

STAG2 loss-of-function affects short-range genomic contacts and modulates urothelial differentiation in bladder cancer cells

Laia Richart^{1,2,3,*}, Eleonora Lapi^{1,4,*}, Vera Pancaldi^{5,6,7}, Mirabai Cuenca¹, Enrique Carrillo-de-Santa Pau^{1,8}, Miguel Madrid-Mencía^{5,6,7}, Hélène Neyret-Kahn^{8,9}, François Radvanyi^{8,9}, Juan A. Rodríguez¹⁰, Yasmina Cuartero¹⁰, François Serra⁵, François Le Dily¹⁰, Alfonso Valencia^{5,11}, Marc A. Martí-Renom^{10,11,12,13} and Francisco X. Real^{1,4,13}

¹Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain;

⁴Center for Biomedical Research Network (CIBERONC), 28029 Madrid, Spain; ⁵Barcelona Supercomputing Center

(BSC), 08034 Barcelona, Spain; ⁶Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 Inserm,

ERL5294 CNRS, 31037 Toulouse, France; ⁷Université Paul Sabatier III, Toulouse, France; ⁸Institut Curie, PSL

Research University, CNRS, UMR144, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France; ⁹Sorbonne

Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France; ¹⁰CNAG-CRG, Centre for Genomic

Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; ¹¹Institució

Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain; ¹²Centre for Genomic Regulation

(CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain; ¹³Departament de

Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.

Present addresses: ²*Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, 75005*

Paris, France; ³INSERM U934/CNRS UMR3215, 75005 Paris, France; ⁸Computational Biology Group, Precision

Nutrition and Cancer Program, IMDEA Food Institute, 28049 Madrid, Spain.

“equal contribution

Corresponding author: martirenom@cnag.crg.eu and freal@cnio.es

26 **ABSTRACT**

27 Cohesin exists in two variants, containing either STAG1 or STAG2. *STAG2* is one of the most commonly
28 mutated genes in human cancer, and a major bladder cancer tumor suppressor. Little is known about
29 how its inactivation contributes to tumor development. Here, we analyze the genomic distribution of
30 *STAG1* and *STAG2* and perform *STAG2* loss-of-function experiments using RT112 bladder cancer
31 cells; we then analyze the resulting genomic effects by integrating gene expression and chromatin
32 interaction data. Cohesin-*STAG2* is required for DNA contacts within topological domains, but not for
33 compartment maintenance of domain boundary integrity. Cohesin-*STAG2*-mediated interactions are
34 short-ranged and engage promoters and gene bodies with higher frequency than those mediated by
35 cohesin-*STAG1*. *STAG2* knockdown resulted in a modest but consistent down-regulation of the luminal
36 urothelial differentiation signature, mirroring differences between *STAG2*-high and *STAG2*-low bladder
37 tumors. Both lost and gained contacts were enriched among *STAG1*/*STAG2* common sites as well as
38 *STAG2*-enriched sites. Contacts lost upon depletion of *STAG2* were significantly assortative, indicating
39 their proximity at the 3D level, and were associated with changes in gene expression. Overall, our
40 findings indicate that, in urothelial cells, *STAG2* is required for the establishment and/or maintenance
41 of DNA looping that, in turn, sustains the luminal differentiation program. This mechanism may
42 contribute to the tumor suppressor function of *STAG2* in bladder cancer.

43

44

45

46

47

48

49

50

51 **INTRODUCTION**

52 *STAG2* encodes a subunit of the cohesin complex and is one of the most commonly mutated genes
53 in human cancer (Lawrence et al. 2014). Among cohesin-associated genes, it harbours the highest
54 frequency of predicted pathogenic mutations (Romero-Pérez et al. 2019). Focal deletions on the X
55 chromosome involving *STAG2* were first detected in glioblastomas (Solomon et al. 2011).
56 Subsequently, massive parallel sequencing allowed the detection of point mutations in a variety of
57 human tumors including urothelial bladder cancer (UBC) (Solomon et al. 2011; Balbás-Martínez et al.
58 2013; Solomon et al. 2013; Guo et al. 2013; Taylor et al. 2014), Ewing sarcoma (Brohl et al. 2014;
59 Crompton et al. 2014), myelodysplastic syndrome, and acute myeloid leukaemia (AML) (Kon et al. 2013;
60 Thota et al. 2014). The majority of *STAG2* mutations reported in cancer lead to a premature stop codon
61 and the absence of protein (De Koninck and Losada 2016), but loss of expression can also result from
62 gene deletion and/or methylation (Guo et al. 2013; Shen et al. 2016; Cheung et al. 2016). Mutations
63 were first reported almost a decade ago and there is increasing evidence for a role of *STAG2* as a
64 tumor suppressor; yet, the mechanisms whereby its inactivation contributes to cancer remain elusive.
65 In UBC, *STAG2* mutations occur mainly in indolent tumors (Balbás-Martínez et al. 2013; Solomon et al.
66 2013; Guo et al. 2013; Taylor et al. 2014). By contrast, in Ewing sarcoma they are associated with
67 aggressive neoplasms (Brohl et al. 2014; Crompton et al. 2014), emphasizing the need to perform
68 functional analyses in appropriate model systems to identify potential tissue-specific effects.

69 The cohesin complex is composed of SMC1, SMC3, RAD21, and either STAG1 or STAG2. As a
70 result, two versions of the complex exist in somatic cells with potentially distinct biological functions
71 (Remeseiro and Losada 2013). In this regard, knockout mouse models have revealed that STAG1 plays
72 a predominant role in telomeric cohesion, while STAG2 plays a more important role in cohesion at
73 chromosome arms or in centromeric regions (Canudas and Smith 2009; Remeseiro et al. 2012a;
74 Remeseiro et al. 2012b). The well-established role of cohesin in chromosome segregation initially
75 suggested that *STAG2* inactivation in cancers might be associated with aneuploidy (Solomon et al.
76 2011). However, genetic analyses of UBC and AML strikingly showed that *STAG2*-mutant tumors were
77 genetically stable (Balbás-Martínez et al. 2013; Welch et al. 2012), supporting the importance of
78 additional molecular mechanisms. These findings are in contrast with a higher rate of somatic copy
79 number changes - but not ploidy - in Ewing sarcoma (Crompton et al. 2014).

80 There is increasing evidence that cohesin participates in a variety of processes beyond chromosome
81 segregation, including DNA repair and replication, chromatin organization, and gene regulation (De
82 Koninck and Losada 2016). An increased understanding of these processes has emerged from the
83 recent use of Chromosome Conformation Capture (3C) technologies (Dekker et al. 2002) including Hi-
84 C (Lieberman-Aiden et al. 2009), which revealed that genomes are folded into complex, hierarchically
85 organized, 3D structures playing a key role in essential processes (e.g. transcription). These structures
86 span a wide range of length scales: from large chromosomal domains and compartments, ~1Mb self-
87 interacting domains (Topologically Associating Domains or TADs), to DNA loops connecting promoters
88 and gene regulatory elements (Rowley et al. 2018). Cohesin, together with the chromatin insulator
89 CTCF, contributes to TAD border definition by means of loop extrusion (Sanborn et al. 2015; Guo et al.
90 2015; Fudenberg et al. 2016; Rao et al. 2017; Kim et al. 2019), as well as to intra-TAD promoter-
91 enhancer interactions (Kagey et al. 2010; Schaaf et al. 2013). A large fraction of genomic sites targeted
92 by cohesin are simultaneously bound by STAG1, STAG2, and CTCF, yet a few STAG1-only and
93 STAG2-only sites occur in the genome (Remeseiro et al. 2012; Kojic et al. 2018; Cuadrado et al. 2019).
94 The latter are depleted of CTCF and are enriched in enhancers and transcription factor binding sites.
95 Knockdown experiments showed that, upon STAG2 depletion, cohesin-STAG1 does not bind to the
96 STAG2-only sites (Kojic et al. 2018; Cuadrado et al. 2019; Casa et al. 2020; Viny et al.), suggesting
97 that cohesin-STAG2 has unique distribution and functions whose role in tumor suppression is yet to be
98 determined.

99 Despite UBC having the highest frequency of STAG2 mutations, there are no studies on the role of
100 STAG2 in urothelial cells at the genomic level. UBC is a heterogeneous cancer with two broad
101 histological subtypes (Gui et al. 2011; McConkey et al. 2010): low-grade/papillary (75-80% of cases) -
102 which tend to be non muscle-invasive - and solid/muscle-invasive (20-25% of cases). The latter can
103 present with variable phenotypes: some tumors preserve urothelial/luminal features while others show
104 basal/squamous characteristics. Up to 40% of papillary tumors harbor STAG2 inactivation, which is
105 significantly associated with activating *FGFR3* mutations and low levels of genomic instability (Balbás-
106 Martínez et al. 2013; Taylor et al. 2014). Conversely, STAG2 mutations occur only in 12-15% of muscle-
107 invasive tumors. Among them, STAG2 mutations are enriched in tumors with urothelial/luminal
108 differentiation and *FGFR3* mutations (Kamoun et al. 2020), suggesting that they represent the invasive
109 counterpart of a subset of papillary tumors. Several questions arise from these clinical-molecular

110 associations, including the mechanistic basis of the association with specific transcriptomic signatures
111 and urothelial differentiation.

112 Here, we set out to explore the contribution of STAG2 to genome organization and the urothelial
113 transcriptional program in RT112, a well-characterized bladder cancer cell line displaying luminal
114 features, mutant *FGFR3* and wild-type *STAG2* (Earl et al. 2015). Using Hi-C in combination with ChIP-
115 Seq for cohesin subunits, and RNA-Seq, we show that the cohesin-STAG2 complex is important for the
116 formation and/or maintenance of DNA contacts within TADs, but not for the integrity of their boundaries.
117 Chromosomal interactions mediated by cohesin-STAG2 are short-ranged and engage promoters and
118 gene bodies with higher frequency than those mediated by cohesin-STAG1, in agreement with notions
119 of compartmentalization in the molecular processes undertaken by the two types of cohesin complexes
120 (Canudas and Smith 2009; Remeseiro et al. 2012a; Remeseiro et al. 2012b; Kojic et al. 2018; Casa et
121 al. 2020; Viny et al.). Depletion of STAG2 leads to rewiring of short-range contacts and concomitant
122 changes in the expression of selected luminal/basal signature genes.

123 **RESULTS**

124 **STAG2-enriched cohesin localizes to active enhancers and promoters independently of CTCF**

125 We profiled the genome-wide distribution of STAG2 and STAG1 in RT112 cells by chromatin
126 immunoprecipitation followed by deep sequencing (ChIP-Seq). SMC1, common to both cohesin
127 complexes, was used as control. Three categories of cohesin-bound genomic positions were identified
128 based on differential binding of STAG2 and STAG1: common (n=35,321), STAG1-enriched (n=5,007),
129 and STAG2-enriched (n=2,330) (Figure 1A and Supplementary Figure 1A). Common positions were
130 occupied by either complex variant and showed comparably high read density for both STAG1 and
131 STAG2. STAG1-enriched positions showed higher read density for STAG1 than for STAG2. In contrast,
132 STAG2-enriched positions had higher STAG2 read density than STAG1, but showed the lowest read
133 density of all categories. SMC1 was present in the three categories of cohesin-bound positions (Figure
134 1A and Supplementary Figure 1A). Peak-centered ChIP-Seq read density plots revealed a pattern of
135 sharp and narrow peaks for STAG1 and STAG2 around common and STAG1-enriched cohesin
136 positions. STAG2 peaks at STAG2-enriched sites were broader (Figure 1B), suggesting higher cell-to-
137 cell variability or greater dynamics of this complex variant (Kojic et al. 2018).

138 Analysis of enrichment over genomic elements revealed no differences in the distribution of STAG1
139 and STAG2 when considered independently (Supplementary Figure 1B). STAG1-enriched positions
140 were comparatively more abundant in intergenic regions whereas common and STAG2-enriched peaks
141 showed higher overlap with promoters, exons, and 5' Untranslated Regions (5' UTR) (Figure 1C and
142 Supplementary Figure 1B). We then investigated cohesin enrichment over 9 chromatin states defined
143 by combinations of histone modifications and CTCF in RT112 cells (Supplementary Figure 1C).
144 Similarly to the overlap with genomic features, distribution of STAG1 and STAG2 according to chromatin
145 states was highly comparable unless their relative enrichment was accounted for (Figure 1D and
146 Supplementary Figure 1D). STAG1-enriched positions characteristically overlapped with
147 transcriptionally inactive chromatin marked by H3K27me3 ("ReprPC"), H3K9me3 ("Het"), or low levels
148 of the assessed histone modifications ("Low"), in addition to chromatin domains bound by CTCF
149 ("CTCF/EnhW"). Conversely, both common and STAG2-enriched sites were mostly distributed over
150 transcriptionally active genes, promoters, and enhancers (Figure 1D). Peak-centered density plots
151 highlight the differential dependency of the three categories of cohesin-bound genomic positions on
152 CTCF (Figure 1E). Consistently, motif analysis showed that STAG1-enriched positions were
153 significantly enriched for the CTCF binding motif, whereas STAG2-enriched positions displayed binding
154 motifs of transcription factors participating in cancer, including ASCL1, MYCN, and KLF5
155 (Supplementary Figure 1E) (Du et al. 2016; Qin et al. 2015; Sabari et al. 2017). These findings are
156 largely in agreement with previous observations in other cell types (Kojic et al. 2018; Cuadrado et al.
157 2019). Unlike in mES cells (Cuadrado et al. 2019), we did not detect higher overlap with H3K27me3
158 domains among STAG2-enriched sites (Figure 1D).

159 **Chromosomal compartments and TAD boundaries are resilient to STAG2 depletion**

160 To assess the contribution of STAG2 to chromatin architecture and transcriptional regulation in
161 RT112 cells, we efficiently silenced STAG2 with two shRNAs (sh1 and sh2) - using a non-targeting
162 shRNA as control (shNT) (Figure 2A) - and performed Hi-C and RNA-Seq experiments. Given the role
163 of cohesin in sister chromatid segregation (Morales and Losada 2018), we first assessed whether
164 STAG2 depletion affected ploidy. Visual exploration of the number of reads per bin in genome-wide
165 100kb contact matrices did not unveil gross genomic differences in ploidy between control and STAG2-
166 depleted cells (Supplementary Figure 2).

167 To determine whether STAG2 loss resulted in major changes in chromatin organization, we first
168 explored the effect on genomic compartments. The genome is segregated into two major
169 compartments, named A and B, that differ in their gene density, epigenetic modifications, and
170 transcriptional output. Overall, the A compartment contains transcribed genes and active histone
171 modifications while the B compartment generally encompasses inactive genes with histone
172 modifications associated with a repressed transcriptional state (Rowley et al. 2018). A and B
173 compartments were defined using the first principal component (PC) obtained by eigenvector
174 decomposition of normalized Hi-C matrices at 100kb resolution (Figure 2B) in combination with
175 information on gene density and transcriptional activity (Figure 2C). In control cells, genomic regions
176 assigned to compartment A were comparatively gene-rich (7,760 genes in A vs. 2,491 genes in B) and
177 genes therein were expressed at significantly higher levels (Figure 2D). Segregation into A/B
178 compartments in shNT and shSTAG2 RT112 cells was highly correlated, with 45.3% of the genome
179 consisting of constitutive A-type domains and 54.7% classified as B-type (Figure 2E). In agreement with
180 the preferential association of cohesin with genes and their regulatory elements, most of its binding
181 sites were found in compartment A, and no major differences were observed between the three
182 categories of cohesin-bound genomic sites (common: 67%, STAG1 enriched: 66%, STAG2 enriched:
183 67%). Upon STAG2 knock-down, only 0.6-0.8% and 0.75-1.2% of the genome underwent A-to-B and
184 B-to-A compartment changes, respectively (Figure 2E). A significant degree of overlap was detected
185 between STAG2-silenced cells in terms of genes “flipping” compartments, suggesting small but
186 consistent effects (Figure 2E).

187 We then explored the possibility that STAG2 depletion may interfere with the organization of the
188 genome into TADs. Using normalized 100kb contact maps, we identified a total of 2,442, 2,425, and
189 2,392 TAD borders of comparable strength (TADbit score > 5) in shNT, sh1, and sh2 cells, respectively
190 (Figure 2F,G). The number and size of TADs was similar among conditions (Figure 2F,H) and, as
191 revealed by alignment of their boundaries, they were highly conserved (average conservation with
192 respect to shNT: sh1 90.8%, sh2 91.5%). The small decrease in TAD number in STAG2-depleted
193 cells (Figure 2H,I) might result from merging of adjacent TADs. In agreement with previous work (Kojic
194 et al. 2018; Cuadrado et al. 2019; Casa et al. 2020), our results indicate that megabase-scale
195 architectural compartments and TAD borders are resilient to reduced STAG2 protein levels.

196 **STAG2-enriched cohesin mediates short range intra-TAD interactions**

197 Cohesin contributes to the 3D conformation of chromatin at the submegabase scale in a cell-type
198 specific fashion through both long-range constitutive interactions and short-range promoter-enhancer
199 contacts that regulate transcription (Phillips-Cremins et al. 2013). STAG2 knock-down resulted in
200 modest, statistically significant (FDR < 0.05), changes in expression levels of a subset of genes (sh1,
201 n=510; sh2, n= 438), with a similar number of up- and down-regulated transcripts (Supplementary
202 Figure 3A). Gene expression changes induced by either shRNA were positively correlated and 20-32%
203 of significantly up- and down-regulated genes were common to both shRNAs (Supplementary Figure
204 3B). Conditional *Stag2* deletion in the mouse blood compartment is associated with transcriptional
205 dysregulation and impaired differentiation of hematopoietic stem cells (Viny et al.). We thus explored
206 the effects of depleting STAG2 on RT112 differentiation by assessing the differential expression of gene
207 signatures characteristic of muscle-invasive UBC molecular subtypes (Kamoun et al. 2020). GSEA
208 (Gene Set Enrichment Analysis) revealed consistent and significant up-regulation of genes linked to the
209 basal/squamous class, and a significant down-regulation of genes linked to the luminal papillary class
210 in cells transduced with both STAG2-targeting shRNAs (Supplementary Figure 3C). These findings
211 suggest that STAG2 loss leads to defective maintenance of the luminal differentiation transcriptional
212 program (Supplementary Figure 3C). GSEA further revealed a significant overlap between genes down-
213 regulated in STAG2-silenced RT112 cells and genes differentially expressed in “STAG2 low” (bottom
214 quartile) versus “STAG2 high” (top quartile) samples from the UROMOL study, involving 476 cases of
215 non muscle-invasive bladder cancer (Hedegaard et al. 2016) (Supplementary Figure 3D-G), thus
216 validating the relevance of our *in vitro* system.

217 We hypothesized that STAG2 knockdown might affect transcription by interfering with the formation
218 of chromatin loops engaging specific promoters and their regulatory regions. To address this question,
219 we investigated significant contacts predicted by HOMER (FDR < 0.1) at mid resolution (20kb) in control
220 and STAG2-depleted cells (Figure 3A). Upon STAG2 knock-down, interaction frequency, or the number
221 of interactions between pairs of genomic regions, was significantly lower (mean interaction reads -
222 shNT: 28.5; sh1: 24.5; sh2: 27.2) (Figure 3B). Furthermore, we found an increase in the genomic
223 distance spanned by the interactions resulting from a loss of short-range (<250kb) and a concomitant
224 increase in long-range contacts (>1Mb) in the two STAG2-depleted conditions (Figure 3C). These

225 observations are largely in agreement with previous Hi-C analyses of mouse and human cells silenced
226 for STAG2 (Kojic et al. 2018; Cuadrado et al. 2019; Viny et al.).

227 To dissect the effect on loop formation, we overlapped interactions in control cells with the three
228 types of cohesin-binding sites identified in our ChIP-Seq experiments. Interactions overlapping STAG2-
229 enriched binding sites displayed higher interaction frequencies (Figure 3D) and spanned shorter
230 genomic distances (Figure 3E) than those engaging STAG1-enriched or common sites. Classifying
231 control interactions according to distance [short (<250kb), mid (250kb-1Mb), long-ranged (>1Mb)]
232 confirmed that interactions overlapping STAG2-enriched positions are more abundant among short-
233 range contacts (Figure 3F). Importantly, upon STAG2-depletion, loss of interaction reads was higher at
234 binding sites occupied by STAG2 (common or STAG2-enriched) (Figure 3G), supporting the specificity
235 of the effects.

236 STAG2 knockdown led to a statistically significant decrease in the frequency of contacts defined in
237 control cells (Figure 4A). To better evaluate the functional consequences of changes in DNA looping
238 upon STAG2 silencing, we defined a collection of interactions significantly “lost” and “gained” in both
239 shRNAs ($P < 0.05$) (Figure 4B). Lost and gained interactions showed similar distributions over A/B
240 compartments and genomic elements (Supplementary Figures 4A,B), but differed in terms of distance
241 between interaction peaks. While both sets of contacts were restricted to a 1Mb window, lost
242 interactions spanned shorter distances (<250kb), reminiscent of the ones overlapping STAG2-enriched
243 cohesin positions (Figure 4C,D and Supplementary 4C). Motif analysis of genomic regions engaged by
244 control (shNT), lost, and gained interactions revealed that CTCF was among the top three scoring motifs
245 enriched in control and gained interactions but not among those lost (Figure 4E). These changes echo
246 the poor overlap between STAG2-enriched cohesin sites and CTCF observed in the ChIP-Seq analysis
247 (Figure 1D,E and Supplementary Figures 1A,E). Importantly, the proportion of lost and gained contacts
248 was higher among common and STAG2-enriched cohesin-overlapping interactions (Figure 4F),
249 supporting that these changes are causally linked to silencing of STAG2.

250 **Differential assortativity of lost and gained interactions**

251 To assess whether the loci that lose or gain interactions upon STAG2 silencing are located close to
252 each other in 3D, we performed a chromatin assortativity analysis whereby the genome is represented

253 as a network of interacting nodes and each node is a chromatin fragment (Pancaldi et al. 2016). Loci
254 involved in lost interactions were more assortative than expected by chance, suggesting that they tend
255 to be close to each other in the 3D space. Assortativity of these regions was stable on networks in which
256 contacts spanning shorter distances were eliminated, reaching a maximum for interactions that span
257 less than a megabase (intra-TAD) (Figure 4G).

258 To investigate whether genes that are differentially regulated in the same direction in STAG2
259 depleted cells are closer to each other in 3D than expected by chance, we estimated the assortativity
260 of changes in gene expression in STAG2-silenced vs. control cells. Interestingly, we found high
261 assortativity only when considering Hi-C interactions binned at 20kb resolution but not for lower
262 resolution networks (>100kb) (Figure 4H). These observations are consistent with the notion that the
263 vast majority of lost interactions were short-range (<250kb) (Supplementary Figure 4C) and that lost
264 contacts potentially affected gene expression (Figure 5C,D). On the contrary, gained interactions did
265 not show any patterns of assortativity, suggesting a lack of a functional consistency between loci
266 affected by gained interactions.

267 **STAG2-enriched overlapping interactions engage transcriptionally active genes**

268 To better characterize the transcriptional consequences of changes in chromatin looping, we
269 overlapped the three subsets of interactions [control (shNT), lost, and gained] with common, STAG1-
270 enriched, and STAG2-enriched cohesin binding sites. Cohesin-overlapping interactions showed a
271 preference for promoters and gene bodies and, among these, those associated with STAG2-enriched
272 cohesin target sites showed the highest enrichment in promoters (Figure 5A). Genes whose
273 promoters/gene bodies were involved in interactions with STAG2-enriched binding sites were
274 expressed at significantly higher levels than those engaged by interactions overlapping other cohesin
275 binding sites (Figure 5B). Intersection of the contact and RNA-Seq data showed that loss/gain of
276 interactions among STAG2-enriched overlapping loops had more pronounced transcriptional
277 consequences than among STAG1-enriched or common cohesin overlapping interactions (Figure
278 5C,D). Intriguingly, genes associated with lost interactions were expressed at significantly higher
279 levels than those associated to control or gained interactions (Supplementary Figure 5A-B). Loss of
280 STAG2-enriched interactions in promoters was associated with increased gene expression (Figure 5C),
281 whereas loss of contacts in gene bodies resulted in decreased transcription (Figure 5D). The opposite

282 effect was observed for an increase in interaction frequency of STAG2-enriched loops. These effects
283 were exemplified by *SCEL*, a gene associated with the basal/squamous UBC molecular subtype, and
284 *ACOXL*, a gene that characterizes the luminal papillary UBC molecular class (Supplementary Figure
285 5C). Upon STAG2 silencing, *SCEL* was transcriptionally up-regulated and displayed both loss of
286 interactions around the promoter and gain of interactions throughout the gene body (Figure 5E). In
287 contrast, *ACOXL* was significantly down-regulated by both shRNAs and showed increased DNA
288 contacts around the promoter and decreased interactions in the gene body (Figure 5F).

289

290 **DISCUSSION**

291 The mechanisms whereby STAG2 acts as a tumor suppressor gene and contributes to cancer are
292 not well established and are likely to be diverse. The lack of association between STAG2 inactivation
293 and aneuploidy/genomic instability in AML and UBC strongly suggests its participation through effects
294 other than chromosome segregation (Balbás-Martínez et al. 2013; Welch et al. 2012). Recent evidence
295 on the role of cohesin in higher-order chromatin structure and on the distinct functions of STAG1 and
296 STAG2 in several cell types, mainly in the haematopoietic lineage, has provided support to the
297 hypothesis that changes in gene expression may play a crucial role in the tumor suppressive role of
298 STAG2. Yet, this notion is challenged by the fact that, in numerous cellular systems, suppression of
299 STAG2 activity results in only modest changes at the global transcriptome level.

300 Importantly, these questions have not been addressed in UBC, the tumor with the highest prevalence
301 of STAG2 mutations. A major limitation has been the lack of adequate models. Most UBC lines are
302 derived from muscle-invasive UBC and, therefore, few of them harbour STAG2 mutations. Furthermore,
303 until recently it has not been possible to permanently maintain normal urothelial cells in culture (Santos
304 et al. 2019). Therefore, we aimed at assessing the effects of STAG2 knockdown on one of the most
305 commonly used luminal-type UBC line: RT112. An important finding of our study is that the small fraction
306 of the transcriptome undergoing changes upon STAG2 silencing overlaps significantly with genes that
307 are differentially expressed in UBC with low vs. high STAG2 levels. These observations strongly support
308 the adequacy of RT112 cells to explore the mechanisms through which STAG2 contributes to UBC.

309 We find that in RT112 cells - as in other cell types - a small subset of cohesin-bound sites is STAG2-
310 enriched. These genomic sites are over-represented in promoters of active genes and their sequences
311 are depleted of CTCF while being enriched in tissue-specific transcription factors (i.e. TFAP2A, KLF5).
312 We also find that STAG2 depletion does not result in major changes in the genome
313 compartmentalization and has limited effects on megabase organization, with merging of only a few
314 adjacent TADs. However, genome interactions spanning variable distances were differently affected,
315 with losses occurring mainly in short-range (<250 kb) contacts involving common or STAG2-enriched
316 positions. Together with the finding that the lost interactions were statistically significantly clustered in
317 nuclear space (as measured by their assortativity), our results indicate that loss of STAG2 impacts on
318 genome organization at the intra-TAD level in bladder cancer cells. These structural changes appear
319 to be functionally relevant, with genes whose promoters are associated with lost interactions being up-
320 regulated in STAG2-depleted cells. Our findings indicate that depletion of STAG2 at gene promoters
321 reduces repressive activity, allowing the transcriptional activation of the
322 corresponding genes. Recently, it was reported that STAG2-cohesin promotes PRC1 recruitment and
323 thereby contributes to Polycomb domain compaction and the formation of long-range contacts between
324 those domains (Cuadrado et al. 2019). In our system, lost contacts after STAG2 depletion consistently
325 span short distances and overlap with highly expressed genes, suggesting that the increase in
326 transcriptional output does not result from de-compaction and de-repression of Polycomb targets. The
327 discrepancies between the two cellular systems imply that STAG2-cohesin plays cell-type specific roles
328 in the 3D organization of chromatin and may result from differential repressive effects of Polycomb on
329 ES and differentiated cells.

330 Interestingly, two of the transcription factors whose binding motifs are enriched in STAG2-only
331 positions - TFAP2A and KLF5 - show a tissue-restricted expression pattern, with high levels in
332 squamous epithelia such as the skin and the esophagus (<https://www.gtexportal.org>). Activation of
333 basal/squamous differentiation programs is a feature of a subset of UBC displaying down-regulation of
334 luminal genes, reflecting loss-of-identity, and designated as basal/squamous-like (BASQ). There is
335 increasing evidence that - in several epithelial tumors - the canonical vs. basal programs are regulated
336 in a complex manner through epigenetic mechanisms and appear as a continuum rather than as
337 dichotomous phenotypes. In bladder cancer cells, TFAP2A is repressed by PPARg, a major regulator
338 of luminal-type tumors, and is up-regulated in BASQ-type tumors (Yamashita et al. 2019). In addition,

339 the KLF4-driven regulon is selectively activated in BASQ tumors (Kamoun et al. 2020). Despite the
340 association of *STAG2* mutations with papillary tumors, *STAG2* knockdown resulted in the down-
341 regulation of the luminal signature. These apparently paradoxical findings are, nevertheless, in
342 agreement with the observation that the UBC subtype displaying the highest prevalence of *STAG2*
343 mutations also shows a higher activation score of the basal differentiation signature than other luminal
344 tumors (Kamoun et al. 2020). We therefore hypothesize that *STAG2* plays a tumor suppressor role by
345 establishing and/or maintaining the DNA looping required to sustain the luminal differentiation program
346 in urothelial cells.

347

348 **METHODS**

349 **Cell lines.** RT112 bladder cancer cells used at CNIO and Institut Curie were from the same original
350 stock; HEK293T cells (transformed human embryonic kidney) were from the ATCC. Cells were grown
351 in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% heat-inactivated FBS (Fetal
352 Bovine Serum) and 1 mM sodium pyruvate.

353 **Plasmids and lentiviral infections.** Mission shRNAs (Sigma) were used for RNA interference. Two
354 *STAG2*-targeting shRNAs were selected based on silencing efficacy and compared to a control non-
355 targeting shRNA. Infectious lentiviruses were produced in HEK293T cells by FuGene-mediated
356 transfection of the lentiviral construct together with the packaging plasmids psPAX2 and pCMV-VSVG.
357 After transfection (48h), the medium was collected twice for an additional 48h. Viral supernatants were
358 filtered and either frozen down in aliquots or applied on target cells in the presence of 5 mg·ml⁻¹ of
359 polybrene. Cells were harvested after 48h of puromycin selection (2 mg·ml⁻¹) in serum-free medium.
360 Gene silencing experiments were performed at high cell density and in the absence of serum to avoid
361 cell cycle-dependent effects and to obtain homogeneous cell populations.

362 **Western blotting.** Cell pellets were lysed in RIPA buffer supplemented with protease and phosphatase
363 inhibitors. Following sonication, clearing by centrifugation, and quantification, proteins were subjected
364 to SDS-PAGE. Samples were run under reducing conditions and then transferred to nitrocellulose
365 membranes, which were blocked with TBS-Tween, 5% skim milk. Membranes were subsequently
366 incubated with primary antibodies against *STAG2* (Santa Cruz, ref. sc-81852, 1:500) or Vinculin (Sigma-

367 Aldrich, ref. V9131-2ML, 1:2,000). After washing with TBS-Tween, membranes were incubated with
368 horseradish peroxidase-conjugated secondary antibodies (Dako, 1:10,000) and washed. Reactions
369 were detected using enhanced chemoluminescence.

370 **ChIP sequencing for cohesin subunits and downstream analysis.** ChIP-Seq was performed on
371 RT112 in duplicates. Briefly, cells (4×10^7) were washed with PBS, trypsinized, and resuspended in 20
372 mL of growing media supplemented with 1% formaldehyde for 15 min at room temperature (RT). After
373 quenching with glycine (0.125 M final concentration), fixed cells were washed twice with PBS containing
374 protease inhibitors, pelleted, and resuspended in lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl
375 pH=8.1) at 2×10^7 cells/ml. Chromatin was sonicated in a Covaris instrument for 30 min (20% duty cycle;
376 6% intensity; 200 cycle), yielding DNA fragments of 300-500 bp. Sonicated samples were centrifuged
377 to pellet debris. Chromatin was quantified on a Nanodrop and a 30 μ L aliquot of this material was used
378 as input. Chromatin was diluted with buffer (1% Triton X-100, 2 mM EDTA pH=8, 150 mM NaCl, 20 mM
379 Tris-HCl pH=8.1) supplemented with a protease inhibitor cocktail and PMSF. Samples were pre-cleared
380 with a mix of protein A/G agarose beads (previously washed and blocked with 5% BSA) for 1 h at 4 °C.
381 After centrifugation, supernatant was divided into aliquots of 500 μ g and incubated with 25 μ g of
382 antibody [anti-STAG1 (source: Remeseiro et al. 2012b), anti-STAG2 (source: Remeseiro et al. 2012b),
383 anti-SMC1 (source: Remeseiro et al. 2012b), non-related IgG]. After overnight incubation at 4°C, 100 μ L
384 of pre-blocked protein A/G agarose beads were added for 2 h at 4 °C on a rotating platform to collect
385 the immune complexes. Then, beads were sequentially washed with 1 mL of the following buffers: low-
386 salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH=8.1, 150 mM NaCl),
387 high-salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH=8.1, 500 mM
388 NaCl), LiCl wash buffer (0.25 M LiCl, 1% NP-40, 1% deoxycholateNa, 1 mM EDTA, 10 mM Tris-HCl
389 pH=8.1), and TE 1X (10 mM Tris-HCl pH=7.5, 1 mM EDTA). DNA was recovered in elution buffer (1%
390 SDS, 0.1 M NaHCO₃) and cross-linking was reversed by overnight incubation at 65 °C. RNA and proteins
391 were sequentially digested with 20 μ g of RNase and 40 μ g of proteinase K. DNA was purified by phenol-
392 chloroform extraction and resuspended in TE 0.5X.

393 For library preparation, 5 ng of DNA per condition were used. Samples were processed through
394 sequential enzymatic treatments of end-repair, dA-tailing, and ligation to adapters with "NEBNext Ultra
395 II DNA Library Prep Kit for Illumina" (New England BioLabs, ref. E7645). Adapter-ligated libraries were

396 completed by limited-cycle PCR and extracted with a single double-sided SPRI size selection. Resulting
397 average fragment size was 370 bp, from which 120 bp corresponded to adaptor sequences. Libraries
398 were applied to an Illumina flow cell for cluster generation and sequenced on an Illumina NextSeq 500.

399 Conversion of Illumina BCL files to bam format was performed with the Illumina2bam tool (Wellcome
400 Trust Sanger Institute - NPG). RUbioSeq (v3.8.1; Rubio-Camarillo et al. 2017) was used with default
401 parameters to check sequencing quality, align reads to the human reference genome (hg19), normalize
402 library sizes, and calculate ChIP-Seq peaks. Differential peaks between STAG1 and STAG2 were
403 calculated with the DiffBind R package (Ross-Innes et al. 2012). We used the dba.count function to
404 include peaks in the analysis that appear at least in one sample from STAG1, STAG2 or SMC1 ChIP-
405 Seq experiments. Then, peaks were length normalized to 500bp, extending 250bp up- and down-
406 stream of the peak summit to keep the peaks at a consistent width. Read counting in peaks was done
407 with ChIP-Seq alignments normalized by library size. Differential enrichment peaks analyses were
408 carried out with dba.contrast and dba.analyze functions. Three categories of cohesin-bound genomic
409 positions were identified with dba.report function, based on statistical differences in read densities for
410 STAG1 and STAG2: common peaks with no statistical differences between STAG1 and STAG2 read
411 densities; STAG1-enriched (STAG1>STAG2) peaks with FDR<0.05 and higher STAG1 read density;
412 STAG2-enriched (STAG2>STAG1) peaks with FDR<0.05 and higher STAG2 read density. Peak
413 annotation over genomic elements was done with HOMER (v4.8.3;Heinz et al. 2010). RPKM-
414 normalized bigwig files were generated with DeepTools (v3.0.2) bamCoverage. Heatmaps and density
415 plots were carried out with DeepTools computeMatrix and plotHeatmap around the center of peaks.
416 Motif enrichment was done with MEME-ChIP (v4.12.0; Machanick and Bailey 2011) using default
417 parameters.

418 **ChIP-Seq for histone modifications and chromatin state assignment.** ChIP-Seq for histone marks
419 and CTCF were performed using RT112 cells. Cells were crosslinked directly in culture medium with
420 formaldehyde (1% final concentration) for 10 min at RT. The reaction was stopped by adding Glycine
421 (0.125 M final concentration) for 10 minutes at RT. Fixed cells were rinsed 3 times with PBS containing
422 protease inhibitors, pelleted, and resuspended in lysis buffer (10mM EDTA, pH=8, 50mM Tris-HCl
423 pH=8, SDS 1%). After centrifugation, ChIPs were performed using the ChIP-IT High Sensitivity kit
424 (Active Motif, ref. 53040), following manufacturer's instructions. Chromatin was sonicated in a

425 Diagenode Picoruptor sonicator for 10 min (30s ON/ 30s OFF). Sheared chromatin was
426 immunoprecipitated using the following antibodies: H3K4me1 (Abcam, ref. ab8895), H3K4me3 (Abcam,
427 ref. ab8580), H3K27me3 (Active Motif, ref. 39155), H3K27Ac (Abcam, ref. ab4729), H3K9Ac (Millipore,
428 ref. 07-352), H3K9me3 (Active Motif, ref. 39161), and CTCF (Millipore, ref. 07-729).

429 ChIP-Seq libraries were prepared using the NEXTflex ChIP-Seq Kit (Bioo Scientific, ref. 5143-02)
430 following the manufacturer's protocol with some modifications. Briefly, 10 ng of ChIP enriched DNA
431 were end repaired using T4 DNA polymerase, Klenow DNA polymerase and T4 PNK, then size selected
432 and cleaned-up using Agencourt AMPure XP beads (Beckman, ref. A63881). A single 'A' nucleotide
433 was added to the 3' ends of the blunt DNA fragments with a Klenow fragment (3' to 5'exo minus). The
434 ends of the DNA fragments were ligated to double stranded barcoded DNA adapters (NEXTflex ChIP-
435 Seq Barcodes, Bioo Scientific, ref. 514120) using T4 DNA Ligase. The ligated products were enriched
436 by PCR (2 min at 98 °C; [30 sec at 98°C, 30 sec at 65 °C, 60 sec at 72 °C] x 14 cycles; 4 min at 72 °C)
437 and cleaned-up using Agencourt AMPure XP beads. Prior to sequencing, DNA libraries were checked
438 for quality and quantified using a 2100 Bioanalyzer (Agilent). Libraries were loaded in the flow cell at
439 8pM concentration and clusters were generated using the Cbot and sequenced on the Illumina
440 Hiseq2500 as single-end 50 base reads following Illumina's instructions.

441 Sequence reads were mapped to reference genome hg19 using Bowtie 1.0.0 with the following
442 parameters -m 1 --strata --best -y -S -l 40 -p 2. Peak detection was performed using MACS2 (model
443 based analysis for ChIP-Seq v2.1.0.20140616) software under settings where an input sample was
444 used as a negative control. We used a default cut-off and -B option for broad peaks.

445 ChromHMM was used to identify chromatin states. The genome was analysed at 200 bp intervals and
446 the tool was used to learn models from the six histone marks, CTCF ChIP-Seq reads files and
447 corresponding Input controls. A model of 10 states was selected and applied on all samples. 8 of the
448 10 states identified were then given functional annotation based on histone marks enrichment.

449 **RNA Sequencing and analysis.** RNA-Seq of control and STAG2-silenced RT112 cells was performed
450 in triplicates (1x10⁶ cells per sample). Total RNA was extracted using TRIzol (ThermoFisher, ref.
451 15596026) and purified with the RNeasy Mini Kit (Qiagen, ref. 74104), according to manufacturer's
452 instructions.

453 For library preparation, 1 µg of total RNA per condition, each containing an equal amount of ERCC
454 ExFold RNA Spike-In Mix 2 (Ambion, ref. 4456739), was used. Average sample RNA Integrity Number
455 was 9.4 (range 9.0 - 9.8) when assayed on an Agilent 2100 Bioanalyzer. PolyA+ fraction was purified
456 and randomly fragmented, converted to double stranded cDNA and processed through subsequent
457 enzymatic treatments of end-repair, dA-tailing, and ligation to adapters as in Illumina's "TruSeq
458 Stranded mRNA Sample Preparation Part # 15031047 Rev. D" kit (this kit incorporates dUTP during
459 2nd strand cDNA synthesis, which implies that only the cDNA strand generated during 1st strand
460 synthesis is eventually sequenced). Adapter-ligated library was completed by PCR with Illumina PE
461 primers. The resulting purified cDNA library was applied to an Illumina flow cell for cluster generation
462 and sequenced on an Illumina HiSeq 2500.

463 Conversion of Illumina BCL files to bam format was performed with the Illumina2bam tool (Wellcome
464 Trust Sanger Institute - NPG). Nextpresso 1.9 was used for downstream RNAseq analysis (Graña et
465 al. 2017). Raw reads were aligned to the human reference genome (hg19).

466 **Hi-C library preparation and analysis.** RT112 cells were arrested in G1 by culturing at high density
467 and low serum (1%). Hi-C was performed as previously described (Rao et al. 2014) with some
468 modifications. Purified DNA was fragmented to obtain fragments of an average size of 300–400 bp
469 using a Bioruptor Pico (Diagenode; 8 cycles; 20 sec ON/60 sec OFF). 3 µg of DNA per condition were
470 used for library preparation. Biotinylated DNA was pulled down with Dynabeads MyOne T1 streptavidin
471 beads. End-repair, A-tailing and the Illumina adaptors ligation were performed on beads. Libraries were
472 amplified by 10 cycles of PCR and purified using AMPure XP beads. The concentration and size
473 distribution of the Hi-C library after PCR amplification were determined using a Qbit fluorometer and
474 visual exploration in an agarose gel. Hi-C libraries were then paired-end sequenced on an Illumina
475 NextSeq500 (200M reads per library).

476 Data were processed for read quality control, mapping, interaction detection, filtering, and matrix
477 normalization using TADbit (Serra et al. 2017) (Supplementary Figure 6A). First, reads were quality-
478 controlled using the TADbit implementation of FastQC for Hi-C datasets. Average PHRED scores were
479 >25 throughout paired-end reads, indicative of good quality (Supplementary Figure 6B). Then, we used
480 a fragment-based strategy for mapping the remaining reads to the reference human genome (GRCh38).
481 Non-informative contacts including self-circles, dangling-ends, errors, random breaks or duplicates

482 were filtered out, resulting in 158-197M valid interactions per condition (Supplementary Table 1). These
483 were then used to generate genome-wide interaction maps at 100kb and 20kb resolution to segment
484 the genome into A/B compartments, demarcate TADs, and identify changes in chromatin looping. A/B
485 compartments were identified with HOMER (Heinz et al. 2010) by calculating the first two eigenvectors
486 of vanilla-normalized 100 kb contact matrices for every chromosome. Chromosome bins with positive
487 PC1 values and high gene density were considered to be part of compartment A, while bins with
488 negative values and low gene density were assigned to compartment B. For chromosome 4, there was
489 no clear separation between the first and second eigenvector profiles, so the values of the second
490 eigenvector were taken into account for further analysis. The Y chromosome was excluded from the
491 analysis of genomic bins switching compartments.

492 TADs were identified with the TAD detection algorithm implemented in TADbit using vanilla-normalized
493 100kb contact matrices. TAD border localization and strength were calculated to evaluate their
494 conservation upon depletion of STAG2. Finally, 20kb matrices were used to identify significant
495 interactions in control (shNT) and STAG2 depleted cells with HOMER analyzeHiC (FDR < 0.1) (Heinz
496 et al. 2010). HOMER analyzeHiC was also employed to detect differential interactions between shNT
497 and STAG2-silenced cells. Only high scoring differential interactions ($P < 0.05$) in both STAG2-targeting
498 shRNAs were retained for downstream analyses.

499 **Assortativity of regions altered upon STAG2 silencing.** To assess whether the chromatin contact
500 regions lost or gained upon STAG2 silencing, or the regions coding for genes deregulated upon STAG2
501 silencing, are located in proximity in 3D, chromatin assortativity (ChAs) analysis was used (Pancaldi et
502 al. 2016). We represent the genome as a network of nodes (chromatin fragments, here corresponding
503 to Hi-C bins) which are connected if a Hi-C contact between them is observed. Networks were displayed
504 using Cytoscape organic layout.

505 To select significant Hi-C contacts we identified significant Hi-C interactions at specific binning
506 resolution (20kb, 100kb, 1mb) by comparing each dataset to the background of the same datasets.
507 Each sample is considered as independent. We can thus define a control network and compare it to
508 the STAG2 silenced network and identify connections that are lost and gained from one condition to the
509 next. Briefly, ChAs is a measure of correlation of feature values across all edge pairs in a network and
510 allows us to see whether nodes with a specific property tend to interact more with each other than

511 expected at random. We asked whether assortativity of chromatin regions affected by STAG2 removal
512 is particularly strong for contacts spanning specific ranges of genomic distance by filtering the contacts
513 by distance spanned, eliminating contacts spanning progressively longer distances, thus generating
514 networks in which the minimum distance spanned by any contact is 50kb, 100kb, 250kb, 500kb, 750kb,
515 1Mb. Finally we mapped network nodes to genes by finding which Hi-C bins were overlapping
516 promoters and thus filtered 'in-silico' promoter-promoter networks from our Hi-C networks at the
517 different resolutions. We then assigned to all the nodes in the P-P network the value of Log2FC of the
518 gene between STAG2 KO and WT and ChAs of fold change. We repeated the calculation of assortativity
519 in networks on which we permuted the expression values on the network nodes to generate a null
520 distribution of ChAs values and show the distribution of these random ChAs values in the plots.

521 **DATA ACCESS**

522 The following secure token has been created to allow review of record GSE111913 encompassing the
523 ChIP-Seq data on cohesin subunits while it remains in private status: gdstsouqtdendir. ChIP-Seq data
524 on histone modifications and CTCF for RT112 are deposited in the GEO database under accession
525 number GSE104804. RNA-Seq data for RT112 cells next-generation sequencing data are available in
526 NCBI GEO, under accession number GSE154878. Hi-C data are available in NCBI GEO, under
527 accession number GSE155380. The authors declare that all other data supporting the findings of this
528 study are within the manuscript and its supplementary files.

529 **ACKNOWLEDGMENTS**

530 We thank all the staff of the GenomEast high throughput sequencing facility of the IGBMC in Strasbourg
531 (CNRS UMR7104, Inserm U1258, Université de Strasbourg) for the sequencing of ChIPs of histone
532 marks and CTCF; the UROMOL investigators and Lars Dyrskjot for providing RNA-Seq data; Ana
533 Losada for providing reagents; and Mark Kalisz, Ana Losada, and Ana Cuadrado for critical review of
534 the manuscript.

535 **FUNDING**

536 This work was supported, in part, by a research grant and a Postdoctoral Fellowship from Fundación
537 Científica de la Asociación Española Contra el Cáncer to FXR and EL, respectively. VP is supported

538 by INSERM, the Fondation Toulouse Cancer Santé and Pierre Fabre Research Institute as part of the
539 Chair of Bioinformatics in Oncology of the CRCT and by the Bioinfo4women programme at the
540 Barcelona Supercomputing Center. This research was partially funded by the European Union's H2020
541 Framework Programme through the ERC (grant agreement 609989 to MAM-R). We also acknowledge
542 the support of Spanish Ministerio de Ciencia, Innovación y Universidades through BFU2017-85926-P
543 to MAM-R. CNIO is supported by Ministerio de Ciencia, Innovación y Universidades as a Centro de
544 Excelencia Severo Ochoa SEV-2015-0510. CRG thanks the support of the Spanish Ministry of Science
545 and Innovation to the EMBL partnership, the 'Centro de Excelencia Severo Ochoa 2013-2017', SEV-
546 2012-0208, the CERCA Programme/Generalitat de Catalunya, Spanish Ministry of Science and
547 Innovation through the Instituto de Salud Carlos III, the Generalitat de Catalunya through Departament
548 de Salut and Departament d'Empresa i Coneixement and the Co-financing by the Spanish Ministry of
549 Science and Innovation with funds from the European Regional Development Fund (ERDF)
550 corresponding to the 2014-2020 Smart Growth Operating Program.

551 **AUTHOR CONTRIBUTIONS**

552 LR, EL, MAM-R, and FXR initiated and designed the studies. LR and YC performed the Hi-C experiment
553 and LR analysed and integrated it with the RNA-Seq and ChIP-Seq data. EL and MC performed RNA-
554 Seq and cohesin ChIP-Seq experiments and ECP, EL, and LR analysed the data. VP, MMM and JAR
555 performed the assortativity analyses and helped with the comparison of the RNA-Seq data on RT112
556 cells and the human tumor data. HNK and FR conducted the ChIP-Seq experiments for histone
557 modifications and CTCF and the analysis of chromatin states in RT112 cells. FLD supervised and
558 provided guidance on the preparation of the Hi-C libraries. FS supervised and provided guidance on
559 the analysis of the Hi-C data. LR, EL, VP, MAM-R, and FXR interpreted the results and wrote the
560 manuscript. MAM-R and FXR supervised the whole research and provided guidance. All authors had
561 access to the final manuscript and approved the submission of the final version of the paper.

562 **DISCLOSURE DECLARATION**

563 The authors declare no competing interests.

564

565 REFERENCES

566 1. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA. 2014. Discovery and saturation
567 analysis of cancer genes across 21 tumour types. *Nature* **505**:495-501.

568 2. Romero-Pérez L, Surdez D, Brunet E, Delattre O, Grünewald TGP. 2019. STAG mutations in cancer.
569 *Trends Cancer*. **5**:506-20.

570 3. Solomon DA, Kim T, Diaz-Martinez LA, Fair J, Elkahloun AG, Harris BT, Toretsky JA, Rosenberg SA,
571 Shukla N, Ladanyi M et al. 2011. Mutational inactivation of STAG2 causes aneuploidy in human cancer.
572 *Science*. **333**:1039-43.

573 4. Balbás-Martínez C, Sagrera A, Carrillo-de-Santa-Pau E, Earl J, Márquez M, Vazquez M, Lapi E, Castro-
574 Giner F, Beltran S, Bayés M et al. 2013. Recurrent inactivation of STAG2 in bladder cancer is not
575 associated with aneuploidy. *Nat Genet*. **45**:1464-9.

576 5. Solomon DA, Kim JS, Bondaruk J, Shariat SF, Wang ZF, Elkahloun AG, Ozawa T, Gerard J, Zhuang D,
577 Zhang S et al. 2013. Frequent truncating mutations of STAG2 in bladder cancer. *Nat Genet*. **45**:1428-
578 30.

579 6. Guo G, Sun X, Chen C, Wu S, Huang P, Li Z, Dean M, Huang Y, Jia W, Zhou Q et al. 2013. Whole-
580 genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes
581 involved in sister chromatid cohesion and segregation. *Nat Genet*. **45**:1459-63.

582 7. Taylor CF, Platt FM, Hurst CD, Thygesen HH, Knowles MA. 2014. Frequent inactivating mutations of
583 STAG2 in bladder cancer are associated with low tumour grade and stage and inversely related to
584 chromosomal copy number changes. *Hum Mol Genet*. **23**:1964-74.

585 8. Brohl AS, Solomon DA, Chang W, Wang J, Song Y, Sindiri S, Patidar R, Hurd L, Chen L, Shern JF et
586 al. 2014. The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2
587 mutation. *PLoS Genetics*. **10**:e1004475.

588 9. Crompton BD, Stewart C, Taylor-Weiner A, Alexe G, Kurek KC, Calicchio ML, Kiezun A, Carter SL,
589 Shukla SA, Mehta SS et al. 2014. The genomic landscape of pediatric Ewing sarcoma. *Cancer
590 Discovery*. **4**:1326-41.

591 10. Kon A, Shih LY, Minamino M, Sanada M, Shiraishi Y, Nagata Y, Yoshida K, Okuno Y, Bando M, Nakato
592 R et al. 2013. Recurrent mutations in multiple components of the cohesin complex in myeloid
593 neoplasms. *Nature Genetics*. **45**:1232-37.

594 11. Thota S, Viny AD, Makishima H, Spitzer B, Radivoyevitch T, Przychodzen B, Sekeres MA, Levine RL,
595 Maciejewski JP. 2014. Genetic alterations of the cohesin complex genes in myeloid malignancies.
596 *Blood*. **124**:1790-98.

597 12. De Koninck M, Losada A. 2016. Cohesin Mutations in Cancer. *Cold Spring Harb Perspect Med*. **6**. pii:
598 a026476.

599 13. Shen CH, Kim SH, Trousil S, Frederick DT, Piris A, Yuan P, Cai L, Gu L, Li M, Lee JH et al. 2016. Loss
600 of cohesin complex components STAG2 or STAG3 confers resistance to BRAF inhibition in melanoma.
601 *Nat Med*. **22**:1056-61.

602 14. Cheung HH, Yang Y, Lee TL, Rennert O, Chan WY. 2016. Hypermethylation of genes in testicular
603 embryonal carcinomas. *Br J Cancer*. **114**:230-6.

604 15. Remeseiro S, Losada A. 2013. Cohesin, a chromatin engagement ring. *Curr Opin Cell Biol*. **25**:63-71.

605 16. Canudas S, Smith S. 2009. Differential regulation of telomere and centromere cohesion by the Scc3
606 homologues STAG1 and STAG2, respectively, in human cells. *J Cell Biol*. **187**:165-73.

607 17. Remeseiro S, Cuadrado A, Gómez-López G, Pisano DG, Losada A. 2012a. A unique role of cohesin-
608 STAG1 in gene regulation and development. *EMBO J*. **31**:2090-102.

609 18. Remeseiro S, Cuadrado A, Carretero M, Martínez P, Drosopoulos WC, Cañamero M, Schildkraut CL,
610 Blasco MA, Losada A. 2012b. Cohesin-STAG1 deficiency drives aneuploidy and tumourigenesis in
611 mice due to impaired replication of telomeres. *EMBO J*. **31**:2076-89.

612 19. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, Wartman LD, Lamprecht TL, Liu F, Xia
613 J et al. 2012. The origin and evolution of mutations in acute myeloid leukemia. *Cell*. **150**:264-78.

614 20. Dekker J, Rippe K, Dekker M, Kleckner N. 2002. Capturing chromosome conformation. *Science*.
615 **295**:1306-11.

616 21. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR,
617 Sabo PJ, Dorschner MO et al. 2009. Comprehensive mapping of long-range interactions reveals folding
618 principles of the human genome. *Science*. **326**:289-93.

619 22. Rowley MJ, Corces VG. 2018. Organizational principles of 3D genome architecture. *Nat Rev Genet*.
620 **19**:789-800.

621 23. Sanborn AL, Rao SS, Huang SC, Durand NC, Huntley MH, Jewett AI, Bochkov ID, Chinnappan D,
622 Cutkosky A, Li J et al. 2015. Chromatin extrusion explains key features of loop and domain formation
623 in wild-type and engineered genomes. *Proc Natl Acad Sci U S A*. **112**:E6456-65.

624 24. Guo Y, Xu Q, Canzio D, Shou J, Li J, Gorkin DU, Jung I, Wu H, Zhai Y, Tang Y et al. 2015. CRISPR
625 Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function. *Cell*. **162**:900-10.

626 25. Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. 2016. Formation of
627 Chromosomal Domains by Loop Extrusion. *Cell Rep*. **15**:2038-49.

628 26. Rao SSP, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon KR, Sanborn AL,
629 Johnstone SE, Bascom GD, Bochkov ID et al. 2017. Cohesin Loss Eliminates All Loop Domains. *Cell*.
630 **171**:305-20.

631 27. Kim Y, Shi Z, Zhang H, Finkelstein IJ, Yu H. 2019. Human cohesin compacts DNA by loop extrusion.
632 *Science*. **366**:1345-9.

633 28. Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J,
634 Rahl PB, Levine SS et al. 2010. Mediator and cohesin connect gene expression and chromatin
635 architecture. *Nature*. **467**:430-5.

636 29. Schaaf CA, Kwak H, Koenig A, Misulovin Z, Gohara DW, Watson A, Zhou Y, Lis JT, Dorsett D. 2013.
637 Genome-wide control of RNA polymerase II activity by cohesin. *PLoS Genet*. **9**:e1003382.

638 30. Kojic A, Cuadrado A, De Koninck M, Giménez-Llorente D, Rodríguez-Corsino M, Gómez-López G, Le
639 Dily F, Martí-Renom MA, Losada A. 2018. Distinct roles of cohesin-STAG1 and cohesin-STAG2 in 3D
640 chromosome organization. *Nat Struct Mol Biol*. **25**:496-504.

641 31. Cuadrado A, Giménez-Llorente D, Kojic A, Rodríguez-Corsino M, Cuartero Y, Martín-Serrano G,
642 Gómez-López G, Martí-Renom MA, Losada A. 2019. Specific Contributions of Cohesin-STAG1 and
643 Cohesin-STAG2 to TADs and Polycomb Domains in Embryonic Stem Cells. *Cell Rep.* **27**:3500-10.

644 32. Casa V, Moronta Gines M, Gade Gusmao E, Slotman JA, Zirkel A, Josipovic N, Oole E, van IJcken
645 WFJ, Houtsmuller AB, Papantonis A et al. 2020. Redundant and specific roles of cohesin STAG
646 subunits in chromatin looping and transcriptional control. *Genome Res.* **30**:515-27.

647 33. Viny AD, Bowman RL, Liu Y, Lavallée VP, Eisman SE et al. Stag1 and Stag2 regulate cell fate decisions
648 in hematopoiesis through non-redundant topological control. bioRxiv 581868; doi:
649 <https://doi.org/10.1101/581868>.

650 34. Gui Y, Guo G, Huang Y, Hu X, Tang A, Gao S, Wu R, Chen C, Li X, Zhou L et al. 2011. Frequent
651 mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. *Nat Genet.*
652 **43**:875-8.

653 35. McConkey DJ, Lee S, Choi W, Tran M, Majewski T, Lee S, Siefker-Radtke A, Dinney C, Czerniak B.
654 2010. Molecular genetics of bladder cancer: Emerging mechanisms of tumor initiation and progression.
655 *Urol Oncol.* **28**:429-40.

656 36. Kamoun A, de Reyniès A, Allory Y, Sjödahl G, Robertson AG, Seiler R, Hoadley KA, Groeneveld CS,
657 Al-Ahmadie H, Choi W et al. 2020. A Consensus Molecular Classification of Muscle-invasive Bladder
658 Cancer. *Eur Urol.* **77**:420-33.

659 37. Earl J, Rico D, Carrillo-de-Santa-Pau E, Rodríguez-Santiago B, Méndez-Pertuz M, Auer H, Gómez G,
660 Grossman HB, Pisano DG, Schulz WA et al. 2015. The UBC-40 Urothelial Bladder Cancer cell line
661 index: a genomic resource for functional studies. *BMC Genomics.* **16**:403.

662 38. Du C, Gao Y, Xu S, Jia J, Huang Z, Fan J, Wang X, He D, Guo P. 2016. KLF5 promotes cell migration
663 by up-regulating FYN in bladder cancer cells. *FEBS Lett.* **590**:408-18.

664 39. Qin J, Zhou Z, Chen W, Wang C, Zhang H, Ge G, Shao M, You D, Fan Z, Xia H et al. 2015. BAP1
665 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. *Nat Commun.*
666 **6**:8471.

667 40. Sabari JK, Lok BH, Laird JH, Poirier JT, Rudin CM. 2017. Unravelling the biology of SCLC: implications
668 for therapy. *Nat Rev Clin Oncol.* **14**:549-61.

669 41. Morales C, Losada A. 2018. Establishing and dissolving cohesion during the vertebrate cell cycle. *Curr*
670 *Opin Cell Biol.* **52**:51-7.

671 42. Phillips-Cremins JE, Sauria ME, Sanyal A, Gerasimova TI, Lajoie BR, Bell JS, Ong CT, Hookway TA,
672 Guo C, Sun Y et al. 2013. Architectural protein subclasses shape 3D organization of genomes during
673 lineage commitment. *Cell.* **153**:1281-95.

674 43. Hedegaard J, Lamy P, Nordentoft I, Algaba F, Høyer S, Ulhøi BP, Vang S, Reinert T, Hermann GG,
675 Mogensen K et al. 2016. Comprehensive Transcriptional Analysis of Early-Stage Urothelial Carcinoma.
676 *Cancer Cell.* **30**:27-42.

677 44. Pancaldi V, Carrillo-de-Santa-Pau E, Javierre BM, Juan D, Fraser P, Spivakov M, Valencia A, Rico D.
678 2016. Integrating epigenomic data and 3D genomic structure with a new measure of chromatin
679 assortativity. *Genome Biol.* **17**:152.

680 45. Santos CP, Lapi E, Martínez de Villarreal J, Álvaro-Espínosa L, Fernández-Barral A, Barbáchano A,
681 Domínguez O, Laughney AM, Megías D, Muñoz A et al. 2019. Urothelial organoids originating from
682 Cd49fhigh mouse stem cells display Notch-dependent differentiation capacity. *Nat Commun.* **10**:4407.

683 46. Yamashita H, Kawasawa YI, Shuman L, Zheng Z, Tran T, Walter V, Warrick JI, Chen G, Al-Ahmadie
684 H, Kaag M et al. 2019. Repression of transcription factor AP-2 alpha by PPARy reveals a novel
685 transcriptional circuit in basal-squamous bladder cancer. *Oncogenesis.* **8**:69.

686 47. Rubio-Camarillo M, López-Fernández H, Gómez-López G, Carro Á, Fernández JM, Torre CF, Fdez-
687 Riverola F, Glez-Peña D. 2017. RUbioSeq+: A multiplatform application that executes parallelized
688 pipelines to analyse next-generation sequencing data. *Comput Methods Programs Biomed.* **138**:73-81.

689 48. Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, Brown GD, Gojis O, Ellis
690 IO, Green AR et al. 2012. Differential oestrogen receptor binding is associated with clinical outcome in
691 breast cancer. *Nature.* **481**:389-93.

692 49. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK.
693 2010. Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory
694 Elements Required for Macrophage and B Cell Identities. *Mol Cell.* **38**:576-89.

695 50. Machanick P and Bailey TL. 2011. MEME-ChIP: motif analysis of large DNA datasets. *Bioinformatics*.
696 **27**:1696-97.

697 51. Graña O, Rubio-Camarillo M, Fernandez-Riverola F, Pisano DG, Glez-Peña D. 2017. Nextpresso: Next
698 generation sequencing expression analysis pipeline. *Curr Bioinform.* **12**.

699 52. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I,
700 Omer AD, Lander ES et al. 2014. A 3D map of the human genome at kilobase resolution reveals
701 principles of chromatin looping. *Cell.* **159**:1665-80.

702 53. Serra F, Baù D, Goodstadt M, Castillo D, Filion GJ, Marti-Renom MA. 2017. Automatic analysis and
703 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors. *PLoS*
704 *Comput Biol.* **13**:e1005665.

705 54. Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, Aiden EL. 2016. Juicebox
706 Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. *Cell Syst.* **3**:99-101.

707

708 **FIGURE LEGENDS**

709 **Figure 1. STAG1 and STAG2 show both overlapping and unique distributions over genomic**
710 **elements and chromatin states in RT112 cells.** (A) ChIP-Seq read density heatmaps for STAG1,
711 STAG2, and SMC1 at common, STAG1-enriched (STAG1 > STAG2), and STAG2-enriched (STAG2 >
712 STAG1) cohesin positions within a peak-centered 6kb window. (B) Read density distribution for STAG1
713 and STAG2 at common, STAG1-enriched, and STAG2-enriched positions within a peak-centered 6kb
714 window. (C) Bar-plot diagram showing the distribution of common, STAG1-enriched, and STAG2-
715 enriched cohesin positions over genomic elements. (D) Distribution of cohesin-bound genomic sites
716 throughout chromatin states identified in RT112 cells by ChromHMM and based on combinations of
717 histone modifications and CTCF (see Supplementary Figure 1C for definition of chromatin states). (E)

718 Peak-centered enrichment plot for CTCF over the three categories of cohesin-bound positions showing
719 relative depletion in STAG2-enriched sites.

720 **Supplementary Figure 1. STAG1- and STAG2-enriched cohesin sites show differential overlap**
721 **with the insulator CTCF.** (A) Snapshots of STAG1, STAG2, and CTCF ChIP-Seq tracks at loci
722 representative of the three categories of cohesin-bound genomic sites. (B) Bar-plot diagram showing
723 distribution of STAG1 and STAG2 binding sites over genomic elements. (C) Chromatin state
724 assignments for RT112 cells made by ChromHMM. The left panel displays a heatmap of the emission
725 parameters in which each row corresponds to a different state and each column corresponds to a
726 different histone modification/CTCF. The darker blue reflects a greater probability of observing the mark
727 in the state. The heatmap to the right displays the fold enrichment for external genomic annotations at
728 each chromatin state. (D) Distribution of STAG1 and STAG2 target sites over chromatin states defined
729 in (C). (E) Motif enrichment analysis of STAG1- and STAG2-enriched positions. E values of the top 5
730 enriched transcription factor motifs are shown.

731 **Figure 2. Down-regulation of STAG2 in RT112 cells does not interfere with A/B compartments or**
732 **TAD boundaries.** (A) Western blot analysis of control (shNT) and STAG2-silenced RT112 cells
733 showing efficient depletion of STAG2 at the protein level. (B) Hi-C matrices for chr2 at 500kb resolution
734 in cells transduced with control or STAG2-targeting shRNAs. The darker red reflects a greater frequency
735 of interaction. (C) Compartment tracks for chr2 at 100kb resolution as determined by the values of the
736 first principal component (PC1) in control and STAG2-silenced cells. (D) Expression, as defined by
737 RNA-Seq (Log2 FPKM), of genes within compartments A and B. As expected, genes assigned to
738 compartment A are more transcriptionally active than genes in compartment B. t-test: ***, $P < 0.001$.
739 (E) Scatterplot of PC1 values of the eigenvectors of intrachromosomal interaction matrices for control
740 and STAG2-silenced cells. The Venn diagrams show the overlap in terms of compartment-switching
741 bins between sh1 and sh2. (F) Effect of STAG2-depletion on the number of TADs per chromosome.
742 (G) Histograms depicting the strength of the TAD borders detected in control and STAG2-silenced cells,
743 according to the TADbit score. (H) Density plot depicting the distribution of TAD sizes identified in
744 control and STAG2-silenced cells. (I) Hi-C normalized interaction matrices for chr2 at 100kb resolution
745 comparing TAD organization in control and STAG2-silenced cells. (J) Effect of STAG2-depletion on the
746 conservation of TAD borders. Boxplot notches represent the confidence interval around the median.

747 **Supplementary Figure 2. STAG2 silencing in RT112 cells does not result in major changes in**
748 **gene copy number.** (A,B) Read counts per 100 kb-sized genomic bin along each chromosome in
749 control (A) and STAG2-silenced RT112 cells (B).

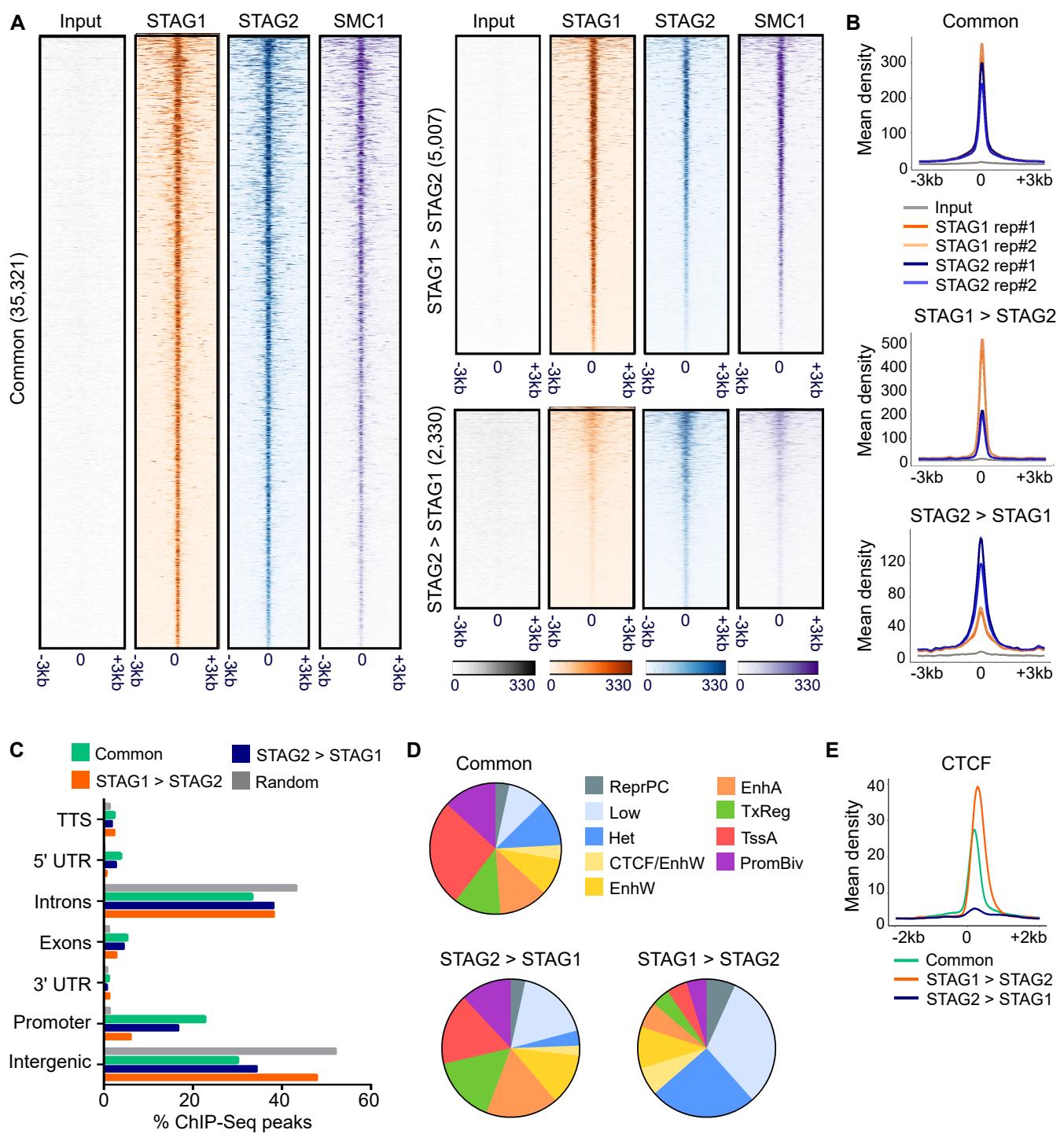
750 **Figure 3. STAG2-enriched cohesin mediates short-range contacts in RT112 cells.** (A) Snapshot
751 of a normalized contact matrix of chr1 at 20kb resolution in control cells as visualized in Juicebox
752 (Durand et al. 2016). Grey dots indicate the position of significant interactions (FDR < 0.1). The darker
753 red reflects a greater frequency of interaction. (B) Number of reads per interaction for significant
754 interactions (FDR < 0.1) called in control (shNT) and STAG2-depleted RT112 cells. (C) Fold change of
755 the proportion of interactions per chromosome comparing control and STAG2-silenced cells, classified
756 as short (< 250kb) or long-range (>1 Mb). (D) Number of reads per interaction of interactions
757 overlapping cohesin binding sites in control cells. (E) Histograms showing the distribution of distances
758 between the peaks of interactions in control cells overlapping common, STAG1-enriched, or STAG2-
759 enriched cohesin genomic binding sites. The pie charts plot the proportion of short (< 250kb), mid
760 (250kb-1Mb), and long-range (>1 Mb) interactions. STAG2-enriched overlapping interactions are
761 distinctively short-ranged. (F) Proportion of short, middle, and long interactions overlapping the three
762 subsets of cohesin binding sites. Numbers within the plot show the proportion of STAG2-enriched
763 overlapping interactions. (G) Fold-change in the number of reads of contacts overlapping common,
764 STAG1-enriched, or STAG2-enriched cohesin binding sites upon STAG2 silencing. t-test: ***, $P <$
765 0.001.

766 **Supplementary Figure 3. Gene expression changes upon STAG2 silencing in RT112 cells.** (A)
767 Scatter plots of expression values (FPKM) of genes in control versus STAG2-silenced cells. Statistically
768 significant differentially expressed genes are highlighted in dark (FDR < 0.05) or light red ($P < 0.05$).
769 (B) Scatter plot showing a positive and significant correlation between gene expression changes in sh1
770 and sh2 (left). Venn diagrams displaying the overlap between sh1 and sh2 in terms of significant up-
771 and down-regulated genes. (C) GSEA enrichment plots of gene sets associated with the luminal and
772 basal subtypes of muscle-invasive UBC showing significant deregulation in STAG2-silenced RT112
773 cells. (D) Distribution of STAG2 expression (FPKM) in the UROMOL cohort of 476 UBC samples
774 (Hedegaard et al. 2016), highlighting the thresholds of the first and fourth quartiles (119 samples per
775 group). We defined “STAG2 high” cases as those with expression values in the fourth quartile, and

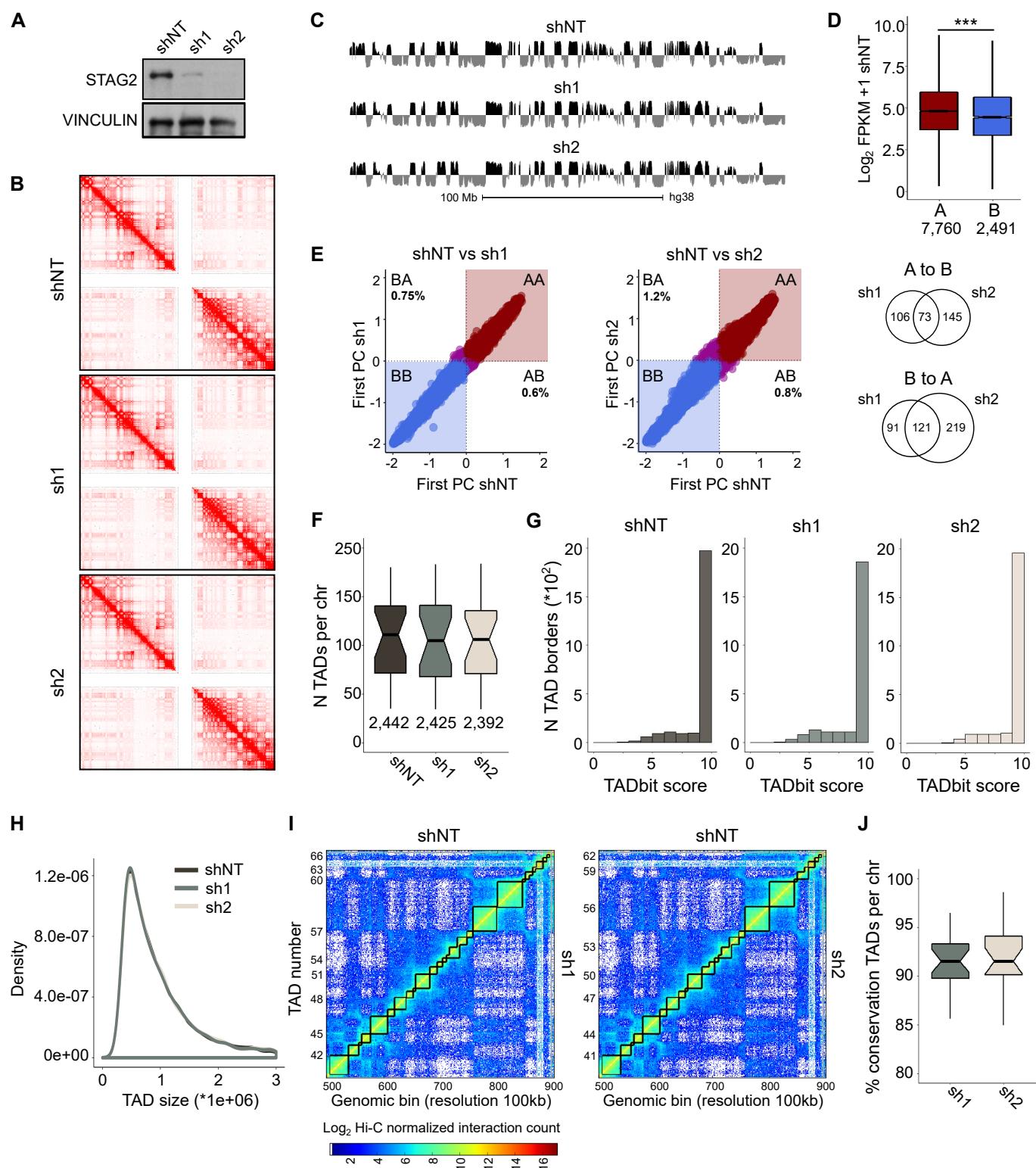
776 “STAG2 low” cases as those with STAG2 levels in the first quartile. (E) GSEA enrichment plots for
777 genes down-regulated in STAG2-silenced cells in “STAG2 high” versus “STAG2 low” tumor samples.
778 (F,G) Heatmaps displaying relative expression values (Z-score of FPKM) of genes significantly down-
779 regulated in RT112 cells with sh1 (F) or sh2 (G) and in “STAG2 low” versus “STAG2 high” tumor
780 samples.

781 **Figure 4. STAG2 silencing is accompanied by loss of short-ranged, assortative, contacts that**
782 **do not overlap with CTCF binding sites.** (A) Number of reads aligning to genomic sites engaged in
783 interactions in control shNT cells (FDR<0.1) and in STAG2-silenced cells. (B) Number of reads of
784 interactions significantly lost and gained. (C) Distance between peaks of control (shNT), lost, and gained
785 interactions. (D) Proportion of short (<250kb), mid (250kb-1Mb), and long-ranged (>1Mb) contacts
786 among control (shNT), lost, and gained interactions. (E) Motif analysis of the subsets of interactions
787 defined in B. (F) Proportion of lost and gained interactions among control or cohesin-overlapping
788 contacts. (G) Top: chromatin contact network generated from the 20kb resolution Hi-C interaction map
789 of control cells, showing in pink the nodes involved in contacts that are lost upon STAG2 silencing.
790 Bottom: chromatin assortativity of nodes that lose contacts as the network is filtered eliminating contacts
791 spanning short distances. (H) Left: Network of gene contacts inferred from 20kb resolution Hi-C
792 interaction matrices of control cells (including only genes for which expression values could be
793 calculated) showing log2 fold change of expression between STAG2-silenced and control cells. Nodes
794 in red are up-regulated in STAG2-silenced cells while nodes in blue are down-regulated. Significantly
795 regulated genes are shown with black borders. Right: Assortativity of fold-change of expression values
796 between STAG2-silenced and control cells measured on a network of gene-gene 3D interactions,
797 calculated using networks generated by different binnings of Hi-C data (large empty red circles 20kb,
798 100kb and 1Mb), compared to random expectations for assortativity values (small filled circles). t-test:
799 ***, $P < 0.001$.

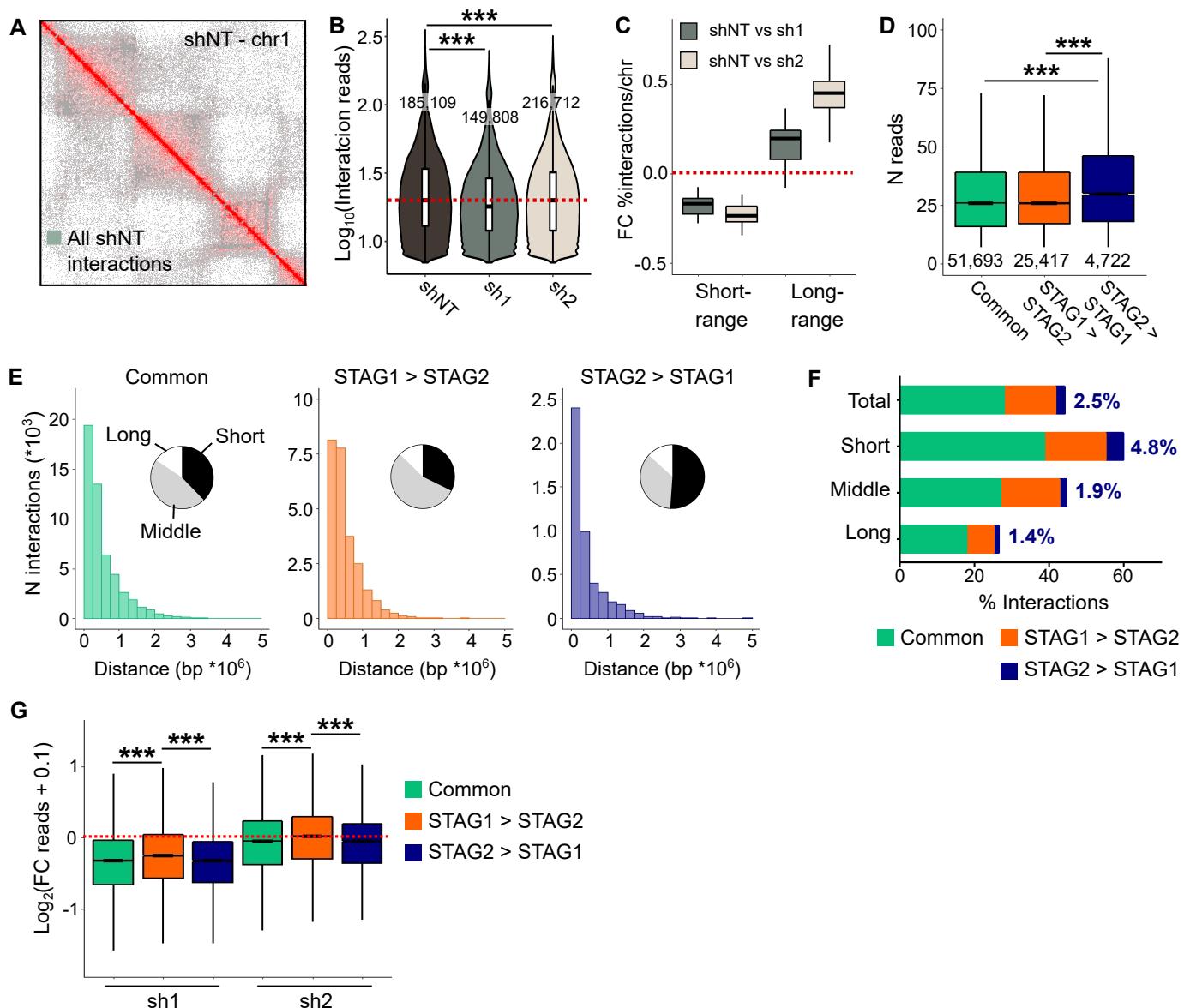
800 **Supplementary Figure 4. Genomic characterization of lost and gained interactions in RT112 cells**
801 **upon STAG2 knockdown.** (A,B) Overlap of control (shNT), lost, and gained interactions with A/B
802 compartments (A) and genomic elements (B). (C) Distribution of distances spanned by lost and gained
803 interactions.

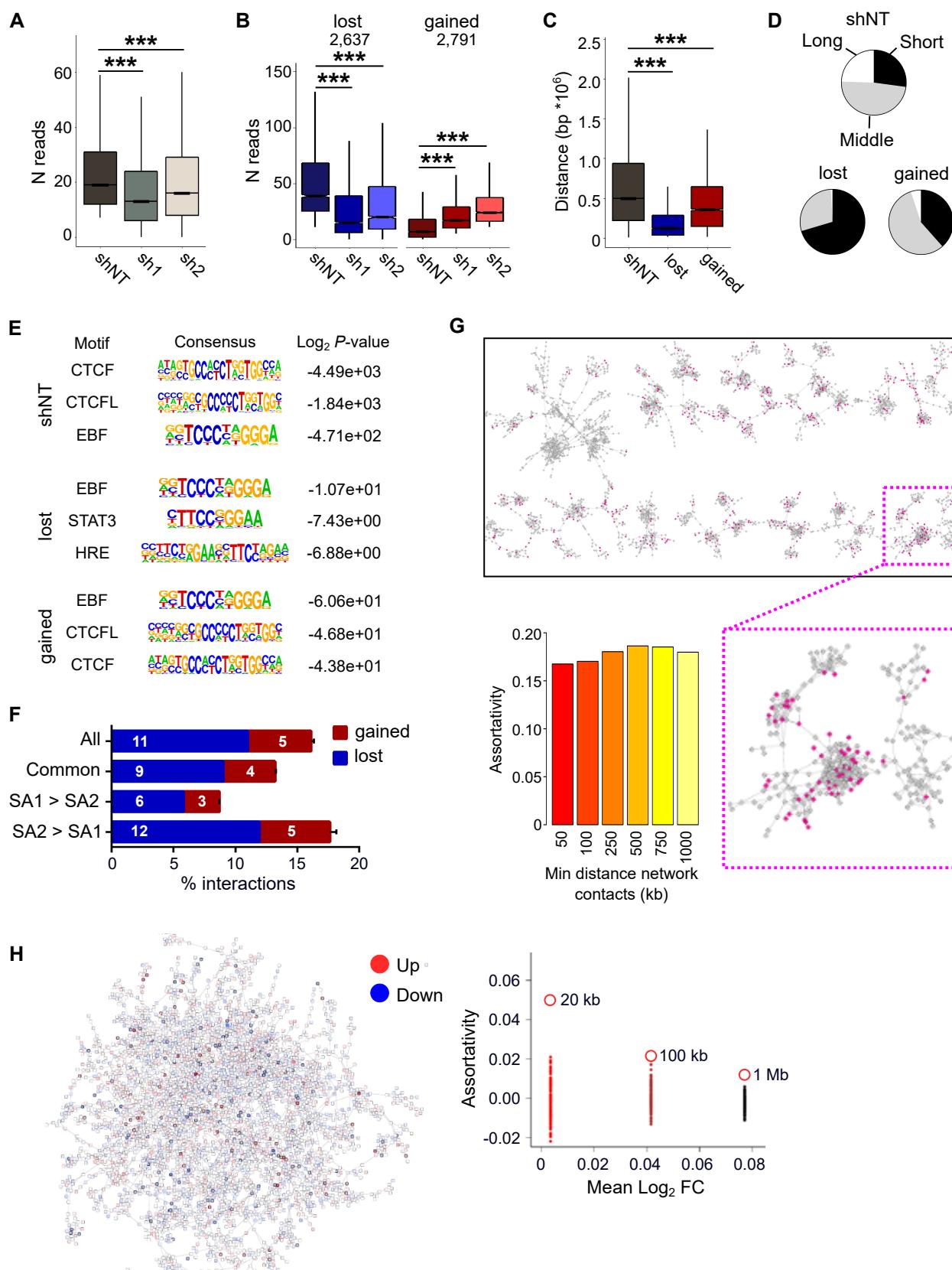

804 **Figure 5. STAG2-enriched overlapping interactions engage transcriptionally active genes.** (A)
805 Distribution of all and cohesin-overlapping interactions, in control cells over genomic elements. STAG2-
806 enriched overlapping interactions engage a higher percentage of promoters than interactions
807 overlapping other cohesin binding sites. (B) RNA-Seq expression values (log2 FPKM) of genes
808 engaged by all, or by cohesin-overlapping interactions, in control cells. STAG2-enriched overlapping
809 interactions are associated with highly transcribed genes. t-test: **, $P < 0.01$; ***, $P < 0.001$. (C,D)
810 Average fold change in gene expression values (FPKM) of genes engaged by control and differential
811 interactions overlapping promoters (C) or gene bodies (D) and common, STAG1-enriched, or STAG2-
812 enriched cohesin binding sites. Boxplot notches represent the confidence interval around the median.
813 Values at the bottom of the graph refer to the number of genes engaged by every category of
814 interactions. Mann-Whitney U test: *, $P < 0.05$; **, $P < 0.01$. (E,F) Hi-C contact matrices at the *SCEL*
815 (E) and *ACOXL* (F) loci in control and STAG2-silenced cells. Differential contact matrices are included
816 to emphasize the impact of STAG2 depletion on DNA contacts at these loci. Snapshots of the ChIP-
817 Seq tracks for STAG1 and STAG2, differential contact matrices, and gene expression values (FPKM)
818 are included. Loss of interactions overlapping the promoter of *CALD1* upon STAG2 silencing results in
819 a consistent increase in gene expression, while gain of interactions on the promoter of *FANCE* is
820 translated into decreased gene expression. Error bars represent mean \pm SEM. t-test: **, $P < 0.01$; ***,
821 $P < 0.001$.

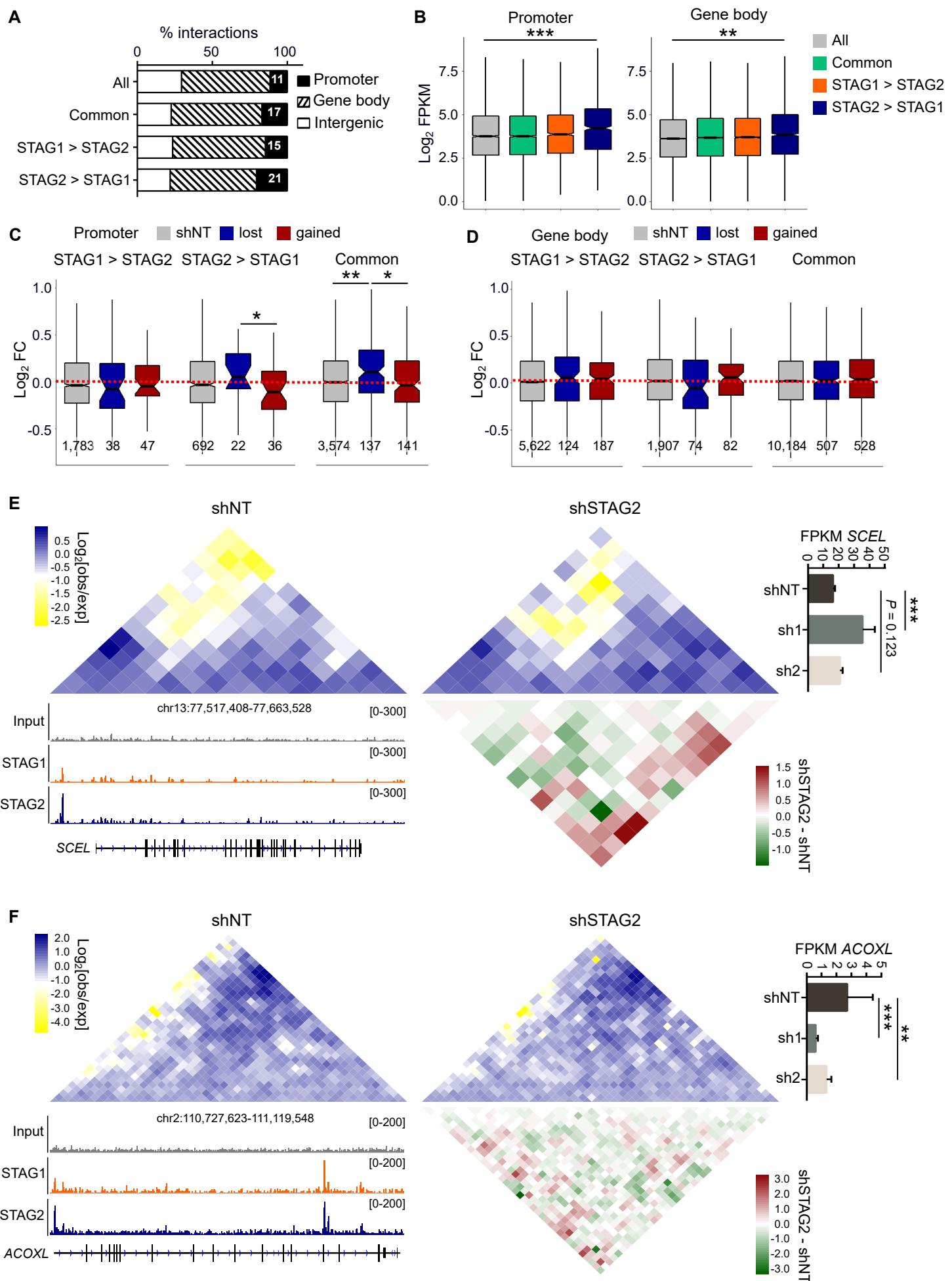
822 **Supplementary Figure 5. Analysis of the consequences of changes in DNA looping on gene**
823 **expression.** (A,B) Expression values of genes engaged by control and differential interactions
824 overlapping promoters (A) or gene bodies (B) and common, STAG1-enriched, or STAG2-enriched
825 cohesin binding sites. Boxplot notches represent the confidence interval around the median. (C) Gene
826 expression values (FPKM) of *SCEL* and *ACOXL* in control and STAG2-silenced cells.


827 **Supplementary Figure 6. Quality check Hi-C datasets.** (A) Pipeline for the analysis of Hi-C data. (B)
828 Example of the quality report on the shNT read 1 FASTQ file created by the TADbit pipeline. The report
829 includes information on the efficiency of both digestion and ligation. (C) Filtered genome-wide Hi-C
830 interaction maps at 1Mb resolution for each sample type. Pairs of loci that reside on the same
831 chromosome show higher interaction frequencies than loci that reside on different chromosomes.

832 **Supplementary Table 1.** Number of valid read pairs per sample after filtering.


Figure 1


Figure 2


Figure 3

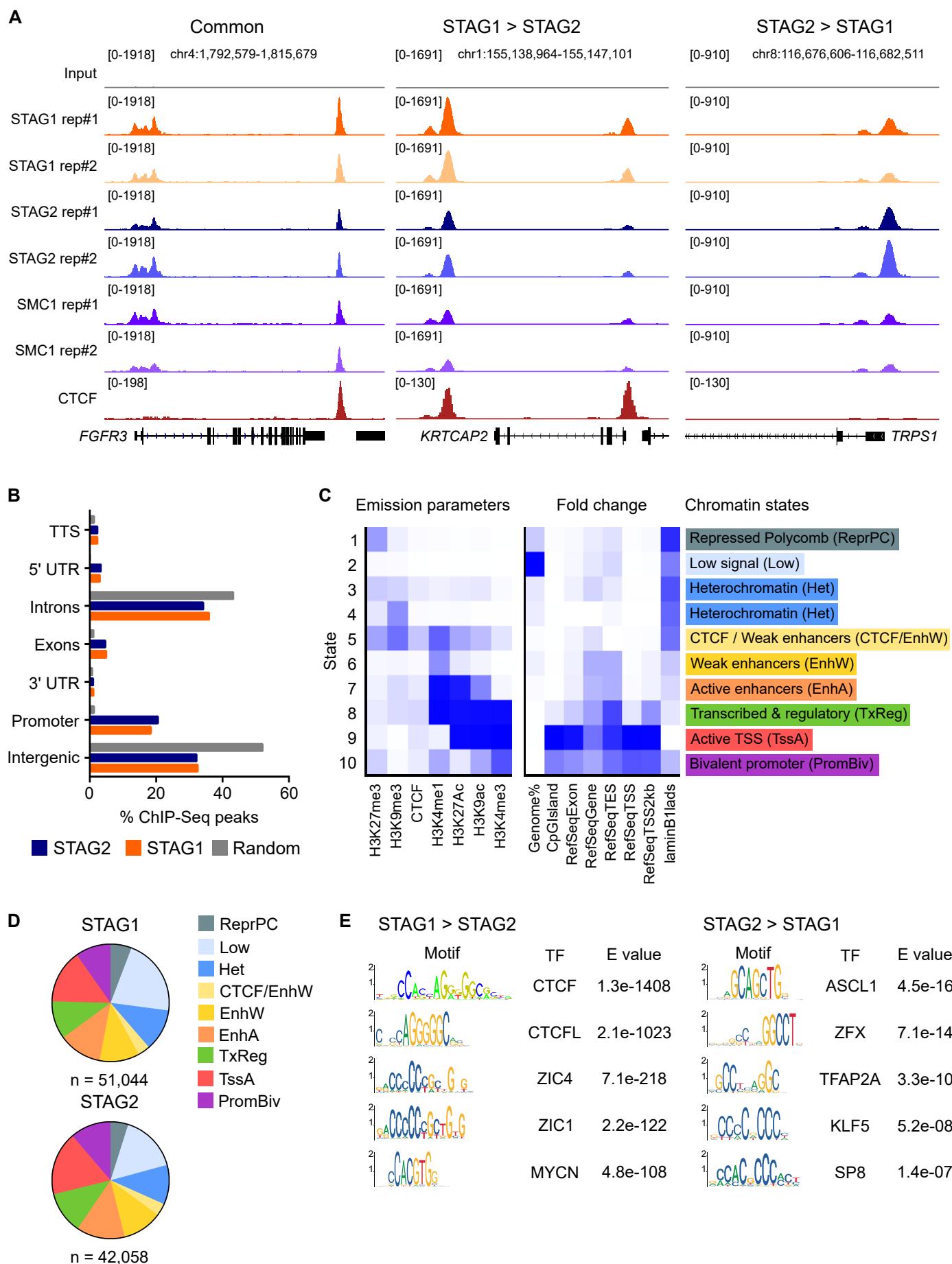
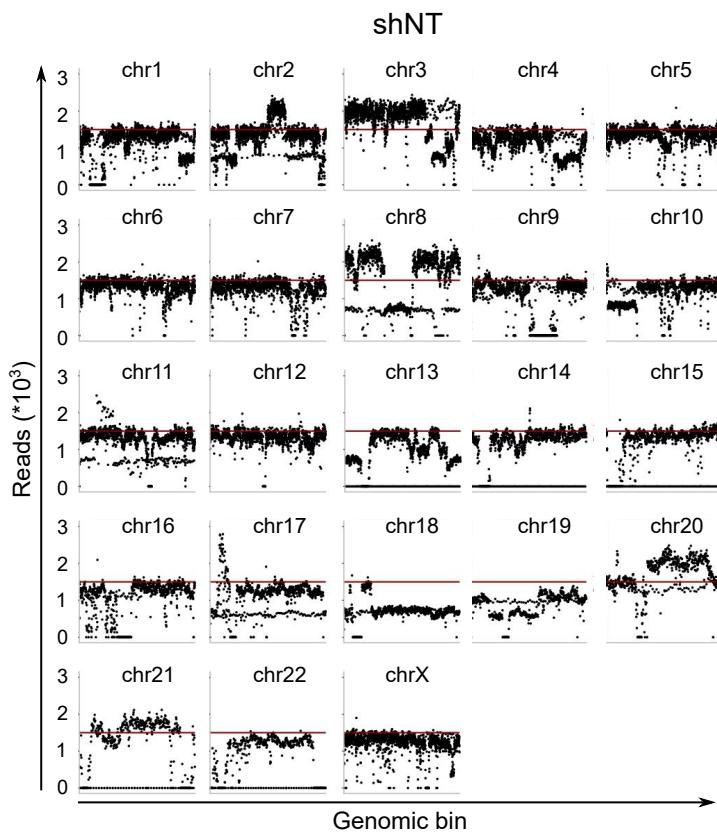
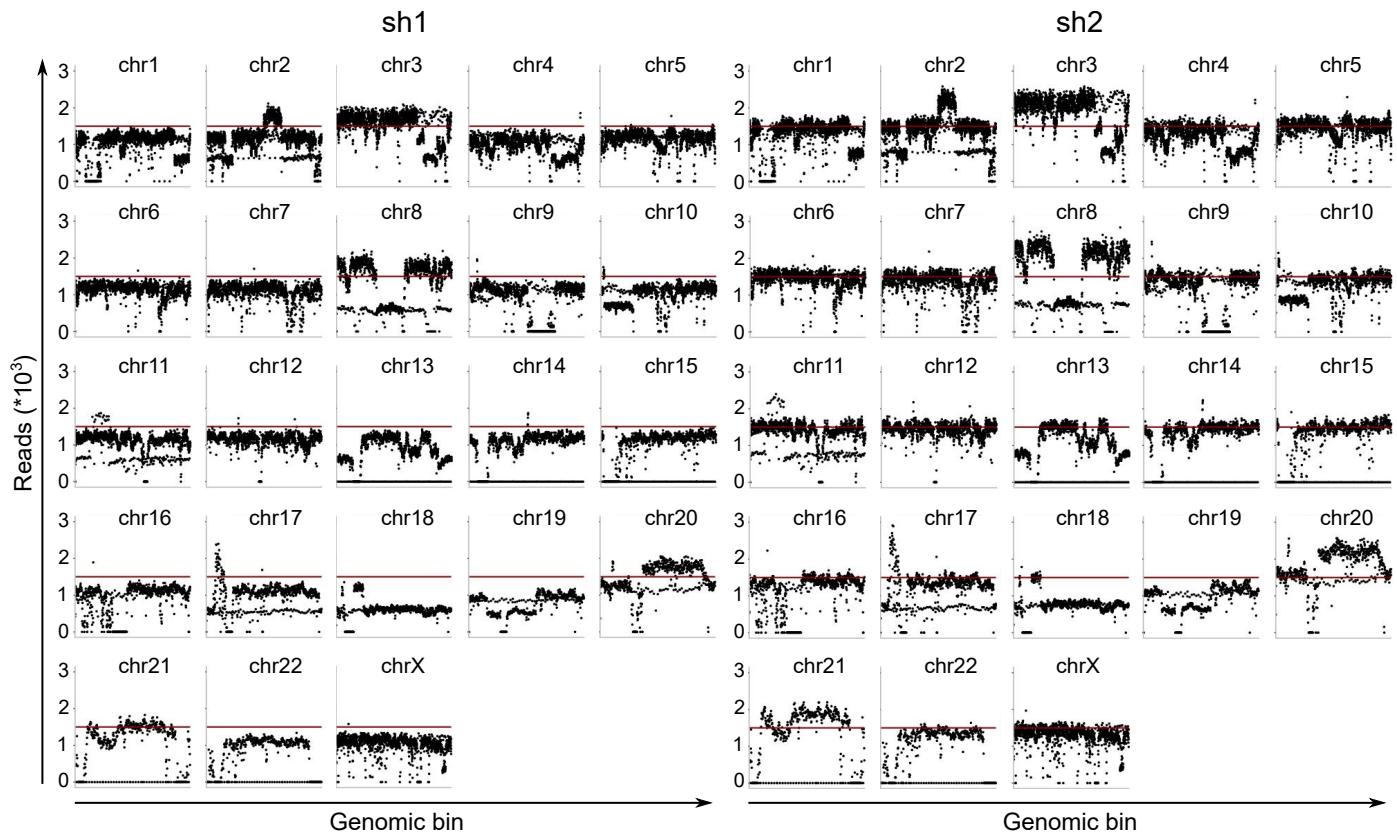

Figure 4

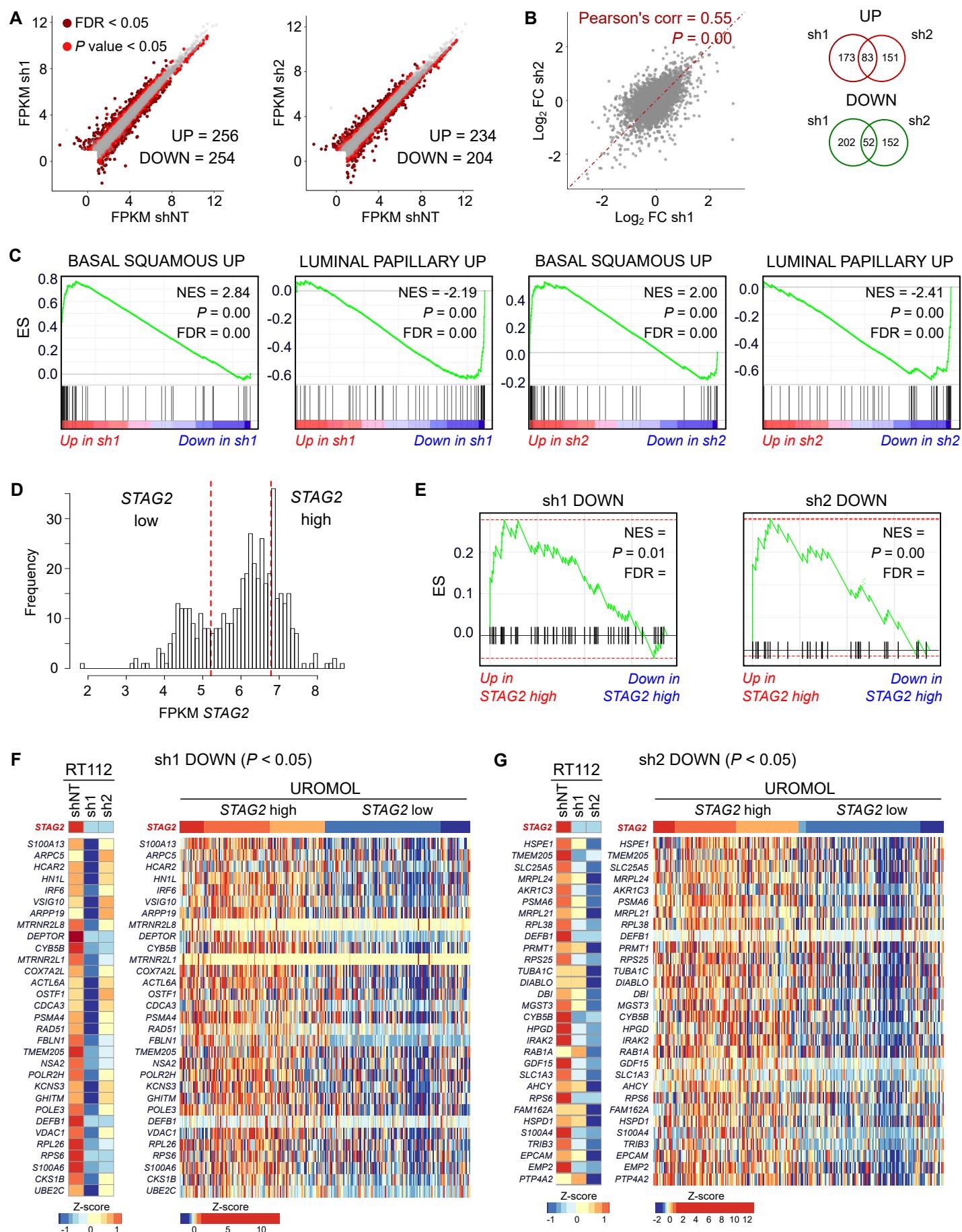
Figure 5

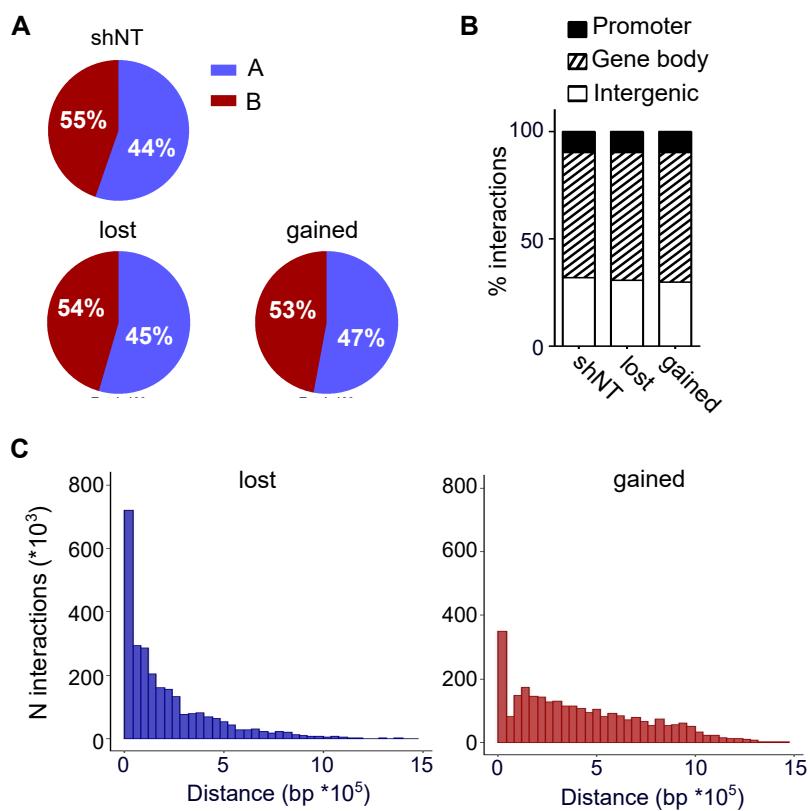


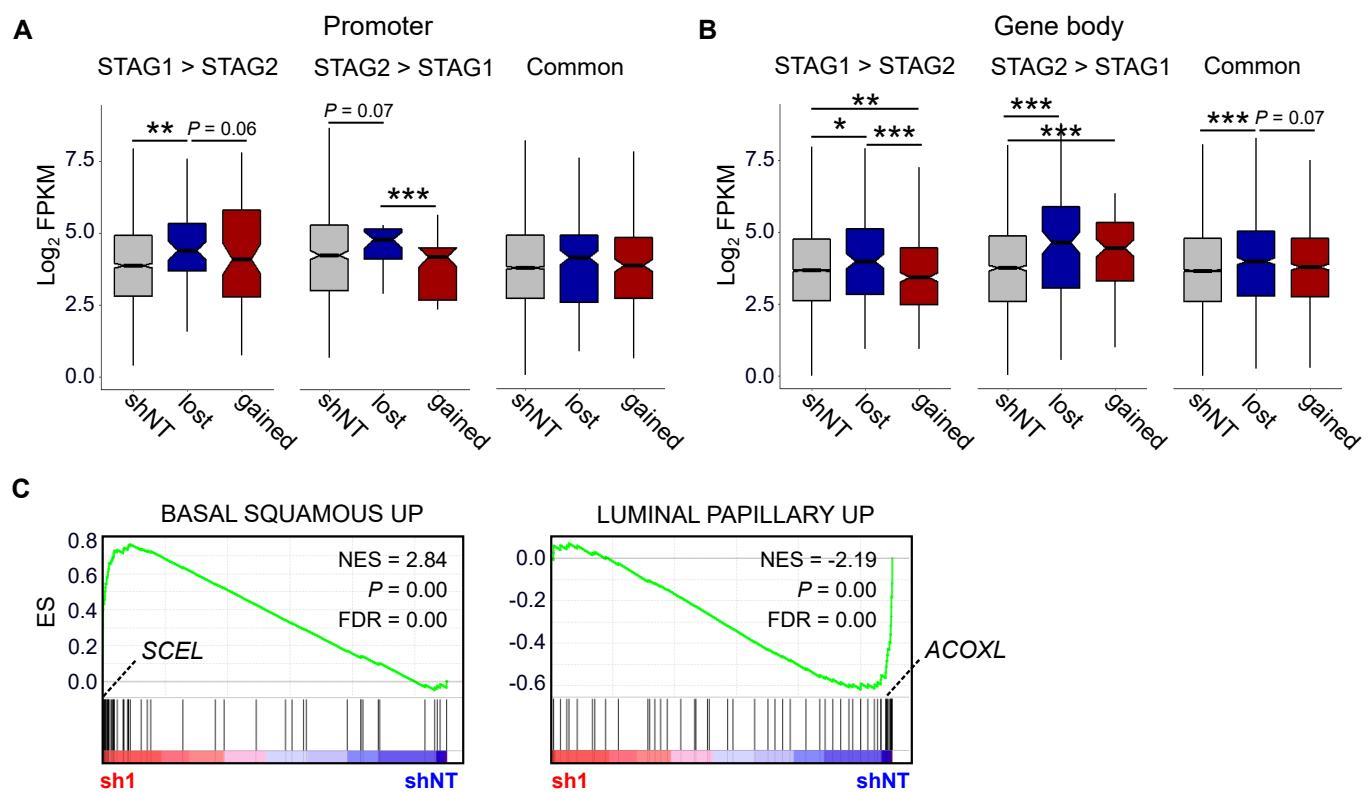
Supplementary Figure 1

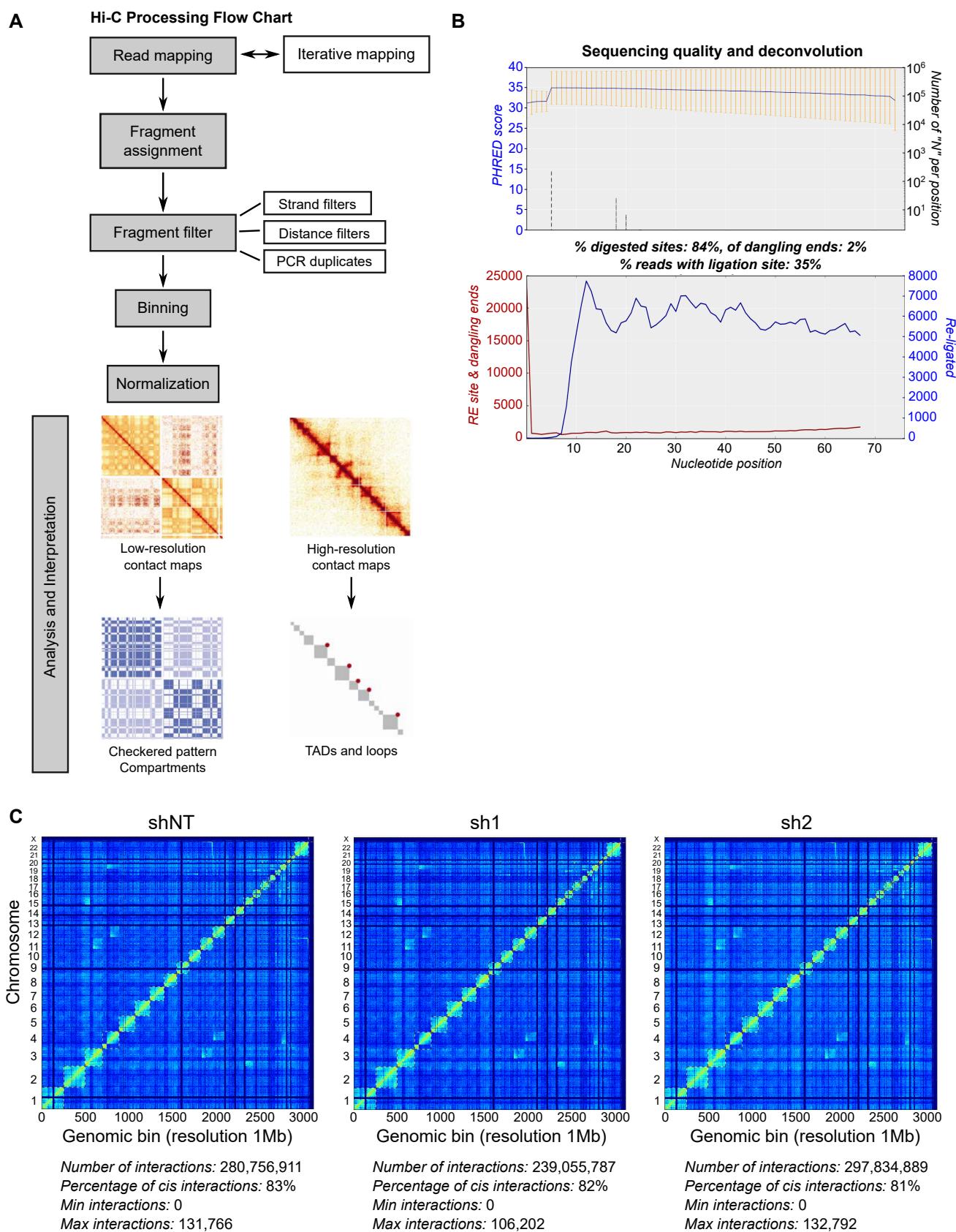


Supplementary Figure 2


A


B


Supplementary Figure 3


Supplementary Figure 4

Supplementary Figure 5

Supplementary Figure 6

Table S1

Name	Counts		
	<i>shNT</i>	<i>sh1</i>	<i>sh2</i>
self-circle	406,110	261,567	851,346
dangling-end	16,128,197	14,301,386	31,266,244
error	1,531,788	1,037,286	2,219,148
extra dangling-end	50,214,145	43,467,655	101,931,934
too close from RES	71,519,086	61,189,441	146,539,702
too short	12,682,490	10,843,032	25,512,686
too large	5,347	3,638	10,436
over-represented	3,094,311	2,514,162	5,977,962
duplicated	47,447,543	46,562,136	323,326,328
random breaks	340,393	244,788	696,764
valid-pairs	183,956,218	158,263,139	197,459,063