

1 **Title: Characterization of a new *Leishmania major* isolate for use in a
2 controlled human infection model.**

3

4 **Authors:** Helen Ashwin^{1†}, Jovana Sadlova^{2†}, Barbora Vojtkova², Tomas Becvar², Patrick
5 Lypaczewski³, Eli Schwartz⁴, Elizabeth Greensted¹, Katrien Van Bocxlaer¹, Marion Pasin⁵,
6 Kai S. Lipinski⁵, Vivak Parkash¹, Greg Matlashewski³, Alison M. Layton¹, Charles J. Lacey¹,
7 Charles L. Jaffe^{6*}, Petr Volf^{2*} and Paul M. Kaye^{1*}

8

9 **Affiliations:**

10 ¹York Biomedical Research Institute, Hull York Medical School, University of York, York,
11 UK.

12 ²Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague,
13 Czech Republic.

14

15 ³Department of Microbiology and Immunology, McGill University, Montreal, Quebec,
16 Canada.

17

18 ⁴The Center for Geographic Medicine and Tropical Diseases, Chaim Sheba Medical Center,
19 Sackler School of Medicine, Tel Aviv University, Israel.

20

21 ⁵Vibalogics GmbH, Cuxhaven, Germany.

22

23 ⁶The Hebrew University-Hadassah Medical School, Jerusalem, Israel.

24

25 *To whom correspondence should be addressed: paul.kaye@york.ac.uk; volf@cesnet.cz;
26 cjaffe@mail.huji.ac.il

27

28

29 † These authors contributed equally to this study.

30

31

32

33

34 **Abstract:** Leishmaniasis is widely regarded as a vaccine-preventable disease, but the costs
35 required to reach pivotal Phase 3 studies and uncertainty about which candidate vaccines
36 should be progressed into human studies significantly limits progress in vaccine development
37 for this neglected tropical disease. Controlled human infection models (CHIM) provide a
38 pathway for accelerating vaccine development and to more fully understand disease
39 pathogenesis and correlates of protection. Here, we describe the isolation, characterization
40 and GMP manufacture of a new clinical isolate of *Leishmania major*. Two fresh isolates of
41 *L. major* from Israel were initially compared by genome sequencing, *in vivo* infectivity and
42 drug sensitivity in mice, and development and transmission competence in sand flies,
43 allowing one (*L. major*_MRC-02) to be selected for GMP production. This study addresses
44 a major roadblock in the development of vaccines for leishmaniasis, providing a key resource
45 for CHIM studies of sand fly transmitted cutaneous leishmaniasis.

46
47

48 **Introduction**

49 The leishmaniases represent a group of diseases caused by infection with various species of
50 the parasitic protozoan *Leishmania*. One billion people are at risk of infection across 98
51 countries worldwide, with over 1.5 million new cases and 20,000 – 40,000 deaths reported
52 each year ^{1,2}. The leishmaniases are vector-borne diseases, each parasite species having co-
53 evolved for transmission by one or more species of phlebotomine sand fly ^{3,4}. Disease may
54 be evident as self-healing lesions restricted to the site of skin transmission (cutaneous
55 leishmaniasis; CL), lesions which spread from an initial skin lesion to involve the mucosae
56 (mucosal leishmaniasis; ML) or which spread uncontrolled across the body (disseminated or
57 diffuse cutaneous leishmaniasis; DCL), or as a potentially fatal systemic disease involving
58 major organs such as the spleen, liver and bone marrow (kala azar or visceral leishmaniasis;

59 VL)⁵. In addition, patients recovering from VL following chemotherapy often develop a
60 chronic skin condition (post kala-azar dermal leishmaniasis; PKDL) that can sustain
61 community transmission of VL^{6,7}. Collectively, the tegumentary forms of leishmaniasis
62 account for approximately two-thirds of the global disease burden, whilst VL accounts for
63 most reported deaths¹. In addition to the impact of primary disease, recent studies have also
64 emphasized the importance of considering the long term sequelae of leishmaniasis, notably
65 those associated with stigmatization, when evaluating global burden of these diseases⁸⁻¹⁰.

66

67 The leishmaniases are widely regarded as a vaccine-preventable diseases, based on disease
68 natural history, epidemiological data and studies in experimental models of leishmaniasis
69 (reviewed in¹¹⁻¹⁴). Although vaccines for canine visceral leishmaniasis have reached the
70 market, to date no human vaccines have achieved licensure¹⁵. Often cited barriers to vaccine
71 development include limited investment, with only \$3.7M of new R&D funding globally in
72 2018¹⁶, an excess of candidate antigens and delivery systems¹⁷, the questionable predictive
73 capacity of pre-clinical animal models^{18,19}, lack of good correlates of protection and a
74 defined target product profile²⁰, the costs and challenge of large-scale efficacy studies in
75 disease endemic countries and a fragmented pipeline for translational research²¹. As has
76 been found with other diseases²²⁻²⁹, the incorporation of a controlled human infection model
77 (CHIM) into the vaccine R&D pipeline can overcome many of these issues.

78

79 Artificial human infection (“leishmanization”) with *Leishmania* had been practiced for
80 centuries by people living in the Middle East and former Soviet states, where CL is highly
81 endemic. Building on the knowledge that cure from CL engendered protection against
82 reinfection, scrapings from active lesions were used to cause disease at a site of choice (e.g.

83 the buttock), so avoiding the stigmatization associated with CL scars (reviewed in³⁰. More
84 defined experimental studies were conducted sporadically through the 20th century,
85 culminating in a WHO-sponsored evaluation of the potential for human challenge as a tool to
86 evaluate vaccines for leishmaniasis, conducted in Iran in 2005³¹. This study employed a *L.*
87 *major* isolate that had been produced at GMP and used for previous leishmanization studies.
88 Results from this study demonstrated a take rate of 86% in previously non-exposed
89 volunteers. Lesions were less than 3cm diameter and ulcerated in 74% of cases. All lesions
90 self-healed without treatment between 75 and 285 days after inoculation. In a limited re-
91 challenge study using the same isolate, 0/11 volunteers receiving leishmanization developed
92 a lesion, compared to 5/5 in non-leishmanized controls³¹. Poor viability of the challenge
93 agent and limited funding opportunities curtailed this program before it could be developed
94 further and to date, no defined vaccines have been tested using this approach.

95

96 With the advent of new candidate vaccines in or approaching the clinic, there is renewed
97 imperative to develop a CHIM for leishmaniasis. An adenoviral-vectored vaccine (ChAd63-
98 KH) was found to be safe and immunogenic in healthy volunteers³² and in PKDL patients
99 (Younnis et. al. submitted) and is currently in Phase IIb as a therapeutic in Sudanese PKDL
100 patients. A live genetically-attenuated *L. donovani* centrin^{-/-} parasite has shown efficacy in
101 pre-clinical models³³⁻³⁵ and a *L. major* centrin^{-/-}³⁶ is soon to enter GMP production. An
102 adjuvanted recombinant polyprotein vaccine (LEISH-F3 / GLA-SE) has been progressed to
103 Phase I³⁷ and a newer derivative (LEISH-F3+ / GLA-SE) evaluated in pre-clinical models¹⁹.
104 RNA-based vaccines are also in development³⁸. In addition, new knowledge regarding the
105 integral nature of sand fly transmission to *Leishmania* infectivity has emerged in recent years
106³⁹⁻⁴¹, underpinning the observation that vaccines inducing protection in mice when infected

107 via needle inoculation fail to protect against sand fly transmitted infection ⁴²; hence the need
108 to incorporate vector transmission as part of a CHIM.

109

110 The pathway for development of a CHIM for sand fly-transmitted leishmaniasis requires
111 three enabling activities: the identification of an appropriate challenge agent, optimization of
112 sand fly transmission studies in humans, and patient and public involvement (PPI). Here, we
113 describe completion of the first of these steps, namely the isolation, characterization and
114 GMP production of a new *L. major* challenge agent.

115

116 **Results**

117 *New clinical isolates of Leishmania major*

118 *Leishmania major* is endemic in Israel and cases are often associated with travelers visiting
119 areas of high transmission ^{43,44}. Two individuals from non-endemic areas of central Israel that
120 had self-referred to Sheba Hospital in early 2019 after developing lesions subsequent to
121 visiting the endemic region of Negev (**Figure 1A**) served as parasite donors. Donor MRC-01
122 was a forty-one-year-old female who developed a lesion near her left lip approximately three
123 months after spending one night outdoors. She had self-administered topical antibiotics
124 without effect and presented at clinic approximately 4 months later with a single
125 erythematous 1.5cm diameter lesion. Diagnosis for *L. major* was confirmed by PCR and she
126 was treated with intra-lesional sodium stibogluconate (SSG) on two occasions approximately
127 4 weeks apart. Her lesion fully resolved with minimal scarring by 3 months post treatment
128 onset (**Figure 1B**). Donor MRC-02 was a twenty-two-year-old male who developed two
129 papules on his shin approximately two months after hiking in the Negev. He attended clinic
130 three months later with two ~1.5cm diameter ulcerated lesions on the shin and a very small

131 non-ulcerated lesion on his neck. He was diagnosed positive for *L. major* by PCR but
132 refused treatment. His lesions fully resolved approximately three to four months later with
133 scarring (**Figure 1C**). Both donors were negative for HIV, HTLV-1, HBV and HCV, and at
134 18-month follow up, neither reported any reactivation of their lesion(s) or other unexpected
135 clinical events related to their leishmaniasis.

136

137 *Whole genome sequencing of parasite isolates from patients MRC-01 and MRC-02*
138 Parasites were isolated from slit skin smears and diagnosis of *L. major* infection confirmed
139 by PCR and RFLP analysis. The isolates were designated as *L. major*_MRC-01 and *L.*
140 *major*_MRC-02, respectively. Parasites were minimally cultured in GMP grade media to
141 retain infectivity and multiple vials frozen at P1 as a seed bank and screened negative for
142 mycoplasma. The seed stock was redistributed under dry ice using a commercial shipping
143 agent.

144

145 To confirm genetic identity and establish baseline sequence data, whole genome sequencing
146 was performed using Illumina NextSeq deep sequencing. Sequence data for *L. major*_MRC-
147 01 and *L. major*_MRC-02 has been deposited at GenBank. A phylogeny tree was developed
148 using all available whole genome *L. major* sequences from around the world with *L. major*
149 Friedlin strain from Israel used as reference (**Figure 2A**). This analysis shows a geographical
150 clustering of genome sequences and confirms that *L. major*_MRC-01 and *L. major*_MRC-02
151 are closely related to other *L. major* isolates derived from Israel while being distinct from
152 each other. Next, sequence alignment was performed to identify the location of single
153 nucleotide polymorphisms relative to the reference Friedlin strain, using DNA from early
154 culture passage *L. major*_MRC-01 and *L. major*_MRC-02 (grey lines, **Figure 2B**). As

155 shown in the inner rings, both MRC-01 and MRC-02 isolates had a number of SNPs
156 compared to the reference Friedlin strain in all 36 chromosomes (**Figure 2B**, rings
157 MRC01Pre and MRC02Pre). Similarly, the SNP fingerprint of MRC-01 compared to the
158 MRC-02 isolate also reveal these are genetically distinct isolates consistent with the
159 phylogeny tree.

160

161 We also compared whole genome sequences from *L. major*_MRC-02 before and after a
162 single passage in BALB/c mice (see below). Compared to early culture parasites (pre-
163 infection), the SNP fingerprint of the BALB/c passaged parasites (post-infection) was nearly
164 identical when comparing the 2 outer rings (**Figure 2B**, rings MRC02-Post, MRC02-Pre).

165 Only three polymorphisms were identified in parasites recovered from *in vivo* passage, and
166 all were in homopolymer stretches in non-coding regions (**Table S1A and S1B**). In addition,
167 we found no significant copy number variation (CNV) differences at the gene or chromosome
168 level between the genomes from *L. major*_MRC-02 (Pre, culture) and *L. major*_MRC-02
169 (Post, *in vivo* passage) parasites (**Figure S2**). These observations confirm the *L. major*-
170 _MRC-01 and *L. major* MRC-02 isolates are closely related to strains previously isolated
171 from Israel, are genetically distinct from each other and that there was no selection for
172 genomic mutations or CNVs following MRC-02 infection in BALB/c mice.

173

174 *Leishmania* RNA viruses (LRV) have been demonstrated in various *Leishmania* species:
175 LRV1 in *L. (Viannia) braziliensis* and *L. (V.) guyanensis*, and LRV2 in *L. aethiopica*, *L.*
176 *infantum*, *L. major* and *L. tropica*. RNA was isolated from early passage *L. major*_MRC01
177 and *L. major*_MRC02, and tested for LRV2 by RT-PCR ⁴⁵. *L. aethiopica* LRC-L494,
178 previously shown to contain LRV2, was used as a positive control. Both *L. major* isolates
179 were negative for LRV2 (**Figure S3**).

180 *In vitro and in vivo characterization and drug sensitivity of L. major_MRC01 and L.*
181 *major_MRC02*

182 Prior to *in vivo* infectivity studies, each line was evaluated for growth under standard *in vitro*
183 conditions. Both lines showed similar *in vitro* growth curves, with characteristic progression
184 through logarithmic and stationary phases of growth (**Figure 3A**). Metacyclic promastigotes
185 (**Figure 3B**) were isolated by negative selection using PNA⁴⁶ and used for infectivity studies
186 in mice. To confirm *in vivo* infectivity and assess sensitivity to paromomycin (PM), a
187 standard drug used for the treatment of CL⁴⁷, we used highly susceptible BALB/c mice
188 infected subcutaneously in the rump with ~10⁶ purified metacyclic promastigotes (**Figures 3**
189 **and 4**). Mice were randomized to receive PM (50mg/kg i.p. daily for 10 days), with
190 treatment starting when individual lesion size was 3-4mm in diameter. Both isolates induced
191 lesions in BALB/c mice (**Figures 3C and E**). In the absence of treatment, all infected mice
192 progressed to the pre-determined endpoint (8mm average diameter, <10mm in any direction)
193 or showed progressing disease at the experimental endpoint of 70 days post infection.

194 However, *L. major*_MRC-02 lesions developed more rapidly and in a more consistent
195 manner. For example, median time to develop a lesion > 2mm was 37.5 vs. 21.0 days, for *L.*
196 *major*_MRC-01 and *L. major*_MRC-02 respectively (ratio 1.786, 95% CI of ratio 0.96 to
197 3.32; p<0.0001, **Figures 3D-G and Figure S4**). All mice responded well to PM treatment,
198 with a reduction in lesion size that often reached the limits of detection within the 10-day
199 treatment window (**Figures 3E and G, and Figures 4A-D**). Real time PCR quantification of
200 parasite kDNA in the lesion indicated that PM treatment reduced parasite load for both
201 isolates by >99% (**Figure 4E**). Thus, whilst both isolates are capable of causing lesions in
202 BALB/c mice and can be cured using PM, *L. major*_MRC-02 demonstrates more rapid lesion
203 development, with greater reproducibility.

204

205 *Parasite development in the sand fly vector*

206 To determine whether *L. major*_MRC01 and *L. major*_MRC02 were fully competent for
207 sand fly transmission, we first conducted artificial membrane feeding experiments using two
208 vector species, *Phlebotomus papatasi* and *P. duboscqi*. Experimental infections indicated
209 that both isolates developed well in the two sand fly species (**Figure 5**), producing high
210 infection rates (100% of sand fly females infected by day 3 post blood meal (PBM), >75 % at
211 days 6 and 15 PBM). In *P. duboscqi*, development was more vigorous, with parasite escape
212 from the peritrophic matrix and colonization of the thoracic midgut, cardia and in some cases
213 the stomodeal valve by day 3 PBM. In contrast, in *P. papatasi* the first colonization of the
214 stomodeal valve was not observed until day 6 PBM (**Figure 5B**). Nevertheless, by day 15
215 PBM, both sand fly species had supported full development of parasites, with heavy parasite
216 loads in the thoracic midgut and colonization of the stomodeal valve in all the female sand
217 flies infected with both *L. major* isolates.

218

219 To more precisely quantify parasite load at each morphological stage, exact numbers of
220 procyclic and metacyclic forms in infected sand fly females were counted using a Burker
221 chamber. The differences between *Leishmania* isolates were not significant, indicating that
222 both vectors were capable of supporting development. There was a trend for greater numbers
223 of metacyclic parasites in sand flies infected with *L. major*_MRC-02 at day 3 PBM, but this
224 was not apparent by day 15 PBM, with metacyclic numbers ranging from 200 – 258,000 per
225 sand fly (**Figure 6** and **Table S1**). Given recent data suggesting that additional blood meals
226 may serve to enhance the development of metacyclcs⁴¹, we conducted a pilot experiment in
227 which we provided sand flies either one additional blood meal on an uninfected BALB/c
228 mouse at day 6 or two additional blood meals at day 6 and day 12 PBM. Under the
229 conditions used, we found no significant differences in metacyclic numbers in *P. duboscqi*

230 infected with either *L. major* isolate using these different feeding conditions (**Table S1**).
231 Although both vector species could therefore be suitable for use in a CHIM, the additional
232 robustness of *P. duboscqi*, and a trend towards more permissive parasite development (⁴⁸ and
233 this manuscript) favor use of this species.

234

235 To evaluate whether expansion under GMP conditions might affect parasite development, we
236 repeated these experiments using parasites expanded as a research bank (RB) under
237 conditions identical to that for proposed GMP manufacture. Given the data above, we
238 limited these experiments to *P. duboscqi* given a single infectious blood meal by membrane
239 feeding. As before, both *L. major* isolates produced 100% infection rates in sand fly females
240 on day 3 PBM, with >80 % late stage infections on day 6 and day 15 PBM. At day 3 PBM,
241 14% and 43% respectively of females infected with *L. major*_MRC-01 and *L. major*_MRC-
242 02 had parasites located at the stomodeal valve. By day 15 PBM, thoracic midguts were
243 filled with high numbers of parasites and the stomodeal valve was colonized in all the
244 females infected with both isolates, though heavier infections developed in sand flies infected
245 with *L. major*_MRC-02 (**Figure S5**). Thus, the limited expansion required to generate a GMP
246 parasite bank does not negatively impact on parasite development in sand flies.

247

248 *Transmission of L. major*_MRC01 and *L. major*_MRC02 to mice by sand fly bite.
249 Ten *P. duboscqi* females infected by *L. major*_MRC-01 or *L. major*_MRC-02 were allowed
250 to feed on anaesthetized BALB/c mice on day 15 post BM. Immediately post feeding, six ear
251 samples per each strain were taken for determination of transmitted parasite number using
252 qPCR. Positivity rates were 5/6 and 6/6 for *L. major*_MRC-01 and *L. major*_MRC-02,
253 respectively, and numbers of parasites per ear varied from 0 to 7240 and from 92 to 5670

254 respectively for the two isolates (**Figure 7A** and **Table S2**). The average numbers of
255 transmitted parasites did not differ significantly between the two groups.

256

257 An independent group of mice was followed to monitor lesion development. Three weeks
258 p.i., only ear swelling was observed in mice bitten by sand flies infected with *L.*
259 *major*_MRC-01, whereas lesions had developed in 50% (3/6) of mice exposed to sand flies
260 infected with *L. major*_MRC-02. At the end of the experiment on week 6 p.i., all five mice
261 bitten by *L. major*_MRC-02 infected flies showed presence of skin lesions while lesions
262 appeared only in a half of mice (3/6) bitten by *L. major*_MRC-01 infected flies (**Figure 7B**,
263 **Table S2** and **Figure S6**). Determination of parasite load by qPCR at 6 weeks p.i. indicated
264 a trend towards higher numbers of parasites in mice infected with *L. major*_MRC-02 (P =
265 0.08, **Figure 7C**). Of note, two mice exposed to sand flies infected with *L. major*_MRC-01
266 hosted significant numbers of parasites in the ear (2.82×10^5 and 6.44×10^5) despite the absence
267 of lesions (**Table S2**). Hence, *L. major*_MRC-02 produces rapid and reproducible lesions in
268 mice after sand fly transmission.

269

270 *GMP Production of L. major*_MRC-02

271 A GMP clinical lot of *L. major*_MRC-02 was produced under contract directly from P1
272 passage stocks using static T-flask cultures. The clinical lot comprises ~600 vials, each vial
273 containing 2×10^7 mid log *L. major*_MRC-02 in culture media. Vials are stored at $-145 \pm 10^\circ\text{C}$
274 and we expect shelf life to exceed 5 years. An initial 2 years stability study will be
275 performed at Vibalogics manufacturing site. Release testing of the batch was discussed and
276 agreed with the UK Medicines and Healthcare products Regulatory Agency (MHRA) and
277 comprises identity (PCR), resuscitation (indicating growth), sterility, endotoxin and pH. We
278 estimate conservatively that in a sand fly CHIM, after retention for stability studies, this

279 clinical lot will be sufficient for challenge of at least 1200 volunteers. Seed stocks are
280 available for further GMP runs as required.

281
282

283 **Discussion**
284

285 Controlled human challenge is increasingly viewed as being on the critical path for vaccine
286 development, allowing an early demonstration of efficacy and in combination with
287 appropriately designed Phase I trials, rapid selection / de-selection of candidate vaccines ⁴⁹.

288 We have therefore sought to develop a new CHIM, based on best practices derived from
289 other models. Three questions influenced our approach to developing a challenge agent,
290 namely which: i) parasite species, ii) challenge route and iii) manufacturing standard?

291

292 Addressing the first question, *L. major*, the causative agent of Old World CL lends itself to
293 development as a human challenge agent on a number of counts. First, unlike other species
294 causing CL e.g. *L. tropica*, *L. mexicana* or *L. (Viannia) braziliensis* and *L. (V.) guyanensis*,
295 where systemic or metastatic spread is commonly documented, lesion development following
296 *L. major* infection is usually localised to the site of sand fly transmission and is most
297 commonly self-healing ⁵. Numerous barriers to developing a CHIM model of CL using
298 existing *L. major* isolates were identified, including limited information on the provenance of
299 parasites held in depositories or in use in research laboratories. Although CHIM studies per
300 se are not under formal regulatory control in the UK, informal advice from the MHRA
301 emphasised the importance of understanding the clinical history of the challenge agent donor,
302 donor status with regard other human infectious agents (e.g. HIV) and the need to ensure
303 absence of contact with bovine sera potentially contaminated with agents known to cause
304 transmissible spongiform encephalopathies. In the case of *Leishmania*, passage history also
305 represents an additional, but often poorly defined, variable that governs infectivity ^{50,51}.

306 Hence, two fresh isolates were obtained from donors with documented clinical histories and
307 for which we could ensure complete traceability of culture history.

308

309 We conducted whole genome sequencing to establish baseline characteristics and to assess
310 genetic changes occurring after passage in animals. The two parasite isolates we examined
311 were genetically distinct, but no features were identified that directly pertain to their potential
312 value as a CHIM agent, given that relatively little is known about the genetic nature of
313 virulence in *Leishmania* parasites. Whilst virulence factors / pathways have been identified
314 in various species, including gp63, lipophosphoglycan, exosome production, proteases and
315 many others⁵², how these vary across species or isolates and associate with different clinical
316 presentations is poorly defined⁵³. Symbiotic leishmaniaviruses have been associated with
317 enhanced host type I interferon responses and contribute to the metastatic potential in *L.*
318 *Viannia* species⁵⁴. Although *Leishmania*virus has been detected at lower frequency in Old
319 World *L. major* strains^{55,56}, there is no conclusive data to suggest an involvement in
320 pathogenesis and treatment failure. In Iranian cases, *L. major* infection was not influenced by
321 the presence or absence of LRV2⁵⁷. In any event, both *L. major*_MRC-01 and *L.*
322 *major*_MRC-02 were demonstrated to be negative for LRV2.

323

324 The classical BALB/c mouse model was used to evaluate *in vivo* infectivity and drug
325 sensitivity to paromomycin, an often used drug for the treatment of CL^{47,58}. Parasite
326 development in two species of sand fly, both natural vectors of *L. major* confirmed full life
327 cycle completion, including transmission to mice. The latter experiments also pertain directly
328 to the second question, route of challenge agent delivery. Vector transmission has been
329 performed for other CHIMs^{29,59}, and though this approach introduces potential confounding
330 factors such as variability in infectious dose and “take rate” compared to needle injection, this

331 needs to be weighed against the added value of such a model. For leishmaniasis, the body of
332 evidence indicating a synergistic role of sand fly salivary components and parasite secretory
333 products in promoting infectivity^{39,40,60,61} coupled with the value of sand fly challenge in
334 identifying vaccine candidates^{18,19,42,62} together make a compelling case to proceed with a
335 natural challenge model.

336

337 Finally, we considered whether manufacture should be to GMP or GMP-like, as proposed by
338 others. As it is not possible to generate sand flies that are “GMP”, it might have been argued
339 that GMP-like would be sufficient for our purposes. However, given the limited additional
340 financial costs of producing a clinical lot to GMP and that this leaves open the possibility for
341 direct needle challenge or for any future change in the regulatory framework, we chose to
342 adopt full GMP production of the clinical lot.

343

344 We selected *L major*_MRC-02 as the challenge agent for GMP production based on an
345 assessment of risk vs reproducibility for participants enrolled in future CHIM studies.
346 Although *L major*_MRC-02 appeared to develop more aggressive lesions in mice,
347 reproducibility of take and more rapid lesion development significantly decreases the number
348 of participants required and duration of a clinical trial. For example, in a simple two arm
349 (placebo vs. vaccine) trial with 90% power to detect a dichotomous outcome (lesion vs. no
350 lesion) at a p value of 0.05 and with vaccine efficacy of 60%, a CHIM with 95% take rate
351 would require 24 participants. In comparison, if the take rate was only 60%, the same study
352 would require 74 participants. The GMP clinical parasite bank we have generated is
353 supported by a comprehensive data package (as described here) and should be sufficient to
354 conduct CHIM studies in >1200 individuals by sand fly transmission. Whilst manufacture
355 was not of the scale associated with development of for example virally-vectored vaccines, it

356 balances yield with the desire to limit in vitro parasite expansion and should serve as a key
357 resource for several years to come.

358

359 This study has some limitations. *L major* was chosen as the challenge agent as this represents
360 the species with most limited clinical severity. Whilst the use of a *L major* CHIM would
361 clearly inform the development of prophylactic vaccines against Old World CL, the degree to
362 which this data could be extrapolated to protection against other species, for example *L.*
363 *donovani* a causative agent of VL is untested currently. Epidemiological data has suggested
364 ⁶³ and experimental evidence supports ⁶⁴⁻⁶⁶ some degree of cross-protection between parasites
365 causing CL and VL, including following vaccination. It is reasonable to suggest therefore
366 that successful protection following vaccination in a *L. major* CHIM would provide highly
367 encouraging albeit not definitive evidence to support the development of vaccines against VL
368 or other forms of CL.

369

370 Further steps in the development of this CHIM will be reported elsewhere, including the
371 results of a study to optimise the human biting protocol using uninfected sand flies
372 (www.clinicaltrials.gov; NCT03999970) and the results of our patient and public
373 involvement activities. Our next step is to seek ethical approval to conduct pilot studies of
374 human challenge using the parasite isolate described here, in order to ascertain the frequency
375 of take and rate of lesion development in human volunteers following infectious sand fly bite,
376 leading to appropriately designed clinical trials employing human challenge as a measure of
377 vaccine efficacy. These pilot studies will also provide for detailed mechanistic insights into
378 the early evolution of a primary CL lesion.

379

380
381

382 **Methods**

383

384 *Ethics statement.*

385 All human studies were conducted in accord with the Declaration of Helsinki. Ethical
386 approval was obtained from the Helsinki Committees of Hebrew University (0400-18-SOR)
387 and The Chaim Sheba Medical Centre (5658-18-SMC) and the University of York Dept. of
388 Biology Ethics Committee. Informed consent was obtained from patients with PCR-
389 confirmed leishmaniasis for parasite isolation and subsequent use of these parasites in the
390 development of a human challenge model. Animals were maintained and handled at Charles
391 University and the University of York in accordance with institutional guidelines and
392 national legislation (Czech republic: Act No. 246/1992 and 359/2012 coll. on Protection of
393 Animals against Cruelty in present statutes at large; UK: Animals (Scientific Procedures)
394 Act 1986). All the experiments were approved by: i) the Committee on the Ethics of
395 Laboratory Experiments of the Charles University in Prague and were performed under
396 permit from the Ministry of Education, Youth and Sports of the Czech Republic (MSMT-
397 28321/2018-6), and ii) The University of York Animal Welfare and Ethics Review Board and
398 performed under Home Office license (PPL P49487014).

399

400 *Mice and parasites*

401 Adult specific pathogen free BALB/c mice were used in all experiments reported here and
402 were obtained from either AnLab s.r.o (Prague) or Charles River UK (York). Mice were
403 maintained in individually ventilated cages with food and water ad libitum and a 12 h light/12
404 h dark photoperiod. Two new clinical isolates, *L. major*_MRC-01 and *L. major*_MRC-02,
405 were isolated from patient lesion smears by culturing in 1ml Schneider's *Drosophila* medium
406 (Cat. No. 21720024, Gibco) containing 20% fetal bovine serum (Australian origin, Cat. No.

407 10101145, Lot No. 1951998S, Gibco) at 26°C. Antibiotics were not included in the medium.
408 The cultures were positive for promastigotes after 9 and 13 days, respectively. The parasites
409 were further expanded and cryopreserved after one and two passages. For freezing, parasites
410 (2 x 10⁷ cells/vial) were suspended in Schneider's *Drosophila* medium containing 30% fetal
411 bovine serum and 6.5% DMSO and transferred to a Mr Frosty box at -80°C.

412

413 *Parasite sequencing and analysis*

414 DNA from promastigote cultures was extracted using a DNeasy column according to
415 manufacturer's instruction (Qiagen). PCR-free library preparation (Lucigen) and NextSeq
416 500 sequencing (Illumina) was performed at Genome Quebec. Raw reads were processed as
417 previously described^{67,68}. Briefly, the reads were aligned to the *L. major* Friedlin reference
418 genome sequence obtained from TryTripDB⁶⁹ using the Burrows Wheeler Aligner⁷⁰ and
419 analysed using VarScan2⁷¹. For phylogeny generation, additional sequences obtained from
420 GenBank from whole genome sequencing projects of *L. major* were also processed and
421 aligned along with MRC-01 and MRC-02 isolates. Polymorphisms and copy number variant
422 were plotted using circos⁷² and inspected manually using the Integrative Genomics Viewer
423⁷³.

424

425 *L. major* isolates were tested for the presence of LRV2 by RT-PCR using the primers LRV F-
426 HR (5'-tgt aac cca cat aaa cag tgt gc-3') and LRV R-HR (5'-att tca tcc agc ttg act ggg-3')
427 essentially as described by⁷⁴. RNA was purified from *L. major*_MRC-01, *L. major*_MRC-02
428 or *L. aethiopica* (MHOM/ET/1985/LRC-L494) using the TRI reagent (Sigma-Aldrich)
429 according to the manufacturer's instructions. The latter isolate was used as a positive control
430 for LRV02. cDNA was synthesis using the Transcriptor Universal cDNA Master Kit (Sigma-
431 Aldrich) with random hexamer primers. Each PCR reaction (25µl) contained 5µl cDNA,

432 10µM each primer and 10µl master mix (PCR-Ready High Specificity, Syntezza Bioscience);
433 and were carried out as follows: Initial denaturation 95°C for 2 min, 35 cycles at 95°C for 20
434 s, annealing at 55°C for 40 s, extension at 72°C for 40 s and final extension at 72°C for 5
435 min. Amplicons were analysed on 1.5% agarose gels.

436

437

438 *In vivo infectivity by needle challenge*

439 BALB/c mice were infected s.c. in the shaved rump with 100ul saline containing 10⁶
440 metacyclic promastigotes, selected from stationary phase cultures using PNA agglutination
441 ⁴⁶. Lesion development was monitored every two-three days until patency and daily
442 thereafter. Measurements were performed in two directions using a dial caliper and the mean
443 (8mm) and maximum single (10mm) diameter used to evaluate when mice had reached their
444 clinical end point. For drug treatments, mice reaching a pre-determined cut-off of 4mm were
445 randomized (n=9-10 per group) to receive either saline or paromomycin (50mg/kg, i.p daily
446 for 10 days). Treated mice were killed at day 10 post treatment for evaluation of parasite load
447 by qPCR for kinetoplastid DNA (see below).

448

449 *Sand fly colonies and sand fly infections*

450 The colonies of *P. duboscqi* and *P. papatasi* (originating in Senegal and Turkey,
451 respectively) were maintained in the insectary of the Department of Parasitology, Charles
452 University in Prague, under standard conditions (26°C on 50 % sucrose, humidity in the
453 insectary 60-70% and 14 h light/10 h dark photoperiod) as described previously ⁷⁵. The sand
454 fly colonies have been screened by RT-PCR and found to be negative for Phleboviruses
455 (including Sandfly Fever Sicilian Virus group, Massilia virus and Toscana Virus) and
456 Flaviviruses (targeting a conserved region of the NS5 gene).

457
458 Promastigotes from log-phase cultures (day 3-4 in culture) were washed twice in saline and
459 resuspended in heat-inactivated rabbit blood at a concentration of 1×10^6 promastigotes/ml.
460 Sand fly females (5-9 days old) were infected by feeding through a chick-skin membrane
461 (BIOPHARM) on the promastigote-containing suspension. Engorged sand flies were
462 separated and maintained under the same conditions as the colony. On day 3, 6 and 15 post
463 bloodmeal (PBM) sample sand flies were dissected and digestive tracts examined by light
464 microscopy. Five locations for *Leishmania* infection were distinguished: endoperitrophic
465 space (ES), abdominal midgut (AMG), thoracic midgut (TMG), cardia (CA) and the
466 stomodeal valve (SV). Parasite loads were estimated by two methods: i) infections were
467 qualitatively assessed in situ as light (< 100 parasites per gut), moderate (100–1000 parasites
468 per gut) and heavy (> 1000 parasites per gut)⁷⁶; ii) infections were quantitatively assessed by
469 transferring each gut into 100 μ l of 0.01% formaldehyde solution, followed by
470 homogenization and counting using a Burker chamber. *Leishmania* with flagellar length < 2
471 times body length were scored as procyclic forms and those with flagellar length >2 times
472 body length as metacyclic forms⁷⁷.

473
474 *Sand fly to mouse transmission experiments*
475 For transmission experiments, BALB/c mice were anaesthetized with ketamin and xylazine
476 (62 mg and 25 mg/kg). Sand flies infected for 15 days (as above) were placed into small
477 plastic tubes covered with the fine mesh (10 females per tube) and the tubes were held on the
478 ear pinnae of anaesthetized mice for one hour. Engorged sand fly females were immediately
479 dissected for microscopical determination of infection status (as described above). One
480 group of mice was euthanized immediately post transmission and a second group of mice was
481 followed for a period of 6 weeks p.i.

482

483 *Determination of parasite load in tissues.*

484 Sand fly-exposed ear pinnae were dissected and stored at -20°C. Extraction of total DNA was
485 performed using a DNA tissue isolation kit (Roche Diagnostics, Indianapolis, IN) according
486 to the manufacturer's instructions. Lesions from needle challenge were dissected and stored
487 at -80°C. Extraction of total DNA was performed using DNeasy tissue isolation kit (Qiagen)
488 according to the manufacturer's instruction. Parasite quantification by quantitative PCR
489 (qPCR) was performed in a Bio-Rad iCycler & iQ Real-Time PCR Systems using the SYBR
490 Green detection method (SsoAdvanced™ Universal SYBR® Green Supermix, Bio-Rad,
491 Hercules, CA). Primers targeting 116 bp long kinetoplast minicircle DNA sequence (forward
492 primer (13A) 5'- GTGGGGAGGGCGTTCT -3' and reverse primer (13B) - 5'-
493 ATTTTACACCAACCCCCAGTT -3') were used ⁷⁸. One microliter of DNA was used per
494 individual reaction. PCR amplifications were performed in triplicates using the following
495 conditions: 3 min at 98°C followed by 40 repetitive cycles: 10 s at 98 °C and 25 s at 61 °C.
496 PCR water was used as a negative control. A series of 10-fold dilutions of *L. major*
497 promastigote DNA, ranging from 5×10^3 to 5×10^{-2} parasites per PCR reaction was used to
498 prepare a standard curve. Quantitative results were expressed by interpolation with a standard
499 curve. To monitor non-specific products or primer dimers, a melting analysis was performed
500 from 70 to 95 °C at the end of each run, with a slope of 0.5 °C/c, and 5 s at each temperature.

501

502 *Statistical analysis*

503 Data are plotted using violin plots and mean, median, 95% CI and ranges are shown as
504 appropriate. All statistical analysis was performed with the statistical software package SPSS
505 version 23 or with GraphPad Prism 8 for macOS (v8.4.2). Normality was evaluated using the
506 D'Agostino-Pearson test and differences in parasite numbers in mice and sand fly tissues

507 were tested by non-parametric (Mann-Whitney U, Mood's median test) or parametric tests
508 (student's t test or ANOVA) depending on data distribution. Time to event analysis was
509 conducted using the log-rank (Mantel-Cox) test.

510
511

512 **Acknowledgments**

513 The authors thank Shaden Kamhawi (NIAID, NIH), Hira Nagasi (FDA, NIAID), Steve Reed
514 (ONC Bio) and Jesus Valenzuela (NIAID, NIH) for helpful discussions. This work was
515 funded by a Developmental Pathways Funding Scheme award (MR/R014973 to PMK, CL,
516 AL, PV and CLJ). This award is jointly funded by the UK Medical Research Council (MRC)
517 and the UK Department for International Development (DFID) under the MRC/DFID
518 Concordat agreement and is also part of the EDCTP2 programme supported by the European
519 Union. PV and JS were partially supported by European Regional Development Funds
520 (project CePaViP 16_019/0000759).

521

522 **Author contributions**

523 HA performed *in vitro* and *in vivo* needle challenge experiments, analyzed data and generated
524 figures, JV, BV and TB conducted parasite development studies in sand fly and sand fly
525 transmission experiments, PL and GM conducted parasite genome analysis, ES was the
526 clinician responsible for patient recruitment and care and contributed to the clinical protocol,
527 EG was the project manager and data coordinator, KvB conducted *in vitro* experiments, KL
528 developed methodology and produced the research and GMP parasite banks, CL was the
529 sponsor's clinical representative, wrote the clinical protocol and obtained the funding, CLJ
530 conducted experiments, PV coordinated the sand fly experiments and PK analyzed data and
531 produced the first draft of the manuscript. VP contributed to project design. AL, CL, CLJ,

532 PV and PK conceived the project and obtaining funding. All authors contributed to
533 reviewing the manuscript.

534

535 **Competing interests**

536 The authors declare no competing interests. PK is co-author of a patent protecting the gene
537 insert used in candidate vaccine ChAd63-KH (Europe 10719953.1; India 315101).

538

539 **Data and materials availability**

540 Sequence data for *L. major*_MRC-01 and *L. major*_MRC-02 are available from GenBank
541 (BioProject ID: PRJNA633113). Parasites produced under GMP will be available for clinical
542 assessment of candidate *Leishmania* vaccines under an appropriate MTA.

543

544 **Supplementary Materials**

545
546 *Fig. S1.* Polymorphisms between *L. major*_MRC-02 before and after mouse passage

547 *Fig. S2.* Gene copy number variations over chromosomes 1 to 36 (LmjF.01 – LmjF.36).

548 *Fig. S3.* Analysis of LRV2 presence in *Leishmania* isolates by RT-PCR.

549 *Fig. S4.* Rate of lesion development for *L. major*_MRC-01 and *L. major*_MRC-02 in BALB/c
550 mice after needle challenge

551 *Fig. S5* Sand fly development of parasites recovered from Research Banks

552 *Fig. S6.* Development of lesions in BALB/c mice after exposure to infected sand fly bites.

553 *Table S1.* Parasite loads in *P. duboscqi* and *P. papatasi*

554 *Table S2.* Research Bank infections post bite in BALB/c mice

555

556
557

558 **References**

559 1 Alvar, J. *et al.* Leishmaniasis worldwide and global estimates of its incidence. *PLoS One* **7**, e35671, doi:10.1371/journal.pone.0035671 (2012).

560 2 Hotez, P. J. The rise of leishmaniasis in the twenty-first century. *Trans R Soc Trop Med Hyg* **112**, 421-422, doi:10.1093/trstmh/try075 (2018).

561 3 Dostalova, A. & Volf, P. Leishmania development in sand flies: parasite-vector interactions overview. *Parasit Vectors* **5**, 276, doi:10.1186/1756-3305-5-276 (2012).

562 4 Kamhawi, S. Phlebotomine sand flies and Leishmania parasites: friends or foes? *Trends Parasitol* **22**, 439-445, doi:10.1016/j.pt.2006.06.012 (2006).

563 5 McGwire, B. S. & Satoskar, A. R. Leishmaniasis: clinical syndromes and treatment. *QJM* **107**, 7-14, doi:10.1093/qjmed/hct116 (2014).

564 6 Mondal, D. *et al.* Quantifying the Infectiousness of Post-Kala-Azar Dermal Leishmaniasis Toward Sand Flies. *Clin Infect Dis* **69**, 251-258, doi:10.1093/cid/ciy891 (2019).

565 7 Zijlstra, E. E., Alves, F., Rijal, S., Arana, B. & Alvar, J. Post-kala-azar dermal leishmaniasis in the Indian subcontinent: A threat to the South-East Asia Region Kala-azar Elimination Programme. *PLoS Negl Trop Dis* **11**, e0005877, doi:10.1371/journal.pntd.0005877 (2017).

566 8 Bailey, F. *et al.* Cutaneous leishmaniasis and co-morbid major depressive disorder: A systematic review with burden estimates. *PLoS Negl Trop Dis* **13**, e0007092, doi:10.1371/journal.pntd.0007092 (2019).

567 9 Bennis, I., De Brouwere, V., Belrhiti, Z., Sahibi, H. & Boelaert, M. Psychosocial burden of localised cutaneous Leishmaniasis: a scoping review. *BMC Public Health* **18**, 358, doi:10.1186/s12889-018-5260-9 (2018).

568 10 Pires, M., Wright, B., Kaye, P. M., da Conceicao, V. & Churchill, R. C. The impact of leishmaniasis on mental health and psychosocial well-being: A systematic review. *PLoS One* **14**, e0223313, doi:10.1371/journal.pone.0223313 (2019).

569 11 Alvar, J. *et al.* Case study for a vaccine against leishmaniasis. *Vaccine* **31 Suppl 2**, B244-249, doi:10.1016/j.vaccine.2012.11.080 (2013).

570 12 Bethony, J. M. *et al.* Vaccines to combat the neglected tropical diseases. *Immunol Rev* **239**, 237-270, doi:10.1111/j.1600-065X.2010.00976.x (2011).

571 13 Gillespie, P. M. *et al.* Status of vaccine research and development of vaccines for leishmaniasis. *Vaccine* **34**, 2992-2995, doi:10.1016/j.vaccine.2015.12.071 (2016).

572 14 Khamesipour, A. Therapeutic vaccines for leishmaniasis. *Expert Opin Biol Ther* **14**, 1641-1649, doi:10.1517/14712598.2014.945415 (2014).

573 15 Palatnik-de-Sousa, C. B. & Nico, D. The Delay in the Licensing of Protozoal Vaccines: A Comparative History. *Front Immunol* **11**, 204, doi:10.3389/fimmu.2020.00204 (2020).

574 16 G-Ginder. Neglected Disease Research and Development: uneven progress. (Policy Cures Research, 2019).

575 17 Duthie, M. S. & Reed, S. G. Not All Antigens Are Created Equally: Progress, Challenges, and Lessons Associated with Developing a Vaccine for Leishmaniasis. *Clin Vaccine Immunol* **24**, doi:10.1128/CVI.00108-17 (2017).

576 18 Aslan, H. *et al.* A new model of progressive visceral leishmaniasis in hamsters by natural transmission via bites of vector sand flies. *J Infect Dis* **207**, 1328-1338, doi:10.1093/infdis/jis932 (2013).

604 19 Duthie, M. S. *et al.* A defined subunit vaccine that protects against vector-borne
605 visceral leishmaniasis. *NPJ Vaccines* **2**, 23, doi:10.1038/s41541-017-0025-5 (2017).

606 20 Mo, A. X., Pesce, J. & Fenton Hall, B. Visceral leishmaniasis control and elimination:
607 Is there a role for vaccines in achieving regional and global goals? *American Journal*
608 *of Tropical Medicine and Hygiene* **95**, 514-521, doi:10.4269/ajtmh.16-0184 (2016).

609 21 Working Group on Research Priorities for Development of Leishmaniasis, V. *et al.*
610 Vaccines for the leishmaniases: proposals for a research agenda. *PLoS Negl Trop Dis*
611 **5**, e943, doi:10.1371/journal.pntd.0000943 (2011).

612 22 Darton, T. C. *et al.* Using a Human Challenge Model of Infection to Measure Vaccine
613 Efficacy: A Randomised, Controlled Trial Comparing the Typhoid Vaccines
614 M01ZH09 with Placebo and Ty21a. *PLoS Negl Trop Dis* **10**, e0004926,
615 doi:10.1371/journal.pntd.0004926 (2016).

616 23 Eyal, N., Lipsitch, M. & Smith, P. G. Human challenge studies to accelerate
617 coronavirus vaccine licensure. *J Infect Dis*, doi:10.1093/infdis/jiaa152 (2020).

618 24 Gibani, M. M. *et al.* Investigation of the role of typhoid toxin in acute typhoid fever in
619 a human challenge model. *Nat Med* **25**, 1082-1088, doi:10.1038/s41591-019-0505-4
620 (2019).

621 25 Gibani, M. M. *et al.* The Impact of Vaccination and Prior Exposure on Stool
622 Shedding of *Salmonella Typhi* and *Salmonella Paratyphi* in 6 Controlled Human
623 Infection Studies. *Clin Infect Dis* **68**, 1265-1273, doi:10.1093/cid/ciy670 (2019).

624 26 Meiring, J. E., Giubilini, A., Savulescu, J., Pitzer, V. E. & Pollard, A. J. Generating
625 the Evidence for Typhoid Vaccine Introduction: Considerations for Global Disease
626 Burden Estimates and Vaccine Testing Through Human Challenge. *Clin Infect Dis*
627 **69**, S402-S407, doi:10.1093/cid/ciz630 (2019).

628 27 Osowicki, J. *et al.* Controlled human infection for vaccination against *Streptococcus*
629 *pyogenes* (CHIVAS): Establishing a group A *Streptococcus pharyngitis* human
630 infection study. *Vaccine* **37**, 3485-3494, doi:10.1016/j.vaccine.2019.03.059 (2019).

631 28 Roestenberg, M., Mo, A., Kremsner, P. G. & Yazdanbakhsh, M. Controlled human
632 infections: A report from the controlled human infection models workshop, Leiden
633 University Medical Centre 4-6 May 2016. *Vaccine* **35**, 7070-7076,
634 doi:10.1016/j.vaccine.2017.10.092 (2017).

635 29 Roestenberg, M. *et al.* The frontline of controlled human malaria infections: A report
636 from the controlled human infection models Workshop in Leiden University Medical
637 Centre 5 May 2016. *Vaccine* **35**, 7065-7069, doi:10.1016/j.vaccine.2017.10.093
638 (2017).

639 30 Mohebali, M., Nadim, A. & Khamesipour, A. An overview of leishmanization
640 experience: A successful control measure and a tool to evaluate candidate vaccines.
641 *Acta Trop* **200**, 105173, doi:10.1016/j.actatropica.2019.105173 (2019).

642 31 Khamesipour, A. *et al.* Leishmanization: use of an old method for evaluation of
643 candidate vaccines against leishmaniasis. *Vaccine* **23**, 3642-3648,
644 doi:10.1016/j.vaccine.2005.02.015 (2005).

645 32 Osman, M. *et al.* A third generation vaccine for human visceral leishmaniasis and
646 post kala azar dermal leishmaniasis: First-in-human trial of ChAd63-KH. *PLoS Negl*
647 *Trop Dis* **11**, e0005527, doi:10.1371/journal.pntd.0005527 (2017).

648 33 Banerjee, A. *et al.* Live Attenuated *Leishmania donovani* Centrin Gene-Deleted
649 Parasites Induce IL-23-Dependent IL-17-Protective Immune Response against
650 Visceral Leishmaniasis in a Murine Model. *J Immunol* **200**, 163-176,
651 doi:10.4049/jimmunol.1700674 (2018).

652 34 Bhattacharya, P. *et al.* Live Attenuated *Leishmania donovani* Centrin Knock Out
653 Parasites Generate Non-inferior Protective Immune Response in Aged Mice against

654 Visceral Leishmaniasis. *PLoS Negl Trop Dis* **10**, e0004963,
655 doi:10.1371/journal.pntd.0004963 (2016).

656 35 Ismail, N., Kaul, A., Bhattacharya, P., Gannavaram, S. & Nakhasi, H. L.
657 Immunization with Live Attenuated Leishmania donovani Centrin(-/-) Parasites Is
658 Efficacious in Asymptomatic Infection. *Front Immunol* **8**, 1788,
659 doi:10.3389/fimmu.2017.01788 (2017).

660 36 Zhang, W. W. *et al.* A second generation leishmanization vaccine with a markerless
661 attenuated Leishmania major strain using CRISPR gene editing. *Nat Commun* **11**,
662 3461, doi:10.1038/s41467-020-17154-z (2020).

663 37 Coler, R. N. *et al.* From mouse to man: safety, immunogenicity and efficacy of a
664 candidate leishmaniasis vaccine LEISH-F3+GLA-SE. *Clin Transl Immunology* **4**,
665 e35, doi:10.1038/cti.2015.6 (2015).

666 38 Duthie, M. S. *et al.* Heterologous Immunization With Defined RNA and Subunit
667 Vaccines Enhances T Cell Responses That Protect Against Leishmania donovani.
668 *Front Immunol* **9**, 2420, doi:10.3389/fimmu.2018.02420 (2018).

669 39 Atayde, V. D. *et al.* Exosome Secretion by the Parasitic Protozoan Leishmania within
670 the Sand Fly Midgut. *Cell Rep* **13**, 957-967, doi:10.1016/j.celrep.2015.09.058 (2015).

671 40 Dey, R. *et al.* Gut Microbes Egested during Bites of Infected Sand Flies Augment
672 Severity of Leishmaniasis via Inflammasome-Derived IL-1beta. *Cell Host Microbe*
673 **23**, 134-143 e136, doi:10.1016/j.chom.2017.12.002 (2018).

674 41 Serafim, T. D. *et al.* Sequential blood meals promote Leishmania replication and
675 reverse metacyclogenesis augmenting vector infectivity. *Nat Microbiol* **3**, 548-555,
676 doi:10.1038/s41564-018-0125-7 (2018).

677 42 Peters, N. C. *et al.* Vector transmission of leishmania abrogates vaccine-induced
678 protective immunity. *PLoS Pathog* **5**, e1000484, doi:10.1371/journal.ppat.1000484
679 (2009).

680 43 Bufman, H. *et al.* A retrospective study on demographic and clinical characteristics of
681 cutaneous leishmaniasis suspected cases in southern Israel, 2013-2016: Comparison
682 between confirmed and negative cases. *J Vector Borne Dis* **56**, 159-165,
683 doi:10.4103/0972-9062.263723 (2019).

684 44 Orshan, L. *et al.* Distribution and Dispersal of Phlebotomus papatasi (Diptera:
685 Psychodidae) in a Zoonotic Cutaneous Leishmaniasis Focus, the Northern Negev,
686 Israel. *PLoS Negl Trop Dis* **10**, e0004819, doi:10.1371/journal.pntd.0004819 (2016).

687 45 Nalcaci, M. *et al.* Detection of Leishmania RNA virus 2 in Leishmania species from
688 Turkey. *Trans R Soc Trop Med Hyg* **113**, 410-417, doi:10.1093/trstmh/trz023 (2019).

689 46 Sacks, D. L., Hieny, S. & Sher, A. Identification of cell surface carbohydrate and
690 antigenic changes between noninfective and infective developmental stages of
691 Leishmania major promastigotes. *J Immunol* **135**, 564-569 (1985).

692 47 Gradoni, L., Lopez-Velz, R. & Mokni, M. Manual on case management and
693 surveillance of the leishmaniasis in the WHO European Region. (2017).

694 48 Cihakova, J. & Volf, P. Development of different Leishmania major strains in the
695 vector sandflies Phlebotomus papatasi and P. duboscqi. *Ann Trop Med Parasitol* **91**,
696 267-279, doi:10.1080/00034989761120 (1997).

697 49 Sciences, A. o. M. (Academy of Medical Sciences).

698 50 Adler, S. & Zuckerman, A. Observations on a strain of Leishmania tropica after
699 prolonged cultivation; notes on infectivity and immunity. *Ann Trop Med Parasitol* **42**,
700 178-183, doi:10.1080/00034983.1948.11685360 (1948).

701 51 Sadlova, J., Svobodova, M. & Volf, P. Leishmania major: effect of repeated passages
702 through sandfly vectors or murine hosts. *Ann Trop Med Parasitol* **93**, 599-611,
703 doi:10.1080/00034989958104 (1999).

704 52 Kaye, P. & Scott, P. Leishmaniasis: complexity at the host-pathogen interface. *Nat Rev Microbiol* **9**, 604-615, doi:10.1038/nrmicro2608 (2011).

705 53 McCall, L. I., Zhang, W. W. & Matlashewski, G. Determinants for the development of visceral leishmaniasis disease. *PLoS Pathog* **9**, e1003053, doi:10.1371/journal.ppat.1003053 (2013).

706 54 Rossi, M. & Fasel, N. The criminal association of Leishmania parasites and viruses. *Curr Opin Microbiol* **46**, 65-72, doi:10.1016/j.mib.2018.07.005 (2018).

707 55 Kleschenko, Y. *et al.* Molecular Characterization of Leishmania RNA virus 2 in Leishmania major from Uzbekistan. *Genes (Basel)* **10**, doi:10.3390/genes10100830 (2019).

708 56 Saberi, R., Fakhar, M., Mohebali, M., Anvari, D. & Gholami, S. Global status of synchronizing Leishmania RNA virus in Leishmania parasites: A systematic review with meta-analysis. *Transbound Emerg Dis* **66**, 2244-2251, doi:10.1111/tbed.13316 (2019).

709 57 Abtahi, M. *et al.* Relationship of Leishmania RNA Virus (LRV) and treatment failure in clinical isolates of Leishmania major. *BMC Res Notes* **13**, 126, doi:10.1186/s13104-020-04973-y (2020).

710 58 Caridha, D. *et al.* Route map for the discovery and pre-clinical development of new drugs and treatments for cutaneous leishmaniasis. *Int J Parasitol Drugs Drug Resist* **11**, 106-117, doi:10.1016/j.ijpddr.2019.06.003 (2019).

711 59 Sullivan, D. J. & Agre, P. Human Plasmodium vivax mosquito experimental transmission. *J Clin Invest*, doi:10.1172/JCI135794 (2020).

712 60 Rogers, M. E., Ilg, T., Nikolaev, A. V., Ferguson, M. A. & Bates, P. A. Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. *Nature* **430**, 463-467, doi:10.1038/nature02675 (2004).

713 61 Giraud, E., Svobodova, M., Muller, I., Volf, P. & Rogers, M. E. Promastigote secretory gel from natural and unnatural sand fly vectors exacerbate Leishmania major and Leishmania tropica cutaneous leishmaniasis in mice. *Parasitology* **146**, 1796-1802, doi:10.1017/S0031182019001069 (2019).

714 62 Oliveira, F. *et al.* A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates. *Sci Transl Med* **7**, 290ra290, doi:10.1126/scitranslmed.aaa3043 (2015).

715 63 Zijlstra, E. E., el-Hassan, A. M., Ismael, A. & Ghalib, H. W. Endemic kala-azar in eastern Sudan: a longitudinal study on the incidence of clinical and subclinical infection and post-kala-azar dermal leishmaniasis. *Am J Trop Med Hyg* **51**, 826-836, doi:10.4269/ajtmh.1994.51.826 (1994).

716 64 Romano, A., Doria, N. A., Mendez, J., Sacks, D. L. & Peters, N. C. Cutaneous Infection with Leishmania major Mediates Heterologous Protection against Visceral Infection with Leishmania infantum. *J Immunol* **195**, 3816-3827, doi:10.4049/jimmunol.1500752 (2015).

717 65 Schroeder, J., Brown, N., Kaye, P. & Aebischer, T. Single dose novel Salmonella vaccine enhances resistance against visceralizing L. major and L. donovani infection in susceptible BALB/c mice. *PLoS Negl Trop Dis* **5**, e1406, doi:10.1371/journal.pntd.0001406 (2011).

718 66 Tonui, W. K. & Titus, R. G. Cross-protection against Leishmania donovani but not L. Braziliensis caused by vaccination with L. major soluble promastigote exogenous antigens in BALB/c mice. *Am J Trop Med Hyg* **76**, 579-584 (2007).

719 67 Lypaczewski, P. *et al.* A complete Leishmania donovani reference genome identifies novel genetic variations associated with virulence. *Sci Rep* **8**, 16549, doi:10.1038/s41598-018-34812-x (2018).

754 68 Zhang, W. W., Lypaczewski, P. & Matlashewski, G. Application of CRISPR/Cas9-
755 Mediated Genome Editing in *Leishmania*. *Methods Mol Biol* **2116**, 199-224,
756 doi:10.1007/978-1-0716-0294-2_14 (2020).
757 69 Aslett, M. *et al.* TriTrypDB: a functional genomic resource for the Trypanosomatidae.
758 *Nucleic Acids Res* **38**, D457-462, doi:10.1093/nar/gkp851 (2010).
759 70 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler
760 transform. *Bioinformatics* **25**, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009).
761 71 Koboldt, D. C. *et al.* VarScan 2: somatic mutation and copy number alteration
762 discovery in cancer by exome sequencing. *Genome Res* **22**, 568-576,
763 doi:10.1101/gr.129684.111 (2012).
764 72 Krzywinski, M. *et al.* Circos: an information aesthetic for comparative genomics.
765 *Genome Res* **19**, 1639-1645, doi:10.1101/gr.092759.109 (2009).
766 73 Robinson, J. T. *et al.* Integrative genomics viewer. *Nat Biotechnol* **29**, 24-26,
767 doi:10.1038/nbt.1754 (2011).
768 74 Hajjaran, H. *et al.* Detection and molecular identification of leishmania RNA virus
769 (LRV) in Iranian Leishmania species. *Arch Virol* **161**, 3385-3390,
770 doi:10.1007/s00705-016-3044-z (2016).
771 75 Volf, P. & Volfova, V. Establishment and maintenance of sand fly colonies. *J Vector
772 Ecol* **36 Suppl 1**, S1-9, doi:10.1111/j.1948-7134.2011.00106.x (2011).
773 76 Myskova, J., Votypka, J. & Volf, P. Leishmania in sand flies: comparison of
774 quantitative polymerase chain reaction with other techniques to determine the
775 intensity of infection. *J Med Entomol* **45**, 133-138, doi:10.1603/0022-
776 2585(2008)45[133:lisfco]2.0.co;2 (2008).
777 77 Sadlova, J. *et al.* The stage-regulated HASPB and SHERP proteins are essential for
778 differentiation of the protozoan parasite *Leishmania* major in its sand fly vector,
779 *Phlebotomus papatasi*. *Cell Microbiol* **12**, 1765-1779, doi:10.1111/j.1462-
780 5822.2010.01507.x (2010).
781 78 Rodgers, M. R., Popper, S. J. & Wirth, D. F. Amplification of kinetoplast DNA as a
782 tool in the detection and diagnosis of *Leishmania*. *Exp Parasitol* **71**, 267-275,
783 doi:10.1016/0014-4894(90)90031-7 (1990).
784
785
786
787

788 **Figures**

789

790

791

792

793

794

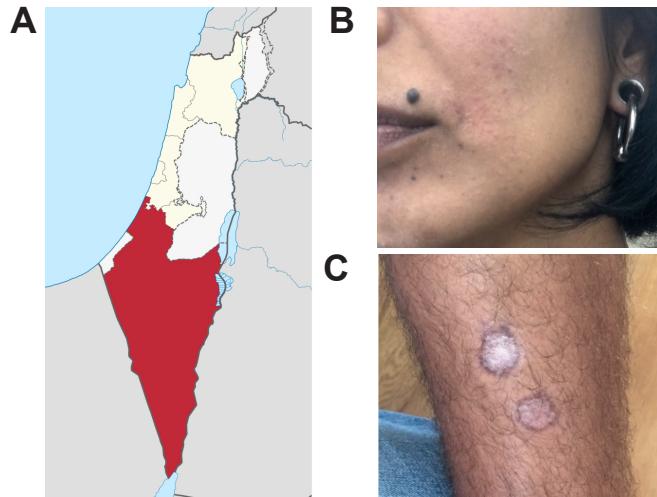
795

796

797

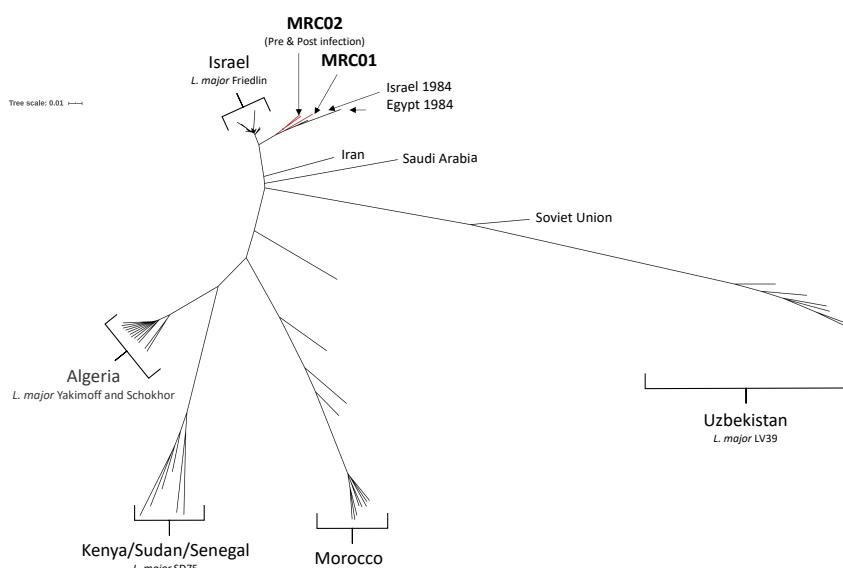
798

799


800

801

802 **Figure 1 Clinical characteristic of patient lesions**


803

804 **A.** Negev region of Israel (red). **B.** Donor MRC-01 lesion photographed ~3 months after
805 treatment onset, showing full resolution of the lesion near the corner of the mouth, with
806 minimal scarring. **C.** Donor MRC-02 lesions photographed ~9 months after travel to the
807 endemic region, showing healing without treatment.
808

809

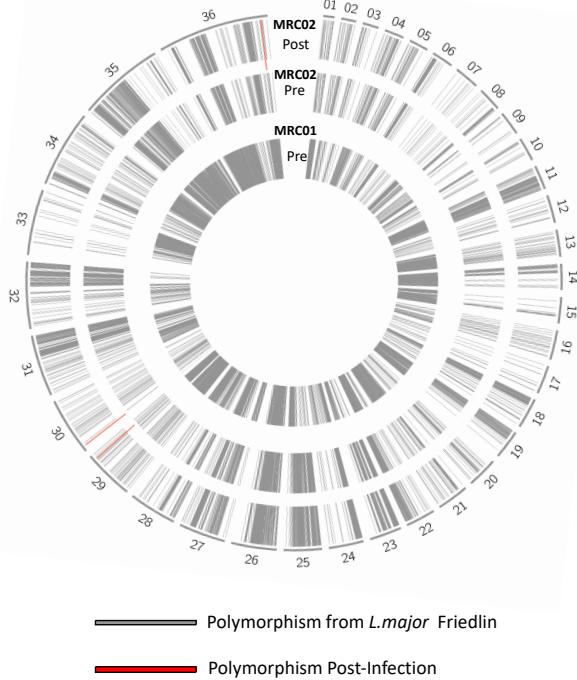
A

810

811

812

813


814

815

816

817

B

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

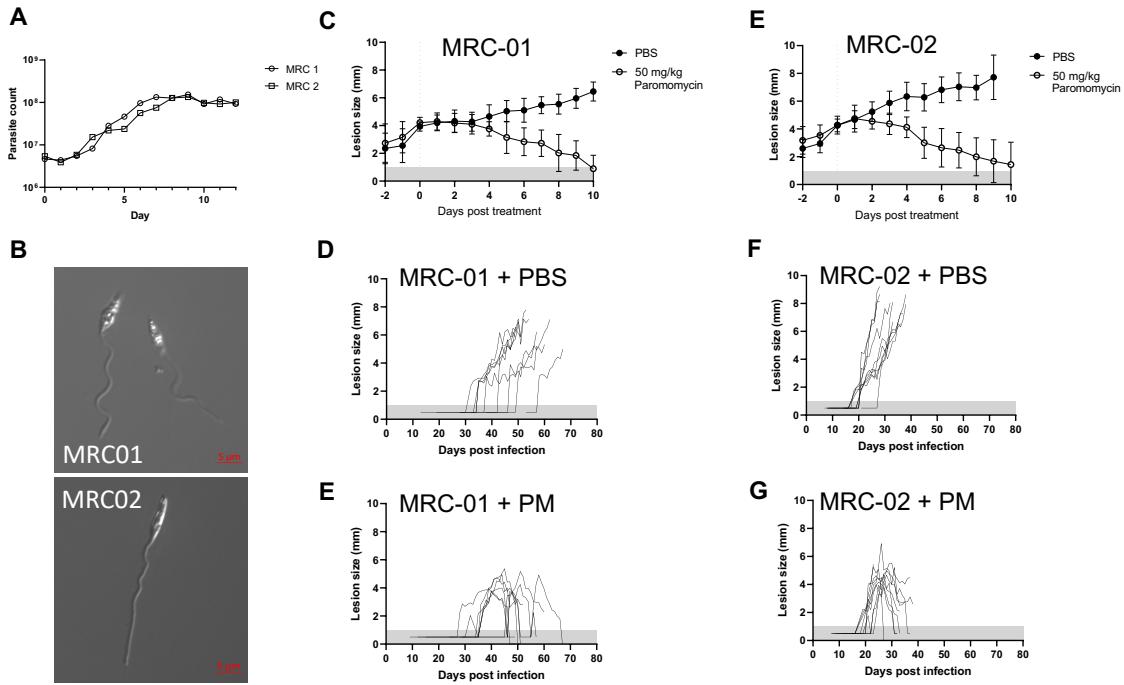
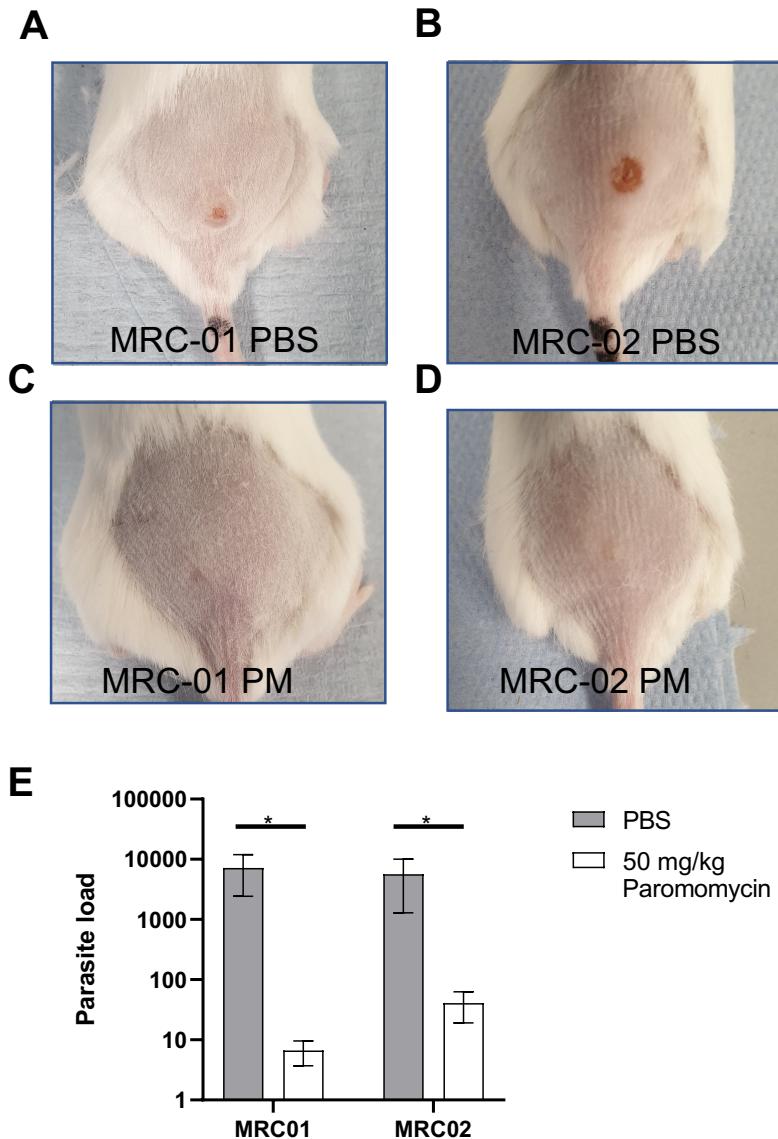

834

Figure 2: Characterisation of *L. major*_MRC-01 and *L. major*_MRC-02 by whole genome sequencing.

A. Phylogeny tree developed using all available whole genome sequences for *L. major* from different parts of the world and the location of the MRC-01 and MRC-02 isolates. The phylogeny tree was constructed using the *L. major* Friedlin strain as the reference strain.

B. Alignment map for *L. major* chromosomes 1 – 36. Grey bars represent location of single nucleotide polymorphism (SNPs) and indels where there are differences between the *L. major* MRC-01 and *L. major* MRC-02 and *L. major* MRC-02 (Post: following passage in BALB/c mice) and the reference strain *L. major* Friedlin. Red bars indicated chromosomal location of SNPs/indels differences between *L. major* MRC-02 (Pre-passage) and the *L. major* MRC-02 (Post-passage).

845
846


847
848
849
850
851

852 **Figure 3. Growth characteristics and drug sensitivity of *L. major*_MRC-01 and *L.*
853 *major*_MRC-02**

854 A. Growth curves for *L. major*_MRC-01 and *L. major*_MRC-02 in vitro. B.

855 Photomicrographs of purified PNA-negative metacyclcs of *L. major*_MRC-01 (top) and *L.*
856 *major*_MRC-02 (bottom). C-G. In vivo lesion development in BALB/c mice following
857 subcutaneous infection with 10⁶ metacyclcs of *L. major*_MRC-01 or *L. major*_MRC-02 in
858 the presence or absence of 50mg/kg paromomycin (PM) i.p. daily for 10 days. Treatment
859 was initiated when lesion diameter reached 3-4mm and mice were killed if lesion size
860 exceeded 9-10mm in any one direction. Data are presented in aggregated form (C, E)
861 normalised to the day of treatment initiation (shown as dotted vertical line) and as a timeline
862 for individual mice receiving vehicle alone (D, F) or PM treatment (E, G). Data are derived
863 from two independent experiments with 9-10 mice per group per strain. Data points within
864 horizontal shaded area represent lesion was palpable but not measurable at <1mm diameter.
865

866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911

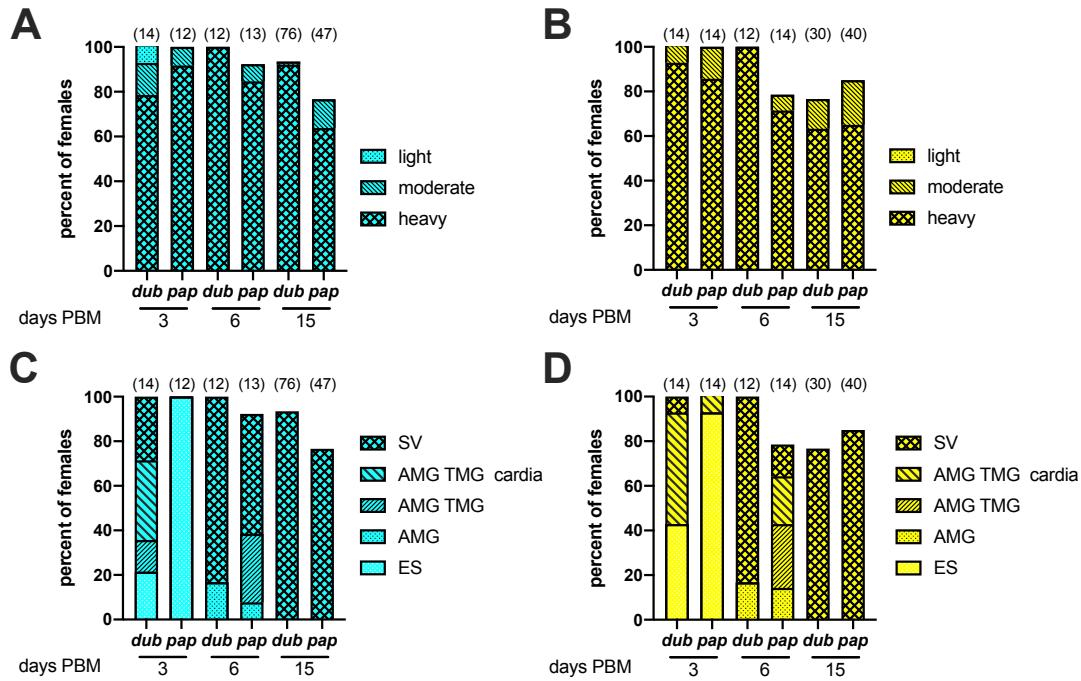


Figure 4. Response of BALB/c mice infected with *L. major*_MRC-01 and *L. major*_MRC-02 to paromomycin treatment

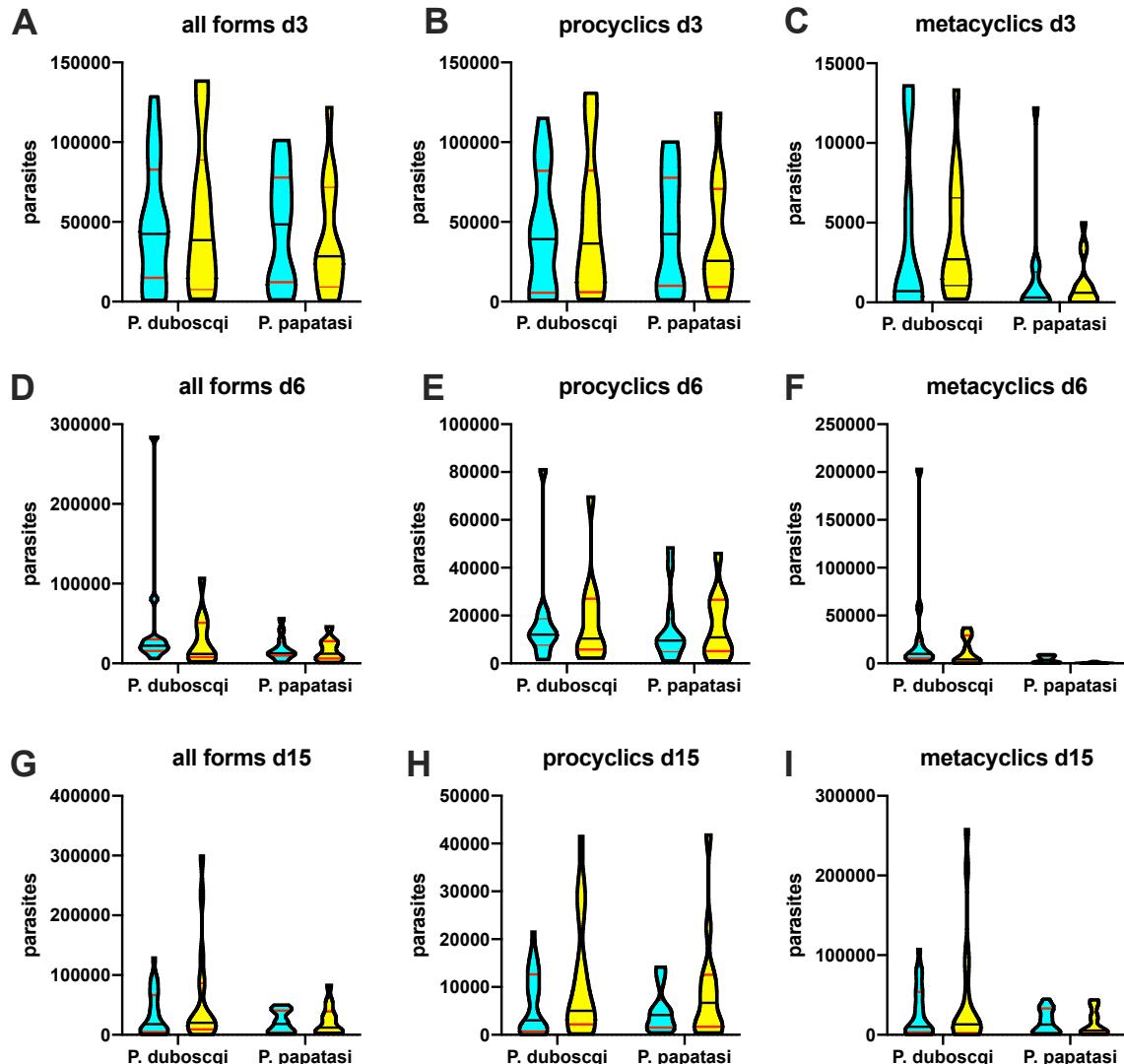
A-D. Representative photographs of BALB/c mice infected with *L. major*_MRC-01 (A, C) and *L. major*_MRC-02 (B, D) in absence of treatment (A, C) and at the end of 10 days PM treatment (B, D). **E.** Parasite loads in lesions from PM treated and untreated mice, as determined by qPCR. Data are derived from n=9-10 mice per group per strain and from two independent experiments

912

913

914

915


916

917

918 **Figure 5 Qualitative analysis of *L. major*_MRC-01 and *L. major*_MRC-02 development**
919 **in sand flies**

920

921 At the days indicated post blood meal (PBM), engorged *P. duboscqi* (*dub*) and *P. papatasi*
922 (*pap*) were dissected and parasite development was assessed. **A and B.** Percentage of flies
923 infected with *L. major* MRC-01 (A) and *L. major* MRC-02 (B) based on assessment of
924 intensity of infection. **C and D.** Development of *L. major* MRC-01 (C) and *L.*
925 *major* MRC-02 (D) as assessed by location within the gut; endoperitrophic space (ES),
926 anterior midgut (AMG), thoracic midgut (TMG) cardia and stomodeal valve (SV).
927 Data are pooled from three independent experiments and are shown as frequency of total
928 number of sand flies dissected. Number of sand flies dissected is shown above each bar.
929

930

931

932 **Figure 6. Quantitative analysis of *L. major* MRC-01 and *L. major* MRC-02**

933 development in sand flies

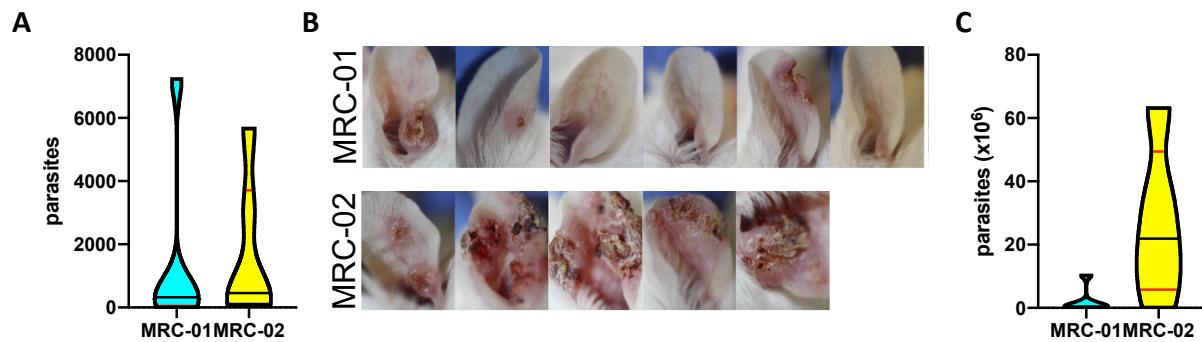
934

935 At the days indicated PBM, the number of *L. major* MRC-01 (blue) and *L. major* MRC-02 (yellow) parasites in engorged sand flies was quantified. **A-C.** Parasite loads in sand flies at day 3 PBM. **D-E.** Parasite loads in sand flies at day 6 PBM. **F-G.** Parasite loads in sand flies at day 15 PBM. Data are shown for all parasites (all forms, A, D, E) and separately for procyclics (B,E,H) and metacyclics (C,F,I). Data are presented as violin plots truncated at the max/min values, with median (black line) and quartiles (red line) indicated and reflect counts obtained from 9-25 individual sand flies of each species dissected per time point for each infection. Raw data can be found in **Table S1**.

943

944

945


946

947

948

949

950

951

952

953

954

955

956 **Figure 7. Transmission of *L. major*_MRC-01 and *L. major*_MRC-02 to BALB/c mice by**
957 **sand fly bite**

958

959 A. Parasites loads per ear determined by qPCR immediately post bite. Data is shown as
960 violin plot for n=6 ears per parasite strain. Additional data found in Table S3. B. Photographs
961 of ear lesions in individual mice 6 weeks post exposure to sand flies infected with *L.*
962 *major*_MRC-01 and *L. major*_MRC-02. For time course photographs, see **Figure S6**.
963 C. Parasite loads determined at 6 week post exposure to infected bites. Data is shown as
964 violin plot for n=5 (MRC-02) or 6 (MRC-01) ears per parasite strain.

965