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Abstract

How metabolic pathways emerged in early evolution remains largely unknown. Recently discovered
chemical networks driven by iron and sulfur resemble reaction sequences found within glycolysis,
gluconeogenesis, the oxidative and reductive Krebs cycle, the Wood Ljungdahl as well as the S-
adenosylmethionine pathways, components of the core cellular metabolic network. These findings
suggest that the evolution of central metabolism was primed by environmental chemical reactions,
implying that non-enzymatic reaction networks served as a “template” in the evolution of enzymatic
activities. We speculated that the turning point for this transition would depend on the catalytic
properties of the simplest structural components of proteins, single amino acids. Here, we systematically
combine constituents of Fe(Il)-driven non-enzymatic reactions resembling glycolysis and pentose
phosphate pathway (PPP), with single proteinogenic amino acids. Multiple reaction rates are enhanced
by amino acids. In particular, cysteine is able to replace (and/or complement) the metal ion Fe(I) in
driving the non-enzymatic formation of the RNA-backbone metabolite ribose 5-phosphate from 6-
phosphogluconate, a rate-limiting reaction of the oxidative PPP. In the presence of both Fe(II) and
cysteine, a complex is formed, enabling the non-enzymatic reaction to proceed at a wide range of
temperatures. At mundane temperatures, this ‘minimal enzyme-like complex’ achieves a much higher
specificity in the formation of ribose 5-phosphate than the Fe(II)-driven reaction at high temperatures.
Hence, simple amino acids can accelerate key steps within metal-promoted metabolism-like chemical
networks. Our results imply a stepwise scenario, in which environmental chemical networks served as
primers in the early evolution of the metabolic network structure.

Significance Statement

The evolutionary roots of metabolic pathways are barely understood. Here we show results consistent
with a stepwise scenario during the evolution of (enzymatic) metabolism, starting from non-enzymatic
chemical networks. By systematic screening of metabolic-like reactivities in vitro, and using high-
throughput analytical techniques, we identify an iron/cysteine complex to act as a ‘minimal enzyme-
like complex’, which consists of a metal ion, an amino acid, and a sugar phosphate ligand. Integrated
in a metal-driven, non-enzymatic pentose phosphate pathway, it promotes the formation of the RNA-
backbone precursor ribose 5-phosphate at ambient temperature.


https://doi.org/10.1101/2020.08.11.245860
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.245860; this version posted August 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Main Text
Introduction

The evolutionary origins of enzymatic metabolism are subject to a long-lasting debate (1-6)
but remain essentially unknown. The history of Biochemistry and the evolution of biochemical
thinking have fundamentally shaped this debate. In earlier days, metabolism was seen primarily
as the biological process of nutrient uptake and conversion, to provide the biomolecular
building blocks that enable survival and growth of the cells. On the basis of this school of
thought, the studies into the origin of metabolism during abiogenesis primarily focused on the
nutritional aspects of metabolism, that is, to provide nucleotides, amino acids, lipids to early
cells (7). Modern biochemistry has however strongly shifted to a view that the role metabolism
exceeds the linear conception of its biosynthetic function (8, 9). Metabolism, and the
biochemistry that operates within it, constraints the very existence of biological systems.
Structured in a topologically conserved system (the metabolic network), metabolism
determines the conditions under which cells can persist and how they can adapt and evolve in
new environments, by controlling which elements and molecules are required for a cell to grow,
how cells divide (e.g. by eliciting gene expression programs), which molecules are transported
through their membrane, and managing chemical processes causing damage to cells (10-15).
As a consequence of this paradigm shift in biochemistry, also research into the origins of
metabolism is influenced. It has hence become important not only to consider scenarios for the
origin of end-point metabolites, amino acids, nucleotides or lipids, as the sole presence of these
molecules may not be sufficient to explain the necessary biological properties. Instead, we are
urged to explain too the origin of the structure of the metabolic network (16—18).

With little experimental evidence available, the debate about the topological origin of
metabolism was purely hypothetical, and split between an ‘evolutionary view’, in which the
current structure of metabolism emerged over time as a consequence of the evolution of
enzymes (4, 19, 20), and an environmental-chemistry view, that places non-enzymatic
reactions at the root of the metabolic network structure (2, 3, 6). Indeed, an astonishing feature
of the cellular metabolic network is the evolutionary conservation of its structure, basic
function principles, and topology (21, 22). The universal conservation of these features
indicates that the metabolic network dates back to the very early stage of evolution. This
hypothesis is supported by the observation that the topological organization of metabolism is
maintained much better than the (sequence) conservation of metabolic enzymes. An example
of this is the glycolytic pathway, that is found in both Eubacteria and Archaea, but without a
general conservation of the catalyzing enzymes (23).

More recently, direct experimental evidence that supports a non-enzymatic origin of the
metabolic network structure has emerged. New sensitive analytical methods like multiple
reaction monitoring have become available, and allow large screening experiments, and reach
detection limits that are several orders of magnitude better compared to the method spectrum
conventionally used in the origin of life research (24). Importantly, selective reaction
monitoring experiments can be performed in the presence of ferrous iron concentrations that
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cause signal-suppression in 1H-NMR experiments that have frequently been used in origin of
life research (25). Ferrous iron is believed to have reached millimolar concentrations in
Archean oceans and other aquatic environments (26-28), is a biologically highly relevant
catalyst and electron donor, and as catalyst of many metabolism-like non-enzymatic reactions,
may be key in understanding early metabolic reactions (29, 30).

The ability to perform sensitive metabolite quantification experiments in Archean-like, iron-
rich reaction conditions, led to the discovery of a series of chemical reactions that capture the
topological organization of metabolic pathways, in a single condition and without an enzyme
present. The first such network system resembles the Embden Meyerhoff Parnass pathway, or
glycolysis, and the pentose phosphate pathway (PPP). This network is driven by the presence
of Fe(Il) concentrations that resemble those of average Archean sedimentation (29, 31).
Meanwhile additional reaction systems have been described. These concern other glycolytic
reactions, and suggest that at least gluconeogenesis, the oxidative as well as reductive Krebs
cycle, its glyoxylate shunt, as well as the Wood-Ljungdahl pathway all have topologies that
resemble those of simple non-enzymatic networks that could have occurred prior to the origins
of life (30, 32-37). This ‘fuzzy’ chemistry hence captures major parts of central metabolism.

In this manuscript, we aim to address a question that emerges from these observations: How
could a metal-ion driven, chemical network prime a Darwinian process that eventually forms
an enzyme-catalyzed metabolic pathway? Indeed, as early as in 1945, Horowitz described a
main difficulty to explain the advent of enzymatic catalysis by Darwinian evolution, as a
chicken-egg dilemma, that we have previously referred to as the ‘End Product Problem’ (5,
38): Darwinian pressure can only select for a functional product, the ‘end product’ of an
enzymatic pathway. But how could then evolve the enzyme that catalyzes the formation of an
upstream intermediate, one that is needed before formation of the functional product is
conceived?

We speculate that the presence of a non-enzymatic chemical network could overcome the end
product problem (5). If a reaction network is already present due to non-enzymatic
interconversion of metabolites, Darwinian selection can then improve the end product
formation by selecting an enzyme that enhances its most rate-limiting reaction. In this model,
not all enzymes need to come into place at once, but an improvement of the entire pathway is
possible with the selection of a single enzyme (Fig. 1A). This model generates at least two
predictions. The first is that in this model reaction topologies will not substantially change over
time. Our biological knowledge is consistent with this prediction; the metabolic reaction
topologies are strongly conserved among species and barely changed over billions of years of
evolution (21, 22)). The second prediction is that in order to enable the stepwise evolution of
enzymes, the simple components of enzymes (amino acids or small peptides), must be able to
improve rate-limiting reactions of extant metabolic pathways in an enzyme-free setup.

To test this prediction, we chose a non-enzymatic network of glycolytic and PPP-like reactions
as a starting point, so far described as Fe(II)-driven chemistry (29, 31). We then systematically
combined the metabolites from these sugar-phosphate interconversions with the 20 universal
proteinogenic amino acids, and followed the ~200 possible carbohydrate interconversion
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reactions by quantitative selective reaction monitoring (Fig. 1B-C). We discover that amino
acids have broad impact on non-enzymatic metabolism like reactions on the non-enzymatic
reactions that resemble glycolysis and the PPP. Strikingly, we identify one case in which an
amino acid replaces a metal ion and promotes the formation of the RNA-backbone precursor
ribose 5-phosphate from 6-phosphogluconate, a rate-limiting reaction of the extant oxidative
PPP. Mimicking an evolutionary scenario where biochemical residues would start to accrue on
metal ion centers, we observe the formation of a ternary complex between iron, cysteine and
the sugar phosphate, that inspires enzyme-resembling properties in the formation of the RNA-
backbone metabolite. Our results hence support a theory for the stepwise origin of enzymatic
pathways on the basis of fuzzy chemical networks that serve as templates in the origin of
enzymatic metabolism.

Results

Amino acids impact non-enzymatic metabolism-like interconversions between
metabolites of glycolysis and the pentose phosphate pathway

A high-throughput in vitro screening was devised in order to assess the influence of amino
acids on the reactivity of central carbon metabolites (Fig. 1B-C). Twelve commercially
available sugar-phosphate intermediates -- seven belonging to glycolysis (Embden Meyerhof;
4 of those shared with Entner-Doudoroff) and five to the pentose phosphate pathway (PPP) --
were incubated, at a concentration of 100 puM, in different aqueous solutions containing
proteinogenic amino acids. Amino acids were grouped in sets of two or three according to their
chemical similarity, and added at a total concentration of 400 uM. We chose concentrations
much lower than those typical of cells, as precursors of metabolic pathways more likely had
lower concentrations than metabolites in modern cells and lower concentrations are used in
origin of life studies that are based on one-reaction-at-a-time principles of organic chemistry.
We hence choose a highly sensitive LC-SRM method that reliably detects the metabolites down
to attomoles (31). Samples were prepared in an artificial nitrogen atmosphere to simulate low
oxygen concentrations of the early Archean atmosphere prior to the great oxygenation events.

In the screening setting, mixtures were heated to 70°C, a compromise defined previously to
achieve detectable non-enzymatic reaction rates while still being within the temperature range
where many hyperthermophiles relying on classical Embden-Meyerhof or variants of it that
preserve the same metabolic pathway structure are known to grow (39). To capture the dynamic
behavior of the non-enzymatic network letting intermediate metabolites not only to form but
also to react further, we sampled at multiple points over a total experimental time of 6 hrs.
Sugar-phosphate products were detected and quantified by targeted tandem liquid
chromatography-mass spectroscopy (LC-MS/MS), from which we reconstructed the kinetics
of metabolite formation and consumption (Fig. 2; Materials and Methods). Overall, a total of
twenty-three non-enzymatic reactions that resemble glycolysis and the PPP were detected (a
similar number as in Keller et al, 2014). The presence of amino acids did however show
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noticeable effects on the reaction rates of non-enzymatic glycolysis and PPP-like reactions
(Fig. 2A; Fig. S1). We observed both the acceleration and the deceleration of several non-
enzymatic conversions, with typical rate fold changes in the range 0.25-4.0. Overall, thirteen
reactions were significantly enhanced by at least one group of amino acids, when compared to
a control case without amino acids (Mann-Whitney U test, a = 0.10).

As one can expect from the nature of chemical reactions, a rate can be changed either by the
direct interaction of an amino acid with the sugar phosphates, or by indirect effects, like
changes in pH. A number of reactions were indeed changed by positively-charged amino acids
(arginine, histidine and lysine) as well as by negatively-charged ones (aspartate and glutamate)
and were hence possibly explained by their ability to change in response to shifts in the pH, an
important factor in the non-enzymatic reactivity of sugar phosphates (Keller et al, 2016) (Fig.
S1). In this work, however, we will focus on the most prominent changes observed with the
sulfur-containing amino acids (cysteine and methionine) (Fig. 2A-B; Fig. S1). Eight out of
twenty-three non-enzymatic glycolysis and PPP-like reactions were six-fold accelerated over
their rate in water with this group of amino acids.

Ribose 5-phosphate forms from 6-phosphogluconate in the presence of cysteine as in the
pentose phosphate pathway

Sulfur is an essential component of metabolism, and sulfur-containing amino acids implicated
in enzymatic redox catalysis are responsible as well for key structural properties of enzymes.
Enzymes of glycolysis, for instance GAPDH, use cysteine in their catalytic center to catalyze
reactions that are non-enzymatically catalyzed by Fe(II) (40). Sulfur itself is not directly
implicated in the canonical glycolysis and the PPP, but a microbial sulfur-glycolysis has been
discovered and may be responsible for major parts of the global sulfur cycle, indicating that
the evolution of sulfur metabolism is linked to the evolution of central metabolism (41, 42).
Indeed, also the downstream metabolic processes like the Krebs cycle and amino acid
biosynthesis depend on sulfur by using FeS clusters in their catalysis (43).

In our screening, sulfur containing amino acids had their most striking effect on the non-
enzymatic reactivity of 6-phosphogluconic acid, the central carbohydrate of the PPP. In water,
and in the presence of all other amino acids, 6-phosphogluconate was remarkably stable and
didn’t yield any substantial product (Fig. 2A). In the presence of the sulfur containing amino
acids, however, 6-phosphogluconate was converted into other intermediates of the PPP. The
metabolite formed at the highest rate was ribose 5-phosphate, the sugar-phosphate that serves
as backbone metabolite of RNA and DNA, followed by ribulose 5-phosphate/xylulose 5-
phosphate (indistinguishable from each other by the LC-SRM method), and pyruvate (Fig. 2B).

We next determined whether cysteine, methionine or both sulfur-containing species were
responsible for enhancing 6-phosphogluconate transformations, and found that effects were
exclusively explained by cysteine (Fig. 2C). As reaction rates in non-enzymatic PPP reactions
are strictly pH dependent (31), we tested product formation under different pH regimes in order
to set optimal conditions for further characterization of ribose 5-phosphate formation. 50 mM


https://doi.org/10.1101/2020.08.11.245860
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.245860; this version posted August 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

phosphate solutions spanning pH values between 3 and 9 were used. We obtained strongly pH-
dependent reaction rate profiles that were distinct for the different products detected, making
prominent changes evident and relatively narrow optimal pH values under cysteine conditions,
suggestive of catalysis (Fig. S2). Other intermediates (erythrose 4-phosphate and 6-
phosphogluconolactone) in the PPP were also detected under certain pH conditions (SI
Appendix, Supplementary Information Text). Maximum quantities of ribose 5-phosphate
were observed under mild acidic conditions. Therefore, further experimental conditions were
set at pH 5, where cysteine is also stabilized (Fig. S3).

Next, we tested alternative sulfur-containing additives to compare their role in the non-
enzymatic reaction from 6-phosphogluconate. Ribose S5-phosphate formation rate was
differently affected by the oxidation state of the sulfur as well as the other pendant functional
groups. While the thiol group (R-SH) was crucial for the activity, the carboxylic and amino
groups appeared to play significant roles too as they had important modulatory effects,
suggesting a relatively narrow chemical spectrum for drivers of these interconversions, where
cysteine effects are moderately exclusive (Fig. S4). Oxidized sulfur groups didn’t produce any
ribose 5-phosphate (SI Appendix, Supplementary Information Text). Finally, we examined
the effects of molecular oxygen on this reaction. It was observed that the formation of ribose
5-phosphate did not require a strict anaerobic environment as the reaction occurred too at
ambient, aerobic conditions (Table S2).

Cysteine and iron form complementary units of an active bioinorganic complex

At this stage, once the impact of cysteine on 6-phosphogluconate reactivity and ribose 5-
phosphate formation was established, we turned to analyze the kinetics in the presence of the
metal Fe(Il). Can this metal ion account for similar reaction rates as the amino acid promotes?
To what extent are these complementary? 800 puM 6-phosphogluconate samples were
incubated in 50 mM phosphate solutions containing either FeClz or both FeCl: and cysteine.
Already in the case of conditions with the metal ion alone not only the products were the same
as those favored by cysteine itself, but the pH-dependence profiles of the reaction rates were
similar, aside from slight shifts in the optimum pH values displayed (Fig. S2). Remarkably, the
maximum formation rate for ribose S5-phosphate still occurred at pH 5. Fe(Il) was,
comparatively, more efficient than cysteine in promoting ribose 5-phosphate production (Fig.
3A).

In order to better characterize the underlying dynamics when both chemical species were
combined, the analysis was expanded to different concentrations and diverse molar ratios of
cysteine to iron. Despite the fact that the activity from cysteine (unlike iron) was shown to
quench itself at concentrations above 100 pM, for the whole range of individual concentrations
tested the maximum ribose 5-phosphate production was still obtained with the mixture, where
the contribution from both components added up (1:1 molar ratio) (Fig. 3A-B). Data from
different molar ratios of these two species suggests that the combined, net contribution is
consistent with a simple model of weighted additive effects rather than a synergy between the
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amino acid and the metal (Fig. S5). Yet, our data indicates that any factor favoring the sole co-
occurrence or local proximity between the amino acid and the metal would have sufficed to
confer advantage in an early evolutionary stage of primordial biocatalysis.

Since cysteine and iron have a strong binding affinity and are well known to form a variety of
complexes that regulate protein function, we investigated if there was any structural indication
of a specific combined interaction with 6-phosphogluconate. For this, we made use of 'H-NMR
spectroscopy, taking advantage of the fact that Fe(Il) is paramagnetic and it distorts and
suppresses the signal intensities of closely proximal protons from adjacent molecules, in part
by reducing the spin-lattice relaxation times of coupled nuclei (71) (Fig. 3C-E; Materials and
Methods). Exposure of 20 mM 6-phosphogluconate to increasing concentrations of Fe(Il) in a
50 mM phosphate D>0O solution at pH 5 confirmed the interaction of the sugar phosphate with
the metal ion, as shown previously in unbuffered, aqueous conditions (Keller et al, 2016) (Fig.
3C). In particular, the protons bound to C2 and C6 (chemical shifts at 4.09 ppm and 4.16 ppm,
respectively) were the most responsive ones (Fig. 3C); hence, the interaction was attributed to
occur through the carboxylic and phosphate terminal groups of 6-phosphogluconate. Similarly,
cysteine demonstrated a fairly strong interaction with Fe(Il) at pH 5, as revealed by the
smoothing and broadening of its 'H-NMR spectral peaks (3.97 ppm and 3.06 ppm), even at
relatively low molar fractions of Fe (II) (e.g. with 1 mM Fe(Il)) (Fig. 3C). In this case, the
possible contributions due to interactions through the carboxylic group or the thiol group could
not be easily disentangled, given the close spatial proximity between the resonant protons.
Strikingly, under the same concentrations as above, Fe(Il) dramatically suppressed resonances
from both cysteine and 6-phosphogluconate spectra when these species were mixed together
(Fig. 3C). This indicated the much tighter interaction achieved with the three-components
system, further supported by the 77 relaxation time analyses: shortening of cysteine 7
relaxation time by Fe (II) became much more pronounced in the presence of 6-
phosphogluconate, and vice versa (Fig. 3D). In contrast, no significant or much weaker
interaction was attained when cysteine was substituted with methionine, or when 6-
phosphogluconate was replaced by the analogue glucose 6-phosphate (Fig. S6), confirming the
specificity of the interaction.

Altogether, the data suggest a cooperative binding between cysteine, Fe(Il) and the substrate
6-phosphogluconate, which would form an assembly that could presumably underpin the
catalysis. Molecular diffusion measurements carried out by diffusion-ordered spectroscopy
(DOSY) 'H NMR spectroscopy showed a statistically significant decrease (Mann-Whitney U
test, 0=0.05) in both 6-phosphogluconate and cysteine diffusion coefficients when these were
exposed simultaneously to increasing concentrations of Fe(Il) in the presence of a relatively
bulky, non-chelating Fe(Il) ligand such as phenanthroline (Fig. 3E). This constituted further
evidence to the formation of a (at least transient) reaction-favoring assembly.
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Thermal-dependent reaction specificity of Cys:Fe-driven ribose S-phosphate formation

So far, the analysis of amino acid-metal influence on the non-enzymatic sugar-phosphate
reactivity has been circumscribed to 70°C, a relatively high temperature. Under these
conditions, however, temperature is assumed to be a major driver of the net reaction kinetics.
Although there are arguments why the origin of metabolism could have happened under
thermophilic conditions (44, 45), there are important opposing views. For instance, a high-
temperature origin of metabolism would argue that thermophiles could better deal with simple
metabolic enzymes, when in fact, they rely on highly structured and advanced enzymes (46).
Therefore, we tested if cysteine:Fe(Il)-mediated ribose 5-phosphate formation could also
proceed at lower temperatures, down to 20°C. 800 pM 6-phosphogluconate was prepared as
before in a 50 mM phosphate solution pH 5 containing 75 uM cysteine and 75 pM Fe(II), and
the incubation time was extended up to 3 days, depending on temperature, to allow enough
time for detectable product formation. Remarkably, cysteine and Fe(II) were able to favor
ribose 5-phosphate formation in the whole range of temperatures, even though the reaction rate
scaled down as decreasing the temperature, in agreement with the Arrhenius equation (Fig. 4A-
B). The least-squares fit yielded a value for the activation energy E, of 69 KJ mol™! (£8; 95%
confidence bounds). For the same range of temperatures, only very limited formation of ribose
5-phosphate was observed in the absence of the amino acid and the metal, according to a higher
energy barrier, estimated to be around 87 KJ mol™! (Fig. 4A).

Interestingly, temperature-driven changes in reaction rate inversely correlated with product
specificity (Fig. 4C, Fig. S7). While 42% of all 6-phosphogluconate-derived product
corresponded to ribose S5-phosphate at relatively late time points under 70°C, this value
increased to 81% at 20°C. The relative proportion of other products such as xylulose/ribulose
5-phosphate, pyruvate, and especially erythrose 5-phosphate diminished when decreasing the
temperature to ambient temperature. Only 6-phosphogluconolactone was more abundant at
lower temperatures, probably due to stability of cyclic structure at lower temperatures thereby
trapping the reaction at this intermediate. In consequence, the relative loss of interconversion
rate efficiency was compensated by an increased formation of the RNA backbone metabolite
Ribose-5-phosphate at low temperatures.

Discussion

The ‘end-product problem’ describes a classic chicken-egg dilemma for the evolutionary origin
of metabolic pathways, which require multiple reaction steps to produce a metabolite. This is
a problem for Darwinian selection, as the intermediate steps in a metabolic pathway provide
no selective advantage (38). In turn, the “end-product”-forming enzyme can only be selected
for after the intermediates are in place. Non-enzymatic, chemical networks might be the basis
to overcome this conundrum, by providing an underlying web of subtle preset transformations,
upon which Darwinian selection can operate (5). If this hypothesis were true, metabolic
pathways that catalyzed a similar set of reactions could come into being multiple times and
independently to one another. We noticed that glycolysis and the pentose phosphate pathway
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(PPP), two central and ancient pathways of central carbohydrate metabolism, are compatible
with this hypothesis. First, their topological organization resembles a chemical network that is
driven by the most abundant transition metal in Archean sediment, Fe(Il) (28, 29, 31, 47).
Second, the enzymes that catalyze these pathways in Archaea and Eubacteria have no sequence
conservation, and might have come into being independently (23, 39, 48). Despite such a
substantial biological evolution, the similarity in the underlying chemistry indicates an ancient
origin for these pathways.

Finding prebiotically relevant compounds with catalytic potential on biochemical reactions is
one of the big challenges for understanding the origin of metabolism. To date, much of these
prebiotically relevant catalytic activities have been ascribed to minerals and metals, while small
(bio-)molecules, including amino acids, form only a tiny fraction of it (30, 49-52). Yet, often
the prebiotic reactions and pathways described do not map to the structure of extant metabolic
networks. In this work we show how single amino acids, and in particular cysteine, can enhance
several iron-driven, non-enzymatic reactions between sugar phosphates, resembling extant
glycolysis and PPP. Interestingly, cysteine (as well as histidine) has already been implicated in
the non-enzymatic catalysis of glycolysis and in particular in acetyl-CoA formation in an earlier
study, even though this used huge amounts of compounds and remained mainly qualitative
(53). Cysteine was not found in the original Miller’s experiments nor in the Murchison
meteorite and has for long been criticized as a prebiotically relevant amino acid. However,
more recent reanalysis of prebiotic synthesis experiments under simulated prebiotic
atmosphere including H»S, report abundant sulfur-containing amino acids (54); see also (55).
While one might indeed debate the relevance of Miller’s experiments for the evolution of early
enzymes, there are however important biological arguments that support the early importance
of cysteine: All species universally use cysteine in their essential metabolic enzymes, indicating
that it was available when the metabolic network evolved. Cysteine hence was prevalent in
biological evolution, and additionally, other sulphur containing molecules could have fulfilled
the role (56).

The role of cysteine could be that of a nucleophile as observed in the case of the enzyme
aldehyde dehydrogenase (57). Although the exact chemistry behind the non-oxidative reactions
remains elusive, the described chemical system establishes the intermediates of the PPP and
Embden-Meyerhof pathways via a series of reactions observed in Maillard reactions as well as
thiol-mediated oxidation reactions (58). Cysteine sulfur condenses with a carbonyl
functionality allowing for the facile dehydrogenation (Fig 5). The resulting thioester undergoes
hydrolysis to give the corresponding carboxylic acid.

In addition to this observed organocatalysis by cysteine, we also observe a complex formation
between different components - a sugar-phosphate, a metal and cysteine. The amino acid
ligand, in addition to acting as a surrogate of metal catalysis, might also act as a scaffold
between the substrate and the metal. This could be regarded as a possibility for how a transition

from simple metal-ligand catalyst to longer peptides based on metal centers could have taken
place (49, 59).
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The prevalence of life across a wide range of temperatures shows the robustness of its cellular
components to high thermal energies. This resistance to decomposition may have acted as a
major initial selection criterion along with catalytic rates (60). Pre-existent chemical scaffolds
would have interacted with the already present metal catalysts and those (sub)networks
contributing with intermediates that reinforced metal catalysis or reaction stability were further
selected and retained in nascent metabolic pathways. Single amino acids (or small peptides)
could have embodied those attributes enucleating on metal centers, at the time that they could
have later relegated metals making metabolism less dependent on environmental catalysts (61,
62). By being a rate-limiting reaction, even a slight enhancement of ribose 5-phosphate
production from 6-phosphogluconate under a diversity of conditions with moderate specificity,
could have been an excellent asset in mild microenvironments during the early evolution of
metabolism. At that era, time was presumably not as limiting as it was the ability to consolidate
autonomous procurement of specific metabolites such as ribose-5-phosphate under conditions
where other metabolites of the metabolic network, as well as early components that led to the
evolution of the transcription and translational machinery, could persist too. From this
perspective, it becomes plausible that early enzymes evolved stepwise and did not need to
provide high specificity or yield to make a positive impact on an early metabolism.

In summary, we have shown that single-amino acids can alter a broad range of activity within
a non-enzymatic, metal promoted network that resembles glycolysis and the pentose phosphate
pathway. Cysteine, as sulfur containing proteinogenic amino acid in particular formed a ternary
complex with Fe(Il) and 6-phosphogluconate, and acting as a ‘minimal enzyme’, promoted the
formation of ribose 5-phosphate, in analogy to a rate limiting reaction of the oxidative PPP.
Moreover, we noted that mundane (20°C) temperatures substantially increased the specificity
of ribose 5-phosphate formation. Our results hence show that reactions of metal-catalyzed
networks can be replaced with simple amino acid-based catalysis, and hence propose a scenario
in which non-enzymatic, fuzzy chemical networks serve as a template for the selection of
enzymatic catalysts in the early evolution of metabolism. This scenario implies a solution for
the ‘end product problem’, because in the presence of a pre-existing metal driven reaction
network, not all enzymes that form a metabolic pathway need to come into being at once to
enable the formation of a selectable product. Further, this model could explain why metabolic
network topologies remain conserved upon the evolution of enzymatic catalysis.

Materials and Methods

Materials. All chemicals were obtained from Sigma-Aldrich. UPLC/MS grade acetonitrile
(AcCN) and water were purchased from Greyhound Chemicals. (see SI Appendix,
Supplementary Methods for further details)

Sample preparation for reaction kinetics experiments. Samples consisting of individual sugar

phosphates dissolved (in the uM range) in 200 uL aqueous solutions (either in 50 mM
phosphate or UPLC/MS grade water) were prepared fresh. These were placed in 2ml screw
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thread amber autosampler glass vials (Agilent Technologies) and sealed in an anaerobic
chamber (Coy Laboratory Products) following 3 vacuum/N; injection cycles to remove oxygen
content. Samples were then incubated in a water bath at the indicated temperature for different
times, after which reactions were stopped by immediate transference to ice. Samples were
stored at -20°C until thawed for LC-MS/MS measurements. The incubation time points were
specifically set for each metabolite based on its previously reported stability (29, 31); these
were typically defined at increasing time intervals and spanned for up to 6h in the experiments
at 70°C.

LC-MS/MS and quantification of sugar phosphate interconversions. Samples were analyzed
for sugar-phosphate content by a tandem liquid chromatography-mass spectroscopy (LC-
MS/MS) system, using a triple-quadrupole device (Agilent 6460) operating in SRM mode
(parameter specifications and metabolite ion transitions defined as in (29); see also (63). A
reverse-phase, C8 chromatographic column (Zorbax SB-C8 RRHD 2.1x100 mm 1.8 pm from
Agilent) was used for the separation, with two binary acetonitrile/water mobile phases (Buffer
A: 90% Water, 10% AcCN; Buffer B: 50% Water, 50% AcCN) applied in gradient, both
containing 750 mg/l octylammonium acetate as ion-pairing reagent. Details were as followed:
7.5-min cycle at isocratic 0.6 ml/min flow, with elution with 5% Buffer B for 3.5 min, followed
by a 2.5-min ramp to 70% of B, 0.5 min at 80% B and 1-min re-equilibration to 5% B.
Individual sugar phosphates could be resolved by retention time as well as fragmentation
pattern, as contrasted with external standards. Only RuSP and X5P (229 -> 97 m/z) and 2PG
and 3PG (185 -> 97 m/z) could not be discriminated, and were considered together in the
analysis. To avoid possible biases in quantification due to long-batch effects (e.g. variations in
instrument sensitivity), sample triplicates were randomized in the autosampler positions before
MS measurements.

MS/MS data were analyzed with the quantitative MassHunter software (Agilent), with manual
supervision of the automated signal-peak integration. Several replicates of sugar-phosphate
external-standard dilution series allowed to translate signal intensities into absolute
concentrations. This was achieved with less accuracy in the case of E4P due to its broad, low-
intensity peak, as described in previous work (64), and because of its remarkably poor purity
(50%) in the commercially available standard. Also, the lack of a commercial standard for
6PGL forced us to estimate its concentration from the rapid favored equilibrium with 6PG
occurring at a strong acidic pH. Concentration time courses were reconstructed with
MATLAB. Only cases with over-background product detection showing a congruent increase
between triplicates were considered as significant transformations and analyzed for the
kinetics. Reaction kinetics were fitted according to one of the following models, depending on
the adequacy to the experimental data (R? values): a least-squares linear production model, a
saturating hyperbolic model or sigmoidal Gompertz function, or a mixed model comprising a
first linear phase of maximum (initial) growth rate and a slow exponential decay. Rates, when
reported, are shown in terms of the maximum (initial) slopes of the reaction kinetics fits.

NMR studies of metabolite-iron interaction. Samples containing a final metabolite
concentration of 20 mM were prepared in deuterated water (D.O) containing 0.05 mM
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trimethylsilyl propanoic acid (TSP) as internal standard, sodium azide and 50 mM sodium
phosphate at a pH 5. FeCl, was added at concentrations of 0, 0.1, 0.2 and 1 mM. NMR
experiments were carried out using an AVANCE II+ (Bruker, Rheinstetten, Germany) NMR
spectrometer operating at 500.13 MHz for the 'H frequency using a 5 mm TXI probe. Basic
1D spectra were collected using a solvent suppression pulse sequence based on a one-
dimensional version of the nuclear Overhauser effect spectroscopy (NOESY) pulse sequence
to saturate the residual 'H water signal (relaxation delay =2 s, t1 increment = 3 us, mixing time
= 150 ms, solvent presaturation applied during the relaxation time and the mixing time). 128
transients were collected into 16 K data points over a spectral width of 12 ppm at 320 K.

Longitudinal relaxation times (71) were measured using the Inversion recovery pulse sequence,
180-t-90, with pulse spacing t having the following values: 0.01 s, 0.02 s, 0.03 s, 0.05 s, 0.1 s,
0.255,0.5s5,0.75s,15s,1.5s,25s,45,8s,15s,20s, 25 s. The pulse repetition time was set at
20 s. Eight transients were collected into 16 K data points over a spectral width of 20 ppm at
320 K.

Diffusion coefficients were measured using a bipolar gradient pulse pair with a spoil gradient
pulse (stebpgpls), with 16 incremental steps in the gradient strength linearly ramped from 2%
to 95% of the maximum gradient strength. 16 Scans per increment step were collected into 16K
data points over a spectra width of 19 ppm at 320 K. The gradient pulse length was set at 1000
us, while the time between pulses at 0.1 sec. The pulse repetition time was set at 2 s.

1D NMR spectra were processed using TopSpin v.3.2 (Bruker, Rheinstetten, Germany). Free
induction decays were Fourier transformed following multiplication by a line broadening of 1
Hz, and referenced to TSP at 0.0 ppm. Spectra were automatically phase and baseline corrected.
For the relaxation times and diffusion coefficients, data were analyzed using the T1/T2
Relaxation module present in TopSpin. All experiments were carried out at least by triplicate.
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Figure 1. Model for a stepwise scenario in the early evolution of catalyzed metabolic
networks, and experimental approach for screening non-enzymatic conversions among
metabolic sugar-phosphates influenced by amino acids. (A) Hypothetical scheme of how a
metabolic pathway could evolve from an underlying non-enzymatic network. Selective
pressure for higher pathway product yield falls on the rate-limiting step (¢1, red). This would
be improved by the selection of a primitive enzyme, until another process (¢3) becomes
limiting. Some immediate or far end-products might display catalytic potential helping to fix
those catalytic activities by feedback. (B) Network topology of metabolic sugar-phosphate
interconversions from modern enzymatic glycolysis and pentose phosphate pathways.
Enzymes and co-substrates are omitted in this graph and only sugar phosphates analyzed in this
study are displayed (those used as input appear surrounded). Abbreviations used: Glc, glucose;
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G6P, glucose 6-phosphate; FOP, fructose 6-phosphate; F16BP, fructose 1,6-bisphosphate;
DHAP, dihydroxyacetone phosphate; G3P, glyceraldehyde 3-phosphate; 3PG/2PG, 3-
phosphoglycerate & 2-phosphoglycerate; PEP, phosphoenolpyruvate; Pyr, pyruvate; 6PGL, 6-
phosphogluconolactone; 6PG, 6-phosphogluconate; RuSP, ribulose 5-phosphate; RSP, ribose
5-phosphate; X5P, xylulose 5-phosphate; S7P, sedoheptulose 7-phosphate; E4P, erythrose 4-
phosphate. (C) Experimental procedure. Each sugar phosphate was dissolved in aqueous (or 50
mM phosphate) solution in the presence or absence of single amino acids and/or FeCl,.
Samples were incubated at 70°C in glass vials sealed in an anaerobic chamber (picture courtesy
of Coy Laboratory Products Inc.) before targeted detection and quantification of sugar-
phosphate products (from all those in (B)) using a tandem liquid chromatography-mass
spectroscopy (LC-MS/MS) system operating in SRM mode (Agilent Technologies).
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Figure 2. Amino acids impact non-enzymatic interconversions between glycolytic and
pentose phosphate pathway sugar phosphates. A total of 12 metabolic intermediates from
glycolysis and pentose phosphate pathway were incubated separately, at a concentration of 100
uM, at 70°C, in aqueous solutions containing single, proteinogenic amino acids (grouped,
according to functional similarity, at a total concentration of 400 pM). The non-enzymatic
formation of sugar-phosphate products was monitored over time by targeted LC/MS. (A)
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Amino-acid effects on individual production rates, shown in terms of log fold changes vs. a
control case without amino acids, illustrated as a Heat-Map. Only individual transformations
with over-background product detection and congruent increase between replicates in at least
one amino-acid condition were considered in the analysis; striped cells denote particular
conditions where these criteria were not fulfilled (i.e. insignificant product detected). Only
cases of significant rate changes (Mann-Whitney U test, a = 0.1) are color coded. ‘all mixed’
corresponds with a condition where all 20 amino acids were present at a total concentration of
400 uM. N =3 independent experiments per condition. (B) Graphs showing the non-enzymatic
transformations detected in the aqueous control compared with those in the presence of cysteine
and methionine. The width of the arrows is proportional to the calculated reaction rates (see
Materials and Methods) and same color coding as in (A) is applied to transformations with
significantly different rates (either higher - green - or lower - red) in the cysteine + methionine
case vs. control (black = non-sig. change). (C) Representative chromatograms obtained by
LC/MS after 2h incubation of 100 uM 6PG in control conditions without amino acids (-), in
the presence of 200 pM methionine, or with 200 uM cysteine, revealing that cysteine is
responsible for facilitating the formation of different products. Right panels: Detailed time
courses in the formation of pyruvate and pentose phosphate sugars (SRM transitions
displayed).
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Figure 3. Cysteine and Fe(Il) complementary effects on 6PG transformations and the
formation of a ternary complex, the ‘minimal enzyme

(A-B) The formation of ribose 5-phosphate at 70°C from 800 uM 6PG in 50 mM phosphate
solution pH 5 was monitored for different concentrations of cysteine, different concentrations
of Fe(Il), and different concentrations of both species combined (molar ratio 1:1). Shown are
a comparison of time courses when cysteine and/or Fe(II) were each added at 150 uM (A) and
the trends in ribose 5-phosphate concentration at 2h for different individual enhancer
concentrations (error bars: mean + SD) (B). N > 3 in all conditions. (C) 'H-NMR spectra of
6PG alone, cysteine alone, or the combination of both (20 mM of each analyte) in 50 mM
phosphate pH 5/D-O solutions, either in the absence or presence of 1 mM FeCla. The massive
disruption and suppression of the 'H signal peaks upon addition of Fe(II) to the binary mixture
suggests a coordination between cysteine and 6PG in Fe(Il) binding. Spectra are shown
normalized to the maximum peak intensity per spectrum. (D) T relaxation time scaling of 6PG
(4.09 ppm) and cysteine (3.06 ppm) signals with increasing Fe(Il) concentrations when
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analyzed separately vs. in combination (conditions as in (C)). (E) Diffusion coefficients
measured by diffusion-ordered spectroscopy (DOSY) for cysteine and 6PG molecules (20 mM
each) when co-incubated with a mixture of increasing concentrations of Fe(Il) and constant,
saturating concentrations of phenanthroline, a strong, non-chelating Fe-binding complex. Both
molecules showed a noisy but significant decrease in diffusion, a further indication of Fe(II)
binding. N > 4.
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Figure 4. Thermal-dependent non-enzymatic ribose S-phosphate formation and product
specificity from 6PG as in the pentose phosphate pathway. (A) Ribose 5-phosphate
concentration over time, formed upon the incubation of 800 uM 6PG in 50 mM phosphate
solution pH 5 at different temperatures in the presence of complex-forming 75 uM cysteine
and 75 pM FeClz Notice that time ranges were adapted according to the temperature-scaling
kinetics. Experimental data (points; N = 3) conform to hyperbolic fits (lines). Trends without
the additives are shown for comparison. (B) Initial rate constants calculated from (A) scale
exponentially with the absolute temperature, following Arrhenius’ equation. The linear slope
in the plot of log-transformed values gives a value for the activation energy Ea of 69 KJ mol..
(C) Long-term product specificity at different temperatures. Relative concentrations of the
different detected sugar phosphate products are shown for the last recorded time point per
temperature condition from the experiments in (A) (average from N = 3 experiments).
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Figure 5. Proposed mechanism for thiol catalyzed oxidation of aldose sugar to sugar
acid. EA could be an electron acceptor such as oxygen or Fe(Ill) generated in situ.
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