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Abstract

During their infective stages, hookworms release excretory-secretory (E-S) products, including
small molecules and proteins, to help evade and suppress the host’s immune system. Small
molecules found in E-S products of mammalian hookworms include nematode derived metabolites
like ascarosides, which are composed of the sugar ascarylose linked to a fatty acid side chain.
Ascarosides play vital roles in signaling, development, reproduction, and survival. The most
abundant proteins found in hookworm E-S products are members of the protein family known as
Ancylostoma secreted protein (ASP). ASP belongs to the SCP/TAPS (sperm-coating protein / Tpx
/ antigen 5 / pathogenesis related-1 / Sc7) superfamily of proteins, members of which have
previously been shown to bind to eicosanoids and fatty acids. These molecules are structurally
similar to the fatty acid moieties of ascarosides. The objective of this study was to determine if
the hookworm ASP; N. americanus Ancylostoma secreted protein 2 (Na-ASP-2) binds to the

ascarosides or their fatty acid moieties. We describe investigations of our hypothesis that there is
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a functional relationship between the major secreted proteins and signaling small molecules found
in hookworm E-S products. To accomplish this, several ascarosides and their fatty acid moieties
were synthesized and tested for in vitro binding to Na-ASP-2 using a ligand competition assay and
microscale thermophoresis. Our results reveal that the fatty acid moieties of the ascarosides, bind
specifically to the palmitic acid binding cavity of Na-ASP-2. Additionally, ascr#3, an ascaroside
that is present in mammalian hookworm E-S products binds to the palmitic acid binding cavity of
Na-ASP-2, whereas oscr#10 which is not found in hookworm E-S products does not bind. Future
studies are required to determine the structural basis of ascaroside binding by Na-ASP-2 and to

understand the physiological significance of these observations.

1. Introduction

Necator americanus and Ancylostoma duodenale are hookworms that infect more than 400
million of the world’s poorest people causing a disease burden of over 22 million disability-
adjusted life years (de Silva et al., 2003; Diemert et al., 2018; Hotez, 2007; Murray et al., 2014).
During the transition to parasitism, the most abundant proteins secreted by third-stage infective
larvae (L3) of N. americanus upon host entry are N. americanus Ancylostoma secreted protein 1
(Na-ASP-1) and N. americanus Ancylostoma secreted protein 2 (Na-ASP-2) (Hotez et al., 2003).
These Ancylostoma secreted protein sometimes referred to as VALs (venom allergen like) are the
major protein components of the L3 excretory-secretory (E-S) products that facilitate the evasion
and suppression of the host’s immune system and have been found in all parasitic nematodes
studied to date (Asojo et al., 2018; Darwiche et al., 2018; Gao et al., 2001; Hawdon and Hotez,
1996, Hawdon et al., 1996; Hawdon et al., 1995; Hawdon et al., 1999; Zhan et al., 2003). ASPs

belong to the SCP/TAPS (sperm-coating protein / Tpx / antigen 5 / pathogenesis related-1 / Sc7)
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superfamily of proteins, NCBI domain cd00168 or Pfam PF00188 (Gibbs et al., 2008). SCP/TAPS
proteins include plant PR-1 (pathogenesis-related 1) and CRISPs (cysteine-rich secretory protein),
which are expressed in the mammalian reproductive tract, and venom allergens from insects and
reptiles (Gibbs and O'Bryan, 2007; Gibbs et al., 2008; Gibbs et al., 2006). Members of the
SCP/TAPS superfamily are also implicated in other biological phenomena including cellular
defense such as plant responses to pathogens, sexual reproduction, and human brain tumor growth
(Ding et al., 2000; Gao et al., 2001; Gibbs et al., 2010; Gibbs et al., 2008; Hawdon et al., 1999;
Zhan et al., 2003).

SCP/TAPS proteins have either one or two ~15 kDa cysteine-rich CAP domains (cysteine-rich
secretory protein, antigen 5, and pathogenesis-related 1) as typified by the structures of Na-ASP-2
(one CAP domain) and Na-ASP-1 (two covalently linked CAP domains) (Asojo, 2011; Asojo et
al., 2005a; Asojo et al., 2011; Borloo et al., 2013; Fernandez et al., 1997; Gibbs et al., 2008; Guo
et al., 2005; Serrano et al., 2004; Shikamoto et al., 2005; Wang et al., 2005; Xu et al., 2012). The
CAP domain has an alpha-beta-alpha sandwich topology, and up to 50 % loop regions, which often
makes it difficult to predict structure by homology modelling alone (Asojo et al., 2005a; Asojo et
al., 2005b; Darwiche et al., 2016; Kelleher et al., 2014). The CAP domain has multiple cavities
and verified ligand binding regions, and the first to be identified was a large central cavity that
may contain a tetrad of residues, two His and two Glu that bind divalent cations including Zn**
and Mg?*(Asojo et al., 2018; Asojo et al., 2011; Darwiche et al., 2018; Gibbs et al., 2008; Mason
et al., 2014; Wang et al., 2010). Distinct lipid binding sites have been verified in SCP/TAPS
proteins, including phosphatidylinositol binding regions on the surface of human golgi-associated
plant pathogenesis-related protein 1 (GAPR-1) (Darwiche et al., 2016; van Galen et al., 2012; Van

Galen et al., 2010; Xu et al., 2012). A sterol binding caveolin-binding motif (CBM) of the yeast
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95  CAP proteins required for in vivo transport of cholesterol has also been identified in diverse
96  SCP/TAPS proteins (Asojo et al., 2018; Choudhary et al., 2014; Darwiche et al., 2017a; Darwiche
97  etal., 2016; Darwiche et al., 2018; Darwiche et al., 2017b; Kelleher et al., 2014). Furthermore, a
98  hydrophobic channel that binds leukotrienes with sub-micromolar affinities, allows tablysin-15,
99 an SCP/TAPS protein from the horsefly Tabanus yao, to function as an anti-inflammatory
100  scavenger of eicosanoids (Xu et al., 2012). This binding cavity is formed by conserved central
101 helices in SCP/TAPS proteins and also binds fatty acids, including palmitic acid (Xu et al., 2012).
102 Our previous studies revealed that palmitic acid specifically binds to this cavity in other
103 SCP/TAPS proteins including pathogen-related in yeast protein 1(Pryl) from Saccharomyces
104  cerevisiae hence the cavity is referred to as the fatty acid-binding cavity (Asojo et al., 2018;
105  Darwiche et al., 2016; Darwiche et al., 2018; Kelleher et al., 2014). While lipid binding had been
106  confirmed for other parasite SCP/TAPS proteins, we solved the structure of Na-ASP-2 prior to the
107 discovery of the lipid binding activity of members of this protein superfamily (Asojo et al., 2005a).
108  The impetus for the current studies is to unravel possible lipid binding functions of Na-ASP-2.
109  Our working hypothesis is that there is a functional relationship between small molecules and
110  proteins secreted in hookworm E-S products. Thus, we are interested in the ability of Na-ASP-2
111 to bind small molecules with known functions secreted by L3 hookworms. These small molecules
112 include nematode derived metabolites notably the ascarosides which regulate a diverse range of
113 phenotypes in nematodes including dauer arrest, mate attraction, aggregation and olfactory
114  plasticity (Butcher et al., 2007; Choe et al., 2012; Gallo and Riddle, 2009; Hollister et al., 2013;
115 Izrayelit et al., 2012; Jezyk and Fairbairn, 1967; Kaplan et al., 2011; Kunert, 1992; Ludewig and
116  Schroeder, 2013; Noguez et al., 2012; Rhoads et al., 2015; Sakai et al., 2013; Tarr and Fairbairn,

117 1973; Tarr and Schnoes, 1973). Ascarosides are multifunctional small molecules that interact with

page 5


https://doi.org/10.1101/2020.08.07.224964
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.07.224964; this version posted August 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

118  G-protein—coupled receptors (GPCRs) (Butcher, 2017; Park et al., 2012). Ascarosides are
119  composed of the sugar ascarylose linked to a fatty acid moiety (eg. ascr#3 (1) and oscr#10 (2),
120 Figure 1) and while ascr#3 (1) was identified in the E-S products of mammalian hookworms,
121 oscr#10 (2) was identified in other nematodes, but not hookworm (Choe et al., 2012; Gallo and
122 Riddle, 2009; Hollister et al., 2013; Izrayelit et al., 2012; Jezyk and Fairbairn, 1967; Kaplan et al.,
123 2011; Kunert, 1992; Ludewig and Schroeder, 2013; Noguez et al., 2012; Rhoads et al., 2015; Tarr
124 and Fairbairn, 1973; Tarr and Schnoes, 1973). Since the fatty acid moieties of ascarosides are
125  similar to those that are capable of binding to the fatty acid-binding cavity of ASPs, we carried out
126  studies to determine if the ascarosides or their fatty acid moieties bind to Na-ASP-2.

127

128 2. Experimental Procedures

129 2.1. Expression and purification of Pryl and Na-ASP-2

130 DNA encoding for Pryl and Na-ASP-2 were PCR amplified and cloned into Ncol and Xhol
131 restriction sites of pET22b vector (Novagen, Merck, Darmstadt, Germany), which contains a pelB
132 signal sequence to direct the secretion of expressed protein into the periplasmic space. Plasmids
133 were transformed into Escherichia coli BL21 and proteins were expressed with a C-terminal
134 polyhistidine-tag. Protein expression was induced overnight with lactose at 24°C. Cells were
135 collected, lysed and incubated with nickel-nitrilotriacetic acid beads as per the manufacturer
136 instructions (Qiagen, Hilden, Germany). Beads were washed, loaded onto a Ni>*-NTA column and
137 proteins were eluted in 60 mM NaH>PO4, 300 mM NaCl and 300 mM imidazole, pH 8.0. Prior to
138 microscale thermophoresis experiments, proteins were applied to Zeba™ spin desalting columns
139 (Thermo scientific) and the buffer was exchanged to 60 mM NaH;PO4, 300 mM NaCl, pH 8.0.

140  Protein concentration was determined by Lowry assay using folin reagent and BSA as standard.
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141

142 2.2. In vitro radioligand lipid binding assay

143 The radioligand binding assay was performed as described previously (Choudhary and
144 Schneiter, 2012; Im et al., 2005). 100 pmol of purified untagged CAP protein (Na-ASP-2 or Pryl)
145 in binding buffer (20 mM Tris, pH 7.5, 30 mM NaCl, 0.05% Triton X-100) was incubated for 1 h
146 at 30 °C with different concentrations of either [*H]-cholesterol or [*H]-palmitic acid. Protein was
147 removed from unbound ligand by adsorption to Q-sepharose beads (GE healthcare, USA), the
148 beads were washed, protein was eluted and the protein-bound radioligand was quantified by
149  scintillation counting. For competition binding assays, specified concentrations of unlabeled
150  cholesterol, palmitic acid or ligands, were included in the binding reaction. Non-specific binding
151  was determined by performing the assays without the addition of protein. Statistical significance
152 of data was analyzed by multiple t-test (GraphPad Prism, La Jolla, CA).

153

154 2.3. Microscale Thermophoresis

155  Microscale thermophoresis was performed using a Monolith NT.115 from Nanotemper
156  Technologies (Munich, Germany) (Seidel et al., 2012; Shang et al., 2012; Zillner et al., 2012). His-
157  tagged protein (Pryl or Na-ASP-2) was fluorescently labeled using the RED-tris-NTA His tag
158  protein labeling kit (Nanotemper Technologies). Labeled protein (Pryl or Na-ASP-2) was
159  subsequently added to serial dilution of unlabeled ligand (ascarosides or their fatty acid moieties)
160  in binding buffer (20 mM Tris pH 7.5, 30 mM NacCl, 0.05% Triton X-100). Each sample was
161  loaded into standard glass capillaries, and measurements were performed at 60% power setting.
162 The dissociation constant Kd was obtained by plotting the normalized fluorescence (Fnorm)

163 against the logarithm of ligand concentration. Experiments were performed in triplicates and data
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164  were fitted using the Kd model with the MO.Affinity Analysis software (Nanotemper
165  Technologies, Munich, Germany).

166

167  2.4. Synthesis of Ascarosides and ligands

168  Benzoyl protected ascarylose 8 was prepared as previously reported by Jeong and co-workers from
169  commercially available L-rhamnose 6 (Jeong et al., 2005) with the exception of a modified final
170 reduction (Figure 2). The previously reported reduction of lactone 7 with disiamyl borane (Jeong
171 etal., 2005) proved irreproducible in our hands, resulting in incomplete conversion and low overall
172 yields (~40 %). Thus, an alternative was identified involving reduction with 9-BBN to provide the
173 desired lactol 7 in improved yield (70 %). With protected ascarylose 8 in hand, we next studied
174  glycosylation at C1 to append the fatty acid side chain present in the targeted ascarosides. Previous
175  synthetic strategies to these targets involved glycosylation of secondary alcohols bearing long
176 alkyl chains with a terminal alkene which was subsequently utilized for late stage cross metathesis
177 or oxidations (Butcher et al., 2009; Hollister et al., 2013; Jeong et al., 2005; Martin et al., 2009;
178  Noguez et al., 2012; Srinivasan et al., 2012). Since we intended to study the binding affinity of
179  the natural ascarocides and their intact fatty acid moieties independently, we decided to first
180  synthesize intact fatty acid side moieties 9 and 11 and then couple them directly to protected
181  ascarylose 8 during the penultimate step of the sequence. This strategy provided rapid access to
182 ascarosides 1 and 2 along with fatty acid derivatives 3-5 for screening. Subsequent Lewis acid-
183  mediated glycosylation with BF3*Et;O of fatty acid 9 (see SI for synthetic details) and
184  commercially available acid 11 (Jeong et al., 2005) proceeded uneventfully and provided protected
185  ascarosides 10 and 12 in 68 and 66% yield, respectively. Subsequent global deprotection with

186  lithium hydroxide gave ascr#3 (1) and oscr#10 (2).
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187

188 3. Results

189  3.1. Na-ASP-2 binds cholesterol and palmitic acid in vitro

190 The in vitro cholesterol-binding activity of Na-ASP-2 was examined using increasing
191  concentrations of radiolabeled [*H]-cholesterol and a constant concentration of purified protein.
192 Na-ASP-2 displayed saturable binding of cholesterol with an apparent dissociation constant Kq of
193 2.1 uM (Figure 3A). Na-ASP-2 has similar cholesterol binding affinity as reported for other
194  SCP/TAPS family members from yeast, Saccharomyces cerevisiae (Pryl, 1.9 uM), Brugia malayi
195 (Bm-VAL-1, 0.9 uM), Heligmosomoides polygyrus (Hp-VAL-4, 1.53 uM) and Schistosoma
196  mansoni (Sm-VAL-4, 2.4 uM) (Asojo et al., 2018; Darwiche et al., 2016; Darwiche et al., 2018;
197  Kelleher et al., 2014). Furthermore, addition of equimolar or excess concentration of unlabeled
198  cholesterol reduced binding of the radioligand, indicating that binding is specific as shown in
199  Figure 3A,B.

200 Tablysin-15, a horsefly SCP/TAPS protein was shown to bind fatty acids with a
201 hydrophobic pocket formed between two central helices (Ma et al., 2011). This hydrophobic
202 pocket is observed in other SCP/TAPS proteins and we previously confirmed the ability of these
203  proteins to bind palmitic acid in vitro (Asojo et al., 2018; Darwiche et al., 2016; Darwiche et al.,
204  2018; Kelleher et al., 2014). To examine whether Na-ASP-2 can bind palmitic acid, we carried
205  out direct binding studies using [*H]-palmitic acid as radiolabeled ligand, as shown in Figure 3C.
206  Na-ASP-2 showed a saturable binding for palmitic acid with an apparent Kqof 95 uM, which is of
207  the same magnitude as previously measured for the SCP/TAPS family members from yeast (Pryl,
208  Kg=112 uM), Brugia malayi (Bm-VAL-1, K;= 83 uM), and comparable to tablysin-15 (K, = 94

209  uM) (Asojo et al., 2018; Darwiche et al., 2016; Darwiche et al., 2018; Kelleher et al., 2014). For

page 9


https://doi.org/10.1101/2020.08.07.224964
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.07.224964; this version posted August 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

210  competition binding assays, binding of Na-ASP-2 to palmitic acid was reduced in the presence of
211 unlabeled palmitic acid, indicating that binding is specific (Figure 3C, D). Taken together our
212 results indicate that Na-ASP-2 binds cholesterol and palmitic acid in vitro.

213

214 3.2. Fatty acids and ascaroside binding is selective for the palmitate-binding cavity

215 Having confirmed the ability of Na-ASP-2 to bind cholesterol, we carried out competitive
216  binding studies of ascarosides and their fatty acid moieties against radiolabeled cholesterol. At a
217 concentration of 50 pmol, the typical concentration for our cholesterol binding assay, neither
218  ascarosides (ascr#3 (1) and oscr#10 (2)) nor fatty acids (3-5) competed with the radiolabelled
219 [*H]-cholesterol (50 pmol) for binding to Na-ASP-2 (Figure 4A). We also tested if the ascarosides
220  or their fatty acid moieties bind to the fatty acid binding cavity. Our studies showed that the
221 binding of [*H]-palmitic acid by Na-ASP-2 was competed by the ascaroside, ascr#3 (1) and by all
222 the fatty acid moieties 3-5 tested with the same order of magnitude, but not by the ascaroside,
223 oscr#10 (2) (Figure 4B). We tested the ability of Pryl, a SCP/TAPS protein from S. cerevisiae,
224 an organism that does not contain ascarosides, to bind to the same ligands. Our analysis revealed
225  that while the fatty acids (3-5) competed for palmitic acid binding to Pry1, neither ascr#3 (1) nor
226 oscr#10 (2) bound to Pryl. Furthermore, addition of excess ligands (fatty acids (3-5)) competed
227  with radioligand binding while binding of [*H]-palmitic acid to Pry1 could not be competed for by
228  the addition of excess unlabeled ascr#3 (1) or oscr#10 (2) (Figure 4C). We independently validated
229  the binding of ligands to Pryl and Na-ASP-2 by microscale thermophoresis and determined
230  binding constants (Figure 5). The results of these analyses confirmed that Pryl does not bind
231  ascr#3 or oscr#10, but it binds palmitic acid and the fatty acid moieties present in ascarosides. Na-

232 ASP-2, on the other hand, bound ascr#3 (1) with a Kqof 142 uM but did not bind oscr#10 (2),

page 10


https://doi.org/10.1101/2020.08.07.224964
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.07.224964; this version posted August 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

233 which is consistent with the results obtained by the ligand competition assay and indicates that Na-
234 ASP-2 binds ascr#3 (1) through its fatty-acid binding pocket.

235

236 4. Discussion

237 We present here efficient methods to synthesize the ascarocides and their fatty acid
238  moieties. We also present data revealing that the fatty acid moieties of ascarosides compete for
239  binding to the palmitate-binding cavities of both Pryl and Na-ASP-2 but as expected do not bind
240  to the sterol binding cavity. The micromolar binding affinity of ascr#3 and free fatty acids are
241  comparable to that observed for palmitic acid to the palmitate-binding cavity of other CAP
242 proteins. While it is unclear if ascr#3 binding is physiologically relevant, the finding that ascr#3
243 (1) binds Na-ASP-2 is still interesting considering that a high relative abundance of ascr#3 (1) was
244 detected in E-S products from both the infective juvenile and adult stages of Nippostrongylus
245 brasilensis by HPLC-MS(Choe et al., 2012). It is plausible that ascr#3 (1) is present in human
246  hookworms since there appears to be a conservation of ascaroside production in families of
247  nematodes (Choe et al., 2012). A blast search of the Na-ASP-2 sequence against the N. brasilensis
248  proteins reveals several SCP/TAPs proteins, which share over 45 % sequence similarity with Na-
249  ASP-2. Even more remarkable, the residues and predicted structures of the helical regions notably
250  residues corresponding to (alpha 1 and alpha 3) that form the fatty acid-binding cavity are
251  conserved (Figure 6A). This structural similarity suggests that these proteins likely behave
252 similarly to Na-ASP-2 as we observed previously for the orthologues from B. malayi and H.
253 polygyrus. Additionally, we observed that the incorporation of the ascarylose sugar abrogated the
254 ability of these fatty acids to bind to Pryl. A comparison of the helices bordering the palmitic acid

255  binding cavities of Pryl and Na-ASP-2 reveals that Pry1 has shorter helices than Na-ASP-2, which
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256  results in a smaller hydrophobic binding pocket in Pryl compared to Na-ASP-2 (Figures 6A and
257  B). This smaller size may explain the failure of Pryl to accommodate ascaroside as opposed to
258  free fatty acids. The inability of Na-ASP-2 to bind oscr#10 (2) cannot be explained by the size
259  difference of the cavities and suggests a new hypothesis that we plan to test in future; that
260  ascaroside binding may be specific for certain SCP/TAPS proteins, indicating a possible functional
261  relationship between ascarosides and parasite SCP/TAPS proteins.

262

263 5. Conclusions

264 In summary, our results reveal that the fatty acid moieties of the ascarosides, ascr#3 (1)
265  and oscr#10 (2), bind specifically to the fatty acid binding cavity of both Na-ASP-2 and Pry1, with
266  the latter protein from Saccharomyces cerevisiae SCP/TAPS serving as a control. Additionally,
267 ascr#3 (1), an ascaroside that is present in mammalian hookworm E-S products binds
268  competitively to the fatty acid binding cavity of Na-ASP-2, whereas oscr#10 (2) which is not found
269  in hookworm E-S products did not. Interestingly, neither ascaroside bound to Pryl. Studies to
270  identify how ascarosides precisely interact with parasite CAP proteins are currently underway.
271  More studies need to be conducted to determine the physiological relevance of the fatty acid-
272 binding cavity of Na-ASP-2.
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592  Figure Legends
593

594  Figure 1. Targeted ascarosides and their fatty acid side moieties. The corresponding
595  ascarosides are ascr#3 (1); oscr#10 (2) and their side chain moieties are 3-5. Compound names are
596 3 = (R)-8-hydroxynonanoic acid, 4 = (R,E)-8-hydroxynon-2-enoic acid, and 5 = 9-
597  hydroxynonanoic acid.

598

599  Figure 2. Synthesis of ascarosides. The synthetic pathway designed for protected ascarylose 8,
600  ascr#3 (1), oscr#10 (2) are illustrated.

601

602  Figure 3. Na-ASP-2 binds both cholesterol and free palmitic acid. (A) Ligand binding of [*H]-
603  cholesterol to Na-ASP-2. Data represent mean + SD of 3 independent experiments. (B)
604  Competitive binding of unlabeled cholesterol (50 or 5000 pmol) to Na-ASP-2. Each data point is
605  the average of duplicate assays and represents the amount of [*H]-cholesterol bound relative to a
606  control containing no unlabeled cholesterol. (C) Ligand binding of [*H]-palmitic acid to Na-ASP-
607 2. (D) Competitive binding of unlabeled palmitic acid (50 or 5000 pmol) to Na-ASP-2. Each data
608  point is the average of duplicate assays and represents the amount of [*H]-palmitic acid bound
609  relative to a control containing no unlabeled palmitic acid. Data represent mean £ SD of 3
610  independent experiments. Asterisks denote statistical significance relative to the control containing
611  only the radiolabeled ligand and either purified Na-ASP-2 or Pryl. (**, p <0.001; *, p <0.01).

612
613

614  Figure 4. Binding of ascarosides to Na-ASP-2 and Pryl. (A) Free fatty acids and ascarosides

615  fail to compete with [*H]-cholesterol for binding to Na-ASP-2. (B) Free fatty acids and ascarosides
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616  compete with [*H]-palmitic acid for binding to Na-ASP-2. (C) Free fatty acids but not ascarosides
617  compete [*H]-palmitic acid for binding to Pryl. Competitive binding was tested with either 50 or
618 500 pmol of the unlabeled ligands and 50 pmol of [*H]-palmitic acid for binding to 100 pmol
619  purified Na-ASP-2 or Pryl. The ascarosides tested are (1) (ascr#3) and (2) (oscr#10) while the
620  fatty acids are 3 ((R)-8-hydroxynonanoic acid), 4 ((R,E)-8-hydroxynon-2-enoic acid), and 5 (9-
621  hydroxynonanoic acid). Data represent mean + SD of 3 independent experiments. Asterisks denote
622  statistical significance relative to the control containing only the radiolabeled ligand and either
623 purified Na-ASP-2 or Pryl. (**, p <0.001; *, p <0.01). n.s.; not significant.

624

625  Figure 5. Na-ASP-2 selectively binds ascr#3 but not oscr#10. Binding of ascarosides and their
626  fatty acid moieties by Pryl and Na-ASP-2 as measured by microscale thermophoresis. (A,
627  G) Palmitic acid; (B, H) ascr#3; (C, I) oscr#10; (D, J) (R)-8-hydroxynonanoic acid; (E, K) (R,E)-
628  8-hydroxynon-2-enoic acid; (F, L) 9-hydroxynonanoic acid. Pryl binds palmitic acid and free
629  hydroxylated nanonoic acids with similar affinities but binds neither the ascarosides ascr#3 and
630  oscr#10. Na-ASP-2 binds palmitic acid, ascr#3 and free hydroxylated nanonoic acids with similar
631  affinities but not oscr#10. The Kd values are indicated in each figure with NA (not applicable)
632 where there is no binding.

633

634  Figure 6. Comparison of fatty acid binding cavities of Na-ASP-2 and Pry1. (A) Structure based
635  alignment of Na-ASP-2, Pryl and three N. brasilensis SCP/TAPs proteins (genbank codes
636  VDL79275.1; VDL83979.1; and VDL79274.1). The sequences are aligned with clustal WOmega
637  and the secondary structural features are illustrated with the coordinates of HpVAL-4 and Pryl

638  using ESPript. (Gouet et al., 2003) The alpha helices (alpha 1 and alpha 3) that form the palmitate-
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639  binding cavity have similar lengths for Na-ASP-2 and the N. brasilensis proteins whereas Pry1 has
640  shorter helices. The secondary structure elements shown are alpha helices (a), 310-helices (1), beta
641  strands (P), and beta turns (TT). Identical residues are shown in solid red, and conserved residues
642  areinred. The locations of the cysteine residues involved in disulfide bonds are numbered in green.
643 (B) Both of the helices (a1 and a 3) forming the palmitic acid binding cavity of Pryl (cyan) are
644  shorter than those from Na-ASP-2 (gray). Also shown in magenta is the stick structure of palmitate
645  superposed from the structure of the complex of tablysin-15 with palmitate.

646
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