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Abstract

Machine learning that generates biological hypotheses has transformative potential, but most
learning algorithms are susceptible to pathological failure when exploring regimes beyond the
training data distribution. A solution is to quantify prediction uncertainty so that algorithms can
gracefully handle novel phenomena that confound standard methods. Here, we demonstrate the
broad utility of robust uncertainty prediction in biological discovery. By leveraging Gaussian
process-based uncertainty prediction on modern pretrained features, we train a model on just 72
compounds to make predictions over a 10,833-compound library, identifying and experimentally
validating compounds with nanomolar affinity for diverse kinases and whole-cell growth
inhibition of Mycobacterium tuberculosis. We show how uncertainty facilitates a tight iterative
loop between computation and experimentation, improves the generative design of novel
biochemical structures, and generalizes across disparate biological domains. More broadly, our
work demonstrates that uncertainty should play a key role in the increasing adoption of machine

learning algorithms into the experimental lifecycle.
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Introduction

As unprecedented high-throughput assays continue to transform biology [1]-[6], the
ultimate goal of these studies remains the same: to generate hypotheses that elucidate important
features of biological systems [7], [8]. The growing volume of experimental data underscores the
importance of robust, systematic strategies to explore these results and identify experimental
conditions that give rise to a desirable biological outcome.

Machine learning algorithms offer a way to translate existing data into actionable
biological hypotheses [9]-[14]. However, while hypothesis generation often relies on a human
expert’s intuitive certainty or uncertainty about a given hypothesis, this intuition is not
automatically built into a machine learning algorithm, making these algorithms susceptible to
overconfident predictions, especially when access to training data is limited [15], [16]. Instead,
an intelligent algorithm that quantifies prediction uncertainty [17]-[21] could help focus
experimental effort on hypotheses with a high likelihood of success, which is especially useful
when new data acquisition is slow or arduous; or, the algorithm could alert a researcher to
experiments with greater novelty but also with a greater risk of failure [17].

While uncertainty is gradually becoming recognized as a critical property in learning
algorithms [22]-[24], in the biological setting, most machine learning studies simply do not
consider uncertainty, while those that do are limited to specific tasks or in silico validation [25]—
[29]. Given the growing interest in applying machine learning to biology, here we
comprehensively demonstrate the benefit of learning with uncertainty and highlight a general,
practical way to do so. One of our key methodological findings is that a class of algorithms based

on Gaussian processes (GPs) [18]-[21], trained on rich and modern features, provides useful
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quantification of uncertainty while also enabling substantive biological discoveries even with a
limited amount of training data.

Our main discovery task involves selecting small molecules based on predicted binding
affinity with mycobacterial and human kinases, a fundamental biochemical and pharmacological
task. Leveraging the robustness offered by prediction uncertainty, we train our models with
information from just 72 kinase inhibitors [1], perform an in silico screen of an unbiased 10,833-
compound chemical library [30], and, crucially, experimentally validate our machine-generated
hypotheses with in vitro binding assays. Remarkably, the GP-based models with a principled
consideration of uncertainty acquire a set of interactions that is unprecedented for compound-
target interaction prediction, with a hit rate of 90% and with highly potent affinities in the
nanomolar or sub-nanomolar range involving all of our tested kinases, including novel
interactions that are uncharacterized by previous studies.

A key benefit of our approach is that it facilitates a more interactive experience between
the human researcher and the learning algorithm. In particular, uncertainty prediction helps guide
iterative rounds of computation and experimentation that progressively explore unknown
biological search spaces [28], [31]. To illustrate this concept, we make uncertainty-based
predictions, experimentally validate those predictions, incorporate the new data into a second
prediction round, and discover another compound with potent nanomolar affinity for PknB, an
essential Mycobacterium tuberculosis (Mtb) kinase, with low Tanimoto similarity to any
compound in the training set.

We also demonstrate how robust, machine-generated hypotheses can spawn broader lines
of research by showing that a subset of our high affinity compounds leads to whole cell growth

inhibition of Mtb, the leading cause of infectious disease death globally [32]. We further use
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uncertainty to improve the generative design of novel small molecule structures based on high
biochemical affinity for a given target. Our work demonstrates how uncertainty-based prediction
can aid and augment the cycle of hypothesis generation and data collection at the heart of the
scientific method.

To illustrate the generality of our approach, we apply our same framework to a different
task relevant to protein engineering. We show that uncertainty can improve models of the fitness
landscape of Aequorea victoria green fluorescent protein (avGFP) [2], a workhorse tool in
biology. Using just a small amount of training data, we use uncertainty to prioritize
combinatorial mutants to avGFP based on predicted fluorescence, revealing important structural
elements underlying preserved or even enhanced fluorescence.

We find that principled prior uncertainty, which we implement with sample-efficient GPs
trained on modern features, improves learning-based prediction across a breadth of biological
tasks and domains. Our results demonstrate that uncertainty should be a critical consideration as
biological studies increasingly blend computational and experimental methods. This paper
provides a roadmap for how researchers might better incorporate learning algorithms into the

experimental life cycle.
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86 Results

87 Uncertainty prediction enables robust machine-guided discovery: Theory and a conceptual use

88 case

89 The critical concept in our study is that prediction “uncertainty” can help machine

90 learning algorithms more robustly explore novel biological hypotheses (Fig. 1A) [17]-[21]. For

91 example, consider the setting where a researcher is interested in finding a small molecule that

92 inhibits a kinase, a problem of biochemical and pharmacological importance. When a researcher

93 considers new inhibitors, some chemical structures might be similar to well-studied structures,

94 and therefore might also have similar behavior. However, there is an enormous space of

95  chemical structures with uncertain or unknown biochemistry. While notions of biochemical

96  “similarity” or “uncertainty” might be obvious to a human expert, a standard machine learning

97 algorithm has no corresponding notion of uncertainty, potentially leading to biased,

98 overconfident, or pathological predictions [15], [16], [22], [23], [33]-[35].

99 Two additional concepts also help to improve the practicality and performance of
100 uncertainty prediction for biological discovery. The first, “sample efficiency” (Fig. 1B) [19]-
101 [21], is the ability to make use of and quickly adapt to new data. Sample efficiency is especially
102 critical in domains where new data collection is limited or slow (for example, synthesizing and
103 testing customized small-molecule drugs [36]). The second concept is the notion of “pretraining”
104 [11], [37]. Pretraining automatically extracts meaningful, general features in a task-agnostic, or
105 anunsupervised, way (for example, pretrained features could be extracted from a large database
106 of chemical structures or protein sequences without information on compound-protein
107 interactions). Pretrained features can subsequently improve the performance of uncertainty

108 prediction within a more specific downstream task (Fig. 1C).
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109 GPs are prime candidates for machine learning-based hypothesis generation since they
110 naturally quantify prediction uncertainty [18], are highly sample-efficient [21], and can readily
111 incorporate pretrained features. GPs allow a researcher to specify high uncertainty when the

112 training distribution provides little information on unseen test examples, which is referred to as
113 epistemic uncertainty (Fig. 1) [17]. For example, when predicting compound-kinase affinity, a
114 reasonable prior uncertainty would assign most of the probability to low affinity but still assign a
115 small probability to high affinity. Rather than outputting a single point prediction for each

116 datapoint, GPs output a probability distribution (i.e., a Gaussian distribution), where a location-
117 related statistic, like the mean, can be used as the prediction value and a dispersion-related

118 statistic, like the standard deviation, can be used as the uncertainty score.

119 As datapoints become more distal to the training set, GP uncertainty also grows to

120 approach the prior uncertainty, analogous to human uncertainty increasing on examples that

121 deviate from existing knowledge (Fig. 1) [17]-[21]. A researcher can then use an acquisition

122 function to select predictions with both good predictive scores and low uncertainty for further

123 experimental validation. A straightforward and widely-used acquisition function, called the

124 upper confidence bound (UCB), adds the prediction and uncertainty scores with a weight factor
125 controlling the importance of the uncertainty [17], [38]. An acquisition function with a high j
126 prioritizes low uncertainty; in contrast, a low £ deprioritizes uncertainty, and £ = 0 ignores

127 uncertainty (Methods).

128 Uncertainty prediction enables robust machine-guided discovery: Application to compound-
129 kinase affinity prediction
130 We therefore sought to assess, first, whether modelling uncertainty is competitive against

131 standard baselines (i.e., we suffer no performance loss when incorporating uncertainty
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132 prediction) and, second, whether uncertainty prediction offers any real advantage when

133 prioritizing biological hypotheses for a researcher to perform. As a test case for machine-guided
134 discovery, we decided to initially focus on predicting binding affinities between small molecule
135 compounds and protein Kinases. We select this particular application since kinases have diverse
136 pharmacological implications that include cancer and infectious disease therapeutics [39]-[42]
137 and good quality compound-kinase affinity training data exists for a limited number of

138 compounds [1].

139 Before committing resources to experimental validation of compound-kinase affinity
140 predictions, we first set up an in silico simulation of the prediction and discovery process. We
141 obtained a publicly-available dataset [1] containing binding affinity measurements, within a 0.1
142 to 10,000 nanomolar (nM) range, of the complete set of kinase-compound pairs among 72

143 compounds and 442 unique kinase proteins (the dataset contained 379 unique kinase genes with
144 multiple mutational variants for some of the genes). We set up a cross-validation-based

145 simulation by separating the known data into training and test data (Supplementary Fig. 1A).
146 Importantly, to simulate out-of-distribution prediction, we ensured that approximately one-third
147 of the test data contained interactions involving compounds not in the training data, one-third
148 contained interactions involving kinase genes not in the training data, and one-third contained
149 interactions involving compounds and kinase genes not in the training data (Supplementary
150  Fig. 1A).

151 Our main set of benchmarking methods leverages unsupervised pretraining via state-of-
152 the-art neural graph convolutional-based compound features (pretrained by the original study
153 authors on ~250K small molecule structures) [43] and neural language model-based protein

154 sequence features (pretrained by the original study authors on ~21M protein sequences) [44]
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155 (Methods). Subsequent regression models use a concatenation of these features to predict Kd

156 binding affinities (Fig. 2A).

157 We benchmark methods that also learn some notion of prediction uncertainty. Our first
158 uncertainty model fits a GP regressor [18], [45] to the training set. For a given compound-kinase
159 pair, the GP provides a Kd prediction in the form of a Gaussian distribution, where we use the
160  mean of the Gaussian as the prediction value and the standard deviation as the measure of

161 uncertainty. Our second method first fits a multilayer perceptron (MLP), followed by fitting a GP
162 to the residuals of the MLP predictions (MLP + GP) [46]. This results in a hybrid model where
163 the prediction is the sum of the MLP and the GP estimates, while the GP variances can be used
164 as the uncertainty scores. We also benchmark two other methods that attempt to augment neural
165  networks with uncertainty: a Bayesian multilayer perceptron (BMLP) [23], [47] and an ensemble
166 of MLPs that each emits a Gaussian distribution (GMLPE) [22].

167 We also benchmark three baseline methods without uncertainty. On the same neural

168 pretrained features, we test an MLP, also known as a densely-connected neural network [48],

169 [49] and collective matrix factorization (CMF), a model often used to recommend shopping

170 items for potential buyers that can also recommend drugs for potential targets [50]-[53]; variants
171 of both models have seen extensive use in previous compound-target interaction prediction

172 studies. Lastly, to assess the benefit of our unsupervised pretraining-based features, we also train
173 DGraphDTA, a graph convolutional neural network designed specifically for compound-target
174 interaction prediction [54], from end-to-end on a simpler set of features.

175 The results of our cross-validation experiment using standard, average-case performance
176 metrics show that GP-based models are consistently competitive with, and often better than,

177 other methods based on average-case performance metrics. The Pearson correlations between the
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178 predicted Kds and the ground truth Kds for our GP and MLP + GP models over all test data are
179 0.35and 0.38, respectively (n = 24,048 compound-kinase pairs), in contrast with 0.26, 0.23, and
180 0.21 for the MLP, CMF, and DGraphDTA baselines, respectively (Supplementary Fig. 1B).
181 Good regression performance of GP-based methods is also consistent across all our metrics

182 (Pearson correlation, Spearman correlation, and mean square error) when partitioning the test set
183 based on exclusion of observed compounds, kinases, or both (Supplementary Fig. 1B).

184 Importantly, we also observed that, in this relatively data-limited training setting, rich
185 pretrained features combined with a relatively lightweight regressor (e.g., a GP or MLP)

186 outperformed a more complex regressor architecture (i.e., DGraphDTA) trained end-to-end on
187 simpler features (Supplementary Fig. 1B). This provides evidence that pretraining with state-of-
188 the-art unsupervised models contributes valuable information in a data-limited setting.

189 Where robust GP-based prediction has a substantially large advantage is in prioritizing
190  compound-kinase pairs for further study. Importantly, in contrast to average-case metrics,

191 focusing on top predictions directly mimics biological discovery, since researchers typically

192 choose only a few lead predictions for further experimentation rather than testing the full,

193 unexplored space. In GP-based models, we observed that predictions with lower uncertainty are
194 more likely to be correct, whereas high-uncertainty predictions have worse quality

195 (Supplementary Fig. 1C), allowing us to prioritize compound-kinase pairs with high predicted
196 affinity and low prediction uncertainty (Methods). In contrast, models without uncertainty like
197 the MLP do not distinguish confident and uncertain predictions (Supplementary Fig. 1C). The
198 top compound-kinase pairs acquired by the GP-based models have strong, ground-truth

199 affinities, while the other methods with poorly calibrated or nonexistent uncertainty

200 quantification struggle to prioritize true interactions and acquire interactions with significantly
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201 higher Kds (Fig. 2B and Supplementary Fig. 2A). Performance of the GP-based models

202 decreases when ignoring uncertainty (Supplementary Fig. 2B), suggesting that GP uncertainty
203 helps reduce false-positives among top-acquired samples; however, other methods (BLMP and

204 GMLPE) seem to have trouble learning meaningful uncertainty estimates (Supplementary Fig.

205 2B).

206 Prioritization of compound-kinase interactions based on predicted affinity

207 Based on the success of our cross-validation experiments, particularly when using

208 theoretically principled GP-based models, we then sought to perform machine learning-guided
209 biological discovery of previously unknown compound-kinase interactions. For this task, we use
210 all information across the pairs of 72 compounds and 442 kinases [1] as the model training data.
211 For the search space of compounds outside of the training set, we use a collection of 10,833

212 compounds from the ZINC database [30] that is commercially available through the Cayman

213 Chemical Company, allowing us to purchase high-quality compound samples for further

214 validation experiments. Chemicals were selected solely on the basis of commercial availability,
215 regardless of potential associations with kinases or any other biochemical property. The resulting
216 “ZINC/Cayman library” consists of heterogeneous compounds (molecular weights range from 61
217 to 995 Da) with a median Morgan fingerprint Tanimoto similarity of 0.09; additional statistics
218 for this library can be found in Supplementary Table 1.

219 In theory, out-of-distribution predictions with low predicted Kd and low uncertainty (Fig.
220  2C,D) will also have low in vitro Kds. Before validating our predictions, we first wanted to

221 ensure that the empirical behavior of our uncertainty models matched our intuition: namely, that
222 unknown compounds very different from any compound in the training set would also have high

223 associated uncertainty. To do so, we visualized the 72 compounds from the training set [1] and

10
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224 the 10,833 unknown-affinity compounds using a two-dimensional t-distributed Stochastic

225 Neighbor Embedding (t-SNE) [55] of the structure-based compound feature space. The

226 embedding shows large regions of the compound landscape that are far from any compounds

227 with known affinities (Fig. 2E).

228 We can then use a GP, trained on just 72 compounds, to assign a predicted Kd affinity
229  (for a given kinase target) to each compound in the ZINC/Cayman library, as well as a

230 corresponding uncertainty score. When we color the points in the visualization by uncertainty,
231 consistent with our intuition, GP uncertainties are lower in regions near compounds with known
232 affinities and higher in regions with many unknown-affinity compounds (Fig. 2F), with high

233 correlation between the uncertainty score and test compound distance to its Euclidean nearest
234 neighbor in the training set (Spearman r = 0.87, n = 10,833 compounds; Methods). The GP

235  prioritizes compounds within the low uncertainty regimes that also have high predicted binding
236 affinity (Fig. 2G and Supplementary Fig. 3). In contrast, the MLP assigns high priority to many
237 compounds far from the known training examples (Fig. 2H and Supplementary Fig. 3), which
238 is most likely due to pathological behavior on out-of-distribution examples. For comparison,

239 CMF seems unable to learn generalizable patterns from the small number of training compounds

240 (Fig. 21 and Supplementary Fig. 3).

241 Uncertainty prediction discovers sub-nanomolar compound-kinase biochemical activity

242 We then performed machine-guided discovery of compound-kinase interactions. Since
243 our in vitro binding assays are optimized to screen many compounds for a given kinase, we

244 focused our validation efforts on a set of four diverse kinases: human IRAKA4, a serine/threonine
245  kinase involved in Toll-like receptor signaling [56]; human ¢c-SRC, a tyrosine kinase and

246 canonical proto-oncogene [57]; human p1109, a lipid kinase and leukocytic immune regulator

11
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247 [58]; and Mtb PknB, a serine/threonine kinase essential to mycobacterial viability [59]. These
248 kinases have well-documented roles in cancer, immunological, or infectious disease [39]-[42].
249 To compare prediction with and without uncertainty, we used either our GP or MLP

250 models to acquire compounds from the ZINC/Cayman library with high predicted affinity for
251 each of the four kinases of interest. We validated the top five predictions returned by the GP or
252 MLP for each kinase using an in vitro biochemical assay to determine the Kd (Methods).

253 We observed that none of the predictions acquired by the MLP had a Kd of less than the
254 top tested concentration of 10 uM (Fig. 3 and Supplementary Table 2), consistent with out-of-
255 distribution prediction resulting in pathological model bias (Supplementary Fig. 2). In contrast,
256 the GP yielded 18 compound-kinase pairs with Kds less than 10 uM (out of 20 pairs tested, or a
257 hit rate of 90%), 10 of which are lower than 100 nM (Fig. 3 and Supplementary Table 2).

258 Notably, GP acquisition yielded sub-nanomolar affinities between K252a and IRAK4 (Kd = 0.85
259 nM) and between P1-3065 and p1105 (Kd = 0.36 nM), automating discoveries that previously
260  had been made with massive-scale screens or expert biochemical reasoning [42], [60]. Some

261 compounds had predicted and validated affinities for multiple kinases, such as K252a, an

262 member of the indolocarbazole class of compounds, many of which have broad-spectrum kinase
263 inhibition [1]. Other compounds were only acquired for one of the kinases, including P1-3065 for
264 pl1108, WS3 for c-SRC (Kd = 4 nM), and SU11652 for PknB (Kd = 76 nM). Interestingly, the
265  latter two of these interactions do not seem to have existing experimental support; WS3 was

266 developed as an inducer of pancreatic beta cell proliferation [61] and SU11652 was developed
267 for human receptor tyrosine kinase inhibition [62].

268 To further assess the impact of uncertainty on prediction quality, we also performed

269 PknB acquisition with another GP-based model (MLP + GP) and varied the weight 5 on the

12
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270 uncertainty (Methods). We validated the top five predictions from the GP and MLP + GP at =
271 1 (tolerates some uncertainty) and g = 20 (prefers lowest Kds with a very low tolerance for

272 uncertainty), as well as the top five predictions from the GP at 5 = 0 (i.e., ignoring uncertainty).
273 At =20, the MLP + GP acquired a similarly potent set of compounds as the GP. Tolerating
274 greater amounts of uncertainty, or ignoring it completely, led to more false-positive predictions
275 (Fig. 3B).

276 The ability for GP-based models to yield (sub-)nanomolar affinity compound-kinase pairs
277 in a highly out-of-distribution prediction task provides strong experimental support for our

278 uncertainty-based learning approach. We note that training our models on information from 72
279 compounds to make predictions over a 10,833-compound library is a much more challenging
280  task than any previously reported drug-target interaction prediction setting [48]-[52]. Moreover,
281 among previous studies that performed experimental validation of machine learning-predicted
282 compound-target interactions, none report Kds or IC/EC50s below the micromolar range [48],
283 [52], suggesting that our approach yields most potent interactions discovered by compound-

284 target interaction prediction to date.

285 A notable advantage of GP-based uncertainty quantification is that it enables an absolute
286 assessment of prediction quality. For example, all predictions with a mean less than 10 uM (our
287 top-tested concentration) and an interquartile range less than 2 uM resulted in true positive hits
288 (Supplementary Fig. 5). In contrast, more dispersed prediction distributions had higher

289 variability in the potency of the true binding interaction including false positives

290 (Supplementary Fig. 5), suggesting that our GP-based models make better predictions when

291 they are more confident. Uncertainty adds an interpretable dimension to machine-generated

13
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292 predictions; for example, a researcher with a low tolerance for false positives might ignore a

293 generated hypothesis with a low predicted Kd but a high prediction uncertainty.

294 Anti-Mtb activity of compounds with validated PknB biochemical activity

295 Machine-generated hypotheses also add value by stimulating follow-up biological

296 research that provides insights beyond the initial prediction problem. For example, given the

297 novel, potent interactions discovered by our models, we sought to further assess if the

298 compounds had any broader relevance beyond biochemical affinity with the protein molecule
299 itself.

300 PknB is a kinase that is essential to Mtb viability [59]. Bacterial kinases are less well

301 studied than human (or other mammalian) kinases [63], [64] but are nonetheless important

302 therapeutic targets [39], [59], [65], especially in antibiotic-resistant bacterial strains. Most

303 importantly, tuberculosis remains the leading cause of infectious disease death globally [32],

304 underscoring the importance of novel antibacterial therapies. Given the essentiality of PknB and
305 ourinsilico identification of PknB-binding compounds, we sought to examine if the compounds
306 with high binding affinity to PknB would have any impact on mycobacterial growth. This would
307 not be guaranteed since factors like cell wall permeability or intracellular stability were not

308 explicitly encoded in the training data.

309 We focused on the compounds with a Kd less than 100 nM: K252a (Kd = 11 nM),

310 TG101209 (Kd =71 nM), and SU11652 (Kd = 76 nM). Using the colorimetric, resazurin

311 microtiter assay (alamar blue) [39], [66], we determined the minimum inhibitory concentration
312 (MIC) of these compounds as well as rifampicin, a frontline antibiotic for tuberculosis [32]

313 (Methods); the MICs for these compounds with H37Rv are shown in Supplementary Table 3.

314 We observed that K252a and SU11652 inhibited the growth of H37Rv compared to a dimethyl

14
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315 sulfoxide (DMSO) vehicle control (one-sided t-test P-value of 7.0 x 108 for K252a and 3.9 x 10°
316 & for SU11652, n = 3 replicate cultures per condition) (Fig. 4A and Supplementary Fig. 4A).
317 SU11652 is a well-documented inhibitor of human receptor tyrosine kinases including PDGFR,
318 VEGFR, and Kit [62]. TG101209 did not inhibit growth of H37Rv (one-sided t-test P-value of
319 0.11, n = 3 replicate cultures per condition) (Fig. 4A and Supplementary Fig. 4A), perhaps due
320 to low cell permeability [67], [68]. These results were corroborated using additional validation
321 where Mtb expressing the luxABCDE cassette (luxMtb) was incubated with increasing

322 concentrations of K252a, SU11652, and TG101209 (Supplementary Fig. 4B; Methods).

323 We further validated these results in a more complex, host-pathogen model. We utilized a
324 previously described assay for monitoring intracellular growth where macrophages are infected
325 with luxMtb and luminescence is measured as a proxy of bacterial growth [69], [70] (Methods).
326 We infected macrophages with luxMtb for 4 hours prior to the addition of compounds dissolved
327 incell culture media. Consistent with our axenic culture experiments, treatment with K252a and
328 SU11652 resulted in less luminescence as compared to DMSO (one-sided t-test P-value of 2.9 x
329 10 for K252a and 2.8 x 10 for SU11652; n = 3 replicate cultures per condition) (Fig. 4B,C).
330 In examining the literature for prior work on compounds targeting PknB, we identified support
331 for K252a as an inhibitor of PknB kinase activity and Mtb growth [59], [65]. These previous

332 studies and our results nominate future experiments to further investigate the biochemistry of

333 PknB and the potential use of K252a and SU11652 as scaffolds for PknB-related drug

334 development. These results also illustrate how learning algorithms with uncertainty can stimulate
335 productive follow-up hypotheses, in this case highlighting molecular structures that should be
336 further investigated for therapeutic relevance to the leading cause of infectious disease death

337 among humans.
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338 Active learning with uncertainty reveals a structurally remote compound with biochemical

339 activity with PknB

340 Follow-up analyses can also take the form of additional prediction rounds that

341 incorporate the results of previous experiments, a setting in which sample-efficiency is

342 paramount. This iterative cycle involving prediction, acquisition, model retraining, and

343 subsequent prediction and acquisition is referred to as “active learning” [28], [31]. In this vein,
344 we conducted a second round of PknB binding affinity predictions after training on both the
345  original dataset and the results from our first round of in vitro affinity experiments (Fig. 3B). We
346 trained GP and MLP models on this data and again acquired the top five predictions made by
347 each (Methods).

348 All MLP-acquired compounds again had a PknB Kd greater than 10 uM. Although the
349 GP uncertainty scores increased by as much as a factor of 2 from the first round

350  (Supplementary Fig. 5), indicating hypotheses that explore riskier, more novel regions of the
351 compound landscape, we still found that one of the GP-acquired compounds, IKK-16, binds
352 PknB with a Kd of 22 nM, the second lowest PknB Kd over all our experiments

353 (Supplementary Table 2). IKK-16 was originally developed as an inhibitor of human IxB

354 kinases (IC50 values of 200, 40, and 70 nM for IKKa, IKKp, and IKK complex, respectively),
355 with in vivo activity in an acute murine model of cytokine release [71]. IKK-16 had an

356 acquisition ranking of 24 during the first round but a ranking of 2 in the second round (Fig. 4D),
357 indicating that the GP efficiently adapted its beliefs based on a handful of new datapoints to

358 make a successful second-round prediction. Notably, among all training compounds in both the
359 first and second prediction rounds, the most similar structure to IKK-16 is imatinib with a

360  Tanimoto similarity of 0.31 (Fig. 4E and Supplementary Table 4), indicating that IKK-16 is
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361 structurally remote to any compound in the training data; for reference, a recently used novelty
362 threshold was a Tanimoto similarity of 0.40 [12].

363 We could not find existing literature linking IKK-16 to PknB, suggesting a new potential
364 biomedical dimension for IKK-16 and related small molecules. These results also illustrate how
365  uncertainty combined with an active learning strategy can explore regions of the compound

366 space that are more distal to the original training set and still provide successful predictions.

367 Uncertainty prediction improves generative design of novel compound structures

368 While our discovery experiments leveraged existing, commercially available compounds,
369  our robust predictive models can also help us design new compound structures with high affinity
370 for PknB. In particular, we are interested in a generative design paradigm. As in all design

371 problems, a designer wishes to create a new object with a desired property. In machine-assisted
372 generative design, a generator algorithm is responsible for generating novel objects while an

373 evaluator algorithm prioritizes objects that best fulfill the desired property. In theory, uncertainty
374 prediction enables more robust evaluators that select designs that better reflect the desired,

375 ground-truth property.

376 We performed generative design of novel small molecule structures that have strong

377 affinity for PknB. Our generation strategy was based on sampling from the latent space of a

378 variational autoencoder (VAE) [72], with an architecture optimized for chemical structures

379 (JTNN-VAE) [43] (Methods). We trained a JTNN-VAE to reconstruct the distribution of the

380 entire ZINC/Cayman dataset. We randomly sampled from the JTNN-VAE latent space and

381 decoded the result to obtain an “artificial library” of 200,000 compound structures that do not
382 exist in the ZINC/Cayman dataset (we note that our model for generating chemical structures is

383 distinct from the model used to encode structural features). We used the MLP, MLP + GP, and
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384 GP to rank compounds within this artificial library for predicted affinity with PknB, taking

385  uncertainty into account for the latter methods. We emphasize that the generative model learned
386 across the ZINC/Cayman dataset is still highly mismatched from the 72-compound training

387 distribution of the GP, MLP + GP, and MLP. We then used molecular docking, an orthogonal
388 method for binding affinity prediction, to simulate the true binding affinity between the

389 generated compound and the PknB active site. Since consistency across disparate docking

390  scoring functions corresponds to better prediction of true biochemical affinity [73], we use six
391 scoring functions to compare generated designs selected with and without uncertainty [74]-[78].
392 The molecules prioritized by the GP-based methods had significantly higher affinity than
393 the MLP baseline across all scoring functions, based on one-sided Welch’s t-test P-values at a
394  false discovery rate (FDR) less than 0.05 [79] (Fig. 5A). There was no significant difference

395  between docking scores of GP-based methods and of known high-affinity compounds, used as
396 positive controls (Fig. 5A). Visual inspection of the best designs predicted by the GP and by

397 docking reveals structures similar to known inhibitors (Fig. 5B), while some of the structures
398 prioritized by the MLP appear pathological (Fig. 5C). For the compounds with strong binding
399 affinity, visualizing the binding poses suggested by the docking algorithm shows concordance
400 with a known crystallography-determined small molecule pose [80] (PDB: 2FUM) (Fig. 5D).
401 These results show how uncertainty-based robustness in an out-of-distribution setting can better

402 guide the generative design of new chemical structures.

403 Generality of uncertainty prediction to disparate biological domains
404 Importantly, because our approach to machine-guided discovery is general, it can also be
405 applied to diverse domains beyond kinase affinity prediction. Many biological problems, while

406 seemingly disparate, are fundamentally similar in that they are based on predicting the value of
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407 target variables based on a set of feature variables (Fig. 6A; compare to Fig. 2B). We therefore
408 wanted to demonstrate generality by applying our same learning paradigm to predict the

409 brightness of fluorescent proteins based on protein sequence features (Methods), potentially

410 enabling an algorithm that can optimize, in silico, the fluorescence of an existing protein design
411 [14], [81].

412 We obtained a high-throughput mutagenesis dataset involving avGFP [2]. We trained

413 machine learning models to predict fluorescent brightness based on protein sequence features,
414 where we used the exact same pretrained embedding model as in our Kinase experiments [44]. To
415 simulate a data-limited scenario, we only gave the model access to sequences with at most one
416 amino acid mutation compared to wild-type (n = 1,115 sequences) (Fig. 6B); in contrast, our test
417 set consisted of sequences with two or more mutated residues (n = 52,910 sequences), simulating
418 ascenario where an algorithm is asked to make predictions over a more combinatorially complex
419 space. We use the same pretrained learning models as in our kinase cross-validation experiments
420 except for DGraphDTA, a domain-specific model, and CMF, which does not naturally apply to
421 this problem setup; instead, we use ordinary least squares (OLS) regression, a better-suited linear
422 model, as a replacement benchmark (Methods).

423 We once more observed that GP-based models acquired mutant sequences with

424 significantly higher average brightness than other methods (Fig. 6C). The GP also performs well
425 in the average case, with an acquisition ranking that is strongly and significantly correlated with
426 measured fluorescence (Spearman r = 0.78, two-sided P < 10%, n = 52,910 sequences) (Fig.

427 6D), which is competitive with or better than baseline methods, many of which overfit the small
428 training dataset (Supplementary Fig. 6A). While OLS regression was also robust to overfitting

429 in the average case, GP-based uncertainty results in substantially fewer false positive predictions
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430 among top-acquired sequences (Fig. 6C and Supplementary Fig. 6B). As in the kinase

431 inhibition cross-validation experiments, we observed that GP-based uncertainty helped reduce
432 false-positive predictions among top-acquired samples compared to predictions without

433 uncertainty (Supplementary Fig. 6C). These results suggest how predictive (and robust)

434 algorithms could help reduce the complexity of mutagenesis experiments traditionally used to
435 optimize new protein designs [2], [82].

436 Structurally, many GP-acquired mutations are to surface residues (Fig. 6E), consistent
437 with previous observations that buried residue mutations are more likely to be deleterious to

438 fluorescence [2]. A notable exception is high GP prioritization of mutations to T62 (Fig. 6E), a
439 buried residue essential to chromophore synthesis [83]. Interestingly, the GP prioritized alanine
440 or serine substitutions (i.e., T62A or T62S) that preserve and even confer higher fluorescence
441 (e.g., a T62A/L178I mutant, the second sequence in the GP acquisition ranking, has a log-

442 fluorescence of 3.9, versus 3.7 for wild-type). While surface residue mutations are more likely to
443 be neutral, an algorithm aimed at enhancement might focus on these buried residues that directly
444 influence fluorescence.

445 Robust acquisition is useful for highlighting important examples for deeper analysis, and
446 our experiments show that uncertainty improves the robustness of acquisition in different

447 biological settings. We also see that pretrained features and GP-based modeling can improve

448 data-limited performance across disparate biological applications, strengthening the evidence of
449 the broad utility of our learning paradigm.

450
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451 Discussion

452 Biological discovery often requires making educated hypotheses with limited data under
453 substantial uncertainty. In this study, we show how machine learning models that generate

454 biological hypotheses can overcome such challenges. In particular, our results suggest a broadly
455 useful paradigm: neural pretrained features followed by a task-specific supervised GP-based
456 model. We show that uncertainty provides a useful guard against overfitting and pathological
457 model bias, sample efficiency enables successful iterative learning across a broad spectrum of
458 experimental scales, and pretraining elevates our uncertainty models to state-of-the-art

459 performance.

460 While our study provides concrete illustrations of uncertainty prediction in biochemical
461 activity and protein engineering tasks, uncertainty could also be impactful in many other areas
462 given the complexity of biological structures and systems. The generality of our approach is a
463 notable advantage and stands to benefit from many recent advances in biological representation
464 learning, such as, for example, gene embedding approaches that learn information from

465  coexpression or protein interaction networks [84]. These features can be readily coupled with a
466 GP-based regressor to predict a desirable phenotype; for example, a GP could be trained based
467 on gene embeddings to prioritize CRISPR experiments or other genetic perturbations with the
468 goal of inducing a particular phenotype (for example, cellular fitness or surface marker

469 expression), which is especially useful when acquiring from a combinatorially large

470 interventional search space [85].

471 Our work highlights GP-based methods as particularly useful. GPs enable theoretically
472 principled incorporation of prior information, can use standard kernels to approximate any

473 continuous function [86], and preserve and even improve modelling performance in complex,
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474 nonlinear settings even with limited data. Despite this, GPs have received relatively less attention
475 in learning-based discovery than other methods, like deep learning methods based on large

476 neural network architectures. In our experiments, GP-based methods trained with rich, modern
477 features are sample-efficient and provide well-calibrated uncertainty scores over other nonlinear
478 approaches such as neural ensembles or Bayesian neural networks. A notable methodological
479 finding from our study is that the consistently strong performance of a GP fit to MLP residuals
480 (i.e., MLP + GP) [46] suggests a relatively straightforward way to augment a neural network

481 with uncertainty. There is also much room for methodological development of uncertainty

482 prediction for biological discovery, particularly through related efforts to improve the

483 generalizability of learned models through transfer learning and zero-shot learning [87]-[89].
484 Importantly, uncertainty-guided prediction provides an efficient alternative, in both time
485 and resources, to large-scale screening or manual trial and error. Focused experimental decision-
486 making is especially important in settings where high-throughput screens are not easy or even
487 tractable. For example, a researcher might first obtain a training dataset with a tractable

488 experiment (for example, a biochemical assay, or a single-gene reporter readout) and follow up a
489 few machine-guided predictions with more complex experiments (for example, involving

490  pathogenic models like Mtb-infected macrophages, or more complex designs like a high-

491 throughput single-cell profiling experiment).

492 While we mostly focus on “exploitation,” i.e., prioritizing more confident examples that
493 are likelier to yield positive results, researchers can modify the acquisition function to devote
494 more of the experimental budget to “exploration.” With uncertainty, researchers can control the
495  “‘exploration/exploitation” tradeoff to choose experiments that tolerate a higher risk of failure in

496 order to probe novel regimes [17], [18]. For example, in the drug discovery setting, novelty is
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497 important since human-designed drugs are often appraised based on their creativity (in addition
498 to effectiveness) [90], [91]. Novelty is also important across biological domains, such as

499 designing artificial proteins not found in nature [14] or discovering new transcriptional circuits
500  [85]. Uncertainty helps define the boundaries of an algorithm’s knowledge, beyond which human
501 creativity can take over.

502 Although initializing a model with some training data is helpful, it is also possible to

503 begin with zero training data (all predictions might therefore begin as equally uncertain). As

504 more data is collected, a sample-efficient model with uncertainty can progressively yield better
505 and more confident predictions. This is the iterative cycle of computation and experimentation at
506 the heart of active learning [28], [31], for which we provide a proof-of-concept example in this
507 study.

508 More generally, we anticipate that iterative experimentation and computation will have a
509 transformative effect on the experimental process. In addition to learning from high-throughput
510  datasets, we also envision learning algorithms working intimately alongside bench scientists as
511 they acquire new data, even on the scale of tens of new datapoints per experimental batch. As we
512 show, using machine learning to generate novel hypotheses will require a principled

513 consideration of uncertainty.
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Figure 1: Robust uncertainty prediction for machine-guided discovery

(A) When a machine learning model encounters an example like nothing in its training
set, its behavior is usually undefined. A way to improve robustness is for the model to report
high uncertainty on such examples. Rather than output a single point prediction for each example
in a given domain, more robust methods, such as a Gaussian process (GP), model the aleatoric
(or statistical) uncertainty of observations and the epistemic (or systematic) uncertainty that

comes from a lack of data. In a GP, the epistemic uncertainty of unexplored regions of the
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domain is explicitly encoded as a prior probability. (B) GPs can readily update their beliefs with
just a handful of new datapoints. (C) Using modern, neural pretrained feature representations, a
GP can achieve state-of-the-art prediction performance even with limited data. Knowing
uncertainty helps guide a researcher when prioritizing experiments and, when combined with
sample efficiency, enables a tight feedback loop between human data acquisition and algorithmic

prediction.
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Figure 2: Computational prediction of compound-kinase affinity
(A) We desire to predict compound-kinase affinity based on features derived from

compound structure and kinase sequence and use these predictions to acquire new interactions.
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Incorporating uncertainty into predictions is especially useful when the data distributions of the
training and test sets are not guaranteed to be the same. (B) True Kds of the top five and twenty-
five prioritized compound-kinase pairs (Methods) for each model over five model initialization
random seeds. Bar height indicates mean Kd; statistical significance was assessed with a one-
sided Welch’s t-test P-value at FDR < 0.05. (C) Predictions augmented with uncertainty scores
enable a researcher to perform experiments in high confidence, high desirability regions
(“exploitation”) or to probe potentially high desirability regions with less model confidence
(“exploration”). (D) Each point represents a compound in the ZINC/Cayman library with an
associated predicted Kd (with PknB) and uncertainty score outputted by a GP (normalized by the
prior uncertainty), colored by the order the compound appears according to our acquisition
function. We use an acquisition function (Methods) that prioritizes high confidence, low Kd
predictions. (E) A t-SNE visualization of the compound feature space reveals regions of the
compound landscape without any representative compounds with known PknB affinity
measurement. (F) A GP assigns lower uncertainty to regions of the compound landscape close to
the observed data. (G) A subset of the low uncertainty compounds is prioritized for experimental
acquisition based on predicted binding affinity to PknB. (H) The MLP assigns high predicted
PknB binding to a large number of out-of-distribution compounds. (I) CMF predictions for PknB
appear to lack any meaningful structure with regards to the compound landscape. Example

acquisition for other kinases is provided in Supplementary Fig. 3.
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Figure 3: Uncertainty enables acquisition of potent compound-kinase interactions
(A) Binding affinity Kd for top five acquired compounds for three human kinases using a
model with uncertainty (GP) and without (MLP). Asterisks after compound names indicate

compounds incompatible with the validation assay (Methods). Mean Kd values are provided in
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Supplementary Table 2. (B) We validated the top five compound predictions at different
acquisition g parameters for the models with uncertainty (GP and MLP + GP) and the top five
compound predictions provided by the MLP. Incorporating uncertainty information reduces
false-positive predictions. Asterisks after compound names indicate compounds incompatible
with the validation assay. Mean Kd values are provided in Supplementary Table 2. (C) The
structures of the compounds prioritized by the GP for PknB binding affinity with acquisition g =
20. (D) The structures of the compounds prioritized by the MLP for PknB binding affinity, none

of which have strong affinity (Kd > 10,000 nM).
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Figure 4: Follow-up PknB experiments reveal anti-Mtb whole cell activity and an out-of-
distribution inhibitor

(A) Growth of axenic Mtb measured via alamar blue absorbance after five days of axenic
incubation in media treated with compounds, or a DMSO vehicle control, at 50 uM. Statistical
significance was assessed with a one-sided t-test P-value at FDR < 0.05. (B) Luminescence of
luciferase-expressing Mtb from within infected human macrophages cultured in media treated
with compounds at 50 uM. Statistical significance was assessed with a one-sided t-test P-value at
FDR < 0.05. (C) Dose-response of K252a, SU11652, rifampicin, or a DMSO vehicle control on
luminescence of luciferase-expressing Mtb from within infected human macrophages after five
days of culture post-infection. (D) IKK-16 was ranked 24 by the GP during the first round of

compound acquisition. Six of the compounds above IKK-16 in the first-round GP ranking were

31


https://doi.org/10.1101/2020.08.11.247072
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.247072; this version posted August 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

acquired for experimental validation (the sixth-ranked compound was in the top five for the MLP
+ GP). Following model retraining on first-round PknB binding acquisitions across all models,
IKK-16 was the second-ranked compound. (E) All 72 compounds in the original training set
have a Morgan fingerprint (radius 2, 2048 bits) Tanimoto similarity of 0.31 or less with IKK-16

(structure shown).
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Figure 5: Robust uncertainty prediction for generative design of novel compounds with
PknB activity

(A) Top ten designs selected by the GP or the MLP + GP have significantly stronger
predicted binding affinity compared to the MLP across molecular docking experiments with six
different scoring functions. Bolded two-sided independent t-test P-values indicate statistical
significance at FDR < 0.05. Known molecules that bind PknB are provided for comparison;
mitoxantrone is the inhibitor with pose determined in the PknB crystal structure in (D) (PDB:
2FUM). (B) Designs selected by the GP algorithm from a set of 200,000 artificially generated
chemical structures resemble known structures that bind PknB (e.g., Fig. 3C). (C) Designs
selected by the MLP algorithm include pathological structures. (D) Visualizing the docking-

determined poses of a GP-selected novel design (orange) alongside a mitoxantrone (gray)

33


https://doi.org/10.1101/2020.08.11.247072
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.247072; this version posted August 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

inhibitor pose determined by X-ray crystallography [80] reveals overlapping locations of certain

molecular substructures.
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Figure 6: Uncertainty enables robust prediction of protein fluorescence

(A) Incorporating uncertainty into predictions is useful in the general setting in which we

desire to predict a set of target variables (for example, fluorescence) based on a set of feature

variables (for example, protein sequence embeddings); compare to

Fig. 2A. (B) We train models

on avGFP sequences with at most a single-residue mutation compared to wild-type (n = 1,115

sequences). We evaluated these models on avGFP sequences with two or more mutations (n =

52,910 sequences). The distribution of fluorescence among test set

mutants is largely bimodal,

with a bright mode and a dark mode; green dashed line indicates median log-fluorescence of

wild-type avGFP. (C) Models trained on sequences with at most one mutation were used to

acquire more highly-mutated sequences, prioritizing higher log-fluorescence (a unitless intensity

value). Log-fluorescence was averaged over the top 50 or 500 acquired mutants across five

random seeds; bar height indicates mean log-fluorescence. GP-based uncertainty models acquire

significantly brighter proteins; statistical significance was assessed with a one-sided t-test P-
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value at FDR < 0.05. (D) The acquisition ranking produced by the GP is strongly correlated with
fluorescent brightness. Each point represents a unique avGFP mutant sequence in the test set.
The green dashed line indicates median log-fluorescence of wild-type avGFP. (E) In general,
GP-acquired mutations are enriched for surface residues over buried residues as expected [2],
with T62 being a notable exception. For emphasis, T62 and a beta strand (V93-K101) are

displayed as spheres.

36


https://doi.org/10.1101/2020.08.11.247072
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.247072; this version posted August 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Methods

Mycobacterium tuberculosis model details

We utilized wild-type H37Rv and H37Rv expressing an integrated copy of the
luxABCDE cassette which enables mycobacteria to endogenously produce light [70]; monitoring
luminescence of the latter strain has been demonstrated to correlate well with the standard colony

forming unit assay [69].

Human macrophage model details

Human monocytes were isolated from human buffy coats purchased from the
Massachusetts General Hospital blood bank using a standard Ficoll gradient (GE Healthcare) and
subsequent positive selection of CD14" cells (Stemcell Technologies). Selected monocytes were
cultured in ultra-low-adherence flasks (Corning) for 6 days with RPMI media (Invitrogen)
supplemented with hydroxyethylpiperazine ethane sulfonic acid (HEPES) (Invitrogen), L-
glutamine (Invitrogen), 10% heat-inactivated fetal bovine serum (FBS) (Invitrogen) and 25

ng/mL human macrophage colony-stimulating factor (M-CSF) (Biolegend).

Multilayer perceptron (MLP)

We trained an MLP with two hidden layers with 200 neurons per layer and rectified
linear unit (ReLU) activation functions, trained with mean square error loss and adaptive
moment estimation (Adam) with our implementation’s default optimization parameters (learning
rate of 0.001, B; = 0.9, B, = 0.999) [92]. Hyperparameters were tuned based on a small-scale
grid search using five-fold random cross-validation within the compound-kinase training set
before application to the out-of-distribution test set, with a particular emphasis on preventing

overfitting [48]. Lower model capacity, £, regularization of the densely connected layers (weight
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0.01), and early stopping after 50 training epochs were helpful in preventing overfitting to the
training data and highly pathological outputs on out-of-distribution data (for example, outputting
the same prediction value for all instances). The MLP was implemented using the keras Python
package (version 2.3.1) using a tensorflow (version 1.15.0) backend with CUDA-based GPU

acceleration.

Collective matrix factorization (CMF)

We performed CMF using the compound-kinase Kds as the explicit data matrix and the
neural-encoded compound and kinase features as side-information [53]. Briefly, CMF optimizes
the loss function

L(A,B,C,D; M, X;,X;,44,4;) = [[M - ABT||12= + 4 11X; — ACT||12= + 21X — BDT||12=
with respect to latent variable matrices A, B, C, and D. M is the compound-by-kinase binding
affinity matrix; X, is a side-information matrix where each row contains compound features; X,
is a side-information matrix where each row contains kinase features; ||-||¢ denotes the Frobenius
norm of a matrix; and 1, and A, are user-specified optimization constants (we set these values to
the default value of 1, but observed that cross-validated performance metrics were robust to
changes in this parameter). The number of components (i.e., the number of columns in A, B, C,
and D) was set to the default value of 30, but we also noticed robustness of cross-validated
metrics to changes in this parameter. The CMF objective was fit using the limited-memory
Broyden—Fletcher—Goldfarb—Shanno algorithm (L-BFGS) via the cmfrec Python package

version 0.5.3 [93] (https://cmfrec.readthedocs.io/en/latest/).

Ordinary least squares (OLS)
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For the protein fluorescence experiments, we use OLS as a replacement benchmarking
model that is more natural to the problem setup than CMF, which is most commonly used in
recommender-system problems involving the affinity between two types of entities (for example,
users and shopping items, or compounds and kinases). OLS minimizes the loss L(A; X, Y) =
Y — AX||Z where Y is sample-by-target-variable matrix, X is the sample-by-feature-variable
matrix, and A is a learned coefficient matrix (the latter two matrices are also augmented to fit a
constant intercept term for each target variable). We use the implementation in the scikit-learn

Python package.

DGraphDTA
We used DGraphDTA [54] to predict compound-kinase Kds. DGraphDTA leverages a
graph neural network based on the compound molecular structure and the protein residue contact

map. We used the implementation provided at https://github.com/595693085/DGraphDTA with

default model architecture hyperparameters. For compound features, we provided the model with
chemical SMILE strings that the model transforms into a graph convolutional representation

[94]; for kinase features, we use the protein contact maps provided by the original study.

Prediction acquisition function

For models that output uncertainty scores, an acquisition function is used to rank
compound-kinase pairs for acquisition, which in the biological setting often corresponds to
further experimental validation, in a way that balances both the prediction value and the
associated uncertainty. A standard acquisition function is the upper confidence bound (UCB)

[38]. When low prediction values are desirable, UCB acquisition takes the form

aycs (i) = yp(rle)d +p O-;Srlgd’
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where y;jgd and a;jgd

are the predicted Kd and the uncertainty score, respectively, for the ith
training example and where £ is a parameter controlling the weight assigned to the uncertainty
score. When acquiring the top k examples for further experimentation, a researcher can simply
take the examples with the k lowest values of the acquisition function, i.e., acquire the set

{%; : rank(aycg()) < k}
which is a subset of the full unknown test set {X, ..., Xy }. The threshold k can reflect an
experimental budget (e.g., the size of an experimental batch or the pecuniary cost of an

experiment) or it can also be chosen by based on the absolute value of the uncertainty agfgd (e.g.,

only tolerating top-ranked examples with low uncertainty).

Gaussian Process (GP)

GPs are a Bayesian machine learning strategy that can learn nonlinear functions, can
work with limited data, and enable principled incorporation of prior information. The aspect of
GPs most relevant to this study is that they enable a researcher to explicitly specify prior
information encoding both a “baseline” prediction and corresponding uncertainty. For example,
a priori, a researcher can assume that a given compound-kinase pair has low affinity; this
intuition can be encoded as a probability distribution with most of the probability density
assigned to low affinity but with small, nonzero probability assigned to high affinity. On a
prediction example that is very different from any training example, the prediction uncertainty of
a GP approaches the value of the prior uncertainty [18].

A Gaussian process regressor is fully described by a mean function and a covariance
function. For the compound-kinase experiments, our mean function is set to a constant value

corresponding to a Kd of 10,000 nM (i.e., the top tested concentration above which the Kd is not
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determined and a compound-kinase pair is considered inactive). For the protein fluorescence
experiments, the mean function is set to a constant value corresponding to a log-fluorescence of
3 (i.e., the original study’s darkness cutoff). Our covariance function is set to a Gaussian, or a

squared exponential, kernel scaled by a constant k. related to the prior uncertainty

1 2
— 1,2
K(Xi' Xj) - kprior exp {_ Eyllxl - Xj ”2}
where [|-]|, denotes the £,-distance between feature vectors x; and x;. For the kinase
experiments, k., is set to 10,000 nM; for the protein fluorescence experiments, k., is set to a

log-fluorescence of 2; for both, y is set to unity. Each prediction takes the form of a (scalar)
Gaussian distribution; we use the mean as the prediction value and the variance as the
uncertainty estimate. We use the Gaussian process regressor implementation provided by the
scikit-learn Python package. Gaussian processes are reviewed in-depth by Rasmussen and

Williams and with helpful, high-level visual aids by Gortler et al.

Gaussian process fit to residuals of a multilayer perceptron (MLP + GP)

Since much of the interest in machine learning has been on improving the performance of
neural network models, a simple way to augment neural networks with uncertainty is to combine
the predictions made by a neural network and predictions made by a GP [46]. We use an MLP
regressor with the same architecture and hyperparameters as the standalone MLP model
described above. The GP fit to the residuals of the MLP regressor has the same form as described
for the regular GP above but where the regression problem is formulated as

y;i — MLP(x;) ~ GP(x;)
for training example x; and training label y;. To calculate the prediction value, we evaluate both

the MLP and the GP and sum the MLP prediction and the GP mean [46], i.e.,
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Yoy = MLP(%;) + E[GP(&,)].
To calculate the uncertainty estimate, we can simply use the GP standard deviation [46], i.e.,

i ~ \\1/2
oy = Var(GP(%)) "
We used the same software (a combination of the scikit-learn, GPyTorch, keras, and tensorflow

Python packages) to implement the hybrid model.

Bayesian multilayer perceptron (BMLP)

A more involved, Bayesian approach to augmenting neural networks with uncertainty is
to impose a Bayesian prior on the parameters of the neural network. We train an MLP regressor
with the same architecture described above (two hidden layers with 200 neurons per layer and
ReLU non linearities) but with a unit-variance Gaussian prior on each weight and bias entry [23].
Within the respective biological task, the Gaussian prior mean for each entry corresponds to a Kd
of 10,000 nM (i.e., no biochemical affinity) or a log-fluorescence of 3 (i.e., a dark protein).
Optimization was performed under a mean-field independence assumption with gradient descent-
based variational inference [23], [47]. When making predictions, we sample 100 neural networks
and evaluate each neural network on each prediction example. We use the mean prediction
across the 100 neural networks as the prediction value and the variance across the 100 neural
networks as the uncertainty estimate. To implement the BMLP, we used the Edward Python
package (version 1.3.5) for probabilistic programming [47] with a tensorflow CPU (version

1.5.1) backend.

Gaussian negative log-likelihood-trained multilayer perceptron ensemble (GMLPE)
Rather than a Bayesian approach to uncertainty, another group of uncertainty methods is

based on model ensembles. Ensembling involves fitting multiple models to a training dataset;
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then, variation in the predictions of the models can be used to estimate uncertainty. For our
ensemble method, we use the model described by Lakshminarayanan et al. We train an MLP
regressor with the same architecture described above (two hidden layers with 200 neurons per
layer and ReL.U non linearities) but, instead of mean square error loss, with Gaussian negative

log-likelihood loss

N ® ®
® O, 0 2 (ytrue ypred)
L (yprled' prled' ytrfle iz ) Z 10g< pred ) + 0
i=1 (O-pred)
where y(r‘e)d is the predicted value and [frle)d is the predicted uncertainty (both outputted by the

neural network), and )

true

is the ground truth value for training example i € {1,2, ..., N}. We train
five such models to create a neural network ensemble and we combine prediction distributions
across the ensemble as with a Gaussian mixture. As an implementation detail, we trained the
neural network to output the log variance to enforce positivity. We implemented the GMLPE

with the keras Python package using a tensorflow backend with CUDA-based GPU acceleration.

Compound-kinase affinity prediction cross-validation setup and benchmarking

We obtained a dataset of binding affinity Kds across all pairs of 72 compounds and 442
kinases (corresponding to 379 unique genes) from Davis et al. Compounds were partitioned
randomly into two equal-sized sets of 36 and kinases were partitioned randomly into one set of
190 unique genes (corresponding to 216 kinase proteins, including mutational variants) and
another set of 189 unique genes (corresponding to 226 kinase proteins). Compound-kinase pairs
therefore fell into one of four “quadrants” of the interaction matrix defined by sets of partitioned

compounds and kinases (for a pictorial representation, see Supplementary Fig. 1A). One
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quadrant of the compound-kinase interaction matrix was reserved as training data; the other three
quadrants were used as out-of-distribution test data.

Compound structures were obtained from the ZINC database [30] and kinase amino acid
sequences were obtained from the UniProt database [95]. For initial computational processing of

small molecule structure, we used the RDK:it (http://www.rdkit.org/) version 2017.09.1. A

compound was featurized based on its structure using a pretrained VAE, optimized for small
molecule reconstruction using a graph convolutional junction tree approach (JTNN-VAE), from

Jin et al. (https://github.com/wengong-jin/icml18-jtnn). A kinase was featurized based on its

amino acid sequence using a pretrained neural language model, designed to encode structural and

functional similarities, from Bepler and Berger (https://github.com/tbepler/protein-sequence-

embedding-iclr2019). We used the pretrained models made available by both studies without

modification. A compound-kinase pair was featurized by the concatenation of the feature vectors
of the corresponding compound and kinase. We observed that these state-of-the-art features
provided much better empirical performance than traditional features like chemical fingerprints
[96] or one-hot-encoded protein family domains [48].

The six benchmarking models (GP, MLP + GP, BMLP, GMLPE, MLP, CMF) were
trained on the training quadrant and used to make a prediction (and, if applicable, a
corresponding uncertainty score) for each compound-kinase pair in the three test quadrants.
Three standard, average-case performance metrics were used: (1) Pearson correlation between
predicted and true Kds, (2) Spearman correlation between predicted and true Kds, and (3) mean
square error between predicted and true Kds. We also performed a “lead prioritization”
experiment. Compound-kinase pairs in the test set were ranked for uncertainty methods by a

rank-UCB acquisition function (f# = 1) and for non-uncertainty methods by the prediction value.
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We compared the Kds for the top k of these compound-kinase pairs across all six methods; we
repeated this experiment for k = 5 and k = 25 to assess different lead prioritization thresholds.
The distributions of binding affinities among acquired compound-kinase pairs were assessed for
statistical significance (FDR < 0.05) using Welch’s unequal variances t-test. The above cross-
validation benchmarking experiments (both average-case and lead prioritization) were repeated

over five random seeds.

Acquisition of commercially available ZINC/Cayman compound dataset

We obtained a dataset of small molecule compounds over which we wished to predict
binding affinity with various kinases. We used the ZINC database [30], an online repository of
chemical compounds with associated metadata for each compound that includes their structure
and their commercial availability. We chose the subset of 10,833 compounds in the ZINC
database that was also present in the catalog of the Cayman Chemical Company, enabling us to
readily purchase high quality compound samples for experimental validation. The only criteria
applied to compound selection was that the compound was not present in the Davis et al. training
dataset and that the compound was commercially available through the Cayman Chemical
Company. We computed statistics over these compounds using the RDKit in Python.
ZINC/Cayman compounds were visualized alongside Davis et al. compounds using t-SNE,
implemented by the Multicore-TSNE Python package

(https://github.com/DmitryUlyanov/Multicore-TSNE). The nearest of neighbor of each

ZINC/Cayman compound within the Davis et al. training data was done using Euclidean distance
in compound embedding space, using the nearest neighbors implementation in scikit-learn

version 0.21.3 [97].

Experimental validation of compound-kinase affinity predictions
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Machine learning models were trained on all compound-kinase pairs from Davis et al.
For IRAK4, c-SRC, and p1109, we trained a GP with high uncertainty weight (5 = 20) and an
MLP. For PknB, the model/acquisition parameter settings were: (1) a GP without considering
uncertainty (5= 0), (2) a GP with moderate uncertainty weight (= 1), (3) a GP with high
uncertainty weight (8 = 20), (4) an MLP without uncertainty, (5) an MLP + GP with moderate
uncertainty weight (8= 1), and (6) an MLP + GP with high uncertainty weight (5 = 20).
Compounds from the ZINC/Cayman dataset were featurized using the same pretrained JTNN-
VAE as in the cross-validation experiment and concatenated with the feature vector for the
corresponding kinase (PknB, IRAK4, c-SRC, or p1103). Trained models were evaluated on these
concatenated features. The top five predictions for each kinase from each of the above models
were acquired for binding affinity determination. Predictions involving lipids only commercially
available as ethanol solutions were incompatible with the binding assay, excluded from
validation, and reported as not interactive.

Compounds were acquired directly from Cayman Chemical. All supplied compounds
were tested to ensure > 98% purity. We leveraged the kinase affinity assays provided by the
DiscoverX CRO. Kd determination was done using the KAIELECT assay, which measures the
ability for test compounds to compete with an immobilized, active-site directed ligand using
DNA-tagged kinase, where competition is measured via quantitative polymerase chain reaction
(gPCR) of the DNA tag. Kinase-tagged T7 phage strains were prepared in an Escherichia coli
(E. coli) host derived from the BL21 strain. E. coli were grown to log-phase and infected with T7
phage and incubated with shaking at 32°C until lysis. The lysates were centrifuged and filtered to
remove cell debris. Streptavidin-coated magnetic beads were treated with biotinylated ligand for

30 minutes at room temperature to generate affinity resins for kinase assays. The liganded beads
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were blocked with excess biotin and washed with blocking buffer [SeaBlock (Pierce), 1% bovine
serum albumin (BSA), 0.05% Tween 20, 1 mM dithiothreitol (DTT)] to remove unbound ligand
and to reduce non-specific binding.

Binding reactions were assembled by combining kinases, liganded affinity beads, and test
compounds in 1X binding buffer [20% SeaBlock, 0.17X phosphate-buffered saline (PBS), 0.05%
Tween 20, 6 mM DTT]. Test compounds were prepared as 111X stocks in 100% DMSO. Kds
were determined using an 11-point 3-fold compound dilution series with three DMSO control
points with a top test compound concentration of 10,000 nM. All compounds for Kd
measurements are distributed by acoustic transfer (non-contact dispensing) in 100% DMSO. The
compounds were then diluted directly into the assays such that the final concentration of DMSO
was 0.9%. All reactions performed in polypropylene 384-well plate. Each was a final volume of
0.02 mL. The assay plates were incubated at room temperature with shaking for 1 hour and the
affinity beads were washed with wash buffer (1x PBS, 0.05% Tween 20). The beads were then
re-suspended in elution buffer (1x PBS, 0.05% Tween 20, 0.5 uM non-biotinylated affinity
ligand) and incubated at room temperature with shaking for 30 minutes. The kinase
concentration in the eluates was measured by gPCR.

Kds were calculated with a standard dose-response curve using the Hill equation

Signal — Background

K dHill slope '
1+ Dos eHill slope

Response = Background +

Curves were fitted using a non-linear least square fit with the Levenberg-Marquardt algorithm.
The Hill slope was set to -1; a deviation from this Hill slope in the dose-response pattern was
used to identify possible aggregation, but no such deviation was observed. A full dose-response

curve was obtained and fit in duplicate, and we report the mean Kd between duplicate curves.
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Axenic Mtb growth inhibition assay

H37Rv Mtb growth was evaluated using the resazurin viability assay (alamar blue). Mth
was grown to an optical density (OD) corresponding to early log phase (OD 0.4) and back-
diluted to an optical density of 0.003 in 7H9 media supplemented with oleic albumin dextrose
catalase (OADC) prior to incubation with a range of concentrations of K252a, TG101209,
SU11652, and rifampicin or vehicle control in a 96 well plate with shaking at 37°C. Bacteria
were incubated with drug alone for 72 hours prior to the addition of alamar blue. After addition
of alamar blue, H37Rv was incubated for an additional 48 hours and alamar blue absorbance was

measured using a Tecan Spark 10M. Normalized alamar blue absorbance was calculated as

(02 X ag) — (01 X ay)
(02 X p1) — (01 X p2)

where o, = 80586 is the molar extinction coefficient of oxidized alamar blue at 570 nm; o, =
117216 is the molar extinction coefficient of oxidized alamar blue at 600 nm; a, and a, are the
measured absorbance of the test well at 570 nm and 600 nm, respectively; and p, and p, are the
measured absorbance of a positive growth control well at 570 nm and 600 nm, respectively. For
each compound, we assessed bacterial growth at 1.25, 2.5, 5, 10, 25, and 50 uM to determine the
MIC.

Additionally, Mycobacterium tuberculosis strain H37Rv bacteria expressing an integrated
copy of the luxABCDE cassette [70] were grown to mid-log phase and diluted to an optical
density of 0.006. Mycobacteria were added to wells of a 96-well solid white polystyrene plate
and incubated with a vehicle control (DMSO) or rifampicin, TG101209, or SU11652 (Cayman
Chem) for 5 days. Plates were sealed with breathable film (VWR) and incubated at 37°C for 4

days with shaking. On day 5, we measured luminescence as a proxy for total bacterial burden.
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Primary Human Macrophage Culture

Deidentified buffy coats from healthy human donors were obtained from Massachusetts
General Hospital. Peripheral blood mononuclear cells (PBMCs) were isolated from buffy coats
by density-based centrifugation using Ficoll (GE Healthcare). CD14" monocytes were isolated
from PBMCs using a CD14 positive-selection kit (Stemcell). Isolated monocytes were
differentiated to macrophages in RPMI 1640 (ThermoFisher Scientific) supplemented with 10%
heat-inactivated fetal FBS (ThermoFisher Scientific), 1% HEPES, and 1% L-glutamine. Media
was further supplemented with 25 ng/mL M-CSF (Biolegend, MCSF: 572902). Monocytes were
cultured on low-adhesion tissue culture plates (Corning) for 6 days. After 6 days, macrophages
were detached using a detachment buffer of 1X Ca-free PBS and 2 mM
ethylenediaminetetraacetic acid (EDTA), pelleted, and recounted. Macrophages were plated in
tissue culture-treated 96-well solid white polystyrene plates at a density of 50,000 cells per well
in maintenance media (RPMI, 10% heat-inactivated FBS, 1% HEPES, and 1% L-glutamine) and

allowed to re-adhere overnight.

Intra-macrophage Mtb growth inhibition assay

H37Rv Mtb expressing the luxABCDE cassette were grown to an optical density of 0.4
and centrifuged briefly. Mtb were resuspended in pre-warmed maintenance media and filtered
through a 5 uM filter to remove clumped bacteria and generate a single-cell suspension.
Macrophages were infected at a multiplicity of infection of 3 bacteria to 1 macrophage in 100 uL
per well and phagocytosis was allowed to proceed for 4 hours prior to washing macrophages
twice with pre-warmed maintenance media to remove extracellular bacteria. Following
phagocytosis and washing, cells were incubated with media containing a DMSO vehicle control

or rifampicin, K252a, or SU11652 (Cayman Chem) for 5 days. On day 5, we measured
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luminescence as a proxy of intracellular bacterial burden as previously described [69], [70] using

a high-throughput luminometer.

Second Round of Acquisition and Validation of Compound-PknB Interactions

A GP or an MLP was trained on both the original training dataset [1] and all of the first-
round PknB-related experimental data (Fig. 3B). All other training and acquisition details were
the same as in the first prediction round. The top five predictions for the GP (5 = 20) and for the
MLP (ten predictions in total) had their binding affinity Kds determined via the same in vitro
binding assay described above. IKK-16, acquired by the GP, was the sole hit with Kd below
10,000 nM. To assess the similarity between IKK-16 and each of the original training set
compounds, we used the RDKit to compute the Tanimoto similarity of Morgan fingerprints with
a radius of 2 and 2048 bits, the same Tanimoto similarity computation procedure as in Stokes et

al.

Generation of artificial compound library and affinity prediction

We used a machine-learning method to generate a library of 200,000 unique compound
structures not present in the ZINC/Cayman database. To do so, we trained a JTNN-VAE [43] to
reconstruct the ZINC/Cayman dataset of 10,833 compounds using the default model architecture

parameters in the publicly available training code (https://github.com/wengong-jin/icml18-jtnn).

Hyperparameters were selected based on the provided defaults, namely an embedding dimension
of 56, a batch size of 40, a hidden dimension of 350, a depth of 3, a learning rate of 0.001, and
termination of training after 40 epochs. To generate new compounds, random vectors were
sampled uniformly across the 56-dimensional latent space and then decoded by the JTNN-VAE;
molecule structures present in the training data were discarded and not considered as novel
designs. We note that the JTNN-VAE model for chemical featurization is a different, pretrained
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model used in the original study [43]; we trained a separate JTNN-VAE model for molecule
generation. These artificially generated compound structures were featurized and concatenated
with the PknB feature vectors as described previously. We then acquired the top ten compounds
according to a GP ( = 20), an MLP + GP (5 = 20), and an MLP, where all models were trained

exclusively on the Davis et al. kinase inhibition data, as described previously.

Docking-based validation of compound designs

We used a crystallography-determined structure of PknB in complex with mitoxantrone
(PDB: 2FUM) [80] as the underlying structure for our docking procedure. To prepare the kinase
structure for docking, we restricted our analysis to chain A with the mitoxantrone molecule
removed. Our docking region encompassed the full set of amino acids directly proximal to the

ligand pocket (https://www.rcsb.org/3d-view/2FUM?preset=ligandInteraction&sele=MIX).

Structure files were preprocessed to be in compatible file formats using AutoDockTools version
1.5.6 and Open Babel version 2.3.2 [98]. We used LeDock version 1.0 [76], rDock version
2013.1 [77], AutoDock Vina version 1.1.2 [78], and smina version “Oct 15 2019” [75], the last
of which implemented the DK and Vinardo [74] scoring functions in addition to its own default
scoring function. The Vina- and smina-based toolkits were run with an exhaustiveness parameter
of 500, a high value meant to increase the search space of possible poses, and all other
parameters set to the default. We use the reported energy scores returned by the docking

procedure. We visualized docking poses using PyMOL version 2.3.3.

Protein fluorescence cross-validation setup and benchmarking

We obtained mutagenesis data from Sarkisyan et al., treating each unique avGFP
sequence as a separate sample featurized by embeddings derived from the full protein sequence.
We used the same pretrained sequence embedding model from Bepler and Berger [44] used to
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featurize kinase sequences in our other experiments. The original mutagenesis study assigned a
median log-fluorescence value to each unique sequence, obtained via fluorescence-activated cell
sorting of GFP-expressing bacterial vectors based on brightness at 510 nm emission [2]. Our
supervised formulation is to predict log-fluorescence based on the neural sequence embedding.
We use a log-fluorescence of 3 as a cutoff (as used in the original study) below which all
sequences are considered equally dark (i.e., when training the model, we set all dark sequences
to a log-fluorescence value of 3).

GP, MLP + GP, BMLP, GMLPE, MLP, and OLS regressors were each trained on 1,115
unique sequences containing at most one mutation to wild-type avGFP (UniProt: P42212). After
training, we acquired sequences among the remaining avGFP mutants (a total of 52,910 unique
sequences) from the same study based on higher predicted brightness, and, if available, low
predicted uncertainty using rank-UCB (5 = 1). We compared models based on the top 50 or 500
acquired sequences; models with pseudo-randomness were run across five random seeds. The
distributions of fluorescence among acquired sequences were assessed for statistical significance
(FDR < 0.05) using Welch’s unequal variances t-test. We also measured the Spearman
correlation between acquisition rank and each mutant sequence’s median log-fluorescence.

Mutations involved in the top hundred acquired sequences by the GP were located on an
X-ray crystallography-determined avGFP structure (PDB: 2WUR) [99]. We used the

FindSurfaceResidues (https://pymolwiki.org/index.php/FindSurfaceResidues) PyMOL script to

distinguish buried and surface residues. We used PyMOL to visualize the protein structure.

Benchmarking hardware and computational resources
Experiments had access to a Nvidia Tesla V100 PCle GPU (32GB RAM) and an Intel

Xeon Gold 6130 CPU (2.10GHz, 768GB of RAM). GP training for kinase and GFP experiments
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required approximately 60 and 30 minutes of runtime, respectively. All experiments required a

maximum of 50 GB of CPU RAM or 32 GB of GPU RAM.

Statistical analysis implementation

We use the scientific Python toolkit, including the scipy (version 1.3.1) and numpy
(version 1.17.2) Python packages [100], to compute the statistical tests described in the
manuscript, including Pearson correlation, Spearman correlation, Welch’s unequal variance t-
test, and associated P values. We use the seaborn Python package (version 0.9.0;

https://seaborn.pydata.org/) to compute the 95% confidence intervals and violin-plot kernel

density estimates in our data visualizations.

Data and code availability

We make our data and code available at http://cb.csail.mit.edu/cb/uncertainty-ml-mtb/.
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