcriptome profiling of the *C. elegans* Rb
716 ortholog reveals diverse developmental roles. *Dev. Biol.*

717 Korenjak, M., Taylor-Harding, B., Binné, U.K., Satterlee, J.S., Stevaux, O., Aasland, R.,
718 White-Cooper, H., Dyson, N., and Brehm, A. (2004). Native E2F/RBF complexes
719 contain Myb-interacting proteins and repress transcription of developmentally
720 controlled E2F target genes. *Cell* 119, 181–193.

721 Latorre, I., Chesney, M.A., Garrigues, J.M., Stempor, P., Appert, A., Francesconi, M.,
722 Strome, S., and Ahringer, J. (2015). The DREAM complex promotes gene body H2A.Z
723 for target repression. *Genes Dev.* 29, 495–500.

724 Lee, E.Y.H.P., Chang, C.Y., Hu, N., Wang, Y.C.J., Lai, C.C., Herrup, K., Lee, W.H., and
725 Bradley, A. (1992). Mice deficient for Rb are nonviable and show defects in
726 neurogenesis and haematopoiesis. *Nature* 359, 288–294.

727 Lewis, P.W., Beall, E.L., Fleischer, T.C., Georlette, D., Link, A.J., and Botchan, M.R.
728 (2004). Identification of a *Drosophila* Myb-E2F2/RBF transcriptional repressor
729 complex. *Genes Dev.* 18, 2929–2940.

730 Li, H., and Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-
731 Wheeler transform. *Bioinformatics* 26, 589–595.

732 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
733 Abecasis, G., and Durbin, R. (2009). The Sequence Alignment/Map format and
734 SAMtools. *Bioinformatics* 25, 2078–2079.

735 Li, Q., Brown, J.B., Huang, H., and Bickel, P.J. (2011). Measuring reproducibility of
736 high-throughput experiments. *Ann. Appl. Stat.* 5, 1752–1779.

737 Litovchick, L., Sadasivam, S., Florens, L., Zhu, X., Swanson, S.K., Velmurugan, S., Chen,
738 R., Washburn, M.P., Liu, X.S., and DeCaprio, J.A. (2007). Evolutionarily Conserved
739 Multisubunit RBL2/p130 and E2F4 Protein Complex Represses Human Cell Cycle-
740 Dependent Genes in Quiescence. *Mol. Cell* **26**, 539–551.

741 Litovchick, L., Florens, L.A., Swanson, S.K., Washburn, M.P., and Decaprio, J.A. (2011).
742 DYRK1A protein kinase promotes quiescence and senescence through DREAM
743 complex assembly. *Genes Dev.* **25**, 801–813.

744 Liu, Z., Gersbach, E., Zhang, X., Xu, X., Dong, R., Lee, P., Liu, J., Kong, B., Shao, C., and
745 Wei, J.-J. (2013). miR-106a Represses the Rb Tumor Suppressor p130 to Regulate
746 Cellular Proliferation and Differentiation in High-Grade Serous Ovarian Carcinoma.
747 *Mol. Cancer Res.* **11**, 1314–1325.

748 Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change
749 and dispersion for RNA-seq data with DESeq2. *Genome Biol.* **15**, 1–21.

750 Lu, X., and Robert Horvitz, H. (1998). lin-35 and lin-53, Two Genes that Antagonize a
751 *C. elegans* Ras Pathway, Encode Proteins Similar to Rb and Its Binding Protein
752 RbAp48 the activities of the ETS transcription factor LIN-1 and the winged-helix
753 transcription factor LIN-31 (reviewed by Horvitz). *Cell* **95**, 981–991.

754 Malumbres, M., and Barbacid, M. (2009). Cell cycle, CDKs and cancer: A changing
755 paradigm. *Nat. Rev. Cancer* **9**, 153–166.

756 Ouellet, J., and Roy, R. (2007). The lin-35/Rb and RNAi pathways cooperate to
757 regulate a key cell cycle transition in *C. elegans*. *BMC Dev. Biol.* **7**, 1–16.

758 Page, B.D., Guedes, S., Waring, D., and Priess, J.R. (2001). The *C. elegans* E2F- and
759 DP-related proteins are required for embryonic asymmetry and negatively regulate
760 Ras/MAPK signaling. *Mol. Cell* **7**, 451–460.

761 Paix, A., Folkmann, A., Rasoloson, D., and Seydoux, G. (2015). High efficiency,
762 homology-directed genome editing in *Caenorhabditis elegans* using CRISPR-
763 Cas9ribonucleoprotein complexes. *Genetics* **201**, 47–54.

764 Paix, A., Folkmann, A., Goldman, D.H., Kulaga, H., Grzelak, M.J., Rasoloson, D.,
765 Paidemarry, S., Green, R., Reed, R.R., and Seydoux, G. (2017). Precision genome
766 editing using synthesis-dependent repair of Cas9-induced DNA breaks. *Proc. Natl.*
767 *Acad. Sci. U. S. A.* **114**, E10745–E10754.

768 Poulin, G., Dong, Y., Fraser, A.G., Hopper, N.A., and Ahringer, J. (2005). Chromatin

769 regulation and sumoylation in the inhibition of Ras-induced vulval development in
770 *Caenorhabditis elegans*. *EMBO J.* **24**, 2613–2623.

771 Quinlan, A.R., and Hall, I.M. (2010). BEDTools: A flexible suite of utilities for
772 comparing genomic features. *Bioinformatics* **26**, 841–842.

773 Ramírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S.,
774 Dündar, F., and Manke, T. (2016). deepTools2: a next generation web server for
775 deep-sequencing data analysis. *Nucleic Acids Res.* **44**, W160–W165.

776 Rashid, N.N., Yusof, R., and Watson, R.J. (2011). Disruption of repressive p130-
777 DREAM complexes by human papillomavirus 16 E6/E7 oncoproteins is required for
778 cell-cycle progression in cervical cancer cells. *J. Gen. Virol.* **92**, 2620–2627.

779 Rayman, J.B., Takahashi, Y., Indjeian, V.B., Dannenberg, J.H., Catchpole, S., Watson,
780 R.J., Riele, H., and Dynlacht, B.D. (2002). E2F mediates cell cycle-dependent
781 transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor
782 complex. *Genes Dev.* **16**, 933–947.

783 Rechtsteiner, A., Costello, M.E., Egelhofer, T.A., Garrigues, J.M., Strome, S., and
784 Petrella, L.N. (2019). Repression of Germline Genes in *Caenorhabditis elegans*
785 Somatic Tissues by H3K9 Dimethylation of Their Promoters. *Genetics* **212**, 125–140.

786 Reddy, K.C., and Villeneuve, A.M. (2004). *C. elegans* HIM-17 links chromatin
787 modification and competence for initiation of meiotic recombination. *Cell* **118**, 439–
788 452.

789 Reichert, N., Wurster, S., Ulrich, T., Schmitt, K., Hauser, S., Probst, L., Gotz, R., Ceteci,
790 F., Moll, R., Rapp, U., et al. (2010). Lin9, a Subunit of the Mammalian DREAM
791 Complex, Is Essential for Embryonic Development, for Survival of Adult Mice, and for
792 Tumor Suppression. *Mol. Cell. Biol.* **30**, 2896–2908.

793 Richter, A., Hollstein, R., Hebert, E., Vulinovic, F., Eckhold, J., Osmanovic, A., Depping,
794 R., Kaiser, F.J., and Lohmann, K. (2017). In-depth Characterization of the
795 Homodimerization Domain of the Transcription Factor THAP1 and Dystonia-Causing
796 Mutations Therein. *J. Mol. Neurosci.* **62**, 11–16.

797 Roussigne, M., Kossida, S., Lavigne, A.C., Clouaire, T., Ecochard, V., Glories, A.,
798 Amalric, F., and Girard, J.P. (2003). The THAP domain: A novel protein motif with
799 similarity to the DNA-binding domain of P element transposase. *Trends Biochem. Sci.*
800 Sadasivam, S., and DeCaprio, J.A. (2013). The DREAM complex: master coordinator

801 of cell cycle-dependent gene expression. *Nat. Rev. Cancer* *13*, 585–595.

802 Saito, R.M., Perreault, A., Peach, B., Satterlee, J.S., and van den Heuvel, S. (2004).

803 The CDC-14 phosphatase controls developmental cell-cycle arrest in *C. elegans*. *Nat.*

804 *Cell Biol.* *6*, 777–783.

805 Schade, A.E., Oser, M.G., Nicholson, H.E., and DeCaprio, J.A. (2019). Cyclin D–CDK4

806 relieves cooperative repression of proliferation and cell cycle gene expression by

807 DREAM and RB. *Oncogene* *38*, 4962–4976.

808 Schmit, F., Korenjak, M., Mannefeld, M., Schmitt, K., Franke, C., Von Eyss, B., Gagriva,

809 S., Hänel, F., Brehm, A., and Gaubatz, S. (2007). LINC, a human complex that is

810 related to pRB-containing complexes in invertebrates regulates the expression of

811 G2/M genes. *Cell Cycle* *6*, 1903–1913.

812 Stiernagle, T. (2006). Maintenance of *C. elegans*. *WormBook* 1–11.

813 Yan, J., Valdez, E.A., Trivedi, P.K., Zimmer, D.M., Staudt, A., Shemyakin, A.E., Youn,

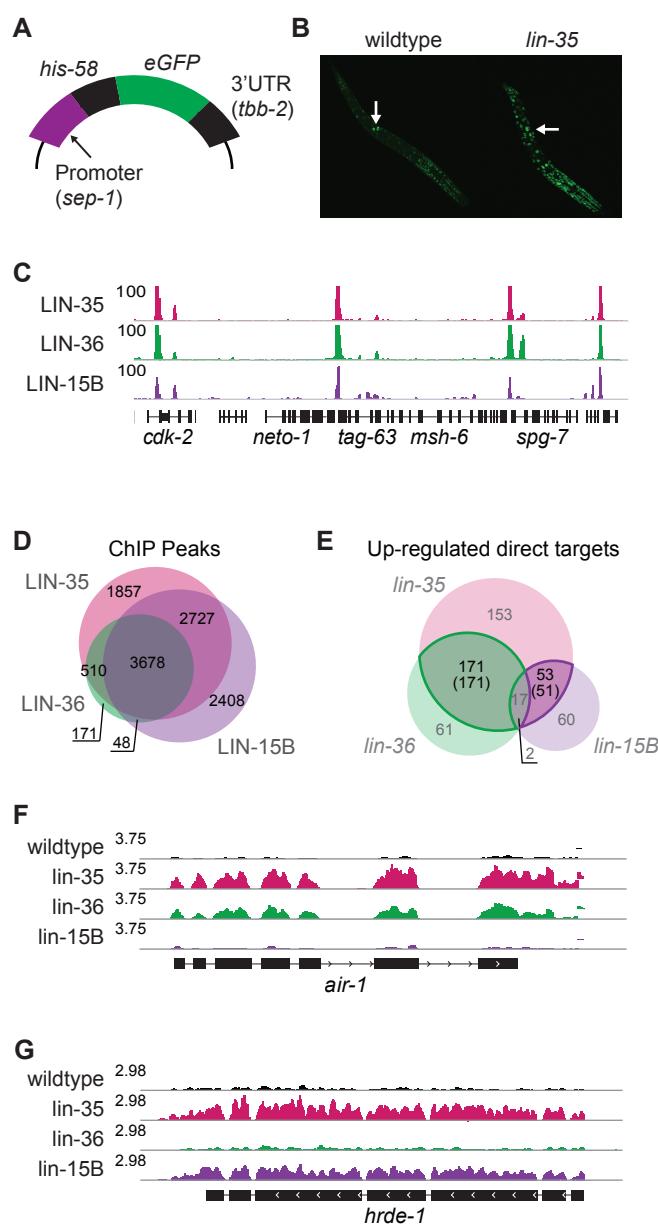
814 H., Sempi, C., Ennio, M., Salento, U., et al. (2011). R: A Language and Environment for

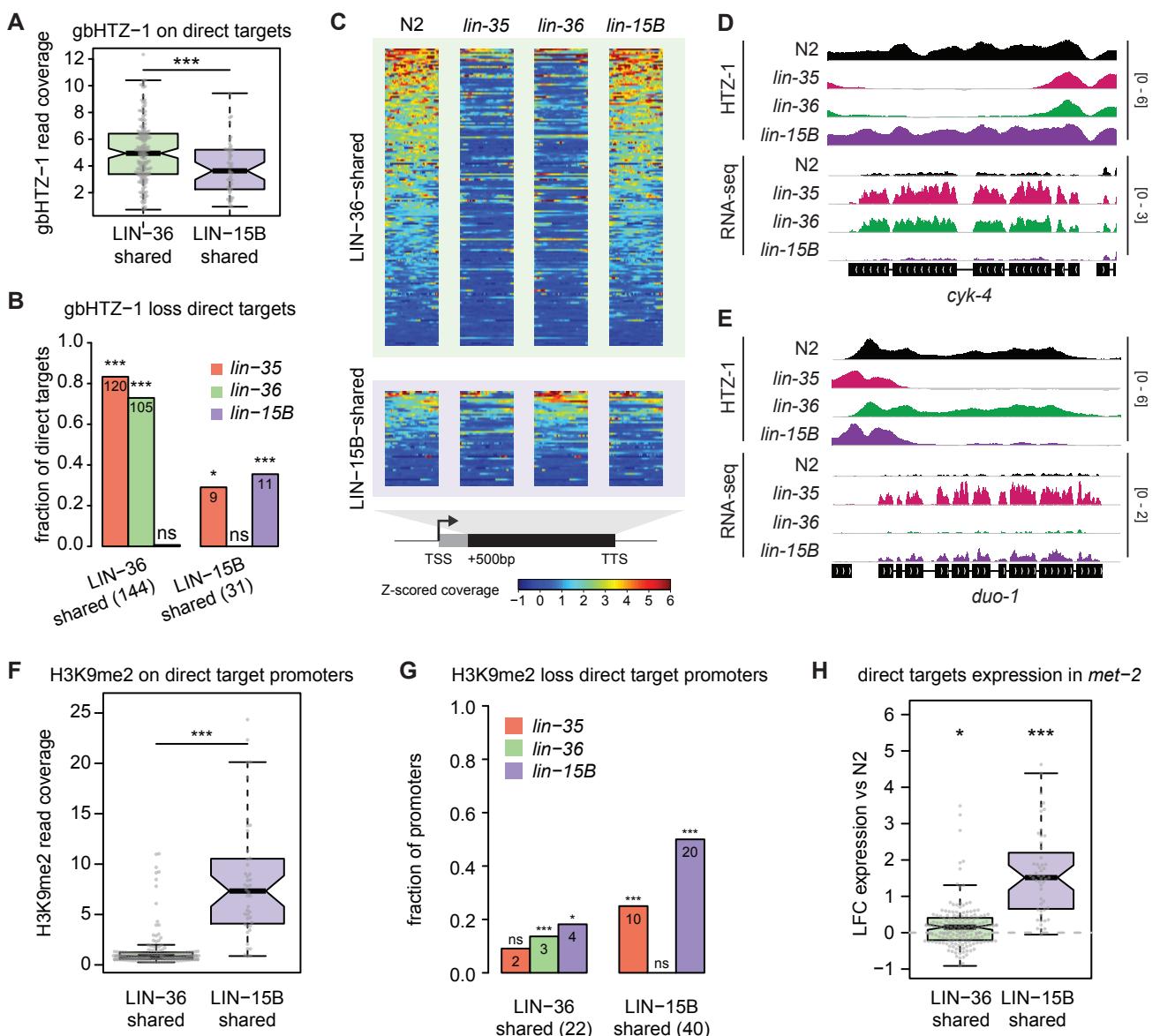
815 Statistical Computing (Vienna, Austria).

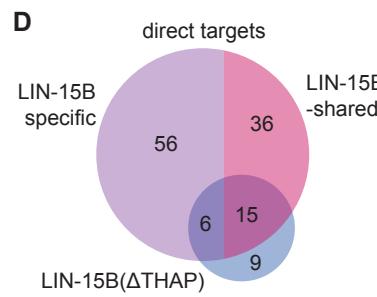
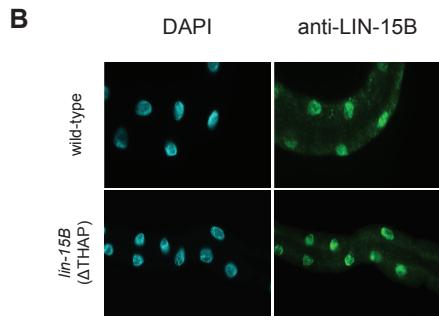
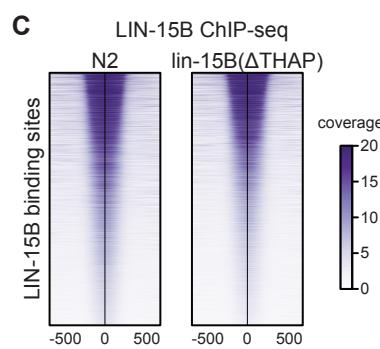
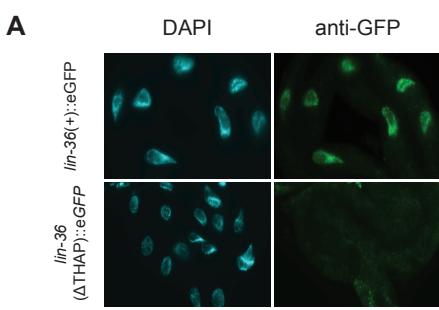
816 Zeiser, E., Frøkjær-Jensen, C., Jorgensen, E., and Ahringer, J. (2011). MosSCI and

817 gateway compatible plasmid toolkit for constitutive and inducible expression of

818 transgenes in the *C. elegans* germline. *PLoS One* *6*, 3–8.


819 Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E.,


820 Nussbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based Analysis of





821 ChIP-Seq (MACS). *Genome Biol.* *9*, R137.

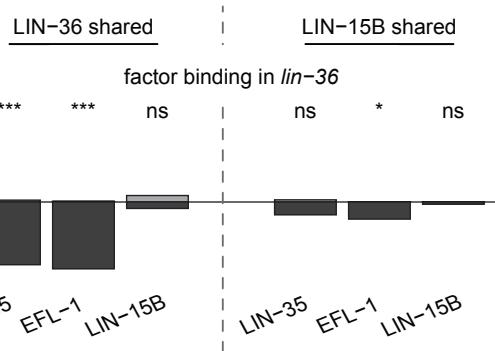
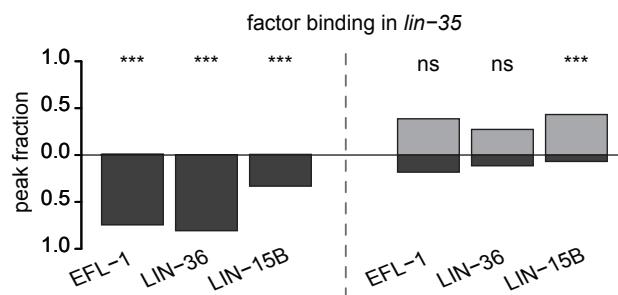
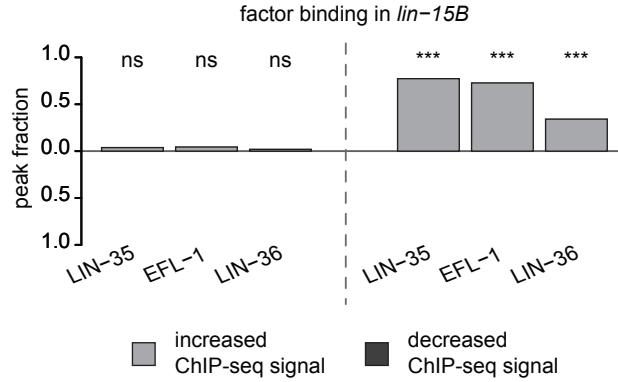



822

Figure 1

Figure 2

Figure 3

Figure 4**A****B****C**

■ increased ChIP-seq signal

■ decreased ChIP-seq signal