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ABSTRACT

Variations in body mass index (BMI) have been suggested to relate to atypical brain organization, yet
connectome-level substrates of BMI and their neurobiological underpinnings remain unclear.
Studying 325 healthy young adults, we examined association between functional connectome
organization and BMI variations. We capitalized on connectome manifold learning techniques, which
represent macroscale functional connectivity patterns along continuous hierarchical axes that
dissociate low level and higher order brain systems. We observed an increased differentiation between
unimodal and heteromodal association networks in individuals with higher BMI, indicative of an
increasingly segregated modular architecture and a disruption in the hierarchical integration of
different brain system. Transcriptomic decoding and subsequent gene enrichment analyses identified
genes previously implicated in genome-wide associations to BMI and specific cortical, striatal, and
cerebellar cell types. These findings provide novel insights for functional connectome substrates of
BMI variations in healthy young adults and point to potential molecular associations.
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INTRODUCTION

A high body mass index (BMI) has been recognized as one of the most significant contributors to
adverse health and psychological outcomes (Bliiher, 2019; James, 2008; World Health Organization,
2020). High BMI is an indicator of obesity, a condition with increasing prevalence worldwide (World
Health Organization, 2020) and a critical factor in the development of type 2 diabetes, cardiovascular
disease, stroke, cancer, and metabolic syndrome (Jensen et al., 2014; Malik et al., 2013; Raji et al.,
2010; Val-Laillet et al., 2015). In addition, multiple neurobiological processes related to obesity have
been recognized, including mechanisms regulating eating behaviors, together with genetic and
transcriptomic underpinnings (Locke et al., 2015; Martin et al., 2010; Murray et al., 2014; Van Opstal
et al., 2018; Steward et al., 2019a; Vainik et al., 2013, 2018; Val-Laillet et al., 2015; Verdejo-Roman
etal., 2017; Ziauddeen et al., 2015).

Neuroimaging techniques, particularly magnetic resonance imaging (MRI), can identify cerebral
substrates associated with BMI by tapping into whole-brain structure, function, and connectivity.
Prior structural MRI research has shown that measures of cortical and subcortical morphology
robustly correlate with BMI variations in healthy (Herrmann et al., 2019; Marqués-Iturria et al., 2013;
Shott et al., 2015; Vainik et al., 2018) and diseased samples (King et al., 2018; Olivo et al., 2017).
Multiple task-based functional MRI studies have also shown associations between BMI and brain
activations in impulse control and reward processing paradigms (Brooks et al., 2013; Goldstone et
al., 2009; Gupta et al., 2018; Van Meer et al., 2019; Opel et al., 2015; Park et al., 2017; Steward et al.,
2019b; Stoeckel et al., 2008). On the other hand, functional signatures of BMI at macroscale during
resting conditions remain underexplored. Indeed, despite reports exploring associations between BMI
and the connectivity of specific regions (Garcia-Garcia et al., 2015; Lips et al., 2014; Park et al., 2015)
and larger networks (Garcia-Garcia et al., 2013; Park et al., 2016), whole-brain functional network
configurations associated with BMI are less well established. We aim to close this gap in the current
work by applying connectome manifold learning techniques to identify functional substrates of BMI
in a large population of healthy adults. One appealing feature of these techniques is that they compress
high-dimensional connectomes into sets of lower-dimensional eigenvectors that visualize principles
of inter-regional connectivity (Margulies et al., 2016). These maps specifically depict the
differentiation of brain networks in a continuous manner and index the balance of integration and
segregation. These techniques have thus increasingly complemented modular descriptions of brain
networks, and offer a data-driven perspective on the gradual hierarchical organization of functional
systems (Huntenburg et al., 2018; Margulies et al., 2016). A hierarchical perspective is furthermore
supported by work showing a close association between functional gradients and main axes of
microstructural differentiation in the cortex, which concomitantly describe a sensory-fugal pattern
(Huntenburg et al., 2017; Paquola et al., 2019a, 2020). Connectome manifold learning has
furthermore been applied to study healthy aging (Bethlehem et al., 2020; Lowe et al., 2019) and in
the hierarchical organization of functional and structural networks in typical and atypical
neurodevelopment (Hong et al., 2019; Paquola et al., 2019b; Park et al., 2020a, 2020b). In the context
of BMI, these techniques have still not been applied but could promise to identify whether different
patterns of functional network integration and segregation underpin inter-individual body mass
variations.

As connectome manifold learning can generate cortical maps capturing large-scale principles of brain
network organization and hierarchical differentiation, these features can be readily integrated with
other aspects of brain organization. As such, spatial associations between connectome gradients and
measures of brain morphology and microstructure can be calculated to query shared and unique
effects. Furthermore, neural data that is not per se neuroimaging derived is increasingly represented
in MRI reference space. One such repository are post-mortem gene expression maps disseminated by
the Allen Institute for Brain Science (AIBS) (Arnatkeviciute et al., 2019; Chen et al., 2013; Dougherty
et al., 2010; Gorgolewski et al., 2014, 2015; Hawrylycz et al., 2012; Kuleshov et al., 2016). This
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resource can inform spatial association analyses between imaging-derived findings and gene
expression patterns. Coupled with gene enrichment analyses (Dougherty et al., 2010; Park et al.,
2020a), these approaches can discover molecular, developmental, and disease related processes, and
thus provide additional context for MRI-based findings. Recent studies capitalized on transcriptomic
decoding to explore underpinnings of brain imaging findings in both healthy and diseased cohorts
(Arnatkevicitté et al., 2019; Bertolero et al., 2019; Jahanshad et al., 2013; Paquola et al., 2019b; Park
et al., 2020a; Thompson and Fransson, 2016).

Here, we studied associations between macroscale functional connectome organization and variations
in BMI. Our functional network analysis was based on the identification of connectome manifolds,
which offer a continuous and low dimensional analytical space to interrogate macroscale brain
organization and network hierarchy (Burt et al., 2018; Fulcher et al., 2019; Vos de Wael et al., 2020).
Capitalizing on the multimodal human connectome project (HCP) dataset (Van Essen et al., 2013;
Glasser et al., 2013), we furthermore explored whether associations between functional manifolds
and BMI existed above and beyond structural effects as measured by MRI-based measures of cortical
thickness, sulco-gyral folding, and intracortical myelin. To explore neurobiological underpinnings of
BMI-related whole-brain connectome changes, we performed spatial association analyses to post-
mortem gene expression data and carried out gene enrichment analyses.

RESULTS

We studied 325 young and healthy adults (mean + SD age = 28.56 & 3.74 years; 55% female; mean
+ SD BMI = 26.30 + 5.16 kg/m?, range 16.65 —47.76 kg/m?) from the S900 release of the HCP (Van
Essen et al., 2013). See Methods for details on participant selection, image processing, and analysis.
Reproducibility was studied in an additional 74 unrelated healthy adults from the HCP S1200 release
(mean + SD age = 28.08 + 3.90 years; 34% female; mean + SD BMI = 26.17 + 4.39 kg/m?, range
18.89 — 39.47 kg/m?), as well as an independent dataset of healthy adults acquired from the St.
Vincent’s Hospital (SVH; n = 36; mean £+ SD age = 38.78 £ 10.52 years; 47% female; mean + SD
BMI = 29.38 + 6.29 kg/m?, range 23.15 — 57.13 kg/m?).

Macroscale functional manifolds and their association to BMI

We constructed functional connectomes in individual subjects based on correlation analysis of
resting-state functional MRI (rs-fMRI) data and estimated functional manifolds (Margulies et al.,
2016) using a diffusion map embedding algorithm (Coifman and Lafon, 2006) implemented in the
BrainSpace toolbox (https://github.com/MICA-MNI/BrainSpace; see Methods) (Vos de Wael et al.,
2020). The template manifold was estimated using the group averaged functional connectome, and
we aligned individual manifolds to this template using Procrustes rotations (Langs et al., 2015; Vos
de Wael et al., 2020) . We selected three eigenvectors (M1, M2, M3), explaining approximately 48%
of variance in the template affinity matrix (Fig. 1A—B). Each eigenvector (also referred to as gradient)
represents an axis of spatial variation in the functional connectome. In accordance to prior findings
in the HCP dataset (Margulies et al., 2016; Vos de Wael et al., 2020), the eigenvectors differentiated
primary sensory areas from higher order transmodal areas (M1), visual from somatomotor cortices
(M2), and the multiple demand network from task negative systems (M3).
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Fig. 1 | Functional connectome manifolds. (A) Functional connectivity schema, a group averaged functional
connectome, and a scree plot describing connectome variance across functional components. The reordered functional
connectivity matrix according to the first eigenvector (i.e., M1) is shown on the right side. (B) Template manifolds built
by three dominant eigenvectors (M1, M2, M3) based on the group averaged functional connectome. The scatter plot
represents each brain region projected onto the three-dimensional manifold space with different colors, also mapped to
the cortical surface for visualization. (C) The distribution of BMI is reported on the left. Multivariate association between
the three eigenvectors and BMI, highlighting regions showing significant associations to BMI. Findings were corrected
for multiple comparisons using a false discovery rate (FDR) < 0.05. Effects were stratified according to intrinsic functional
communities (Yeo et al., 2011) and levels of cortical hierarchy (Mesulam, 1998) in the radar plots. Abbreviation: BMI,
body mass index.

Multivariate analysis associated the three functional gradients with inter-individual differences in
BMI, controlling for age and sex. Significant associations were identified in higher order transmodal
areas (false discovery rate (FDR) < 0.05; Fig. 1C). Stratifying effects according to intrinsic functional
communities (Yeo et al., 2011) and the Mesulam model of cortical hierarchical laminar differentiation
(Mesulam, 1998), we revealed highest effects in default mode and frontoparietal networks situated in
both unimodal and heteromodal association cortices.

Manifold eccentricity and body mass index

To express the three-dimensional functional manifold structure through a single scalar, we computed
the Euclidean distance between the center of template manifold and all data points (i.e., cortical
regions) in manifold space (henceforth manifold eccentricity) for all participants (Fig. 2A). Linear
correlations between BMI and functional manifold eccentricity of the regions identified from the
multivariate association analysis confirmed significant associations (r = 0.16 and p < 0.001; non-
parametric permutation tests; Fig. 2B). Correlations were repeated across different levels of cortical
hierarchy intersected with significantly associated regions to BMI (see Fig. 1C), and strongest effects
were identified in unimodal (r = 0.19, p < 0.001) and heteromodal association areas (r = 0.13, p =
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0.011; Fig. 2C). Paralimbic areas showed marginal effects (r = 0.09, p = 0.06). When analyzing
correlations across intrinsic functional communities (Yeo et al., 2011), similar effects were identified
with significant associations in default mode and frontoparietal networks as well as somatomotor and
dorsal attention networks (p < 0.05; Fig. S1).

A. Functional manifold eccentricity B. Correlation with BMI
Manifold eccentricity r=0.1631, p < 0.001
0.15 45 N
© .
2o @, Q
015
d ) L[]
@\-’ A e 018 e

.08 0.15
M1 Functional manifold eccentricity

C. Correlation according to cortical hierarchy

Idiotypic Unimodal association Heteromodal association Paralimbic
gﬁ’ & EE P @ 61’2’ » 7'\\ 6[" E’ %’A\ \

r=-0.0616, p = 0.1390 r=0.1947, p < 0.001 r=0.1310, p=0.0110 r=0.0901, p = 0.0600
. « ® M .
L[] . L ° . ]
L] . . L] [} L[]
o & ° ']
S o .\&": 0o o ; o '.;"’ .
5 B1%epe $°8g o8 ¢
s $o $e o ¢ e o
o c.,» w ° " ..°l Y -
q 3 w', ° y
%e ) L .
% to gt - X
. o 0 AL

0.08 115 0,08 015 0.08 0.15 0.08 0.15
Functional manifold eccentricity Functional manifold eccentricity Functional manifold eccentricity Functional manifold eccentricity

Fig. 2 | Association between BMI and functional manifold eccentricity. (A) Functional manifold eccentricity measured
as the Euclidean distance between the center of the template manifold and each data point. (B) Linear correlation between
BMI and manifold eccentricity. (C) Correlations according to a model of cortical hierarchy (Mesulam, 1998).
Abbreviation: BMI, body mass index.

Association between manifold eccentricity and modular measures

To assess modular characteristics of BMI-related brain regions in terms of integration and segregation
among different functional communities, we calculated within-module degree and participation
coefficient (Power et al., 2013; Rubinov and Sporns, 2010) based on modules defined using an
established intrinsic functional partitioning (Yeo et al., 2011) (Fig. 3A—-B). We calculated linear
correlation between manifold eccentricity and each modular measure in regions identified in the
multivariate analysis (Fig. 3C). We found significant positive correlation between manifold
eccentricity and within-module degree (r = 0.22, p < 0.001), while participation coefficient showed a
negative association (r =-0.16, p = 0.004). These results indicate increased functional segregation of
networks in individuals with higher BMI. Similar patterns were observed when defining modules
using Louvain community detection algorithm (Blondel et al., 2008) or the Mesulam schema of
cortical hierarchy and laminar differentiation (Mesulam, 1998) (Fig. S2).
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Fig. 3 | Manifold eccentricity and modular measures. (A) Functional communities based on intrinsic functional
communities (Yeo et al., 2011). (B) Distribution of within-module degree and participation coefficient in the whole-brain.

(C) Linear correlation between functional manifold eccentricity and modular measures in the identified regions from the
multivariate analysis.

Functional connectome manifold beyond brain structure

Previous studies have reported associations between individual differences in BMI and MRI-based
structural indices of cortical thickness, cortical folding, and tissue microstructure (Medic et al., 2016,
2019; Ronan et al., 2019; Vainik et al., 2018; Xu et al., 2013). Here, we explored whether functional
connectome manifold findings were, in part, explainable by these underlying structural associations.
To this end, we measured cortical morphology (cortical thickness and folding) and intracortical
microstructure (the ratio between T1- and T2-weighted imaging contrast, a proxy for intracortical
myelin) in the same subjects (Fig. 4A) (Glasser and Van Essen, 2011; Glasser et al., 2014; Paquola
et al., 2019a). Two analyses were performed. First, we correlated BMI with these indices of brain
structure, while controlling for age and sex. While cortical folding was not associated with BMI, a
negative effect on cortical thickness was observed in the temporal pole (FDR < 0.05; r =-0.21), and
we also found reductions in myelin proxies in occipital, central, and ventrolateral prefrontal regions
with increases in BMI (FDR < 0.05; r = -0.35) (Fig. 4A and S3). Second, repeating the analysis
associating BMI to manifold eccentricity after controlling for the measures of brain structure, findings
were consistent in default mode and frontoparietal networks (Fig. 4B), while those in limbic networks
slightly increased. Collectively, these findings suggest that functional associations were robust above
and beyond associations between BMI and cortical (micro)structure.
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Fig. 4 | Effects of brain structures. (A) Measures of brain structure including cortical morphology and intracortical
microstructure. (B) Multivariate association of the three manifolds with BMI after controlling for brain structures.
Abbreviation: BMI, body mass index.

Transcriptomic association analysis

To provide neurobiological context to our macroscale findings (for details, see Methods), we
correlated the spatial map of BMI-related functional manifold changes with cortical maps of post-
mortem gene expression data obtained from the AIBS (Gorgolewski et al., 2014, 2015; Hawrylycz et
al., 2012). Among the significantly associated gene lists (FDR < 0.05), only the genes consistently
expressed across different donors (FDR < 0.05) (see Methods; Data S1) (Arnatkeviciute et al., 2019)
were fed into the genome-wide association studies using Enrichr
(https://amp.pharm.mssm.edu/Enricht/) (Chen et al., 2013; Kuleshov et al., 2016). These findings
pointed to strongest effects for genes previously shown to be associated to BMI (FDR < 0.05; Fig.
5A). Further, cell-type specific expression analysis (http://genetics.wustl.edu/jdlab/csea-tool-2/)
(Dougherty et al., 2010) suggested that genes associated with BMI-related functional manifold
changes were enriched to cortical cells as well as those in striatum and cerebellum (FDR < 0.1; Fig.
5B). Specifically, the genes are enriched to the excitatory and inhibitory cells of D1 medium spiny
neurons in the striatum and stellate and basket cells in cerebellum, as well as in cortical neurons.
These cells are known to indirectly regulate food-related reward processing and appetite (Durst et al.,
2019; Matikainen-Ankney and Kravitz, 2018; Timper and Briining, 2017; Vong et al., 2011).
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Fig. 5 | Transcriptomic analysis. (A) Top ten categories associated with gene expressions derived from genome-wide
association studies. (B) Cell-type specific expression analysis identified candidate cell populations associated with genes
expressed in the input spatial map (see Fig. 1C). Abbreviations: BMI, body mass index; FDR, false discovery rate.

Sensitivity and replication experiments

A series of analyses indicated the robustness of our findings.

a) Head motion effect. We repeated the multivariate analyses associating BMI to functional manifold
data after controlling for head motion and observed similar spatial patterns (Fig. S4B).

b) Fluid intelligence and sleep quality effect. It has been shown that BMI also relates to fluid
intelligence (Reed et al., 2010; Vainik et al., 2018) and sleep quality (Kohatsu et al., 2006; Vargas et
al., 2014). This was also confirmed in this dataset, showing correlations between BMI and fluid
intelligence (r =-0.18, p =0.001) as well as quality of sleep (r = 0.13, p = 0.03). We thus repeated the
multivariate association analyses after additionally controlling for these factors. Findings were largely
similar to our overall results (Fig. S4C).

¢) Spatial scale. As the main analysis was performed using the Schaefer atlas with 200 parcels
(Schaefer et al., 2018), we additionally evaluated the results at both coarser and finer parcellation
schemes of 100, 300 and 400 parcels, respectively. Findings were consistent across all parcel
resolutions, despite subtle variations in the exact pattern of findings (Fig. S5, S6, and S7).

d) Matrix thresholding. While main findings were based on functional connectomes thresholded at a
10% density as in prior work (Hong et al., 2019; Margulies et al., 2016; Vos de Wael et al., 2020), we
also repeated our analysis at 5%, 15%, and 20% densities (Fig. S8). We found highly similar patterns
at these densities (mean spatial correlation across manifold maps, r = 0.85).

e) Group comparison. Instead of carrying out a correlation analysis between functional manifolds and
BMI, we also performed a multivariate group comparison analysis to compare cortex-wide manifolds
(M1-M3) between individuals with healthy weight (18.5 < BMI < 25) and those with non-healthy
weight (BMI > 25). We observed virtually identical results to our main findings (Fig. S9A).

f) Multivariate association with weight. We additionally performed multivariate association analyses
between weight and functional connectome manifolds with controlling for age and sex, as well as
height. We found almost unchanged spatial patterns relative to our main findings (Fig. S9B).

g) Reproducibility in HCP validation dataset. We repeated the main analyses in an independent
dataset from the HCP S1200 and found largely consistent results (Fig. S10).

h) Reproducibility in another dataset. Using an independent dataset with different acquisition
parameters (see Methods), we replicated our main findings that the functional connectome manifolds
in higher order brain networks are associated with BMI (Fig. S11).
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DISCUSSION

The human connectome is organized according to multiple processing hierarchies, which allow for
integrative and segregated neural functions. Here, we assessed inter-individual differences in this
architecture relative to phenotypic variations in body mass index (BMI), an important predictor of
health, wellbeing, and life expectancy (Bliiher, 2019; James, 2008; World Health Organization, 2020).
Our approach leveraged recently established techniques that decompose the whole-brain functional
connectome into a set of hierarchical gradients differentiating macroscale systems in a continuous
manner along the cortical surface. We observed that unimodal and heteromodal association areas are
more differentiated in individuals with higher BMI, suggestive of a potentially disrupted integration
between different levels of macroscale hierarchy. Findings remained consistent when additionally
controlling for variations in MRI-based measures of cortical morphology and microstructure,
suggesting that functional network associations with BMI existed above and beyond regional effects
on local brain structure. Functional connectome changes were found in cortical territories known to
harbor genes previously implicated in BMI variations, as well as those involved in cortical, striatal,
and cerebellar cells. These findings suggest functional network substrates of imbalances in BMI that
may ultimately reflect macroscale effects of cellular-genetic associations to BMI.

Manifold learning techniques were utilized to compress and represent high dimensional functional
connectomes along a series of spatial gradients. These approaches have recently seen an increasing
adoption by the neuroimaging and network neuroscience communities (Burt et al., 2018; Demirtas et
al., 2019; Haak and Beckmann, 2020; Lariviére et al., 2019b, 2019a; Miiller et al., 2020; Paquola et
al., 2019a, 2019b; Park et al., 2020a, 2020b; Vos de Wael et al., 2020; Vos De Wael et al., 2018) to
interrogate macroscale neural organization and cortical hierarchy (Hong et al., 2019; Huntenburg et
al., 2018; Margulies et al., 2016). Studying the HCP dataset, we identified three functional gradients
explaining approximately 50% variance, in agreement with earlier studies in the same dataset
(Margulies et al., 2016; Vos de Wael et al., 2020). Notably, associating inter-individual differences in
BMI with manifold organization, we observed a marked increase in manifold eccentricity in
individuals with higher BMI. These findings were predominantly observed in uni- and heteromodal
association cortices that encompass integrative default mode and frontoparietal networks and are
reflective of an increased differentiation of these areas to other brain networks. Prior fMRI studies
reported atypical intrinsic functional connectivity in individuals with obesity, at both local node and
global network levels, relative to individuals with a healthy weight (Chao et al., 2018; Chen et al.,
2018; Garcia-Garcia et al., 2013, 2015; Park et al., 2016, 2018). Our findings complement these
previous reports focusing on the analysis of connectivity patterns of specific areas (Garcia-Garcia et
al., 2013, 2015; Lips et al., 2014; Park et al., 2015) alongside prior graph theoretical analyses (Garcia-
Garcia et al., 2015; Park et al., 2016, 2018) in the context of person-to-person variations in BMI.
Seed-based and graph theoretical functional connectivity studies found that individuals with obesity
showed increased connectivity in nodes belonging to frontoparietal and default mode networks,
relative to individuals with healthy weight (Chao et al., 2018; Garcia-Garcia et al., 2013, 2015). These
findings are complemented by studies reporting positive associations between overall connectivity
degree and broad variability in BMI, again with frequent findings in transmodal areas (Park et al.,
2016, 2018). Longitudinal evidence also points to an association between BMI changes and
connectivity of reward and frontoparietal networks, both when studying healthy individuals, without
any interventions (Park et al., 2019a) and in work that administered repetitive transcranial magnetic
stimulation targeting the dorsolateral prefrontal cortex (Kim et al., 2019). Beyond local connectivity,
a more recent study reported an increased modular segregation in individuals with obesity compared
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to individuals with healthy weight, suggesting a shift of brain organization towards more lattice like
functional networks as BMI increases (Ottino-Gonzalez et al., 2020). A more segregated network
organization has previously been reported in several psychiatric and neurological diseases, including
attention deficit hyperactivity disorder (Cao et al., 2014, 2016, 2013; Liao et al., 2017; Wang et al.,
2009), Alzheimer’s disease (Bai et al., 2012; Dai and He, 2014; Liao et al., 2017; Zhao et al., 2012),
as well as impulsivity (Davis et al., 2013). These studies noted that increased segregation may reduce
global network efficiency and delay information transfer between nodes (Avena-Koenigsberger et al.,
2014, 2018, 2019), potentially contributing to cognitive decline (Liao et al., 2017; Sporns, 2013).
Based on these studies and our findings, the observed increased segregation of unimodal and
heteromodal association cortices in individuals with high BMI could potentially reflect disruptions in
feedforward and feedback processing, and potentially indicate atypical cognitive flexibility in
individuals with high BMI (Martin et al., 2010; Moore et al., 2017; Moreno-Lopez et al., 2016; Morys
et al., 2020; Park et al., 2016; Vainik et al., 2018; Val-Laillet et al., 2015; Whitmer et al., 2007;
Ziauddeen et al., 2015). Of note, these findings were largely consistent when incorporating a range
of potential confounds, including sleep quality as well as fluid intelligence. Moreover, we could
observe similar patterns in an initially held out HCP subsample, as well as in a completely different
dataset acquired in South Korea, supporting that our findings are overall robust.

In addition to conforming with established models of hierarchical network organization (Margulies
et al., 2016; Mesulam, 1998), another appealing feature of the manifold framework is the ability to
project connectome-derived findings back to cortical surfaces. In our analyses, this allowed for an
integration of functional findings with morphological and microstructural measures in the same
participants. Previous studies have explored morphological substrates of BMI variations, reporting
cortical thinning in lateral prefrontal, entorhinal, and parahippocampal regions as BMI increases,
indicating that overweight and obese people have reduced cortical thickness compared to people with
a normal body weight (Medic et al., 2016; Ronan et al., 2019; Shaw et al., 2018; Vainik et al., 2018;
Veit et al., 2014; Westwater et al., 2019). A recent multi-site study confirmed that high BMI (> 30)
relates to reduced cortical thickness in temporal and frontal regions (Opel et al., 2020). In our study,
we observed diffuse tendencies for decreased cortical thickness in individuals with higher BMI, with
significant peak effects in temporopolar cortices. Findings were complemented by microstructural
associations in primary sensory and ventrolateral prefrontal cortices, potentially indicative of myelin
anomalies in individuals with high BMI that have already been suggested based on different
methodologies (Metzler-Baddeley et al., 2018; Sena et al., 1985; Xiao et al., 2018). Notably, however,
we observed virtually unchanged associations between BMI and functional connectome manifold
changes when controlling for MRI-derived indices of morphology and microstructure, indicating that
the functional connectome reorganization situated in higher order brain regions occurred above and
beyond these underlying structural variations.

In addition to analyses of regional morphology and microstructure, we performed a transcriptomic
association analysis based on post-mortem gene expression maps provided by the Allen Institute for
Brain Sciences (AIBS). Although such transcriptomic associations were thus based on a different
dataset, equivalent approaches have been increasingly adopted in neuroimaging research to identify
potential molecular patterns that covary with macroscopic findings (Arnatkeviciute et al., 2019; Chen
et al., 2013; Dougherty et al., 2010; Gorgolewski et al., 2015; Hawrylycz et al., 2012; Kuleshov et al.,
2016). In our work, spatial association analyses pointed to specific gene sets, which we then decoded
against findings from previously reported genome-wide association studies. This analysis
demonstrated that the spatial pattern of functional connectome manifold changes co-localizes with
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genes previously implicated in BMI variations; as such, our enrichment analyses highlights that the
macroscale functional connectome associations reported here likely reflect genetically mediated
processes. Additional gene enrichment analyses furthermore suggested that the identified genes are
mainly expressed by cortical neurons, together with cells in the cerebellum as well as D1 medium
spiny neurons in the striatum. Although these associations are indirect and based on different samples,
they may extend and recapitulate computational theories on circuit mechanisms contributing to BMI,
and notably point to an atypical organization of dopaminergic circuits involving mesolimbic as well
as cortical control systems.

In sum, the current study identified functional connectome substrates of BMI variations in healthy
young adults based on advanced connectome manifold learning. Our findings point to a fractionation
in the modular and hierarchical organization of the brain, specifically between unimodal and
heteromodal association cortices. These findings were found to be robust across a range of confounds
and baseline variations in cortical morphology, and could be replicated in two additional datasets.
Further transcriptomic decoding showed that these patterns were associated with genetic factors
contributing to BMI variations as well, and pointed to the expressions of cortical as well as subcortical
neurons implicated in dopamine signaling. Our findings, thus, provide new insights into coupled
macroscale and molecular underpinnings of BMI variations in the adult human brain.

METHODS

Participants
We obtained the minimally processed imaging and phenotypic data from the S900 release of HCP

(Van Essen et al., 2013). We excluded participants who did not complete full imaging data (i.e., T1-
weighted, T2-weighted, and rs-fMRI) and who were genetically related (i.e., twin pairs), resulting in
a total of 325 participants (mean + SD age = 28.56 + 3.74 years; 55% female). The mean BMI of the
participants was 26.30 kg/m? with SD of 5.16, range = 16.65 — 47.76 kg/m?), and the proportion of
underweight (BMI < 18.5 kg/m?), healthy weight (18.5 < BMI < 25 kg/m?), overweight (25 < BMI <
30), and obesity (BMI > 30) was 6:143:113:63. We additionally obtained data from the S1200 release
of HCP to replicate our findings. The same exclusion criteria were applied. A total of 74 participants
(mean + SD age = 28.08 + 3.90 years; 34% female; mean = SD BMI = 26.17 + 4.39 kg/m?, range
18.89 — 39.47 kg/m?) were enrolled and the ratio of healthy weight, overweight, and obesity was
30:29:15. All MRI data used in this study were publicly available and anonymized. Participant
recruitment procedures and informed consent forms, including consent to share de-identified data,
were previously approved by the Washington University Institutional Review Board as part of the
HCP.

To replicate findings, we collected an independent dataset from an independent site (St. Vincent’s
Hospital (SVH): n = 36; mean = SD age = 38.78 &+ 10.52 years; 47% female; mean = SD BMI =29.38
+ 6.29 kg/m?, range 23.15 — 57.13 kg/m?). Data collection and usage were approved from the
Institutional Review Boards of the Catholic University of Korea (no. XC15DIMI0012, approved
March 2015) and written and informed consent was obtained from all participants.

MRI acquisition

a) HCP: The HCP imaging data were scanned using a Siemens Skyra 3T at Washington University.
The T1-weighted images were acquired using a magnetization-prepared rapid gradient echo
(MPRAGE) sequence (repetition time (TR) = 2,400 ms; echo time (TE) = 2.14 ms; field of view
(FOV) =224 x 224 mm?; voxel size = 0.7 mm?; and number of slices = 256). The T2-SPACE sequence
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was used for scanning T2-weighted structural data, and the acquisition parameters were the same as
the T1-weighted data except for the TR (3,200 ms) and TE (565 ms). The rs-fMRI data were collected
using a gradient-echo EPI sequence (TR = 720 ms; TE = 33.1 ms; FOV =208 x 180 mm?; voxel size
= 2 mm?®; number of slices = 72; and number of volumes = 1,200). During the rs-fMRI scan,
participants were instructed to keep their eyes open looking at a fixation cross. Two sessions of rs-
fMRI data were acquired; each of them contained data of left-to-right and right-to-left phase-encoded
directions, providing up to four time series per participant.

b) SVH: The SVH imaging data were scanned using a Siemens Magnetom 3T scanner equipped with
a 32-channel head coil. The T1-weighted images were acquired using a MPRAGE sequence (TR =
1,900 ms; TE = 2.49 ms; FOV = 250 x 250 mm?; voxel size = 1 mm?; and number of slices = 160).
The rs-fMRI data were collected using a gradient-echo EPI sequence (TR = 2,490 ms; TE = 30 ms;
FOV =220 x 220 mm?; voxel size = 3.4 x 3.4 x 3 mm?; number of slices = 36; and number of volumes
= 150).

Data preprocessing

a) HCP: HCP data were minimally preprocessed using FSL, FreeSurfer, and Workbench (Fischl, 2012;
Glasser et al., 2013; Jenkinson et al., 2012). Structural MRI data were corrected for gradient
nonlinearity and b0 distortions, and co-registration was performed between the T1- and T2-weighted
data using a rigid-body transformation. Bias field was adjusted using the inverse intensities from the
T1- and T2-weighting. Processed data were nonlinearly registered to MNI152 space, and white and
pial surfaces were generated by following the boundaries between different tissues (Dale et al., 1999;
Fischl et al., 1999a, 1999b). The midthickness surface was generated by averaging white and pial
surfaces, and it was used to generate the inflated surface. The spherical surface was registered to the
Conte69 template with 164k vertices (Van Essen et al., 2012) using MSMALII (Glasser et al., 2016)
and downsampled to a 32k vertex mesh. The rs-fMRI data were preprocessed as follows: First, EPI
distortions and head motion were corrected, and data were registered to the T1-weighted data and
subsequently to MNI152 space. Magnetic field bias correction, skull removal, and intensity
normalization were performed. Noise components attributed to head movement, white matter, cardiac
pulsation, arterial, and large vein related contributions were removed using FMRIB’s ICA-based X-
noiseifier (ICA-FIX) (Salimi-Khorshidi et al., 2014). Preprocessed time series were mapped to the
standard grayordinate space, with a cortical ribbon-constrained volume-to-surface mapping algorithm.
The total mean of the time series of each left-to-right/right-to-left phase-encoded data was subtracted
to adjust the discontinuity between the two datasets and they were concatenated to form a single time
series data.

b) SVH: SVH data were processed using the fusion of the neuroimaging preprocessing (FuNP)
pipeline integrating AFNI, FreeSurfer, FSL, and ANTs (Avants et al., 2011; Cox, 1996; Fischl, 2012;
Glasser et al., 2013; Jenkinson et al., 2012; Park et al., 2019b). T1-weighted data were processed
using the equivalent procedures as in HCP data. The rs-fMRI preprocessing involved removal of the
first 10 s (5 volumes) to allow for magnetic field saturation. Head motion and slice timing were
corrected, and volumes with frame-wise displacement > 0.5 mm were removed. After removing non-
brain tissues, intensity was normalized. Nuisance variables of head motion, white matter,
cerebrospinal fluid, cardiac pulsation, and arterial and large vein related contributions were removed
using ICA-FIX (Salimi-Khorshidi et al., 2014). Registration from fMRI onto the T1-weighted data
and subsequently onto the MNI 3 mm? standard space was performed. Data underwent a band-pass
filter with a pass band from 0.009 and 0.08 Hz and spatial smoothing with a full width at half
maximum of 5 mm. The processed fMRI data were mapped to the cortical surface with a cortical
ribbon-constrained volume-to-surface mapping algorithm.
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Low dimensional functional manifold identification

We generated functional connectomes by computing linear correlations of the time series between
two different brain regions, using the Schaefer 7-network based atlas with 200 parcels (Schaefer et
al., 2018). Correlation coefficients underwent Fisher’s r-to-z transformations to render data more
normally distributed (Thompson and Fransson, 2016). Cortex-wide functional manifolds (i.e., the
principal eigenvectors explaining spatial shifts in the functional connectome) were estimated using
BrainSpace (https://github.com/MICA-MNI/BrainSpace) (Vos de Wael et al., 2020). First, a template
manifold was estimated from a group average functional connectome (Fig. 1A). A similarity matrix,
capturing similarity of connections among different brain regions, was constructed using a normalized
angle kernel with a connection density of 10%. We generated the connectome manifolds (Fig. 1B)
using diffusion map embedding (Coifman and Lafon, 2006), which is robust to noise and
computationally efficient compared to other non-linear manifold learning techniques (Von Luxburg,
2007; Tenenbaum et al., 2000). It is controlled by two parameters o and t, where a controls the
influence of the density of sampling points on the manifold (a0 = 0, maximal influence; a = 1, no
influence) and t scales eigenvalues of the diffusion operator. As in prior applications (Hong et al.,
2019; Margulies et al., 2016; Paquola et al., 2019a; Vos de Wael et al., 2020), we set o = 0.5 and t =
0 to retain the global relations between data points in the embedded space. In this new manifold,
interconnected brain regions are closely located, and the regions with weak inter-connectivity located
farther apart. The individual-level manifolds were estimated and aligned to the template manifold via
Procrustes alignment (Langs et al., 2015; Vos de Wael et al., 2020).

Macroscale connectome associated with body mass index

We performed multivariate association analysis between BMI and the first three functional manifolds,
which explained approximately 50% in connectome variance, with the model controlling for age and
sex. We corrected for multiple comparisons using the FDR procedure (Benjamini and Hochberg,
1995). We summarized multivariate association statistics within well-established resting-state
functional communities (Yeo et al., 2011) and with respect to proposed levels of cortical hierarchy
(Mesulam, 1998) (Fig. 1C). We simplified the multivariate manifolds into a single scalar value by
calculating the Euclidean distance between the center of template manifold and all data points (i.e.,
brain regions) in the manifold space for each individual, which was referred to as manifold
eccentricity (Fig. 2A) (Bethlehem et al., 2020; Park et al., 2020b). We calculated linear correlation
between BMI and the manifold eccentricity of the identified regions derived from the multivariate
analysis (Fig. 2B). We also stratified associations according to four cortical hierarchy levels (Fig. 2C)
(Mesulam, 1998) and seven functional communities (Fig. S1) (Yeo et al., 2011). The significance of
the correlation was assessed using 1,000 permutation tests by randomly shuffling participants. A null
distribution was constructed and the real correlation strength was deemed significant if it did not
belong to the 95% of the distribution (two-tailed p < 0.05).

Modular characteristic according to the functional manifold eccentricity

To assess how the modular architecture changes according to the functional connectome manifolds,
we calculated Pearson’s correlation between the manifold eccentricity and within-module degree and
participation coefficient (Power et al., 2013; Rubinov and Sporns, 2010) in regions identified by the
multivariate analysis (Fig. 3 and S2). Modules were defined using established intrinsic functional
communities (Yeo et al., 2011), a Louvain community detection algorithm (Blondel et al., 2008), and
a schema of cortical hierarchy (Mesulam, 1998). Within-module degree is the degree centrality within
a module, indicating the intra-modular connections, while participation coefficient represents inter-
modular connections (Power et al., 2013; Rubinov and Sporns, 2010). In other words, high within-
module degree represents that a given node has the property of being a hub node within a given
module. In contrast, high participation coefficient indicates the node has edges distributed equally to
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other modules. The significance of the associations between manifold eccentricity and modular
measures were assessed using 1,000 permutation tests by randomly shuffling subjects.

Associations to brain structure

To assess morphological and microstructural underpinnings (Fig. 4A), we first correlated BMI with
MRI-based measures of cortical morphology, i.e., cortical thickness and cortical folding, and in vivo
proxies of intracortical microstructure, i.e., the ratio of the T1-weighted and T2-weighted imaging
contrast in voxels between the white and pial surfaces (Glasser and Van Essen, 2011; Glasser et al.,
2014; Paquola et al., 2019a). We also repeated the association analysis between BMI and manifold
changes, after controlling for regional structural indices (Fig. 4B).

Transcriptomic association analysis

Transcriptomic association analysis explored neurobiological underpinnings of functional manifold
eccentricity (Fig. 5) (Arnatkeviciute et al., 2019; Chen et al., 2013; Dougherty et al., 2010;
Gorgolewski et al., 2015; Hawrylycz et al., 2012; Kuleshov et al., 2016). Specifically, we correlated
the t-statistical map of manifold changes associated with BMI with post-mortem gene expression map
from the AIBS using the Neurovault gene decoding tool (Gorgolewski et al., 2015; Hawrylycz et al.,
2012). Neurovault implements mixed-effect analysis to estimate associations between the input t-
statistic map and the genes of AIBS donor brains yielding the gene symbols associated with the input
t-statistic map. Gene symbols that passed a significance level of FDR-corrected p < 0.05 were further
tested whether they are consistently expressed across donors using abagen
(https://github.com/rmarkello/abagen) (Arnatkeviciute et al., 2019). For each gene, we estimated the
whole-brain expression map for each donor, and correlated the maps between all pairs of donors.
Genes showing consistent a whole-brain expression pattern across donors (FDR < 0.05) were
compared with genes extracted from genome-wide association studies using Enrichr
(https://amp.pharm.mssm.edu/Enrichr/) (Chen et al., 2013; Kuleshov et al., 2016). Then we fed the
consistent genes into the cell-type specific expression analysis (http://genetics.wustl.edu/jdlab/csea-
tool-2/) to identify candidate cell populations likely to be associated with input gene lists (Dougherty
et al., 2010). Significances were assessed using a z-score modification of Fisher’s exact test and FDR
correction.

Sensitivity and reproducibility analyses

a) Head motion effect. To assess the effects of head motion on functional connectome manifolds, we
repeated multivariate association analysis with controlling for age and sex, as well as head motion
that calculated based on the frame-wise displacement during fMRI scan (Fig. S4B).

b) Fluid intelligence and sleep quality effect. It is known that BMI is related to fluid intelligence
(Reed et al., 2010; Vainik et al., 2018) and sleep quality (Kohatsu et al., 2006; Vargas et al., 2014).
To assess the relationship between BMI and these factors, we obtained fluid intelligence score
measured using Penn Progressive Matrices (Bilker et al., 2012) and quality of sleep measured using
Pittsburgh Sleep Quality Index (Backhaus et al., 2002; Buysse et al., 1989; Carpenter and
Andrykowski, 1998). We repeated multivariate analyses to associate functional connectome
manifolds and BMI with controlling for age and sex, as well as fluid intelligence and sleep quality
(Fig. S4C).

¢) Spatial scale. To evaluate the impact of spatial scale, we repeated our analyses across different
scales of the Schaefer atlas (i.e., 100, 300, or 400 regions) (Fig. S5, S6, and S7) (Schaefer et al.,
2018).

d) Matrix thresholding. We repeated functional manifold estimation using functional connectomes
with different levels of density from 5% to 20% with an interval of 5% (Fig. S8).



https://doi.org/10.1101/2020.08.07.241794
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.07.241794; this version posted August 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Park et al. | Functional connectome substrates of BMI variations 16

e) Group comparison. We compared functional connectome manifolds spanned by M1-M3 between
individuals with healthy weight (18.5 < BMI < 25) and non-healthy weight (BMI > 25), controlling
for age and sex, to assess whether the findings from multivariate association to BMI are similar to
those from multivariate group comparison (Fig. S9A). The six underweight (BMI < 18.5) individuals
were excluded.

f) Multivariate association with weight. We performed multivariate analyses to associate functional
connectome manifolds with weight after controlling for age, sex, and height to additionally validate
our main findings (Fig. S9B).

g) Reproducibility in HCP validation dataset. We performed the same analyses using the validation
dataset obtained from the S1200 release of the HCP to replicate our findings (n = 74) (Fig. S10).

h) Reproducibility in another dataset. We replicated our findings using the independent SVH dataset
(n =36) (Fig. S11).
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Correlation between manifold eccentricity and BMI according to functional community
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Fig. S1 | Association between BMI and functional manifold eccentricity. Linear correlations
between BMI and functional manifold eccentricity according to intrinsic functional communities
(Yeo et al., 2011).

28


https://doi.org/10.1101/2020.08.07.241794
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.07.241794; this version posted August 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Park ef al. | Functional connectome substrates of BMI variations 29
A. Modules B. Modular measures

o T
o g
o ]
@ @ 3 3

Q
=1 o
3 s
y g £
£ =3
£ s
= T
s &

T
1 2 3

C. Association between manifold eccentricity and modular measures

r=0.1576, p = 0.0020 r=-0.2205, p < 0.001
0.6 0.8
-

$ g
5 g
3 %
@
E c
2 S
£ -
< i-3
s &

-0.1

0.08 0.15

Functional manifold eccentricity ’

D. Modules E. Modular measures

3 5
2 o
g 2
< 2
\ é K
| | Idiotypic ] Heteromodal II i]

[l Unimodal O Paralimbic

F. Association between manifold eccentricity and modular measures

r=0.1639, p < 0.001 r=-0.1278, p = 0.0110
.8

o
o
o

Within-module degree
Participation coefficient

S

1
0.08 . . 015 0.08 i i .. 015
Functional manifold eccentricity Functional manifold eccentricity

Fig. S2 | Manifold eccentricity and modular measures. (A—C) Modules defined using Louvain
community detection (Blondel et al., 2008) and (D-F) cortical hierarchy (Mesulam, 1998). For details,
see Fig. 3.
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Fig. S3 | Effects of brain structures. The t-statistics of the association between brain structures (i.e.,
cortical thickness, cortical folding, and myelin content) and BMI.
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A. Functional connectome manifold associated with BMI
HCP dlscovery HCP validation SVH

B. Functional connectome manifold associated with BMI controlling for head motion

C. Functional connectome manifold associated with BMI controlling for fluid intelligence and sleep quality

Fig. S4 | Head motion effect. (A) Multivariate association between the three manifolds and BMI
without and (B) with controlling for head motion. (C) Multivariate association results after

controlling for fluid intelligence and sleep quality. Abbreviations: BMI, body mass index; HCP,
human connectome project; SVH, St. Vincent’s Hospital.
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Fig. S5 | Results based on the Schaefer 100 atlas. For details, see Fig. I and 2.

32


https://doi.org/10.1101/2020.08.07.241794
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.07.241794; this version posted August 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Park ef al. | Functional connectome substrates of BMI variations 33

A. Template manifold

Y 0.15
0.2 .
Q M1 >/

2 M

3 015 8
S 3 3
> % 2
g ! 9 . ¥ . s
2 0.1 g =
o & M2 £
K Pa k4
g 005 oo, %
i Foe5, s

% 5 10 15 20
M3 !
Component number -0.15

0.15

& O

B. Functional connectome manifold associated with BMI

Default mode Visual Paralimbic Idiotypic
- Frontoparietal Somatomotor
: & @&
=)
£
K] 1.6
° 1.9

Limbic @ Dorsal attention

Ventral attention Heteromodal Unimodal

C. Functional manifold eccentricity and correlation with BMI

E E 0.05
0.08 0.15
Functional manifold eccentricity

Fig. S6 | Results based on the Schaefer 300 atlas. For details, see Fig. I and 2.
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Fig. S7 | Results based on the Schaefer 400 atlas. For details, see Fig. I and 2.
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Fig. S8 | Functional manifolds with different connectome densities. Connectome density from 5%

to 20% with 5% interval was applied.
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Fig. S9 | Results based on different approaches. (A) The t-statistics of the identified regions that
showed significant between-group differences in functional connectome manifolds between
individuals with healthy (18.5 < BMI < 25) and non-healthy weight (BMI > 25). (B) Those for the
multivariate association analyses between functional connectome manifolds and weight.
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Fig. S10 | The results derived using HCP validation data. For details, see Fig. / and 2.
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Fig. S11 | The results derived using an independent data from SVH. For details, see Fig. [ and 2.
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Data S1 | Significant gene lists correlated with functional connectome manifolds associated with
BMI. Gene symbol with name and t-statistic as well as FDR corrected p-value are reported in the
Supplementary Data file (Supplementary Datal.xIsx).
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