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 35 

Abstract 36 

During their infective stages, hookworms release excretory-secretory (E-S) products, including 37 

small molecules and proteins, to help evade and suppress the host’s immune system. Small 38 

molecules found in E-S products of mammalian hookworms include nematode derived metabolites 39 

like ascarosides, which are composed of the sugar ascarylose linked to a fatty acid side chain. 40 

Ascarosides play vital roles in signaling, development, reproduction, and survival.  The most 41 

abundant proteins found in hookworm E-S products are members of the protein family known as 42 

Ancylostoma secreted protein (ASP). ASP belongs to the SCP/TAPS (sperm-coating protein / Tpx 43 

/ antigen 5 / pathogenesis related-1 / Sc7) superfamily of proteins, members of which have 44 

previously been shown to bind to eicosanoids and fatty acids. These molecules are structurally 45 

similar to the fatty acid moieties of ascarosides.  The objective of this study was to determine if 46 

the hookworm ASP; N. americanus Ancylostoma secreted protein 2 (Na-ASP-2) binds to the 47 

ascarosides or their fatty acid moieties.  We describe investigations of our hypothesis that there is 48 
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a functional relationship between the major secreted proteins and signaling small molecules found 49 

in hookworm E-S products.  To accomplish this, several ascarosides and their fatty acid moieties 50 

were synthesized and tested for in vitro binding to Na-ASP-2 using a ligand competition assay and 51 

microscale thermophoresis. Our results reveal that the fatty acid moieties of the ascarosides, bind 52 

specifically to the palmitic acid binding cavity of Na-ASP-2. Additionally, ascr#3, an ascaroside 53 

that is present in mammalian hookworm E-S products binds to the palmitic acid binding cavity of 54 

Na-ASP-2, whereas oscr#10 which is not found in hookworm E-S products does not bind. Future 55 

studies are required to determine the structural basis of ascaroside binding by Na-ASP-2 and to 56 

understand the physiological significance of these observations. 57 

 58 

1. Introduction 59 

 Necator americanus and Ancylostoma duodenale are hookworms that infect more than 400 60 

million of the world’s poorest people causing a disease burden of over 22 million disability-61 

adjusted life years (de Silva et al., 2003; Diemert et al., 2018; Hotez, 2007; Murray et al., 2014). 62 

During the transition to parasitism, the most abundant proteins secreted by third-stage infective 63 

larvae (L3) of N. americanus upon host entry are N. americanus Ancylostoma secreted protein 1 64 

(Na-ASP-1) and N. americanus Ancylostoma secreted protein 2 (Na-ASP-2) (Hotez et al., 2003). 65 

These Ancylostoma secreted protein sometimes referred to as VALs (venom allergen like) are the 66 

major protein components of the L3 excretory-secretory (E-S) products that facilitate the evasion 67 

and suppression of the host’s immune system and have been found in all parasitic nematodes 68 

studied to date (Asojo et al., 2018; Darwiche et al., 2018; Gao et al., 2001; Hawdon and Hotez, 69 

1996; Hawdon et al., 1996; Hawdon et al., 1995; Hawdon et al., 1999; Zhan et al., 2003). ASPs 70 

belong to the SCP/TAPS (sperm-coating protein / Tpx / antigen 5 / pathogenesis related-1 / Sc7) 71 
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superfamily of proteins, NCBI domain cd00168 or Pfam PF00188 (Gibbs et al., 2008). SCP/TAPS 72 

proteins include plant PR-1 (pathogenesis-related 1) and CRISPs (cysteine-rich secretory protein), 73 

which are expressed in the mammalian reproductive tract, and venom allergens from insects and 74 

reptiles (Gibbs and O'Bryan, 2007; Gibbs et al., 2008; Gibbs et al., 2006). Members of the 75 

SCP/TAPS superfamily are also implicated in other biological phenomena including cellular 76 

defense such as plant responses to pathogens, sexual reproduction, and human brain tumor growth 77 

(Ding et al., 2000; Gao et al., 2001; Gibbs et al., 2010; Gibbs et al., 2008; Hawdon et al., 1999; 78 

Zhan et al., 2003). 79 

SCP/TAPS proteins have either one or two ~15 kDa cysteine-rich CAP domains (cysteine-rich 80 

secretory protein, antigen 5, and pathogenesis-related 1) as typified by the structures of Na-ASP-2 81 

(one CAP domain) and Na-ASP-1 (two covalently linked CAP domains) (Asojo, 2011; Asojo et 82 

al., 2005a; Asojo et al., 2011; Borloo et al., 2013; Fernandez et al., 1997; Gibbs et al., 2008; Guo 83 

et al., 2005; Serrano et al., 2004; Shikamoto et al., 2005; Wang et al., 2005; Xu et al., 2012). The 84 

CAP domain has an alpha-beta-alpha sandwich topology, and up to 50 % loop regions, which often 85 

makes it difficult to predict structure by homology modelling alone (Asojo et al., 2005a; Asojo et 86 

al., 2005b; Darwiche et al., 2016; Kelleher et al., 2014). The CAP domain has multiple cavities 87 

and verified ligand binding regions, and the first to be identified was a large central cavity that 88 

may contain a tetrad of residues, two His and two Glu that bind divalent cations including Zn2+ 89 

and Mg2+(Asojo et al., 2018; Asojo et al., 2011; Darwiche et al., 2018; Gibbs et al., 2008; Mason 90 

et al., 2014; Wang et al., 2010). Distinct lipid binding sites have been verified in SCP/TAPS 91 

proteins, including phosphatidylinositol binding regions on the surface of human golgi-associated 92 

plant pathogenesis-related protein 1 (GAPR-1) (Darwiche et al., 2016; van Galen et al., 2012; Van 93 

Galen et al., 2010; Xu et al., 2012). A sterol binding caveolin-binding motif (CBM) of the yeast 94 
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CAP proteins required for in vivo transport of cholesterol has also been identified in diverse 95 

SCP/TAPS proteins (Asojo et al., 2018; Choudhary et al., 2014; Darwiche et al., 2017a; Darwiche 96 

et al., 2016; Darwiche et al., 2018; Darwiche et al., 2017b; Kelleher et al., 2014). Furthermore, a 97 

hydrophobic channel that binds leukotrienes with sub-micromolar affinities, allows tablysin-15, 98 

an SCP/TAPS protein from the horsefly Tabanus yao, to function as an anti-inflammatory 99 

scavenger of eicosanoids (Xu et al., 2012). This binding cavity is formed by conserved central 100 

helices in SCP/TAPS proteins and also binds fatty acids, including palmitic acid (Xu et al., 2012). 101 

Our previous studies revealed that palmitic acid specifically binds to this cavity in other 102 

SCP/TAPS proteins including pathogen-related in yeast protein 1(Pry1) from Saccharomyces 103 

cerevisiae hence the cavity is referred to as the fatty acid-binding cavity (Asojo et al., 2018; 104 

Darwiche et al., 2016; Darwiche et al., 2018; Kelleher et al., 2014). While lipid binding had been 105 

confirmed for other parasite SCP/TAPS proteins, we solved the structure of Na-ASP-2 prior to the 106 

discovery of the lipid binding activity of members of this protein superfamily (Asojo et al., 2005a). 107 

The impetus for the current studies is to unravel possible lipid binding functions of Na-ASP-2.  108 

Our working hypothesis is that there is a functional relationship between small molecules and 109 

proteins secreted in hookworm E-S products. Thus, we are interested in the ability of Na-ASP-2 110 

to bind small molecules with known functions secreted by L3 hookworms. These small molecules 111 

include nematode derived metabolites notably the ascarosides which regulate a diverse range of 112 

phenotypes in nematodes including dauer arrest, mate attraction, aggregation and olfactory 113 

plasticity (Butcher et al., 2007; Choe et al., 2012; Gallo and Riddle, 2009; Hollister et al., 2013; 114 

Izrayelit et al., 2012; Jezyk and Fairbairn, 1967; Kaplan et al., 2011; Kunert, 1992; Ludewig and 115 

Schroeder, 2013; Noguez et al., 2012; Rhoads et al., 2015; Sakai et al., 2013; Tarr and Fairbairn, 116 

1973; Tarr and Schnoes, 1973). Ascarosides are multifunctional small molecules that interact with 117 
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G-protein–coupled receptors (GPCRs) (Butcher, 2017; Park et al., 2012). Ascarosides are 118 

composed of the sugar ascarylose linked to a fatty acid moiety (eg. ascr#3 (1) and oscr#10 (2), 119 

Figure 1) and while ascr#3 (1) was identified in the E-S products of mammalian hookworms, 120 

oscr#10 (2) was identified in other nematodes, but not hookworm (Choe et al., 2012; Gallo and 121 

Riddle, 2009; Hollister et al., 2013; Izrayelit et al., 2012; Jezyk and Fairbairn, 1967; Kaplan et al., 122 

2011; Kunert, 1992; Ludewig and Schroeder, 2013; Noguez et al., 2012; Rhoads et al., 2015; Tarr 123 

and Fairbairn, 1973; Tarr and Schnoes, 1973). Since the fatty acid moieties of ascarosides are 124 

similar to those that are capable of binding to the fatty acid-binding cavity of ASPs, we carried out 125 

studies to determine if the ascarosides or their fatty acid moieties bind to Na-ASP-2.  126 

 127 

2. Experimental Procedures 128 

2.1. Expression and purification of Pry1 and Na-ASP-2 129 

DNA encoding for Pry1 and Na-ASP-2 were PCR amplified and cloned into NcoI and XhoI 130 

restriction sites of pET22b vector (Novagen, Merck, Darmstadt, Germany), which contains a pelB 131 

signal sequence to direct the secretion of expressed protein into the periplasmic space. Plasmids 132 

were transformed into Escherichia coli BL21 and proteins were expressed with a C-terminal 133 

polyhistidine-tag. Protein expression was induced overnight with lactose at 24°C. Cells were 134 

collected, lysed and incubated with nickel-nitrilotriacetic acid beads as per the manufacturer 135 

instructions (Qiagen, Hilden, Germany). Beads were washed, loaded onto a Ni2+-NTA column and 136 

proteins were eluted in 60 mM NaH2PO4, 300 mM NaCl and 300 mM imidazole, pH 8.0. Prior to 137 

microscale thermophoresis experiments, proteins were applied to ZebaTM spin desalting columns 138 

(Thermo scientific) and the buffer was exchanged to 60 mM NaH2PO4, 300 mM NaCl, pH 8.0. 139 

Protein concentration was determined by Lowry assay using folin reagent and BSA as standard.  140 
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 141 

2.2. In vitro radioligand lipid binding assay 142 

The radioligand binding assay was performed as described previously (Choudhary and 143 

Schneiter, 2012; Im et al., 2005). 100 pmol of purified untagged CAP protein (Na-ASP-2 or Pry1) 144 

in binding buffer (20 mM Tris, pH 7.5, 30 mM NaCl, 0.05% Triton X-100) was incubated for 1 h 145 

at 30 °C with different concentrations of either [3H]-cholesterol or [3H]-palmitic acid. Protein was 146 

removed from unbound ligand by adsorption to Q-sepharose beads (GE healthcare, USA), the 147 

beads were washed, protein was eluted and the protein-bound radioligand was quantified by 148 

scintillation counting. For competition binding assays, specified concentrations of unlabeled 149 

cholesterol, palmitic acid or ligands, were included in the binding reaction. Non-specific binding 150 

was determined by performing the assays without the addition of protein. Statistical significance 151 

of data was analyzed by multiple t-test (GraphPad Prism, La Jolla, CA).  152 

 153 

2.3. Microscale Thermophoresis  154 

Microscale thermophoresis was performed using a Monolith NT.115 from Nanotemper 155 

Technologies (Munich, Germany) (Seidel et al., 2012; Shang et al., 2012; Zillner et al., 2012). His-156 

tagged protein (Pry1 or Na-ASP-2) was fluorescently labeled using the RED-tris-NTA His tag 157 

protein labeling kit (Nanotemper Technologies). Labeled protein (Pry1 or Na-ASP-2) was 158 

subsequently added to serial dilution of unlabeled ligand (ascarosides or their fatty acid moieties) 159 

in binding buffer (20 mM Tris pH 7.5, 30 mM NaCl, 0.05% Triton X-100). Each sample was 160 

loaded into standard glass capillaries, and measurements were performed at 60% power setting. 161 

The dissociation constant Kd was obtained by plotting the normalized fluorescence (Fnorm) 162 

against the logarithm of ligand concentration. Experiments were performed in triplicates and data 163 
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were fitted using the Kd model with the MO.Affinity Analysis software (Nanotemper 164 

Technologies, Munich, Germany). 165 

 166 

2.4. Synthesis of Ascarosides and ligands 167 

Benzoyl protected ascarylose 8 was prepared as previously reported by Jeong and co-workers from 168 

commercially available L-rhamnose 6 (Jeong et al., 2005) with the exception of a modified final 169 

reduction (Figure 2). The previously reported reduction of lactone 7 with disiamyl borane (Jeong 170 

et al., 2005) proved irreproducible in our hands, resulting in incomplete conversion and low overall 171 

yields (~40 %). Thus, an alternative was identified involving reduction with 9-BBN to provide the 172 

desired lactol 7 in improved yield (70 %). With protected ascarylose 8 in hand, we next studied 173 

glycosylation at C1 to append the fatty acid side chain present in the targeted ascarosides. Previous 174 

synthetic strategies to these targets involved glycosylation of secondary alcohols bearing long 175 

alkyl chains with a terminal alkene which was subsequently utilized for late stage cross metathesis 176 

or oxidations (Butcher et al., 2009; Hollister et al., 2013; Jeong et al., 2005; Martin et al., 2009; 177 

Noguez et al., 2012; Srinivasan et al., 2012).  Since we intended to study the binding affinity of 178 

the natural ascarocides and their intact fatty acid moieties independently, we decided to first 179 

synthesize intact fatty acid side moieties 9 and 11 and then couple them directly to protected 180 

ascarylose 8 during the penultimate step of the sequence. This strategy provided rapid access to 181 

ascarosides 1 and 2 along with fatty acid derivatives 3-5 for screening. Subsequent Lewis acid-182 

mediated glycosylation with BF3•Et2O of fatty acid 9 (see SI for synthetic details) and 183 

commercially available acid 11 (Jeong et al., 2005) proceeded uneventfully and provided protected 184 

ascarosides 10 and 12 in 68 and 66% yield, respectively. Subsequent global deprotection with 185 

lithium hydroxide gave ascr#3 (1) and oscr#10 (2).  186 
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 187 

3. Results  188 

3.1.  Na-ASP-2 binds cholesterol and palmitic acid in vitro 189 

The in vitro cholesterol-binding activity of Na-ASP-2 was examined using increasing 190 

concentrations of radiolabeled [3H]-cholesterol and a constant concentration of purified protein. 191 

Na-ASP-2 displayed saturable binding of cholesterol with an apparent dissociation constant Kd of 192 

2.1 µM (Figure 3A). Na-ASP-2 has similar cholesterol binding affinity as reported for other 193 

SCP/TAPS family members from yeast, Saccharomyces cerevisiae (Pry1, 1.9 µM), Brugia malayi  194 

(Bm-VAL-1, 0.9 µM), Heligmosomoides polygyrus (Hp-VAL-4, 1.53 µM) and Schistosoma 195 

mansoni  (Sm-VAL-4, 2.4 µM) (Asojo et al., 2018; Darwiche et al., 2016; Darwiche et al., 2018; 196 

Kelleher et al., 2014). Furthermore, addition of equimolar or excess concentration of unlabeled 197 

cholesterol reduced binding of the radioligand, indicating that binding is specific as shown in 198 

Figure 3A,B. 199 

Tablysin-15, a horsefly SCP/TAPS protein was shown to bind fatty acids with a 200 

hydrophobic pocket formed between two central helices (Ma et al., 2011). This hydrophobic 201 

pocket is observed in other SCP/TAPS proteins and we previously confirmed the ability of these 202 

proteins to bind palmitic acid in vitro (Asojo et al., 2018; Darwiche et al., 2016; Darwiche et al., 203 

2018; Kelleher et al., 2014).  To examine whether Na-ASP-2 can bind palmitic acid, we carried 204 

out direct binding studies using [3H]-palmitic acid as radiolabeled ligand, as shown in Figure 3C.  205 

Na-ASP-2 showed a saturable binding for palmitic acid with an apparent Kd of 95 µM, which is of 206 

the same magnitude as previously measured for the SCP/TAPS family members from yeast (Pry1, 207 

Kd =112 µM), Brugia malayi  (Bm-VAL-1, Kd = 83 µM), and comparable to tablysin-15 (Kd = 94 208 

µM) (Asojo et al., 2018; Darwiche et al., 2016; Darwiche et al., 2018; Kelleher et al., 2014). For 209 
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competition binding assays, binding of Na-ASP-2 to palmitic acid was reduced in the presence of 210 

unlabeled palmitic acid, indicating that binding is specific (Figure 3C, D). Taken together our 211 

results indicate that Na-ASP-2 binds cholesterol and palmitic acid in vitro.  212 

 213 

3.2.  Fatty acids and ascaroside binding is selective for the palmitate-binding cavity 214 

Having confirmed the ability of Na-ASP-2 to bind cholesterol, we carried out competitive 215 

binding studies of ascarosides and their fatty acid moieties against radiolabeled cholesterol.  At a 216 

concentration of 50 pmol, the typical concentration for our cholesterol binding assay, neither 217 

ascarosides (ascr#3 (1) and oscr#10 (2)) nor fatty acids (3-5) competed with the radiolabelled 218 

[3H]-cholesterol (50 pmol) for binding to Na-ASP-2 (Figure 4A).  We also tested if the ascarosides 219 

or their fatty acid moieties bind to the fatty acid binding cavity.  Our studies showed that the 220 

binding of [3H]-palmitic acid by Na-ASP-2 was competed by the ascaroside, ascr#3 (1) and by all 221 

the fatty acid moieties 3-5 tested with the same order of magnitude, but not by the ascaroside, 222 

oscr#10 (2)  (Figure 4B). We tested the ability of Pry1, a SCP/TAPS protein from S. cerevisiae, 223 

an organism that does not contain ascarosides, to bind to the same ligands. Our analysis revealed 224 

that while the fatty acids (3-5) competed for palmitic acid binding to Pry1, neither ascr#3 (1) nor 225 

oscr#10 (2) bound to Pry1. Furthermore, addition of excess ligands (fatty acids (3-5)) competed 226 

with radioligand binding while binding of [3H]-palmitic acid to Pry1 could not be competed for by 227 

the addition of excess unlabeled ascr#3 (1) or oscr#10 (2) (Figure 4C). We independently validated 228 

the binding of ligands to Pry1 and Na-ASP-2 by microscale thermophoresis and determined 229 

binding constants (Figure 5). The results of these analyses confirmed that Pry1 does not bind 230 

ascr#3 or oscr#10, but it binds palmitic acid and the fatty acid moieties present in ascarosides. Na-231 

ASP-2, on the other hand, bound ascr#3 (1) with a Kd of 142 µM but did not bind oscr#10 (2), 232 
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which is consistent with the results obtained by the ligand competition assay and indicates that Na-233 

ASP-2 binds ascr#3 (1) through its fatty-acid binding pocket. 234 

 235 

4. Discussion 236 

We present here efficient methods to synthesize the ascarocides and their fatty acid 237 

moieties. We also present data revealing that the fatty acid moieties of ascarosides compete for 238 

binding to the palmitate-binding cavities of both Pry1 and Na-ASP-2 but as expected do not bind 239 

to the sterol binding cavity.  The micromolar binding affinity of ascr#3 and free fatty acids are 240 

comparable to that observed for palmitic acid to the palmitate-binding cavity of other CAP 241 

proteins. While it is unclear if ascr#3 binding is physiologically relevant, the finding that ascr#3 242 

(1) binds Na-ASP-2 is still interesting considering that a high relative abundance of ascr#3 (1) was 243 

detected in E-S products from both the infective juvenile and adult stages of Nippostrongylus 244 

brasilensis by HPLC-MS(Choe et al., 2012). It is plausible that ascr#3 (1) is present in human 245 

hookworms since there appears to be a conservation of ascaroside production in families of 246 

nematodes (Choe et al., 2012). A blast search of the Na-ASP-2 sequence against the N. brasilensis 247 

proteins reveals several SCP/TAPs proteins, which share over 45 % sequence similarity with Na-248 

ASP-2.  Even more remarkable, the residues and predicted structures of the helical regions notably 249 

residues corresponding to (alpha 1 and alpha 3) that form the fatty acid-binding cavity are 250 

conserved (Figure 6A).  This structural similarity suggests that these proteins likely behave 251 

similarly to Na-ASP-2 as we observed previously for the orthologues from B. malayi and H. 252 

polygyrus. Additionally, we observed that the incorporation of the ascarylose sugar abrogated the 253 

ability of these fatty acids to bind to Pry1.  A comparison of the helices bordering the palmitic acid 254 

binding cavities of Pry1 and Na-ASP-2 reveals that Pry1 has shorter helices than Na-ASP-2, which 255 
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results in a smaller hydrophobic binding pocket in Pry1 compared to Na-ASP-2 (Figures 6A and 256 

B). This smaller size may explain the failure of Pry1 to accommodate ascaroside as opposed to 257 

free fatty acids.  The inability of Na-ASP-2 to bind oscr#10 (2) cannot be explained by the size 258 

difference of the cavities and suggests a new hypothesis that we plan to test in future; that 259 

ascaroside binding may be specific for certain SCP/TAPS proteins, indicating a possible functional 260 

relationship between ascarosides and parasite SCP/TAPS proteins.  261 

 262 

5. Conclusions 263 

In summary, our results reveal that the fatty acid moieties of the ascarosides, ascr#3 (1) 264 

and oscr#10 (2), bind specifically to the fatty acid binding cavity of both Na-ASP-2 and Pry1, with 265 

the latter protein from Saccharomyces cerevisiae SCP/TAPS serving as a control. Additionally, 266 

ascr#3 (1), an ascaroside that is present in mammalian hookworm E-S products binds 267 

competitively to the fatty acid binding cavity of Na-ASP-2, whereas oscr#10 (2) which is not found 268 

in hookworm E-S products did not. Interestingly, neither ascaroside bound to Pry1. Studies to 269 

identify how ascarosides precisely interact with parasite CAP proteins are currently underway. 270 

More studies need to be conducted to determine the physiological relevance of the fatty acid-271 

binding cavity of Na-ASP-2. 272 

 273 
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Figure Legends 592 
 593 

Figure 1. Targeted ascarosides and their fatty acid side moieties. The corresponding 594 

ascarosides are ascr#3 (1); oscr#10 (2) and their side chain moieties are 3-5. Compound names are 595 

3 = (R)-8-hydroxynonanoic acid, 4 = (R,E)-8-hydroxynon-2-enoic acid, and 5 = 9-596 

hydroxynonanoic acid. 597 

 598 

Figure 2. Synthesis of ascarosides.  The synthetic pathway designed for protected ascarylose 8, 599 

ascr#3 (1), oscr#10 (2) are illustrated. 600 

 601 

Figure 3.  Na-ASP-2 binds both cholesterol and free palmitic acid. (A) Ligand binding of [3H]-602 

cholesterol to Na-ASP-2. Data represent mean ± SD of 3 independent experiments. (B) 603 

Competitive binding of unlabeled cholesterol (50 or 5000 pmol) to Na-ASP-2. Each data point is 604 

the average of duplicate assays and represents the amount of [3H]-cholesterol bound relative to a 605 

control containing no unlabeled cholesterol. (C) Ligand binding of [3H]-palmitic acid to Na-ASP-606 

2. (D) Competitive binding of unlabeled palmitic acid (50 or 5000 pmol) to Na-ASP-2. Each data 607 

point is the average of duplicate assays and represents the amount of [3H]-palmitic acid bound 608 

relative to a control containing no unlabeled palmitic acid. Data represent mean ± SD of 3 609 

independent experiments. Asterisks denote statistical significance relative to the control containing 610 

only the radiolabeled ligand and either purified Na-ASP-2 or Pry1. (**, p < 0.001; *, p < 0.01). 611 

 612 

 613 

 Figure 4. Binding of ascarosides to Na-ASP-2 and Pry1. (A) Free fatty acids and ascarosides 614 

fail to compete with [3H]-cholesterol for binding to Na-ASP-2. (B) Free fatty acids and ascarosides 615 
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compete with [3H]-palmitic acid for binding to Na-ASP-2. (C) Free fatty acids but not ascarosides 616 

compete [3H]-palmitic acid for binding to Pry1. Competitive binding was tested with either 50 or 617 

500 pmol of the unlabeled ligands and 50 pmol of [3H]-palmitic acid for binding to 100 pmol 618 

purified Na-ASP-2 or Pry1. The ascarosides tested are (1) (ascr#3) and (2) (oscr#10)  while the 619 

fatty acids are 3 ((R)-8-hydroxynonanoic acid), 4 ((R,E)-8-hydroxynon-2-enoic acid), and 5 (9-620 

hydroxynonanoic acid). Data represent mean ± SD of 3 independent experiments. Asterisks denote 621 

statistical significance relative to the control containing only the radiolabeled ligand and either 622 

purified Na-ASP-2 or Pry1. (**, p < 0.001; *, p < 0.01). n.s.; not significant. 623 

 624 

Figure 5. Na-ASP-2 selectively binds ascr#3 but not oscr#10. Binding of ascarosides and their 625 

fatty acid moieties by Pry1 and Na-ASP-2 as measured by microscale thermophoresis. (A, 626 

G) Palmitic acid; (B, H) ascr#3; (C, I) oscr#10; (D, J) (R)-8-hydroxynonanoic acid; (E, K) (R,E)-627 

8-hydroxynon-2-enoic acid; (F, L) 9-hydroxynonanoic acid. Pry1 binds palmitic acid and free 628 

hydroxylated nanonoic acids with similar affinities but binds neither the ascarosides ascr#3 and 629 

oscr#10. Na-ASP-2 binds palmitic acid, ascr#3 and free hydroxylated nanonoic acids with similar 630 

affinities but not oscr#10. The Kd values are indicated in each figure with NA (not applicable) 631 

where there is no binding. 632 

 633 

Figure 6. Comparison of fatty acid binding cavities of Na-ASP-2 and Pry1. (A) Structure based 634 

alignment of Na-ASP-2, Pry1 and three N. brasilensis SCP/TAPs proteins (genbank codes 635 

VDL79275.1; VDL83979.1; and VDL79274.1).  The sequences are aligned with clustalWOmega 636 

and the secondary structural features are illustrated with the coordinates of HpVAL-4 and Pry1 637 

using ESPript. (Gouet et al., 2003) The alpha helices (alpha 1 and alpha 3)  that form the palmitate-638 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.07.224964doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.07.224964
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

                                          page 23 

binding cavity have similar lengths for Na-ASP-2 and the N. brasilensis proteins whereas Pry1 has 639 

shorter helices. The secondary structure elements shown are alpha helices (a), 310-helices (h), beta 640 

strands (b), and beta turns (TT).  Identical residues are shown in solid red, and conserved residues 641 

are in red. The locations of the cysteine residues involved in disulfide bonds are numbered in green. 642 

(B) Both of the helices (a1 and a 3) forming the palmitic acid binding cavity of Pry1 (cyan) are 643 

shorter than those from Na-ASP-2 (gray). Also shown in magenta is the stick structure of palmitate 644 

superposed from the structure of the complex of tablysin-15 with palmitate. 645 

 646 
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