

1 **Myogenin is an Essential Regulator of Adult Myofibre Growth and Muscle Stem Cell Homeostasis**

2

3 Massimo Ganassi^{1*}, Sara Badodi², Kees Wanders¹, Peter S. Zammit¹, Simon M. Hughes^{1*§}.

4

5 ¹Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK

6 ²Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of
7 London, 4 Newark Street, London E1 2AT, UK.

8

9 * Authors for correspondence s.hughes@kcl.ac.uk, m.ganassi@kcl.ac.uk

10 § Lead author for correspondence

11

12 **Keywords**

13 Myog, zebrafish, myonuclei, skeletal muscle, Pax7, MuSC, Myostatin, IGF1, stem cell, Tsc1, TORC1

14

15

16 **Abstract**

17 Growth and maintenance of skeletal muscle fibres depend on coordinated activation and return to quiescence
18 of resident muscle stem-cells (MuSCs). The transcription factor Myogenin (Myog) regulates myocyte fusion
19 during development, but its role in adult myogenesis remains unclear. In contrast to mice, *myog*^{-/-} zebrafish
20 are viable, but have hypotrophic muscles. By isolating adult myofibres with associated MuSCs we found that
21 *myog*^{-/-} myofibres have severely reduced nuclear number, but increased myonuclear domain size. Expression
22 of fusogenic genes is decreased, *pax7* upregulated, MuSCs are fivefold more numerous and mis-positioned
23 throughout the length of *myog*^{-/-} myofibers instead of localising at myofibre ends as in wild-type. Loss of Myog
24 dysregulates mTORC1 signalling, resulting in an 'alerted' state of MuSCs, which display precocious activation
25 and faster cell cycle entry ex vivo, concomitant with *myod* upregulation. Thus, beyond controlling myocyte
26 fusion, Myog influences the MuSC:niche relationship, demonstrating a multi-level contribution to muscle
27 homeostasis throughout life.

28 **Introduction**

29 Maintenance of adult skeletal muscle depends on the ability of multinucleated myofibres to grow and
30 regenerate, thereby ensuring optimal functionality throughout life. To facilitate this homeostasis, adult
31 vertebrate muscle own a specialised population of precursors cells, the muscle stem cells (MuSCs), also
32 termed satellite cells, located between the basal lamina and sarcolemma of most adult myofibres (Mauro,
33 1961). Like other stem cells, MuSCs are mitotically dormant in normal circumstances but poised to respond to
34 functional demand for new myonuclei throughout adult life (Purohit and Dhawan, 2019; Relaix and Zammit,
35 2012). The transcription factor Pax7 is considered a canonical quiescent MuSC marker across several
36 vertebrate species and its expression is maintained during the progression to activation and proliferation,
37 before downregulation at the onset of myogenic differentiation (Berberoglu et al., 2017; Buckingham and
38 Relaix, 2015; Chen et al., 2006; Hammond et al., 2007; Hollway et al., 2007; Kawakami et al., 1997; Olguin
39 and Olwin, 2004; Seale et al., 2000; Seger et al., 2011; Zammit et al., 2006). Null mutations for Pax7 severely
40 affects MuSC maintenance and muscle regeneration in amniotes, amphibia and teleosts (Berberoglu et al.,
41 2017; Chen et al., 2006; Oustanina et al., 2004; Relaix et al., 2006; Seale et al., 2000). In adult zebrafish,

42 Pax⁷⁺ MuSCs contribute to regeneration of myofibres upon muscle damage, being the functional counterparts
43 of MuSCs in mammals (Berberoglu et al., 2017; Hollway et al., 2007; Pipalia et al., 2016).

44

45 Proper function of the MuSC pool depends on a dynamic balance between quiescence and activation and is
46 sustained by feedback signalling from surrounding muscle (Forcina et al., 2019; Mashinchian et al., 2018). In
47 response to stimuli, quiescent MuSCs activate and become muscle progenitor cells (MPCs), which proliferate,
48 differentiate and fuse to contribute myonuclei to pre-existing multinucleated myofibres: a process that
49 resembles aspects of myogenesis by embryonic myoblasts and relies on an intricate molecular network
50 comprising both extrinsic and intrinsic mechanisms (Buckingham and Relaix, 2015). Among many converging
51 factors, the members of the Myogenic Regulatory Factor (MRF) family of transcription factors, Myod, Myf5,
52 Mrf4 and Myogenin (Myog), are key regulators of vertebrate muscle gene expression during both early and
53 adult myogenesis (Hernandez-Hernandez et al., 2017; Zammit, 2017). In adult muscle, Myod and Myf5 are
54 mainly expressed in MuSC and are crucial for efficient activation and proliferation (Cooper et al., 1999; Coutelle
55 et al., 2001; Kuang et al., 2007; Megeney et al., 1996; Soleimani et al., 2012), whereas Mrf4 accumulates in
56 mature myofibres and contribute to ensure their homeostatic growth (Moretti et al., 2016; Voytik et al., 1993).

57

58 Knockout of the *Myog* gene in mouse leads to severe muscle deficiencies and, in contrast to the other
59 members, is neonatal lethal (Hasty et al., 1993; Nabeshima et al., 1993), thus making difficult to investigate
60 *Myog* function in detail. As in embryogenesis, *Myog* expression is upregulated in proliferating MuSCs that then
61 rapidly undergo myogenic differentiation (Zammit et al., 2004) and its expression appears reciprocally
62 balanced with that of *Pax7* (Olguin and Olwin, 2004; Olguin et al., 2007; Riuzzi et al., 2014; Zammit et al.,
63 2006). However, depletion of mouse *Myog* in myoblasts does not block accumulation of differentiation markers
64 in vitro, but cell biological aspects such as myotube formation were not explored (Meadows et al., 2008). We
65 recently expanded this observation reporting that, despite being dispensable for myogenic differentiation,
66 *Myog* is essential for myocyte fusion and its functional depletion leads to formation of mononucleated
67 myofibres and reduced myotome growth during zebrafish embryo/larvae stage (Ganassi et al., 2018).
68 Moreover, modulation of rodent *Myog* expression shifts muscle enzyme activity towards oxidative metabolism,
69 alters exercise capacity and is required for neurogenic atrophy (Ekmark et al., 2003; Flynn et al., 2010; Hughes
70 et al., 1999; Meadows et al., 2008; Moresi et al., 2010), suggesting a broad *Myog* role in regulating adult
71 muscle homeostasis. Nevertheless, whether *Myog* acts on myofibre, MuSC or both has remained elusive.

72

73 Importantly, in contrast to mouse, zebrafish *myog*^{-/-} mutant adult fish are alive albeit displaying hypotrophic
74 muscle (Ganassi et al., 2018). Congruent with the fish phenotype, almost complete depletion of mouse *Myog*
75 after birth results in decreased muscle size (Knapp et al., 2006; Meadows et al., 2008), thereby confirming a
76 conserved vertebrate role for *Myog* in regulating bulk muscle growth and maintenance.

77

78 Here, to explore the role of *Myog* in adult muscle, we analysed *myog*^{-/-} mutant zebrafish and deployed our
79 recently-developed method to isolate viable single myofibres with associated MuSCs, allowing culture of
80 muscle progenitor cells (MPCs). Morphometric analysis revealed that *myog*^{-/-} muscle has reduced myofibre
81 growth and nuclear accretion compared to siblings (sibs), revealing increased myonuclear domain size. Adult
82 *myog*^{-/-} muscle exhibited upregulation of *pax7a* and *pax7b* expression along with supernumerary MuSCs, that
83 were randomly distributed throughout myofibre length compared to sib MuSCs, which localise mainly at

83 myofibre ends, suggesting an altered MuSC niche. Ex vivo analysis of *myog*^{-/-} MuSCs revealed elevated
84 phosphorylation of ribosomal protein S6, concomitant with reduced expression of the mTOR inhibitor *tsc1*,
85 indicating enhanced mTORC1 activity, which marks MuSCs that left deep quiescence to enter into an 'alert'
86 pseudo-activated state (Rodgers et al., 2014). Congruently, cultured myofibres from mutants yielded increased
87 numbers of MPCs with an accelerated proliferative phase, marked by upregulated expression of *pax7a*, *pax7b*
88 and *myod*. Together, our study demonstrates that Myog plays a crucial role in adult muscle growth and MuSC
89 homeostasis.

90

91 Results

92 Adult *myog*^{-/-} myofibres are small with fewer nuclei but increased nuclear domain size

93 Adult zebrafish bearing the *myog*^{kg125} nonsense mutant allele (*myog*^{-/-}), which reduces *myog* mRNA,
94 eliminates Myog protein and is presumed null, are viable but have reduced muscle bulk (Ganassi et al., 2018).
95 In contrast, *myog*^{kg125/+} heterozygous siblings (sib) are indistinguishable from wild-type sibs and are used as
96 paired controls throughout the current study. Gene expression analysis on dissected adult trunk muscle
97 confirmed continued significant downregulation of *myog* mRNA in *myog*^{-/-} fish compared to co-reared sib
98 controls (Figure 1A,B) in line with the nonsense-mediated decay reported previously (Ganassi et al., 2018).
99 Levels of mRNA encoded by the terminal myogenesis genes *mymk*, *mymx* and *mrf4* were downregulated by
100 52%, 38% and 68% respectively in *myog*^{-/-} compare to the relative expression in sib, as during the embryonic
101 stage, suggesting a continuous muscle defect in adulthood (Figure 1B). To explore further the muscle defect
102 at a cellular level, we isolated single myofibres from juvenile (1 mpf; months post fertilisation) and adult (8 mpf)
103 *myog*^{-/-} and sibs (Figure 1C). Both juvenile adult mutant myofibres were on average 20% and 50% shorter than
104 those in control, respectively, demonstrating an early onset growth deficit in *myog*^{-/-}, with lifecourse worsening
105 (Figures 1C,D and S1A,B). Despite significant 50% reduction in overall fibre length, sarcomere length was
106 unaffected in adult *myog*^{-/-} myofibres, as in embryonic myofibres (Figure 1E) (Ganassi et al., 2018). In contrast,
107 myofibres isolated from the adult hypomorphic *myog*^{h265} mutants (Hinitz et al., 2011, Ganassi et al., 2018)
108 were indistinguishable from those of age-matched sibs (Figure S1C). The number of nuclei associated with
109 each isolated myofibre appeared greatly reduced in *myog*^{-/-} mutants compared to sibs (Figures 1F and S1D).
110 Indeed, nuclear numbers per unit length were reduced fourfold in mutants (Figure 1G). Congruently,
111 calculation of the average number of nuclei associated with each adult myofibre by multiplying the number of
112 nuclei/unit length by the length yielded revealed an approximate 90% reduction, from an average of 95 nuclei
113 per myofibre in sibs to nearly 12 nuclei per myofibre in *myog*^{-/-} (Figure 1H). Numbers of total nuclei in *myog*^{-/-}
114 myofibres was reduced similarly at juvenile stage compared to sibs (Figure S1D). Juvenile sib myofibres had
115 significantly more nuclei than adult *myog*^{-/-} myofibres, confirming ongoing myonuclear accretion defect in *myog*
116 ^{-/-} (Figures 1H and S1D). Thus, *myog*^{-/-} mutant myofibres are grossly defective and show no sign of homeostatic
117 recovery over time.

118 Further morphometric analysis revealed that lack of Myog led to an average persistent decrease of 40% in
119 myofibre diameter resulting in 50% reduction of myofibre surface area, compared to age-matched juvenile and
120 adult sib, respectively (Figures 1F,I and S1E). Indeed, as expected, the surface area per myofibre nucleus
121 (surface area domain size; SADS) was increased by almost threefold in *myog*^{-/-} (Figure 1J) indicating both
122 inadequate nuclear accretion, congruent with suppression of *mymk* and *mymx* mRNAs (Figure 1B), and a
123 compensatory increase in SADS, which remained larger in mutants throughout life, showing no sign of return

124 to a normal size as mutants age. Nevertheless, both genotypes displayed significant increase in both myofibre
125 diameter, surface area (SA) and number of nuclei between juvenile and adult stages, indicating ongoing
126 muscle growth (Figures 1G,I and S1E). However, although myofibre SA and number of nuclei positively
127 correlated in *myog*^{-/-}, we observed a reduced nuclear accretion as myofibres get larger area compared to sib,
128 hence highlighting a significantly different growth mode among the two genotypes (different trend slopes)
129 (Figure 1K). Coherently, the incremental increase in myofibre SA over the juvenile-to-adult time-frame was
130 significantly reduced in *myog*^{-/-}, confirming a persistent deficit in muscle growth (Figure 1L). Thus, loss of Myog
131 function affects normal muscle growth, impinging on size and nuclear accretion of myofibres.
132

133 Adult *myog*^{-/-} myofibres have increased number of MuSCs

134 Isolated myofibres have two kinds of associated nuclei, genuine muscle fibre nuclei and nuclei of resident
135 MuSCs. To assess MuSC abundance in *myog*^{-/-}, we first analysed *pax3* and *pax7* mRNAs, well-known markers
136 of MuSCs (Buckingham and Relaix, 2015; Hammond et al., 2007; Pipalia et al., 2016). Gene expression
137 analysis on whole muscle showed upregulation of *pax7a* and *pax7b* mRNAs of 82% and 120%, respectively,
138 in *myog*^{-/-} compared to control sibs, but no change in *pax3a* or *pax3b* (Figures 2A and S2A). *Myf5* mRNA, a
139 marker of partially-activated or 'alerted' MuSCs in mice and MPCs in fish, and known to be a Pax7 target gene
140 (Coutelle et al., 2001; Kuang et al., 2007; Soleimani et al., 2012), was upregulated by over 200%, further
141 suggesting an increase of MuSCs number in *myog*^{-/-}. In contrast, *myod* mRNA, a marker of fully-activated
142 proliferating MuSCs (Megeney et al., 1996; Zammit et al., 2004; Zammit et al., 2002), was unaltered (Figure
143 2A). These data raise the possibility that *myog*^{-/-} adults have alterations in MuSCs. To facilitate identification
144 of *bona fide* MuSCs, *myog*^{kg125/+} fish were bred onto *pax7a:GFP* reporter and MuSCs identified by GFP
145 fluorescence (Figure 2B,C;(Mahalwar et al., 2014; Pipalia et al., 2016)). Immunostaining of GFP⁺ve cells with
146 the DP312 antibody, that recognises fish Pax3/Pax7 (Davis et al., 2005; Hammond et al., 2007), confirmed
147 MuSC identity (Figure 2D). Adult *pax7a:GFP;myog*^{-/-} fish showed reduced muscle compared to co-reared
148 *pax7a:GFP;myog*^{+/+} sibs (Figure S2B), replicating the phenotype on a wild-type background (Ganassi et al.,
149 2018). Upon muscle dissociation, we observed that single *myog*^{-/-} myofibres bore around five GFP⁺ve cells on
150 average, compared to only one on sib myofibres (Figure 2E). Indeed, almost 40% of nuclei associated with
151 *myog*^{-/-} myofibres were in GFP⁺ve cells compared to less than 2% in sib (Figures 2G and S2C). Thus, MuSCs
152 are more abundant in *myog*^{-/-} mutants than in sibs. Subtraction of MuSC nuclei from the total nuclei associated
153 with isolated adult myofibres, revealed that sib myofibres have over thirteenfold more genuine myofibre nuclei
154 (i.e. myonuclei) than *myog*^{-/-} myofibres (Figure S2D). These GFP^{-ve} myonuclei allowed calculation of a myofibre
155 volume per true myonucleus, the notional myonuclear domain. In line with SADS, the myonuclear domain was
156 increased by 2.3-fold in *myog*^{-/-} fibres (Figure 2F), despite the 7.8-fold reduction in absolute myofibre volume
157 (Figure S2E). Accordingly, corrected SADS showed an increase of almost fivefold (Figure S2F). Thus, Myog
158 in the adult suppresses muscle growth, by limiting both nuclear domain size and MuSC number.
159

160 Altered MuSC:niche relation in *myog*^{-/-} mutant myofibres

161 Myofibres from *myog*^{-/-} showed a striking set of alterations in MuSC distribution. In control sib, MuSCs were
162 found mostly localised close to the myofibre end, whereas in *myog*^{-/-} the supernumerary MuSCs were randomly
163 distributed along the myofibre length (Figure 2H and S2G). In sibs, 70% of myofibres had a single associated
164 MuSC, which was usually within 20 μ m from the myofibre end (Figures 2G,I,J and S2G,H). In contrast, only

165 33% of myofibres had a single MuSC in mutants (Figures 2G,I and S2G,H), which displayed consistent random
166 location, often far from the myofibre end (Figure 2I,J). Around 60% of *myog*^{-/-} myofibres bore two or more
167 MuSCs, whereas only 9% of sib myofibres had two or more MuSCs, and none had over three (Figure 2G).
168 Strikingly, 21% percent of sib myofibres had no GFP^{+ve} cells, compared to only 5% of *myog*^{-/-} myofibres (Figure
169 2G and S2G). The results suggest that lack of Myog either enhances MuSC proliferation, prevents MuSC
170 differentiation or both. Data in this and the preceding section demonstrate that lack of Myog alters MuSC
171 number, position and expression of stemness marker genes, suggestive of an alteration in their relationship to
172 their normal myofibre end niche.

173

174 **Lack of Myog enhances mTORC1 signalling in adult muscle and MuSCs**

175 To investigate further how Myog may influence the MuSC niche, we assessed the expression of factors that
176 contribute to muscle growth via regulation of MuSC activation. Whole muscle analysis revealed 130%
177 increased level of *igf1* mRNA and nearly 50% downregulation of *myostatin b* (*mstnb*) mRNA, both regulators
178 of muscle growth and the mTORC1 (mechanistic Target Of Rapamycin Complex 1) pathway (Trendelenburg
179 et al., 2009; Yoon, 2017), suggesting that lack of Myog triggers a growth signalling response (Figure 3A,B). In
180 contrast, expression of the zebrafish IGF1 receptors, *igfr1a* and *igfr1b* was unaltered (Figure S3A) indicating
181 that *myog*^{-/-} myofibres, and/or MuSCs, may respond to the higher IGF1 level similarly to sib. IGF1 signalling
182 involves phosphorylation of AKT that activates mTORC1 resulting in downstream events such as promotion
183 of muscle growth, accompanied by phosphorylation of the ribosomal protein S6 (RPS6) (Figure 3C and
184 (Ruvinsky et al., 2009; Yoon, 2017). Western blot analysis of whole muscle extracts revealed that whereas
185 AKT phosphorylation at Ser473 (pAKT) appeared unchanged, downstream phosphorylation of RPS6 at
186 Ser240/244 (pRPS6) was enhanced fourfold in *myog*^{-/-} muscle compared to sib (Figure 3D). Phosphorylation
187 of RPS6 (pRPS6) marks the onset of MuSC activation in vivo (Rodgers et al., 2014). Thus, we analysed pRPS6
188 level in MuSCs on freshly-isolated myofibres from *pax7a:GFP;myog*^{-/-} or control *pax7a:GFP;myog*^{+/-} sib. *Myog*
189 ^{-/-} MuSCs showed a robust twofold increase in pRPS6 level (Figure 3E,F), in line with quantification in whole
190 muscle. No change was detected in myofibres themselves. As pRPS6 was increased but pAKT was not
191 similarly altered, we reasoned that lack of Myog might control the expression level of factors that inhibit the
192 mTORC1 pathway. Tsc1 and Tsc2 form a stabilised GTPase complex that represses the mTOR cascade
193 (Figure 3C; (Nobukuni and Thomas, 2004). Levels of *tsc1a* and *tsc1a* mRNAs were reduced by 51% and 57%,
194 respectively, in *myog*^{-/-} muscle, whereas *tsc2* mRNA was unchanged compare to sib (Figure 3G), consistent
195 with increased pRPS6. We conclude that lack of Myog triggers activation of the mTORC1 pathway in MuSCs,
196 concomitant with *Tsc1a/b* repression, leading to precocious MuSC activation.

197

198 **Adult *myog*^{-/-} MuSC-derived myoblasts exhibit faster transition to proliferation**

199 To assess MuSC activation and proliferation potential, myofibres bearing GFP^{+ve} cells, from either
200 *pax7a:GFP;myog*^{-/-} or control *pax7a:GFP;myog*^{+/-} sib were individually plated, cultured for 4 days in growth
201 medium and the number of associated myogenic cells counted (Figure S3B). *Myog*^{-/-} mutants yielded at least
202 three times as many mononucleate cells than did sibs (Figure S3B), paralleling the increased number of
203 MuSCs on freshly-isolated myofibres. The vast majority (80-90%) of cells from fish of either genotype was
204 GFP^{+ve}, so *bona fide* MPCs. *Myog*^{-/-} myofibres also displayed an average threefold increased GFP^{+ve} cell yield
205 compared to sibs (Figure 4A-C). Within the 4 day culture period, sib myofibres (70% of which had only a single

206 GFP^{+ve} MuSC) yielded around 40 MuSCs, reflecting a mean doubling time of around 20 h. Mutants yielded a
207 slightly higher proportion of GFP^{+ve} MPCs than sibs (Figure 4C), perhaps reflecting the increased number of
208 MuSCs on each myofibre and the upregulation of *pax7a* mRNA in *myog*^{-/-} muscle. Importantly, although both
209 genotypes yielded a GFP^{-ve} cell population, all cells immunoreacted for Desmin, confirming their myogenic
210 identity (Figure S3B). Notably, the relative MPC proliferation rates were not significantly different among
211 genotypes, calculated as the ratio of the number of GFP^{+ve} MPCs obtained after 4 days in culture to the
212 average number of GFP^{+ve} MuSC per myofibres (Figure 4D). We conclude, that *myog*^{-/-} mutant and sib MuSCs
213 have similar proliferative potentiality when assayed in culture.

214 To explore proliferation dynamics further, MPCs were pulsed with EdU at either 2, 3 or 4 days ex vivo after
215 myofibre plating in growth medium (Figure 4E). To increase MPC yield for downstream analyses, 90-100 fibres
216 were plated per well (Figures 4E and S3C). As expected, *myog*^{-/-} myofibres yielded more MPCs after 2 days
217 in culture compared to sibs, and both genotypes produced mainly Desmin^{+ve} muscle lineage cells (Figure
218 S3C,D). EdU pulse 2 days after plating revealed striking differences between *myog*^{-/-} MPCs, 60% of which
219 were EdU^{+ve}, compared to sib MPCs, only 20% of which incorporated EdU (Figure 4E,F). A day later (on day
220 3), the difference in proliferation had reversed; sib MPCs were almost 60% EdU^{+ve}, whereas incorporation into
221 *myog*^{-/-} MPCs was significantly reduced compared to both sibs on day 3 and *myog*^{-/-} MPCs on day 2 (Fig.
222 4E,F). This difference in S-phase labelling between *myog*^{-/-} and sib MPCs persisted on day 4 (Figure 4E,F).
223 Statistical analysis of overall EdU incorporation dynamics as Area Under Curve (AUC) revealed slightly higher
224 proliferation rate of sib MPCs (Figure 4E). We conclude that MPCs in *myog*^{-/-} mutants are more readily driven
225 into proliferation upon release from their in vivo environment.

226 We next explored MuSC dynamics by analysing MPCs mRNA levels at day 2 and day 3 of culture. Both
227 *pax7a* and *pax7b* were more abundant, fourfold and threefold, respectively, in *myog*^{-/-} MPCs at 2 days
228 compared to sib (Figure 4G), consistent with the higher percentage of MuSCs observed (Figure 4C). Strikingly,
229 while *pax7a* mRNA reduced with time, *pax7b* mRNA was maintained at similar level between day 2 and day 3
230 across genotypes, despite confirming overall increased level in *myog*^{-/-} MPCs (Figure 4G). Moreover, *myod*
231 mRNA was fifteenfold more abundant in *myog*^{-/-} MPCs compared to sib, again suggesting an earlier entry into
232 activation phase. Notably, higher *myod* expression in *myog*^{-/-} MPCs lasted into day 3. In contrast, *myf5* mRNA
233 level appeared similar in *myog*^{-/-} and sib MPCs at both 2 and 3 days, although tending to decrease at the later
234 timepoint (Figure 4G). The data suggest that *myog*^{-/-} MPCs show faster activation and greater recovery from
235 a stem-like state than MPCs from sibs.

236 The decreased proliferation but enhanced *myod* mRNA in cultured *myog*^{-/-} compared to sib MPCs also
237 suggested that the mutant cultures might be entering the terminal differentiation program. We assessed onset
238 of differentiation by analysing expression of *mef2d* and *mylpfa* (encoding a fast myosin light chain), crucial
239 players in myogenesis, which revealed significantly higher levels of both mRNAs in *myog*^{-/-} relative to sib MPCs
240 with an approximate upregulation of *mef2d* and *mylpfa* by twofold and sixtyfold, respectively (Figure 4H).
241 Immunostaining confirmed accumulation of sarcomeric myosin heavy chain (MyHC) and significantly higher
242 differentiation index in *myog*^{-/-} compared to sib MPCs, despite the continued exposure to growth medium
243 (Figure 4I). Altogether, our data indicate that while Myog function is dispensable for MPC proliferation and
244 terminal differentiation, its lack either prevents MuSCs achieving full quiescence or accelerates MuSC
245 transition into the proliferation phase, suggesting that Myog contributes to maintaining the MuSC niche.

247 **Discussion**

248

249 Here we describe a novel function for the transcription factor Myog in regulating adult skeletal muscle growth
250 rate and MuSC dynamics through four major findings. First, Myog influences MuSC number. Second, Myog is
251 required for MuSCs to adopt their normal niche position. Third, Myog contributes to MuSC deep quiescence,
252 regulating expression of genes involved in mTORC1 signalling. Lastly, Myog is required for proper myofibre
253 growth and myonuclear accretion throughout life.

254

255 **Myog controls MuSC number**

256 We show that *myog*^{-/-} mutation causes supernumerary MuSCs/MPCs, paralleled by increased *pax7a* and
257 *pax7b* mRNA. In addition to the fivefold increase in MuSC/adult myofibre and 50% reduction in myofibre length
258 reported here, we previously described that adult *myog*^{-/-} mutants have unaltered body length and numbers of
259 myofibre profiles/transverse body section roughly equal to their non-mutant siblings (Ganassi et al., 2018).
260 Taken together, these data suggest that total number of Pax7⁺ MuSCs is increased around tenfold in adult
261 *myog*^{-/-} mutant myotome. In mouse, expression of Pax7 and Myog in MuSC appear to be mutually exclusive
262 and controlled through reciprocal inhibition in in-vitro studies (Olguin et al., 2007; Riuzzi et al., 2014). Persistent
263 *Pax7* expression delays Myog accumulation in cultured myoblasts and ex vivo in MuSCs on myofibres, while
264 silencing of Myog can result in retention of *Pax7* expression in differentiation (Olguin et al., 2007; Zammit et
265 al., 2006). As Myog is required for adult myoblast fusion in vitro (Ganassi et al., 2018) and *mymk* and *mymx*
266 mRNAs are reduced in adult *myog*^{-/-} muscle, one must consider the possibility that some *pax7a*:GFP^{+ve}
267 mononucleate cells are not MuSCs but differentiated myocytes that retain the *pax7a* reporter and are unable
268 to fuse. However, we detect Pax3/7 protein in MuSCs, showing that strong GFP accumulation is not just
269 perdurance of earlier signal. Moreover, most *myog*^{-/-} MuSCs enter into S-phase after 2 days ex vivo.
270 Subsequently, *myog*^{-/-} MPCs quickly up-regulate the differentiation marker *mylpfa* sixtyfold, suggesting that an
271 insignificant fraction was previously terminally differentiated. In addition, *myog*^{-/-} muscle expresses more *myf5*,
272 a MPC marker. In post-natal rodent muscle, *Myf5* is expressed in MuSCs, not myofibres (Beauchamp et al.,
273 2000). Like our finding, murine *Myog*-knockout also led to *Myf5* accumulation in neonatal limb muscle, even
274 though one-third of the total nuclei are still MuSCs/MPCs in wild type neonates (Cardasis and Cooper, 1975;
275 Rawls et al., 1998). Taken together, these data argue that the abundant *pax7a*:GFP^{+ve} cells are MuSCs or
276 MPCs.

277 We consider two possible hypotheses for the increased number of MuSC/MPCs in *myog*^{-/-} mutants;
278 differentiation failure or active accumulation. We do not favour the idea that absence of Myog prevents MPCs
279 undergoing terminal differentiation leading to the accumulation of cells blocked in differentiation for three
280 reasons. First, *myog*^{-/-} MPCs readily undergo differentiation in culture and during myogenesis in the embryo
281 (Ganassi et al., 2018). Second, although muscle is reduced in size, there is enough formed to support life and
282 sarcomere length is unaffected, so terminal differentiation is fairly efficient without Myog during larval and adult
283 growth and any required muscle repair. Third, both in fish and amniotes, MPCs ready to differentiate express
284 high levels of Myod, which acts in a feedforward mechanism to trigger cell cycle exit and Myog expression
285 (Hinitz et al., 2009; Weintraub et al., 1991). We do not, however, observe increased levels of *myod* mRNA in
286 *myog*^{-/-} mutant muscle. Nevertheless, when *myog*^{-/-} MPCs are placed in culture they dramatically upregulate
287 *myod*, arguing that Myod upregulation is also a characteristic of adult zebrafish MPC differentiation. Active

288 accumulation of MuSCs, on the other hand, is suggested by the increase in *pax7a*, *pax7b* and *myf5* mRNAs
289 in *myog*^{-/-} mutant muscle. Below, we raise the hypothesis that the abundance of myofibres with low numbers
290 of nuclei may trigger MuSC accumulation as a homeostatic response to tissue insufficiency.
291

292 **Myog is required for MuSCs to adopt their normal niche position**

293 In wild-type fish 21% of myofibres have no associated MuSCs, despite having around 95 myofibre nuclei.
294 This finding strongly argues that, in order to grow or repair damage, MuSC/MPCs must migrate across the
295 basal lamina between fibres, as occurs in developing rodent muscle (Hughes and Blau, 1990). We observe
296 0.92 MuSCs/wild-type myofibre, on average. If one assumes random MuSC distribution amongst myofibres,
297 the Poisson distribution predicts that 40% of myofibres should have no associated-MuSCs. The lower
298 proportion of myofibres lacking MuSCs suggests that MuSCs are not distributed randomly. Conversely,
299 Poissonian distribution would predict that 37% of myofibres should have a single MuSC. The observed value
300 of 70% strongly suggests that MuSCs actively disperse between myofibres. Nevertheless, the system is
301 imperfect, as the 21% of myofibres lacking MuSCs shows. Despite the fivefold increase in MuSCs in *myog*^{-/-}
302 mutant, around 5% of myofibres still have no associated MuSC, which is far more than expected by the Poisson
303 distribution (1.5%). Similarly, the 33% of myofibres with only a single MuSC compares with an expected value
304 of 6%. In contrast, myofibres with over ten MuSCs are over-represented, perhaps due to rare local regenerative
305 events. In the absence of Myog, MuSCs tend to cluster on some myofibres, while also showing a tendency to
306 be present at just one per myofibre more often than expected. These observations raise the possibility that
307 myofibres in both wild-type and *myog*^{-/-} mutant contain a single specific niche for MuSCs.

308 Most MuSCs associated with isolated myofibres in zebrafish are located near myofibre ends, which would
309 be attached to the vertical myoseptum tendon-like structure in vivo. It thus appears that the myotendinous
310 junction (MTJ) at myofibre ends provides a special niche in which MuSCs accumulate. Strikingly, the preferred
311 location of MuSCs in wild-type myofibres is between 10-20 μ m from the myofibre end, suggesting that MuSCs
312 locate not on the MTJ surface itself, but on the immediately adjacent cylindrical sarcolemma, retaining a
313 potential physical contact with the MTJ. Upon explant ex vivo, MuSCs activate and begin to migrate away
314 from myofibre ends. In *myog*^{-/-} mutants, the increased number of MuSCs are almost randomly distributed along
315 the fibre, but the slightly higher abundance at myofibre ends might suggest that cells disperse once the MTJ
316 niche is filled. However, when the fraction of myofibres in *myog*^{-/-} mutants that have only a single MuSC were
317 analysed separately, significant dispersal was still observed. We conclude that Myog is required for assembly
318 of the MTJ MuSC:niche complex.

319 Mammalian MuSCs are generally not associated with myofibre ends, perhaps because myofibres are longer.
320 Zebrafish myofibres are on average 1 mm long and rarely exceed 2 mm. In contrast, in the murine muscles
321 most frequently analysed, those of the limbs, myofibres are up to 1 cm long. We suggest that the more
322 numerous nuclei and larger number of MuSCs required for efficient growth and repair have allowed (or selected
323 for) the MuSC niche to disperse along the myofibre.
324

325 **Myog contributes to MuSC deep quiescence**

326 Numerous lines of evidence argue that MuSCs in *myog*^{-/-} zebrafish fail to enter full quiescence. First, MuSCs
327 are more numerous in *myog*^{-/-} mutant adults. Second, they are often not in their normal niche. Third, they
328 contain more pRPS6 upon acute isolation. Fourth, they activate and proliferate more rapidly upon ex vivo

329 culture. Three hypotheses could explain the MuSC *myog*^{-/-} phenotype. 1) Lack of Myog function in early
330 development. However, MuSCs are not increased in mutant larvae (Ganassi et al., 2018) so it seems the
331 defect worsens over the life course, suggesting a continuous need for Myog. 2) Lack of Myog within myofibre
332 nuclei, which might lead to signals promoting MuSC proliferation (see below). 3) Myog could also function
333 within MuSC themselves to control the balance between quiescence and activation. Whereas most literature
334 describes *Myog* expression at the differentiation step following MuSC proliferation, various reports that noted
335 *Myog*⁺ MuSCs support a Myog MuSC-specific function. An early study investigating differential expression of
336 *Myod* and *Myog* in rat muscle observed rare but intense accumulation of *Myog* mRNA along myofibre edges,
337 anatomically reminiscent of MuSC niche (Hughes et al., 1993). Notably, *Myog* expression predominates in
338 oxidative myofibres also characterized by higher MuSC density (Gibson and Schultz, 1982; Hughes et al.,
339 1993). Rantanen et al. identified a population of dormant *Myog*⁺ MuSCs which may contribute to muscle repair
340 bypassing the proliferation step (Rantanen et al., 1995). Co-expression of *Pax7* and *Myog* was observed in a
341 satellite-cell study in transverse sections of both mouse soleus and EDL muscles (Schultz et al., 2006) and in
342 rare cells in fish dermomyotome (Devoto et al., 2006). Likewise, immunohistochemistry on human resting
343 muscle biopsies found *Myog* expression in MuSC but not in myonuclei (Lindstrom et al., 2010). More recently,
344 the Blau group reported a low but detectable level of *Myog* protein in both resting murine MuSCs and in MPCs
345 returning to quiescence after recovery from injury (Porpiglia et al., 2017). In addition, datasets show that *Myog*
346 mRNA is present in quiescent MuSCs and rapidly decreases significantly during the three hours of myofibre
347 isolation (Machado et al., 2017). Interestingly, *Mrf4* expression in MuSC was downregulated in the same time
348 frame, concomitant with exit from quiescence marked by the upregulation of *Myod*, demonstrating the
349 presence of two well-known muscle ‘differentiation-specific’ markers in dormant stem cells. Together, such
350 observations prompt re-evaluation of an intrinsic *Myog* function in quiescent MuSC.

351

352 **Myog is required for proper myofibre growth**

353 MRFs including *Myog* are required in the adult to restrict murine myofibre size (Moresi et al., 2010; Moretti
354 et al., 2016). We find that, in zebrafish, *Myog* is required both for myocyte fusion that permits increase in
355 nuclear number and consequent growth to the normal fibre size. We also show that *Myog* limits myonuclear
356 domain size both in juvenile and adult muscle. Conditional depletion of *Myog* in adult mouse muscle decreased
357 myofibre cross-sectional area, although further morphometric analysis of myofibre nuclear domains was not
358 reported (Meadows et al., 2008). It therefore seems that, in addition to its role in promoting MPC differentiation
359 and fusion, *Myog* restricts the volume of sarcoplasm supported by each myonucleus, both in denervated
360 (Moresi et al., 2010) and innervated (this study) adult muscle. Both adult mouse and zebrafish *Myog* mutants
361 show reduction in *Mrf4* mRNA (Ganassi et al., 2018; Knapp et al., 2006; Meadows et al., 2008; Rawls et al.,
362 1998; Venuti et al., 1995). *Mrf4* itself restricts murine myofibre growth (Moretti et al., 2016), although no
363 myofibre size change was reported in the various *Mrf4* knockout mice (Patapoutian et al., 1995; Zhang et al.,
364 1995). So *Myog* may either restrict myonuclear domain size directly or by regulating *Mrf4* expression.

365 Unlike fish, which grow to some extent throughout life, mice do not require MuSCs to maintain adult muscle
366 size (Keefe et al., 2015). Nevertheless, during murine adult myogenesis myonuclear accretion from MuSC-
367 derived MPC fusion is required for myofibre growth and regeneration, as in fish (Pallafacchina et al., 2013).
368 Congruently, expression of fusogenic genes *myomixer* (*mymx*) and *myomaker* (*mymk*) is reduced in both
369 *myog*^{-/-} adult and embryonic muscles (Ganassi et al., 2018). Depletion of zebrafish *Mymk* leads to fewer

370 myofibre nuclei in the surviving adults (Shi et al., 2018). Likewise, *Mymk*-KO in murine MuSCs at P0 led to
371 75% reduction of myonuclear number in extensor digitorum longus (EDL) myofibres measured at P28
372 (Nikolaou et al., 2019). Although severely reduced, accretion of myonuclei does occur in growing *myog*^{-/-}
373 zebrafish, thus confirming the persistence of a Myog-independent pathway to fusion (Ganassi et al., 2018),
374 which appears to allow a fraction of MPCs to sustain some muscle growth.

375 Addition of myonuclei to growing muscle relies on interactive signals between MuSCs and myofibres. Fish
376 lacking Myog have increased *igf1* and decreased *mstnb* expression. Both changes are predicted to enhance
377 muscle size (Coleman et al., 1995; Durieux et al., 2007; Gao et al., 2016; McPherron et al., 1997; Powell-
378 Braxton et al., 1993; Trendelenburg et al., 2009; Zimmers et al., 2002), and both may be important in our *myog*
379 mutants. As we observe in *myog*^{-/-} fish, loss of *Mstn* increases MuSCs in amniotes (Manceau et al., 2008;
380 McCroskery et al., 2003). MuSC contribution is, however, dispensable for myofibre hypertrophy in *Mstn*
381 knockout mice, in which growth derives from increased myonuclear domain size. *Mstn* knockouts thus
382 resemble both the MuSC increase and myofibre domain size increase in *myog* mutant fish. On the other hand,
383 IGF1 has been shown to increase MPC proliferation and differentiation and thereby enhance myofibre growth,
384 but without change in nuclear domain size (Fiorotto et al., 2003; McCall et al., 1998). *lgf1* increase might thus
385 enhance the number of MuSCs in *myog* mutants.

386 IGF1 and Myostatin signalling also affect MuSC activation status in mice (Chakravarthy et al., 2001;
387 Cornelison and Wold, 1997; McCroskery et al., 2003; Zhang et al., 2010). Both can act through the mTORC1
388 pathway (Lares et al., 2005; Trendelenburg et al., 2009). The IGF1 signal cascade phosphorylates AKT and
389 activates mTORC1 leading to phosphorylation of RPS6 and eIF4EBPs, with downstream effects on both
390 MuSCs and adult myofibres (Schiaffino and Mammucari, 2011). Loss of *Mstn* also activates the
391 mTORC1/RPS6 pathway (Trendelenburg et al., 2009). Our data show enhanced RPS6 phosphorylation
392 (pRPS6) both in *myog*^{-/-} muscle and MuSC analysis ex vivo. Interestingly, mTORC1 controls the transition
393 from deep G₀ quiescence to an intermediate pseudo-activated state defined as G_{alert}, in which MuSCs that
394 accumulate pRPS6 are primed for activation compared to their quiescent counterparts (Porpiglia et al., 2017;
395 Rodgers et al., 2014). Similar to zebrafish *myog*^{-/-} MuSCs, “alerted” mouse MuSCs display accelerated
396 transition to proliferation ex-vivo compared to quiescent population (Rodgers et al., 2014). As we detected no
397 difference in Akt activation and unaltered levels of the receptors *igfr1a* and *igfr1b*, we deduce that increased
398 phosphorylation of RPS6 is unlikely to result from enhanced upstream IGF1 cascade. However, *myog*^{-/-} muscle
399 showed significant downregulation of *tsc1a* and *tsc1b* mRNAs, that encode functional orthologues of
400 mammalian TSC1, a mTORC1 inhibitor highly conserved from fly to human (DiBella et al., 2009; Nobukini and
401 Thomas, 2004) that promotes stemness in various tissues (Chen et al., 2008; Quan et al., 2013). Mouse Tsc^{-/-}
402 MuSCs display enhanced pRPS6 and accelerated entry into proliferative state in vivo and in vitro (Rodgers
403 et al., 2014). Murine Myog can bind to conserved regions in *Tsc1* gene, whereas Myod does not, thus
404 suggesting direct transcriptional regulation (<https://www.encodeproject.org/experiments/ENCSR000AID/>).
405 These observations raise the hypothesis that loss of Myog leads to mTORC1 activation in MuSCs, exit from
406 G₀ into G_{alert} and subsequent increase in MuSC number. Taken together, our findings suggest that loss of
407 Myog acts in adult animals to influence both MuSCs and muscle fibres, thus acting as a coordinator of tissue
408 homeostasis.

409

410 **Materials and methods**

411

412 **Zebrafish lines and maintenance**

413 All lines used were reared at King's College London on a 14/10 hours light/ dark cycle at 28.5 °C, with staging
414 and husbandry as described (Westerfield, 2000). *myog*^{fh265} mutant allele were maintained on AB background
415 and genotyped by sequencing as previously described (Hinitz et al., 2011; Roy et al., 2017). *Myog*^{kg125} (*myog*
416 ^{l-}) were made by CRISPR/Cas9, genotyped as previously reported and maintained on TL background (Ganassi
417 et al., 2018). *TgBAC(pax7a:GFP)*^{t32239Tg}, a generous gift from Nüsslein-Volhard C. (MPI Tübingen) (Mahalwar
418 et al., 2014), and the newly-generated *myog*^{kg125}; *TgBAC(pax7a:GFP)*^{t32239Tg} were maintained on AB
419 background. All experiments were performed on zebrafish derived from F2 or later filial generation, in
420 accordance with licences held under the UK Animals (Scientific Procedures) Act 1986 and later modifications
421 and conforming to all relevant guidelines and regulations. Adult zebrafish measurement and analysis of weight,
422 length, body mass index and standard weight were performed as previously described (Ganassi et al., 2018).
423

424 **Isolation of zebrafish myofibres and culture of MuSCs from adult tissue**

425 Isolation and culture of zebrafish adult muscle fibres was previously described (Ganassi et al., 2018). Zebrafish
426 aged 8-9 months (adult) or 1 month (juvenile) were culled in high dose tricaine (Sigma Aldrich), immersed for
427 5 min in 1% Virkon (3S Healthcare) diluted in dH₂O, washed in PBS for 5 min followed by 70% ethanol rinse,
428 eviscerated and skinned. 15 month old adult were used for the *myog*^{fh265} allele. For myofibre dissociation, trunk
429 muscle was incubated in 0.2% Collagenase (C0130, Sigma Aldrich), 1% Penicillin/Streptomycin DMEM
430 supplemented with 50 µg/ml gentamycin (Thermo Fisher) at 28.5 °C for at least two hours. Single muscle
431 myofibres were released by trituration using heat-polished glass pipettes and washed three times with DMEM
432 Glutamax High Glucose (Gibco). Myofibres were then imaged for total length measure or plated on Matrigel
433 (Invitrogen) coated 96 or 24 well plates and cultured in growth medium (20% Fetal Bovine Serum in 1%
434 Penicillin/Streptomycin/ DMEM GlutaMAX High Glucose supplemented with 10 µg/ml gentamycin). At
435 indicated time points, MPCs were washed twice with PBS to remove plated myofibres, EdU pulsed (10 µM,
436 Invitrogen Life Technologies) for 8 hours in fresh media and then fixed with 4% PFA for 15 minutes. For
437 immunostaining myofibres were fixed in 4% PFA in PBS immediately after dissociation to reduce processing
438 time and avoid MuSC activation.
439

440 **Myofibre morphometry and Growth mode analysis**

441 Absolute myofibre length was measured for viable (i.e. non-fixed) myofibres imaged immediately after isolation
442 on Leica M stereo-microscope using x1.6 magnification. Measurement of Surface Area (SA) and number of
443 nuclei was performed on fixed myofibres at x10 or x20 magnification using an Axiovert 200M microscope
444 (Zeiss). Myofibre diameter was measured at two locations over total myofibre length. Morphometric calculation
445 were carried out as described in (Brack et al., 2005). Briefly, SA/unit length = myofibre segment length x π x
446 mean myofibre diameter; surface area domain size (SADS) = SA/myofibre nuclei in segment (Hoechst^{+ve});
447 Myofibre volume/unit length= myofibre segment length x π x (radius)²; myonuclear domain= myofibre segment
448 length x π x (radius)² /myonuclei (i.e. GFP^{-ve} nuclei) in segment. MuSC (GFP^{+ve} cell) distance to nearest
449 myofibre-end was measured as schematised in Figure S2G. To graph frequency distribution, absolute nearest
450 myofibre-end distances were normalised for myofibre length difference across genotype. Each myofibre was
451 virtually divided in tenths where 1/10 and 5/10 corresponded to nearest segment to myofibre-end or segment

452 at the myofibre half-length, respectively. Each tenth measured either 100 μm in sib or 50 μm in *myog*^{-/-}.
453 Generalised linear models (GLS) were used to explore growth assessing genotype differences in the
454 relationship between SA and number of nuclei per 100 μm length (NoN), using the GLS function of NMLE
455 package in R version 3.6.1 “Action of the Toes” (<https://www.R-project.org/>, (Pinheiro, 2020)). SA was \log_e
456 transformed prior to analysis to generate a linear relationship with NoN, in a dataset pooling both juvenile and
457 adult data. The dependent variable was set as NoN and the model included main effects of $\log_e(\text{SA})$ and
458 genotype, as well as an interaction term. The dataset was then split by genotype and separate GLS models
459 were run to analyse the relationship between $\log_e(\text{SA})$ and NoN for each genotype. *t*, *p* and DF values were
460 extracted for these models with the ‘summary’ function and were as follow:

461 • Interaction between genotype and $\log_e(\text{SA})$: *t*=7.332, *p*<0.0001, DF=1,164
462 • Siblings only, effect of $\log_e(\text{SA})$: *t*=11.448, *p*<0.0001, DF=1,97
463 • Mutants only, effect of $\log_e(\text{SA})$: *t*=4.515, *p*<0.0001, DF=1,67

464 Detailed steps of the GLS analysis are reported:

465 • Decision to pool age groups

466 Initial analyses showed no effect of age on the relationship between $\log_e(\text{SA})$ and NoN, therefore different age
467 groups were pooled to study the effect of mutation. Note that these initial analyses suffered from high
468 confounding correlation between SA and age in siblings, however visual analysis of the few datapoints where
469 juvenile and adult SA values overlapped gave no indication that age was affecting the NoN directly.

470 • Decision to use Generalised Linear Model instead of General Linear Model

471 Significant heteroscedasticity was identified in simple linear models using R package lmtest (Zeileis, 2002),
472 primarily because variance in NoN increased with $\log_e(\text{SA})$. GLS models were used to weight explained
473 variance by the value of the dependent variables, controlling for this heteroscedasticity. For each step of
474 analysis every combination of weighting (weighting by $\log_e(\text{SA})$, genotype, both, or neither) was compared and
475 the model with the lowest AIC was selected.

476 • Issue of Correlation between $\log_e(\text{SA})$ and Genotype

477 In the final model there was a significant correlation between explanatory variables $\log_e(\text{SA})$ and genotype,
478 which may have confounded interpretations. This correlation was removed by subsetting with the ‘Matchit’ and
479 ‘Matching’ R packages, and qualitatively identical results were found by re-running the analysis using this
480 smaller dataset (Ho, 2011; Sekhon, 2011).

481

482 Protein extraction and Western blot analysis

483 Western blot was performed as described (Ganassi et al., 2014; Kelu et al., 2019). Briefly, dissected trunk
484 muscle was submerged in lysis buffer (Tissue Extraction Reagent I (Invitrogen), Complete EDTA-free Protease
485 Inhibitor Cocktail Tablets (Roche), 1mM PMSF, 50 mM NaF, 1mM Na₃VO₄ (Sigma Aldrich) and triturated using
486 TissueRuptor (Qiagen) followed by 5 min of sonication. Lysates were then pelleted by centrifugation, after
487 which the supernatant protein extract was quantified, mixed with Laemmli Sample Buffer 4X (Bio-rad)
488 complemented with 2-mercaptoethanol (Bio-rad) and heated at 95 °C for 5 minutes, before subjecting to SDS-
489 PAGE analysis. Protein extract equivalent to 50 μg was loaded per lane onto precast gradient gels (4-20%
490 Bio-rad). Separated proteins were then transferred to nitrocellulose membranes, blocked in either 5% non-fat
491 dry milk or 5% BSA in Tris-buffered saline and 0.1% Tween (TBST), incubated in primary and secondary
492 antibodies at 4°C overnight and at room temperature for 2 hours, respectively. Primary antibodies used were:

493 S6 ribosomal protein (pan) (1:1000; #2317; Cell Signaling), phospho-S6 ribosomal protein (Ser240/244)
494 (1:2000; #5364; Cell Signaling), Phospho-Akt (Ser473) 1:1000; #4051; Cell Signaling, Akt (pan)
495 (1:1000; #4685; Cell Signaling), Actin (1:500; #A5316; Sigma Aldrich). Secondary antibodies used were: HRP
496 goat anti mouse IgG(H+L) (1:5000; #AP308P; Sigma Aldrich) and HRP goat anti rabbit IgG (H+L) (1:5000;
497 #AP307P; Sigma Aldrich). Signal detection was performed using ChemiDoc Imaging System and analysed on
498 Image Lab Software (Bio-rad). Phospho/pan (total) ratios were calculated following normalisation to
499 membrane-matched and sample-matched Actin signals.

500

501 **Immunostaining on myofibres or cultured MPCs**

502 For immunostaining, either myofibres or MPCs were permeabilised in PBS 0.5% Triton X-100 (PBST) for 15
503 min, blocked in Goat Serum 5% (Sigma Aldrich) in PBST and incubated with primary antibodies at indicated
504 concentrations overnight in Goat Serum 2% in either PBST (0.1% TritonX) (myofibres) or PBS (MPCs). Primary
505 antibodies used were against: phospho-S6 ribosomal protein (Ser240/244), (1:1000; #5364; Cell Signaling),
506 GFP (13970 (1:400), Abcam), Myosin (A4.1025 (1:5) (Blagden et al., 1997), MF20 (1:300, DSHB), Pax3/7
507 (DP312 (1:50), Nipam Patel, UC Berkeley, USA) and Desmin (D8281 (1:100), Sigma Aldrich). Samples were
508 then washed three times in PBS prior to incubation with secondary antibodies in Goat Serum 2% in PBS.
509 Secondary antibodies were Alexa Fluor 555 goat anti rabbit IgG (H+L) (1:1000; #A27039; Invitrogen) and
510 Alexa Fluor 488 goat anti chicken IgY (H+L) (1:1000; #A11039; Invitrogen). Nuclei were counterstained with
511 100 ng/ml Hoechst 33342 (Thermo Fisher). EdU incorporation was revealed using a Click-iT EdU Imaging Kit
512 (Invitrogen Life Technologies) as per manufacturer's instructions. Myofibres were imaged on LSM Exciter
513 confocal microscope (Zeiss) equipped with x40 objective. MPCs were imaged at x10 or x20 using an Axiovert
514 200M microscope (Zeiss). At least three random fields were acquired in each of three technical replicates.
515 Differentiation index was calculated as: nuclei in MyHC⁺ myocytes x 100/ total nuclei.

516

517 **RNA extraction, RT-PCR and qPCR**

518 Genotyped *myog*^{kg125/+} (sib) or *myog*^{kg125} (*myog*^{-/-}) adult trunk muscles were triturated and processed for RNA
519 extraction using RNA Purification Plus Kit (Norgen) following supplier's instructions. Total RNA was reverse
520 transcribed using Superscript III reverse transcriptase (Invitrogen) following supplier's instructions. For MPCs,
521 RNA extraction was performed at indicated time point using micro-RNA kit (Qiagen). Prior to collection, culture
522 wells were washed 3 times with PBS to remove myofibres, followed by MPCs detachment using Accutase
523 (Sigma Aldrich) for 10 minutes at 28.5 °C. QPCR on technical triplicates for each sample was performed on 5
524 ng of relative RNA using Takyon Low ROX SYBR 2X MasterMix blue dTTP (Takyon) on a ViiA™7 thermal
525 cycler (Applied Biosystems). Ct values of all genes analysed were normalized to the geometrical mean of Ct
526 values of three housekeeping genes (*actinb2*, *sep15* and *b2m*) and fold changes were calculated using $\Delta\Delta Ct$
527 method (Livak and Schmittgen, 2001). Results are presented as mean value \pm SEM of fold changes from
528 independent experiments as indicated. Used primers, purchased from Sigma-Aldrich (KiCqStart SYBR Green
529 Primers Predesigned, Sigma Aldrich) are listed in Table S1.

530

531

532 **Statistical analyses**

533 Quantitative analysis on images was performed with Fiji (NIH, www.Fiji.sc) and ZEN (2009 + 2012) software.
534 Statistical analyses were performed using GraphPad (Prism 6 or 8) or Microsoft Excel (v16) for unpaired or
535 paired two-tailed Student's *t*-test as indicated and one-way ANOVA followed by Holm-Sidak's posthoc (growth
536 mode analysis) or Bonferroni (MuSC analysis). χ^2 test was performed on raw data and used to assess
537 difference between distributions.

538

539 **Acknowledgements**

540 We are grateful to all members of the Hughes lab and Zammit lab for advice and to Bruno Correia da Silva
541 and his staff for care of the fish. This work is supported by grants from the Medical Research Council to S.M.H.
542 (MRC Programme Grants G1001029 and MR/N021231/1) and P.S.Z. (MR/P023215/1 and MR/S002472/1),
543 and from Muscular Dystrophy UK (RA3/3052), Association Française contre les Myopathies (AFM17865) and
544 the FSH Society (FSHS-82013-06 and FSHS-82017-05) to P.S.Z.

545

546 **Author contributions**

547 MG and SMH conceived the project. MG designed and performed all experiments and analysis. MG
548 established the protocol for culture of zebrafish adult MuSCs. SB performed qPCR assay and contributed to
549 sample preparation for qPCR from adult tissue and cell culture. KW performed statistical analysis on muscle
550 growth and contributed to fish genotyping. PSZ assisted in protocol establishment, experimental plan and
551 provided cell culture reagents. MG and SMH wrote the paper with contributions from all other authors.

552

553 **Declaration of Interests**

554 The authors declare no competing interests.

555

556 **References**

557 Beauchamp, J.R., Heslop, L., Yu, D.S., Tajbakhsh, S., Kelly, R.G., Wernig, A., Buckingham, M.E., Partridge,
558 T.A., and Zammit, P.S. (2000). Expression of CD34 and myf5 defines the majority of quiescent adult
559 skeletal muscle satellite cells. *J Cell Biol* 151, 1221-1234.

560 Berberoglu, M.A., Gallagher, T.L., Morrow, Z.T., Talbot, J.C., Hromowyk, K.J., Tenente, I.M., Langenau,
561 D.M., and Amacher, S.L. (2017). Satellite-like cells contribute to pax7-dependent skeletal muscle
562 repair in adult zebrafish. *Dev Biol* 424, 162-180.

563 Blagden, C.S., Currie, P.D., Ingham, P.W., and Hughes, S.M. (1997). Notochord induction of zebrafish slow
564 muscle mediated by Sonic Hedgehog. *Genes Dev* 11, 2163-2175.

565 Brack, A.S., Bildsoe, H., and Hughes, S.M. (2005). Evidence that satellite cell decrement contributes to
566 preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. *J
567 Cell Sci* 118, 4813-4821.

568 Buckingham, M., and Relaix, F. (2015). PAX3 and PAX7 as upstream regulators of myogenesis. *Semin Cell
569 Dev Biol* 44, 115-125.

570 Cardasis, C.A., and Cooper, G.W. (1975). An analysis of nuclear numbers in individual muscle fibers during
571 differentiation and growth: a satellite cell-muscle fiber growth unit. *J Exp Zool* 191, 347-358.

572 Chakravarthy, M.V., Booth, F.W., and Spangenburg, E.E. (2001). The molecular responses of skeletal
573 muscle satellite cells to continuous expression of IGF-1: implications for the rescue of induced
574 muscular atrophy in aged rats. *Int J Sport Nutr Exerc Metab* 11 Suppl, S44-48.

575 Chen, C., Liu, Y., Liu, R., Ikenoue, T., Guan, K.L., Liu, Y., and Zheng, P. (2008). TSC-mTOR maintains
576 quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and
577 reactive oxygen species. *J Exp Med* 205, 2397-2408.

578 Chen, Y., Lin, G., and Slack, J.M. (2006). Control of muscle regeneration in the *Xenopus* tadpole tail by
579 Pax7. *Development* 133, 2303-2313.

580 Coleman, M.E., DeMayo, F., Yin, K.C., Lee, H.M., Geske, R., Montgomery, C., and Schwartz, R.J. (1995).
581 Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and
582 myofiber hypertrophy in transgenic mice. *J Biol Chem* 270, 12109-12116.

583 Cooper, R.N., Tajbakhsh, S., Mouly, V., Cossu, G., Buckingham, M., and Butler-Browne, G.S. (1999). In vivo
584 satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. *J Cell Sci* 112 (Pt
585 17), 2895-2901.

586 Cornelison, D.D., and Wold, B.J. (1997). Single-cell analysis of regulatory gene expression in quiescent and
587 activated mouse skeletal muscle satellite cells. *Dev Biol* 191, 270-283.

588 Coutelle, O., Blagden, C.S., Hampson, R., Halai, C., Rigby, P.W., and Hughes, S.M. (2001). Hedgehog
589 signalling is required for maintenance of myf5 and myoD expression and timely terminal differentiation
590 in zebrafish adaxial myogenesis. *Dev Biol* 236, 136-150.

591 Davis, G.K., D'Alessio, J.A., and Patel, N.H. (2005). Pax3/7 genes reveal conservation and divergence in the
592 arthropod segmentation hierarchy. *Dev Biol* 285, 169-184.

593 Devoto, S.H., Stoiber, W., Hammond, C.L., Steinbacher, P., Haslett, J.R., Barresi, M.J., Patterson, S.E.,
594 Adiarte, E.G., and Hughes, S.M. (2006). Generality of vertebrate developmental patterns: evidence for
595 a dermomyotome in fish. *Evol Dev* 8, 101-110.

596 DiBella, L.M., Park, A., and Sun, Z. (2009). Zebrafish Tsc1 reveals functional interactions between the cilium
597 and the TOR pathway. *Human molecular genetics* 18, 595-606.

598 Durieux, A.C., Amrouche, A., Banzet, S., Koulmann, N., Bonnefoy, R., Pasdeloup, M., Mouret, C., Bigard,
599 X., Peinnequin, A., and Freyssenet, D. (2007). Ectopic expression of myostatin induces atrophy of
600 adult skeletal muscle by decreasing muscle gene expression. *Endocrinology* 148, 3140-3147.

601 Ekmark, M., Gronevik, E., Schjerling, P., and Gundersen, K. (2003). Myogenin induces higher oxidative
602 capacity in pre-existing mouse muscle fibres after somatic DNA transfer. *J Physiol* 548, 259-269.

603 Fiorotto, M.L., Schwartz, R.J., and Delaughter, M.C. (2003). Persistent IGF-I overexpression in skeletal
604 muscle transiently enhances DNA accretion and growth. *FASEB J* 17, 59-60.

605 Flynn, J.M., Meadows, E., Fiorotto, M., and Klein, W.H. (2010). Myogenin regulates exercise capacity and
606 skeletal muscle metabolism in the adult mouse. *PLoS One* 5, e13535.

607 Forcina, L., Miano, C., Pelosi, L., and Musaro, A. (2019). An Overview about the Biology of Skeletal Muscle
608 Satellite Cells. *Curr Genomics* 20, 24-37.

609 Ganassi, M., Badodi, S., Ortuste Quiroga, H.P., Zammit, P.S., Hinitz, Y., and Hughes, S.M. (2018).
610 Myogenin promotes myocyte fusion to balance fibre number and size. *Nature communications* 9,
611 4232.

612 Ganassi, M., Badodi, S., Polacchini, A., Baruffaldi, F., Battini, R., Hughes, S.M., Hinitz, Y., and Molinari, S.
613 (2014). Distinct functions of alternatively spliced isoforms encoded by zebrafish *mef2ca* and *mef2cb*.
614 *Biochimica et biophysica acta* 1839, 559-570.

615 Gao, Y., Dai, Z., Shi, C., Zhai, G., Jin, X., He, J., Lou, Q., and Yin, Z. (2016). Depletion of Myostatin b
616 Promotes Somatic Growth and Lipid Metabolism in Zebrafish. *Front Endocrinol (Lausanne)* 7, 88.

617 Gibson, M.C., and Schultz, E. (1982). The distribution of satellite cells and their relationship to specific fiber
618 types in soleus and extensor digitorum longus muscles. *Anat Rec* 202, 329-337.

619 Hammond, C.L., Hinitz, Y., Osborn, D.P., Minchin, J.E., Tettamanti, G., and Hughes, S.M. (2007). Signals
620 and myogenic regulatory factors restrict pax3 and pax7 expression to dermomyotome-like tissue in
621 zebrafish. *Dev Biol* 302, 504-521.

622 Hasty, P., Bradley, A., Morris, J.H., Edmondson, D.G., Venuti, J.M., Olson, E.N., and Klein, W.H. (1993).
623 Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. *Nature*
624 364, 501-506.

625 Hernandez-Hernandez, J.M., Garcia-Gonzalez, E.G., Brun, C.E., and Rudnicki, M.A. (2017). The myogenic
626 regulatory factors, determinants of muscle development, cell identity and regeneration. *Semin Cell*
627 *Dev Biol* 72, 10-18.

628 Hinitz, Y., Osborn, D.P., and Hughes, S.M. (2009). Differential requirements for myogenic regulatory factors
629 distinguish medial and lateral somitic, cranial and fin muscle fibre populations. *Development* 136, 403-
630 414.

631 Hinitz, Y., Williams, V.C., Sweetman, D., Donn, T.M., Ma, T.P., Moens, C.B., and Hughes, S.M. (2011).
632 Defective cranial skeletal development, larval lethality and haploinsufficiency in Myod mutant
633 zebrafish. *Dev Biol* 358, 102-112.

634 Ho, D.K., I.; King, G.; Stuart, E. (2011). MatchIt: Nonparametric Preprocessing for Parametric Causal
635 Inference. *J Stat Soft* 42, 1-28.

636 Hollway, G.E., Bryson-Richardson, R.J., Berger, S., Cole, N.J., Hall, T.E., and Currie, P.D. (2007). Whole-
637 somite rotation generates muscle progenitor cell compartments in the developing zebrafish embryo.
638 *Dev Cell* 12, 207-219.

639 Hughes, S.M., and Blau, H.M. (1990). Migration of myoblasts across basal lamina during skeletal muscle
640 development. *Nature* 345, 350-353.

641 Hughes, S.M., Chi, M.M., Lowry, O.H., and Gundersen, K. (1999). Myogenin induces a shift of enzyme
642 activity from glycolytic to oxidative metabolism in muscles of transgenic mice. *J Cell Biol* 145, 633-642.

643 Hughes, S.M., Taylor, J.M., Tapscott, S.J., Gurley, C.M., Carter, W.J., and Peterson, C.A. (1993). Selective
644 accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by
645 innervation and hormones. *Development* 118, 1137-1147.

646 Kawakami, A., Kimura-Kawakami, M., Nomura, T., and Fujisawa, H. (1997). Distributions of PAX6 and PAX7
647 proteins suggest their involvement in both early and late phases of chick brain development. *Mech
648 Dev* 66, 119-130.

649 Keefe, A.C., Lawson, J.A., Flygare, S.D., Fox, Z.D., Colasanto, M.P., Mathew, S.J., Yandell, M., and Kardon,
650 G. (2015). Muscle stem cells contribute to myofibres in sedentary adult mice. *Nature communications*
651 6, 7087.

652 Kelu, J.J., Pipalia, T.G., and Hughes, S.M. (2019). Circadian regulation of muscle growth independent of
653 locomotor activity. *bioRxiv*, 778787.

654 Knapp, J.R., Davie, J.K., Myer, A., Meadows, E., Olson, E.N., and Klein, W.H. (2006). Loss of myogenin in
655 postnatal life leads to normal skeletal muscle but reduced body size. *Development* 133, 601-610.

656 Kuang, S., Kuroda, K., Le Grand, F., and Rudnicki, M.A. (2007). Asymmetric self-renewal and commitment
657 of satellite stem cells in muscle. *Cell* 129, 999-1010.

658 Latres, E., Amini, A.R., Amini, A.A., Griffiths, J., Martin, F.J., Wei, Y., Lin, H.C., Yancopoulos, G.D., and
659 Glass, D.J. (2005). Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via
660 the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. *J
661 Biol Chem* 280, 2737-2744.

662 Lindstrom, M., Pedrosa-Domellof, F., and Thornell, L.E. (2010). Satellite cell heterogeneity with respect to
663 expression of MyoD, myogenin, Dlk1 and c-Met in human skeletal muscle: application to a cohort of
664 power lifters and sedentary men. *Histochem Cell Biol* 134, 371-385.

665 Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time
666 quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 25, 402-408.

667 Machado, L., Esteves de Lima, J., Fabre, O., Proux, C., Legendre, R., Szegedi, A., Varet, H., Ingerslev, L.R.,
668 Barres, R., Relaix, F., et al. (2017). In Situ Fixation Redefines Quiescence and Early Activation of
669 Skeletal Muscle Stem Cells. *Cell reports* 21, 1982-1993.

670 Mahalwar, P., Walderich, B., Singh, A.P., and Nüsslein-Volhard, C. (2014). Local reorganization of
671 xanthophores fine-tunes and colors the striped pattern of zebrafish. *Science* 345, 1362-1364.

672 Manceau, M., Gros, J., Savage, K., Thome, V., McPherron, A., Paterson, B., and Marcelle, C. (2008).
673 Myostatin promotes the terminal differentiation of embryonic muscle progenitors. *Genes Dev* 22, 668-
674 681.

675 Mashinchian, O., Pisconti, A., Le Moal, E., and Bentzinger, C.F. (2018). The Muscle Stem Cell Niche in
676 Health and Disease. *Curr Top Dev Biol* 126, 23-65.

677 Mauro, A. (1961). Satellite cell of skeletal muscle fibers. *J Biophys Biochem Cytol* 9, 493-495.

678 McCall, G.E., Allen, D.L., Linderman, J.K., Grindeland, R.E., Roy, R.R., Mukku, V.R., and Edgerton, V.R.
679 (1998). Maintenance of myonuclear domain size in rat soleus after overload and growth hormone/IGF-
680 I treatment. *J Appl Physiol* 84, 1407-1412.

681 McCroskery, S., Thomas, M., Maxwell, L., Sharma, M., and Kambadur, R. (2003). Myostatin negatively
682 regulates satellite cell activation and self-renewal. *J Cell Biol* 162, 1135-1147.

683 McPherron, A.C., Lawler, A.M., and Lee, S.J. (1997). Regulation of skeletal muscle mass in mice by a new
684 TGF-beta superfamily member. *Nature* 387, 83-90.

685 Meadows, E., Cho, J.H., Flynn, J.M., and Klein, W.H. (2008). Myogenin regulates a distinct genetic program
686 in adult muscle stem cells. *Dev Biol* 322, 406-414.

687 Megeney, L.A., Kablar, B., Garrett, K., Anderson, J.E., and Rudnicki, M.A. (1996). MyoD is required for
688 myogenic stem cell function in adult skeletal muscle. *Genes Dev* 10, 1173-1183.

689 Moresi, V., Williams, A.H., Meadows, E., Flynn, J.M., Potthoff, M.J., McAnally, J., Shelton, J.M., Backs, J.,
690 Klein, W.H., Richardson, J.A., *et al.* (2010). Myogenin and class II HDACs control neurogenic muscle
691 atrophy by inducing E3 ubiquitin ligases. *Cell* 143, 35-45.

692 Moretti, I., Ciciliot, S., Dyar, K.A., Abraham, R., Murgia, M., Agatea, L., Akimoto, T., Bicciato, S., Forcato, M.,
693 Pierre, P., *et al.* (2016). MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2
694 activity. *Nature communications* 7, 12397.

695 Nabeshima, Y., Hanaoka, K., Hayasaka, M., Esumi, E., Li, S., Nonaka, I., and Nabeshima, Y. (1993).
696 Myogenin gene disruption results in perinatal lethality because of severe muscle defect. *Nature* 364,
697 532-535.

698 Nikolaou, S., Cramer, A.A., Hu, L., Goh, Q., Millay, D.P., and Cornwall, R. (2019). Proteasome inhibition
699 preserves longitudinal growth of denervated muscle and prevents neonatal neuromuscular
700 contractures. *JCI Insight* 4.

701 Nobukini, T., and Thomas, G. (2004). The mTOR/S6K signalling pathway: the role of the TSC1/2 tumour
702 suppressor complex and the proto-oncogene Rheb. *Novartis Found Symp* 262, 148-154; discussion
703 154-149, 265-148.

704 Olguin, H.C., and Olwin, B.B. (2004). Pax-7 up-regulation inhibits myogenesis and cell cycle progression in
705 satellite cells: a potential mechanism for self-renewal. *Dev Biol* 275, 375-388.

706 Olguin, H.C., Yang, Z., Tapscott, S.J., and Olwin, B.B. (2007). Reciprocal inhibition between Pax7 and
707 muscle regulatory factors modulates myogenic cell fate determination. *J Cell Biol* 177, 769-779.

708 Oustanina, S., Hause, G., and Braun, T. (2004). Pax7 directs postnatal renewal and propagation of
709 myogenic satellite cells but not their specification. *EMBO J* 23, 3430-3439.

710 Pallafacchina, G., Blaauw, B., and Schiaffino, S. (2013). Role of satellite cells in muscle growth and
711 maintenance of muscle mass. *Nutr Metab Cardiovasc Dis* 23 Suppl 1, S12-18.

712 Patapoutian, A., Yoon, J.K., Miner, J.H., Wang, S., Stark, K., and Wold, B. (1995). Disruption of the mouse
713 MRF4 gene identifies multiple waves of myogenesis in the myotome. *Development* 121, 3347-3358.

714 Pinheiro, J.B., D.; DebRoy, S.; Sarkar, D.; R Core Team (2020). nlme: Linear and Nonlinear Mixed Effects
715 Models. R package version 3, 1-147.

716 Pipalia, T.G., Koth, J., Roy, S.D., Hammond, C.L., Kawakami, K., and Hughes, S.M. (2016). Cellular
717 dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish
718 muscle repair. *Dis Model Mech* 9, 671-684.

719 Porpiglia, E., Samusik, N., Ho, A.T.V., Cosgrove, B.D., Mai, T., Davis, K.L., Jager, A., Nolan, G.P., Bendall,
720 S.C., Fanti, W.J., *et al.* (2017). High-resolution myogenic lineage mapping by single-cell mass
721 cytometry. *Nat Cell Biol* 19, 558-567.

722 Powell-Braxton, L., Hollingshead, P., Warburton, C., Dowd, M., Pitts-Meek, S., Dalton, D., Gillett, N., and
723 Stewart, T.A. (1993). IGF-I is required for normal embryonic growth in mice. *Genes and Development*
724 7, 2609-2617.

725 Purohit, G., and Dhawan, J. (2019). Adult Muscle Stem Cells: Exploring the Links Between Systemic and
726 Cellular Metabolism. *Front Cell Dev Biol* 7, 312.

727 Quan, Z., Sun, P., Lin, G., and Xi, R. (2013). TSC1/2 regulates intestinal stem cell maintenance and lineage
728 differentiation through Rheb-TORC1-S6K but independently of nutritional status or Notch regulation. *J
729 Cell Sci* 126, 3884-3892.

730 Rantanen, J., Hurme, T., Lukka, R., Heino, J., and Kalimo, H. (1995). Satellite cell proliferation and the
731 expression of myogenin and desmin in regenerating skeletal muscle: evidence for two different
732 populations of satellite cells. *Lab Invest* 72, 341-347.

733 Rawls, A., Valdez, M.R., Zhang, W., Richardson, J., Klein, W.H., and Olson, E.N. (1998). Overlapping
734 functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice.
735 *Development* 125, 2349-2358.

736 Relaix, F., Montarras, D., Zaffran, S., Gayraud-Morel, B., Rocancourt, D., Tajbakhsh, S., Mansouri, A.,
737 Cumano, A., and Buckingham, M. (2006). Pax3 and Pax7 have distinct and overlapping functions in
738 adult muscle progenitor cells. *J Cell Biol* 172, 91-102.

739 Relaix, F., and Zammit, P.S. (2012). Satellite cells are essential for skeletal muscle regeneration: the cell on
740 the edge returns centre stage. *Development* 139, 2845-2856.

741 Riuzzi, F., Sorci, G., Sagheddu, R., Sidoni, A., Alaggio, R., Ninfo, V., and Donato, R. (2014). RAGE signaling
742 deficiency in rhabdomyosarcoma cells causes upregulation of PAX7 and uncontrolled proliferation. *J
743 Cell Sci* 127, 1699-1711.

744 Rodgers, J.T., King, K.Y., Brett, J.O., Cromie, M.J., Charville, G.W., Maguire, K.K., Brunson, C., Mastey, N.,
745 Liu, L., Tsai, C.R., et al. (2014). mTORC1 controls the adaptive transition of quiescent stem cells from
746 G0 to G(Alert). *Nature* 510, 393-396.

747 Roy, S.D., Williams, V.C., Pipalia, T.G., Li, K., Hammond, C.L., Knappe, S., Knight, R.D., and Hughes, S.M.
748 (2017). Myotome adaptability confers developmental robustness to somitic myogenesis in response to
749 fibre number alteration. *Dev Biol* 431, 321-335.

750 Ruvinsky, I., Katz, M., Dreazen, A., Gielchinsky, Y., Saada, A., Freedman, N., Mishani, E., Zimmerman, G.,
751 Kasir, J., and Meyuhas, O. (2009). Mice deficient in ribosomal protein S6 phosphorylation suffer from
752 muscle weakness that reflects a growth defect and energy deficit. *PloS one* 4, e5618.

753 Schiaffino, S., and Mammucari, C. (2011). Regulation of skeletal muscle growth by the IGF1-Akt/PKB
754 pathway: insights from genetic models. *Skeletal muscle* 1, 4.

755 Schultz, E., Chamberlain, C., McCormick, K.M., and Mozdziak, P.E. (2006). Satellite cells express distinct
756 patterns of myogenic proteins in immature skeletal muscle. *Dev Dyn* 235, 3230-3239.

757 Seale, P., Sabourin, L.A., Grgis-Gabardo, A., Mansouri, A., Gruss, P., and Rudnicki, M.A. (2000). Pax7 is
758 required for the specification of myogenic satellite cells. *Cell* 102, 777-786.

759 Seger, C., Hargrave, M., Wang, X., Chai, R.J., Elworthy, S., and Ingham, P.W. (2011). Analysis of Pax7
760 expressing myogenic cells in zebrafish muscle development, injury, and models of disease. *Dev Dyn*
761 240, 2440-2451.

762 Sekhon, J.S. (2011). Multivariate and Propensity Score Matching Software with Automated Balance
763 Optimization: The Matching Package for R. *J Stat Soft* 42, 1-52.

764 Shi, J., Cai, M., Si, Y., Zhang, J., and Du, S. (2018). Knockout of myomaker results in defective myoblast
765 fusion, reduced muscle growth and increased adipocyte infiltration in zebrafish skeletal muscle.
766 *Human molecular genetics* 27, 3542-3554.

767 Soleimani, V.D., Punch, V.G., Kawabe, Y., Jones, A.E., Palidwor, G.A., Porter, C.J., Cross, J.W., Carvajal,
768 J.J., Kockx, C.E., van, I.W.F., et al. (2012). Transcriptional dominance of Pax7 in adult myogenesis is
769 due to high-affinity recognition of homeodomain motifs. *Dev Cell* 22, 1208-1220.

770 Trendelenburg, A.U., Meyer, A., Rohner, D., Boyle, J., Hatakeyama, S., and Glass, D.J. (2009). Myostatin
771 reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. *Am J
772 Physiol Cell Physiol* 296, C1258-1270.

773 Venuti, J.M., Morris, J.H., Vivian, J.L., Olson, E.N., and Klein, W.H. (1995). Myogenin is required for late but
774 not early aspects of myogenesis during mouse development. *J Cell Biol* 128, 563-576.

775 Voigt, S.L., Przyborski, M., Badylak, S.F., and Konieczny, S.F. (1993). Differential expression of muscle
776 regulatory factor genes in normal and denervated adult rat hindlimb muscles. *Dev Dyn* 198, 214-224.

777 Weintraub, H., Dwarki, V.J., Verma, I., Davis, R., Hollenberg, S., Snider, L., Lassar, A., and Tapscott, S.J.
778 (1991). Muscle-specific transcriptional activation by MyoD. *Genes Dev* 5, 1377-1386.

779 Westerfield, M. (2000). The Zebrafish Book - A guide for the laboratory use of zebrafish (*Danio rerio*)
780 (University of Oregon Press).

781 Yoon, M.S. (2017). mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass. *Front Physiol* 8, 788.

782 Zammit, P.S. (2017). Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in
783 skeletal muscle, satellite cells and regenerative myogenesis. *Semin Cell Dev Biol* 72, 19-32.

784 Zammit, P.S., Golding, J.P., Nagata, Y., Hudon, V., Partridge, T.A., and Beauchamp, J.R. (2004). Muscle
785 satellite cells adopt divergent fates: a mechanism for self-renewal? *J Cell Biol* 166, 347-357.

786 Zammit, P.S., Heslop, L., Hudon, V., Rosenblatt, J.D., Tajbakhsh, S., Buckingham, M.E., Beauchamp, J.R.,
787 and Partridge, T.A. (2002). Kinetics of myoblast proliferation show that resident satellite cells are
788 competent to fully regenerate skeletal muscle fibers. *Exp Cell Res* 281, 39-49.

789 Zammit, P.S., Relaix, F., Nagata, Y., Ruiz, A.P., Collins, C.A., Partridge, T.A., and Beauchamp, J.R. (2006).
790 Pax7 and myogenic progression in skeletal muscle satellite cells. *J Cell Sci* 119, 1824-1832.

791 Zeileis, A.H., T. (2002). Diagnostic Checking in Regression Relationships. *R News* 2, 7-10.

792 Zhang, L., Wang, X.H., Wang, H., Du, J., and Mitch, W.E. (2010). Satellite cell dysfunction and impaired IGF-
793 1 signaling cause CKD-induced muscle atrophy. *J Am Soc Nephrol* 21, 419-427.

794 Zhang, W., Behringer, R.R., and Olson, E.N. (1995). Inactivation of the myogenic bHLH gene MRF4 results
795 in up-regulation of myogenin and rib anomalies. *Genes Dev* 9, 1388-1399.

796 Zimmers, T.A., Davies, M.V., Koniaris, L.G., Haynes, P., Esquela, A.F., Tomkinson, K.N., McPherron, A.C.,
797 Wolfman, N.M., and Lee, S.J. (2002). Induction of cachexia in mice by systemically administered
798 myostatin. *Science* 296, 1486-1488.

799

800

801 **Figure Legends**

802

803 **Figure 1. Myogenin is required for normal myofibre size and nuclear accretion.**

804 **A.** Schematic of trunk muscle processing for analysis, colours identify sib (*myog*^{kg125/+}, blue) or *myog*^{-/-}
805 (*myog*^{kg125}, red) samples throughout the figure.

806 **B.** qPCR analysis shows downregulation of *myog*, *mymk*, *mymx* and *mrf4* expression in adult *myog*^{-/-}. Symbol
807 shapes denote paired sib and *myog*^{-/-} samples, n=4-6 fish/genotype, paired *t*-test.

808 **C.** Schematic of myofibre isolation for morphometric analysis (top) and representative images (bottom)
809 showing smaller *myog*^{-/-} myofibre (red brackets) compared to age-matched sib. Scale bar=100 μ m.

810 **D.** Measure of absolute myofibre length, n=3 fish/genotype, n=110-120 myofibres/fish, unpaired *t*-test.

811 **E.** Representative images and measure of unaltered sarcomere length on freshly-isolated myofibres, n=3
812 fish/genotype, n=10 myofibres/fish, unpaired *t*-test. Scale bar=10 μ m.

813 **F.** Representative images of isolated fixed adult myofibres show size reduction in *myog*^{-/-} (red bracket). Scale
814 bar=100 μ m.

815 **G-J.** Quantification of number of nuclei/100 μ m (G), absolute number of nuclei per myofibre (H), myofibre
816 diameter (I), and SADS (Surface Area Domain Size) (J) showing significant changes in myofibres from juvenile
817 (Juv, 1 month-old) and adult (Ad, 8 months-old) stages within (coloured *p*) or among (black *p*) genotypes. n=3
818 fish/genotype, n=30-50 adult myofibres/fish, n=15-20 juvenile myofibres/fish, one-way ANOVA.

819 **K.** Relationship of number of nuclei and \log_e (Surface Area) indicates different growth mode between sib and
820 *myog*^{-/-} (i.e. significant slope difference, black *p*), despite significant correlation \log_e (SA)/nuclei within genotype
821 (coloured *p*) (see Methods).

822 **L.** Increase in surface area (SA) from juvenile to adult stage (= Ad_SA – Juv_SA) indicates reduced growth
823 rate in *myog*^{-/-}. Data from Figure S1E, unpaired *t*-test.

824 All graphs report mean \pm SEM. Statistical significance within (coloured *p*) or between (black *p*) genotypes is
825 indicated.

826

827 **Figure 2. Lack of Myogenin alters MuSC number and localisation.**

828 Colours identify sib (blue) or *myog*^{-/-} (red) samples throughout the figure.

829 **A.** qPCR analysis showing upregulation of *pax7a*, *pax7b*, *myf5* and unaltered *myod* in adult *myog*^{-/-} mutant.
830 Symbol shapes denote paired sib and *myog*^{-/-} samples, n=6 fish/genotype, paired *t*-test.

831 **B.** Schematic of myofibre isolation for GFP^{+ve} cells analysis from *pax7a:GFP;myog*^{-/-} and sib muscles.

832 **C.** Representative images showing GFP^{+ve} cells on sib (blue arrowhead) or *myog*^{-/-} (red arrowheads) on
833 isolated myofibres. Scale bar=100 μ m.

834 **D.** Representative immunodetection of GFP (green), DP312 (magenta) and nuclei (white) on freshly-isolated
835 adult sib or *myog*^{-/-} myofibres. Scale bar=5 μ m.

836 **E,F.** Quantification of absolute number of GFP^{+ve} cells (bona fide MuSC) per myofibre and myonuclear domain
837 size. n=3 fish/genotype, n=20-30 myofibres/fish, unpaired *t*-test.

838 **G.** Pie charts showing the fraction of nuclei (left) and fraction of myofibres (right) with the indicated number of
839 nuclei in GFP^{+ve} cells/myofibre in sib (blue stroke) and *myog*^{-/-} (red stroke). Data from Figure S2G.

840 **H.** Diagram of measure of GFP^{+ve} cell distance from nearest myofibre-end (top). Each myofibre was
841 segmented in tenths, where 1/10 and 5/10 corresponded to the segments nearest to and furthest from the

842 myofibre-end, respectively. Quantification of fraction of MuSC located within each myofibre segment (bottom,
843 see Methods and Figure S2H). n=3 fish/genotype, n=30-50 MuSCs, *p*-value indicates probability of rejecting
844 null hypothesis of no difference between *myog*^{-/-} and sib in χ^2 test.

845 **I.** Representative images showing localization of the GFP^{+/ve} cell on sib (blue rectangle) or *myog*^{-/-} (red
846 rectangle) mono-MuSC myofibres (with only one GFP^{+/ve} cell). Scale bar=100 μ m (=20 μ m in 2x-zoom).

847 **J.** Quantification of fraction of MuSC located within each 10 μ m segment from mono-MuSC myofibre-end. n=3
848 fish/genotype, n=15-25 MuSCs, black *p*-value indicates probability of rejecting null hypothesis of no difference
849 between *myog*^{-/-} and sib in χ^2 test. Coloured *p*-values indicate one-way ANOVA analysis of non-random MuSC
850 distribution in 10 μ m segments within each genotype. Magenta inset reports fraction of sib and *myog*^{-/-} MuSC
851 within the 0-9 and 10-19 μ m segments, unpaired *t*-test.

852 All graphs report mean \pm SEM.

853

854 **Figure 3. *Myog*^{-/-} mutant muscle and MuSCs display enhanced mTORC1 signalling.**

855 **A.** Schematic of adult trunk muscle processing for analysis. Colours identify sib (blue) or *myog*^{-/-} (red) samples
856 throughout.

857 **B.** qPCR analysis shows upregulation of *igf1* and downregulation of *mstnb* in *myog*^{-/-} muscle. Symbol shapes
858 denote paired sib and *myog*^{-/-} samples, n=4 fish/genotype, paired *t*-test.

859 **C.** Summary of mTORC1 pathway with analysed members, positive (arrows) or negative (bars) effects are
860 indicated. Dashed lines indicate other molecules involved; red dots represent phosphorylation events.

861 **D.** Western blot (left) and quantification (right) of phosphorylated/pan AKT (pAKT, Ser473) ratio and
862 phosphorylated/pan RPS6 (pRPS6, Ser240/244). pRPS6 is increased in *myog*^{-/-} muscle, n=3 fish/genotype,
863 unpaired *t*-test. Actin immunoreactivity was used to normalise pan and phospho signals to protein loading prior
864 to calculation of sample-specific phospho/pan ratio.

865 **E.** Representative images of myofibre immunostained for GFP (green), pRPS6 (red) and nuclei (white) fixed
866 freshly immediately after isolation. Arrowheads indicate MuSCs on sib (blue) or *myog*^{-/-} (red) myofibres. Dashed
867 magenta squares highlight 4x-magnified cells. Scale bar=100 μ m (=5 μ m in 4x-zoom).

868 **F.** Quantification of pRPS6 intensity shows increase in *myog*^{-/-} MuSCs. Symbol shapes denote paired sib and
869 *myog*^{-/-} samples, n=4 fish/genotype, n=20-30 MuSCs/fish, paired *t*-test.

870 **G.** qPCR analysis showing downregulation of *tsc1a* and *tsc1b* mRNAs while unaltered *tsc2* in *myog*^{-/-} muscle.
871 Symbol shapes denote paired sib and *myog*^{-/-} samples, n=4-6 fish/genotype, paired *t*-test.

872 All graphs report mean \pm SEM.

873

874 **Figure 4. *Myog*^{-/-} mutant MPCs exhibit faster entrance into proliferation phase.**

875 **A.** Schematic of adult single myofibre culture and representative immunodetection of GFP (green) and nuclei
876 (white) on cultured MPCs. Colours identify sib (blue) or *myog*^{-/-} (red) samples throughout the figure.

877 **B.** Quantification of GFP^{+/ve} cells obtained by single myofibre culture revealed increased MPCs yield from
878 *myog*^{-/-} after 4 days in growth medium, n=3 fish/genotype, n=8 myofibres/fish. Unpaired *t*-test on average
879 MPCs/fish/genotype.

880 **C.** Percentage of GFP^{+/ve} cells on total number of cells obtained, n=3 fish/genotype, unpaired *t*-test.

881 **D.** Relative proliferation rates of sib or *myog*^{-/-} MPCs calculated as the ratio of the average number of GFP^{+/ve}
882 MPCs/ plated-myofibre obtained in culture on the average number of GFP^{+/ve} MuSCs/myofibre, unpaired *t*-test.

883 **E.** Diagram of myofibres culture and EdU pulse regime (top). Quantification of percentage of EdU^{+ve} MPCs at
884 indicated time points (bottom left), symbol shapes denote MPCs obtained from same sib and *myog*^{-/-} samples,
885 n=3. Measurement of Area Under Curve (AUC, coloured area underneath dashed blue or red lines) to compare
886 overall proliferation dynamics indicates reduction in *myog*^{-/-} MPCs (bottom right), unpaired *t*-test.
887 **F.** Representative images of sib and *myog*^{-/-} MPCs EdU incorporation at indicated time in culture, showing
888 detection of EdU (red) and nuclei (blue).
889 **G.** qPCR analysis shows expression dynamics of *pax7a*, *pax7b*, *myod* and *myf5* mRNAs in sib and *myog*^{-/-}
890 MPCs cultured for 2 (n=4) or 3 days (n=3), unpaired *t*-test.
891 **H.** qPCR analysis indicating upregulation of *mef2d* and *mylpfa* mRNAs in *myog*^{-/-} MPCs at 3 days of culture in
892 growth medium. n=3, unpaired *t*-test.
893 **I.** Representative immunodetection of MyHC (red) and nuclei (white) on sib or *myog*^{-/-} MPCs at 3 days (left).
894 Extent of differentiation ((%) Index, see Methods) is higher in *myog*^{-/-} MPCs cultured as in H (right).
895 All graphs report mean \pm SEM. Statistical significance within (coloured *p*) or between (black *p*) genotypes is
896 indicated. Scale bars=100 μ m
897
898

899 **Figure S1. *Myog*^{kg125} mutant adult and juvenile myofibres are smaller.**

900 **A.** Fraction of adult myofibres (%) with indicated length in sib (blue, *myog*^{kg125/+}) and *myog*^{−/−} (red, *myog*^{kg125}).
901 n=3 fish/genotype, n=110-120 myofibres/fish, p-value indicates probability of rejecting null hypothesis of no
902 difference between *myog*^{−/−} and sib in χ^2 test.

903 **B.** Measure of absolute 1 month-old juvenile myofibre length, n=3 fish/genotype, unpaired t-test (left) and
904 fraction of juvenile myofibres (%) with indicated length in sib (blue) and *myog*^{−/−} (red), n=3 fish/genotype, n=15-
905 20 juvenile myofibres/fish, p-value indicates probability of rejecting null hypothesis of no difference between
906 *myog*^{−/−} and sib in χ^2 test. (right).

907 **C.** Measure of absolute adult myofibre length, n=3 fish/genotype, n=100 myofibres/fish, unpaired t-test; sib
908 (blue, *myog*^{fh265/+}), hypomorphic mutant (cyan, *myog*^{fh265}).

909 **D.** Representative images showing sib and *myog*^{−/−} juvenile myofibres (left), scale bar=100 μ m. Quantification
910 of absolute number of nuclei per juvenile myofibre. n=3 fish/genotype, n=15-20 myofibres/fish, unpaired t-test.

911 **E.** Quantification of average myofibre diameter showing significant changes at juvenile (Juv) and adult (Ad)
912 stages within (coloured p) or among (black p) genotypes. n=3 fish/genotype, n=30-50 adult myofibre/fish,
913 n=15-20 juvenile myofibre/fish, one-way ANOVA.

914

915 **Figure S2. *pax7a:GFP;myog*^{kg125} muscle is smaller and displays altered MuSC cellularity and
916 unchanged *Pax3* genes expression.**

917 **A.** Schematic of trunk muscle processing for qPCR analysis (left), sib (blue), *myog*^{−/−} (red). Expression of *pax3a*
918 and *pax3b* mRNA is unchanged in *myog*^{−/−} muscle (right). Symbol shapes denote paired sib and *myog*^{−/−}
919 samples, n=6 fish/genotype, paired t-test.

920 **B.** Representative images of adult *pax7a:GFP;myog*^{−/−} (sib) and *pax7a:GFP; myog*^{−/−} (left) and show reduced
921 length, weight, body mass index and standard weight in *myog*^{−/−} compared to co-reared sibs (right), n=7,
922 unpaired t-test. Scale bar=1 cm.

923 **C.** Schematic of *pax7a:GFP* adult trunk muscle processing for MuSC analysis (left). Fraction of GFP⁺ve cells
924 (bona fide MuSC) per myofibre is significantly increased in *myog*^{−/−} muscle (right). n=3 fish/genotype, unpaired
925 t-test.

926 **D.** Quantification of absolute number of (non-MuSC) myonuclei per adult myofibre. n=3 fish/genotype, n=20-
927 30 myofibres/fish, unpaired t-test.

928 **E,F.** Quantification of absolute myofibre volume and myonuclear SADS (Surface Area Domain Size). n=3
929 fish/genotype, n=20-30 myofibres/fish, unpaired t-test.

930 **G.** Fraction of myofibres (%) with indicated number of GFP⁺ve cells, n=3 fish/genotype, n=20-30 myofibres/fish,
931 p-value indicates probability of rejecting null hypothesis of no difference between *myog*^{−/−} and sib in χ^2 test.

932 **H.** Schematic of GFP⁺ve cell distance to nearest myofibre-end measurement (left). Note that while average
933 half-length (in magenta) of sib myofibre (blue diagram) is 500 μ m, *myog*^{−/−} myofibre average half-length is
934 250 μ m (red diagram). To compare absolute distance to myofibre-end, each myofibre was segmented into
935 50 μ m segments and the fraction of GFP⁺ve cells (%) within each distance segment from nearest myofibre-end
936 plotted, n=3 fish/genotype, n=20-30 MuSCs/fish, p-value indicates probability of rejecting null hypothesis of no
937 difference between *myog*^{−/−} and sib in χ^2 test.

938 All graphs report mean \pm SEM.

939

940 **Figure S3. Characteristics of cultured MPCs and expression levels of *igfr1a* and *igfr1b*.**

941 **A.** Schematic of adult trunk muscle processing for qPCR analysis (left). Summary of mTORC1 pathway with
942 analysed members, positive (arrows) or negative (bars) effects are indicated. Dashed lines indicate other
943 molecules involved, plain arrow indicate direct effect, red dots represent phosphorylation (middle). *Igfr1a* and
944 *igfr1b* are unchanged in *myog*^{-/-} muscle compared to sib (right). Symbol shapes denote paired sib and *myog*^{-/-}
945 samples, n=5 fish/genotype, paired *t*-test.

946 **B.** Schematic of single-myofibre culture and analysis of derived MPCs (left) after 4 days from plating in growth
947 medium. Total number of cells (= GFP^{+ve} + GFP^{-ve}) is increased in *myog*^{-/-} (middle). n=3 fish/genotype, n=8
948 myofibre/fish. Unpaired *t*-test on average cells/fish/genotype. Representative immunostaining of Desmin (red)
949 and nuclei (white) confirming myogenic identity of both sib and *myog*^{-/-} cells (right) from single-plated myofibres.

950 **C.** Schematic of 90-100 myofibres culture and analysis of derived MPCs (left). Representative immunostaining
951 of Desmin (red), GFP (green) and nuclei (white) confirming myogenic identity of both sib and *myog*^{-/-} cells after
952 2 days of culture (middle). *Myog*^{-/-} myofibres yielded higher number of Desmin⁺ MPCs per field of view (FOV).
953 Symbol shapes denote paired sib and *myog*^{-/-} samples, n=3 fish/genotype, paired *t*-test (right).

954 **D.** 90-100 myofibres culture from both genotypes yielded over 90% of Desmin⁺ cells, confirming high purity of
955 the myogenic population, n=3 fish/genotype, unpaired *t*-test.

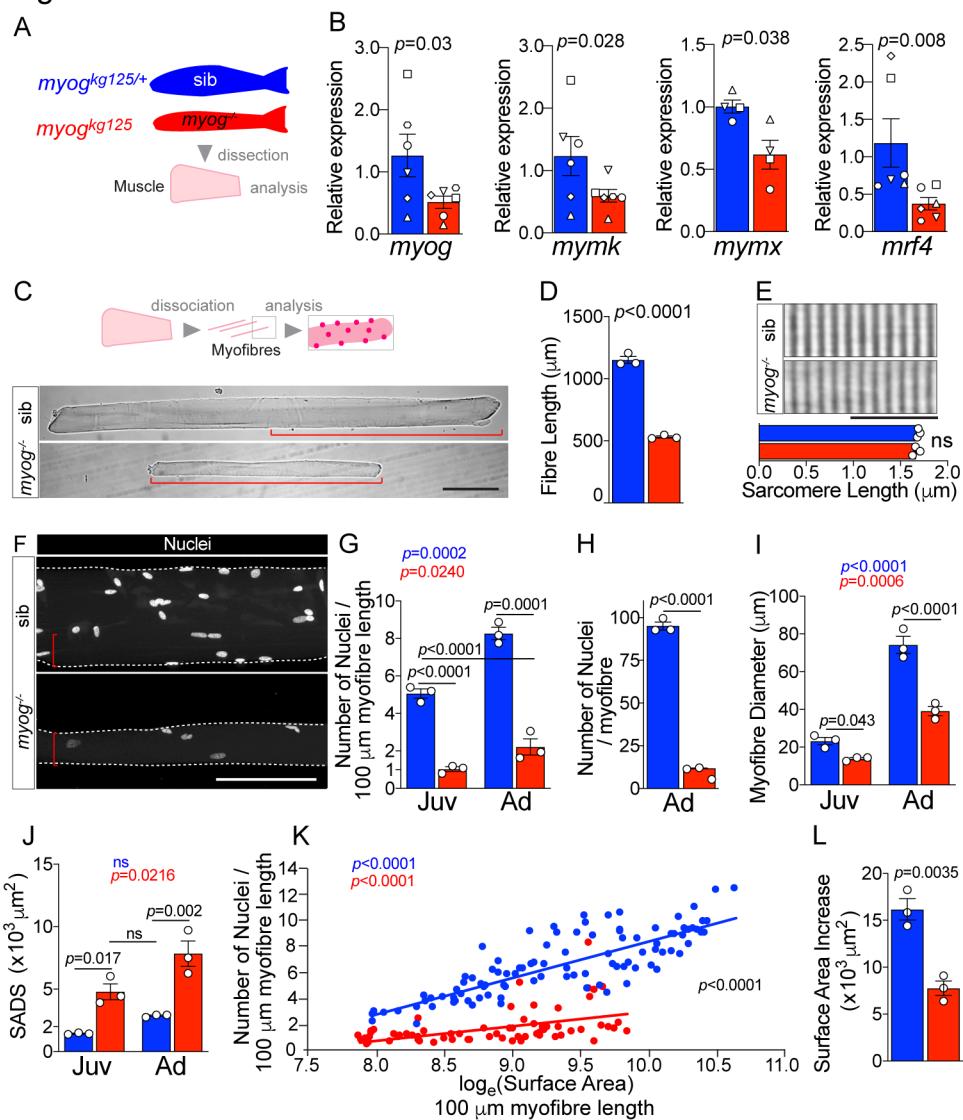

956 All graphs report mean ± SEM. Scale bars=100 µm.

Table S1

Ganassi et al.

qPCR primers		
gene	Forward 5'-3'	Reverse 5'-3'
<i>actinb2</i>	ATCCTTCTGGGTATGGAAT	GACAATACAGTGTGGCATA
<i>sep15</i>	CTCAAGTCCAAGCTTTGTC	AGCCTCTCACATACTTGATT
<i>b2m</i>	TTGGCTCTCTCGAATAAAC	CTTCGGAGTGGAGACTTTC
<i>myod</i>	AACATTACAGTGGAGACTCTG	GTCATAGCTGTTCCGCTTC
<i>myf5</i>	ATGGCCTCAGATGAATCAA	CATTGTGCTAGCATTGTTG
<i>mrf4</i>	CAGGAGAACCCAGATCATT	GGACTCTGAAGACTCCAAC
<i>myog</i>	TCAGAAACACCCACAAACGCTC	GCAGGCCAGGGAGACACT
<i>pax7a</i>	CAAGAAAGATGACGATGACG	GTGCGATTACCTTATCCC
<i>pax7b</i>	CGGGATACCAAGTATAGTCAG	CATTCTTGCCAGGTAATCC
<i>pax3a</i>	TTCCTTCAGTGAGTCCATC	CGTTTCCACCAAATTACAG
<i>pax3b</i>	CACTCACAATAACAAACGCTA	ATGGAGTTATCAGTCCCATC
<i>myomaker</i>	GGACAACATTATTACAGGGA	TCTGTGATTTGACAAGCAG
<i>myomixer</i>	TCTGGTTGTCCGACTCTCG	TTAAGAAGGCACAGGACGCA
<i>mef2d</i>	TCAAACAAGCTTCCAGTA	GTGCTCTTCTTGTCAGAG
<i>mylpfa</i>	TCCCTTCTTGCTTCTACC	GAAAACAATCCAATGTCCCC
<i>igf1</i>	GGCTTTATTCAGCAAACC	GTTGTGACCTTCTTGAAC
<i>igfr1a</i>	GATGTCTCCAGAGTCTTG	CATAAAACCACACCAAACGA
<i>igfr1b</i>	GTGTACATTGCACTAACCC	TGAAGAATTAGCGTATGCAC
<i>myostatinb</i>	CAAGACACTGTGCAATAGAA	CATAGTCATATGAAGCGGTG
<i>tsc1a</i>	CATTAATGGCAGTCAGGAAG	GAAATGAATGAGTAAGGGCG
<i>tsc1b</i>	AAGAACATTTCCACTCGAC	AAGACACAAGGTCCAATCAT
<i>tsc2</i>	AAACTAGAGTCTCAGTCCAG	GCATGACCACCTGATATAGA

Figure 1

Figure 2

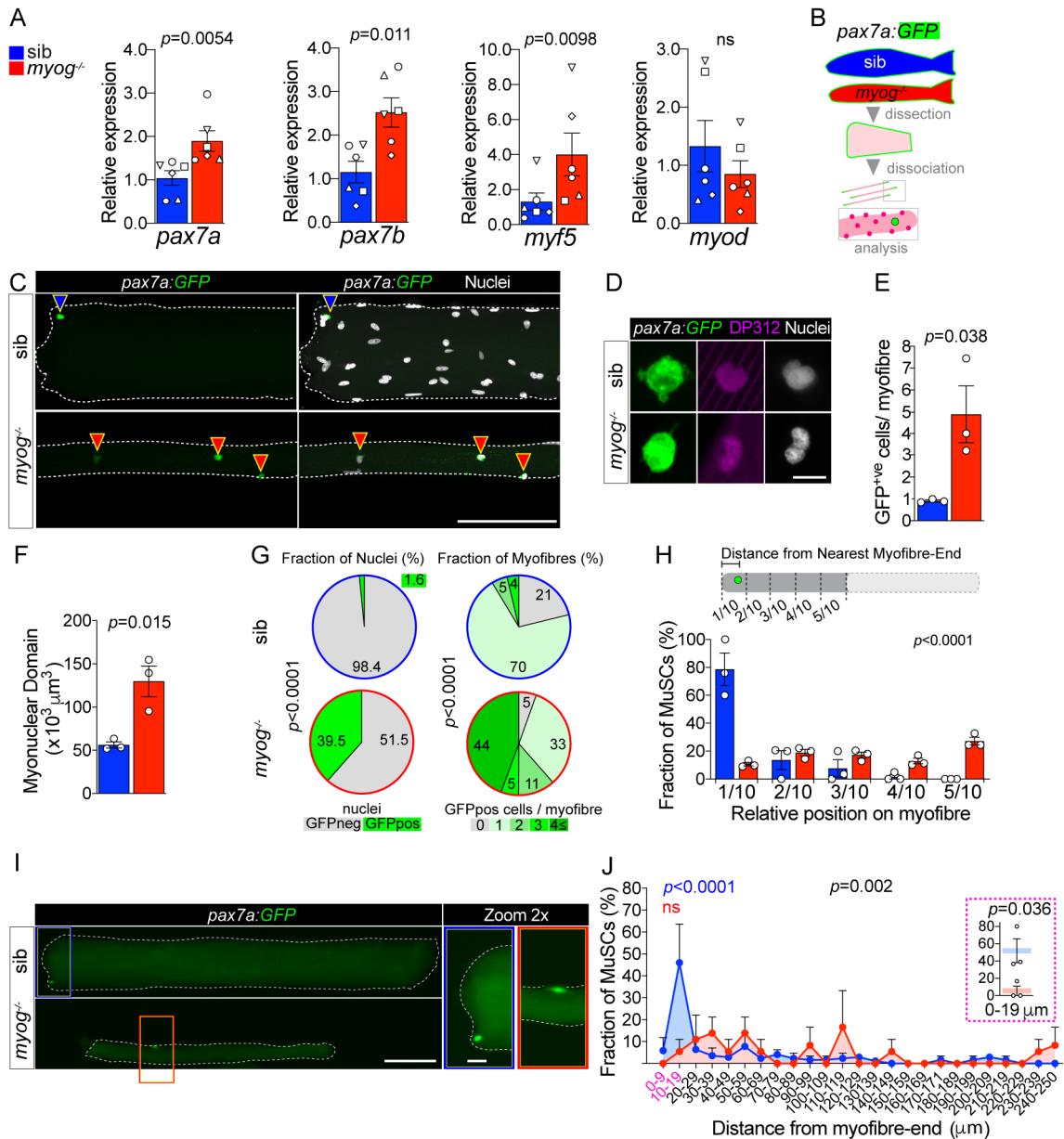


Figure 3

Ganassi et al.

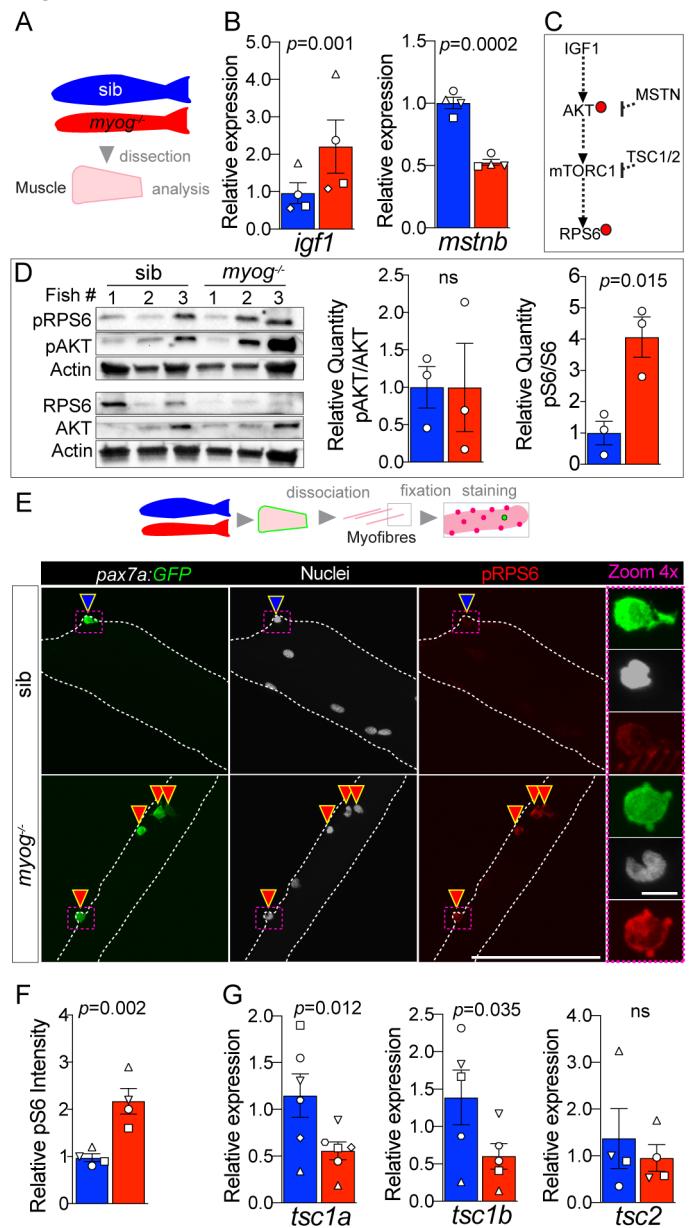


Figure 4

Ganassi et al.

Figure S1

Ganassi et al.

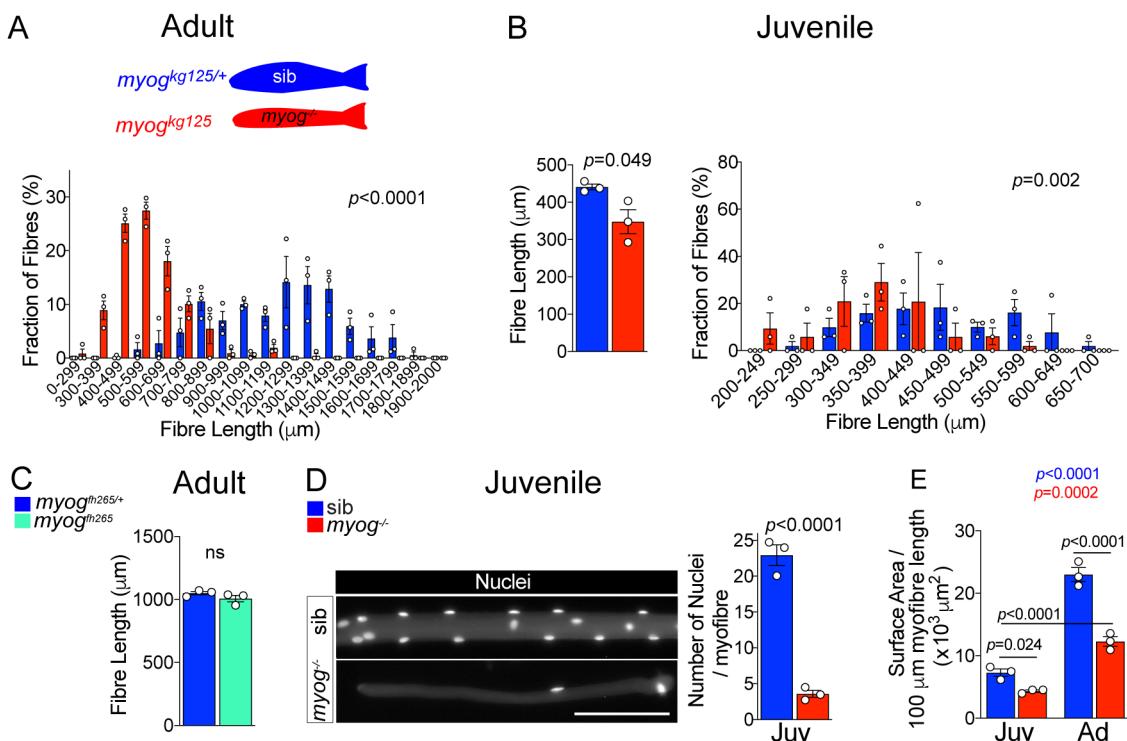
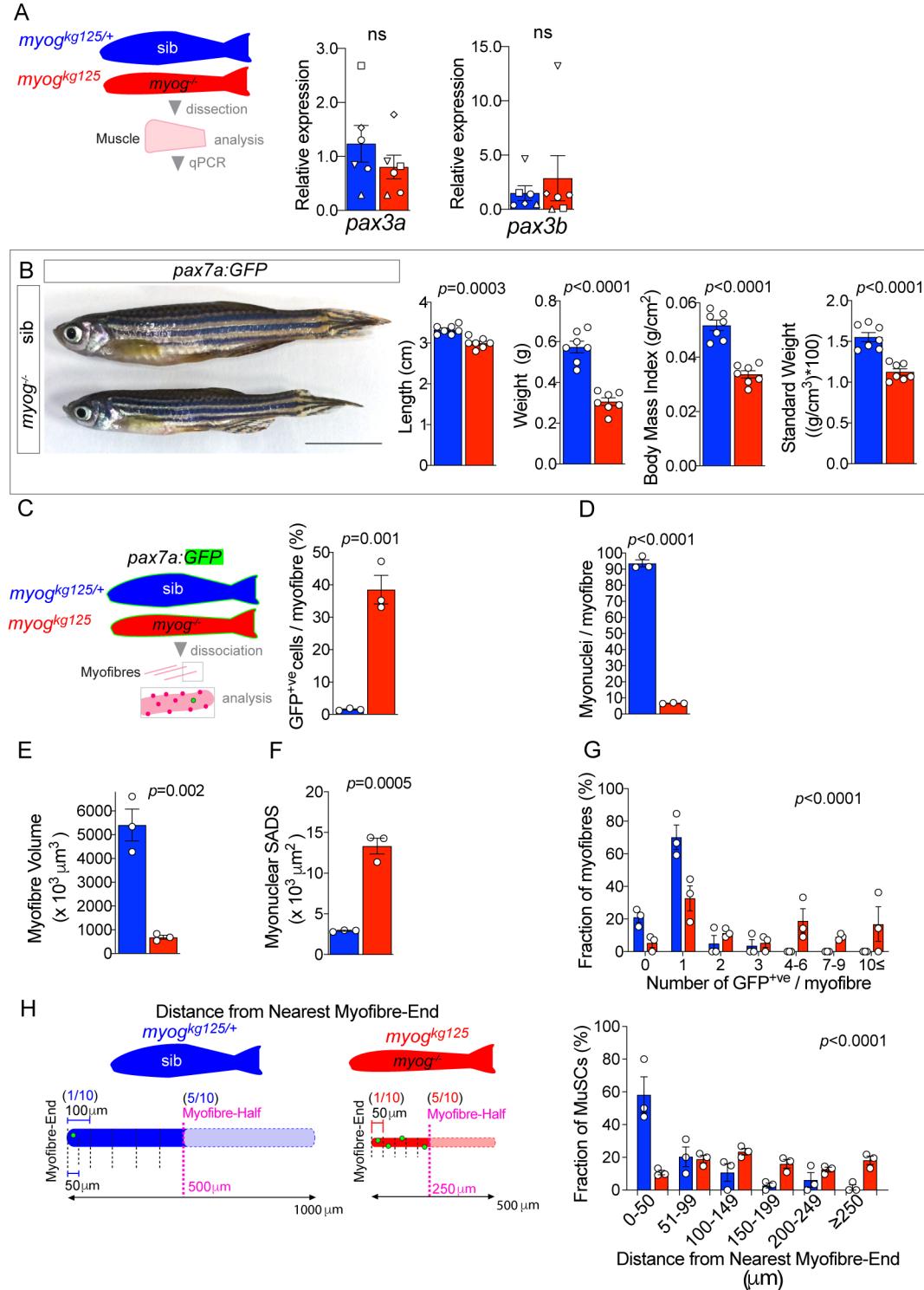
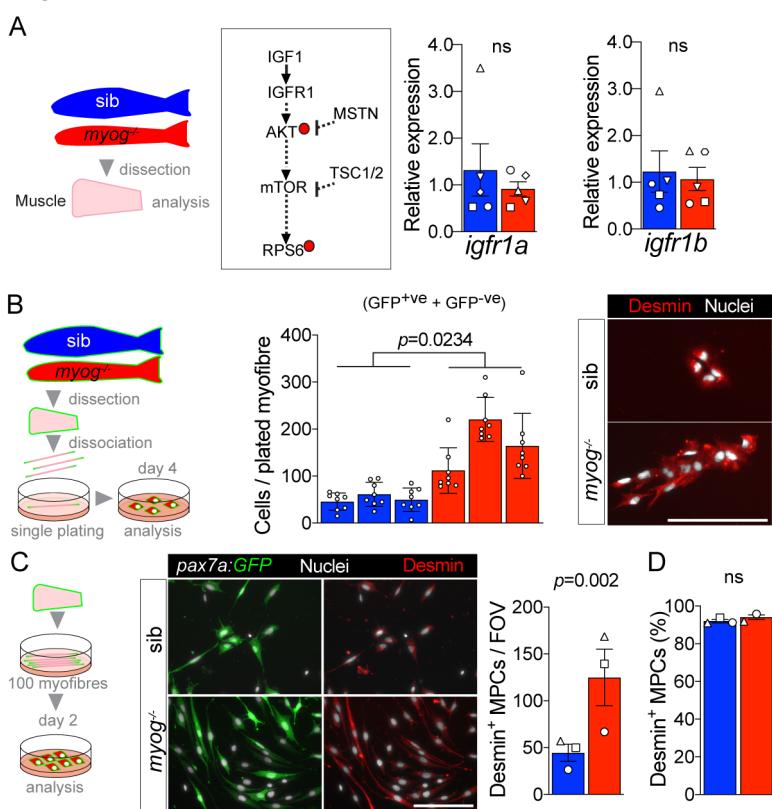




Figure S2

Ganassi et al.

Figure S3

