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Abstract

A problem that arises frequently in high-throughput biological studies is the assessment of
technical reproducibility of data obtained under homogeneous experimental conditions. This
is an important problem considering the significant growth in the number of high-throughput
technologies that have become available to the researcher in the past decade. Although cer-
tain ad hoc and graphical methods for determining data quality have been in existence, these
methods lack statistical rigor and are not broadly applicable across different technologies.
There is an inherent need for the quantitative evaluation of the reproducibility of technical
replicates from high-throughput compound and siRNA screening, next-generation sequenc-
ing and other modern “omics” studies. To this end, we have developed an approach that
accounts for technical variability and potential asymmetry that arise naturally in the distri-
bution of replicate data, and aids in the identification of outliers. Our methods for outlier
detection rely on flexible statistical models, employ maximum likelihood methods for esti-
mation and are broadly applicable to a variety of high-throughput biological studies. We
discuss an adaptation of these methods when there are multiple replicates as well as current
limitations to these techniques. We illustrate our methods using experimental data from
high-throughput compound screening and protein expression studies as well as simulated
data. Our methods are implemented in the R package replicateOutliers and are currently
available at github.com/matthew-seth-smith /replicateOutliers.

Keywords: technical reproducibility, replicate, outlier, asymmetric Laplace, generalized
gamma, coefficient of variation, high-throughput biology, anomaly detection

1 Introduction

Advances in high-throughput technologies in the past two decades have given rise to large-
scale biological data that is measured on a variety of scales. For example, high-throughput
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compound and siRNA screening assays are specifically designed to detect interactions with
compounds by directly measuring inhibition of siRNA or kinase activity. Gene expression
studies, on the other hand, enable the simultaneous measurement of the expression profiles
of tens of thousands of genes and proteins, often from a relatively small number of biological
samples. Traditionally this has involved the use of microarray technology to measure mRNA
expression, and more recently, the use of SNP arrays to measure allele-specific expression and
DNA copy number variation, methylation arrays to quantify DNA methylation and next-
generation sequencing technologies such as RNA-Seq, ChIP-Seq etc. for the measurement of
digital gene expression.

These studies have resulted in massive amounts of data requiring analysis and interpre-
tation while offering tremendous potential for growth in our understanding of the patho-
physiology of many diseases. An important problem that often arises in these studies is the
assessment of technical reproducibility of replicate data obtained under homogeneous exper-
imental conditions. Methods for determining the quality of data obtained from microarrays
have been in existence for many years; however these methods are not readily applicable to
data obtained from other technologies. Moreover, these methods tend to rely primarily on
visualization and do not employ rigorous statistical methods. In this paper, we demonstrate
that replicate data from high-throughput biological studies exhibit asymmetry in their distri-
bution due to the data generating mechanism and provide an interpretation for it. We then
describe a model-based approach that accounts for inherent noise in replicate data and aids
in the identification of outlying observations. This data driven, probability-based, approach
borrows strength from the large volume of data available in these studies and can be used for
assessing technical reproducibility independent of the technology used to generate the data.
We illustrate our methods using case studies from high-throughput compound screening and
protein expression.

Previous methods of outlier detection (also called anomaly detection in machine learn-
ing) tend to focus on supervised or unsupervised learning (Chandola et al., 2009). We have
data to which we would like to fit a regression model or decision tree, and we wish to re-
move the points that lead to incorrect models. We can plot the residuals from the model or
use more precise methods like Cook’s distance (Cook, 1977). Once we find the anomalies,
we can remove them from the training data and re-fit the model. These methods work in
contexts where we have single measurements of our covariates, and we want to see which
ones are outliers when fitting a model. In our new context, we will be working with repli-
cated measurements of a large number of variables and looking for observations that are
significantly different from each other. The proposed methods are useful for testing whether
a new instrument, high-throughput biological assay, or compound screening experiment is
reproducible.

Let X1 and X5 denote duplicate, non-negative measurements from independent exper-
iments obtained for each of p variables in a high-throughput study. For example, the p
variables could represent genes, probes or sequence tags in gene or protein expression stud-
ies (such as microarrays, RNA-Seq or mass spectrometry) or kinase-inhibitor pairs in a
compound screening study; and X7 and X9 represent measurements of gene expression, pro-
tein expression or compound activity. In these studies, data is measured naturally on the
non-negative scale and can be used directly for our purpose without the need for transforma-
tions. Two quantities are of interest in assessing the reproducibility of technical replicates -
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the difference, A = X7 — X9, and variability in duplicate measurements. In order to account
for the potential signal-dependence of variability in assay measurements, the coefficient of
variation (Z) is used to estimate variation rather than standard deviation (or variance). Z
is the standard deviation of duplicate measurements normalized to their mean, and in this
case, reduces to

21X — X,
Z:M' (1.1)
X1+ X2

A scatter plot of Z versus A would provide a visual display of variability in duplicates as
a function of their difference. This approach is somewhat similar in principle to an MA
plot commonly used to assess data quality in gene expression microarrays where M and A
denote, respectively, the difference and mean of replicates on the logarithmic scale. The
MA plot itself owes its origins to the difference versus mean plot, proposed by Altman and
Bland (1983), to visually assess the mean-variance relationship in replicate data. However
important differences exist between this and our proposed approach, as will be shown in
subsequent sections. In order to harness the distributional properties of A and Z, the original
scale of measurements is used in all computations. The use of Z is a robust alternative to
estimate the variability of replicates that automatically incorporates its mean dependence,
and plotting it against A provides an approach for identifying outlying observations while
accounting for inherent noise in assay measurements.

It is easy to show that for X1, X5 € R*, we have A € R and Z € [0,v/2). By using both
A and Z, we have measures of absolute and relative differences between measurements. The
method presented by Anastassiadis et al. (2011) provides a framework for duplicated data
X1 and Xs. For measurements of inhibition for different pairs of kinases and commercially-
available inhibitors presented in the aforementioned paper, the transformation from (X7, X)-
data to (A, Z)-data produces a plot resembling a “volcano plot” commonly seen in graphs of
fold-change (also known as biological significance) against statistical significance in genomic
studies (see Supplemental Information (SI), Supplementary Figures 1 & 2).

While we do not know the true data generating models for X; and X5, we can fit different
probability density functions (PDF) with the proper support to the data points. If we are
dealing with non-negative data, we may start by assuming that the data are generated by
independent exponential models, where X; ~ Exp()\;),A; > 0 has the PDF

Aiexp(—=Aix)  if x>0

Ixi(@) :{ 0 otherwise

Exponential models arise naturally in modeling biological data. If an underlying hidden
variable takes values greater than 1, then we may model it as a Pareto distribution, and
its logarithm (which we can measure) will have an exponential distribution (Rice, 2007).
If we wish to measure the difference between these log-transformed variables, we should
expect our data to have an asymmetric Laplace distribution (see SI, §1, for more details).
Purdom and Holmes (2005) used this reasoning to demonstrate that two-color microarray
data, expressed as the log-ratio of red and green channel intensities, exhibits the asymmetric
Laplace distribution, meaning we can theoretically model the log-intensities of the red and
green channels as exponential distributions. Other applications of Pareto distributions and
their generalizations for high-throughput biological data include modeling mRNA expression
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in Serial Analysis of Gene Expression (SAGE) studies and modeling the distribution of
PM (perfect match) expression intensities in oligonucleotide Affymetrix microarray data
(Kuznetsov, 2001; Wu et al. 2003). After further adjustments, Robinson and Smyth (2007)
showed that data obtained in SAGE studies is similar in structure to digital gene expression
data obtained from next-generation sequencing technologies such as RNA-Seq and ChIP-Seq.
Marioni et al. (2008) compared the technical reproducibility of RNA-seq with that of gene
expression arrays. Assessing reproducibility also has many applications in compound and
siRNA screening studies as evidenced in the works of Anastassiadis et al. (2011, 2013) and
Duong-Ly et al. (2016).

We first describe the compound screening data and methods presented in Anastassiadis
et al. (2011, 2013) and expand it to more generalizable probability-based methods. These
methods work explicitly for measurements done in duplicate, but when there are more than
two replicates, we can consider every pair-wise comparison. The most conservative com-
parison of the pairwise method would then consider a set of replicates to be an outlier if
any of the pairs would count as an outlier (we could alternatively make a different arbitrary
choice). We then illustrate the utility of our new methods using this data as well as protein
expression data from another study, both generated at Fox Chase Cancer Center (FCCC).

2 Fitting statistical models to A and 7

Using data from duplicated experiments measuring the effect of 178 commercially available
kinase inhibitors against a panel of 300 recombinant protein kinases, Anastassiadis et al.
(2011) fit the difference A in kinase activities to a symmetric Laplace distribution. Later,
Anastassiadis et al. (2013) extended this approach to the asymmetric Laplace distribution
using 181 kinase inhibitors against a panel of 292 kinases that significantly overlapped with

the previous set. Formally, for parameters o > 0, k > 0, and # € R, if X ~ Exp(@) and
Xo ~ Exp(%) are independent exponential random variables, then A =6+ X; — X5 has an
asymmetric Laplace distribution (Kotz et al., 2001; Johnson and Kotz, 1970b). We denote
this as A ~ AL*(0,k,0), with CDF

260 ifs<p

Fp()={ =" 2.1
o) 1=l 00 5> 0. 2y

The star notation indicates this choice of parametrization. The expected value of A is
o (1

E[A] = p+ 6, where p = W(E — k), and its variance is Var(A) = o+ p?. It is important
to note that the variance depends on the mean unless ;=0 (or, equivalently, x = 1) which
results in the symmetric Laplace distribution (Kotz et al., 2001). An interesting property
of the Laplace family is that the tails are heavier relative to the Gaussian family which
makes it particularly useful for modeling data with a higher probability of extreme values.
Supplementary Figure 3 illustrates the shapes of members of this family based on different
choices of parameters.

Anastassiadis et al. (2011, 2013) used the vglm function in the VGAM package in R to

compute maximum likelihood estimates (MLE) 6, 4,6 (and hence ) by fitting a symmetric
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or asymmetric Laplace distribution to A using the data (Yee, 2018; R Core Team, 2018). In
addition, we could also consider 95% confidence intervals for logx and 6, setting either to
the null value of 0 if the confidence interval contains 0. Using the MLEs, we consider all of
the data pairs for which A is within k£ = 1 or k = 2 standard deviations away from fi+0 (the
mean of the distribution, not the mode) to not be outliers. We remove these non-outliers
(as well as the values with the top ¢ = 1% and bottom b= 1% of Z-values) and then fit
either a log-normal or Weibull distribution to the remaining points’ Z values, with the R
package extremevalues (van der Loo, 2010“717). This package finds MLEs for the model
parameters. We determine the value above which we would not expect more than N, =1
observations (and below which we would not expect more than N; =1 observations) for Z
given our remaining pairs of data points. Any Z-values above this level (including the top ¢
and bottom b, if necessary) are considered outliers in our data.

The above approach does not assume an underlying data generating model and benefits
from readily-available R code. The log-normal and Weibull distributions give us flexibility for
fitting non-negative distributions to Z, and Kundu and Manglick (2004) created a guide for
which one to use for different data sets. This method, however, does not reflect the support of
the random variable Z ([0,+/2)) given positive random variables X1, X5 and, thus, motivates
the development of probability-based methods that depend on the joint distribution of (A, Z)
or marginal distributions of A and Z.

3 Methods based on the exponential model

As alluded to earlier, we may not know that the data is exponentially distributed, only that
it is non-negative. We would make this assumption if we have reason to believe that it might
be correct or simply for the computational ease of calculating the joint and marginal PDFs
of A and Z (Rice, 2007; Kotz et al., 2001; Purdom & Holmes, 2005; Kuznetsov, 2001; Wu
et al., 2003).

The method in Anastassiadis et al. (2013) assumed A had an asymmetric Laplace distri-
bution, meaning X; and X3 could be modeled as independent exponential distributions. We
did not use this information about the distributions of X; and Xy for finding the distribu-
tion of Z, meaning we also lose the dependence between A and Z. Our new approach, then,
would be to start with the assumption that X; ~ Exp(\1) and Xy ~ Exp(Ae2) are indepen-

dent exponential random variables with A\ > 0 and A2 > 0. For simplicity, define v = g—;g,

and hence 0 < ( < V2 implies 0 <y < 1. If A\ # A9, which we will call the asymmetric case,


https://doi.org/10.1101/2020.08.07.240473
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.07.240473; this version posted August 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

we have the following joint cumulative density function for (A, Z):

(A1v+29)8

A A2(1—7) T—v .
1(>\2w+12§(>\1+>\2) if 0 <0,0<¢ <2

Ape2? .
Py 1f5§0,(>\/§
_ 200 (2N -1DA)3

/\ —/\

Fa 7(0,C) =
A7Z( 7C) )\1)\2(1_"_7) 6_ ()‘12‘(/'\}/2—:’1))\/55

(A tAey)(Ae=A1)

Ao (1-9°) :
+ (/\1+/\)\2’Y)()\17+)\2) i£0>0,0=¢=< V2
1_)\1T2)\2€_)\15 1f5>0,(>\/§
0 if ( <0.

The joint CDF (A, Z) for the symmetric case, i.e, when A\; = Ay = A, is shown in SI, §2.1.2.
The forms of the symmetric and asymmetric CDFs only differ in the region where § > 0 and
0<(< V2. We can find the marginal distributions of A and Z from these CDFs, using
FA(0) = lim¢ 00 FA 7(0,¢) and Fz(C) = lims_,o Fa z(0,¢). For the asymmetric case,

A 20 :
FA(6) = /\ﬁl/\ze 2 if6<0
1— )\1+)\2€_)‘15 if 6 >0,

which means A ~ AL*(0, 1/%, \/ ﬁ) marginally. For the symmetric case,
1.\ :

_ € if 6<0

Fa(0) { 1—L1eM if 5> 0,

which means A ~ AL*(0,1, @), marginally, which we can also write as A ~ L£(0, ‘[) for a
symmetric Laplace distribution (Kotz et al., 2001).
The marginal distribution for Z is not familiar. For the asymmetric case, Z has the CDF

0 if (<0
_ Aido(1-7%) :
FAO=1 mitiditurg H0<C<V2
1 if (>+2
and the PDF
V2X1 A0 V21 Ao F0< (<
2(¢) = dﬁ;f(@ = ((Al_/\Q)%'f‘)\l'i‘)\Q)z + ((M—M)%—Hq—i—&)z H0scs V2
¢ 0 otherwise.
For the symmetric case, Z has the CDF
0 if (<0
1— .
Fz(Q)=1 T =75 H0<¢<V2
1 if ¢ >+/2
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and the PDF

Sl

_sz(C)_{ s if0< (<2

12(6) = da¢ 0 otherwise.

The forms of the marginal CDFs and PDFs agree between the two cases because the only
differences between their joint CDFs above disappear as either ( — oo or § — co. We have
also shown that when X1, Xo ~ Exp()\) are d.i.d., Z ~ U(0,4/2). The derivations of these
marginal PDFs and CDFs are provided in SI, §2.1.1.

Now that we have these CDFs, we can use them for outlier detection. After first deciding
to fit exponential distributions to X; and X9, we use the vglm function in the R package VGAM
to fit an asymmetric Laplace distribution to the difference A. We could alternatively fit an
exponential distribution to each data vector independently and obtain the MLEs A = )%1
and \g = X% (Rice, 2007). We take the former approach instead so that we can get a 95%-
confidence interval for logx, deciding to use the symmetric case if this interval includes 0

(with A = g) and the asymmetric case if it does not include 0 (with A\; = @ and Ao = (\T/Z)
We can still test the hypothesis § = 0 for the asymmetric Laplace distribution, even though
our derivation of the distributions for A and Z above did not assume this. If we determine
that 6 # 0, we can use the same probability functions from before for (A— 0,7 ) instead of
(A, Z).

Once we have either (5\1 , 5\2) or A, we decide whether we will detect outliers using the joint
or marginal CDFs above. If we have reason to believe there should be a heavily-populated
band around A =0 on the (A, Z)-plot, for example due to consistent measurement error,
then we will use the marginal method. We consider all of the points with values for A within
k=1 or k =2 standard deviations (of A) away from fi+0 to not be outliers. We next
calculate

0(Q)=P(Z = () =1-Fz(C)

for the remaining points, without re-fitting them to another distribution. Using a pre-
specified cutoff-value 0 < ¢* < 1 (like 0.05), we decide that all the points not in the central
band with ¢({) < ¢* are outliers. We assign the probability ¢ =1 to points in the central
band (for A) so that all points have a g-value, and all the points in the middle will have
q(6,¢) > ¢* for 0 <g* <1.

If we decide to use the joint CDFs, for example when there is not a well-defined band
around A = 0, then for each point, we calculate

syl P(A<6,2>¢) = Fp(0)—Faz(6,0) if 0 <0
MWO0=VPA>62>0) = 1-Fpd) - Fz(O)+ Faz(6,0) if6>0

because Fip(§) =P(A <6), Fz(¢) =P(Z <(), and Fa z(6,¢) =P(A <6,Z < () by definition.
Using the same value for ¢*, we decide that all points with ¢(d,() < ¢* are outliers. In practice,
we will really calculate these probabilities for A — 8, setting = 0 if the 95% confidence
interval for ¢ includes 0.

The primary advantage of these methods over the previous one, besides the more ac-
curate distribution for Z, is the interpretability. Instead of defining a set of parameters
(k,t,b, Ny, N;) and deciding whether to use a Weibull or log-normal distribution for Z, we
get an estimated probability for every point after only deciding whether to use the joint or

7
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marginal method, the confidence level for 6, the confidence level for logx, and the choice of
k (in the marginal method). We can compare which points are more likely to be outliers
than others based on the value of ¢(d,() or ¢({) assigned to every pair of data points (z1,z2).
The quantities ¢(0,¢) and ¢(¢) quantify the reproducibility of a given pair of replicates and
can be interpreted as their reliability. We can also adapt this method more easily when
there are more than two replicates: we check every pair-wise comparison for outliers using
this method and we divide the cutoff value ¢* by the number of comparisons (similar to a
Bonferroni correction in multiple hypothesis testing) so that we do not over-estimate how
many outliers there are (Rice, 2007).

4 Methods based on the generalized gamma model

While we were able to find closed-form CDFs for (A, Z) jointly and for A and Z marginally
when we assumed X7 and X9 had independent exponential models, these cover only a fairly
limited class of probability models. Exponential models only have one parameter A > 0 and
this parameter only determines the scale of the PDF, not the shape.

We might want to use a richer class of probability models with more parameters (which we
would estimate using maximum likelihood methods). Both gamma and Weibull models gen-
eralize the exponential model, but we would then need to decide which one to use. Instead,
we use the generalized gamma (GG) model (Jackson, 2016), of which the gamma, Weibull,
and exponential models are all special cases. There are two different parameterizations for
the generalized gamma PDF. For our purposes we will use the parametrization used by the
R package flexsurv, given by Johnson and Kotz (1970)*. The PDF of X; ~ GG(«y, f;,¢;) is

M 7(/5%)5 f > O
Ix; (x]|ow, Biyci) = { W%F(ai)e hr=

0 otherwise ’

where «; >0, 3; >0, and ¢; > 0,7 =1,2. The GG model has three different parameters
we can tune (as opposed to the usual one or two for most probability models), so many
familiar models with support on Ry U {0} are special cases. These include the gamma,
exponential, chi-square, Weibull, half-normal, chi, Rayleigh and Maxwell-Boltzmann, thus
making it an extremely flexible family that allows modeling of a variety of shapes. These
models have been described in Rice (2007), Johnson and Kotz (1970)%, German (2010) and
Stacy (1962). Specific details on the connection between these models and the GG fam-
ily are provided in SI, §2.3. We cannot directly find a closed-form solution for the joint
CDF or PDF for (A,Z) like we did under the exponential assumption. Instead, we will
use a variable transform and change of variables from the joint PDF of (X7, X5), assuming
X1 ~GG(ay,B1,c1) and Xo ~ GG(ag, f2,c2) are independent. We will find MLEs for each
of these six parameters and will not test the hypotheses that any of them are equal. The
derivation of the joint density of (A, Z) is detailed in SI, §2.3.1, and this density is given by


https://doi.org/10.1101/2020.08.07.240473
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.07.240473; this version posted August 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

faz(6,Clar, Bi,c1,a2,82,c2) = leXz(‘D(g) |041,51761,a2,52702)|det([D@(g)])

grrmtniay (€ + D8 exp(~

Gy (C8 =192 exp(—((F ~1)55,)"2) %
V26
2cv?

if0>00<(<V2

+ D5 exp(— (=2 + 1))

— D) exp(—((= 7 = 1)) ) x
(~3m8)

2cv?

if 0 <0,0<¢<V2
0,otherwise.

We do not have a closed-form solution for the joint CDF of (A, Z), but we can use numerical
integration to find the probability that a point is not an outlier, such as the adaptIntegrate
function in the R package cubature (Narasimhan and Johnson, 2018). We can use the
flexsurvreg function in the R package flexsurv to get MLEs for (071,31,61) and (@Q,Bg, é2)
(Jackson, 2016). In some cases, it would be helpful to provide flexsurvreg with initial val-
ues for the parameters. For example, if we suspect the data follows a distribution similar to
a Weibull, then we start with &;,4,.0 = 1. We then define

Bflalc}*(al) ((

[S S

C
652%%(&2) (<_ ¢

PA<6,2>C) = O fgﬂfA,Z(a,b|0?1,31,51,0?2,52,52)dbda if 6 <0

Q((S?C):{ 0o 2 P N SN . :
P(A>6,Z>() = [; fC fA,Z(a,b|a1,61,01,0z2,52,02)dbda ifd>0

and the outlier determination parameter 0 < ¢* < 1. We decide that if (x1,x2) has ¢(6,¢) <¢*,
then (x1,x2) is an outlier.

We cannot directly adapt the marginal method to the GG assumption, since we would
need the marginal mean and standard deviation for A. Our work-around will be to fit
GG models to X7 and X9 to get MLEs for (@1,31,61) and (dg,@g,ég), and also to fit an
asymmetric Laplace model to A = X7 — Xs like we did before. We use 95%-confidence
intervals to determine if the parameters x or 0 should be 1 or 0, respectively. We then filter
out the points with A within £ =1 or k = 2 standard deviations from ,&—l—é as non-outliers
(assigning them ¢(6,{) = 1). Even though the difference of two independent GG random
variables is only an asymmetric Laplace distribution in the special case of exponentially
distributed data, we make this simplification because there is not a closed-form solution in
the more general cases. However, empirical evidence suggests that the asymmetric Laplace
model closely approximates the distribution of A in this case.

For the remaining points, we use the estimates for (@1,31,61) and (072,32,62) calculated
from all of the points to find the marginal probabilities. Using the expression for
fA7Z(5,C|d1,31,€1,d2,32,62) above, the marginal PDF for Z is

A A (X) A A
fz(Cld, B1,¢1, 02, B2,62) = /_OO Ia.z(a,Clar, B, ¢, da, B2, 6)da.

Like before, we can accomplish this integration numerically with the adaptIntegrate func-
tion in the R package cubature (Narasimhan and Johnson, 2018). Then the probability that

9
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we observe a value ( for Z is

q(¢) = P(Z>¢()
= fcﬁfz(md\laﬂlvé\l;O?Q,BZ,CAQ)db
- fCﬁfSOoofA,Z(aab|0?17517€1,0?2,32,62)dadb.

We define an outlier determination parameter 0 < ¢* < 1 and decide that if (x1,22) was not
removed as part of the middle band on the (A,Z) plot and has ¢(¢) < ¢*, then (z1,z2) is
an outlier. We can adapt these pairwise methods to the case of more than two replicates by
using adjusted values for ¢* as outlined before. Methods based on the Weibull and gamma
models, two important special cases of GG, are outlined in SI, §2.2.

5 Application to simulated data

We will now simulate data that looks like the “sideways volcano plot” and use the joint and
marginal methods to find the outliers. We will create these plots by simulating exponentially
distributed data for X; and X5 to populate points in the middle band of these plots. For
the “wings,” we will generate data from gamma, Weibull, or GG models for X; and X9 with
different parameters tuned to make the overall (A, Z)-plot look like the plots from real data
(Supplementary Figures 4, 5 & 6, respectively). In each case, there will be a total of 10*
data points.

To find outliers among the simulated data, we use the original asymmetric Laplace-
Weibull method, the joint and marginal exponential methods, the joint and marginal GG
model-based methods. The parameters for these methods will be the defaults: k=1, ¢t =
b=0.01, N, = N; =1, and 95%-confidence intervals for # and x. The asymmetric Laplace-
Weibull method divides the points by putting about 78.1% in the middle band (Status =0),
21.1% in the lower “wings” (Status = 1), and 0.7% in the outlier regions (Status = 2). The
joint exponential method identifies about 0.4% of pairs of observations as outliers at the
¢* = 107% cutoff level. For GG model-based methods, we use the package parallel that is
part of the R base package (R Core Team, 2018). We plot the calculated probabilities and
outlier statuses in Supplementary Figures 7, 8 & 9.

The joint methods seem to achieve the desired results for all three types of simulated
data. For GG data, some of the points with small A but Z close to v/2 may have probabilities
smaller than what we calculate for points with larger A values, thus indicating that these
are outliers (Supplementary Figure 9). Since most of the middle band still contains smaller
Z values, we can ignore this problem for few points with large Z values. These only occur
with small A values when both X7 and X5 are close to 0. These methods can also consider
points that are just slightly off of the middle band as non-outliers. Overall, the performance
of the joint methods is similar across the three data generating mechanisms.

The marginal methods work the best for GG data, where the middle band is the thinnest.
We need much larger values of the cut-off, ¢*, to find outliers than we did when using the joint
methods; this is acceptable because the newly proposed methods allow us to use different
cut-offs for each data set. Unlike when we used the joint method, if a point has a value
for A just slightly off of the middle band and a large Z value, then it can have a small g,
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particularly for data generated from the gamma (Supplementary Figure 7) or Weibull model
(Supplementary Figure 8). If we have reason to believe or expect that that there will be
points in this region, then the joint method - exponential or GG - would be the appropriate
methods to use, depending on how much computational power we can afford to use.

6 Application to high-throughput biological data

Next we will use the methods developed in this paper to find outliers in real biological
data. We will utilize the compound screening data from Anastassiadis et al. (2011, 2013)
described in §1 and also data from a proteomics study in which triplicate measurements of
protein expression of kinases were obtained from leukemia cell lines. These data sets were
generated in two different laboratories at FCCC. Where we encounter missing replicates in
the triplicate proteomics data set, we have a choice of computing the minimum ¢ value only
for the pairs present or computing ¢min only for sets with all three replicates (a complete
case analysis). For simplicity, we will do the latter.

6.1 Compound screening

We can see from the plot of the kinase inhibitor data in Supplementary Figure 1 that we
do not have the clearly-defined sections needed for optimal use of the asymmetric Laplace-
Weibull and marginal methods. The joint method will probably work the best. The max-
imum likelihood estimation for the GG model in the R function flexsurvreg assumes the
data is non-zero; hence we need to replace all zeros in this data set with a small value (0.1)
(Jackson, 2016). We create the (A, Z)-plot for this data colored by the outlier status and
calculated probabilities in Figure 1. To better compare the different outputs, we use different
outlier cutoff values ¢* (Figures 2, 3, 4 & 5).

The joint exponential method identifies about 0.4% of the kinase-inhibitor pairs as outliers
at the ¢* = 10~* cutoff level. Except for the few points clustered around (A, Z) = (0,v/2)
(which occur when both X; and X5 are close to 0), this method identifies as outliers all of the
points with large A (Figure 2). This method requires a much smaller ¢* value to find roughly
the same numbers of outliers as the other three methods. The marginal exponential method
identifies about 0.6% of the points as outliers at the ¢* = 0.8 cutoff level and about 0.2% at
the ¢* = 0.7 cutoff level (Figure 3). The joint GG model-based method identifies about 0.4%
of the points as outliers when ¢* = 0.05 and about 0.2% as outliers when ¢* = 0.01 (Figure
4). At ¢* = 0.3, the marginal GG model-based method considers about 0.5% of the points
to be outliers, and at ¢* = 0.2, it considers about 0.2% of the points to be outliers (Figure
5). The different methods seem to agree on how many outliers there are, but not on exactly
which points are the outliers.

Since so many points have A =~ 0 in the volcano plot, both marginal methods consider all
of the points away from this line to have significant A values. The marginal methods then
only use the Z of these remaining points to calculate ¢ and find outliers. The joint exponential
method uses both A and Z, and considering how many points are around A = 0, the joint
method considers points with larger A values to be outliers first. Unlike other methods, the
joint GG model-based method seems to consider many of the points in the middle band to be
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outliers, i.e., points with high Z and A ~ 0, instead keeping points with small Z and larger
A values as non-outliers. The joint exponential and and marginal GG methods help isolate
the middle band and some of the “wings” from the remainder of the points with smaller
cut-offs ¢* and, thus, offer a flexible and more practical approach for identifying outliers.

6.2 Protein expression

Next, we consider proteomics data consisting of protein expression of kinases obtained using
Multiplexed Inhibitor Bead (MIB) assays from leukemia cell lines. The measurements rep-
resent kinase SILAC (stable isotope labeling by amino acids in cell culture, Ong et al., 2002)
ratios relative to a super-SILAC reference sample. Lysates from cancer cells were mixed in
a 1:1 ratio with a super SILAC reference sample and protein kinases isolated using MIB as-
says and subjected to liquid chromatography with tandem mass spectrometry (LC-MS/MS).
Quantitation of kinase levels was performed using MaxQuant Software (www.maxquant.org)
as a ratio of kinase to super-SILAC reference sample (Kurimchak et al., 2019).

These experiments were done in three sets of triplicates for each of 234 kinases and
resulted in a total of 579 with complete data. Thus, it provides us with the opportunity to
evaluate our methods when there are more than two replicates. Since the original asymmetric
Laplace-Weibull method does not produce a g-value, we can only test the joint and marginal
methods (for both the exponential and GG assumptions). For the remaining four methods,
we calculate the probabilities ¢ for each pair-wise comparison of replicates (X7 vs. Xa, Xy
vs. X3, and X3 vs. Xj) and determine the minimum g-value for each triplicate for each
method. For both marginal methods, we assign ¢ =1 in the middle band. We plot the
empirical distributions of the minimum ¢-values in Supplementary Figure 10.

The empirical plots in Supplementary Figure 10 suggest that we use cutoffs of ¢ ,,, =
0.025 for the joint exponential method, ¢, = 0.2 for the marginal exponential method,
qhin = 0.025 for the joint GG method, and ¢,;,, = 0.125 for the marginal GG method. Out
of 579 total data points (each in triplicate), these cutoffs identify 70, 3, 4, and 3 outliers,
respectively. We should probably use a smaller cutoff value for the joint exponential method,
and after decreasing ¢, to 10~% we finally get 8 remaining outliers. Since the joint expo-
nential method produces so many more ¢,,;, values clustered around 0, we probably should
rely on one of the other three methods for finding the outliers in this data set.

7 Summary and Discussion

We presented five different methods for finding outliers in high-throughput biological data
and highlighted their utility in novel applications involving experimental data from cancer
studies. Ideally, one would use exponential model-based methods when there are enough
data points where computational intensity becomes an issue but when one still wants more
accuracy than the original asymmetric Laplace-Weibull method. One should also check the
empirical distribution of (A, Z) in order to choose a joint probability or marginal probability
model-based method. For exponential and GG model-based methods, the estimated proba-
bilities allow the user to set their own cutoff for finding outliers, allowing the analysis to be as
conservative as needed. These four methods also allow different schemes for comparing the
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probabilities calculated for each pair of replicates when there are more than 2 replicates. Our
analysis assigned the minimum g¢-value to each trio of measurements, but other approaches
(like using the maximum, mean, or median) are possible. There are also more schemes for
dealing with missing data than the complete case analysis used for the triplicate proteomics
data.

The methods developed in this paper are implemented in the R package replicateQutliers
which is available at Github (www.github.com/matthew-seth-smith /replicateOutliers). While
the asymmetric Laplace-Weibull method and exponential methods run quickly and reliably,
the GG model-based methods’ reliance on two-dimensional numerical integration makes the
run time of their implementation longer. We needed to run numerical integration in paral-
lel on FCCC’s High-Performance Computing (HPC) cluster, while the other three methods
worked quickly on a laptop. A total of 10 nodes with 8 cores each, and two 2.4 GHz Intel
E5-2620 v3 CPUs per core, with 128Gb of memory per node were utilized for this purpose
on the HPC cluster. GG model-based methods also require the data to be non-zero, mean-
ing any zeros in a real data set should be set to some small positive value. Exactly which
small positive value (or values) we choose is of course arbitrary and depends on the scale of
the positive data. One approach is to use randomly generated data from U(0,¢) for some
small € > 0 to replace the zeros. If possible, the user should still try to use GG model-based
methods because of their flexible structure; and fitting more parameters to the data is likely
to make outlier identification more accurate. This is made possible by the large volume of
data available in high-throughput studies. Overall, GG model-based methods offer modeling
flexibility while exponential model-based methods offer a faster approach based on a closed
form solution to evaluating the reproducibility of replicates. We were able to see increased
accuracy in the triplicate proteomics data analysis, where marginal exponential and both GG
model-based methods roughly agreed on the number of outliers, while the joint exponential
method did not.

The cut-offs ¢* play an important role in identifying outliers and its choice should be data
driven and utilize any prior knowledge on the data generating mechanism. It may not be
possible to use the same ¢*-value for every method because of variations in their scales. This
becomes apparent from comparing the joint and marginal methods. For each method, there
might be a way to set standards for ¢*; but it would really depend on the specific data set at
hand. For example, it would depend on the number of replicate pairs; the numbers of points
in the central band, “wings,” and “upper probable-outlier regions”; and how close the wings
and upper regions are. A practical approach would be to try different ¢*-values in order to
identify the ones that give an acceptable outlier frequency, and then finding those outliers.
If a joint method gives a high outlier frequency even with a large ¢* cutoff, then it suggests
that the data are not of good quality, i.e., not reproducible. Overall, our results indicate that
the underlying model assumptions are much less important when applying these methods to
high-throughput biological data. Each proposed method provides unique insight and offers
a way to interpret the data; in addition, methods based on other special cases of interest
such as the Weibull and gamma are detailed in SI, §2.2.

Although we developed these methods with high-throughput biological data in mind, we
can easily apply them to other biomedical data, public health screening, and testing the
performance of mechanical and electronic devices. The approaches used in developing these
methods can also lead to creating schemes for data following a known distribution, including
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both bounded intervals and all of R.

Acknowledgements

The work of MSS was supported by a Summer Undergraduate Research Fellowship at FCCC
while he was pursuing his dual degrees in mathematics and biostatistics at Yale University
as part of its five year BS/MPH program. The work of KD was supported in part by NIH
grant P30 CA 006927. The authors are grateful to Dr. Jeffrey Peterson and Dr. James
Duncan of the Cancer Biology Program at FCCC for providing their data sets to be used in
the evaluation of the proposed methods.

References

[1] Altman DG, Bland, JM. (1983). Measurement in medicine: the analysis of method com-
parison studies. The Statistician. 32 (3): 307-317.

[2] Chandola V, Banerjee A, Kumar V. Anomaly detection: A survey. ACM Computing
Surveys (CSUR). 2009;41(3):1-72.

[3] Cook RD. Detection of influential observation in linear regression. Technometrics.
1977;19(1):15-18.

[4] Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR. Comprehensive as-
say of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nature
Biotechnology. 2011 Oct 30;29(11):1039-45. doi:10.1038/nbt.2017. PMID: 22037377; PM-
CID: PM(C3230241.

[5] Rice JA. Mathematical Statistics and Data Analysis: Third Edition. Belmont, CA:
Thomson Higher Education; 2007.

(6] Kotz S, Kozubowski TJ, Podgorski K. The Laplace Distribution and Generalization:
A Revisit with Applications to Communications, Economics, Engineering, and Finance.
Boston: Birkhauser, 2001.

[7] Purdom E, Holmes SP. Error distribution for gene expression data. Statistical Applica-
tions in Genetics and Molecular Biology. 2005;4(1):16.

[8] Kuznetsov VA. Distribution associated with stochastic processes of gene expression in a
single eukaryotic cell. Journal of Applied Signal Processing. 2001;4: 285-296.

9] Wu Z, Irizarry RA, Gentleman R, Murillo FM, Spencer F. A model-based background
adjustment for oligonucleotide expression arrays. Technical Report, Johns Hopkins Uni-
versity, Department of Biostatistics. 2003.

[10] Robinson MD, Smyth GK. Moderated statistical tests for assessing differences in tag
abundance. Bioinformatics. 2007;23(21):2881-87.

14


https://doi.org/10.1101/2020.08.07.240473
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.07.240473; this version posted August 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[11] Marioni JC, Mason CE, Mane SM, et al. RNA-seq: An assessment of technical repro-
ducibility and comparison with gene expression arrays. Genome Res. 2008;18(9): 1509-
1517. doi: 10.1101/gr.079558.108.

[12] Anastassiadis T, Duong-Ly KC, Deacon SW, Lafontant A, Ma H, Devarajan K, Dun-
brack RL Jr, Wu J, Peterson JR. A highly selective dual insulin receptor (IR)/insulin-like
growth factor 1 receptor (IGF-1R) inhibitor derived from an extracellular signal-regulated
kinase (ERK) inhibitor. Journal of Biological Chemistry. 2013 Sep 27;288(39):28068-77.
PMID: 23935097; PMCID: PMC3784719.

[13] Duong-Ly KC, Devarajan K, Liang S, Horiuchi KY, Wang Y, Ma H, Peterson JR. Kinase
inhibitor profiling reveals unexpected opportunities to inhibit disease-associated mutant
kinases. Cell Rep. 2016;14(4): 772-781. https://doi.org/10.1016/j.celrep.2015.12.080.

[14] Yee, TW. VGAM: Vector generalized linear and additive models. R package version
1.0-5. 2018. https://CRAN.R-project.org/package=VGAM.

[15] R Core Team. R: A language and environment for statistical computing. R Foundation
for Statistical Computing. Vienna, Austria. 2018. https://www.R~project.org/.

[16] “van der Loo, MPJ. extremevalues, an R package for outlier detection in univariate
data, R package version 2.3, 2010.

[17] ® van der Loo, MPJ. Distribution based outlier detection for univariate data, Discussion
paper 10003, Statistics Netherlands, The Hague (2010).

[18] Kundu D, Manglick A. Discriminating between the Weibull and log-normal distribu-
tions. Naval Research Logistics. 2004;51: 893-905. doi:10.1002/nav.20029.

[19] Jackson C. flexsurv: A platform for parametric survival modeling in R. Journal of
Statistical Software. 2016;70(8): 1-33. doi:10.18637/jss.v070.i08.

[20] “Johnson NL, Kotz, S. Distributions in Statistics: Continuous Univariate Distributions-
1. New York: Wiley; 1970.

[21] ®Johnson NL, Kotz, S. Distributions in Statistics: Continuous Univariate Distributions-
2. New York: Wiley; 1970.

[22] German, R. Parametric Survival Models. Princeton: 2010.
http://data.princeton.edu/pop509/ParametricSurvival.pdf.

[23] Stacy EW. A Generalization of the Gamma Distribution. The Annals of Mathematical
Statistics: 1962.

[24] Hubbard JH, Hubbard BB. Vector Calculus, Linear Algebra, and Differential Forms:
4th Edition. Ithaca, NY: Matrix Editions; 2009.

[25] Narasimhan B, Johnson SG. cubature: Adaptive multivariate integration over hyper-
cubes. R package version 1.4. 2018. https://CRAN.R-project.org/package=cubature.

15


https://doi.org/10.1101/2020.08.07.240473
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.07.240473; this version posted August 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[26] Alzaid AA, Omair MA. On the Poisson difference distribution inference and applica-
tions. Bulletin of the Malaysian Mathematical Sciences Society, 2010;33(1): 17-45.

[27] Skellam JG. The frequency distribution of the difference between two Poisson variates
belonging to different populatons. Journal of the Royal Statistical Society. 1946: 296.

[28] Beals R. Analysis: An Introduction. Cambridge: Cambridge University Press; 2004.
[29] Bass RF. Real Analysis for Graduate Students. Second edition, 2013.

[30] Johnson NL, Kemp AW, Kotz S. Univariate Discrete Distributions. Third ed. Hoboken,
NJ: Wiley; 2005.

[31] Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York,
2016.

[32] Auguie B. gridExtra: Miscellaneous Functions for "Grid” Graphics. R package version
2.3. 2017. https://CRAN.R-project.org/package=gridExtra.

[33] Garnier S. viridis: Default Color Maps from 'matplotlib’ R package version 0.5.1. 2018.
https://CRAN.R-project.org/package=viridis.

[34] Wickham H, Frangois R, Henry L, Miiller K. dplyr: A Grammar of Data Manipulation.
R package version 0.7.7. 2018. https://CRAN.R-project.org/package=dplyr.

[35] Kurimchak AM, Shelton, C Herrera-Montavez C, Duncan KE, Chernoff J, Duncan JS.
(2019). Intrinsic Resistance to MEK Inhibition through BET Protein-Mediated Kinome

Reprogramming in NF1-Deficient Ovarian Cancer. Molecular Cancer Research. 17(8):1721-
1734.

[36] https://www.maxquant.org.

[37] Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M.
(2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and
accurate approach to expression proteomics. Molecular Cell Proteomics. 1(5):376-86.

[Figure 1 about here.]
[Figure 2 about here.]
[Figure 3 about here.]
[Figure 4 about here.]

[Figure 5 about here.]

16


https://doi.org/10.1101/2020.08.07.240473
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.07.240473; this version posted August 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

List of Figures

17


https://doi.org/10.1101/2020.08.07.240473
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.07.240473; this version posted August 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a. Asym. Laplace-Weibull Statuzso b. Joint Exponential Prob.
. 05
. - . <
1.0- o 15 1.0 . ° 0.4
N i N i
0.2
O'O- Ll Ll ' 0'5 O'O- Ll ] ' 0 1
-100 0 100 -100 0 100 .
A 0.0 A
c. Marginal Exponential PrOb-l o d. Joint GG Prob.
. 05
O '0 ° ',
1.0- L ° 0.75 1.0- ’, : ° 04
N o . N o . 0.3
05- 9%, Sme 0.50 05-% q .
o o o oo L4 cYv 02
0.0=; ' ' 0.25 0.0-=, ' ' 01
-100 0 100 -100 0 100 :
A A
e. Marginal GG Prob.
v 1.00
L]
104 H 0.75
N L)
05- d,’!‘. ": Ad—= 0.50
00- , } 0.25
-100 0 100

A

Figure 1: (A, Z)-plot for the kinase-inhibitor data labeled by the method used to identify
outliers and colored by the outlier status and calculated probabilities. We color the plots in
the same way we did in Supplementary Figure 7 and use the same R packages to make them
(Wickham, 2016; Auguie, 2017; Garnier, 2018). To avoid overplotting, we only plot 20%
(chosen randomly) of the points in each graph, using the function ‘sample_frac‘ function in
the R package dplyr (Wickham et al., 2018).
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Figure 2: The kinase-inhibitor data with probabilities calculated using the joint exponen-
tial method, and with colors determined by various cutoff values ¢*. We use the R packages
gegplot2 and gridExtra to make them (Wickham, 2016; Auguie, 2017).
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Figure 3: The kinase-inhibitor data with probabilities calculated using the marginal ex-
ponential method, and with colors determined by various cutoff values ¢*. We use the R
packages ggplot2 and gridExtra to make them (Wickham, 2016; Auguie, 2017). Both the
joint and marginal exponential methods prioritize keeping data in the middle band.
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Figure 4: The kinase-inhibitor data with probabilities calculated using the joint GG
method, and with colors determined by various cutoff values ¢*. We use the R packages
ggplot2 and gridExtra to make them (Wickham, 2016; Auguie, 2017). Unlike both expo-
nential methods, the joint GG method emphasizes Z more than A in finding outliers. At
a g-cutoff that leaves around the same proportion of points as outliers (between 0.1% and
0.5% of the points), the joint GG method considers points with modest Z but small A to
be outliers.
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Figure 5: The kinase-inhibitor data with probabilities calculated using the marginal GG
method, and with colors determined by various cutoff values ¢*. We use the R packages
ggplot2 and gridExtra to make them (Wickham, 2016; Auguie, 2017). In both marginal
methods, we prioritize keeping points with small A, regardless of the Z value, so these plots
look more similar to the marginal exponential plots than the joint GG ones.
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