

1 **IFN signaling and neutrophil degranulation transcriptional signatures are induced during**
2 **SARS-CoV-2 infection**

3
4 **Bruce A. Rosa^{1*}, Mushtaq Ahmed^{2*}, Dhiraj K. Singh^{3*}, José Alberto Choreño-Parra^{4,5}**
5 **Journey Cole³, Luis Armando Jiménez-Álvarez⁵, Tatiana Sofía Rodríguez-Reyna⁶,**
6 **Bindu Singh³, Olga Gonzalez³, Ricardo Carrion, Jr.³, Larry S. Schlesinger³, John Martin¹,**
7 **Joaquín Zúñiga^{4,7}, Makedonka Mitreva¹, Shabaana A. Khader² and Deepak Kaushal³**

8
9 ¹Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110.
10 ²Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110.
11 ³Southwest National Primate Research Center, Texas Biomedical Research Institute, San
12 Antonio, TX 78245.

13 ⁴Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
14 ⁵Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias
15 Ismael Cosío Villegas, Mexico City, Mexico.

16 ⁶Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y
17 Nutrición Salvador Zubirán, Mexico City, Mexico.

18 ⁷Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico.

19 ***Equal authorship**

20 **Corresponding authors:** Deepak Kaushal, Southwest National Primate Research Center, Texas
21 Biomedical Research Institute, San Antonio, TX 78245, dkaushal@txbiomed.org; Shabaana A.
22 Khader, Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO
23 63110, sakhader@wustl.edu; and Makedonka Mitreva, Department of Medicine, Washington
24 University in St. Louis, St. Louis, MO 63110, mmitreva@wustl.edu.

25

26 **Abstract**

27 The novel virus SARS-CoV-2 has infected more than 14 million people worldwide resulting in the
28 Coronavirus disease 2019 (COVID-19). Limited information on the underlying immune
29 mechanisms that drive disease or protection during COVID-19 severely hamper development of
30 therapeutics and vaccines. Thus, the establishment of relevant animal models that mimic the
31 pathobiology of the disease is urgent. Rhesus macaques infected with SARS-CoV-2 exhibit
32 disease pathobiology similar to human COVID-19, thus serving as a relevant animal model. In
33 the current study, we have characterized the transcriptional signatures induced in the lungs of
34 juvenile and old rhesus macaques following SARS-CoV-2 infection. We show that genes
35 associated with Interferon (IFN) signaling, neutrophil degranulation and innate immune pathways
36 are significantly induced in macaque infected lungs, while pathways associated with collagen
37 formation are downregulated. In COVID-19, increasing age is a significant risk factor for poor
38 prognosis and increased mortality. We demonstrate that Type I IFN and Notch signaling pathways
39 are significantly upregulated in lungs of juvenile infected macaques when compared with old
40 infected macaques. These results are corroborated with increased peripheral neutrophil counts
41 and neutrophil lymphocyte ratio in older individuals with COVID-19 disease. In contrast, pathways
42 involving VEGF are downregulated in lungs of old infected macaques. Using samples from
43 humans with SARS-CoV-2 infection and COVID-19, we validate a subset of our findings. Finally,
44 neutrophil degranulation, innate immune system and IFN gamma signaling pathways are
45 upregulated in both tuberculosis and COVID-19, two pulmonary diseases where neutrophils are
46 associated with increased severity. Together, our transcriptomic studies have delineated disease
47 pathways to improve our understanding of the immunopathogenesis of COVID-19 to facilitate the
48 design of new therapeutics for COVID-19.

49

50

51 **INTRODUCTION**

52 COVID-19, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
53 2), emerged as a pandemic disease during the end of 2019 and beginning of 2020. In the absence
54 of a specific treatment or vaccine against SARS-CoV-2, infected individuals develop symptoms
55 associated with a cytokine storm (1). This cytokine storm can initiate viral sepsis and
56 inflammation-induced lung injury which lead to other complications including pneumonitis, acute
57 respiratory distress syndrome (ARDS), respiratory failure, shock, organ failure and potentially
58 death (1, 2).

59 By combining established principles of anti-viral immunity with analysis of immune responses in
60 COVID-19 patients, a picture of the host defense response against SARS-CoV-2 is beginning to
61 emerge (3, 4). Upon infection of the mucosal epithelium, SARS-CoV-2 is detected by intracellular
62 pattern recognition receptors (PRRs) that bind viral RNA and DNA. PRR signaling triggers
63 activation of transcription factors and induces Interferon (IFN) signaling, which in turn activates
64 resident macrophages. Infected macrophages induce cytokine secretion that consequently
65 triggers recruitment of myeloid cells, likely resulting in a feed-back loop that aggravates
66 immunopathogenesis and promotes disease progression.

67 Analyses of transcriptomic response of host cells upon virus infection have potential to identify
68 the host immune response dynamics and gene activated regulatory networks (5, 6). Recent
69 studies have reported transcriptional changes in cells in the broncho-alveolar lavage (BAL) and
70 peripheral blood mononuclear cells (PBMCs) of COVID-19 patients (7). Single cell RNA-seq has
71 recently identified initial cellular targets of SARS-CoV-2 infection in model organisms (8) and
72 patients (9) and characterized peripheral and local immune responses in severe COVID-19 (10),
73 with severe disease being associated with a cytokine storm and increased neutrophil
74 accumulation. However, most of these studies have mostly been performed in peripheral blood
75 samples from a limited number of moderate or severe COVID-19 patients within limited age
76 ranges (10). To overcome the limitations associated with obtaining samples from human subjects

77 and to get more in-depth understanding of the transcriptional changes during COVID-19, we have
78 developed a SARS-CoV-2 macaque model, where both juvenile and old macaques were infected
79 and exhibited clinical symptoms that reflect human COVID-19 disease that is self-limited. In the
80 current study, we have characterized the transcriptional signatures induced in the lungs of juvenile
81 and old rhesus macaques following SARS-CoV-2 infection. Our results show that genes
82 associated with Interferon (IFN) signaling, neutrophil degranulation and innate immune pathways
83 are significantly induced in the lungs in response to SARS-CoV-2 infection. Interestingly, this is
84 associated with a downregulation of genes associated with collagen formation and regulation of
85 collagen pathways. In COVID-19, increasing age is a significant risk factor for poor prognosis of
86 infection(11). We demonstrate that specific immune pathways, namely Type I IFN and Notch
87 signaling, are significantly upregulated in juvenile macaques when compared with old macaques
88 infected with SARS-CoV-2. These results are corroborated with increased peripheral neutrophil
89 counts and neutrophil lymphocyte ratio in older individuals with COVID-19 disease. In contrast,
90 the VEGF pathway is downregulated in old infected macaques. Incidentally, levels of VEGF protein
91 are increased in plasma of older COVID-19 patients, emphasizing the importance of studying both
92 local and peripheral responses. Finally, we report that neutrophil degranulation, innate immune
93 system and IFN gamma (IFN- γ) signaling pathways are upregulated in both tuberculosis (TB) and
94 COVID-19, two pulmonary infectious diseases where neutrophils accumulation is associated with
95 increased severity. Together, our study has delineated disease pathways that can serve as a
96 valuable tool in understanding the immunopathogenesis of SARS-CoV-2 infection and
97 progressive COVID-19, and facilitate the design of therapeutics for COVID-19.

98

99 MATERIALS AND METHODS

100 **Macaques.** All of the infected animals were housed in Animal Biosafety Level 3 (ABSL3) at the
101 Southwest National Primate Research Center, Texas Biomedical Research Institute, where they
102 were treated per the standards recommended by AAALAC International and the NIH Guide for

103 the Care and Use of Laboratory Animals. Sham controls were housed in ABSL2. The animal
104 studies in each of the species were approved by the Animal Care and Use Committee of the
105 Texas Biomedical Research Institute and as an omnibus Biosafety Committee protocol.

106 **Animal studies, and tissue harvest for RNA sample preparation.** Rhesus macaques (*Macaca*
107 *mulatta*) animals enrolled in this study have been described in detail(12) ([in review](#)), and the
108 infection of these animals with 1.05×10^6 pfu SARS-CoV-2 isolate USA-WA1/2020 (BEI
109 Resources, NR-52281, Manassas, VA) has also been described earlier(12) ([in review](#)). Control
110 (SARS-CoV-2 uninfected) samples were obtained from opportunistic necropsies conducted on
111 rhesus macaques from the same colony in the past few months. Infected animals were
112 euthanized for tissue collection at necropsy, including lung. specimens Lung tissue from three
113 juvenile (3 yrs old) and five old (average 17 yrs old) rhesus macaques (**Table S1**) were
114 homogenized, snap-frozen in RLT buffer, and DNase-treated total RNA was extracted using the
115 Qiagen RNeasy Mini kit (Qiagen) for RNA-seq analysis as described earlier(13) .

116 **Viral RNA determination.** SARS-CoV-2 RNA isolation and measurement of viral RNA in lung
117 homogenates using RTqPCR has been described(12) ([in review](#)).

118 **RNA-sequencing and analysis.** cDNA libraries were prepared from RNA samples using the
119 Clontech SMARTer universal low input RNA kit to maximize yield, and samples were sequenced
120 on Illumina NovaSeq S4 XP (paired 150bp reads). After adapter trimming using Trimmomatic
121 v0.39(14), sequenced RNA-seq reads were aligned to the *Macaca mulatta* genome (version 10,
122 Ensembl release 100(15)) using the STAR aligner v2.7.3a(16) (2-pass mode, basic). All raw RNA-
123 Seq fastq files were uploaded to the NCBI Sequence Read Archive (SRA(17)), and complete
124 sample metadata and accession information are provided in **Table S1**. Read fragments (read
125 pairs or single reads) were quantified per gene per sample using featureCounts v1.5.1(18).
126 Significantly differentially expressed genes between naïve, controller and progressor sample sets
127 were identified using DESeq2 v1.4.5(19) with default settings, and a minimum P value
128 significance threshold of 0.01 (after False Discovery Rate [FDR(20)] correction for the number of

129 tests). Principal components analysis also was calculated using DESeq2 output (default settings,
130 using the top 500 most variable genes). FPKM (fragments per kilobase of gene length per million
131 reads mapped) normalization was performed using DESeq2-normalized read counts. Pathway
132 enrichment analysis among differentially expressed gene sets of interest was performed for (a)
133 Reactome(21) pathways, using the human orthologs as input into the WebGestalt(22) web server
134 ($p \leq 0.05$ after FDR correction, minimum 3 genes per term) and (b) KEGG(23) pathways and
135 Gene Ontology(24) terms, using the g:profiler web server(25) which has a database of these
136 annotations matched to macaque ENSEMBL gene IDs ($p \leq 0.05$ after FDR correction, minimum
137 3 genes per term). Mapped fragment counts, relative gene expression levels, gene annotations,
138 and differential expression data for every macaque gene are available in **Table S2**, along with
139 orthology matches to human genes retrieved from ENSEMBL(15) and identifications of
140 differentially expressed (DE) genes belonging to enriched pathways of interest, for genes of
141 interest in **Table S3**, and significant functional enrichment for Reactome, KEGG and Gene
142 Ontology pathways, among differentially gene sets of interest in **Table S4**. Additionally, genes
143 significantly differentially regulated during progression of tuberculosis (in both the macaque gene
144 and the corresponding mouse ortholog) were identified from a previous transcriptomic study of
145 tuberculosis-infected lung tissue(13), and the upregulated and downregulated gene sets were
146 intersected with the COVID-19 results from the current study.

147

148 **Human sample collection.** Plasma samples were collected from COVID-19 patients that
149 attended the emergency room of the Instituto Nacional de Ciencias Médicas y Nutrición Salvador
150 Zubirán (INCMNSZ), and the Instituto Nacional de Enfermedades Respiratorias Ismael Cosío
151 Villegas (INER) in Mexico City, from March to June of 2020. Detection of SARS-CoV-2 was
152 performed by real-time polymerase chain reaction (RT-PCR) in swab samples, bronchial
153 aspirates (BA), or bronchoalveolar lavage (BAL). For this purpose, viral RNA was extracted from
154 clinical samples with the MagNA Pure 96 system (Roche, Penzberg, Germany). The RT-PCR

155 reactions were performed in a total volume of 25 μ L, containing 5 μ L of RNA, 12.5 μ L of 2 \times reaction
156 buffer provided with the Superscript III one-step RT-PCR system with Platinum Taq Polymerase
157 (Invitrogen, Darmstadt, Germany; containing 0.4 mM of each deoxyribose triphosphates (dNTP)
158 and 3.2 mM magnesium sulfate), 1 μ L of reverse transcriptase/ Taq mixture from the kit, 0.4 μ L of
159 a 50 mM magnesium sulfate solution (Invitrogen), and 1 μ g of nonacetylated bovine serum
160 albumin (Roche). All oligonucleotides were synthesized and provided by Tib-Molbiol (Berlin,
161 Germany). Thermal cycling was performed at 55 °C for 10 min for reverse transcription, followed
162 by 95 °C for 3 min and then 45 cycles of 95°C for 15 s, 58°C for 30s. Primer and probe sequences
163 are as follows: RdRP gene [RdRp-SARSr-F:GTGARATGGTCATGTGTGGCGG,RdRp-SARSr-
164 P2:
165 FAMCAGGTGGAACCTCATCAGGAGATGCBBQ,RdRP_SARSrP1:FAMCCAGGTGGWACRTC
166 ATCMGGTGATGCBBQ,RdRp_SARSrR:CARATGTTAAASACACTATTAGCATA], E gene
167 [E_Sarbeco_F:ACAGGTACGTTAATAGTTAATAGCGT,E_Sarbeco_P1:FAMACACTAGCCATC
168 CTTACTGCGCTTCGBBQ,E_Sarbeco_R:ATATTGCAGCAGTACGCACACA], N gene
169 [N_Sarbeco_F:CACATTGGCACCCGCAATC,N_Sarbeco_P1:FAMACTCCTCAAGGAACAACA
170 TTGCCABBQ, N_Sarbeco_R:GAGGAACGAGAAGAGGGCTT]. Clinical and demographic data
171 were retrieved from the medical records of all participants. These data included age, gender,
172 anthropometrics, comorbidities, symptoms, triage vital signs, and initial laboratory test results.
173 Initial laboratory tests were defined as the first test results available (typically within 24 h of
174 admission) and included white blood cell counts (WBC), neutrophil and lymphocyte counts (**Table**
175 **S5**).

176

177 **Cytokine levels in human plasma samples**

178 Peripheral blood samples were obtained from all participants at hospital admission. Plasma levels
179 of interferon-gamma (IFN- γ) and vascular endothelial growth factor (VEGF), were determined by

180 Luminex assays using the Luminex platform Bio-Plex Multiplex 200 (Bio-Rad Laboratories, Inc.,
181 Hercules, CA, USA). Plasma samples from four healthy volunteer donors were used as controls.

182 **RESULTS**

183 **Genes up-regulated in COVID-19 infected macaques represent pathways characteristic of**
184 **neutrophil degranulation and IFN signaling**

185 We recently assessed the ability of SARS-CoV-2 to infect rhesus macaques during a longitudinal
186 two week infection study. This study included the effect of age on the progression of infection to
187 COVID-19. Indian-origin, SPF-rhesus macaques (*Macaca mulatta*) were infected by multiple
188 routes (ocular, intratracheal and intranasal) with sixth-passage virus at a target dose of 1.05×10^6
189 PFU/per animal and studied for two weeks. The macaques were grouped as naïve (uninfected),
190 and infected (juvenile or old) macaques. All infected animals developed clinical signs of viral
191 infection(12) (in review). Both juvenile and old macaques exhibited comparable clinical disease,
192 and equivalent longitudinal viral loads in the BAL, nasopharyngeal and buccopharyngeal swabs,
193 as well as lungs at endpoint. This was followed by comparable viral clearance. In order to fully
194 understand the immune pathways regulated upon SARS-CoV-2 infection, RNA was extracted and
195 RNA sequencing was carried out from a lung biopsy from juvenile macaques (n = 3, 1 male and
196 2 females) and old macaques infected with SARS-CoV-2 (n = 5, 1 male and 4
197 females) and naive uninfected macaques (n = 4, 2 males and 2 females). An average of 68.6
198 million reads were generated, with an average of 20.3 million fragments (read pairs or orphaned
199 reads) mapping to macaque coding sequences, following analytical processing and mapping
200 (**Table S1**). Principal components analysis (PCA) based on whole-transcriptome gene expression
201 levels(19) showed that despite within-group variability for the COVID-19 infected samples, the
202 naive samples grouped separately, suggesting substantial overall transcriptomic differences
203 resulting from the infection (**Figure 1A**). Differential gene expression analysis (DESeq2(19)) with
204 the juvenile and old COVID-19 samples grouped together identified 1,026 genes significantly (P

205 ≤ 0.01) up-regulated in response to infection, while 1,109 genes were significantly downregulated
206 (**Figure 1B**). Expression, annotation and differential expression data for all genes is available in
207 **Table S2**. Complete lists of differentially expressed genes for each comparison of interest
208 (described below) ranked by P value, with Z-scores for expression visualization are available in
209 **Table S3**, and significant pathway enrichment (Reactome(21), KEGG(23) and Gene
210 Ontology(24)) for all comparisons is shown in **Table S4**.
211 Evaluation of the top 30 most significantly up-regulated genes in the lungs of SARS-CoV-2-
212 infected macaques revealed significantly higher expression of CTSG (Cathepsin G),
213 ATP6AP2(ATPase H⁺ transporting accessory protein 2), IFN γ R1 (Interferon Gamma Receptor),
214 CD36 and CD58, in comparison to expression in uninfected macaque lungs (**Figure 2A**).
215 Cathepsin G is a serine protease prominently found in neutrophilic granules. IFN γ R1 associates
216 with IFN γ R2 to form a receptor for the cytokine interferon gamma (IFN γ)(26-29), and required for
217 activation of antiviral responses, such as IRF3 (IFN regulatory factor-3), nuclear factor KB (NF-
218 KB) and JAK (Janus kinase)/STAT (signal transducer and activator of transcription) signaling
219 pathways (30). Reactome pathway analysis on up- and down-regulated genes in the lungs of
220 SARS-CoV-2 infected rhesus macaques showed that genes significantly up-regulated by
221 infection, included pathway enrichment for genes involved in “Neutrophil degranulation”, “Innate
222 Immune system”, “Immune system” and “IFN signaling” (**Table 1**; **Table S4A**). The up-regulation
223 of CD36 during COVID-19 in lungs is in conformity with these enriched pathways, since CD36, a
224 scavenger receptor expressed in multiple cell types, mediates lipid uptake, immunological
225 recognition, inflammation, molecular adhesion, and apoptosis (31), and is a Matrix
226 Metalloproteinase-9 substrate that induces neutrophil apoptosis. CD58 molecule (lymphocyte
227 function-associated antigen-3) is expressed on human hematopoietic and non-hematopoietic
228 cells, including dendritic cells, macrophages and endothelial cells (32-35), and interacts with its
229 receptor CD2 molecule (36, 37) on CD8 $^{+}$ cytotoxic T lymphocytes and NK cells to mediate

230 cytotoxic reactions (38-40). The complete ranked list of the 1,026 genes upregulated during
231 COVID-19 is shown in **Table S3A**.
232 ATP6AP2 was the most significantly up-regulated of the 65 genes upregulated within the enriched
233 “neutrophil degranulation” (R-HSA-6798695) pathway (**Table S3B**), and it interacts with renin or
234 prorenin to cause activation of intracellular signaling pathways, resulting in secretion of
235 inflammatory and fibrotic factors(41). CEACAM8 (Carcinoembryonic Antigen-Related Cell
236 Adhesion Molecule 8) is the gene that encodes for CD66b, a well characterized marker of
237 degranulation(42). Indeed, CD66b⁺ neutrophils accumulate in the lungs of macaques infected
238 with SARS-CoV-2 (**Figure 2C**). We have also previously demonstrated that neutrophils are
239 heavily recruited early to the alveolar space following SARS-CoV-2 infection of macaques(12) (in
240 review). Additional genes strongly up-regulated during COVID-19 in the neutrophil degranulation
241 pathway are IDH-1(Isocitrate Dehydrogenase (NADP(+)) 1) which regulates neutrophil
242 chemotaxis, and FPR2 (Formyl Peptide Receptor 2), a G-coupled surface receptor which has a
243 deleterious role to play in viral infection including influenza (43). LTA4H (Leukotriene A4
244 hydrolase) is an enzyme that generates a neutrophil chemoattractant, leukotriene B4, a marker
245 for ARDS(44). Expression of 162 genes belonging to the “immune system” (R-HSA-168256)
246 pathway was upregulated in SARS-CoV-2 infected macaques (**Table S3C**). These included
247 LAMP-2(Lysosomal Associated Membrane Protein 2), and ATG7 (Autophagy Related 7), key
248 genes involved in autophagy. LAMP-2 is known to influence phagosomal maturation in neutrophil
249 (45). The IFN response constitutes the major first line of defense against viruses. Consistent with
250 this, we found up-regulation of genes associated with the IFN signaling pathways, specifically
251 Interferon Induced Protein with Tetratricopeptide Repeats 1 (IFIT3), IFN alpha receptor 1
252 (IFNAR1), IFN gamma receptor 1 (IFNGR1) and OAS 1 protein (2'-5'-
253 Oligoadenylate Synthetase 1). Together, these results suggest that upregulation of neutrophil
254 degranulation, Type I IFN signaling, and innate immune system is a characteristic feature of host
255 responses to SARS-CoV-2 infection.

256

257 **Genes down-regulated following SARS-CoV-2 infection in macaques represent pathways**
258 **characteristic of collagen degradation and TFG- β signaling**

259 It is thought that up to 40% of patients with COVID-19 develop ARDS, and 20% of ARDS cases
260 are severe (46). A well-documented sequela of ARDS is the development of fibrotic disease (47,
261 48). We found that the 1,109 genes downregulated in SARS-CoV-2-infected macaques were
262 significantly enriched for collagen degradation, regulation and formation (**Figure 2B; Table 2;**
263 **Table S3D; Table S4B**). For example, among the “collagen degradation” (R-HSA-1442490)
264 enriched pathway (**Table S3E**), COLA1 (collagen type I chain), other members of the collagen
265 gene family (COL4A2 COL16A1 COL4A4 COL6A2 COL6A1 COL5A1 COL9A1 COL13A1
266 COL12A1 COL1A2) and Matrix metalloproteases such as MMP23B (Matrix Metallopeptidase
267 23B), MMP15 and MMP14 were all significantly downregulated in COVID-19 diseased lungs when
268 compared with expression in lungs of uninfected controls. Additionally, Reactome pathway
269 enrichment prominently featured pathways down-regulated in COVID-19 disease in macaques
270 comprised of “collagen degradation”, “collagen chain trimerization”, “degradation of extracellular
271 matrix” and “collagen formation” (**Table 2**). Increased collagen degradation is essential for the
272 prevention of fibrosis, a sequela of COVID-19 and ARDS. Therefore, regulation of collagen
273 degradation and extracellular matrix modeling suggest that this may be a feature of SARS-CoV-
274 2 infection of rhesus macaques being a self-limiting model with early and robust anamnestic
275 responses. TGF β (Transforming Growth Factor Beta 1) is involved in normal tissue repair
276 following lung injury, and in mediating fibrotic tissue remodeling by increasing the production and
277 decreasing the degradation of connective tissue (49). Our results indicate a downregulation of
278 genes associated with TGF β signaling (**Table 2**), including the genes PARD3 (par-3 family cell
279 polarity regulator) and PARD6A (par-6 family cell polarity regulator alpha), which are involved in
280 regulating epithelial cell apico-basolateral polarization, SMURF (SMAD specific E3 ubiquitin
281 protein ligase 1), a negative regulator of TGF β pathway, and FURIN, which is a TGF β converting

282 enzyme (**Table S3F**). While the interaction of the genes within these pathways is complex, our
283 results project a broad downregulation of mechanisms that contribute to lung repair and
284 remodeling in animals with anamnestic control of SARS-CoV-2 infection.

285

286 **Type I interferon signaling and Notch signaling pathways are upregulated in young**
287 **macaques but not old macaques with COVID-19 disease**

288 Age is a significant risk factor for increased morbidity and mortality in COVID-19 disease (11). In
289 order to identify the differential immune responses associated with SARS-CoV-2 infection in old
290 macaques, we carried out differential expression analysis between the groups; namely between
291 juvenile (n=3) vs naive (n=4), and old (n=5) vs naive (n=4). In order for a gene to be considered
292 to be differentially expressed only in the juvenile macaques, we required a stringent P value for
293 significance ≤ 0.01 in the juvenile COVID-19 vs naive, and a P value for significance ≥ 0.1 in the
294 old COVID-19 vs naive comparison. This approach identified 86 genes significantly up-regulated
295 (**Figure 3A; Table S3G**) and 96 genes significantly down-regulated (**Figure 3B; Table S3H**) with
296 COVID-19 disease only in juveniles. Note that no genes were significantly upregulated in juveniles
297 and significantly downregulated in old, and vice-versa. Of these genes, the top 30 most
298 significantly differential between juvenile and old are shown for up-regulated genes in **Figure 4A**
299 and for down-regulated genes in **Figure 4B**. No pathways were found to be significantly enriched
300 among the 96 genes significantly downregulated only in juveniles, but the Reactome and KEGG
301 pathways significantly enriched among the 86 genes upregulated only in juveniles are shown in
302 **Table 3**. Complete gene lists per pathway, and all significant pathways enrichment results
303 including for Gene Ontology (GO) are available in **Table S4C**.

304 The genes with significantly upregulated expression in SARS-CoV-2 infected juvenile but not old
305 macaques included MX1 (MX Dynamin Like GTPase 1), MX2 (MX Dynamin Like GTPase 2) and
306 USP18 (Ubiquitin Specific Peptidase 18) (**Figure 5**). This is consistent with and highlights the role
307 of the Reactome pathway “interferon alpha/beta signaling” being enriched in juvenile macaques

308 during SARS-CoV-2 infection (**Table 3, Table S4C**). Other genes in this pathway which exhibited
309 increased expression included IFIT1 and IFIT2. Additionally, by KEGG analysis, the Notch
310 signaling pathway was observed to be significantly upregulated in juvenile infected macaques
311 when compared with old infected macaques. ADAM17 (ADAM Metallopeptidase Domain 17), a
312 key component of the Notch signaling pathways is known to be involved in shedding of the surface
313 protein ACE2 (Angiotensin converting enzyme 2) (50). Therefore, it is interesting that a linear
314 correlation in the expression of ACE2 and ADAM17 exists in infected macaques (**Figure 4C**).
315 Note that we also see a significant upregulation of ACE2 across all samples (4.2-fold, $P = 4.9 \times 10^{-3}$),
316 and a substantially larger upregulation among the juvenile samples (7.1-fold, $P = 3.4 \times 10^{-4}$).
317 Additionally, the induction of DLL4, a Notch ligand, was increased in the infected juvenile
318 macaques. Finally, the differential induction of DTX3L (Deltex E3 Ubiquitin Ligase 3L) in juvenile
319 infected macaques compared to old infected macaques is important because Deltex stabilizes
320 the receptor in the endocytic compartment allowing signal transduction to proceed in Notch
321 signaling(52). Of the Hepatitis-induced pathway genes that are upregulated in juvenile COVID-19
322 diseased lungs, CXCL-10 (C-X-C Motif Chemokine Ligand 10) is a chemokine associated with
323 severe disease in COVID-19 in humans (53), but can also be involved in recruitment of CXCR3
324 (C-X-C Motif Chemokine Receptor 3) expressing immune cells. 14-3-3 (otherwise called YWHAG)
325 interacts with MDA5 (melanoma differentiation-associated protein 5), which belongs to the RIG-I-
326 like receptor family and drive anti-viral immunity. Together, these results suggest that specific
327 pathways including Type I IFN and Notch signaling are highly induced in juvenile macaques
328 during SARS-CoV-2 infection, when compared to similarly infected old macaques.

329

330 **Genes related to VEGF signaling are downregulated in old macaques but not juvenile**
331 **macaques during COVID-19-disease**

332 Using the same approach as for the juvenile macaque-specific differentially regulated genes, we
333 identified 97 genes significantly up-regulated (**Figure 3A; Table S3I**) and 160 genes significantly
334 down-regulated (**Figure 3B; Table S3J**) with COVID-19 disease only in infected old macaques,
335 and not infected juveniles. Pathway enrichment analysis only identified significant functional
336 enrichment among the down-regulated gene set (**Table 4; Table S4D**). Our results show that in
337 the lungs of old macaques, the only Reactome pathways enriched among genes downregulated
338 during COVID-19 included genes involved in the “VEGF-VEGFR2 Pathway” and “Signaling by
339 VEGF” (**Figure 6, 7**). Vascular endothelial growth factor (VEGF) is a signaling protein that
340 promotes angiogenesis, and is a key factor that promotes ARDS. Previous research showed that
341 ACE2 antagonizes and down-regulates VEGFA(54), improving lung function following acute lung
342 injury (55). Here, we observe both a significant increase in ACE2 in response to COVID-19 and
343 a significant decrease in VEGF pathways in old macaques, which may be due to this antagonistic
344 relationship. VEGFA, p21-activated kinase (PAK2), cytoplasmic tyrosine kinase (SRC),
345 RhoA/ROCK signaling [ROCK1(Rho Associated Coiled-Coil Containing Protein Kinase 1) and
346 WASF2(WASP Family Member 2) are all essential for multiple aspects of VEGF-mediated
347 angiogenesis and are all significantly downregulated in old macaques with COVID-19 (**Figure 7**).
348 Overall, despite juvenile and old macaques having a comparable clinical course with resolution,
349 our data suggest that there are significant differences in signaling pathways, especially those
350 related to VEGF signaling that may ultimately result in differences in long term outcomes. Thus,
351 our results suggest that down-regulation of VEGF pathways is associated with increasing age, in
352 a macaque cohort of self-limiting disease model, and protect from serious lung injury during
353 COVID-19 disease.

354 **Aged COVID-19 patients exhibit increased plasma VEGF protein levels and high peripheral**
355 **neutrophil to lymphocyte ratio**

356 To further address if our findings were relevant in the human setting of SARS-CoV-2 infection, we
357 stratified COVID-19 patients into aged group (>60 years) and a group of COVID-19 patients <60
358 years (**Table S5**). We found that with increasing age, there were increased association of disease
359 parameters and comorbidities (**Table S5**). We measured the levels of human plasma proteins
360 levels for IFN- α , IFN- β and IFN- γ . While levels of plasma IFN- α , and IFN- β were below the levels
361 of reliable detection, we found that the COVID-19 patients who were <60 years expressed
362 significantly higher plasma IFN- γ levels when compared to levels in plasma of healthy controls
363 (**Fig. 8A**). Although plasma levels of IFN- γ protein was also increased in aged
364 COVID-19 patient group, levels were not significantly different from healthy controls (**Fig. 8A**).
365 This was in contrast to plasma protein levels of VEGF, which was significantly higher in aged
366 individuals with COVID-19 disease when compared with levels in individuals with COVID-19
367 disease who were <60 years old (**Fig. 8B**). The increased levels of VEGF in aged COVID-19
368 patients coincided with significantly increased peripheral neutrophil counts as well as increased
369 peripheral neutrophil to lymphocyte ratios, when compared with both healthy controls and COVID-
370 19 group <60 years old (**Fig. 8C,D**). These results show that plasma protein levels of VEGF and
371 accumulation of peripheral neutrophils is increased in aged individuals with COVID-19 disease,
372 when compared to younger individuals with COVID-19 disease.

373 **Neutrophil degranulation and IFN pathways overlap between COVID-19 and TB disease.**
374 Tuberculosis (TB) is a pulmonary granulomatous disease caused by infection with *Mycobacterium*
375 *tuberculosis*. TB disease in humans and macaques is associated with a neutrophil and IFN
376 signature(13). Thus, we next compared and contrasted the transcriptional profile of genes and
377 pathways that are shared by the two diseases, and those that are unique to COVID-19. There was
378 not a substantial overlap between differentially expressed genes in response to COVID-19 and
379 TB. However, of the 97 genes that were commonly upregulated in TB and COVID-19 (**Figure**
380 **9A, Table S3K**), the Reactome pathway enrichment was well featured in “Neutrophil

381 degranulation”, “Innate immune response”, and “Interferon gamma signaling” (**Figure 9B, Table**
382 **S4E**). Nearly as many genes (76) had opposite differential expression patterns (upregulated in
383 COVID-19, downregulated in TB), as genes upregulated in both (**Figure 10A, Table S3L**). These
384 genes were associated with blood vessel morphogenesis and angiogenesis including leptin
385 receptor (LEPR), TGF β 2 (**Figure 10B, Table S4F**). These results suggest that both TB and
386 COVID-19 share features of neutrophil accumulation of IFN signaling, but that COVID-19 disease
387 immunopathogenesis uniquely features vascularization of the lung.

388

389 **DISCUSSION**

390 Lack of understanding of the complexity of COVID-19 immunopathogenesis hampers
391 identification of therapeutic strategies for COVID-19. While studies using immune profiling in
392 COVID-19 patients have shed light on related immune mechanisms of this disease, these have
393 primarily involved peripheral samples obtained from moderate to severe COVID-19 patients, who
394 are generally also older. To overcome these limitations, we have generated a nonhuman primate
395 model (rhesus macaques) of SARS-CoV-2 infection that reflects several features of the
396 immunopathogenesis of human COVID-19, and provides a platform to interrogate the immune
397 pathways that mediate disease versus protection, especially in the context of young versus older
398 hosts. In this study, we show that upregulation of pathways characteristic of neutrophil
399 degranulation and IFN signaling are characteristic of COVID-19 disease in infected hosts.
400 Importantly, the significantly higher induction of genes associated with Type I IFN signaling
401 pathway and Notch signaling in young macaques infected with SARS-CoV-2 is a key determinant
402 that distinguishes them from infected old macaques. Lungs of old macaques infected with COVID-
403 19 however, uniquely feature downregulation of VEGF signaling pathways. Importantly, in PBMCs
404 of humans infected with SARS-CoV-2 we found increased levels of VEGF and peripheral
405 neutrophil counts in individuals >60 years when compared to younger individuals. These results

406 together provide novel insights into the immunopathogenesis of COVID-19 disease, especially
407 from the unique perceptive of age as a contributing factor.

408 As we learn more about the pathophysiology of COVID-19, it is becoming clear that disease
409 severity is associated with hyperinflammation which in turn induces lung and multiorgan injury
410 and mortality via a cytokine storm (1, 2, 56). While therapeutic options that focus on
411 immunomodulatory agents such as corticosteroids are being considered and used, a risk exists
412 that immunomodulators may also inhibit protective pathways. Therefore, a thorough
413 understanding of the host inflammatory responses during SARS-CoV-2 infection is needed before
414 precise immunomodulators can be specifically designed to limit inflammation without regulating
415 protective mechanisms of action. The distinct role of myeloid cells in COVID-19 lung injury and
416 immunopathogenesis is just beginning to be described, and we have clearly shown that
417 neutrophils are intensely recruited to the lung compartment in macaques after SARS-CoV-2
418 infection (12) (in review). Neutrophils can play a protective role contributing to early antiviral
419 defense (57), but also can be pathological due to processes associated with degranulation and
420 lysis, thereby promoting lung inflammation. Consistent with this notion, in current COVID-19
421 literature, an increased peripheral neutrophil-to-lymphocyte ratio is observed in severe COVID-
422 19 cases, and in some studies is also associated with unfavorable prognosis (58). These results
423 in human studies are consistent with our macaque studies that describe neutrophil degranulation
424 as one of the top transcriptional pathways up-regulated in the lungs of COVID-19 macaques when
425 compared to uninfected controls. In this regard, expression of Cathepsin G is noteworthy since
426 it is prominent serine protease that amplifies inflammation by stimulating the production of
427 cytokines and chemokines that drive immune cell recruitment to the lung (59), and activates
428 metalloproteases to cleave extracellular matrix proteins, thereby promoting neutrophil migration
429 (60). Cathepsin G also induces potent chemotactic recruitment of monocytes, neutrophils and
430 antigen presenting cells in addition to promoting endothelial and epithelial permeability (61). The
431 latter function of Cathepsin G could be important in enhancing viral invasion to extra-alveolar sites

432 while increased epithelial permeability might also explain the gastrointestinal route of transmission
433 (12) (in review). Additionally, ATP6AP2, causes secretion of inflammatory and fibrotic factors
434 (41), CD36, that induces neutrophil apoptosis, and CECAM8 whose cross-linking induces IL-8
435 production , all of which are highly expressed in COVID-19 diseased lungs. In patients with severe
436 COVID-19, neutrophils express higher frequency of CD66b⁺ neutrophils(62). These different
437 genes that are up-regulated as part of the neutrophil degranulation/innate immune response
438 pathways suggest a prominent role for neutrophils that can promote inflammation and a cytokine
439 storm leading to COVID-19 disease pathogenesis. Furthermore, our studies shed light on the
440 importance of the membrane glycoprotein, CD36 in the response to SARS-CoV-2 infection. CD36
441 is expressed on platelets, macrophages and even epithelial cells. In addition to its well
442 characterized apoptotic function, CD36 is also a receptor for thrombospondin-1 and related
443 proteins and can function as a negative regulator of angiogenesis(78). This is particularly
444 important given that angiogenesis is an important feature in patients with COVID-19 and
445 associated ARDS (79). CD36 also binds long-chain fatty acids and facilitates their transport into
446 cells, leading to muscle utilization, coupled with fat storage. This contributes to the pathogenesis
447 of metabolic disorders, such as diabetes and obesity and atherothrombotic disease (79). A recent
448 single-cell analysis revealed significantly higher CD36 expression in association with ACE2-
449 expressing human lung epithelia cells (80). Increased CD36 expression may therefore provide a
450 protective role from extreme lung injury during COVID-19, which is observed in the macaques.
451 Our novel findings that CD36 (as well as other prominent signaling pathways) may be involved in
452 the pathogenesis of COVID-19 has implicaitons for host-direc ted therapy for SARS-CoV-2
453 infection. In contrast, neutrophils are recruited into the lung very early following macaque infection
454 with SARS-CoV-2(12) (in review). Additionally, in lungs of deceased individuals with severe
455 COVID-19 disease neutrophil infiltration occurred in pulmonary capillaries and was accompanied
456 with extravasation of neutrophils into the alveolar space, and neutrophilic mucositis(63). In the
457 case of COVID-19, neutrophils could also be a source of excess neutrophil extracellular traps

458 (64). Cytokine storm characterized by increased plasma concentrations of IL1 β , IL2, IL6, IL7, IL8,
459 IL10, IL17, IFN γ , IFN γ -inducible protein 10, monocyte chemoattractant protein 1 (MCP1), G-CSF,
460 macrophage inflammatory protein 1 α , and TNF α seen in severe COVID-19 patients can regulate
461 neutrophil activity by upregulating the expression of chemoattractants that recruit myeloid cells to
462 the lung. These results are also consistent with upregulation of pathways associated with immune
463 and innate signaling, especially IFN signaling. These results together suggest a scenario in the
464 lung where induction of the cytokine storm drives the recruitment of neutrophils, thereby
465 contributing to inflammation. Thus, degranulation of neutrophils and formation of NETs may
466 further promote cytokine responses and inflammation and disease immunopathogenesis.

467 The IFN response constitutes the major first line of defense against viruses. Recognition of viral
468 infections by innate immune sensors activates both the type I and type III IFN response. While
469 some studies have shown that serum of COVID-19 patients contains increased expression of pro-
470 inflammatory cytokines and chemokines, without detectable levels of type I and III IFNs(65), other
471 studies suggest that the IFN response may be delayed. Importantly, elevated IFNs correlate with
472 more severe disease(66, 67). However, it is not fully clear if type I IFNs are protective or
473 pathological in COVID-19(68). Thus, it is possible that severe infection drives the higher
474 expression of genes in the IFN pathways, but may not lead to viral containment, but instead drives
475 pathological damage. On the other hand, increased induction of type I IFN signaling pathways in
476 SARS-CoV-2 infected macaques, as well as increased induction in juvenile macaques, could
477 support a role for IFN signaling in protection rather than disease progression. Our studies provide
478 data to support the recently proposed hypothesis that that IFN induction may be compromised in
479 older hosts(68). When the early IFN response is not optimal to control viral infection, it is possible
480 that delayed or inadequate IFN responses may lead to inflammation mediated damage. Not all
481 animal models, especially mice fully mimic the spectrum of human disease caused by SARS-
482 CoV-2, likely due to the regulatory responses of IFNs on viral entry receptors such as ACE2 which

483 are differentially regulated in humans compared to mice. Further testing the protective versus
484 pathological roles of IFNs in the macaque model with the availability of IFNAR blocking reagents
485 should further clarify the specific role of IFN pathways in COVID-19.

486 ARDS in influenza, MERS and SARS have been associated with fibrotic irreversible interstitial
487 lung disease(69, 70). Pulmonary fibrosis is a recognized sequelae of ARDS(47). Pulmonary
488 fibrosis can develop either following chronic inflammation or as a consequence of genetically
489 associated and age-related fibroproliferative process, as in idiopathic pulmonary fibrosis
490 (IPF)(71). Fibrosis is the hardening, and/or scarring of tissues due to excess deposition of
491 extracellular matrix components including collagen. Fibrosis is often the terminal result of
492 inflammatory insults induced by infections, autoimmune or allergic responses and others. It is
493 thought that the mechanisms driving fibrogenesis are divergent from those modulating
494 inflammation. The key cellular mediator of fibrosis is the excessive accumulation of fibrous
495 connective tissue (components of the ECM such as collagen and fibronectin) in and around
496 inflamed or damaged tissue. Since a significant proportion of COVID-19 patients develop severe
497 ARDS, it is predicted that a similar outcome of fibrosis will be associated with COVID-19. Also,
498 since the risk factors associated with COVID-19 including increasing age, male and associated
499 co-morbidities coincide with IPF risk factors, it is expected that COVID-19 patients will experience
500 fibrotic lung disease. Despite these associations, there is no evidence currently that “scarring of
501 the lung” experienced by COVID-19 patients is fibrotic or progressive and an outcome of COVID-
502 19 disease post recovery. Therefore, our results provide unique insights into the role of fibrosis
503 during SARS-CoV-2 infection. Most notably, we find significant downregulation of collagen
504 degradation pathways, as well as pathways associated with collagen formation, collagen
505 trimerization and assembly. Furthermore, the role for TGF- β and ECM degradation is well
506 documented in fibrosis. Indeed, the genes associated with these pathways are also significantly
507 down-regulated. These results for the first time provide novel insights into the early pathological
508 events occurring during COVID-19 in the lungs with relevance to underlying immune mechanisms

509 associated with canonical fibrosis pathways. While long term consequences of the pulmonary
510 COVID-19 such as fibrosis remain to be determined, our results on down-regulation of collagen
511 degradation and TGF- β pathways may represent important early events on the lungs of SARS-
512 CoV-2 infected individuals. We speculate that such events may protect individuals from
513 progression to ARDS and fibrosis, while it is possible that in individuals with early activation of
514 collagen degradation progress more severe outcomes may ensue.

515 Finally, we provide novel insights into the transcriptional regulation of immune pathways that are
516 induced and regulated by age, an important risk factor for COVID-19 disease and outcome. This
517 is a significant component of risk for disease and prognosis of COVID-19. We find higher induction
518 of genes associated with Type I IFN signaling and Notch signaling in the old meaque. Up-
519 regulation of these significant Type I IFN signaling genes suggest that in a model of self-limited
520 clinical disease in macaques, Type I IFN induction may be differentially regulated by age-
521 associated factors. Age-specific regulation of this pathway has been demonstrated in the murine
522 model of TB(72). There is also a well-documented relationship between Notch signaling and viral
523 infections. For example, Human Papilloma Virus and Simian Virus 40 can highjack the cellular
524 machinery, including components of Notch signaling, and these events re associated with cancer
525 progression(73). Most studies thus far have only followed SARS-CoV-2 infected macaque for up
526 to two weeks, and it was initially thought that this virus causes acute infection. However, details
527 are now emerging from both animal models(12) (in review) and patients, that the virus can persist
528 for longer periods, leading to persistent shedding from tissues, and exhaustion of adaptive
529 responses. While innate and T cell responses are comparable between juvenile and old
530 macaques following infection, SARS-CoV-2 specific antibody is generated at significantly higher
531 levels in the plasma of juveniles, relative to old macaques(12) (in review). Since Notch signaling
532 regulates multiple stages of B-cell differentiation and shapes the antibody repertoire(74), higher
533 expression of many of the Notch pathway member genes in juvenile macaques may be
534 responsible for the development of stronger antibody responses in these animals, impacting

535 disease progression. Alternatively, it is possible that the differences in Notch signaling and
536 production of virus-specific antibody between juvenile and old macaques may impact disease
537 progression over a longer period of time, or be particularly relevant in models of co-morbidity,
538 such as diabetes. Similarly, Type I IFN responses are critical for the downstream breadth of
539 antibody production and recognition (75-77). Thus, while T cell responses are comparable in
540 juvenile and old macaques, differences in critical signaling pathways uncovered by our RNA-seq
541 analysis potentially explain why juvenile macaques mount significantly stronger antibody
542 responses, and consequently why younger subjects have reduced susceptibility to COVID-19.
543 While this has not been recapitulated in the macaque model, older patients of COVID-19 are more
544 susceptible to progression. This is consistent with increased disease progression when COVID-
545 19 patients were stratified based on age. A previous study found that peripheral VEGF
546 concentrations were significantly higher in COVID-19 patients than in healthy controls(81). We
547 also find this effect in our human samples (**Figure 8B**) where people with COVID-19 that are older
548 than 60 years of age have more VEGF protein in their peripheral blood. However, we also find
549 significantly lower levels of VEGF pathway gene transcripts in the lungs of macaques with SARS-
550 CoV-2 infection, especially older macaques (**Figure 6, 7**). Our study further demonstrates that the
551 changes in VEGF signaling may be associated with increasing age rather than just with disease
552 severity. VEGF pathways promote angiogenesis and induce vascular leakiness and permeability.
553 Our results therefore suggest that higher levels of VEGF in the periphery, while a biomarker for
554 COVID-19, may be driven as a compensatory mechanism due to lower levels of VEGF signaling
555 at the site of infection, i.e, the lung. These results further underscore the value of studying
556 responses to SARS-CoV-2 infection in the lung compartment. By uncovering new aspects of the
557 role of these signaling pathway in SARS-CoV-2 infection in the lung compared to the periphery
558 using animal models and human samples, will shed further light on pathways that can be
559 harnessed for therapeutics for COVID-19 disease.

560 TB and COVID-19 both primarily affect lung function. TB was already one of the leading causes
561 of death due to an infectious disease prior to emergence of COVID-19. In the current scenario
562 the clinical management of both TB and COVID together, particularly in the endemic regions is
563 another rapidly emerging healthcare challenge needing immediate attention. In order to properly
564 address the solution for this emerging crisis a better understanding of the comparative
565 immunological manifestations of both the diseases must be understood. Our results are the first
566 to clearly demarcate the main differences in the manifestation of both the diseases in the alveolar
567 niche. Neutrophil degranulation was one of the most significantly enriched pathways in both the
568 disease conditions and therefore appears as a promising druggable target for efficient
569 management of severe co-morbid TB COVID-19 condition. However, the selective enrichment of
570 angiogenesis and vascular permeability is observed in the lungs of SARS-CoV-2 infected
571 macaques is not seen in models, or patients of TB. These results have the potential to generate
572 additional, specific druggable targets for COVID-19.

573 Overall, we interrogated transcriptional profiles of lungs from juvenile and old macaques infected
574 with SARS-CoV-2. This study has provided fundamentally new information on the host response
575 in young and old macaques infected with SARS-CoV-2, a model that provides relevant insights
576 necessary for further vaccine and therapeutic development for COVID-19 and a subset of these
577 observations confirmed in human samples with control of SARS-CoV-2 infection as well as
578 COVID-19 disease, and as a function of age.

579

580 **Acknowledgements.** NHP samples used in this work was derived from studies supported by
581 intramural funds raised by Texas Biomedical Research Institute towards its Coronavirus Working
582 Group, by Regeneron, Inc. (R.C., contract # 2020_004110, in part with federal funds from the
583 Department of Health and Human Services; Office of the Assistant Secretary for Preparedness
584 and Response; Biomedical Advanced Research and Development Authority, under Contract No.
585 HHSO100201700020C). The work described in this manuscript was supported by Washington

586 University in St. Louis (S.A.K) for COVID-19 research, as well as and NIH award # R01AI123780
587 to S.A.K, M.M. and D.K., R01AI134236 to S.A.K. and D.K. and a COVID-19 supplement to it.,
588 and by institutional NIH awards P51OD111033 and U42OD010442 to the SNPRC, Texas
589 Biomedical Research Institute. J.A.P-C was supported by the National Council of Science and
590 Technology of Mexico to achieve (CONACYT) his PhD degree (CONACyT-CVU 737347). The
591 current study was supported by institutional research funds of INER and by research contracts:
592 SECTEI/050/2020, Secretaría de Ciencia, Tecnología e Innovación de la Ciudad de México
593 (SECTEI CDMX); FORDECYT/10SE/2020/05/14-06 and FORDECYT/10SE/2020/05/14-07 from
594 the Fondo Institucional de Fomento Regional para el Desarrollo Científico y Tecnológico y de
595 Innovación (FORDECYT), Consejo Nacional de Ciencia y Tecnología (CONACYT). These
596 funders had no role, however, in the design and execution of the experiments and the
597 interpretation of data. The views expressed here are those of the authors and do not necessarily
598 represent the views or official position of the funding agencies. The authors declare that no other
599 financial conflict of interest exist.

600

601 **Author Contributions.** B.A.R., M.A., D.S., J.C., B.S., J.M., O. G, J.A.C-P., L.A.J-A., T.S.R-R.,
602 J.Z. carried out experiments, analysed data; J.Z., L.S.S., J.T., R.C., M.M., D.K., and S.A.K
603 designed the study, provided funding or reagents; M.A., B.A.R., D.K., and S.A.K wrote the paper;
604 all authors read, edited and approved the manuscript.

605 **References**

- 606 1. C. Huang *et al.*, Clinical features of patients infected with 2019 novel coronavirus in
607 Wuhan, China. *Lancet* **395**, 497-506 (2020).
- 608 2. Z. Xu *et al.*, Pathological findings of COVID-19 associated with acute respiratory distress
609 syndrome. *The Lancet. Respiratory medicine* **8**, 420-422 (2020).
- 610 3. M. Z. Tay, C. M. Poh, L. Renia, P. A. MacAry, L. F. P. Ng, The trinity of COVID-19:
611 immunity, inflammation and intervention. *Nat Rev Immunol*, (2020).
- 612 4. N. Vabret, Britton, G.J., Gruber, C., Hegde, S., Kim, J., Kuksin, M., R. Levantovsky, Malle,
613 L., Moreira, A., Park, M.D., Pia, L., Risson, E., Saffern, M., Salomé, B., Selvan, M.E.,
614 Spindler, M.P., Tan, J., van der Heide, V., Gregory, J.K, Alexandropoulos, K., Bhardwaj,
615 N., Brown, B.D., Greenbaum, B., Gümüş, Z.H, Homann, D., Horowitz, A., Kamphorst, A.O,

616 Curotto de Lafaille, M.A., Mehandru, S., Merad, M., Samstein, R.M, The Sinai Immunology
617 Review Project, Immunology of COVID-19: current state of the science. *Immunity*, (2020).

618 5. G. Monaco *et al.*, RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute
619 Deconvolution of Human Immune Cell Types. *Cell reports* **26**, 1627-1640 e1627 (2019).

620 6. J. A. Wilson *et al.*, RNA-Seq analysis of chikungunya virus infection and identification of
621 granzyme A as a major promoter of arthritic inflammation. *PLoS pathogens* **13**, e1006155
622 (2017).

623 7. Y. Xiong *et al.*, Transcriptomic characteristics of bronchoalveolar lavage fluid and
624 peripheral blood mononuclear cells in COVID-19 patients. *Emerging microbes & infections*
625 **9**, 761-770 (2020).

626 8. C. G. K. Ziegler *et al.*, SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in
627 Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues.
628 *Cell* **181**, 1016-1035 e1019 (2020).

629 9. M. Liao *et al.*, Single-cell landscape of bronchoalveolar immune cells in patients with
630 COVID-19. *Nature medicine* **26**, 842-844 (2020).

631 10. A. J. Wilk *et al.*, A single-cell atlas of the peripheral immune response in patients with
632 severe COVID-19. *Nature medicine*, (2020).

633 11. Z. Zheng *et al.*, Risk factors of critical & mortal COVID-19 cases: A systematic literature
634 review and meta-analysis. *The Journal of infection*, (2020).

635 12. D. K. Singh *et al.*, SARS-CoV-2 infection leads to acute infection with dynamic cellular and
636 inflammatory flux in the lung that varies across nonhuman primate species. *bioRxiv*,
637 2020.2006.2005.136481 (2020).

638 13. M. Ahmed *et al.*, Immune correlates of tuberculosis disease and risk translate across
639 species. *Sci Transl Med* **12**, (2020).

640 14. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence
641 data. *Bioinformatics* **30**, 2114-2120 (2014).

642 15. A. D. Yates *et al.*, Ensembl 2020. *Nucleic Acids Res.* **48**, D682-D688 (2020).

643 16. A. Dobin *et al.*, STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21
644 (2013).

645 17. R. Leinonen, H. Sugawara, M. Shumway, C. on behalf of the International Nucleotide
646 Sequence Database, The Sequence Read Archive. *Nucleic Acids Res.* **39**, D19-D21
647 (2011).

648 18. Y. Liao, G. K. Smyth, W. Shi, featureCounts: an efficient general purpose program for
649 assigning sequence reads to genomic features. *Bioinformatics* **30**, 923-930 (2014).

650 19. S. Anders, W. Huber, Differential expression analysis for sequence count data. *Genome
651 biology* **11**, R106 (2010).

652 20. Y. Benjamini, Y. Hochberg, Controlling the False Discovery Rate: A Practical and Powerful
653 Approach to Multiple Testing. *Journal of the Royal Statistical Society. Series B
654 (Methodological)* **57**, 289-300 (1995).

655 21. A. Fabregat *et al.*, The Reactome Pathway Knowledgebase. *Nucleic Acids Research* **46**,
656 D649-d655 (2018).

657 22. J. Wang, S. Vasaikar, Z. Shi, M. Greer, B. Zhang, WebGestalt 2017: a more
658 comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit.
659 *Nucleic Acids Res.* **45**, W130-W137 (2017).

660 23. M. Kanehisa, Y. Sato, M. Furumichi, K. Morishima, M. Tanabe, New approach for
661 understanding genome variations in KEGG. *Nucleic Acids Res.* **47**, D590-D595 (2019).

662 24. C. The Gene Ontology, The Gene Ontology Resource: 20 years and still GOing strong.
663 *Nucleic Acids Res.* **47**, D330-D338 (2019).

664 25. U. Raudvere *et al.*, g:Profiler: a web server for functional enrichment analysis and
665 conversions of gene lists (2019 update). *Nucleic Acids Res.* **47**, W191-W198 (2019).

666 26. M. Sakatsume *et al.*, The Jak kinases differentially associate with the alpha and beta
667 (accessory factor) chains of the interferon gamma receptor to form a functional receptor
668 unit capable of activating STAT transcription factors. *The Journal of biological chemistry*
669 **270**, 17528-17534 (1995).

670 27. M. Aguet, Z. Dembić, G. Merlin, Molecular cloning and expression of the human interferon-
671 gamma receptor. *Cell* **55**, 273-280 (1988).

672 28. M. R. Walter *et al.*, Crystal structure of a complex between interferon-gamma and its
673 soluble high-affinity receptor. *Nature* **376**, 230-235 (1995).

674 29. D. J. Thiel *et al.*, Observation of an unexpected third receptor molecule in the crystal
675 structure of human interferon-gamma receptor complex. *Structure* **8**, 927-936 (2000).

676 30. J. Olejnik, A. J. Hume, E. Muhlberger, Toll-like receptor 4 in acute viral infection: Too much
677 of a good thing. *PLoS pathogens* **14**, e1007390 (2018).

678 31. J. Wang, Y. Li, CD36 tango in cancer: signaling pathways and functions. *Theranostics* **9**,
679 4893-4908 (2019).

680 32. G. Ocklind, D. Friedrichs, J. H. Peters, Expression of CD54, CD58, CD14, and HLA-DR
681 on macrophages and macrophage-derived accessory cells and their accessory capacity.
682 *Immunology letters* **31**, 253-258 (1992).

683 33. P. Moingeon *et al.*, CD2-mediated adhesion facilitates T lymphocyte antigen recognition
684 function. *Nature* **339**, 312-314 (1989).

685 34. T. J. Dengler *et al.*, Structural and functional epitopes of the human adhesion receptor
686 CD58 (LFA-3). *European journal of immunology* **22**, 2809-2817 (1992).

687 35. M. L. Dustin, P. Selvaraj, R. J. Mattaliano, T. A. Springer, Anchoring mechanisms for LFA-
688 3 cell adhesion glycoprotein at membrane surface. *Nature* **329**, 846-848 (1987).

689 36. J. A. Gollob *et al.*, Molecular interaction between CD58 and CD2 counter-receptors
690 mediates the ability of monocytes to augment T cell activation by IL-12. *Journal of
691 immunology* **157**, 1886-1893 (1996).

692 37. P. Selvaraj *et al.*, The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-
693 3. *Nature* **326**, 400-403 (1987).

694 38. T. A. Springer, M. L. Dustin, T. K. Kishimoto, S. D. Marlin, The lymphocyte function-
695 associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune
696 system. *Annual review of immunology* **5**, 223-252 (1987).

697 39. A. Rolle *et al.*, CD2-CD58 interactions are pivotal for the activation and function of adaptive
698 natural killer cells in human cytomegalovirus infection. *European journal of immunology*
699 **46**, 2420-2425 (2016).

700 40. J. Leitner, D. Herndler-Brandstetter, G. J. Zlabinger, B. Grubeck-Loebenstein, P.
701 Steinberger, CD58/CD2 Is the Primary Costimulatory Pathway in Human CD28-CD8+ T
702 Cells. *Journal of immunology* **195**, 477-487 (2015).

703 41. K. Rafiq, H. Mori, T. Masaki, A. Nishiyama, (Pro)renin receptor and insulin resistance:
704 possible roles of angiotensin II-dependent and -independent pathways. *Molecular and
705 cellular endocrinology* **378**, 41-45 (2013).

706 42. A. K. Schroder, P. Uciechowski, D. Fleischer, L. Rink, Crosslinking of CD66B on peripheral
707 blood neutrophils mediates the release of interleukin-8 from intracellular storage. *Human
708 immunology* **67**, 676-682 (2006).

709 43. S. Tcherniuk *et al.*, Formyl Peptide Receptor 2 Plays a deleterious Role During Influenza
710 A Virus Infections. *The Journal of infectious diseases* **214**, 237-247 (2016).

711 44. M. Amat *et al.*, Evolution of leukotriene B4, peptide leukotrienes, and interleukin-8 plasma
712 concentrations in patients at risk of acute respiratory distress syndrome and with acute
713 respiratory distress syndrome: mortality prognostic study. *Critical care medicine* **28**, 57-62
714 (2000).

715 45. P. Saftig, W. Beertsen, E. L. Eskelinen, LAMP-2: a control step for phagosome and
716 autophagosome maturation. *Autophagy* **4**, 510-512 (2008).

717 46. C. Wu *et al.*, Risk Factors Associated With Acute Respiratory Distress Syndrome and
718 Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. *JAMA internal medicine*, (2020).

719 47. P. Spagnolo *et al.*, Pulmonary fibrosis secondary to COVID-19: a call to arms? *The Lancet. Respiratory medicine*, (2020).

720 48. G. U. Meduri *et al.*, Persistent elevation of inflammatory cytokines predicts a poor outcome
721 in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of
722 outcome over time. *Chest* **107**, 1062-1073 (1995).

723 49. U. Bartram, C. P. Speer, The role of transforming growth factor beta in lung development
724 and disease. *Chest* **125**, 754-765 (2004).

725 50. D. W. Lambert *et al.*, Tumor necrosis factor-alpha convertase (ADAM17) mediates
726 regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus
727 (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). *The Journal of
728 biological chemistry* **280**, 30113-30119 (2005).

729 51. K. Kuba *et al.*, A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS
730 coronavirus-induced lung injury. *Nat. Med.* **11**, 875-879 (2005).

731 52. M. P. Steinbuck, S. Winandy, A Review of Notch Processing With New Insights Into
732 Ligand-Independent Notch Signaling in T-Cells. *Frontiers in immunology* **9**, 1230 (2018).

733 53. M. Merad, J. C. Martin, Pathological inflammation in patients with COVID-19: a key role
734 for monocytes and macrophages. *Nature Reviews Immunology* **20**, 355-362 (2020).

735 54. Q. Zhang *et al.*, ACE2 inhibits breast cancer angiogenesis via suppressing the
736 VEGFa/VEGFR2/ERK pathway. *J. Exp. Clin. Cancer Res.* **38**, 173 (2019).

737 55. X. Yu *et al.*, ACE2 Antagonizes VEGFa to Reduce Vascular Permeability During Acute
738 Lung Injury. *Cell. Physiol. Biochem.* **38**, 1055-1062 (2016).

739 56. A. Didangelos, COVID-19 Hyperinflammation: What about Neutrophils? *mSphere* **5**,
740 (2020).

741 57. J. V. Camp, C. B. Jonsson, A Role for Neutrophils in Viral Respiratory Disease. *Frontiers
742 in immunology* **8**, 550 (2017).

743 58. M. Zheng *et al.*, Functional exhaustion of antiviral lymphocytes in COVID-19 patients.
744 *Cellular & molecular immunology* **17**, 533-535 (2020).

745 59. K. Steinwede *et al.*, Cathepsin G and Neutrophil Elastase Contribute to Lung-Protective
746 Immunity against Mycobacterial Infections in Mice. *The Journal of Immunology* **188**, 4476-
747 4487 (2012).

748 60. E. D. Son *et al.*, Cathepsin G increases MMP expression in normal human fibroblasts
749 through fibronectin fragmentation, and induces the conversion of proMMP-1 to active
750 MMP-1. *Journal of dermatological science* **53**, 150-152 (2009).

751 61. S. Gao, H. Zhu, X. Zuo, H. Luo, Cathepsin G and Its Role in Inflammation and Autoimmune
752 Diseases. *Arch Rheumatol* **33**, 498-504 (2018).

753 62. S. M. Morrissey *et al.*, Emergence of Low-density Inflammatory Neutrophils Correlates
754 with Hypercoagulable State and Disease Severity in COVID-19 Patients. *medRxiv*,
755 2020.2005.2022.20106724 (2020).

756 63. B. J. Barnes *et al.*, Targeting potential drivers of COVID-19: Neutrophil extracellular traps.
757 *The Journal of experimental medicine* **217**, (2020).

758 64. A. Kuznetsova, P. B. Brockhoff, R. H. B. Christensen, ImerTest Package: Tests in Linear
759 Mixed Effects Models. *J Stat Softw* **82**, 1-26 (2017).

760 65. D. Blanco-Melo *et al.*, Imbalanced Host Response to SARS-CoV-2 Drives Development
761 of COVID-19. *Cell* **181**, 1036-1045 e1039 (2020).

762 66. M. J. Cameron *et al.*, Interferon-mediated immunopathological events are associated with
763 atypical innate and adaptive immune responses in patients with severe acute respiratory
764 syndrome. *Journal of virology* **81**, 8692-8706 (2007).

765

766

767 67. W. Zuo, X. Zhao, Y. G. Chen, SARS Coronavirus and Lung Fibrosis. *Molecular Biology of*
768 *the SARS-CoVirus*, 247-258 (2009).

769 68. A. Park, A. Iwasaki, Type I and Type III Interferons - Induction, Signaling, Evasion, and
770 Application to Combat COVID-19. *Cell host & microbe* **27**, 870-878 (2020).

771 69. R. Blondonnet, J. M. Constantin, V. Sapin, M. Jabaudon, A Pathophysiologic Approach to
772 Biomarkers in Acute Respiratory Distress Syndrome. *Disease markers* **2016**, 3501373
773 (2016).

774 70. S. Perlman, A. A. Dandekar, Immunopathogenesis of coronavirus infections: implications
775 for SARS. *Nat Rev Immunol* **5**, 917-927 (2005).

776 71. P. M. George, A. U. Wells, R. G. Jenkins, Pulmonary fibrosis and COVID-19: the potential
777 role for antifibrotic therapy. *The Lancet. Respiratory medicine*, (2020).

778 72. D. Tripathi *et al.*, Alcohol enhances type 1 interferon- α production and mortality in young
779 mice infected with *Mycobacterium tuberculosis*. *PLOS Pathogens* **14**, e1007174 (2018).

780 73. P. Rizzo *et al.*, COVID-19 in the heart and the lungs: could we "Notch" the inflammatory
781 storm? *Basic research in cardiology* **115**, 31 (2020).

782 74. M. N. Cruickshank, D. Ulgiati, The role of notch signaling in the development of a normal
783 B-cell repertoire. *Immunol Cell Biol* **88**, 117-124 (2010).

784 75. P. P. Domeier *et al.*, B-Cell-Intrinsic Type 1 Interferon Signaling Is Crucial for Loss of
785 Tolerance and the Development of Autoreactive B Cells. *Cell Rep* **24**, 406-418 (2018).

786 76. K. Kiefer, M. A. Oropallo, M. P. Cancro, A. Marshak-Rothstein, Role of type I interferons
787 in the activation of autoreactive B cells. *Immunol Cell Biol* **90**, 498-504 (2012).

788 77. R. Vasconcellos, D. Braun, A. Coutinho, J. Demengeot, Type I IFN sets the stringency of
789 B cell repertoire selection in the bone marrow. *Int. Immunol.* **11**, 279-288 (1999).

790 78. R. L. Silverstein, M. Febbraio, CD36, a scavenger receptor involved in immunity,
791 metabolism, angiogenesis, and behavior. *Sci Signal* **2**, re3 (2009).

792 79. M. Ackermann *et al.*, Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis
793 in Covid-19. *N Engl J Med* **383**, 120-128 (2020).

794 80. G. Han *et al.* (bioRxiv, 2020).

795 81. V. J. Costela-Ruiz, R. Illescas-Montes, J. M. Puerta-Puerta, C. Ruiz, L. Melguizo-
796 Rodriguez, SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. *Cytokine*
797 & growth factor reviews, (2020).

798

799 **Figure Legends**

800 **Figure 1: Genes upregulated in COVID-19-infected macaques represent pathways**
801 **characteristic of neutrophil degranulation and IFN signaling.** Differential gene expression
802 between naive and COVID-19 samples. **(A)** PCA plot showing the clustering of samples based
803 on overall transcriptomic profiles. **(B)** Gene expression plot showing the relative normalized gene
804 expression levels (FPKM) for each gene, with genes significantly differentially regulated by
805 COVID-19 indicated.

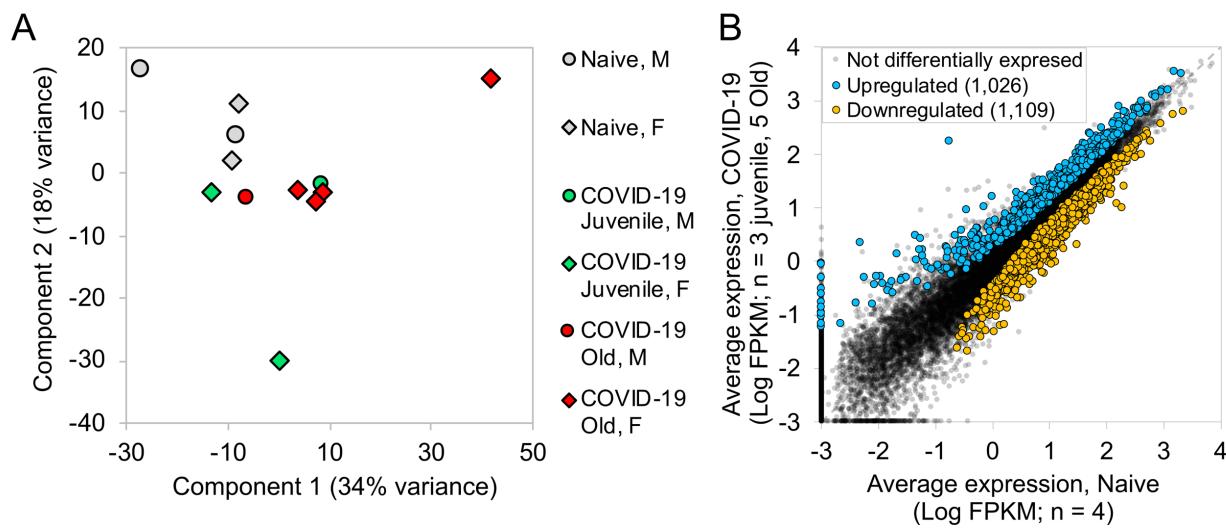
806 **Figure 2: Genes downregulated in COVID-19-infected macaques represent pathways**
807 **characteristic of collagen degradation and TFG- β signaling.** The top 30 most significantly (A)
808 upregulated genes and (B) downregulated genes in COVID-19 infected macaque lungs.
809 Expression values are visualized by Z scores of normalized expression data (FPKM) per sample,
810 and Log₂ Fold Change and -Log P values are from the DESeq2 output. Genes are sorted by P
811 value. (C) Multilabel confocal immunofluorescence microscopy of FFPE lung sections from SARS
812 CoV-2 infected rhesus macaques with SARS CoV-2 Spike specific antibody (green), neutrophil
813 marker CD66abce (red) and DAPI (blue) at 10X magnification.

814 **Figure 3: 86 genes significantly upregulated and 96 genes significantly downregulated with**
815 **COVID-19 only in juvenile macaques.** Scatterplots visualizing the significance values of COVID-
816 19 upregulated (A) and downregulated (B) genes, in juvenile and old macaques. Green shaded
817 areas contain genes significant only in juveniles, and red shaded areas contain genes significant
818 only in old macaques.

819 **Figure 4: Genes related to Type I interferon signaling are upregulated in juvenile macaques**
820 **compared to old macaques during COVID-19-infection.** The top 30 most significantly (A)
821 upregulated genes and (B) downregulated genes in COVID-19 infected juvenile macaque lungs
822 but not in old macaques. Expression values are visualized by Z scores of normalized expression
823 data (FPKM) per sample, and Log₂ Fold Change and -Log P values are from the DESeq2 output.
824 Genes are sorted by P value. (C) The relative gene expression of ACE2 and ADAM17 among
825 naive, juvenile and old COVID-19 infected macaques.

826 **Figure 5: Interferon alpha signaling genes are significantly upregulated in juvenile COVID-**
827 **19-infected macaques but not old COVID-19-infected macaques.** The relative expression
828 levels (FPKM) for the five “interferon alpha signaling” (HSA-909733) genes belonging to this gene
829 set are shown. P values represent FDR-corrected significance values from DESeq2.

830 **Figure 6: Genes related to VEGF signaling are downregulated in old macaques compared**
831 **to juvenile macaques during COVID-19.** The top 30 most significantly (A) upregulated genes
832 and (B) downregulated genes in infected old macaque lungs but not in juvenile macaques.
833 Expression values are visualized by Z scores of normalized expression data (FPKM) per sample,
834 and Log₂ Fold Change and -Log P values are from the DESeq2 output. Genes are sorted by P
835 value.


836 **Figure 7: VEGF pathway genes are significantly downregulated in old COVID-19-infected**
837 **macaques but not juvenile COVID-19-infected macaques.** The relative expression levels
838 (FPKM) for the seven “Signaling by VEGF” (R-HSA-194138) genes belonging to this gene set are
839 shown. P values represent FDR-corrected significance values from DESeq2.

840 **Figure 8. VEGF and peripheral neutrophil counts are higher in old COVID-19 patients.**
841 Peripheral blood samples were obtained from a cohort of patients with laboratory-confirmed
842 SARS-CoV-2 infection at hospital admission. Levels of different immune markers were
843 determined by Luminex assay in plasma samples from COVID-19 and healthy volunteer controls.
844 COVID-19 patients were stratified by age as younger than or older than 60 years. (A) Levels of
845 IFN- γ and (B) levels of VEGF proteins were measured in plasma of COVID-19 and healthy
846 controls. Peripheral neutrophil counts (C) and neutrophil to lymphocyte ratio (NLR) values (D)
847 were retrieved from the medical records of COVID-19 patients and compared between age
848 groups.

849 **Figure 9: Genes higher in expression during both COVID-19 and TB share common**
850 **pathways. (A)** The top 50 (of 97) most significantly upregulated genes in COVID-19 infected and
851 TB infected macaques. Expression values are visualized by Z scores of normalized expression
852 data (FPKM) per sample, and Log₂ Fold Change and -Log P values are from the DESeq2 output.
853 Genes are sorted by P value. **(B)** Significant Reactome pathway enrichment among the 97 genes.

854 **Figure 10: Genes higher in expression during COVID-19 than TB are related to blood**
855 **morphogenesis pathways.** (A) The top 50 (of 76) most significantly upregulated genes in
856 COVID-19 infected compared to TB-infected macaques. Expression values are visualized by Z
857 scores of normalized expression data (FPKM) per sample, and Log₂ Fold Change and -Log P
858 values are from the DESeq2 output. Genes are sorted by P value. (B) Significant Gene Ontology
859 pathway enrichment among the 76 genes.

860
861
862
863
864
865

866
867 Figure 1
868
869
870
871

872

873

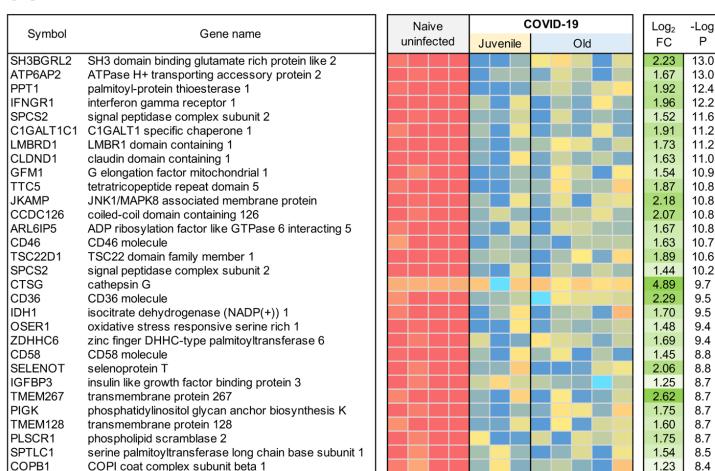
874

875

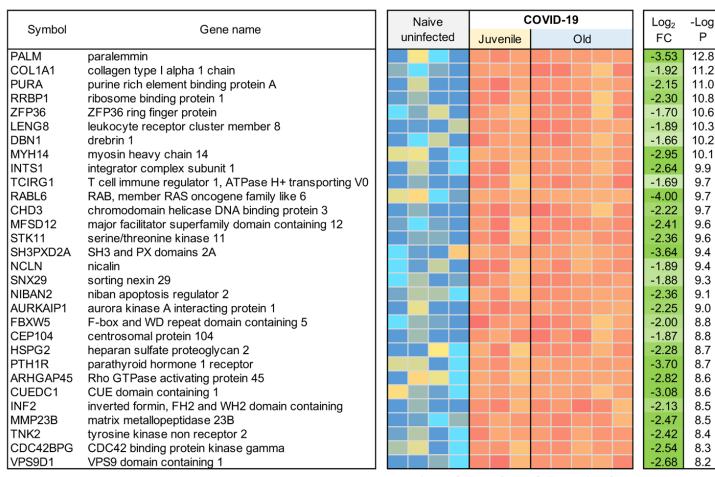
876

877

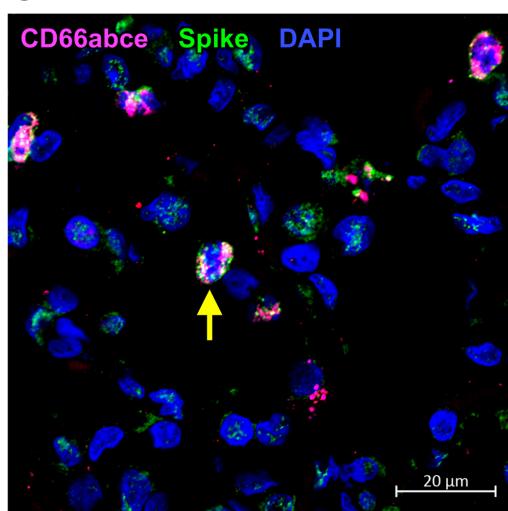
878


879

880


881

882


A

B

C

883

884 Figure 2

885

886

887

888

889

890

891

892

893

894 Figure 3

895

896

897

898

899

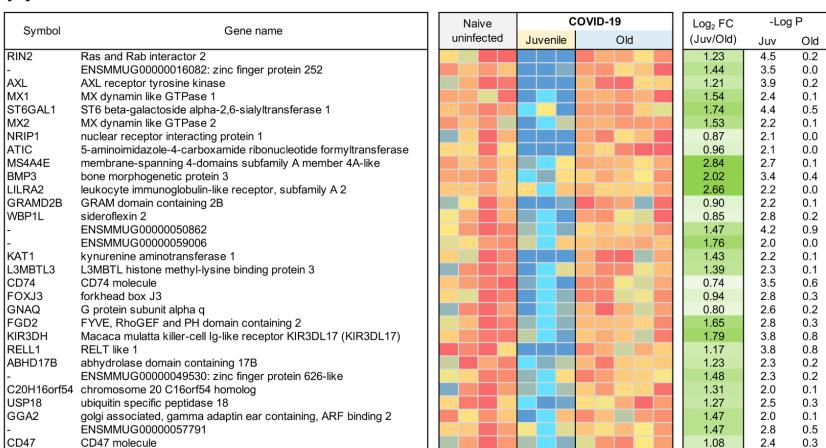
900

901

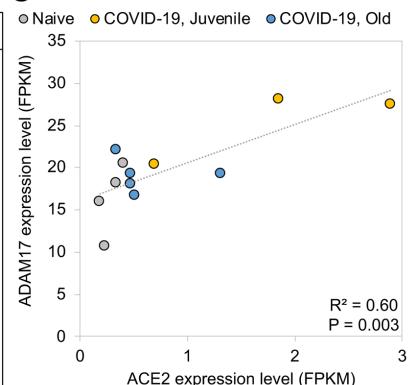
902

903

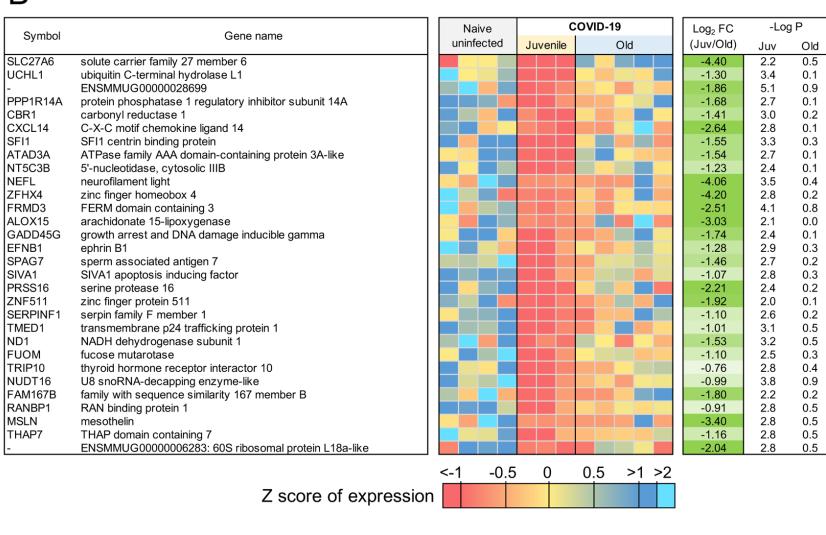
904


905

906


907

908


A

C

B

909

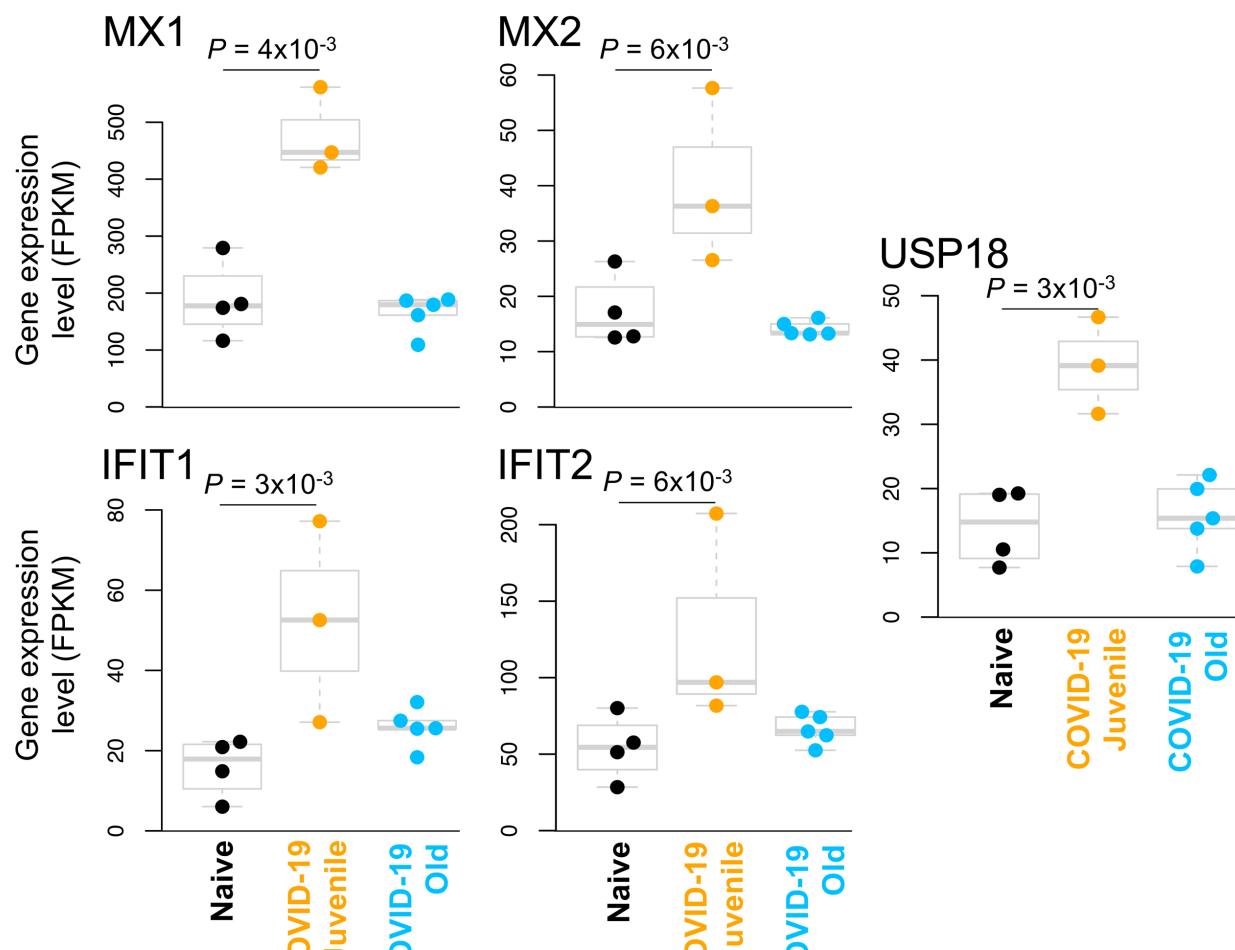
Z score of expression <-1 -0.5 0 0.5 >1 >2

910

Figure 4

911

912


913

914

915

916

917

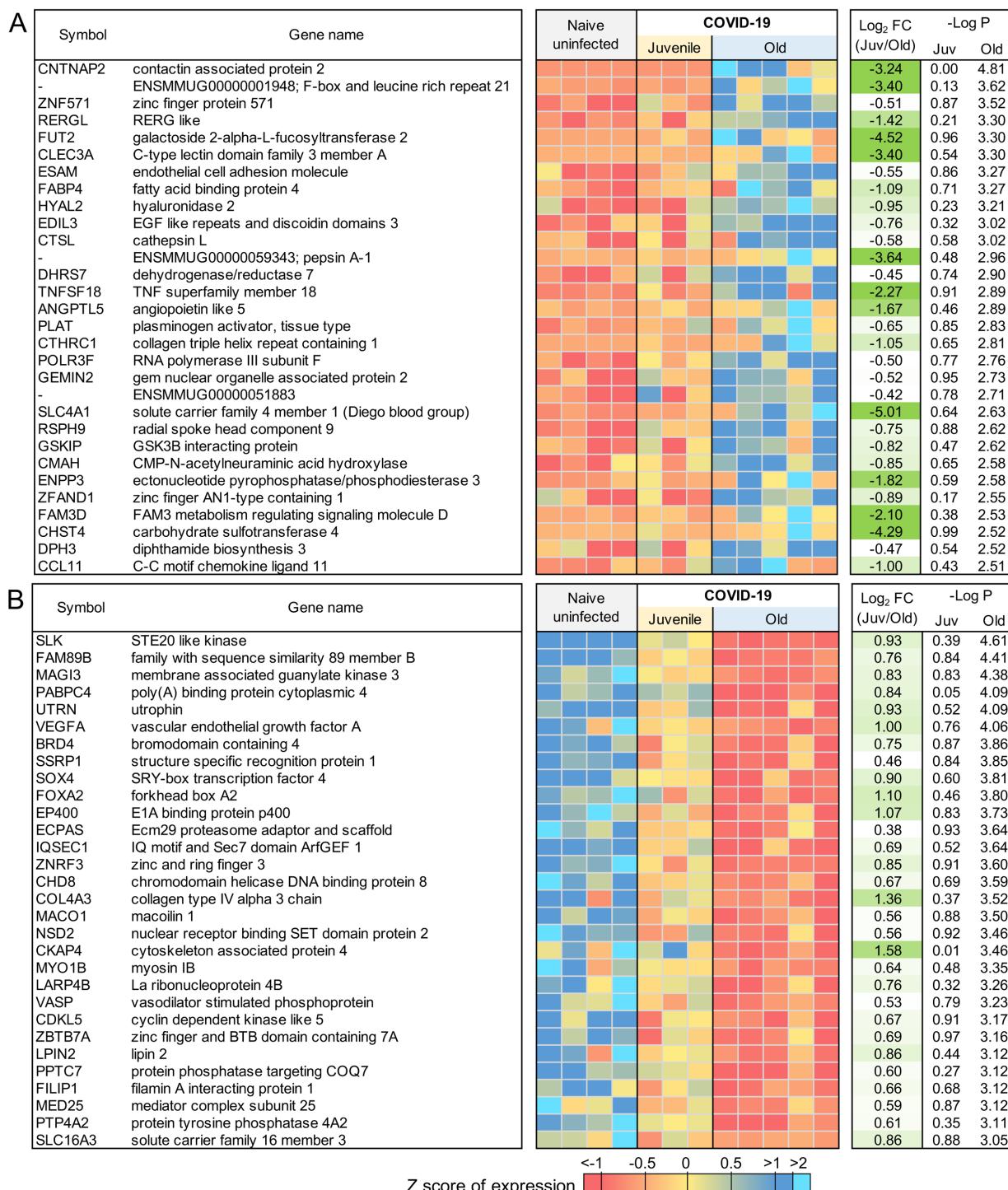
918

919 Figure 5

920

921

922

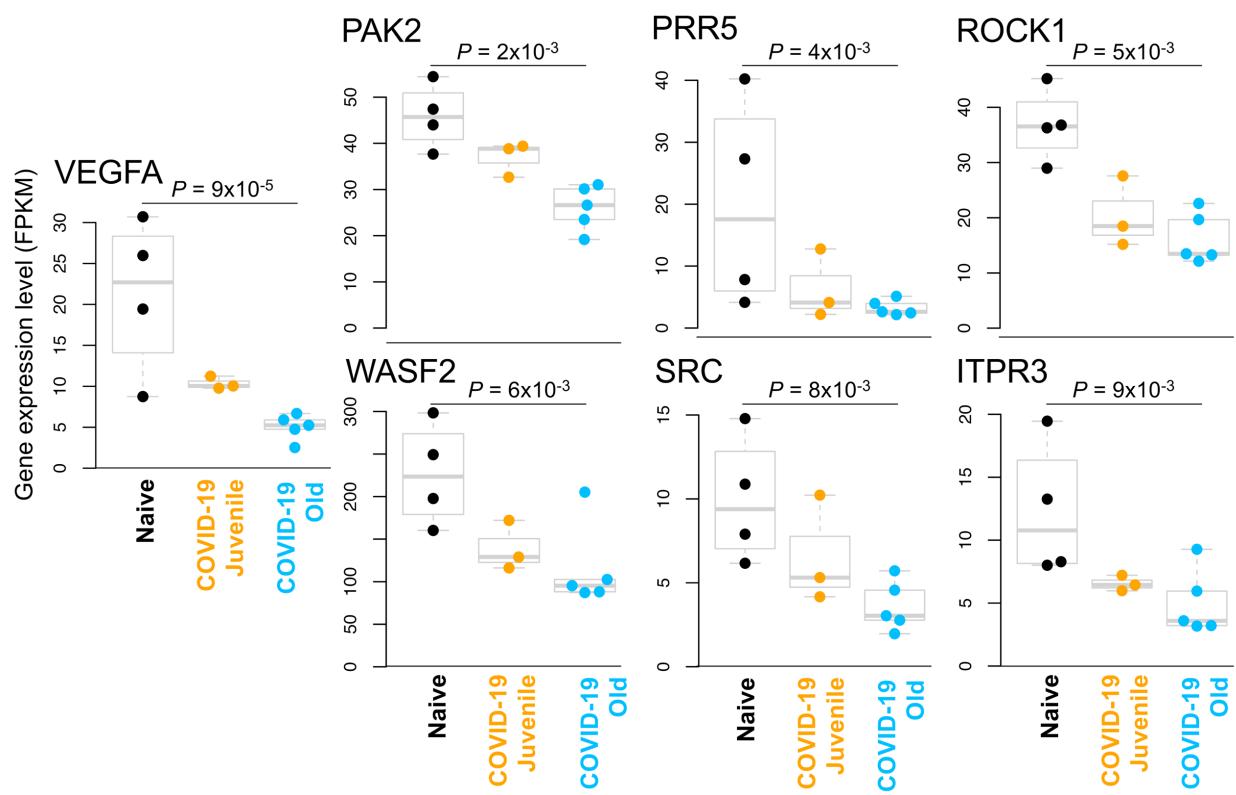

923

924

925

926

927


928

929 Figure 6

930

931

932

933

934 Figure 7

935

936

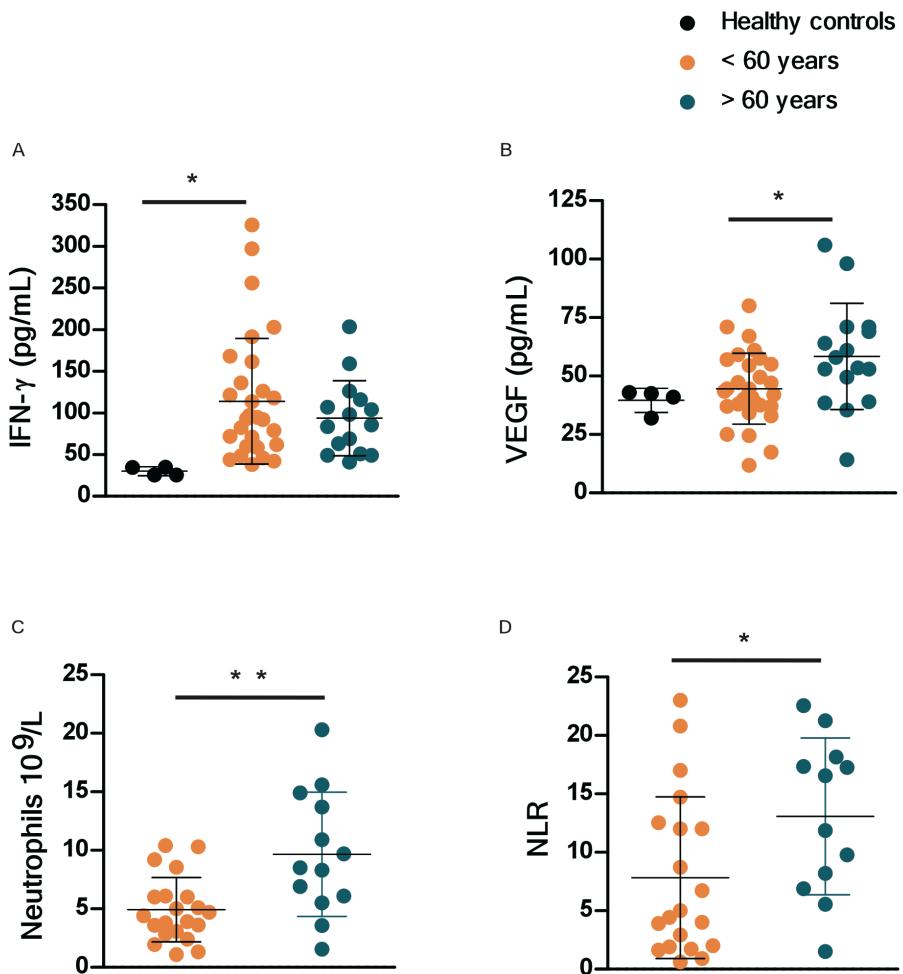
937

938

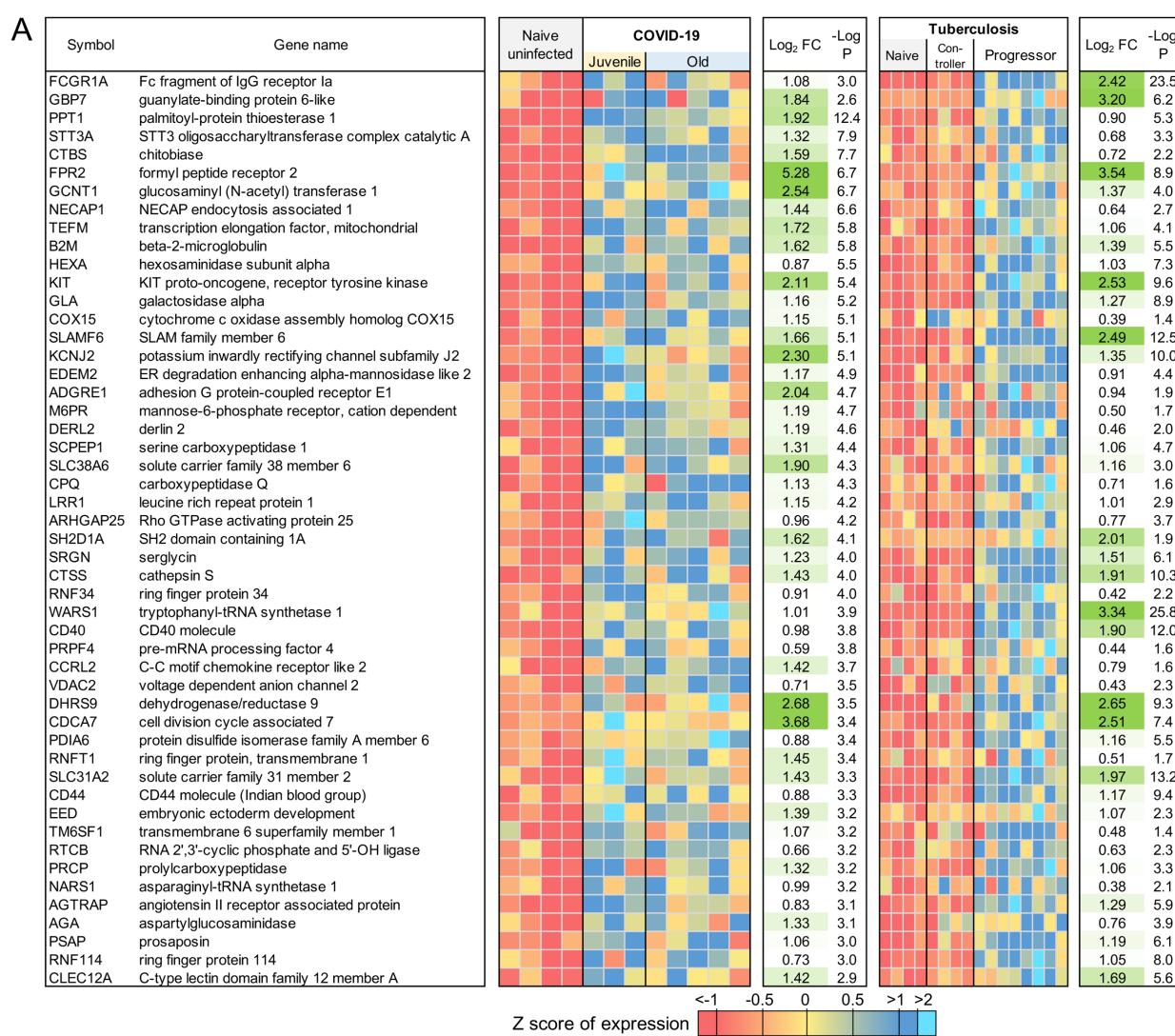
939

940

941


942

943


944

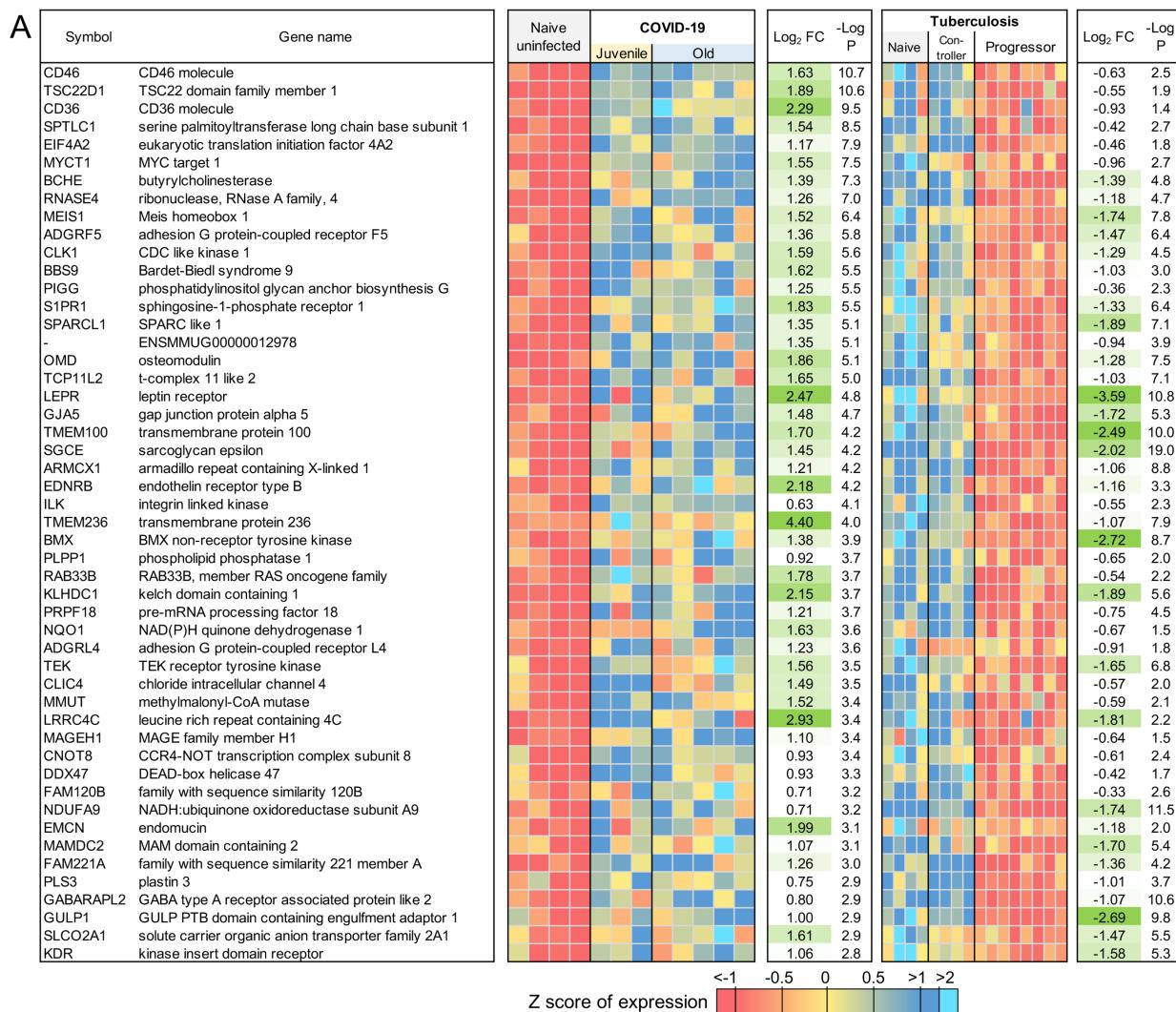
945

946

949

B

Pathway ID	Pathway description	Total pathway size	# Significant genes	FDR-corrected P value
R-HSA-168256	Immune System	1997	35	2.0E-05
R-HSA-6798695	Neutrophil degranulation	479	15	5.7E-04
R-HSA-168249	Innate Immune System	1053	21	2.6E-03
R-HSA-877300	Interferon gamma signaling	92	6	0.017
R-HSA-1236975	Antigen processing-Cross presentation	99	6	0.021
R-HSA-1280218	Adaptive Immune System	756	15	0.045


950

951 Figure 9

952

953

954

B

Gene Ontology ID	GO description	Total pathway size	# Significant genes	FDR-corrected P value
blood vessel morphogenesis	GO:0048514 (BP)	435	14	2.0E-06
tube development	GO:0035295 (BP)	790	17	1.1E-05
blood vessel development	GO:0001568 (BP)	507	14	1.4E-05
angiogenesis	GO:0001525 (BP)	353	12	2.0E-05
vasculature development	GO:0001944 (BP)	530	14	2.5E-05
cardiovascular system development	GO:0072358 (BP)	538	14	3.0E-05
tube morphogenesis	GO:0035239 (BP)	641	15	3.5E-05
circulatory system development	GO:0072359 (BP)	791	15	5.5E-04
peptidyl-tyrosine phosphorylation	GO:0018108 (BP)	285	8	0.029
peptidyl-tyrosine modification	GO:0018212 (BP)	287	8	0.031
endothelial cell differentiation	GO:0045446 (BP)	82	5	0.034
cell junction organization	GO:0034330 (BP)	211	7	0.036
anatomical structure formation involved in morphogenesis	GO:0048646 (BP)	846	13	0.039
protein tyrosine kinase activity	GO:0004713 (MF)	107	5	0.040

955

956 Figure 10

957 **Table 1:** Significant Reactome and KEGG pathway enrichment among the 1,026 genes
958 significantly upregulated by COVID-19.

Pathway ID	Pathway description	Total pathway size	# Significant genes	FDR-corrected P value
Reactome				
R-HSA-6798695	Neutrophil degranulation	479	65	1.1E-07
R-HSA-168256	Immune System	1997	162	1.0E-03
R-HSA-168249	Innate Immune System	1053	95	3.1E-03
R-HSA-162906	HIV Infection	232	31	4.3E-03
R-HSA-72766	Translation	291	36	4.3E-03
R-HSA-162587	HIV Life Cycle	151	22	0.016
R-HSA-5368287	Mitochondrial translation	93	16	0.019
R-HSA-8953854	Metabolism of RNA	673	63	0.019
R-HSA-72306	tRNA processing	106	17	0.021
R-HSA-5389840	Mitochondrial translation elongation	87	15	0.021
R-HSA-162599	Late Phase of HIV Life Cycle	138	20	0.021
R-HSA-9018679	Biosynthesis of EPA-derived SPMs	6	4	0.024
R-HSA-913531	Interferon Signaling	197	25	0.024
R-HSA-8978868	Fatty acid metabolism	177	23	0.027
R-HSA-6781823	Formation of TC-NER Pre-Incision Complex	54	11	0.027
R-HSA-5696399	Global Genome Nucleotide Excision Repair (GG-NER)	84	14	0.034
R-HSA-159231	Transport of Mature mRNA Derived from an Intron less Transcript	40	9	0.040
R-HSA-5419276	Mitochondrial translation termination	87	14	0.044
R-HSA-159234	Transport of Mature mRNAs Derived from Intron less Transcripts	41	9	0.044
R-HSA-1236975	Antigen processing-Cross presentation	99	15	0.048
R-HSA-6781827	Transcription-Coupled Nucleotide Excision Repair (TC-NER)	79	13	0.048
KEGG				
KEGG:01100	Metabolic pathways	1391	131	1.9E-04
KEGG:00020	Citrate cycle (TCA cycle)	32	10	2.4E-03

KEGG:03060	Protein export	24	8	0.010
KEGG:01212	Fatty acid metabolism	55	12	0.018
KEGG:00280	Valine, leucine and isoleucine degradation	48	11	0.021

959

960

961 **Table 2:** Significant Reactome and KEGG pathway enrichment among the 1,109 genes
962 significantly downregulated by COVID-19.

Pathway ID	Pathway description	Total pathway size	# Significant genes	FDR-corrected P value
Reactome				
R-HSA-5653656	Vesicle-mediated transport	667	74	2.5E-05
R-HSA-199991	Membrane Trafficking	628	66	6.1E-04
R-HSA-1442490	Collagen degradation	64	14	6.4E-03
R-HSA-73887	Death Receptor Signaling	141	22	6.4E-03
R-HSA-194315	Signaling by Rho GTPases	444	47	7.8E-03
R-HSA-8948216	Collagen chain trimerization	44	11	7.8E-03
R-HSA-2022090	Assembly of collagen fibrils and other multimeric structures	61	13	7.9E-03
R-HSA-1474290	Collagen formation	90	16	9.5E-03
R-HSA-170834	Signaling by TGF-beta Receptor Complex	73	14	0.011
R-HSA-1650814	Collagen biosynthesis and modifying enzymes	67	13	0.013
R-HSA-3247509	Chromatin modifying enzymes	275	32	0.013
R-HSA-4839726	Chromatin organization	275	32	0.013
R-HSA-194840	Rho GTPase cycle	138	20	0.014
R-HSA-2214320	Anchoring fibril formation	15	6	0.014
R-HSA-9006934	Signaling by Receptor Tyrosine Kinases	455	45	0.022
R-HSA-9006936	Signaling by TGF-beta family members	102	16	0.022
R-HSA-446353	Cell-extracellular matrix interactions	18	6	0.033
R-HSA-2243919	Crosslinking of collagen fibrils	18	6	0.033
R-HSA-1474228	Degradation of the extracellular matrix	140	19	0.033
R-HSA-193704	p75 NTR receptor-mediated signaling	97	15	0.033
R-HSA-193648	NRAGE signals death through JNK	59	11	0.037
R-HSA-416482	G alpha (12/13) signaling events	79	13	0.038

R-HSA-3000480	Scavenging by Class A Receptors	19	6	0.038
R-HSA-5140745	WNT5A-dependent internalization of FZD2, FZD5 and ROR2	13	5	0.040
R-HSA-9007101	Rab regulation of trafficking	124	17	0.047
KEGG				
KEGG:04144	Endocytosis	231	37	3.0E-06
KEGG:05165	Human papillomavirus infection	314	42	6.3E-05
KEGG:04510	Focal adhesion	194	29	4.3E-04
KEGG:04530	Tight junction	150	24	9.1E-04
KEGG:05135	Yersinia infection	116	20	1.7E-03
KEGG:05132	Salmonella infection	205	26	0.023
KEGG:04390	Hippo signaling pathway	146	20	0.045

963

964

965 **Table 3:** Significant Reactome and KEGG pathway enrichment among the 86 genes significantly
966 upregulated by COVID-19 only in Juvenile macaques.

Pathway ID	Pathway description	Total pathway size	# Significant genes	FDR-corrected P value	
Reactome					
R-HSA-909733	Interferon signaling	alpha/beta	69	5	0.033
KEGG					
KEGG:04330	Notch signaling pathway		53	4	9.9E-03
KEGG:05160	Hepatitis C		140	5	0.047

967

968

969 **Table 4:** Significant Reactome and KEGG pathway enrichment among the 160 genes significantly
970 downregulated by COVID-19 only in Old macaques.

Pathway ID	Pathway description	Total pathway size	# Significant genes	FDR-corrected P value
Reactome				
R-HSA-4420097	VEGFA-VEGFR2 Pathway	99	7	0.037
R-HSA-194138	Signaling by VEGF	107	7	0.037
KEGG				
KEGG:04611	Platelet activation	122	8	2.5E-03
KEGG:05206	MicroRNAs in cancer	158	8	0.016

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988 **Supplementary Tables**

989 **Table S1:** Read processing and mapping statistics, and download accessions for all RNA-seq
990 samples.

991

992 **Table S2:** Fragment counts, relative gene expression levels, gene annotations, and differential
993 expression data for every macaque gene.

994

995 **Table S3:** Complete lists of significantly differentially expressed gene sets of interest (including
996 gene names, relative expression data, fold change and P values). Gene sets include: **(A)** 1,026
997 genes significantly up-regulated with COVID-19 vs Naive, **(B)** 65 "neutrophil degranulation" (R-
998 HSA-6798695) genes significantly up-regulated during COVID-19, **(C)** 162 "neutrophil
999 degranulation" (R-HSA-6798695) genes significantly up-regulated during COVID-19, **(D)** 1,109
1000 genes significantly down-regulated with COVID-19 vs Naive, **(E)** 14 "collagen degradation" (R-
1001 HSA-1442490) genes significantly up-regulated during COVID-19, **(F)** 14 "Signaling by TGF-beta
1002 Receptor Complex" (R-HSA-170834) genes significantly up-regulated during COVID-19, **(G)** 86
1003 genes significantly up-regulated with COVID-19 vs Naive only in Juvenile macaques, **(H)** 96
1004 genes significantly down-regulated with COVID-19 vs Naive only in Juvenile macaques, **(I)** 97
1005 genes significantly up-regulated with COVID-19 vs Naive only in Old macaques, **(J)** 160 genes
1006 significantly down-regulated with COVID-19 vs Naive only in Old macaques, **(K)** 97 genes
1007 significantly up-regulated by both COVID-19 and TB and **(L)** 76 genes significantly up-regulated
1008 by COVID-19 but down-regulated by TB.

1009

1010 **Table S4:** Significant functional enrichment for Reactome, KEGG and Gene Ontology pathways,
1011 among differentially gene sets of interest. Gene sets include: **(A)** 1,026 genes up-regulated in
1012 COVID-19 vs Naive, **(B)** 1,109 genes down-regulated in COVID-19 vs Naive, **(C)** 86 genes
1013 significantly up-regulated by COVID-19 only in Juvenile macaques, **(D)** 160 genes significantly

1014 down-regulated by COVID-19 only in Old macaques, (**E**) 97 genes significantly up-regulated by
1015 both COVID-19 and TB, and (**F**) 76 genes significantly up-regulated by COVID-19 but down-
1016 regulated by TB.

1017

1018 **Table S5.** Clinical characteristics and lab parameters of COVID-19 patients. Clinical and
1019 demographic data were retrieved from the medical records of all participants. These data included
1020 age, gender, anthropometrics, comorbidities, symptoms, triage vital signs, and initial laboratory
1021 test results.

1022

1023