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Abstract 
 
How metabolic pathways emerged in early evolution remains largely unknown. Recently discovered 
chemical networks driven by iron and sulfur resemble reaction sequences found within glycolysis, 
gluconeogenesis, the oxidative and reductive Krebs cycle, the Wood Ljungdahl as well as the S-
adenosylmethionine pathways, components of the core cellular metabolic network. These findings 
suggest that the evolution of central metabolism was primed by environmental chemical reactions, 
implying that non-enzymatic reaction networks served as a “template” in the evolution of enzymatic 
activities. We speculated that the turning point for this transition would depend on the catalytic 
properties of the simplest structural components of proteins, single amino acids. Here, we systematically 
combine constituents of Fe(II)-driven non-enzymatic reactions resembling glycolysis and pentose 
phosphate pathway (PPP), with single proteinogenic amino acids. Multiple reaction rates are enhanced 
by amino acids. In particular, cysteine is able to replace (and/or complement) the metal ion Fe(II) in 
driving the non-enzymatic formation of the RNA-backbone metabolite ribose 5-phosphate from 6-
phosphogluconate, a rate-limiting reaction of the oxidative PPP. In the presence of both Fe(II) and 
cysteine, a complex is formed, enabling the non-enzymatic reaction to proceed at a wide range of 
temperatures. At mundane temperatures, this ‘minimal enzyme-like complex’ achieves a much higher 
specificity in the formation of ribose 5-phosphate than the Fe(II)-driven reaction at high temperatures. 
Hence, simple amino acids can accelerate key steps within metal-promoted metabolism-like chemical 
networks. Our results imply a stepwise scenario, in which environmental chemical networks served as 
primers in the early evolution of the metabolic network structure. 
  
 
 
Significance Statement 
 
The evolutionary roots of metabolic pathways are barely understood. Here we show results consistent 
with a stepwise scenario during the evolution of (enzymatic) metabolism, starting from non-enzymatic 
chemical networks. By systematic screening of metabolic-like reactivities in vitro, and using high-
throughput analytical techniques, we identify an iron/cysteine complex to act as a ‘minimal enzyme-
like complex’, which consists of a metal ion, an amino acid, and a sugar phosphate ligand. Integrated 
in a metal-driven, non-enzymatic pentose phosphate pathway, it promotes the formation of the RNA-
backbone precursor ribose 5-phosphate at ambient temperature. 
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Main Text 
 
Introduction 
 
The evolutionary origins of enzymatic metabolism are subject to a long-lasting debate (1–6) 
but remain essentially unknown. The history of Biochemistry and the evolution of biochemical 
thinking have fundamentally shaped this debate. In earlier days, metabolism was seen primarily 
as the biological process of nutrient uptake and conversion, to provide the biomolecular 
building blocks that enable survival and growth of the cells. On the basis of this school of 
thought, the studies into the origin of metabolism during abiogenesis primarily focused on the 
nutritional aspects of metabolism, that is, to provide nucleotides, amino acids, lipids to early 
cells (7).  Modern biochemistry has however strongly shifted to a view that the role metabolism 
exceeds the linear conception of its biosynthetic function (8, 9). Metabolism, and the 
biochemistry that operates within it, constraints the very existence of biological systems. 
Structured in a topologically conserved system (the metabolic network), metabolism 
determines the conditions under which cells can persist and how they can adapt and evolve in 
new environments, by controlling which elements and molecules are required for a cell to grow, 
how cells divide (e.g. by eliciting gene expression programs), which molecules are transported 
through their membrane, and managing chemical processes causing damage to cells (10–15). 
As a consequence of this paradigm shift in biochemistry, also research into the origins of 
metabolism is influenced. It has hence become important not only to consider scenarios for the 
origin of end-point metabolites, amino acids, nucleotides or lipids, as the sole presence of these 
molecules may not be sufficient to explain the necessary biological properties. Instead, we are 
urged to explain too the origin of the structure of the metabolic network  (16–18).  

With little experimental evidence available, the debate about the topological origin of 
metabolism was purely hypothetical, and split between an ‘evolutionary view’, in which the 
current structure of metabolism emerged over time as a consequence of the evolution of 
enzymes (4, 19, 20), and an environmental-chemistry view, that places non-enzymatic 
reactions at the root of the metabolic network structure (2, 3, 6). Indeed, an astonishing feature 
of the cellular metabolic network is the evolutionary conservation of its structure, basic 
function principles, and topology (21, 22). The universal conservation of these features 
indicates that the metabolic network dates back to the very early stage of evolution. This 
hypothesis is supported by the observation that the topological organization of metabolism is 
maintained much better than the (sequence) conservation of metabolic enzymes. An example 
of this is the glycolytic pathway, that is found in both Eubacteria and Archaea, but without a 
general conservation of the catalyzing enzymes (23).  

More recently, direct experimental evidence that supports a non-enzymatic origin of the 
metabolic network structure has emerged. New sensitive analytical methods like multiple 
reaction monitoring have become available, and allow large screening experiments, and reach 
detection limits that are several orders of magnitude better compared to the method spectrum 
conventionally used in the origin of life research (24). Importantly, selective reaction 
monitoring experiments can be performed in the presence of ferrous iron concentrations that 
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cause signal-suppression in 1H-NMR experiments that have frequently been used in origin of 
life research (25). Ferrous iron is believed to have reached millimolar concentrations in 
Archean oceans and other aquatic environments (26–28), is a biologically highly relevant 
catalyst and electron donor, and as catalyst of many metabolism-like non-enzymatic reactions, 
may be key in understanding early metabolic reactions (29, 30). 

The ability to perform sensitive metabolite quantification experiments in Archean-like, iron-
rich reaction conditions, led to the discovery of a series of chemical reactions that capture the 
topological organization of metabolic pathways, in a single condition and without an enzyme 
present. The first such network system resembles the Embden Meyerhoff Parnass pathway, or 
glycolysis, and the pentose phosphate pathway (PPP). This network is driven by the presence 
of Fe(II) concentrations that resemble those of average Archean sedimentation (29, 31). 
Meanwhile additional reaction systems have been described. These concern other glycolytic 
reactions, and suggest that at least gluconeogenesis, the oxidative as well as reductive Krebs 
cycle, its glyoxylate shunt, as well as the Wood-Ljungdahl pathway all have topologies that 
resemble those of simple non-enzymatic networks that could have occurred prior to the origins 
of life (30, 32–37). This ‘fuzzy’ chemistry hence captures major parts of central metabolism.  

In this manuscript, we aim to address a question that emerges from these observations: How 
could a metal-ion driven, chemical network prime a Darwinian process that eventually forms 
an enzyme-catalyzed metabolic pathway? Indeed, as early as in 1945, Horowitz described a 
main difficulty to explain the advent of enzymatic catalysis by Darwinian evolution, as a 
chicken-egg dilemma, that we have previously referred to as the ‘End Product Problem’ (5, 
38): Darwinian pressure can only select for a functional product, the ‘end product’ of an 
enzymatic pathway. But how could then evolve the enzyme that catalyzes the formation of an 
upstream intermediate, one that is needed before formation of the functional product is 
conceived? 

We speculate that the presence of a non-enzymatic chemical network could overcome the end 
product problem (5). If a reaction network is already present due to non-enzymatic 
interconversion of metabolites, Darwinian selection can then improve the end product 
formation by selecting an enzyme that enhances its most rate-limiting reaction. In this model, 
not all enzymes need to come into place at once, but an improvement of the entire pathway is 
possible with the selection of a single enzyme (Fig. 1A). This model generates at least two 
predictions. The first is that in this model reaction topologies will not substantially change over 
time. Our biological knowledge is consistent with this prediction; the metabolic reaction 
topologies are strongly conserved among species and barely changed over billions of years of 
evolution (21, 22)).  The second prediction is that in order to enable the stepwise evolution of 
enzymes, the simple components of enzymes (amino acids or small peptides), must be able to 
improve rate-limiting reactions of extant metabolic pathways in an enzyme-free setup. 

To test this prediction, we chose a non-enzymatic network of glycolytic and PPP-like reactions 
as a starting point, so far described as Fe(II)-driven chemistry (29, 31). We then systematically 
combined the metabolites from these sugar-phosphate interconversions with the 20 universal 
proteinogenic amino acids, and followed the ~200 possible carbohydrate interconversion 
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reactions by quantitative selective reaction monitoring (Fig. 1B-C). We discover that amino 
acids have broad impact on non-enzymatic metabolism like reactions on the non-enzymatic 
reactions that resemble glycolysis and the PPP.  Strikingly, we identify one case in which an 
amino acid replaces a metal ion and promotes the formation of the RNA-backbone precursor 
ribose 5-phosphate from 6-phosphogluconate, a rate-limiting reaction of the extant oxidative 
PPP. Mimicking an evolutionary scenario where biochemical residues would start to accrue on 
metal ion centers, we observe the formation of a ternary complex between iron, cysteine and 
the sugar phosphate, that inspires enzyme-resembling properties in the formation of the RNA-
backbone metabolite.  Our results hence support a theory for the stepwise origin of enzymatic 
pathways on the basis of fuzzy chemical networks that serve as templates in the origin of 
enzymatic metabolism. 

 
 
Results 
 
Amino acids impact non-enzymatic metabolism-like interconversions between 
metabolites of glycolysis and the pentose phosphate pathway 
 
A high-throughput in vitro screening was devised in order to assess the influence of amino 
acids on the reactivity of central carbon metabolites (Fig. 1B-C). Twelve commercially 
available sugar-phosphate intermediates -- seven belonging to glycolysis (Embden Meyerhof; 
4 of those shared with Entner-Doudoroff) and five to the pentose phosphate pathway (PPP) -- 
were incubated, at a concentration of 100 µM, in different aqueous solutions containing 
proteinogenic amino acids. Amino acids were grouped in sets of two or three according to their 
chemical similarity, and added at a total concentration of 400 µM. We chose concentrations 
much lower than those typical of cells, as precursors of metabolic pathways more likely had 
lower concentrations than metabolites in modern cells and lower concentrations are used in 
origin of life studies that are based on one-reaction-at-a-time principles of organic chemistry. 
We hence choose a highly sensitive LC-SRM method that reliably detects the metabolites down 
to attomoles (31). Samples were prepared in an artificial nitrogen atmosphere to simulate low 
oxygen concentrations of the early Archean atmosphere prior to the great oxygenation events.  

In the screening setting, mixtures were heated to 70°C, a compromise defined previously to 
achieve detectable non-enzymatic reaction rates while still being within the temperature range 
where many hyperthermophiles relying on classical Embden-Meyerhof or variants  of it that 
preserve the same metabolic pathway structure are known to grow (39). To capture the dynamic 
behavior of the non-enzymatic network letting intermediate metabolites not only to form but 
also to react further, we sampled at multiple points over a total experimental time of 6 hrs. 
Sugar-phosphate products were detected and quantified by targeted tandem liquid 
chromatography-mass spectroscopy (LC-MS/MS), from which we reconstructed the kinetics 
of metabolite formation and consumption (Fig. 2; Materials and Methods). Overall, a total of 
twenty-three non-enzymatic reactions that resemble glycolysis and the PPP were detected (a 
similar number as in Keller et al, 2014). The presence of amino acids did however show 
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noticeable effects on the reaction rates of non-enzymatic glycolysis and PPP-like reactions 
(Fig. 2A; Fig. S1). We observed both the acceleration and the deceleration of several non-
enzymatic conversions, with typical rate fold changes in the range 0.25-4.0. Overall, thirteen 
reactions were significantly enhanced by at least one group of amino acids, when compared to 
a control case without amino acids (Mann-Whitney U test, α = 0.10). 

As one can expect from the nature of chemical reactions, a rate can be changed either by the 
direct interaction of an amino acid with the sugar phosphates, or by indirect effects, like 
changes in pH. A number of reactions were indeed changed by positively-charged amino acids 
(arginine, histidine and lysine) as well as by negatively-charged ones (aspartate and glutamate) 
and were hence possibly explained by their ability to change in response to shifts in the pH, an 
important factor in the non-enzymatic reactivity of sugar phosphates (Keller et al, 2016) (Fig. 
S1). In this work, however, we will focus on the most prominent changes observed with the 
sulfur-containing amino acids (cysteine and methionine) (Fig. 2A-B; Fig. S1). Eight out of 
twenty-three non-enzymatic glycolysis and PPP-like reactions were six-fold accelerated over 
their rate in water with this group of amino acids.  
 
 
Ribose 5-phosphate forms from 6-phosphogluconate in the presence of cysteine as in the 
pentose phosphate pathway 
 
Sulfur is an essential component of metabolism, and sulfur-containing amino acids implicated 
in enzymatic redox catalysis are responsible as well for key structural properties of enzymes. 
Enzymes of glycolysis, for instance GAPDH, use cysteine in their catalytic center to catalyze 
reactions that are non-enzymatically catalyzed by Fe(II) (40). Sulfur itself is not directly 
implicated in the canonical glycolysis and the PPP, but a microbial sulfur-glycolysis has been 
discovered and may be responsible for major parts of the global sulfur cycle, indicating that 
the evolution of sulfur metabolism is linked to the evolution of central metabolism (41, 42). 
Indeed, also the downstream metabolic processes like the Krebs cycle and amino acid 
biosynthesis depend on sulfur by using FeS clusters in their catalysis (43). 

In our screening, sulfur containing amino acids had their most striking effect on the non-
enzymatic reactivity of 6-phosphogluconic acid, the central carbohydrate of the PPP. In water, 
and in the presence of all other amino acids, 6-phosphogluconate was remarkably stable and 
didn’t yield any substantial product (Fig. 2A). In the presence of the sulfur containing amino 
acids, however, 6-phosphogluconate was converted into other intermediates of the PPP. The 
metabolite formed at the highest rate was ribose 5-phosphate, the sugar-phosphate that serves 
as backbone metabolite of RNA and DNA, followed by ribulose 5-phosphate/xylulose 5-
phosphate (indistinguishable from each other by the LC-SRM method), and pyruvate (Fig. 2B). 

We next determined whether cysteine, methionine or both sulfur-containing species were 
responsible for enhancing 6-phosphogluconate transformations, and found that effects were 
exclusively explained by cysteine (Fig. 2C). As reaction rates in non-enzymatic PPP reactions 
are strictly pH dependent (31), we tested product formation under different pH regimes in order 
to set optimal conditions for further characterization of ribose 5-phosphate formation. 50 mM 
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phosphate solutions spanning pH values between 3 and 9 were used. We obtained strongly pH-
dependent reaction rate profiles that were distinct for the different products detected, making 
prominent changes evident and relatively narrow optimal pH values under cysteine conditions, 
suggestive of catalysis (Fig. S2). Other intermediates (erythrose 4-phosphate and 6-
phosphogluconolactone) in the PPP were also detected under certain pH conditions (SI 
Appendix, Supplementary Information Text). Maximum quantities of ribose 5-phosphate 
were observed under mild acidic conditions. Therefore, further experimental conditions were 
set at pH 5, where cysteine is also stabilized (Fig. S3). 

Next, we tested alternative sulfur-containing additives to compare their role in the non-
enzymatic reaction from 6-phosphogluconate. Ribose 5-phosphate formation rate was 
differently affected by the oxidation state of the sulfur as well as the other pendant functional 
groups. While the thiol group (R-SH) was crucial for the activity, the carboxylic and amino 
groups appeared to play significant roles too as they had important modulatory effects, 
suggesting a relatively narrow chemical spectrum for drivers of these interconversions, where 
cysteine effects are moderately exclusive (Fig. S4). Oxidized sulfur groups didn’t produce any 
ribose 5-phosphate (SI Appendix, Supplementary Information Text). Finally, we examined 
the effects of molecular oxygen on this reaction. It was observed that the formation of ribose 
5-phosphate did not require a strict anaerobic environment as the reaction occurred too at 
ambient, aerobic conditions (Table S2). 

 
Cysteine and iron form complementary units of an active bioinorganic complex 
 
At this stage, once the impact of cysteine on 6-phosphogluconate reactivity and ribose 5-
phosphate formation was established, we turned to analyze the kinetics in the presence of the 
metal Fe(II). Can this metal ion account for similar reaction rates as the amino acid promotes? 
To what extent are these complementary? 800 µM 6-phosphogluconate samples were 
incubated in 50 mM phosphate solutions containing either FeCl2 or both FeCl2 and cysteine. 
Already in the case of conditions with the metal ion alone not only the products were the same 
as those favored by cysteine itself, but the pH-dependence profiles of the reaction rates were 
similar, aside from slight shifts in the optimum pH values displayed (Fig. S2). Remarkably, the 
maximum formation rate for ribose 5-phosphate still occurred at pH 5. Fe(II) was, 
comparatively, more efficient than cysteine in promoting ribose 5-phosphate production (Fig. 
3A). 

In order to better characterize the underlying dynamics when both chemical species were 
combined, the analysis was expanded to different concentrations and diverse molar ratios of 
cysteine to iron. Despite the fact that the activity from cysteine (unlike iron) was shown to 
quench itself at concentrations above 100 µM, for the whole range of individual concentrations 
tested the maximum ribose 5-phosphate production was still obtained with the mixture, where 
the contribution from both components added up (1:1 molar ratio) (Fig. 3A-B). Data from 
different molar ratios of these two species suggests that the combined, net contribution is 
consistent with a simple model of weighted additive effects rather than a synergy between the 
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amino acid and the metal (Fig. S5). Yet, our data indicates that any factor favoring the sole co-
occurrence or local proximity between the amino acid and the metal would have sufficed to 
confer advantage in an early evolutionary stage of primordial biocatalysis. 

Since cysteine and iron have a strong binding affinity and are well known to form a variety of 
complexes that regulate protein function, we investigated if there was any structural indication 
of a specific combined interaction with 6-phosphogluconate. For this, we made use of 1H-NMR 
spectroscopy, taking advantage of the fact that Fe(II) is paramagnetic and it distorts and 
suppresses the signal intensities of closely proximal protons from adjacent molecules, in part 
by reducing the spin-lattice relaxation times of coupled nuclei (T1) (Fig. 3C-E; Materials and 
Methods). Exposure of 20 mM 6-phosphogluconate to increasing concentrations of Fe(II) in a 
50 mM phosphate D2O solution at pH 5 confirmed the interaction of the sugar phosphate with 
the metal ion, as shown previously in unbuffered, aqueous conditions (Keller et al, 2016) (Fig. 
3C). In particular, the protons bound to C2 and C6 (chemical shifts at 4.09 ppm and 4.16 ppm, 
respectively) were the most responsive ones (Fig. 3C); hence, the interaction was attributed to 
occur through the carboxylic and phosphate terminal groups of 6-phosphogluconate. Similarly, 
cysteine demonstrated a fairly strong interaction with Fe(II) at pH 5, as revealed by the 
smoothing and broadening of its 1H-NMR spectral peaks (3.97 ppm and 3.06 ppm), even at 
relatively low molar fractions of Fe (II) (e.g. with 1 mM Fe(II)) (Fig. 3C). In this case, the 
possible contributions due to interactions through the carboxylic group or the thiol group could 
not be easily disentangled, given the close spatial proximity between the resonant protons. 
Strikingly, under the same concentrations as above, Fe(II) dramatically suppressed resonances 
from both cysteine and 6-phosphogluconate spectra when these species were mixed together 
(Fig. 3C). This indicated the much tighter interaction achieved with the three-components 
system, further supported by the T1 relaxation time analyses: shortening of cysteine T1 
relaxation time by Fe (II) became much more pronounced in the presence of 6-
phosphogluconate, and vice versa (Fig. 3D). In contrast, no significant or much weaker 
interaction was attained when cysteine was substituted with methionine, or when 6-
phosphogluconate was replaced by the analogue glucose 6-phosphate (Fig. S6), confirming the 
specificity of the interaction. 

Altogether, the data suggest a cooperative binding between cysteine, Fe(II) and the substrate 
6-phosphogluconate, which would form an assembly that could presumably underpin the 
catalysis. Molecular diffusion measurements carried out by diffusion-ordered spectroscopy 
(DOSY) 1H NMR spectroscopy showed a statistically significant decrease (Mann-Whitney U 
test, α=0.05) in both 6-phosphogluconate and cysteine diffusion coefficients when these were 
exposed simultaneously to increasing concentrations of Fe(II) in the presence of a relatively 
bulky, non-chelating Fe(II) ligand such as phenanthroline (Fig. 3E). This constituted further 
evidence to the formation of a (at least transient) reaction-favoring assembly.  
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Thermal-dependent reaction specificity of Cys:Fe-driven ribose 5-phosphate formation 
 
So far, the analysis of amino acid-metal influence on the non-enzymatic sugar-phosphate 
reactivity has been circumscribed to 70°C, a relatively high temperature. Under these 
conditions, however, temperature is assumed to be a major driver of the net reaction kinetics. 
Although there are arguments why the origin of metabolism could have happened under 
thermophilic conditions (44, 45), there are important opposing views. For instance, a high-
temperature origin of metabolism would argue that thermophiles could better deal with simple 
metabolic enzymes, when in fact, they rely on highly structured and advanced enzymes (46). 
Therefore, we tested if cysteine:Fe(II)-mediated ribose 5-phosphate formation could also 
proceed at lower temperatures, down to 20°C. 800 µM 6-phosphogluconate was prepared as 
before in a 50 mM phosphate solution pH 5 containing 75 µM cysteine and 75 µM Fe(II), and 
the incubation time was extended up to 3 days, depending on temperature, to allow enough 
time for detectable product formation. Remarkably, cysteine and Fe(II) were able to favor 
ribose 5-phosphate formation in the whole range of temperatures, even though the reaction rate 
scaled down as decreasing the temperature, in agreement with the Arrhenius equation (Fig. 4A-
B). The least-squares fit yielded a value for the activation energy Ea of 69 KJ mol-1 (±8; 95% 
confidence bounds). For the same range of temperatures, only very limited formation of ribose 
5-phosphate was observed in the absence of the amino acid and the metal, according to a higher 
energy barrier, estimated to be around 87 KJ mol-1 (Fig. 4A). 

Interestingly, temperature-driven changes in reaction rate inversely correlated with product 
specificity (Fig. 4C, Fig. S7). While 42% of all 6-phosphogluconate-derived product 
corresponded to ribose 5-phosphate at relatively late time points under 70°C, this value 
increased to 81% at 20°C. The relative proportion of other products such as xylulose/ribulose 
5-phosphate, pyruvate, and especially erythrose 5-phosphate diminished when decreasing the 
temperature to ambient temperature. Only 6-phosphogluconolactone was more abundant at 
lower temperatures, probably due to stability of cyclic structure at lower temperatures thereby 
trapping the reaction at this intermediate. In consequence, the relative loss of interconversion 
rate efficiency was compensated by an increased formation of the RNA backbone metabolite 
Ribose-5-phosphate at low temperatures.  
 
 
Discussion 
 
The ‘end-product problem’ describes a classic chicken-egg dilemma for the evolutionary origin 
of metabolic pathways, which require multiple reaction steps to produce a metabolite. This is 
a problem for Darwinian selection, as the intermediate steps in a metabolic pathway provide 
no selective advantage (38). In turn, the “end-product”-forming enzyme can only be selected 
for after the intermediates are in place. Non-enzymatic, chemical networks might be the basis 
to overcome this conundrum, by providing an underlying web of subtle preset transformations, 
upon which Darwinian selection can operate (5). If this hypothesis were true, metabolic 
pathways that catalyzed a similar set of reactions could come into being multiple times and 
independently to one another. We noticed that glycolysis and the pentose phosphate pathway 
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(PPP), two central and ancient pathways of central carbohydrate metabolism, are compatible 
with this hypothesis. First, their topological organization resembles a chemical network that is 
driven by the most abundant transition metal in Archean sediment, Fe(II) (28, 29, 31, 47). 
Second, the enzymes that catalyze these pathways in Archaea and Eubacteria have no sequence 
conservation, and might have come into being independently (23, 39, 48). Despite such a 
substantial biological evolution, the similarity in the underlying chemistry indicates an ancient 
origin for these pathways. 

Finding prebiotically relevant compounds with catalytic potential on biochemical reactions is 
one of the big challenges for understanding the origin of metabolism. To date, much of these 
prebiotically relevant catalytic activities have been ascribed to minerals and metals, while small 
(bio-)molecules, including amino acids, form only a tiny fraction of it (30, 49–52). Yet, often 
the prebiotic reactions and pathways described do not map to the structure of extant metabolic 
networks. In this work we show how single amino acids, and in particular cysteine, can enhance 
several iron-driven, non-enzymatic reactions between sugar phosphates, resembling extant 
glycolysis and PPP. Interestingly, cysteine (as well as histidine) has already been implicated in 
the non-enzymatic catalysis of glycolysis and in particular in acetyl-CoA formation in an earlier 
study, even though this used huge amounts of compounds and remained mainly qualitative 
(53). Cysteine was not found in the original Miller’s experiments nor in the Murchison 
meteorite and has for long been criticized as a prebiotically relevant amino acid. However, 
more recent reanalysis of prebiotic synthesis experiments under simulated prebiotic 
atmosphere including H2S, report abundant sulfur-containing amino acids (54); see also (55). 
While one might indeed debate the relevance of Miller’s experiments for the evolution of early 
enzymes, there are however important biological arguments that support the early importance 
of cysteine: All species universally use cysteine in their essential metabolic enzymes, indicating 
that it was available when the metabolic network evolved. Cysteine hence was prevalent in 
biological evolution, and additionally, other sulphur containing molecules could have fulfilled 
the role (56). 

The role of cysteine could be that of a nucleophile as observed in the case of the enzyme 
aldehyde dehydrogenase (57). Although the exact chemistry behind the non-oxidative reactions 
remains elusive, the described chemical system establishes the intermediates of the PPP and 
Embden-Meyerhof pathways via a series of reactions observed in Maillard reactions as well as 
thiol-mediated oxidation reactions (58). Cysteine sulfur condenses with a carbonyl 
functionality allowing for the facile dehydrogenation (Fig 5). The resulting thioester undergoes 
hydrolysis to give the corresponding carboxylic acid. 

In addition to this observed organocatalysis by cysteine, we also observe a complex formation 
between different components - a sugar-phosphate, a metal and cysteine. The amino acid 
ligand, in addition to acting as a surrogate of metal catalysis, might also act as a scaffold 
between the substrate and the metal. This could be regarded as a possibility for how a transition 
from simple metal-ligand catalyst to longer peptides based on metal centers could have taken 
place (49, 59).  
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The prevalence of life across a wide range of temperatures shows the robustness of its cellular 
components to high thermal energies. This resistance to decomposition may have acted as a 
major initial selection criterion along with catalytic rates (60). Pre-existent chemical scaffolds 
would have interacted with the already present metal catalysts and those (sub)networks 
contributing with intermediates that reinforced metal catalysis or reaction stability were further 
selected and retained in nascent metabolic pathways. Single amino acids (or small peptides) 
could have embodied those attributes enucleating on metal centers, at the time that they could 
have later relegated metals making metabolism less dependent on environmental catalysts (61, 
62). By being a rate-limiting reaction, even a slight enhancement of ribose 5-phosphate 
production from 6-phosphogluconate under a diversity of conditions with moderate specificity, 
could have been an excellent asset in mild microenvironments during the early evolution of 
metabolism. At that era, time was presumably not as limiting as it was the ability to consolidate 
autonomous procurement of specific metabolites such as ribose-5-phosphate under conditions 
where other metabolites of the metabolic network, as well as early components that led to the 
evolution of the transcription and translational machinery, could persist too. From this 
perspective, it becomes plausible that early enzymes evolved stepwise and did not need to 
provide high specificity or yield to make a positive impact on an early metabolism.  

In summary, we have shown that single-amino acids can alter a broad range of activity within 
a non-enzymatic, metal promoted network that resembles glycolysis and the pentose phosphate 
pathway. Cysteine, as sulfur containing proteinogenic amino acid in particular formed a ternary 
complex with Fe(II) and 6-phosphogluconate, and acting as a ‘minimal enzyme’, promoted the 
formation of ribose 5-phosphate, in analogy to a rate limiting reaction of the oxidative PPP. 
Moreover, we noted that mundane (20°C) temperatures substantially increased the specificity 
of ribose 5-phosphate formation. Our results hence show that reactions of metal-catalyzed 
networks can be replaced with simple amino acid-based catalysis, and hence propose a scenario 
in which non-enzymatic, fuzzy chemical networks serve as a template for the selection of 
enzymatic catalysts in the early evolution of metabolism. This scenario implies a solution for 
the ‘end product problem’, because in the presence of a pre-existing metal driven reaction 
network, not all enzymes that form a metabolic pathway need to come into being at once to 
enable the formation of a selectable product. Further, this model could explain why metabolic 
network topologies remain conserved upon the evolution of enzymatic catalysis.  

 
 
Materials and Methods 
 
Materials. All chemicals were obtained from Sigma-Aldrich. UPLC/MS grade acetonitrile 
(AcCN) and water were purchased from Greyhound Chemicals. (see SI Appendix, 
Supplementary Methods for further details) 
 
Sample preparation for reaction kinetics experiments. Samples consisting of individual sugar 
phosphates dissolved (in the µM range) in 200 µL aqueous solutions (either in 50 mM 
phosphate or UPLC/MS grade water) were prepared fresh. These were placed in 2ml screw 
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thread amber autosampler glass vials (Agilent Technologies) and sealed in an anaerobic 
chamber (Coy Laboratory Products) following 3 vacuum/N2 injection cycles to remove oxygen 
content. Samples were then incubated in a water bath at the indicated temperature for different 
times, after which reactions were stopped by immediate transference to ice. Samples were 
stored at -20°C until thawed for LC-MS/MS measurements. The incubation time points were 
specifically set for each metabolite based on its previously reported stability (29, 31); these 
were typically defined at increasing time intervals and spanned for up to 6h in the experiments 
at 70°C. 
 
LC-MS/MS and quantification of sugar phosphate interconversions. Samples were analyzed 
for sugar-phosphate content by a tandem liquid chromatography-mass spectroscopy (LC-
MS/MS) system, using a triple-quadrupole device (Agilent 6460) operating in SRM mode 
(parameter specifications and metabolite ion transitions defined as in (29); see also (63). A 
reverse-phase, C8 chromatographic column (Zorbax SB-C8 RRHD 2.1×100 mm 1.8 µm from 
Agilent) was used for the separation, with two binary acetonitrile/water mobile phases (Buffer 
A: 90% Water, 10% AcCN; Buffer B: 50% Water, 50% AcCN) applied in gradient, both 
containing 750 mg/l octylammonium acetate as ion-pairing reagent. Details were as followed: 
7.5-min cycle at isocratic 0.6 ml/min flow, with elution with 5% Buffer B for 3.5 min, followed 
by a 2.5-min ramp to 70% of B, 0.5 min at 80% B and 1-min re-equilibration to 5% B. 
Individual sugar phosphates could be resolved by retention time as well as fragmentation 
pattern, as contrasted with external standards. Only Ru5P and X5P (229 -> 97 m/z) and 2PG 
and 3PG (185 -> 97 m/z) could not be discriminated, and were considered together in the 
analysis. To avoid possible biases in quantification due to long-batch effects (e.g. variations in 
instrument sensitivity), sample triplicates were randomized in the autosampler positions before 
MS measurements. 
 
MS/MS data were analyzed with the quantitative MassHunter software (Agilent), with manual 
supervision of the automated signal-peak integration. Several replicates of sugar-phosphate 
external-standard dilution series allowed to translate signal intensities into absolute 
concentrations. This was achieved with less accuracy in the case of E4P due to its broad, low-
intensity peak, as described in previous work (64), and because of its remarkably poor purity 
(50%) in the commercially available standard. Also, the lack of a commercial standard for 
6PGL forced us to estimate its concentration from the rapid favored equilibrium with 6PG 
occurring at a strong acidic pH. Concentration time courses were reconstructed with 
MATLAB. Only cases with over-background product detection showing a congruent increase 
between triplicates were considered as significant transformations and analyzed for the 
kinetics. Reaction kinetics were fitted according to one of the following models, depending on 
the adequacy to the experimental data (R2 values): a least-squares linear production model, a 
saturating hyperbolic model or sigmoidal Gompertz function, or a mixed model comprising a 
first linear phase of maximum (initial) growth rate and a slow exponential decay. Rates, when 
reported, are shown in terms of the maximum (initial) slopes of the reaction kinetics fits. 
 
NMR studies of metabolite-iron interaction. Samples containing a final metabolite 
concentration of 20 mM were prepared in deuterated water (D2O) containing 0.05 mM 
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trimethylsilyl propanoic acid (TSP) as internal standard, sodium azide and 50 mM sodium 
phosphate at a pH 5. FeCl2 was added at concentrations of 0, 0.1, 0.2 and 1 mM. NMR 
experiments were carried out using an AVANCE II+ (Bruker, Rheinstetten, Germany) NMR 
spectrometer operating at 500.13 MHz for the 1H frequency using a 5 mm TXI probe. Basic 
1D spectra were collected using a solvent suppression pulse sequence based on a one-
dimensional version of the nuclear Overhauser effect spectroscopy (NOESY) pulse sequence 
to saturate the residual 1H water signal (relaxation delay = 2 s, t1 increment = 3 µs, mixing time 
= 150 ms, solvent presaturation applied during the relaxation time and the mixing time). 128 
transients were collected into 16 K data points over a spectral width of 12 ppm at 320 K. 
 
Longitudinal relaxation times (T1) were measured using the Inversion recovery pulse sequence, 
180-τ-90, with pulse spacing τ having the following values: 0.01 s, 0.02 s, 0.03 s, 0.05 s, 0.1 s, 
0.25 s, 0.5 s, 0.75 s, 1 s, 1.5 s, 2 s, 4 s, 8 s, 15 s, 20 s, 25 s. The pulse repetition time was set at 
20 s. Eight transients were collected into 16 K data points over a spectral width of 20 ppm at 
320 K. 
 
Diffusion coefficients were measured using a bipolar gradient pulse pair with a spoil gradient 
pulse (stebpgp1s), with 16 incremental steps in the gradient strength linearly ramped from 2% 
to 95% of the maximum gradient strength. 16 Scans per increment step were collected into 16K 
data points over a spectra width of 19 ppm at 320 K. The gradient pulse length was set at 1000 
µs, while the time between pulses at 0.1 sec. The pulse repetition time was set at 2 s. 
 
1D NMR spectra were processed using TopSpin v.3.2 (Bruker, Rheinstetten, Germany). Free 
induction decays were Fourier transformed following multiplication by a line broadening of 1 
Hz, and referenced to TSP at 0.0 ppm. Spectra were automatically phase and baseline corrected. 
For the relaxation times and diffusion coefficients, data were analyzed using the T1/T2 
Relaxation module present in TopSpin. All experiments were carried out at least by triplicate. 
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Figures and Tables 
 

 
Figure 1.  Model for a stepwise scenario in the early evolution of catalyzed metabolic 
networks, and experimental approach for screening non-enzymatic conversions among 
metabolic sugar-phosphates influenced by amino acids. (A) Hypothetical scheme of how a 
metabolic pathway could evolve from an underlying non-enzymatic network. Selective 
pressure for higher pathway product yield falls on the rate-limiting step (ɸ1, red). This would 
be improved by the selection of a primitive enzyme, until another process (ɸ3) becomes 
limiting. Some immediate or far end-products might display catalytic potential helping to fix 
those catalytic activities by feedback. (B) Network topology of metabolic sugar-phosphate 
interconversions from modern enzymatic glycolysis and pentose phosphate pathways. 
Enzymes and co-substrates are omitted in this graph and only sugar phosphates analyzed in this 
study are displayed (those used as input appear surrounded). Abbreviations used: Glc, glucose; 
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G6P, glucose 6-phosphate; F6P, fructose 6-phosphate; F16BP, fructose 1,6-bisphosphate; 
DHAP, dihydroxyacetone phosphate; G3P, glyceraldehyde 3-phosphate; 3PG/2PG, 3-
phosphoglycerate & 2-phosphoglycerate; PEP, phosphoenolpyruvate; Pyr, pyruvate; 6PGL, 6-
phosphogluconolactone; 6PG, 6-phosphogluconate; Ru5P, ribulose 5-phosphate; R5P, ribose 
5-phosphate; X5P, xylulose 5-phosphate; S7P, sedoheptulose 7-phosphate; E4P, erythrose 4-
phosphate. (C) Experimental procedure. Each sugar phosphate was dissolved in aqueous (or 50 
mM phosphate) solution in the presence or absence of single amino acids and/or FeCl2. 
Samples were incubated at 70°C in glass vials sealed in an anaerobic chamber (picture courtesy 
of Coy Laboratory Products Inc.) before targeted detection and quantification of sugar-
phosphate products (from all those in (B)) using a tandem liquid chromatography-mass 
spectroscopy (LC-MS/MS) system operating in SRM mode (Agilent Technologies). 
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Figure 2.  Amino acids impact non-enzymatic interconversions between glycolytic and 
pentose phosphate pathway sugar phosphates. A total of 12 metabolic intermediates from 
glycolysis and pentose phosphate pathway were incubated separately, at a concentration of 100 
µM, at 70°C, in aqueous solutions containing single, proteinogenic amino acids (grouped, 
according to functional similarity, at a total concentration of 400 µM). The non-enzymatic 
formation of sugar-phosphate products was monitored over time by targeted LC/MS. (A) 
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Amino-acid effects on individual production rates, shown in terms of log fold changes vs. a 
control case without amino acids, illustrated as a Heat-Map. Only individual transformations 
with over-background product detection and congruent increase between replicates in at least 
one amino-acid condition were considered in the analysis; striped cells denote particular 
conditions where these criteria were not fulfilled (i.e. insignificant product detected). Only 
cases of significant rate changes (Mann-Whitney U test, α = 0.1) are color coded. ‘all mixed’ 
corresponds with a condition where all 20 amino acids were present at a total concentration of 
400 µM. N = 3 independent experiments per condition. (B) Graphs showing the non-enzymatic 
transformations detected in the aqueous control compared with those in the presence of cysteine 
and methionine. The width of the arrows is proportional to the calculated reaction rates (see 
Materials and Methods) and same color coding as in (A) is applied to transformations with 
significantly different rates (either higher - green - or lower - red) in the cysteine + methionine 
case vs. control (black = non-sig. change). (C) Representative chromatograms obtained by 
LC/MS after 2h incubation of 100 µM 6PG in control conditions without amino acids (-), in 
the presence of 200 µM methionine, or with 200 µM cysteine, revealing that cysteine is 
responsible for facilitating the formation of different products. Right panels: Detailed time 
courses in the formation of pyruvate and pentose phosphate sugars (SRM transitions 
displayed). 
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Figure 3.  Cysteine and Fe(II) complementary effects on 6PG transformations and the 
formation of a ternary complex, the ‘minimal enzyme 
 (A-B) The formation of ribose 5-phosphate at 70°C from 800 µM 6PG in 50 mM phosphate 
solution pH 5 was monitored for different concentrations of cysteine, different concentrations 
of Fe(II), and different concentrations of both species combined (molar ratio 1:1). Shown are 
a comparison of time courses when cysteine and/or Fe(II) were each added at 150 µM (A) and 
the trends in ribose 5-phosphate concentration at 2h for different individual enhancer 
concentrations (error bars: mean ± SD) (B). N ≥ 3 in all conditions. (C) 1H-NMR spectra of 
6PG alone, cysteine alone, or the combination of both (20 mM of each analyte) in 50 mM 
phosphate pH 5/D2O solutions, either in the absence or presence of 1 mM FeCl2. The massive 
disruption and suppression of the 1H signal peaks upon addition of Fe(II) to the binary mixture 
suggests a coordination between cysteine and 6PG in Fe(II) binding. Spectra are shown 
normalized to the maximum peak intensity per spectrum. (D) T1 relaxation time scaling of 6PG 
(4.09 ppm) and cysteine (3.06 ppm) signals with increasing Fe(II) concentrations when 
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analyzed separately vs. in combination (conditions as in (C)). (E) Diffusion coefficients 
measured by diffusion-ordered spectroscopy (DOSY) for cysteine and 6PG molecules (20 mM 
each) when co-incubated with a mixture of increasing concentrations of Fe(II) and constant, 
saturating concentrations of phenanthroline, a strong, non-chelating Fe-binding complex. Both 
molecules showed a noisy but significant decrease in diffusion, a further indication of Fe(II) 
binding. N ≥ 4. 
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Figure 4.  Thermal-dependent non-enzymatic ribose 5-phosphate formation and product 
specificity from 6PG as in the pentose phosphate pathway. (A) Ribose 5-phosphate 
concentration over time, formed upon the incubation of 800 µM 6PG in 50 mM phosphate 
solution pH 5 at different temperatures in the presence of complex-forming 75 µM cysteine 
and 75 µM FeCl2 Notice that time ranges were adapted according to the temperature-scaling 
kinetics. Experimental data (points; N = 3) conform to hyperbolic fits (lines). Trends without 
the additives are shown for comparison. (B) Initial rate constants calculated from (A) scale 
exponentially with the absolute temperature, following Arrhenius’ equation. The linear slope 
in the plot of log-transformed values gives a value for the activation energy Ea of 69 KJ mol-1. 
(C) Long-term product specificity at different temperatures. Relative concentrations of the 
different detected sugar phosphate products are shown for the last recorded time point per 
temperature condition from the experiments in (A) (average from N = 3 experiments). 
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Figure 5.  Proposed mechanism for thiol catalyzed oxidation of aldose sugar to sugar 
acid. EA could be an electron acceptor such as oxygen or Fe(III) generated in situ. 
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