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The tumor microenvironment (TME) includes transformed cancer and infiltrating immune
cells'-2. Cancer cells can consume large quantities of glucose through Warburg metabolism?*
that can be visualized with positron emission tomography (PET). While infiltrating immune
cells also rely on glucose, disruptions to metabolism can contribute to tumor immunological
evasion®”’. How immune cell metabolism is programmed or restrained by competition with
cancer cells for nutrients, remains uncertain. Here we used PET tracers to measure the
accessibility of glucose and glutamine to cell subsets in the TME. Surprisingly, myeloid cells
including macrophages were the greatest consumers of intra-tumoral glucose, followed by T
cells and cancer cells. Cancer cells, in contrast, had the highest glutamine uptake. This
distinct nutrient partitioning was programmed through selective mTORCI1 signaling and
glucose or glutamine-related gene expression. Inhibition of glutamine uptake enhanced
glucose uptake across tumor resident cell types and shifted macrophage phenotype,
demonstrating glucose is not limiting in the TME. Thus, cancer cells are not the only cells in
tumors which exhibit high glucose uptake in vivo and instead preferentially utilize glutamine
over other cell types. We observe that intrinsic cellular programs can play a major role in
the use of some nutrients. Together, these data argue cell selective partitioning of glucose
and glutamine can be exploited to develop therapies and imaging strategies to alter the

metabolic programs of specific cell populations in the TME.
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The founding observation in cancer metabolism was that sections of tumors produced significant
lactate in the presence of oxygen*. These results gave rise to the theory that glycolysis in the
presence of oxygen, also known as aerobic glycolysis or the Warburg effect, supports cancer cell
growth and proliferation. Subsequently, the Warburg effect has been observed in other rapidly
proliferating cells, including activated immune cells’, in which biosynthetic demands can be met
by shunting glucose carbons into pathways to generate amino acids, nucleotides, and lipids>.
Recent data from in vivo carbon labeling studies have confirmed that glucose supports anabolic
metabolism in transformed cells!? and in T cells'!. In addition, glutamine metabolism can support
aerobic glycolysis as an anaplerotic or distinct fuel source yet can also restrain glucose-dependent
inflammatory differentiation and function of both macrophages and T cells!>!°. Glucose uptake in
tumor cells is illustrated as a hallmark of malignancy by the prominent role of 8F-
fluorodeoxyglucose positron emission tomography (FDG-PET) imaging in detecting cancers and
monitoring therapeutic responses. Based on these metabolic programs, nutrient competition and
depletion of glucose in the TME by cancer cells has been proposed as a metabolic mechanism of
immunosuppression®®. Recent publications, however, have measured high micromolar to
millimolar glucose concentration in the TME!¢-!8, Further, the metabolic phenotypes of T cells
can persist even after removal from the TME!8. The extent to which immune cell metabolism is
programmed or dependent on nutrient competition between metabolically active cancer cells and
immune cells remains uncertain. Here we analyzed the accessibility of glucose and glutamine to
specific cell subsets in the TME and show that metabolites partition into distinct cellular
compartments with programmed metabolisms that should be considered when developing anti-

cancer therapies and PET imaging probes for cancer diagnosis and monitoring.
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Heterogeneous glucose uptake in the TME

Based on observations that both cancer and inflammatory conditions increase glucose uptake, we
hypothesized that immune cells could contribute significantly to glucose consumption in the TME.
To test this, we developed a method to measure in vivo nutrient availability and uptake across
cancer and immune cell populations isolated from the heterogenous murine tumors. Steady state
nutrient abundance was first measured in the TME in tissue interstitial fluid (IF) from freshly
resected human clear cell renal cell carcinoma (ccRCC) specimens using mass spectrometry!'¢ (Fig
1a). Glucose, glutamine, and lactate were all detectable in the TME; their concentrations were
similar to, if not higher than, matched normal kidney tissue; and glucose levels were in a range
similar to that found in plasma'®. These data suggest that concentrations of these nutrients may not
necessarily be limiting for different tumor cell populations. To quantify how much glucose is
accessible by distinct cell populations in the TME, subcutaneous tumors were grown to a point
clearly visualized by FDG-PET imaging (Fig 1b), and per cell in vivo FDG uptake was measured
in magnetic bead-fractionated tumor cell subsets (Fig 1c). Using CD45 positive selection
microbeads, we fractionated total tumor cells into highly enriched CD45 cancer and stromal cell
and CD45" immune cell populations (Fig 1d, Extended Data Fig 1a-c). Unfractionated tumor
cells demonstrated higher FDG avidity than control tissue splenocytes consistent with canonical
Warburg metabolism in tumors compared to normal tissue. Strikingly, tumor CD45" immune cells
had significantly higher per cell FDG uptake than CD45 cancer cells (Fig 1e). Tumor-infiltrating
immune cells also had higher FDG avidity in CT26 (Fig 1f) and Renca (Fig 1g) subcutaneous
tumors. Renca tumors grown orthotopically in the kidney demonstrated higher per cell FDG
avidity in immune cells, suggesting tissue site independence (Fig 1h). Finally, we measured FDG

uptake in the TME of two spontaneous carcinogenesis models. Infiltrating immune cells had higher
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FDG uptake compared to EPCAM™ cancer cells in both PyMT genetically engineered mouse
model (GEMM) breast cancer tumors and azoxymethane/dextran sodium sulfate-induced
(AOM/DSS) inflammatory colon cancer tumors. (Fig 1i, Extended Data Fig 1d-f). Together,
these results show that glucose is available in the TME and preferentially partitions into infiltrating

immune cells more so than cancer cells across multiple models.

We validated that this approach measures in vivo per cell glucose uptake using multiple
approaches. The FDG uptake phenotypes were independent of sample viability and cell yield
across biological replicates and across tumor models (Extended Data Fig 1b-c). The dynamic
range of 8 F-FDG uptake was found to have a multiple-log scale of linearity (Extended Data Fig
2a). Immune cells obtained from MC38 tumors demonstrated low intravenous labeling of CDA45,
supporting that fractionated tumor immune cells were tumor-resident (Extended Data Fig 2b). To
confirm that measured FDG uptake occurred in vivo and was not an artifact of tumor processing,
we incubated MC38 FDG-naive tumor cell suspensions with FDG-treated tumor digest supernatant
and found that ex vivo FDG uptake accounted for only a small fraction of the final FDG signal
(Extended Data Fig 2c¢). Finally, to test if CD45 positive selection artificially increased ex vivo
FDG uptake by immune cells, we generated Thyl.1" MC38 cells and isolated cancer cells using
Thyl.1 positive selection microbeads. Consistent with data generated with CD45 microbeads,
Thyl.1- immune cells demonstrated higher FDG avidity than Thy1.1" cancer cells, indicating that
magnetic purification via CD45 microbeads does not artifactually increase FDG uptake by immune

cells (Extended Data Fig 2d-e).

TME myeloid cells uptake more glucose than other cell types evaluated
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We next sought to identify which immune cells in the TME have the greatest access and ability to
uptake glucose. Tumor infiltrating immune cells are comprised of multiple hematopoietic
lineages!2. CD3" T cells are a primary focus of modern cancer immunotherapy, and T cell
activation and infiltration are associated with elevated glycolysis’?°22, CD11b" myeloid cells can
play anti- and pro-tumor roles in the TME and are also being actively investigated as a target for
immunotherapy?. Flow cytometry characterization of immune infiltrates in various TMEs
demonstrated extensive heterogeneity in immune cell composition (Extended Data Fig 3a-f).
Given the rich T cell and myeloid infiltrate in MC38 tumors (Fig 2a) and high cell viability and
yield, we first sought to compare the FDG uptake between infiltrating tumor T cells, myeloid cells,
and cancer cells in MC38. T cells were isolated using CD4/8 positive selection beads. Tumor-
associated T cells had greater in vivo FDG avidity than resting splenic T cells and had similar
ability to uptake glucose as cancer cells (Fig 2b-c, Extended Data Fig 4a), suggesting that T cells
are not deprived or out-competed for glucose in the TME. T cell glucose uptake was significantly

lower, however, than that of the remaining CD45" non-T cells.

To characterize the non-T cell CD45" cells we performed a reciprocal experiment isolating
myeloid cells using CD11b positive selection beads (Fig 2d-e, Extended Data Fig 4b). CD11b"
myeloid cells did indeed have higher FDG uptake than cancer cells and other immune cells in
MC38 tumors. CT26 tumors showed a similar phenotype (Extended Data Fig 4c-f). Flow
cytometry analysis of CD45" CD11b" cells from MC38 tumors demonstrated a high proportion of
Ly6G-, Ly6C', F4/80M, CD68", CD206" cells consistent with tumor associated macrophages
(TAM) (Fig 2f). Isolated F4/80" cells had histiocytic morphology (Fig 2g), consistent with TAM

classification and TAM isolated using F4/80 positive selection microbeads demonstrated the
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highest FDG uptake of any MC38 tumor cell population (Fig 2h-i, Extended Data Fig 4g). These
studies support a model where myeloid cells including TAM consume the most glucose in the
TME. Consistent with our findings, myeloid infiltration is known to drive FDG avidity in non-
tumor bearing lymph nodes in human and mouse gynecological malignancies?*. Our data extend

these findings directly to the solid TME.

TME myeloid cells are highly metabolically active

To further understand the metabolic phenotypes of distinct tumor cell populations and establish if
these were cell-intrinsic and persistent or dependent on the TME, we conducted extracellular flux
assays on microbead-fractionated MC38 tumor cells (Fig 3a-d). Isolated F4/80" TAM maintained
higher basal cellular extracellular acidification rate (ECAR) and basal and maximal mitochondrial
oxygen consumption rate (OCR) than tumor infiltrating T cells and cancer cells, consistent with
higher TAM glycolytic and oxidative metabolism. Next, we transcriptionally profiled MC38 tumor
flow-sorted cell populations including CD45 cancer cells, CD11b" F4/80" TAM, CD11b" F4/80'"
myeloid cells, CD3* CD8a" T cells, and CD3* CD8a (CD4") T cells (Extended Data Fig 5a-b).
Unsupervised clustering of differentially expressed metabolism-related transcripts grouped
samples by cell identity (Fig 3e). Glucose transporters demonstrated population-specific
expression, with cancer cells and myeloid cells expressing high levels of Sic2al (GLUT1) and T
cells expressing high levels of Slc2a3 (GLUT3) (Fig 3f, Extended Data Figs Sc-d). Hexokinase
isoforms Hk2 and Hk3, which catalyze glucose phosphorylation in cells as the rate-limiting initial
phosphorylation of glucose in glycolysis, are specifically expressed in myeloid cells in contrast to
broadly expressed Hk!I (Fig 3g). Anabolic metabolism is supported by mTORCI1 signaling. Flow

cytometry analysis demonstrated high levels of phosphorylated ribosomal protein S6 downstream
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of mTORCI1 in myeloid and cancer cells of MC38, CT26, and human ccRCC tumors (Fig 3h-k,
Extended Data Fig Se). In combination, these data show that myeloid cells including TAM are
programmed to exhibit a metabolic phenotype of high glucose uptake and are a metabolically

active cell population in the TME.

Glutamine partitions into cancer cells

In addition to glycolysis, some cells utilize glutamine to maintain mitochondrial metabolites for
ATP and macromolecule synthesis?>-%, Recent work has shown that inhibiting TME glutamine
metabolism can impair cancer cell growth while increasing anti-tumor immunity!%!%15, In contrast
to our finding that glucose uptake is highest in tumor-infiltrating immune cells, we hypothesized
that glutamine uptake might more preferentially support cancer cell metabolism. Studies have
uncovered that malignant cell MYCN and ATF4 drive glutamine utilization across many tumor
types?’?. In MC38 tumors, Mycn and Atf4 were more highly expressed in cancer cells than
immune cells (Fig 4a). Glutamine metabolism enzymes Aspa’'*2, Asns®?, and Gls23* were also
specifically expressed in the MC38 cancer cells (Extended Data Fig 6a). To test if glutamine was
specifically taken up by cancer cells, we measured '®F-glutamine uptake in MC38, CT26, and
Renca tumors. In contrast to glucose, glutamine preferentially accumulated in cancer cells as

compared with immune cells across all three models (Fig 4b-c, Extended Data Fig 6b-e).

Given our finding that glutamine uptake is highest in cancer cells, we tested a glutamine transport
inhibitor, V9302%-¢ to reprogram cell metabolism in the heterogenous TME. Glutamine
transporters are expressed throughout all cell types in the TME (Extended Data Fig 7a). MC38

tumors from mice treated with V9302 trended toward a smaller size compared to vehicle-treated
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controls (Extended Data Fig 7b). Acute V9302 treatment decreased glutamine uptake by all cells
in the TME (Fig. 4d). After 5 days of V9302 treatment, we observed increased glucose uptake in
cancer cells, with a trend towards increased glucose uptake in splenocytes, CD11b" myeloid and
other CD45" cells in the TME (Fig 4e, Extended Data Fig 7¢), demonstrating that access to
glutamine restrains glucose metabolism in vivo and that cells were able to access and increase
glucose uptake beyond basal levels. Glutamine inhibition also increased tumor TAM abundance
(Extended Data Figure 7d) and shifted macrophages to a more M2-like immunophenotype (Fig

4f) in line with the role of glutamine synthetase in these tumor suppressive cells®”.

Selective Nutrient Partitioning

Rather than cells depleting and consuming a common nutrient pool, specific cell types in the TME
appeared to display programs for preferential nutrient utilization. Comparing the ratios of CD45-
to CD45+ per-cell '8F-nutrient uptake, '®F-glutamine uptake was significantly higher than FDG
uptake for CD45- cancer cells versus immune cells in MC38, CT26, and Renca tumors (Fig 4g),
suggests that '3F-glutamine is a more cancer-cell specific tracer than FDG in at least some tumors.
Taken together, this work suggests that glutamine preferentially accumulates in cancer cells in the
TME in contrast to glucose which is taken up by immune cells (Fig. 4h). These results also support
our human tumor interstitial fluid from ¢ccRCC findings that argue glucose is not limiting in the

TME of many tumors!6-1%,

Our findings stand in contrast to the model that cancer cells are the only TME resident cells with
high glucose uptake and thus contributing to immune cell dysfunction via nutrient competition.

This work reveals that diverse cell populations can preferentially uptake different metabolites from
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a common pool in the TME in line with recent publications®®*. Previously, direct comparisons of
in vivo glucose utilization between cancer cells and immune cells have not been reliably quantified
94042 Our work demonstrates tumor myeloid cells consume significantly more glucose than tumor
infiltrating T cells or cancer cells. This may have implications for a new generation of metabolism-
targeting agents as well as myeloid targeting therapies, with the potential for therapeutics to either
enhance or impair tumor-related inflammation. These data also support the notion that targeting
glutamine metabolism presents a specific strategy to hamper cancer cell growth. Intriguingly, this
approach also increases glucose consumption by all TME resident cell types and may alter anti-
tumor immunity!%!>15, Given the current interest in glutamine-targeting therapeutics, our findings

contribute a model of nutrient partitioning that supports their further development.

Previous studies have suggested competition for glucose in the TME between cancer cells and T
cells contributes to immunosuppression®®#3, While this may be the case in some cancers, our data
show that for some tumors not only is glucose not limiting, but T cells and cancer cells have similar
per cell glucose uptake and have the capacity to increase this level when glutamine uptake is
restricted. Other groups have presented data that tumor hypoxia and oxidative metabolism may
drive T cell dysfunction in the TME*. We find, however, that myeloid cells consume more glucose
than other TME cells on a per cell basis. There is growing evidence that glycolytic cancer cell
transcriptional programs are associated with immunosuppressive TMEs and directly recruit

4547 while TAM glycolysis can drive hypoxia via endothelial

suppressive myeloid cells
dysfunction®®. Our work further supports a model where glycolytic tumors are immunoinhibitory

not directly due to nutrient deficiencies but rather because of large scale microenvironmental

changes, such as the presence of glycolytic myeloid cells and accumulation of waste products.
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FDG imaging intensity is not relatable to in vivo 3C-glucose labeling*’, and FDG PET in not
suitable for imaging responses to immune checkpoint blockade using traditional assessments.
Additionally, there are some tumor types like ccRCC that are not typically FDG-avid while
harboring glycolysis-inducing mutations. In support of these clinical perplexities, our data question
the notion that FDG tumor avidity is predominantly caused by cancer cell metabolism and growth.
The FDG imaging features of a tumor may also be dependent on the type and activation state of a
patient’s tumor immune infiltrate. Supporting this, recent work has shown increased FDG avidity
in lung cancer is associated with more CD68* TAM, which was interpreted as an increase in cancer
cell glycolysis due to macrophage secretion of TNFo*2. Additionally, qualitative assessments of
FDG via tissue autoradiography noted that this tracer accumulated in the histiocytic periphery of
mouse tumors.’® Our data support the model where TAM directly consume FDG and thus account
for the measured tumor glucose uptake due to their own intrinsic glycolytic activity. This model
also lends an explanation for regional variability in FDG avidity observed on PET imaging as well
as the PET avid nature of Hodgkins lymphoma, a disease entity with far more inflammatory cells
than transformed tumor cells. Understanding the biology of individual cells in the complex TME
has contributed substantially to shaping models of tumorigenesis. Our studies extend these
approaches to evaluate in vivo metabolic features of tumor cell types and show that individual cell
populations have distinct nutrient uptake programs that may play an important role in therapy

response or resistance.
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Methods

Patient samples

Fresh histology-confirmed clear cell renal cell carcinoma (ccRCC) tumors and matched normal
tissue were surgically removed from 14 patients. Tumor and matched normal kidney were
processed by mechanical dissociation (human tumor setting two on Miltenyi gentleMACS™) in
HBSS with calcium chloride and magnesium chloride. Mechanical dissociation was followed by
enzymatic digestion in 435U/mL deoxyribonuclease I (Sigma-Aldrich, D5025) and 218U/mL
collagenase (Sigma-Aldrich, C2674) in RPMI supplemented with 10% FBS, 1% glutamine, 1%
pen/strep, 1% Hepes, and 0.1% 2-Mercaptoethanol for 30-45min, depending on tissue toughness,
at room temperature with 17 rpm agitation. Tissue digests were washed with HBSS without
calcium chloride, magnesium chloride, or magnesium sulfate and then incubated in SmM EDTA
for 20min at room temperature with 17rpm agitation. Tumor and matched normal kidney digests
were washed with HBSS with calcium chloride and magnesium chloride. Then they were passed
through a 70um filter and ACK-lysed. Patient peripheral blood mononuclear cells (PBMC) were
isolated by density gradient centrifugation using Ficoll-Paque (GE Healthcare, 17144002) in
SepMate-50 tubes (Stemcell Technologies, 85450) and subsequently ACK-lysed. Single cell
suspensions were frozen in 90% FBS 10% DMSO. Batched tumor and matched PBMC were
thawed, rested for 10min at 37°C, counted, stained, and analyzed for flow cytometry. All studies
were conducted in accordance with the Declaration of Helsinki principles under a protocol
approved by the Vanderbilt University Medical Center (VUMC) Institutional Review Board

(protocol #151549). Informed consent was received from all patients prior to inclusion in the study.
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Interstitial Fluid Collection & LC/MS metabolite analysis

Tissue interstitial fluid (TIF) was collected from freshly resected ccRCC tumor and matched
normal kidney tissue. Specimens were centrifuged against a 0.22um nylon filter (Corning
CLS8169) at 4°C for 5 minutes at 300g. Flow-through TIF was flash-frozen and stored at -80°C
prior to batch analysis. Liquid chromatography/mass spectrometry (LC/MS) quantitation of

metabolites was performed as described previously'.

Mice

Wild-type C57BL/6J (000664) and BALB/cJ (000651) mice were obtained from the Jackson
Laboratory. All mouse procedures were performed under Institutional Animal Care and Use
Committee (IACUC)-approved protocols from Vanderbilt University Medical Center and
conformed to all relevant regulatory standards. Mice were housed in ventilated cages with at most
5 animals per cage and provided ad libitum food and water. For injectable tumor models, both
male and female mice were used. V9302 treatments were administered intraperitoneally twice

daily for five days at 25mg/kg for FDG uptake or once at 75mg/kg prior to '®F-Gln injection.

Cell lines

MC38, Renca and CT26 cell lines were grown to 70-90% confluency in DMEM supplemented
with 10% FBS or RPMI 1640 supplemented with 10% FBS, 4mM glutamine, 25mM HEPES,
essential amino acids, and sodium pyruvate for Renca. 1x10° cells were trypsinized, washed twice
in PBS, and injected subcutaneously in 100-200uL of PBS on mouse flanks. Subcutaneous tumors
grew for 14 days prior to analysis. cell lines were regularly tested for mycoplasma. The MC38-

EL-Thyl.1 cells were generated using a transposon based engineering approach with plasmids that
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were described previously?. MC38 cells were electroporated using the NEON transfection system
(ThermoFisher) according to manufacturer’s recommendations for adherent cell lines. 5 million
MC38 cells were suspended in electroporation buffer containing Sug of the plasmid pCMV-M7PB
and 15pg of the plasmid pT-EL-thy1.1, which is a bicistronic transposon vector driving expression
of an enhanced firefly luciferase as well as Thy1.1 antigen. Cells were magnetically sorted based

on expression of Thyl.1 using magnetic beads (Miltenyi 130-121-273).

Orthotopic renal implantation

For intrarenal Renca injections, survival mouse surgery was performed according to a method
previously described?. Briefly, mice were anesthetized by isoflurane inhalation at 2-3% and placed
on a warming recirculating water pad set at 37°C to maintain body temperature. Using sterile
surgical techniques, a 1-cm incision was made in the skin running parallel to the spine, slightly
below the ribcage on the right flank. Next, a 1-cm incision was made in the muscle layer in the
same location. Using gentle pressure on the mouse abdomen, the right kidney was exteriorized.
5x10* cells resuspended in 100uL of PBS were injected using a 29-gauge needle inserted through
the renal capsule into the cortical space. The injection site was swabbed using sterile gauze and
the kidney was returned to the body cavity. The abdominal wall was closed using 6-0
monofilament absorbable sutures (AD Surgical; S-D618R13), and the skin was closed using
wound clips. Analgesic was provided pre-surgery and 24 hours post-surgery in the form of

ketoprofen injections at 5 mg/kg. Wound clips were removed 7 days following the surgery.
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GEMM Tumor Models

PyMT GEMM mice were bred by crossing male transgenic mice expressing the polyoma virus
middle T antigen (PyMT) oncoprotein under the MMTV-LTR (Jackson Laboratory 022974) with
wildtype females on a similar B6/FVB mixed background. The GEMM mice were from a colony
in which all mice expressed two VAl alleles in which exon 1 is flanked by /oxP sites (Jackson
Laboratory 012933), but did not express a Cre transgene and were thus effectively wildtype. Once
weaned, female mice were palpated twice a week and tumors were measured in three dimensions
with digital calipers. Mice were collected when any tumor had grown to a size of 1 cm in diameter
in any dimension, around 5 months of age. Virgin female littermate controls were used in these

studies.

The AOM/DSS inflammatory colorectal cancer model was used as previously described*>.
In brief, bedding was mixed to normalize microbiome two weeks prior to experimental initiation.
Mice were intraperitoneally injected with 12.5 mg/kg AOM and exposed to three 4-day cycles of
3% to 4% DSS (TdB Labs 9011-18-1). Each DSS cycle was followed by a 16-day recovery period.
Prior to sacrifice, colonoscopy was performed to confirm tumor development. Mice were weighed
every other day throughout the experiment. To allow for larger tumors, mice were euthanized 55
days after completing the last cycle of DSS. Colons were dissected, and tumor tissue was isolated

from the mucosa.

PET-CT Imaging
For individual studies, a group of MC38 tumor-bearing mice were food-restricted overnight. Then

the mice received a retro-orbital injection of ~ 37 MBg/0.1 mL of '8F-FDG and were returned to
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their cages. Forty minutes later, the mice were anesthetized under 2% isofluorane and imaged an
Inveon microPET (Siemens Preclinical, Knoxville TN) for 20 min. Data from all possible lines of
response (LOR) were saved in the list mode raw data format. The raw data was then binned into
3D sinograms with a span of 3 and ring difference of 47. The images were reconstructed into
transaxial slices (128 x 128 x 159) with voxel sizes of 0.0815 x 0.0815 x 0.0796 c¢cm?, using the
MAP algorithm with 16 subsets, 4 iterations, and a beta of 0.0468. For anatomical co-registration,
immediately following the PET scans, the mice received a CT scan in a NanoSPECT/CT (Mediso,
Washington DC) at an x-ray beam intensity of 90 mAs and x-ray peak voltage of 45 kVp. The CT
images were reconstructed into 170 x 170 x 186 voxels at a voxel size 0of 0.4 x 0.4 x 0.4 mm®. The

PET-CT images were uploaded into Amide (www.sourceforge.com) and volumetric regions-of-

interest were drawn around the tumors. The PET images were normalized to the injected dose and

the mean radiotracer concentration within the ROIs were determined.

BF-FDG and '3F-GIn nutrient uptake assay

Tumor-bearing mice were retro-orbitally injected with ImCi of FDG or '*F-GlIn synthesized at
VUMCS. During radiotracer uptake, mice were conscious and had access to food and water. Mice
were euthanized humanely, and spleen and tumors were harvested 40min after radiotracer
administration. Single cell suspensions of splenocytes were prepared by physical dissociation
followed by ACK-lysis. Tumors were chopped, mechanically dissociated on the Miltenyi
gentleMACS™ Octo Dissociator with Heaters (setting implant tumor one), and digested in
435U/mL deoxyribonuclease I (Sigma-Aldrich, D5025) and 218U/mL collagenase (Sigma-Alrich,
C2674) at 37°C for 30min. After enzyme treatment, tumors were passed through a 70pum filter and

ACK-lysed. Cells were resuspended in MACS buffer (PBS +2% FBS +2mM EDTA) and counted
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using trypan blue with the TC20™ Automated Cell Counter (Bio-Rad). In some cases, tumors
from different mice were pooled to achieve higher tumor cell number prior to fractionation to
ensure sufficient '8F signal. Next, tumor cell suspensions were fractionated using serial magnetic
bead positive selection according to the manufacturer’s instructions (all Miltenyi mouse Kkits:
CD45 TIL 130-110-618 , EPCAM 130-105-958, Thyl.1 130-121-273, CD4/8 TIL 130-116-480,
CDI11b 130-049-601, F4/80 130-110-443). Briefly, cells were resuspended at 10 million total
cells/90uL MACS buffer and 10puL microbeads for 15min. Then, cell suspensions were applied to
LS columns (Miltenyi 130-042-401) in Miltenyi QuadroMACS™ Separators, washed, and eluted
according to manufacturer’s instructions. Fractions were resuspended in 1mL of media; 10uL were
used for trypan blue staining and TC20 cell count, ~50pL were stained for flow cytometry
determination of fraction cellular composition, and 900pL were transferred into SmL tubes to
measure radioactivity. 900uL of 2mL splenocyte suspensions and 5 million total cells from the
unfractionated whole tumor were also assayed for radioactivity. The Hidex Automatic Gamma
Counter was used with 1min read times to measure time-normalized '*F counts per minute (CPM)
for each sample. To determine per cell '*F-nutrient avidity, time-normalized CPM was divided by
the number of viable cells as determined by trypan count. Harvested tissues and cell fractions were

kept on ice or at 4°C in RPMI 1640 supplemented with 10% FBS except when noted.

Flow Cytometry

Single cell suspensions obtained from tumors and spleens were incubated in F. block (BD 553142)
for 10min at room temp, stained for surface markers for 15min at room temp, washed with FACS
buffer (PBS +2% FBS) once, and resuspended in FACS buffer for analysis on a Miltenyi

MACSQuant Analyzer 10 or 16. For intracellular staining, the eBioscience™ Foxp3/transcription
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factor staining buffer kit (Fisher 00-5523-00) was used. Surface staining was performed as
described above, cells were fix/permed for 20min at 4°C, and then stained for intracellular markers
for 30min at 4°C. Ghost Dye Red 780 viability dye (Cell Signaling 18452S) was used identically
to surface antibodies. The anti-mouse and cross-reactive antibodies used were: CD45 BV510 (40-
F11, Biolegend 103138), B220 e450 (RA3-6B2, ThermoFisher 48-0452-82), CD11b €450 (M1/70,
ThermoFisher 48-0112-82), CD11b FITC (M1/70, Biolegend 101206), CD8a AF488 (53-6.7,
Biolegend 100723), Ly6C FITC (HK1.4, Biolegend 128006), CD11c PE (N418, BioLegend
117308), FOXP3 PE (FJK-16s, ThermoFisher 12-5773-82), pS6 Ser235/236 PE (D57.2.2E, Cell
Signaling 5316S), CD4 PerCP-Cy5.5 (RM4-5, BioLegend 100540), Ly6G PerCP-Cy5.5 (1AS8,
BioLegend 127616), F4/80 PE-Cy7 (BMS&, BioLegend 123114), NKp46 PE-Cy7 (29A1.4,
BioLegend 137618), CD3 PE-Cy7 (17A2, BioLegend 100220), CD3 FITC (17A2, BioLegend
100204), CD3 APC (17A2, BioLegend 100236), CD206 APC (C068C2, BioLegend 141708),
GLUT1 AF647 (EPR3915, Abcam ab195020), EPCAM PE (G8.8, BioLegend 118206), Thy1.1
PerCP-Cy5.5 (HIS51, ThermoFisher 45-090082), CD45 PE (30-F11, ThermoFisher 12-0451-83),
Ly6C BV570 (HK1.4, BioLegend 128030), CD68 BV605 (FA-11, BioLegend 137021). The anti-
human antibodies used were: CD45 BV421 (HI30, BioLegend 304032), CD3 APC (UCHTI,
BioLegend 300439), CD11b PerCP-Cy5.5 (ICRF44, BioLegend 301328), CD14 BV510 (MSE2,
BioLegend 301842), CA9 AF647 (303123, R&D Systems FAB2188R-100UG), Human Fc Block

(BD 564220). Flow cytometry data were analyzed using FlowJo v10.7.1.

Microscopy
MC38 anti-F4/80 microbead-fractionated TAM were mounted onto slides using Wescor Cytopro

cytocentrifuge and stained with hematoxylin and eosin following manufacturer’s guidelines


https://doi.org/10.1101/2020.08.10.238428
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.10.238428; this version posted August 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(Fisher 23-122952). Images were captured under oil immersion (100x objective) using an Olympus
BX53 microscope (Olympus Corporation, Center Valley, PA), an Olympus DP73 camera, and

Olympus cellSens Standard imaging software.

Extracellular flux assay

Tumor cell fractions were obtained as described above. Each fraction was plated at 200,000 live
cells/well in at least technical quadruplicate on a Cell-Tak-coated plate (Corning 354240) in
Agilent Seahorse RPMI 1640 supplemented with 10mM glucose, 1mM sodium pyruvate, and
2mM glutamine. Cells were analyzed on a Seahorse XFe 96 bioanalyzer using the Mitostress assay
(Agilent 103015-100) with 1puM oligomycin, 2uM FCCP, and 0.5uM rotenone/antimycin A. Data

were analyzed in Agilent Wave software.

Single cell sorting and mRNA transcript analysis

CD45" and CD45" tumor cell fractions were obtained as described above. Cell fractions were
stained for the indicated surface markers and viability dye and sorted on a BD FACSAria III cell
sorter. RNA was isolated from tumor cell populations and unstained whole tumor single cell
suspensions using the Quick-RNA™ Microprep Kit (Zymo R1050) according to manufacturer’s
instructions. RNA transcripts were quantified using the NanoString nCounter Metabolic Pathways
Gene Expression Panel (XT-CSO-MMP1-12) according to manufacturer’s instructions. Transcript
levels were normalized to internal control housekeeping genes using the NanoString nSolver
software. Differentially expressed genes were defined as having minimally an 8-fold difference
between at least two different tumor cell populations in both biological replicates. Gene expression

heatmap was generated by normalizing transcript count across each gene. Unsupervised
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hierarchical clustering of genes and samples were performed using Euclidian distance and linkage
was based on unweighted pair group method with arithmetic mean, which is a type of bottom-up
agglomerative clustering. Heatmap and clustering was performed using Python3.6 as implemented

in the seaborn (v10.1) package using the function clustermap with default parameter settings.

Quantification and Statistical Analysis

Graphs and statistical tests were generated using GraphPad Prism 8 unless otherwise noted.
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Figure Legends

Fig. 1 | Glucose is present in the TME and is preferentially consumed by immune cells. a,
Quantification of IF metabolites from patient ccRCC tumor and matched adjacent normal kidney
tissue (n=14 patients). b, FDG PET-CT image of subcutaneous MC38 tumor. ¢, Experimental
schema for isolation and characterization of FDG-avid tumor cell populations. d, Representative
flow cytometry analysis of MC38 whole tumor, CD45+ immune cell, and CD45- cancer cell
fractions gated on live cells. e-i, Per cell FDG avidity in designated tumor cell fractions in
subcutaneous MC38 (n=5 mice) (e), CT26 (n=4 mice) (f), and Renca (n=4 mice) (g) tumors;
intrarenal Renca tumors (n=3 mice) (h); and PyMT GEMM tumors (n=3 mice) (i). Each data
point represents a biological replicate and error bars are SEM. e-1 are data from representative
studies performed independently at least twice. P values were calculated using paired 2-tailed t-
test for (a) and Welch’s 2-tailed t-test for (e-1). * p<0.05, ** p<0.01, *** p<0.001. ccRCC: clear
cell renal cell carcinoma; CPM: counts per minute; FDG PET-CT: 18-fluorodeoxyglucose
positron emission tomography computed tomography; GEMM: genetically engineered mouse
model; IF: interstitial fluid; PyMT: Polyoma virus middle T antigen; TME: tumor

microenvironment.
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Fig. 2 | Myeloid cells uptake the most glucose in the TME. a, Representative flow cytometry
plot from MC38 tumor gated on CD45+. b, Representative flow cytometry plots gated on live
cells of indicated MC38 tumor cell fractions with T cell isolation using anti-CD4/8 microbeads.
¢, Per cell FDG avidity in designated spleen and MC38 tumor cell fractions using anti-CD4/8
microbeads (n=3 mice). d, Representative flow cytometry plots gated on live cells of indicated
MC38 tumor cell fractions with myeloid cell isolation using anti-CD11b microbeads. e, Per cell
FDG avidity in designated MC38 tumor cell fractions using anti-CD11b microbeads (n=4 mice).
f, Flow cytometry characterization of TAM. g, Representative micrograph of anti-F4/80
microbead-isolated TAM, scale bar = Sum. h, Representative flow cytometry plots gated on live
cells of indicated MC38 tumor cell fractions with TAM isolation using anti-F4/80 microbeads. i,
Per cell FDG avidity in designated MC38 tumor cell fractions using anti-F4/80 microbeads (n=4
mice). Each data point represents a biological replicate and error bars are SEM. Representative
studies were performed independently at least twice. P values were calculated using Welch’s 2-
tailed t-test. * p<0.05, ** p<0.01, *** p<0.001. CPM: counts per minute; FDG: 18-

fluorodeoxyglucose; TAM: tumor-associated macrophage; TME: tumor microenvironment.
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Fig. 3 | Characterization of tumor cell populations reveals regulators of glucose uptake. a-b,
Representative OCR (a) and ECAR (b) tracings of MC38 tumor cell fractions with indicated
injections of oligomycin (O), FCCP (F), and rotenone and antimycin A (R/AA). ¢-d Basal
mitochondrial OCR (¢) and cellular ECAR (d) of MC38 tumor fractions (n=5 mice). e,
Unsupervised cluster analysis of differentially expressed metabolic mRNA transcripts of whole
tumor, CD45- cancer cell, CD45+ CD11b+ F4/80n TAM, CD45+ CD11b+ F4/8010 myeloid cell,
CD45+ CD3+ CD8a+ T cell, and CD45+ CD3+ CD8a- (CD4+) T cell flow-sorted MC38 tumor
populations (n=2 mice). f-g, Glucose transporter (f) and hexokinase (g) mRNA transcript levels
of indicated MC38 tumor populations (n=2 mice). Dotted line approximates limit of detection. h-
i, Representative flow cytometry plots (h) and quantification (i) of pS6 levels in indicated MC38
tumor and spleen populations. j-k, Representative flow cytometry histograms (j) and
quantification (k) of pS6 levels in cancer cells (CD45- CA9+), myeloid cells (CD45+ CD11b+
CD14+), T cells (CD45+ CD3+), and other immune cells (CD45+ CD3- CD14-) from patient
ccRCC tumor and PBMC (n=4 patients). Each data point represents a biological replicate and
error bars are SEM. a-d and f-g are representative of at least two independent experiments. P
values were calculated using Welch’s 2-tailed t-test for (c-d) and Brown-Forsythe ANOVA test
for (h, j). * p<0.05, ** p<0.01, *** p<0.001. ECAR: extracellular acidification rate; FCCP:
Trifluoromethoxy carbonylcyanide phenylhydrazone; FMO: fluorescence minus one; MFI:
median fluorescence intensity; OCR: oxygen consumption rate; PBMC: peripheral blood

mononuclear cells; pS6: phosphorylated ribosomal protein S6 (Ser235/236).
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Fig. 4 | Glutamine partitions into cancer cells in the TME. a, Glutamine-related transcription
factor mRNA transcript levels of indicated flow-sorted MC38 tumor cell populations (n=2 mice).
Dotted line approximates limit of detection. b-¢, Per cell 18F-Gln avidity in designated tumor cell
fractions in subcutaneous MC38 (n=3-4 mice) (b) and Renca (n=4 mice) (¢) tumors. d, Per cell
18F-Gln avidity in designated MC38 tumor cell fractions from mice treated with V9302 or
DMSO (n=5 mice) e, Per cell FDG avidity in designated MC38 tumor cell fractions in
subcutaneous MC38 tumors from mice treated with DMSO or V9302 (n=3-4 mice). f,
Representative flow cytometry analysis gated on CD45+ CD11b+ Ly6G- Ly6Cio TAM from
MC38 tumors in mice treated with DMSO or V9302 (n=4 mice). g, Quantification of
macrophage populations from MC38 tumors in mice treated with DMSO or V9202 (n=4 mice).
h, Ratio of CD45- divided by CD45+ per cell 18F-nutrient avidities in indicated tumors (n=3-5
mice). i, Model for nutrient partitioning in the TME. Each data point represents a biological
replicate and error bars are SEM. b-h are representative of at least two independent experiments.
P values were calculated using Welch’s 2-tailed t-test for a-c and e-h, one 1-tailed for d. *
p<0.05, ** p<0.01, *** p<0.001. 18F-GlIn: 18F-4-fluoroglutamine; CPM: counts per minute;

TAM: tumor-associated macrophage; TME: tumor microenvironment; V9302: ASCT?2 inhibitor.
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Extended Data Figure Legends

Extended Data Fig. 1 | Supporting data for Fig. 1. a-c, Proportion of CD45-+ cells (a), cell
viability (b), and live cell yield (¢) in tumor cell fractions from subcutaneous MC38 (n=5 mice),
CT26 (n=4 mice), and Renca (n=4 mice) tumors; intrarenal Renca tumors (n=3 mice); and
spontaneous PyMT GEMM (n=3 mice) tumors. d, Representative flow cytometry analysis of
PyMT whole tumor, CD45+ immune cell, and EPCAM- cancer cell fractions gated on live cells.
e, Per cell FDG avidity in designated tumor cell fractions from AOM/DSS CRC tumors (n=2
mice). f, Proportion of CD45-+ cells, cell viability, and live cell yield from (e). Each data point
represents a biological replicate and error bars are SEM. (a-d) are data from representative
studies performed independently at least twice. P values were calculated using Welch’s 2-tailed
t-test. * p<0.05, ** p<0.01, *** p<0.001. AOM/DSS CRC: azoxymethane/dextran sodium
sulfate colorectal cancer; CPM: counts per minute; GEMM: genetically engineered mouse

model; PyMT: polyoma virus middle T antigen.
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Extended Data Fig. 2 | Validation of in vivo FDG uptake. a, Demonstration of dynamic range
of 18F quantification using serially diluted in vivo FDG-labelled splenocytes. b, Intravenous (IV)
anti-CD45 PE staining of leukocytes from designated tissues gated on CD45+ cells. ¢, FDG-hot
digest supernatant from in vivo labelled MC38 tumors was incubated with FDG-naive MC38
tumor cells to determine ex vivo FDG uptake (n=4 mice). d, Per cell FDG avidity in designated
tumor cell fractions, proportion of CD45+ and Thyl.1+ cells, cell viability, and live cell yield
from MC38-Thy1.1 tumors (n=2 mice). g, Representative flow cytometry analysis of MC38-
Thyl.1 tumor fractions. Each data point represents a biological replicate and error bars are SEM.
(d) are data from a representative study performed independently twice. P values were calculated

using Welch’s 2-tailed t-test. * p<0.05, ** p<0.01, *** p<0.001. CPM: counts per minute.
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Extended Data Fig. 3 | Tumor characterization by flow cytometry. a-f, Spleen and tumor
immune cell populations from subcutaneous MC38 (n=5 mice), CT26 (n=4 mice), and Renca
(n=4 mice) tumors; intrarenal Renca tumors (n=3 mice); spontaneous PyMT GEMM tumors
(n=3 mice); and AOM/DSS CRC tumors (n=2 mice). g, Gating strategy for immune cell
identification using lymphocyte and myeloid-focused antibody panels. Each data point represents
a biological replicate and error bars are SEM. Data from a-e are representative of independent
experiments performed at least twice. AOM/DSS CRC: azoxymethane/dextran sodium sulfate
colorectal cancer; DC: dendritic cell; GEMM: genetically engineered mouse model; M-MDSC:
monocytic myeloid-derived suppressor cell; NK cell: natural killer cell; PMN-MDSC:
polymorphonuclear myeloid-derived suppressor cell; PyMT: polyoma virus middle T antigen;

TAM: tumor-associated macrophage.
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Extended Data Fig. 4 | Supporting data for Figure 2. a-b, Fraction composition, viability, and
live cell yield from MC38 tumor fractions isolated using CD4/8 microbeads (a) and CD11b
microbeads (b) (n=3-4 mice). ¢-d, Per cell FDG avidity in designated CT26 tumor cell fractions
using CD4/8 microbeads (¢) and CD11b microbeads (d) (n=4 mice). e-f, Fraction composition,
viability, and live cell yield from CT26 tumor fractions isolated using CD4/8 microbeads (e) and
CD11b microbeads (f) (n=4 mice). g, Fraction composition, viability, and live cell yield from
MC38 tumor fractions isolated using F4/80 microbeads. Each data point represents a biological
replicate and error bars are SEM. Data are representative of independent experiments performed

at least twice. P values were calculated using Welch’s 2-tailed t-test. * p<0.05.
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Extended Data Fig. 5 | Supporting data for Figure 3. a, Sorting gates of MC38 tumor cells
used for mRNA transcript analyses. b, Expression of selected cell identity markers in flow sorted
MC38 tumor cell population. Dotted line approximates limit of detection. c-d, GLUT1 levels
determined by flow cytometry in MC38 (¢) and CT26 (d) tumor populations. e, Quantification of
pS6 levels determined by flow cytometry in indicated CT26 tumor and spleen populations. Each
data point represents a biological replicate and error bars are SEM. c-e are representative of
independent experiments performed at least twice. P values were calculated using the Brown-

Forsythe ANOVA test. *** p<(.001.
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Extended Data Fig. 6 | Supporting data for Figure 4a-c. a, Amino acid metabolism enzyme
mRNA transcript levels of indicated MC38 tumor populations (n=2 mice). Dotted line
approximates limit of detection. b, Per cell 18F-GlIn avidity in designated tumor cell fractions in
subcutaneous CT26 tumors (n=3 mice). c-e, Proportion of CD45+ cells (¢), cell viability (d), and
live cell yield (e) in tumor cell fractions from subcutaneous MC38 (n=3-4 mice), CT26 (n=3
mice), and Renca (n=4 mice) tumors. Each data point represents a biological replicate and error

bars are SEM.
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Extended Data Fig. 7 | Supporting data for Figure 4d-f. a, Glutamine transporter mRNA
transcript levels from indicated MC38 tumor populations (n=2 mice). b, MC38 tumor mass of
DMSO or V9302-treated mice (n=4 mice). ¢, Cell viability, live cell yield, and composition of
MC38 tumor fractions from mice treated with DMSO or V9302 (n=3-4). d, Flow cytometry
analysis of MC38 tumor immune infiltrate from mice treated with DMSO or V9302 (n=4 mice).
Each data point represents a biological replicate and error bars are SEM. Data are representative
of at least two independent experiments. P values were calculated using Welch’s 2-tailed t-test. *

p<0.05, ** p<0.01, *** p<0.001.
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