

Genetic Disruption of WASHC4 Drives Endo-lysosomal Dysfunction and Cognitive-Movement Impairments in Mice and Humans

Jamie L. Courtland^{1,7}, Tyler W. A. Bradshaw^{1,7}, Greg Waitt³, Erik J. Soderblom^{2,3}, Tricia Ho³, Anna Rajab⁴, Ricardo Vancini⁵, Il Hwan Kim^{2,6*}, and Scott H. Soderling^{1,2*}.

¹Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.

²Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.

³Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, NC 27710, USA.

⁴Burjeel Hospital, VPS Healthcare, Muscat, Oman.

⁵Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA.

⁶Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.

⁷These authors contributed equally.

*Correspondence: Il Hwan Kim, E-mail: ikim9@uthsc.edu, Scott H. Soderling, E-mail: scott.soderling@duke.edu

21

22

24 **ABSTRACT**

25 Mutation of the WASH complex subunit, SWIP, is implicated in human intellectual
26 disability, but the cellular etiology of this association is unknown. We identify the neuronal
27 WASH complex proteome, revealing a network of endosomal proteins. To uncover how
28 dysfunction of endosomal SWIP leads to disease, we generate a mouse model of the
29 human *WASHC4*^{c.3056C>G} mutation. Quantitative spatial proteomics analysis of
30 SWIP^{P1019R} mouse brain reveals that this mutation destabilizes the WASH complex and
31 uncovers significant perturbations in both endosomal and lysosomal pathways. Cellular
32 and histological analyses confirm that SWIP^{P1019R} results in endo-lysosomal disruption
33 and uncover indicators of neurodegeneration. We find that SWIP^{P1019R} not only impacts
34 cognition, but also causes significant progressive motor deficits in mice. Remarkably, a
35 retrospective analysis of SWIP^{P1019R} patients confirms motor deficits in humans.
36 Combined, these findings support the model that WASH complex destabilization,
37 resulting from SWIP^{P1019R}, drives cognitive and motor impairments via endo-lysosomal
38 dysfunction in the brain.

39

40

41 **INTRODUCTION**

42 Neurons maintain precise control of their subcellular proteome using a
43 sophisticated network of vesicular trafficking pathways that shuttle cargo throughout their
44 elaborate processes. Endosomes function as a central hub in this vesicular relay system
45 by coordinating protein sorting between multiple cellular compartments, including surface
46 receptor endocytosis and recycling, as well as degradative shunting to the lysosome. How
47 endosomal trafficking is modulated in neurons remains a vital area of research due to the
48 unique degree of spatial segregation between organelles in neurons, and its strong
49 implication in neurodevelopmental and neurodegenerative diseases.

50 In non-neuronal cells, an evolutionarily conserved complex, the Wiskott-Aldrich
51 Syndrome protein and SCAR Homology (WASH) complex, coordinates endosomal
52 trafficking (Derivery and Gautreau, 2010; Linardopoulou et al., 2007). WASH is composed
53 of five core protein components: WASHC1 (aka WASH1), WASHC2 (aka FAM21),
54 WASHC3 (aka CCDC53), WASHC4 (aka SWIP), and WASHC5 (aka Strumpellin)
55 (encoded by genes *Washc1-Washc5*, respectively), which are broadly expressed in
56 multiple organ systems (Alekhina et al., 2017; Kustermann et al., 2018; McNally et al.,
57 2017; Simonetti and Cullen, 2019; Thul et al., 2017). The WASH complex plays a central
58 role in non-neuronal endosomal trafficking by activating Arp2/3-dependent actin
59 branching at the outer surface of endosomes to influence cargo sorting and vesicular
60 scission (Gomez and Billadeau, 2009; Lee et al., 2016; Phillips-Krawczak et al., 2015;
61 Piotrowski et al., 2013; Simonetti and Cullen, 2019). WASH also interacts with at least
62 three main cargo adaptor complexes — the Retromer, Retriever, and
63 COMMD/CCDC22/CCDC93 (CCC) complexes — all of which associate with distinct

64 sorting nexins to select specific cargo and enable their trafficking to other cellular
65 locations (Binda et al., 2019; Farfán et al., 2013; McNally et al., 2017; Phillips-Krawczak
66 et al., 2015; Seaman and Freeman, 2014; Singla et al., 2019). Loss of the WASH complex
67 in non-neuronal cells has detrimental effects on endosomal structure and function, as its
68 loss results in aberrant endosomal tubule elongation and cargo mislocalization (Bartuzi
69 et al., 2016; Derivery et al., 2009; Gomez et al., 2012; Gomez and Billadeau, 2009;
70 Phillips-Krawczak et al., 2015; Piotrowski et al., 2013). However, whether the WASH
71 complex performs an endosomal trafficking role in neurons remains an open question, as
72 no studies have addressed neuronal WASH function to date.

73 Consistent with the association between the endosomal trafficking system and
74 pathology, dominant missense mutations in *WASHC5* (protein: Strumpellin) are
75 associated with hereditary spastic paraplegia (SPG8) (De Bot et al., 2013; Valdmanis et
76 al., 2007), and autosomal recessive point mutations in *WASHC4* (protein: SWIP) and
77 *WASHC5* are associated with syndromic and non-syndromic intellectual disabilities
78 (Assoum et al., 2020; Elliott et al., 2013; Ropers et al., 2011). In particular, an autosomal
79 recessive mutation in *WASHC4* (c.3056C>G; p.Pro1019Arg) was identified in a cohort of
80 children with non-syndromic intellectual disability (Ropers et al., 2011). Cell lines derived
81 from these patients exhibited decreased abundance of WASH proteins, leading the
82 authors to hypothesize that the observed cognitive deficits in SWIP^{P1019R} patients resulted
83 from disruption of neuronal WASH signaling (Ropers et al., 2011). However, whether this
84 mutation leads to perturbations in neuronal endosomal integrity, or how this might result
85 in cellular changes associated with disease, are unknown.

86 Here we report the analysis of neuronal WASH and its molecular role in disease
87 pathogenesis. We use *in vivo* proximity proteomics (iBiOID) to uncover the neuronal
88 WASH proteome and demonstrate that it is highly enriched for components of endosomal
89 trafficking. We then generate a mouse model of the human *WASHC4*^{c.3056c>g} mutation
90 (SWIP^{P1019R}) (Ropers et al., 2011) to discover how this mutation may alter neuronal
91 trafficking pathways and test whether it leads to phenotypes congruent with human
92 patients. Using an adapted spatial proteomics approach (Geladaki et al., 2019), coupled
93 with a systems-level analysis of protein covariation networks, we find strong evidence for
94 substantial disruption of neuronal endosomal and lysosomal pathways *in vivo*. Cellular
95 analyses confirm a significant impact on neuronal endo-lysosomal trafficking *in vitro* and
96 *in vivo*, with evidence of lipofuscin accumulation and progressive apoptosis activation,
97 molecular phenotypes that are indicative of neurodegenerative pathology. Behavioral
98 analyses of SWIP^{P1019R} mice at adolescence and adulthood confirm a role of WASH in
99 cognitive processes, and reveal profound, progressive motor dysfunction. Importantly,
100 retrospective examination of SWIP^{P1019R} patient data confirms motor dysfunction
101 coincident with cognitive impairments in humans. Our results establish that impaired
102 WASH complex function leads to altered neuronal endo-lysosomal function, which
103 manifests behaviorally as cognitive and movement impairments.

104

105 **RESULTS**

106 **Identification of the WASH complex proteome *in vivo* confirms a neuronal role in**
107 **endosomal trafficking.** While multiple mutations within the WASH complex have been
108 identified in humans (Assoum et al., 2020; Elliott et al., 2013; Ropers et al., 2011;

109 Valdmanis et al., 2007), how these mutations lead to neurological dysfunction remains
110 unknown (Figure 1A). Given that previous work in non-neuronal cultured cells and non-
111 mammalian organisms have established that the WASH complex functions in endosomal
112 trafficking, we first aimed to determine whether this role was conserved in the mouse
113 nervous system (Alekhnina et al., 2017; Billadeau et al., 2010; Derivery et al., 2009; Gomez
114 et al., 2012; Gomez and Billadeau, 2009). To discover the likely molecular functions of
115 the neuronal WASH complex, we utilized an *in vivo* BiOID (iBiOID) paradigm developed in
116 our laboratory to identify the WASH complex proteome from brain tissue (Uezu et al.,
117 2016). BiOID probes were generated by fusing a component of the WASH complex,
118 WASH1 (gene: *Washc1*), with the promiscuous biotin ligase, BiOID2 (WASH1-BiOID2,
119 Figure 1B), or by expressing BiOID2 alone (negative control, solubleBiOID2) under the
120 neuron-specific, human Synapsin-1 promoter (Kim et al., 2016). We injected
121 adenoviruses (AAV) expressing these constructs into the cortex of wild-type postnatal
122 day zero (P0) mice (Figure 1B). Two weeks post-injection, we administered daily
123 subcutaneous biotin for seven days to biotinylate *in vivo* substrates. The viruses displayed
124 efficient expression and activity in brain tissue, as evidenced by colocalization of the
125 WASH1-BiOID2 viral epitope (HA) and biotinylated proteins (Streptavidin) (Figures 1C-F).
126 For label-free quantitative high-mass accuracy LC-MS/MS analyses, whole brain samples
127 were collected at P22, snap-frozen, and processed as previously described (Uezu et al.,
128 2016). A total of 2,311 proteins were identified across all three experimental replicates,
129 which were further analyzed for those with significant enrichment in WASH1-BiOID2
130 samples over solubleBiOID2 negative controls (Table S1).

131 The resulting neuronal WASH proteome included 174 proteins that were
132 significantly enriched (Fold-change ≥ 3.0 , Benjamini-Hochberg P-Adjust < 0.1 , Figure
133 1G). Of these proteins, we identified all five WASH complex components (Figure 1H), as
134 well as 13 previously reported WASH complex interactors (Figure 1I) (McNally et al.,
135 2017; Phillips-Krawczak et al., 2015; Simonetti and Cullen, 2019; Singla et al., 2019),
136 which provided strong validity for our proteomic approach and analyses. Additional
137 bioinformatic analyses of the neuronal WASH proteome identified a network of proteins
138 implicated in vesicular trafficking, including 23 proteins enriched for endosomal functions
139 (Figure 1J) and 24 proteins enriched for endocytic functions (Figure 1K). Among these
140 endosomal and endocytic proteins were components of the recently identified endosomal
141 sorting complexes, CCC (CCDC93 and COMMD9) and Retriever (VPS35L) (Phillips-
142 Krawczak et al., 2015; Singla et al., 2019), as well as multiple sorting nexins important for
143 recruitment of trafficking regulators to the endosome and cargo selection, such as SNX1-
144 3, and SNX16 (Kvainickas et al., 2017; Maruzs et al., 2015; Simonetti et al., 2017). These
145 data demonstrated that the WASH complex interacts with many of the same proteins in
146 neurons as it does in yeast, amoebae, flies, and mammalian cell lines. Furthermore, there
147 were 32 proteins enriched for cytoskeletal regulatory functions (Figure 1L), including
148 actin-modulatory molecules such as the Arp2/3 complex subunit ARPC5, which is
149 consistent with WASH's role in activating this complex to stimulate actin polymerization
150 at endosomes for vesicular scission (Billadeau et al., 2010; Derivery et al., 2009). The
151 WASH1-BioID2 isolated complex also contained 28 proteins known to localize to the
152 excitatory post-synapse (Figure 1M). This included many core synaptic scaffolding
153 proteins, such as SHANK2-3 and DLGAP2-4 (Chen et al., 2011; Mao et al., 2015;

154 Monteiro and Feng, 2017; Wan et al., 2011), as well as modulators of synaptic receptors
155 such as SYNGAP1 and SHISA6 (Barnett et al., 2006; Clement et al., 2012; Kim et al.,
156 2003; Klaassen et al., 2016), which was consistent with the idea that vesicular trafficking
157 plays an important part in synaptic function and regulation. Taken together, these results
158 support a major endosomal trafficking role of the WASH complex in mouse brain.

159

160 **SWIP^{P1019R} does not incorporate into the WASH complex, reducing its stability and**
161 **levels *in vivo*.** To determine how disruption of the WASH complex may lead to disease,
162 we generated a mouse model of a human missense mutation found in children with
163 intellectual disability, *WASHC4*^{c.3056c>g} (protein: SWIP^{P1019R}) (Ropers et al., 2011). Due to
164 the sequence homology of human and mouse *Washc4* genes, we were able to introduce
165 the same point mutation in exon 29 of murine *Washc4* using CRISPR (Derivery and
166 Gautreau, 2010; Ropers et al., 2011). This C>G point mutation results in a
167 Proline>Arginine substitution at position 1019 of SWIP's amino acid sequence (Figure
168 2A), a region thought to be critical for its binding to the WASH component, Strumpellin
169 (Jia et al., 2010; Ropers et al., 2011). Western blot analysis of brain lysate from adult
170 homozygous SWIP^{P1019R} mutant mice (referred to from here on as MUT mice) displayed
171 significantly decreased abundance of two WASH complex members, Strumpellin and
172 WASH1 (Figure 2B). These results phenocopied data from the human patients (Ropers
173 et al., 2011) and suggested that the WASH complex is unstable in the presence of this
174 SWIP point mutation *in vivo*. To test whether this mutation disrupted interactions between
175 WASH complex subunits, we compared the ability of wild-type SWIP (WT) and
176 SWIP^{P1019R} (MUT) to co-immunoprecipitate with Strumpellin and WASH1 in HEK cells.

177 Compared to WT, MUT SWIP co-immunoprecipitated significantly less Strumpellin and
178 WASH1 (IP: 54.8% and 41.4% of WT SWIP, respectively), suggesting that the SWIP^{P1019R}
179 mutation hinders WASH complex formation (Figure 2-figure supplement 1). Together
180 these data support the notion that SWIP^{P1019R} is a damaging mutation that not only
181 impairs its function, but also results in significant reductions of the WASH complex as a
182 whole.

183

184 **Spatial proteomics and unbiased network covariation analysis reveal significant
185 disruptions in the endo-lysosomal pathway of SWIP^{P1019R} mutant mouse brain.**

186 Next, we aimed to understand the impact of the SWIP^{P1019R} mutation on the subcellular
187 organization of the mouse brain proteome. We performed spatial proteomics by following
188 the protocol established by Geladaki *et al.*, with modifications for homogenization of brain
189 tissue (Geladaki et al., 2019; Hallett et al., 2008). We isolated seven subcellular fractions
190 from brain tissue and quantified proteins in these samples using 16-plex TMT proteomics.
191 Using this spatial proteomics dataset, we developed a data-driven clustering approach to
192 classify proteins into subcellular compartments. This approach, which differs from the
193 support vector machine learning algorithm employed by Geladaki *et al.* (2019), was
194 motivated by the lack of a large corpus of brain-specific protein subcellular localization
195 information, and the greater complexity of brain tissue compared to cultured cells. In
196 addition to evaluating differential protein abundance between WT and SWIP^{P1019R} MUT
197 brain, we utilized this spatial proteomics dataset to analyze network-level changes in
198 groups of covarying proteins to better understand WASH's function and explore the
199 cellular mechanisms by which SWIP^{P1019R} causes disease.

200 Brains from 10-month-old mice were gently homogenized to release intact
201 organelles, followed by successive centrifugation steps to enrich subcellular
202 compartments into different fractions based on their density (Figure 2C) (Geladaki et al.,
203 2019). Seven WT and seven MUT fractions (each prepared from one brain, 14 samples
204 total) were labeled with unique isobaric tandem-mass tags and concatenated. We also
205 included two sample pooled quality controls (SPQCs), which allowed us to assess
206 experimental variability and perform normalization between experiments. By performing
207 this experiment in triplicate, deep coverage of the mouse brain proteome was obtained—
208 across all 48 samples we quantified 86,551 peptides, corresponding to 7,488 proteins.
209 After data pre-processing, normalization, and filtering we retained 5,897 reproducibly
210 quantified proteins in the final dataset (Table S2).

211 We used generalized linear models (GLMs) to assess differential protein
212 abundance for intra-fraction comparisons between WT and MUT genotypes, and for
213 overall comparisons between WT and MUT groups, adjusted for baseline differences in
214 subcellular fraction. In the first analysis, there were 85 proteins with significantly altered
215 abundance in at least one of the 7 subcellular fractions (Benjamini-Hochberg P-Adjust <
216 0.1, Table S2 and Figure 2-figure supplement 2). Five proteins were differentially
217 abundant between WT and MUT in all 7 fractions, including four WASH proteins and
218 RAB21A—a known WASH interactor that functions in early endosomal trafficking
219 (WASHC1, WASHC2, WASHC4, WASHC5, Figure 2E) (Del Olmo et al., 2019; Simpson
220 et al., 2004). The abundance of the remaining WASH complex protein, WASHC3, was
221 found to be very low and was not retained in the final dataset due to its sparse
222 quantification. These data affirm that the SWIP^{P1019R} mutation destabilizes the WASH

223 complex. Next, to evaluate global differences between WT and MUT brain, we analyzed
224 the average effect of genotype on protein abundance across all fractions. At this level,
225 there were 687 differentially abundant proteins between WT and MUT brain (Bonferroni
226 P-Adjust < 0.05) (Table S2). We then aimed to place these differentially abundant proteins
227 into a more meaningful biological context using a systems-based approach.

228 For network-based analyses, we clustered the protein covariation network defined
229 by pairwise correlations between all 5,897 proteins. Our data-driven, quality-based
230 approach used Network Enhancement (Wang et al., 2018) to remove biological noise
231 from the covariation network and employed the Leiden algorithm (Traag et al., 2019) to
232 identify optimal partitions of the graph. We enforced module quality by permutation testing
233 (Ritchie et al., 2016) to ensure that identified modules exhibited a non-random topology.
234 Clustering of the protein covariation graph identified 255 modules of proteins that strongly
235 covaried together (see Methods for complete description of clustering approach).

236 To test for module-level differences between WT and MUT brain, we summarized
237 modules for each biological replicate (a single subcellular fraction prepared from either a
238 WT or MUT mouse) as the sum of their proteins, and extended our GLM framework to
239 identify changes in module abundance (adjusted for fraction differences) between
240 genotypes. 37 of the 255 modules exhibited significant differences in WT versus MUT
241 brain (Bonferroni P-Adjust < 0.05; Table S3). Of note, the module containing the WASH
242 complex, M19, was predicted to have endosomal function by annotation of protein
243 function, and was enriched for proteins identified by WASH1-BiOID2 (hypergeometric test
244 P-Adjust < 0.05, bold node edges, Figure 2D). Similar to the WASH iBiOID proteome
245 (Figure 1), M19 contained components of the CCC (CCDC22, CCDC93, COMMD1-3,

246 COMMD6-7, and COMMD9) and Retriever sorting complexes (VPS26C and VPS35L),
247 but not the Retromer sorting complex, suggesting that in the brain, the WASH complex
248 may not interact as closely with Retromer as it does in other cells (Figure 2D). Across all
249 fractions, the abundance of M19 was significantly lower in MUT brain compared to WT,
250 providing evidence that the SWIP^{P1019R} mutation reduces the stability of this protein
251 subnetwork and impairs its function (Figure 2F-G).

252 In contrast to the decreased abundance of the WASH complex/endosome module,
253 M19, we observed three modules (M2, M159, and M213) which were enriched for
254 lysosomal protein components (Geladaki et al., 2019), and exhibited increased
255 abundance in MUT brain (Figure 3). M159 (Figure 3B) contained the lysosomal protease
256 Cathepsin A (CTSA), while M213 (Figure 3D) contained Cathepsin B (CTSB), as well as
257 two key lysosomal hydrolases GLB1 and MAN2B2, and M2 (Figure 3C) contained two
258 Cathepsins (CTSS and CTSL) and several lysosomal hydrolases (e.g. GNS, GLA, and
259 MAN2B1) (Eng and Desnick, 1994; Mayor et al., 1993; Mok et al., 2003; Moon et al.,
260 2016; Patel et al., 2018; Regier and Tifft, 1993; Rosenbaum et al., 2014). Notably, M2
261 also contained the lysosomal glycoprotein programulin (GRN), which is integral to proper
262 lysosome function and whose loss is widely linked with neurodegenerative pathologies
263 (Baker et al., 2006; Pottier et al., 2016; Tanaka et al., 2017; Zhou et al., 2018). In addition,
264 M2 contained the hydrolase IDS, whose loss causes a lysosomal storage disorder that
265 can present with neurological symptoms (Hopwood et al., 1993; Schröder et al., 1994).
266 The overall increase in abundance of modules M2, M159, and M213, and these key
267 lysosomal proteins (Figure 3E-G), may therefore reflect an increase in flux through
268 degradative lysosomal pathways in SWIP^{P1019R} brain.

269 Furthermore, Module 2 (Figure 3C) included multiple membrane proteins and
270 extracellular proteins, such as ITGA5 (an integrin shown to be upregulated and
271 redistributed upon loss of WASH1), ATP13A2 (a cation transporter whose loss causes a
272 Parkinsonian syndrome), and MMP17 (an extracellular metalloprotease), suggesting a
273 link between these proteins and lysosomal enzymatic function (English et al., 2000;
274 Ramirez et al., 2006; Zech et al., 2011). Increased abundance of these M2 proteins in
275 MUT brain may indicate that WASH complex disruption alters their cellular localization.
276 Taken together, these changes appear to reflect a pathological condition characterized
277 by distorted lysosomal metabolism and altered cellular trafficking.

278 In addition to these endo-lysosomal changes, network alterations were evident for
279 an endoplasmic reticulum (ER) module (M83), supporting a shift in the proteostasis of
280 mutant neurons (Figure 2-figure supplement 3B). Notably, within the ER module, M83,
281 there was increased abundance of chaperones (e.g. HSPA5, PDIA3, PDIA4, PDIA6, and
282 DNAJC3) that are commonly engaged in presence of misfolded proteins (Bartels et al.,
283 2019; Kim et al., 2020; Montibeller and de Belleroche, 2018; Synofzik et al., 2014; Wang
284 et al., 2016). This elevation of ER stress modulators can be indicative of
285 neurodegenerative states, in which the unfolded protein response (UPR) is activated to
286 resolve misfolded species (Garcia-Huerta et al., 2016; Hetz and Saxena, 2017). These
287 data demonstrate that loss of WASH function not only alters endo-lysosomal trafficking,
288 but also causes increased stress on cellular homeostasis.

289 Finally, besides these endo-lysosomal and homeostatic changes, we also
290 observed two synaptic modules (M35 and M248) that were reduced in MUT brain (Figure
291 2-figure supplement 3C-D). These included mostly excitatory post-synaptic proteins such

292 as HOMER2 and DLG4 (also identified in WASH1-BioID, Figure 1), consistent with
293 endosomal WASH influencing synaptic regulation. Decreased abundance of these
294 modules indicates that loss of the WASH complex may result in failure of these proteins
295 to be properly trafficked to the synapse.

296

297 **Mutant neurons display structural abnormalities in endo-lysosomal compartments**
298 ***in vitro***. Combined, the proteomics data strongly suggested that endo-lysosomal
299 pathways are altered in adult SWIP^{P1019R} mutant mouse brain. Next, we analyzed whether
300 structural changes in this system were evident in primary neurons. Cortical neurons from
301 littermate WT and MUT P0 pups were cultured for 15 days *in vitro* (DIV15, Figure 4A),
302 then fixed and stained for established markers of early endosomes (Early Endosome
303 Antigen 1, EEA1; Figures 4B and 4C) and lysosomes (Cathepsin D, CathD; Figures 4D
304 and 4E). Reconstructed three-dimensional volumes of EEA1 and Cathepsin D puncta
305 revealed that MUT neurons display larger EEA1+ somatic puncta than WT neurons
306 (Figures 4G and 4J), but no difference in the total number of EEA1+ puncta (Figure 4F).
307 This finding is consistent with a loss-of-function mutation, as loss of WASH activity
308 prevents cargo scission from endosomes and leads to cargo accumulation (Bartuzi et al.,
309 2016; Gomez et al., 2012). Conversely, MUT neurons exhibited significantly less
310 Cathepsin D+ puncta than WT neurons (Figure 4H), but the remaining puncta were
311 significantly larger than those of WT neurons (Figures 4I and 4K). These data support the
312 finding that the SWIP^{P1019R} mutation results in both molecular and morphological
313 abnormalities in the endo-lysosomal pathway.

314

315 **SWIP^{P1019R} mutant brains exhibit markers of abnormal endo-lysosomal structures**

316 **and cell death *in vivo*.** As there is strong evidence that dysfunctional endo-lysosomal
317 trafficking and elevated ER stress are associated with neurodegenerative disorders,
318 adolescent (P42) and adult (10 month-old, 10mo) WT and MUT brain tissue were
319 analyzed for the presence of cleaved caspase-3, a marker of apoptotic pathway
320 activation, in four brain regions (Boatright and Salvesen, 2003; Porter and Jänicke, 1999).
321 Very little cleaved caspase-3 staining was present in WT and MUT mice at adolescence
322 (Figures 5A, 5B, and Figure 5-figure supplement 1). However, at 10mo, the MUT motor
323 cortices displayed significantly greater cleaved caspase-3 staining compared to age-
324 matched WT littermate controls (Figures 5D, 5E, and 5H). Furthermore, this difference
325 appeared to be selective for the motor cortex, as we did not observe significant
326 differences in cleaved caspase-3 staining at either age for hippocampal, striatal, or
327 cerebellar regions (Figure 5-figure supplement 1). These data suggested that neurons of
328 the motor cortex were particularly susceptible to disruption of endo-lysosomal pathways
329 downstream of SWIP^{P109R}, perhaps because long-range corticospinal projections require
330 high fidelity of trafficking pathways (Blackstone et al., 2011; Slosarek et al., 2018; Wang
331 et al., 2014).

332 To further examine the morphology of primary motor cortex neurons at a
333 subcellular resolution, samples from age-matched 7-month-old WT and MUT mice (7mo,
334 3 animals each) were imaged by transmission electron microscopy (TEM). Strikingly, we
335 observed large electron-dense inclusions in the cell bodies of MUT neurons (arrows,
336 Figure 5L; pseudo-colored region, 5N). These dense structures were associated electron-
337 lucent lipid-like inclusions (asterisk, Figure 5N), and were visually consistent with

338 lipofuscin accumulation at lysosomal residual bodies (Poët et al., 2006; Valdez et al.,
339 2017; Yoshikawa et al., 2002). Lipofuscin is a by-product of lysosomal breakdown of
340 lipids, proteins, and carbohydrates, which naturally accumulates over time in non-dividing
341 cells such as neurons (Höhn and Grune, 2013; Moreno-García et al., 2018; Terman and
342 Brunk, 1998). However, excessive lipofuscin accumulation is thought to be detrimental to
343 cellular homeostasis by inhibiting lysosomal function and promoting oxidative stress,
344 often leading to cell death (Brunk and Terman, 2002; Powell et al., 2005). As a result,
345 elevated lipofuscin is considered a biomarker of neurodegenerative disorders, including
346 Alzheimer's disease, Parkinson's disease, and Neuronal Ceroid Lipofuscinoses (Moreno-
347 García et al., 2018). Therefore, the marked increase in lipofuscin area and number seen
348 in MUT electron micrographs (Figures 5O and 5P, respectively) is consistent with the
349 increased abundance of lysosomal pathways observed by proteomics, and likely reflects
350 an increase in lysosomal breakdown of cellular material. Together these data indicate
351 that SWIP^{P1019R} results in pathological lysosomal function that could lead to
352 neurodegeneration.

353

354 **SWIP^{P1019R} mutant mice display persistent deficits in cued fear memory recall.** To
355 observe the functional consequences of the SWIP^{P1019R} mutation, we next studied WT
356 and MUT mouse behavior. Given that children with homozygous SWIP^{P1019R} point
357 mutations display intellectual disability (Ropers et al., 2011) and SWIP^{P1019R} mutant mice
358 exhibit endo-lysosomal disruptions implicated in neurodegenerative processes, behavior
359 was assessed at two ages: adolescence (P40-50), and mid-late adulthood (5.5-6.5 mo).
360 Interestingly, MUT mice performed equivalently to WT mice in episodic and working

361 memory paradigms, including novel object recognition and Y-maze alternations (Figure
362 6-figure supplement 1). However, in a fear conditioning task, MUT mice displayed a
363 significant deficit in cued fear memory (Figure 6). This task tests the ability of a mouse to
364 associate an aversive event (a mild electric footshock) with a paired tone (Figure 6A).
365 Freezing behavior of mice during tone presentation is attributed to hippocampal or
366 amygdala-based fear memory processes (Goosens and Maren, 2001; Maren and Holt,
367 2000; Vazdarjanova and McGaugh, 1998). Forty-eight hours after exposure to the paired
368 tone and footshock, MUT mice showed a significant decrease in conditioned freezing to
369 tone presentation compared to their WT littermates (Figures 6B and 6C). To ensure that
370 this difference was not due to altered sensory capacities of MUT mice, we measured the
371 startle response of mice to both electric foot shock and presented tones. In line with intact
372 sensation, MUT mice responded comparably to WT mice in these tests (Figure 6-figure
373 supplement 2). These data demonstrate that although MUT mice perceive footshock
374 sensations and auditory cues, it is their memory of these paired events that is significantly
375 impaired. Additionally, this deficit in fear response was evident at both adolescence and
376 adulthood (top panels, and bottom panels, respectively, Figures 6B and 6C). These
377 changes are consistent with the hypothesis that SWIP^{P109R} is the cause of cognitive
378 impairments in humans.

379

380 **SWIP^{P1019R} mutant mice exhibit surprising motor deficits that are confirmed in**
381 **human patients.** Because SWIP^{P1019R} results in endo-lysosomal pathology consistent
382 with neurodegenerative disorders in the motor cortex, we next analyzed motor function of
383 the mice over time. First, we tested the ability of WT and MUT mice to remain on a rotating

384 rod for five minutes (Rotarod, Figures 7A-7C). At both adolescence and adulthood, MUT
385 mice performed markedly worse than WT littermate controls (Fig 7C). Mouse
386 performance was not significantly different across trials, which suggested that this
387 difference in retention time was not due to progressive fatigue, but more likely due to an
388 overall difference in motor control (Mann and Chesselet, 2015).

389 To study the animals' movement at a finer scale, the gait of WT and MUT mice
390 was also analyzed using a TreadScan system containing a high-speed camera coupled
391 to a transparent treadmill (Figure 7D) (Beare et al., 2009). Interestingly, while the gait
392 parameters of mice were largely indistinguishable across genotypes at adolescence, a
393 striking difference was seen when the same mice were aged to adulthood (Figures 7E-
394 7G). In particular, MUT mice took slower (Figure 7E), longer strides (Figure 7F), stepping
395 closer to the midline of their body (track width, Figure 7- figure supplement 1), and their
396 gait symmetry was altered so that their strides were no longer perfectly out of phase (out
397 of phase=0.5, Figure 7G). While these differences were most pronounced in the rear
398 limbs (as depicted in Figure 7E-7G), the same trends were present in front limbs (Figure
399 7-figure supplement 1). These findings demonstrate that SWIP^{P1019R} results in
400 progressive motor function decline that was detectable by the rotarod task at
401 adolescence, but which became more prominent with age, as both gait and strength
402 functions deteriorated.

403 These marked motor findings prompted us to re-evaluate the original reports of
404 human SWIP^{P1019R} patients (Ropers et al., 2011). While developmental delay or learning
405 difficulties were the primary impetus for medical evaluation, all patients also exhibited
406 motor symptoms (mean age = 10.4 years old, Figure 7H). The patients' movements were

407 described as “clumsy” with notable fine motor difficulties, dysmetria, dysdiadochokinesia,
408 and mild dysarthria on clinical exam (Figure 7H). Recent communication with the parents
409 of these patients, who are now an average of 21 years old, revealed no notable symptom
410 exacerbation. It is therefore possible that the SWIP^{P1019R} mouse model either exhibits
411 differences from human patients or may predict future disease progression for these
412 individuals, given that we observed significant worsening at 5-6 months old in mice (which
413 is thought to be equivalent to ~30-35 years old in humans) (Dutta and Sengupta, 2016;
414 Zhang et al., 2019).

415

416 **DISSCUSSION**

417 Taken together, the data presented here support a mechanistic model whereby
418 SWIP^{P1019R} causes a loss of WASH complex function, resulting in endo-lysosomal
419 disruption and accumulation of neurodegenerative markers, such as upregulation of
420 unfolded protein response modulators and lysosomal enzymes, as well as build-up of
421 lipofuscin and cleaved caspase-3 over time. To our knowledge, this study provides the
422 first mechanistic evidence of WASH complex impairment having direct and indirect
423 organellar effects that lead to cognitive deficits and progressive motor impairments
424 (Figure 8).

425 Using *in vivo* proximity-based proteomics in wild-type mouse brain, we identify that
426 the WASH complex interacts with the CCC (COMMD9 and CCDC93) and Retriever
427 (VPS35L) cargo selective complexes (Bartuzi et al., 2016; Singla et al., 2019).
428 Interestingly, we did not find significant enrichment of the Retromer sorting complex, a
429 well-known WASH interactor, suggesting that it may play a minor role in neuronal WASH-

430 mediated cargo sorting (Figure 1). These data are supported by our TMT proteomics and
431 covariation network analyses of SWIP^{P1019R} mutant brain, which clustered the WASH,
432 CCC, and Retriever complexes together in M19, but not the Retromer complex, which
433 was found in endosomal module M14 (Figure 2 and Figure 2-figure supplement 3A).
434 Systems-level protein covariation analyses also revealed that disruption of these WASH-
435 CCC-Retriever interactions may have multiple downstream effects on the endosomal
436 machinery, since endosomal modules displayed significant changes in SWIP^{P1019R} brain
437 (including both M19, Figure 2, as well as M14, Figure 2-figure supplement 3A), with
438 corresponding decreases in the abundance of endosomal proteins including Retromer
439 subunits (VPS29 and VPS35), associated sorting nexins (e.g. SNX17 and SNX27),
440 known WASH interactors (e.g. RAB21 and FKBP15), and cargos (e.g. LRP1 and ITGA3)
441 (Figure 2-figure supplements 2 and 3) (Del Olmo et al., 2019; Farfán et al., 2013;
442 Fedoseienko et al., 2018; Halff et al., 2019; Harbour et al., 2012; McNally et al., 2017;
443 Pan et al., 2010; Ye et al., 2020; Zimprich et al., 2011). While previous studies have
444 indicated that Retromer and CCC influence endosomal localization of WASH (Harbour et
445 al., 2012; Phillips-Krawczak et al., 2015; Singla et al., 2019), our findings of altered
446 endosomal networks containing decreased Retromer, Retriever, and CCC protein levels
447 in SWIP^{P1019R} mutant brain point to a possible feedback mechanism wherein WASH
448 impacts the protein abundance and/or stability of these interactors. Future studies
449 defining the hierarchical interplay between the WASH, Retromer, Retriever, and CCC
450 complexes in neurons could provide clarity on how these mechanisms are organized.

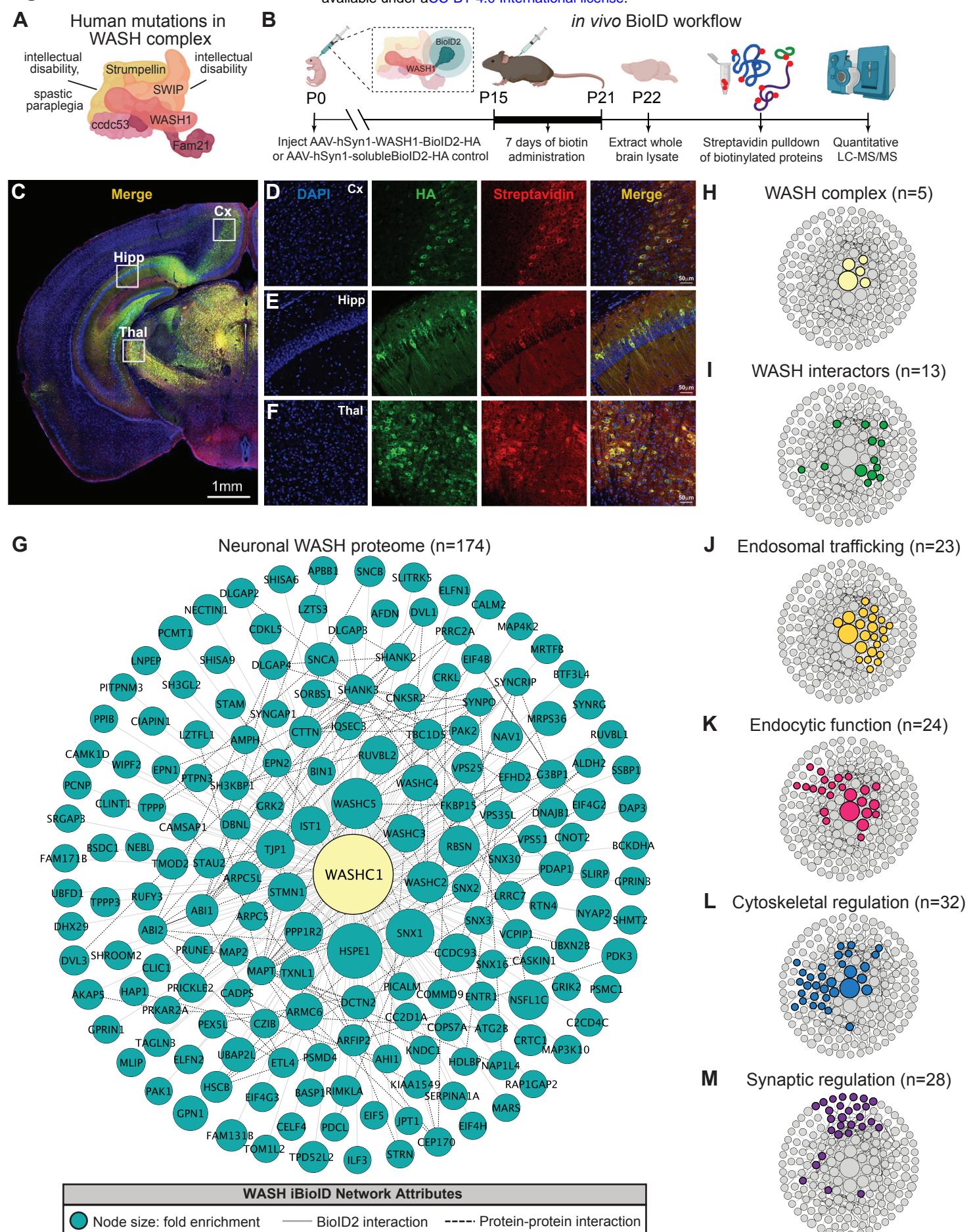
451 In addition to highlighting the neuronal roles of WASH in CCC- and Retriever-
452 mediated endosomal sorting, our proteomics approach also identified protein modules

453 with increased abundance in SWIP^{P1019R} mutant brain. The proteins in these modules fell
454 into two interesting categories: lysosomal enzymes and proteins involved in the
455 endoplasmic reticulum (ER) stress response. Of note, some of the lysosomal enzymes
456 with elevated levels in MUT brain (GRN, M2; IDS, M2; and GNS, M213; Figure 3) are
457 also implicated in lysosomal storage disorders, where they generally have decreased,
458 rather than increased, function or expression (Hopwood et al., 1993; Mok et al., 2003;
459 Schröder et al., 1994; Ward et al., 2017). We speculate that loss of WASH function in our
460 mutant mouse model may lead to increased accumulation of cargo and associated
461 machinery at early endosomes (as seen in Figure 4, enlarged EEA1⁺ puncta), eventually
462 overburdening early endosomal vesicles and triggering transition to late endosomes for
463 subsequent fusion with degradative lysosomes (Figure 8). This would effectively increase
464 delivery of endosomal substrates to the lysosome compared to baseline, resulting in
465 enlarged, overloaded lysosomal structures, and elevated demand for degradative
466 enzymes. For example, since mutant neurons display increased lysosomal module
467 protein abundance (Figure 3), and larger lysosomal structures (Figures 4 and 5), they
468 may require higher quantities of progranulin (GRN, M2; Figure 3) for sufficient lysosomal
469 acidification (Tanaka et al., 2017).

470 Our findings that SWIP^{P1019R} results in reduced WASH complex stability and
471 function, which may ultimately drive lysosomal dysfunction, are supported by studies in
472 non-mammalian cells. For example, expression of a dominant-negative form of WASH1
473 in amoebae impairs recycling of lysosomal V-ATPases (Carnell et al., 2011) and loss of
474 WASH in *Drosophila* plasmocytes affects lysosomal acidification (Gomez et al., 2012;
475 Nagel et al., 2017; Zech et al., 2011). Moreover, mouse embryonic fibroblasts lacking

476 WASH1 display abnormal lysosomal morphologies, akin to the structures we observed in
477 cultured SWIP^{P1019R} MUT neurons (Gomez et al., 2012).

478 In addition to lysosomal dysfunction, endoplasmic reticulum (ER) stress is
479 commonly observed in neurodegenerative states, where accumulation of misfolded
480 proteins disrupts cellular proteostasis (Cai et al., 2016; Hetz and Saxena, 2017;
481 Montibeller and de Belleruche, 2018). This cellular strain triggers the adaptive unfolded
482 protein response (UPR), which attempts to restore cellular homeostasis by increasing the
483 cell's capacity to retain misfolded proteins within the ER, remedy misfolded substrates,
484 and trigger degradation of persistently misfolded species. Involved in this process are ER
485 chaperones that we identified as increased in SWIP^{P1019R} mutant brain including BiP
486 (HSPA5), calreticulin (CALR), calnexin (CANX), and the protein disulfide isomerase
487 family members (PDIA1, PDIA4, PDIA6) (M83; Figure 2-supplement 3B) (Garcia-Huerta
488 et al., 2016). Many of these proteins were identified in the ER protein module found to be
489 significantly altered in MUT mouse brain (M83), supporting a network-level change in the
490 ER stress response (Figure 2-supplement 3B). One notable exception to this trend was
491 endoplasmic (HSP90B1, M136), which exhibited significantly decreased abundance in
492 SWIP^{P1019R} mutant brain (Table S2). This is surprising given that endoplasmic has been
493 shown to coordinate with BiP in protein folding (Sun et al., 2019), however it may highlight
494 a possible compensatory mechanism. Additionally, prolonged UPR can stimulate
495 autophagic pathways in neurons, where misfolded substrates are delivered to the
496 lysosome for degradation (Cai et al., 2016). These data highlight a relationship between
497 ER and endo-lysosomal disturbances as an exciting avenue for future research.


498 Strikingly, we observed modules enriched for resident proteins corresponding to
499 all 10 of the major subcellular compartments mapped by Geladaki *et al.* (2019; nucleus,
500 mitochondria, golgi, ER, peroxisome, proteasome, plasma membrane, lysosome,
501 cytoplasm, and ribosome; Supplementary File 1). The greatest dysregulations we
502 observed were in lysosomal, endosomal, ER, and synaptic modules, supporting the
503 hypothesis that SWIP^{P1019R} primarily results in disrupted endo-lysosomal trafficking. While
504 analysis of these dysregulated modules informs the pathobiology of SWIP^{P1019R}, our
505 spatial proteomics approach also identified numerous biologically cohesive modules,
506 which remained unaltered (Supplementary File 1). Given that many of these modules
507 contained proteins of unknown function, we anticipate that future analyses of these
508 modules and their protein constituents have great potential to inform our understanding
509 of protein networks and their influence on neuronal cell biology.

510 It has become clear that preservation of the endo-lysosomal system is critical to
511 neuronal function, as mutations in mediators of this process are implicated in neurological
512 diseases such as Parkinson's disease, Huntington's disease, Alzheimer's disease,
513 Frontotemporal Dementia, Neuronal Ceroid Lipofuscinoses (NCLs), and Hereditary
514 Spastic Paraplegia (Baker *et al.*, 2006; Connor-Robson *et al.*, 2019; Edvardson *et al.*,
515 2012; Follett *et al.*, 2019; Harold *et al.*, 2009; Mukherjee *et al.*, 2019; Pal *et al.*, 2006;
516 Quadri *et al.*, 2013; Seshadri *et al.*, 2010; Tachibana *et al.*, 2019; Valdmanis *et al.*, 2007).
517 These genetic links to predominantly neurodegenerative conditions have supported the
518 proposition that loss of endo-lysosomal integrity can have compounding effects over time
519 and contribute to progressive disease pathologies. In particular, NCLs are lysosomal
520 storage disorders primarily found in children, with heterogenous presentations and

521 multigenic causations (Mukherjee et al., 2019). The majority of genes implicated in NCLs
522 affect lysosomal enzymatic function or transport of proteins to the lysosome (Mukherjee
523 et al., 2019; Poët et al., 2006; Ramirez-Montealegre and Pearce, 2005; Yoshikawa et al.,
524 2002). Most patients present with marked neurological impairments, such as learning
525 disabilities, motor abnormalities, vision loss, and seizures, and have the unifying feature
526 of lysosomal lipofuscin accumulation upon pathological examination (Mukherjee et al.,
527 2019). While the human SWIP^{P1019R} mutation has not been classified as an NCL (Ropers
528 et al., 2011), findings from our mutant mouse model suggest that loss of WASH complex
529 function leads to phenotypes bearing strong resemblance to NCLs, including lipofuscin
530 accumulation (Figures 4-7). As a result, our mouse model could provide the opportunity
531 to study these pathologies at a mechanistic level, while also enabling preclinical
532 development of treatments for their human counterparts.

533 Currently there is an urgent need for greater mechanistic investigations of
534 neurodegenerative disorders, particularly in the domain of endo-lysosomal trafficking.
535 Despite the continual increase in identification of human disease-associated genes, our
536 molecular understanding of how their protein equivalents function and contribute to
537 pathogenesis remains limited. Here we employ a systems-level analysis of proteomic
538 datasets to uncover biological perturbations linked to SWIP^{P1019R}. We demonstrate the
539 power of combining *in vivo* proteomics and systems network analyses with *in vitro* and *in*
540 *vivo* functional studies to uncover relationships between genetic mutations and molecular
541 disease pathologies. Applying this platform to study organellar dysfunction in other
542 neurodegenerative and neurodevelopmental disorders may facilitate the identification of
543 convergent disease pathways driving brain disorders.

Figure 1

Figure 1. Identification of the WASH complex proteome *in vivo* confirms a neuronal role in endosomal trafficking

(A) The WASH complex is composed of five subunits, *Washc1* (WASH1), *Washc2* (FAM21), *Washc3* (CCDC53), *Washc4* (SWIP), and *Washc5* (Strumpellin). Human mutations in these components are associated with spastic paraplegia (De Bot et al., 2013; Jahic et al., 2015; Valdmanis et al., 2007), Ritscher-Schinzel Syndrome (Elliott et al., 2013), and intellectual disability (Assoum et al., 2020; Ropers et al., 2011).

(B) A BiolD2 probe was attached to the c-terminus of WASH1 and expressed under the human synapsin-1 (hSyn1) promoter in an AAV construct for *in vivo* BiolD (iBiolD). iBiolD probes (WASH1-BiolD2-HA, or negative control solubleBiolD2-HA) were injected into wild-type mouse brain at P0 and allowed to express for two weeks. Subcutaneous biotin injections (24 mg/kg) were administered over seven days for biotinylation, and then brains were harvested for isolation and purification of biotinylated proteins. LC-MS/MS identified proteins significantly enriched in all three replicates of WASH1-BiolD2 samples over soluble-BiolD2 controls.

(C) Representative image of WASH1-BiolD2-HA expression in a mouse coronal brain section (Cx = cortex, Hipp = hippocampus, Thal = thalamus). Scale bar, 1 mm.

(D) Representative image of WASH1-BiolD2-HA expression in mouse cortex (inset from C). Individual panels show nuclei (DAPI, blue), AAV construct HA epitope (green), and biotinylated proteins (Streptavidin, red). Merged image shows colocalization of HA and Streptavidin (yellow). Scale bar, 50 μ m.

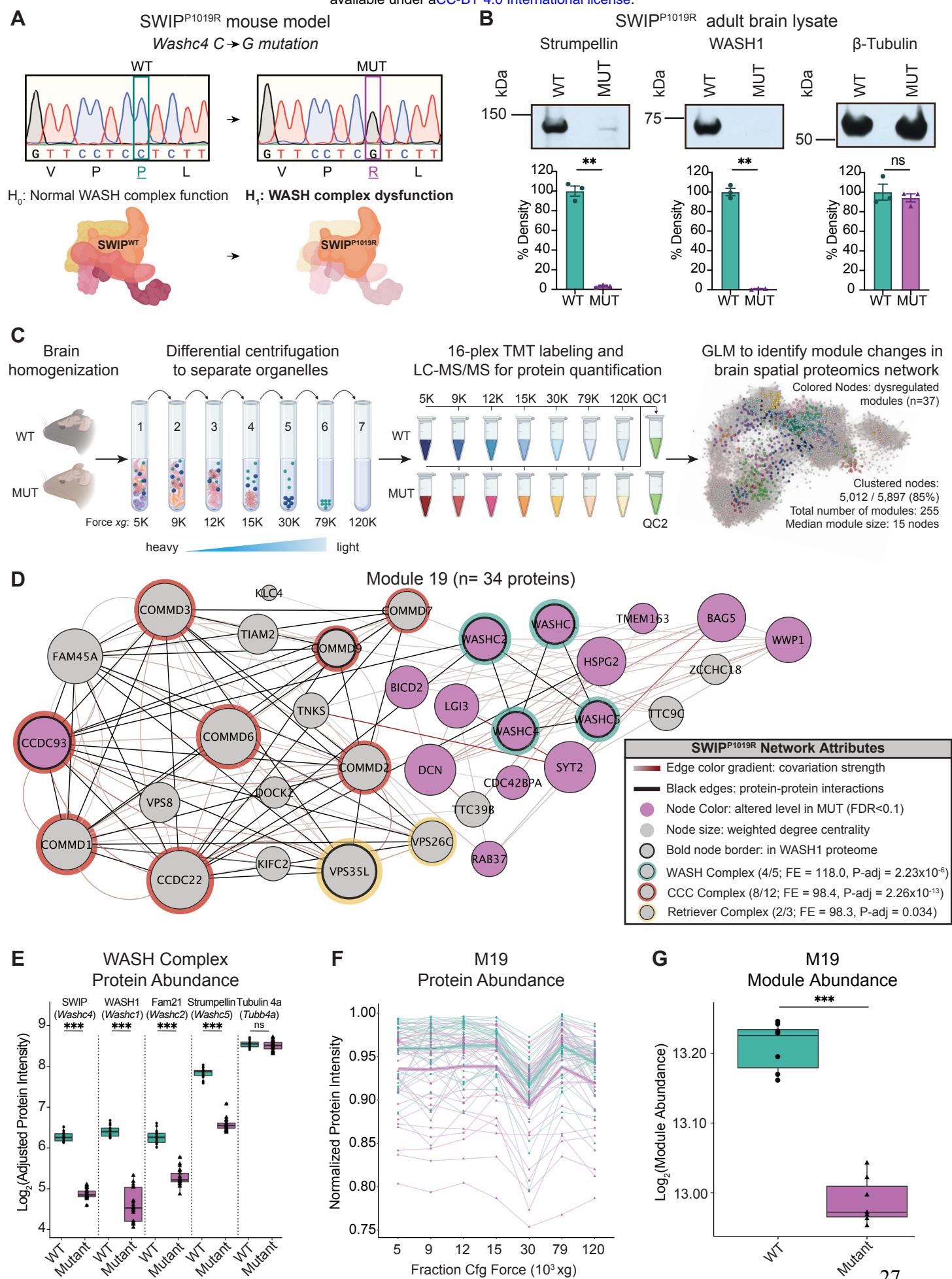
(E) Representative image of WASH1-BiolD2-HA expression in mouse hippocampus (inset from C). Scale bar, 50 μ m.

(F) Representative image of WASH1-BiolD2-HA expression in mouse thalamus (inset from C). Scale bar, 50 μ m.

(G) iBiolD identified known and unknown proteins interactors of the WASH complex in murine neurons. Nodes size represents protein abundance fold-enrichment over negative control (range: 3 to 181.7), solid grey edges delineate iBiolD interactions between the WASHC1 probe (seen in yellow at the center) and identified proteins, dashed edges indicate known protein-protein interactions from HitPredict database (López et al., 2015). (H-I) Clustergrams of:

(H) All five WASH complex proteins identified by iBiolD.

(I) Previously reported WASH interactors (13/174), including the CCC and Retriever complexes.


(J) Endosomal trafficking proteins (23/174 proteins).

(K) Endocytic proteins (24/174).

(L) Proteins involved in cytoskeletal regulation (32/174), including Arp2/3 subunit ARPC5.

(M) Synaptic proteins (28/174). Clustergrams were annotated by hand and cross-referenced with Metascape (Zhou et al., 2019) GO enrichment of WASH1 proteome constituents over all proteins identified in the BiolD experiment.

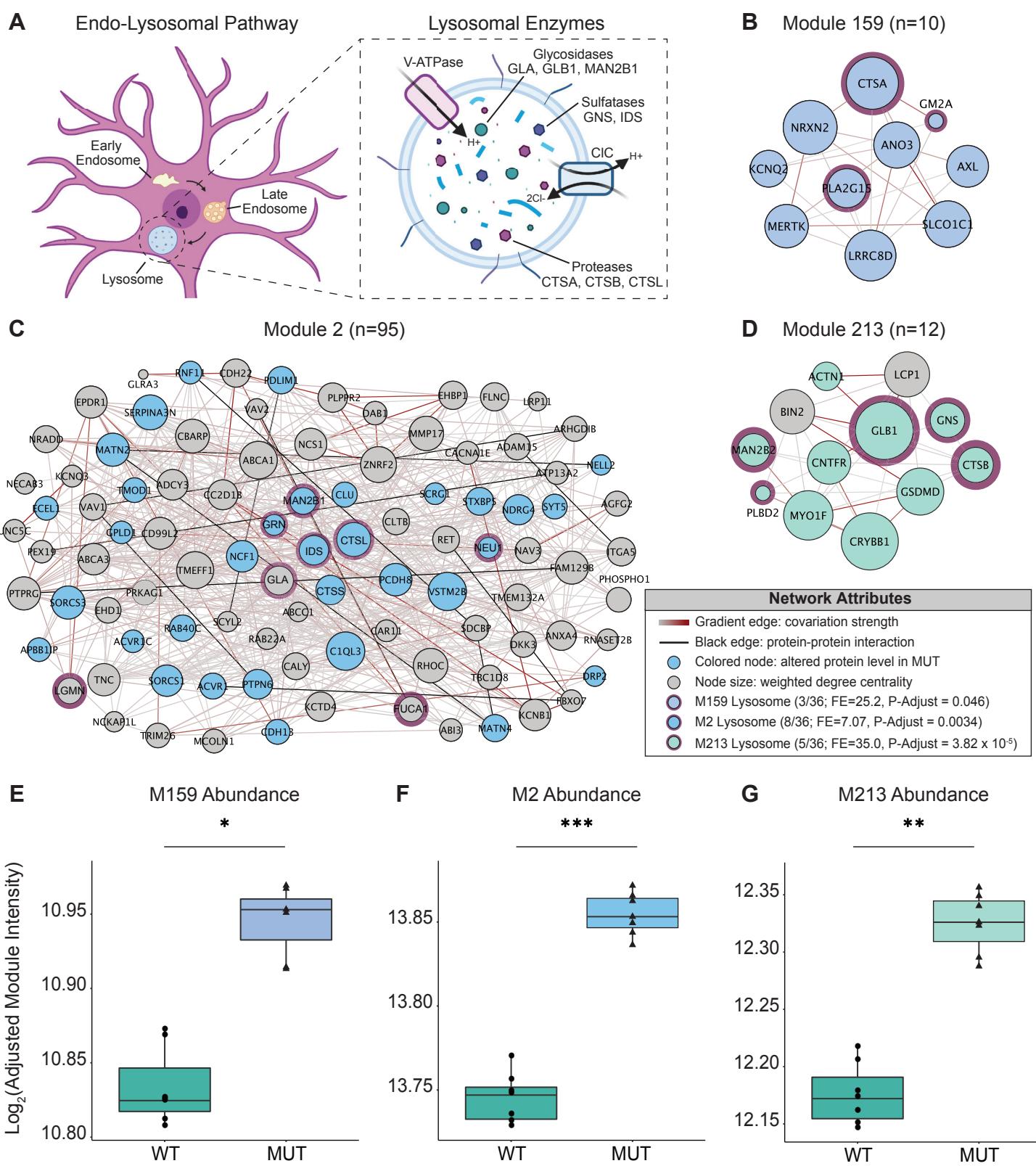
Figure 2

Figure 2. Spatial proteomics and network covariation analysis reveal significant disruptions to the WASH complex and an endosomal module in SWIP^{P1019R} mutant mouse brain

(A) Mouse model of the human SWIP^{P1019R} missense mutation created using CRISPR. A C>G point mutation was introduced into exon29 of murine *Y α* , leading to a P1019R amino acid substitution. We hypothesize (H_1) that this mutation causes instability of the WASH complex.

(B) Representative western blot and quantification of WASH components, Strumpellin and WASH1 (predicted sizes in kDa: 134 and 72, respectively), as well as loading control β -Tubulin (55kDa) from whole adult whole brain lysate prepared from SWIP WT (*Y α* ^{C/C}) and SWIP homozygous MUT (*Y α* ^{G/G}) mice. Bar plots show quantification of band intensities relative to WT (n=3 mice per genotype). Strumpellin (WT 100.0 \pm 5.2%, MUT 3.5 \pm 0.7%, $t_{2,1}=18.44$, $p=0.0024$) and WASH1 (WT 100.0 \pm 3.8%, MUT 1.1 \pm 0.4%, $t_{2,1}=25.92$, $p=0.0013$) were significantly decreased. Equivalent amounts of protein were analyzed in each condition (β -Tubulin: WT 100.0 \pm 8.2%, MUT 94.1 \pm 4.1%, $U=4$, $p>0.99$).

(C) Spatial TMT proteomics experimental design. 7 subcellular fractions were prepared from one WT and one MUT mouse (10mo). These samples, as well as two pooled quality control (QC) samples, were labeled with unique TMT tags and concatenated for simultaneous LC-MS/MS analysis. This experiment was repeated three times (3 WT and 3 MUT brains total). To detect network-level changes, proteins were clustered into modules, and general linearized models (GLMs) were used to identify differences in module abundance between WT and MUT samples. The network shows an overview of the spatial proteomics graph in which the 37 differentially abundant modules are indicated by colored nodes.


(D) Protein module 19 (M19) contains subunits of the WASH, CCC, and Retriever complexes. Node size denotes its weighted degree centrality (~importance in module); purple node color indicates proteins with altered abundance in MUT brain relative to WT; black node border denotes proteins identified in the WASH1-BioID proteome (Figure 1); red, yellow, and green borders highlight protein components of the CCC, Retriever, and WASH complexes; black edges indicate known protein-protein interactions; and grey-red edges denote the relative strength of protein covariation within a module (gray = weak, red = strong). P-adjust values represent enrichment of proteins identified in the CORUM database adjusted for multiple comparisons (Giurgiu et al., 2019).

(E) Difference in normalized protein abundance for four WASH proteins found in M19 (SWIP: WT 6.28 \pm 0.41, MUT 4.89 \pm 0.28, $p=3.98\times 10^{-28}$; WASH1: WT 6.41 \pm 0.47, MUT 4.65 \pm 0.62, $p=7.92\times 10^{-18}$; FAM21: WT 6.29 \pm 0.48, MUT 5.29 \pm 0.49, $p=3.27\times 10^{-16}$; Strumpellin: WT 7.85 \pm 0.52, MUT 6.59 \pm 0.53, $p=9.06\times 10^{-25}$) and one control (Tubulin 4a: WT 8.57 \pm 0.52, MUT 8.52 \pm 0.58, $p>0.99$) across all three experimental replicates (n=3 independent experiments), presented as \log_2 (adjusted protein intensities).

(F) Normalized average intensities for every protein within M19 across all seven subcellular fractions analyzed. Teal lines delineate protein levels in WT samples, purple lines delineate protein levels in MUT samples (averaged across three experimental replicates). Bolded lines demarcate the fitted intensity values for WT and MUT proteins (n=3 independent experiments).

(G) Difference in M19 abundance, adjusted for fraction differences and presented as \log_2 (adjusted module abundance) (WT 13.21 \pm 0.003, MUT 12.99 \pm 0.003, $p=0.0007$; n=3 independent experiments).

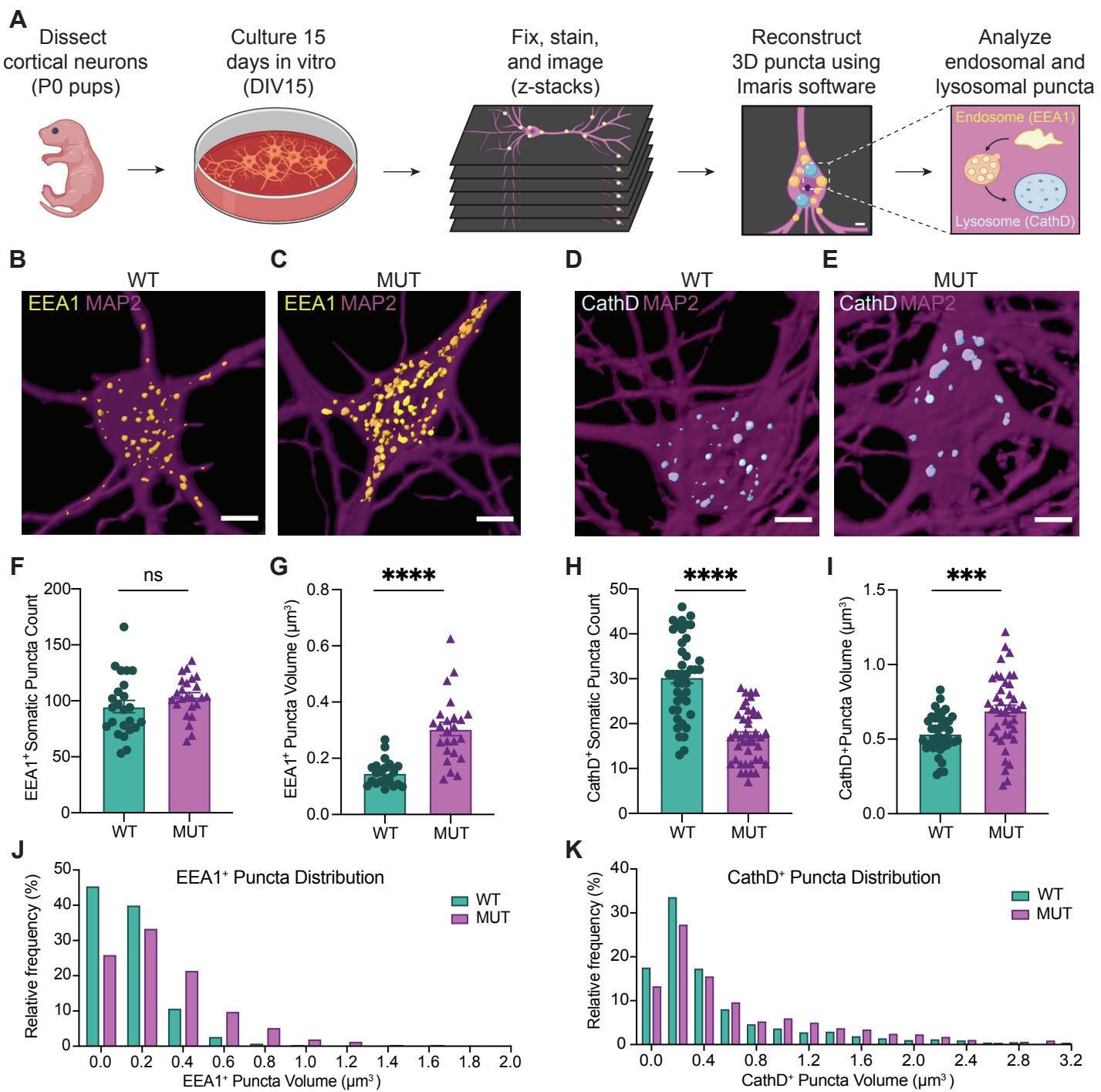
Figure 3

Figure 3. Disruption of lysosomal protein networks in SWIP^{P1019R} mutant brain

(A) Simplified schematic of the endo-lysosomal pathway in neurons. Inset depicts representative lysosomal enzymes, such as proteases (CTSA, CTSB, CTSI), glycosidases (GLA, GLB1, MAN2B1), and sulfatases (GNS, IDS).

(B) Network graph of module 159 (M159). All proteins in M159 exhibit altered abundance in MUT brain, including lysosomal proteins, CTSA, PLA2G15, and GM2A.

(C) Module 2 (M2) contains multiple lysosomal proteins with increased abundance in MUT brain compared to WT, including CTSS, CTSL, GRN, IDS, MAN2B1.


(D) Module 213 (M213) contains multiple proteins with increased abundance in MUT brain, including lysosomal proteins, GLB1, GNS, CTSB, MAN2B2, and PLBD2. Network attributes (B-D): Node size denotes its weighted degree centrality (~importance in module), node color indicates proteins with altered abundance in MUT brain relative to WT, purple outline highlight proteins identified as lysosomal in (Geladaki et al., 2019), black edges indicate known protein-protein interactions, and grey-red edges denote the relative strength of protein covariation within a module (gray = weak, red = strong). P-Adjust values represent enrichment of proteins identified as lysosomal in Geladaki et al., 2019.

(E) The overall effect of genotype on M159 module abundance (WT 10.83 ± 0.002 , MUT 10.94 ± 0.002 , $p=0.031$).

(F) The overall effect of genotype on M2 module abundance (WT 13.74 ± 0.001 , MUT 13.85 ± 0.0009 , $p=0.0006$).

(G) The overall effect of genotype on M213 abundance (WT 12.17 ± 0.002 , MUT 12.33 ± 0.002 , $p=0.0037$). Data reported as mean \pm SEM, error bars are SEM. * $p<0.05$, ** $p<0.01$, *** $p<0.001$, empirical Bayes quasi-likelihood F-test with Bonferroni correction (E-G).

Figure 4

Figure 4. SWIP^{P1019R} mutant neurons display structural abnormalities in endo-lysosomal compartments *in vitro*

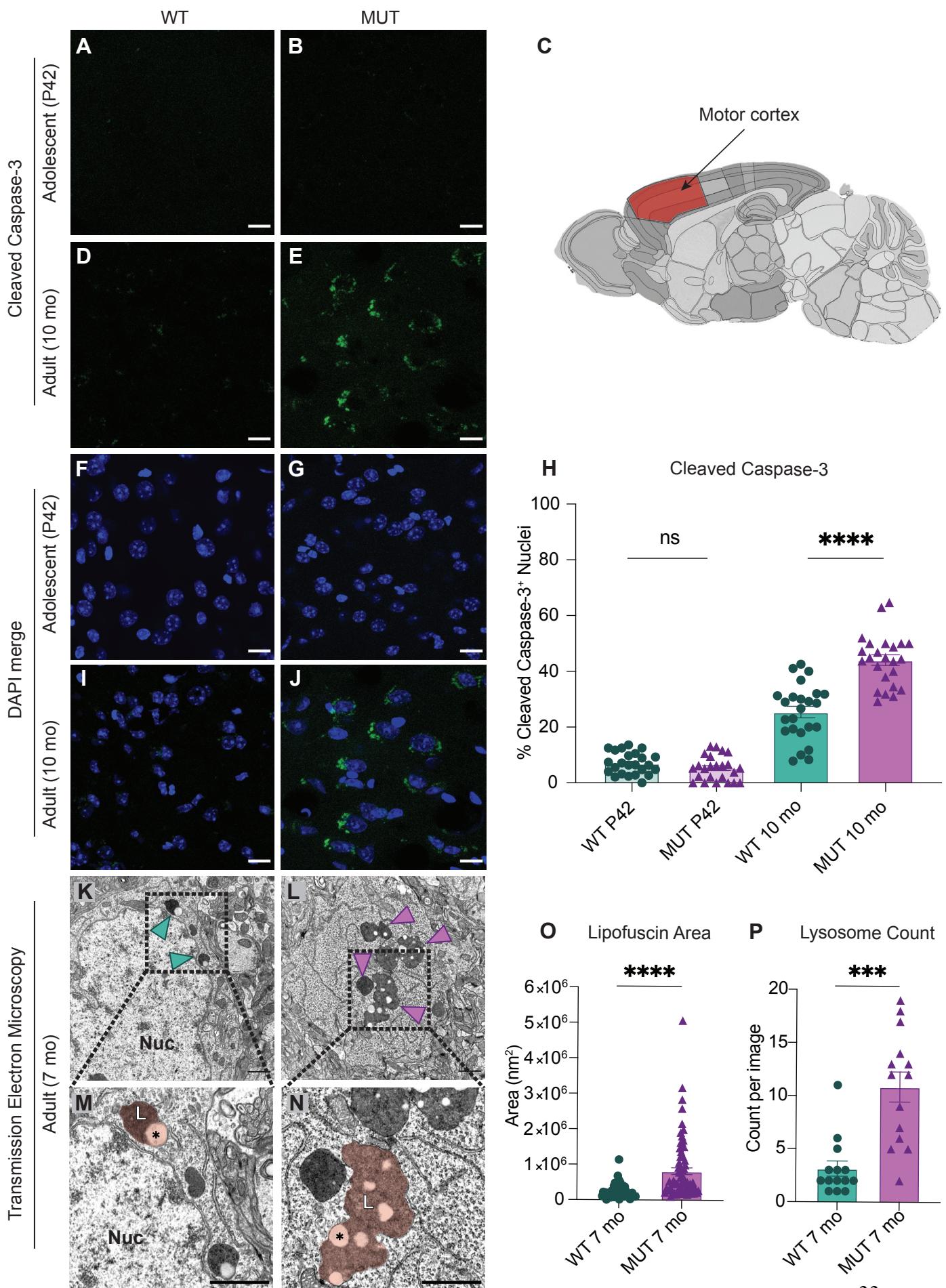
(A) Experimental design. Cortices were dissected from P0 pups, and neurons were dissociated and cultured on glass coverslips for 15 days. Cultures were fixed, stained, and imaged using confocal microscopy. 3D puncta volumes were reconstructed from z-stack images using Imaris software.

(B-C) Representative 3D reconstructions of WT and MUT DIV15 neurons (respectively) stained for EEA1 (yellow) and MAP2 (magenta).

(D-E) Representative 3D reconstructions of WT and MUT DIV15 neurons (respectively) stained for Cathepsin D (cyan) and MAP2 (magenta).

(F) Graph of the average number of EEA1+ volumes per soma in each image (WT 95.0 ± 5.5 , n=24 neurons; MUT 103.7 ± 3.7 , n=24 neurons; $t_{40.2}=1.314$, $p=0.1961$).

(G) Graph of the average EEA1+ volume size per soma shows larger EEA1+ volumes in MUT neurons (WT $0.15 \pm 0.01 \mu\text{m}^3$, n=24 neurons; MUT $0.30 \pm 0.02 \mu\text{m}^3$, n=24 neurons; $U=50$, $p<0.0001$).


(H) Graph of the average number of Cathepsin D+ volumes per soma illustrates less Cathepsin D+ volumes in MUT neurons (WT 30.4 ± 1.4 , n=42; MUT 17.2 ± 0.9 , n=42; $t_{71}=7.943$, $p<0.0001$).

(I) Graph of the average Cathepsin D+ volume size per soma demonstrates larger Cathepsin D+ volumes in MUT neurons (WT $0.54 \pm 0.02 \mu\text{m}^3$, n=42; MUT $0.69 \pm 0.04 \mu\text{m}^3$, n=42; $t_{63}=3.701$, $p=0.0005$).

(J) Histogram of EEA1+ volumes illustrate differences in size distributions between MUT and WT neurons.

(K) Histogram of CathD+ volumes show differences in size distributions between MUT and WT neurons. Analyses included at least three separate culture preparations. Scale bars, 5 μm (B-E). Data reported as mean \pm SEM, error bars are SEM. *** $p<0.001$, **** $p<0.0001$, two-tailed t-tests or Mann-Whitney U test (G).

Figure 5

Figure 5. SWIP^{P1019R} mutant brains exhibit markers of abnormal endo-lysosomal structures and cell death *in vivo*

(A-B) Representative images of adolescent (P42) WT and MUT motor cortex stained with cleaved caspase-3 (CC3, green).

(C) Anatomical representation of mouse brain with motor cortex highlighted in red, adapted from the Allen Brain Atlas (Oh et al., 2014).

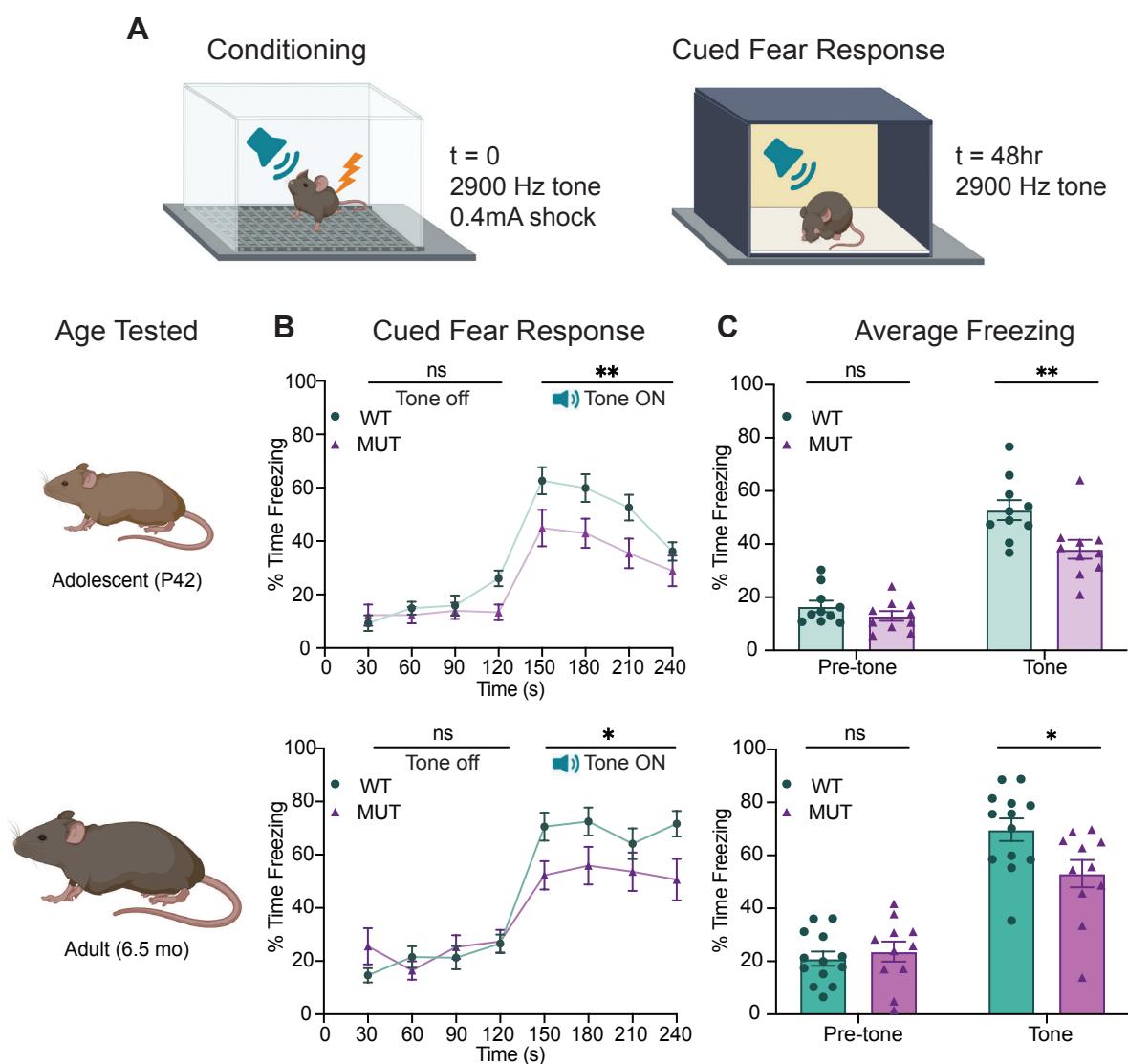
(D-E) Representative image of adult (10 mo) WT and MUT motor cortex stained with CC3 (green).

(F, G, I, and J) DAPI co-stained images for (A, B, D, and E, respectively). Scale bar for (A-J), 15 μ m.

(H) Graph depicting the normalized percentage of DAPI+ nuclei that are positive for CC3 per image. No difference is seen at P42, but the amount of CC3+ nuclei is significantly higher in aged MUT mice (P42 WT $6.97 \pm 0.80\%$, P42 MUT $5.26 \pm 0.90\%$, 10mo WT $25.38 \pm 2.05\%$, 10mo MUT $44.01 \pm 1.90\%$, n=24 images per genotype taken from 4 different mice, H=74.12, p<0.0001). We observed no difference in number of nuclei per image between genotypes.

(K) Representative transmission electron microscopy (TEM) image taken of soma from adult (7mo) WT motor cortex. Arrowheads delineate electron-dense lipofuscin material, Nuc = nucleus.

(L) Representative transmission electron microscopy (TEM) image taken of soma from adult (7mo) MUT motor cortex.

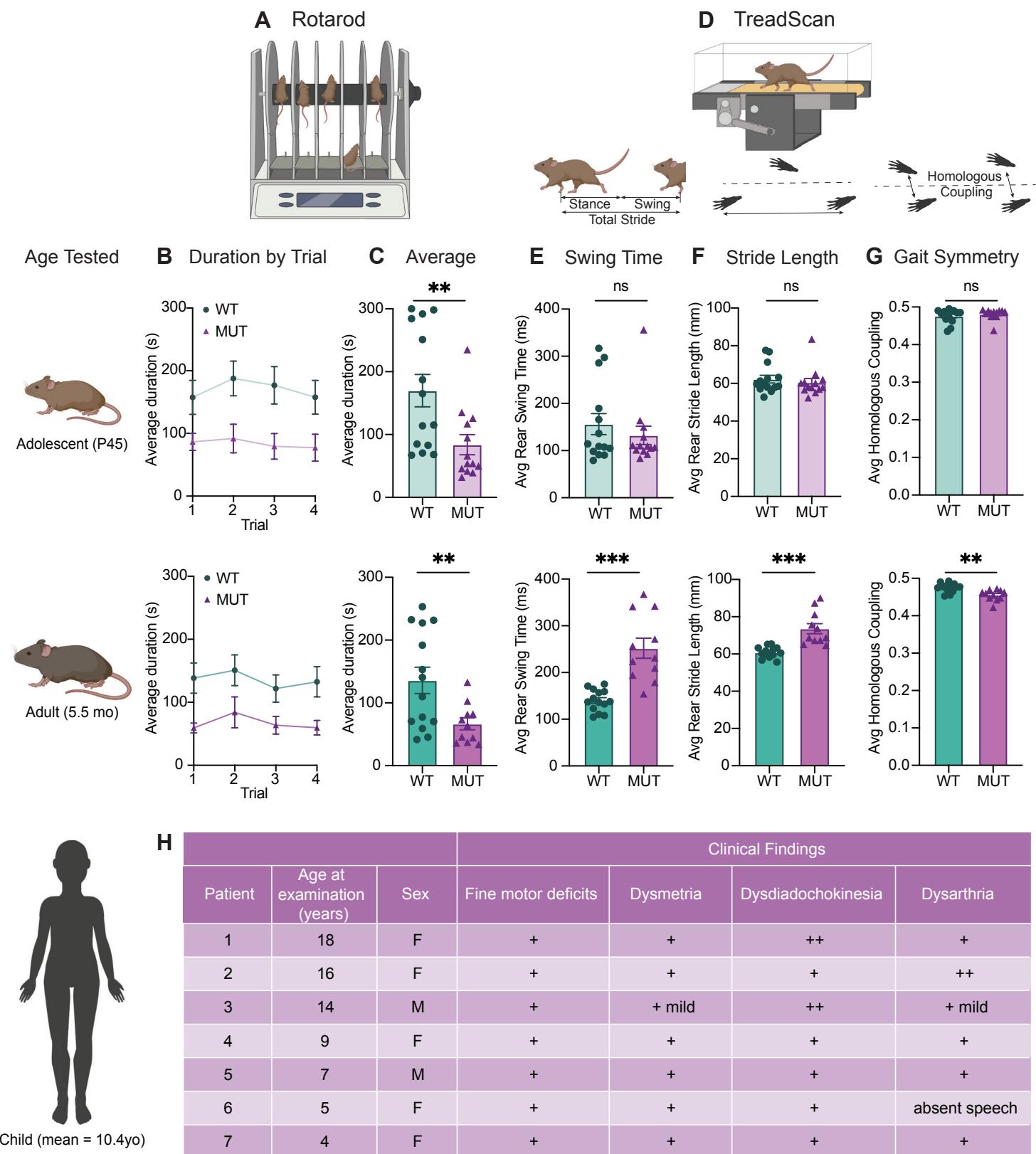

(M) Inset from (K) highlights lysosomal structure in WT soma. Pseudo-colored region depicts lipofuscin area, demarcated as L.

(N) Inset from (L) highlights large lipofuscin deposit in MUT soma (L, pseudo-colored region) with electron-dense and electron-lucent lipid-like (asterisk) components.

(O) Graph of areas of electron-dense regions of interest (ROI) shows increased ROI size in MUT neurons (WT $2.4 \times 10^5 \pm 2.8 \times 10^4 \text{ nm}^2$, n=50 ROIs; MUT $8.2 \times 10^5 \pm 9.7 \times 10^4 \text{ nm}^2$, n=75 ROIs; U=636, p<0.0001).

(P) Graph of the average number of presumptive lysosomes with associated electron-dense material reveals increased number in MUT samples (WT 3.14 ± 0.72 ROIs, n=14 images; MUT 10.86 ± 1.42 ROIs, n=14 images; U=17, p<0.0001). For (N) and (O), images were taken from multiple TEM grids, prepared from n=3 animals per genotype. Scale bar for all TEM images, 1 μ m. Data reported as mean \pm SEM, error bars are SEM. ***p<0.001, ****p<0.0001, Kruskal-Wallis test (F), Mann-Whitney U test (O-P).

Figure 6


Figure 6. SWIP1019^R mutant mice display persistent deficits in cued fear memory recall

(A) Experimental fear conditioning paradigm. After acclimation to a conditioning chamber, mice received a mild aversive 0.4mA footshock paired with a 2900Hz tone. 48 hours later, the mice were placed in a chamber with different tactile and visual cues. The mice acclimated for two minutes and then the 2900Hz tone was played (no footshock) and freezing behavior was assessed.

(B) Line graphs of WT and MUT freezing response during cued tone memory recall. Data represented as average freezing per genotype in 30 s time bins. The tone is presented after $t = 120$ s, and remains on for 120 seconds (Tone ON). Two different cohorts of mice were used for age groups P42 (top) and 6.5mo (bottom). Two-way ANOVA analysis of average freezing during Pre-Tone and Tone periods reveal a Genotype x Time effect at P42 (WT n=10, MUT n=10, $F_{1,18}=4.944$, $p=0.0392$) and 6.5mo (WT n=13, MUT n=11, $F_{1,22}=13.61$, $p=0.0013$).

(C) Graphs showing the average %time freezing per animal before and during tone presentation. Top: freezing is reduced by 20% in MUT adolescent mice compared to WT littermates (Pre-tone WT $16.5 \pm 2.2\%$, n=10; Pre-tone MUT $13.0 \pm 1.8\%$, n=10; $t_{36}=0.8569$, $p=0.6366$; Tone WT $52.8 \pm 3.8\%$, n=10; Tone MUT $38.0 \pm 3.6\%$, n=10; $t_{36}=3.539$, $p=0.0023$), Bottom: freezing is reduced by over 30% in MUT adult mice compared to WT littermates (Pre-tone WT $21.1 \pm 2.7\%$, n=13; Pre-tone MUT $23.7 \pm 3.8\%$, n=11; $t_{44}=0.4675$, $p=0.8721$; Tone WT $69.7 \pm 4.3\%$, n=13; Tone MUT $53.1 \pm 5.2\%$, n=11; $t_{44}=2.921$, $p=0.0109$). Data reported as mean \pm SEM, error bars are SEM. * $p<0.05$, ** $p<0.01$, two-way ANOVAs (B) and Sidak's post-hoc analyses (C).

Figure 7

Figure 7. SWIP^{P1019R} mutant mice exhibit surprising motor deficits that are confirmed in human patients

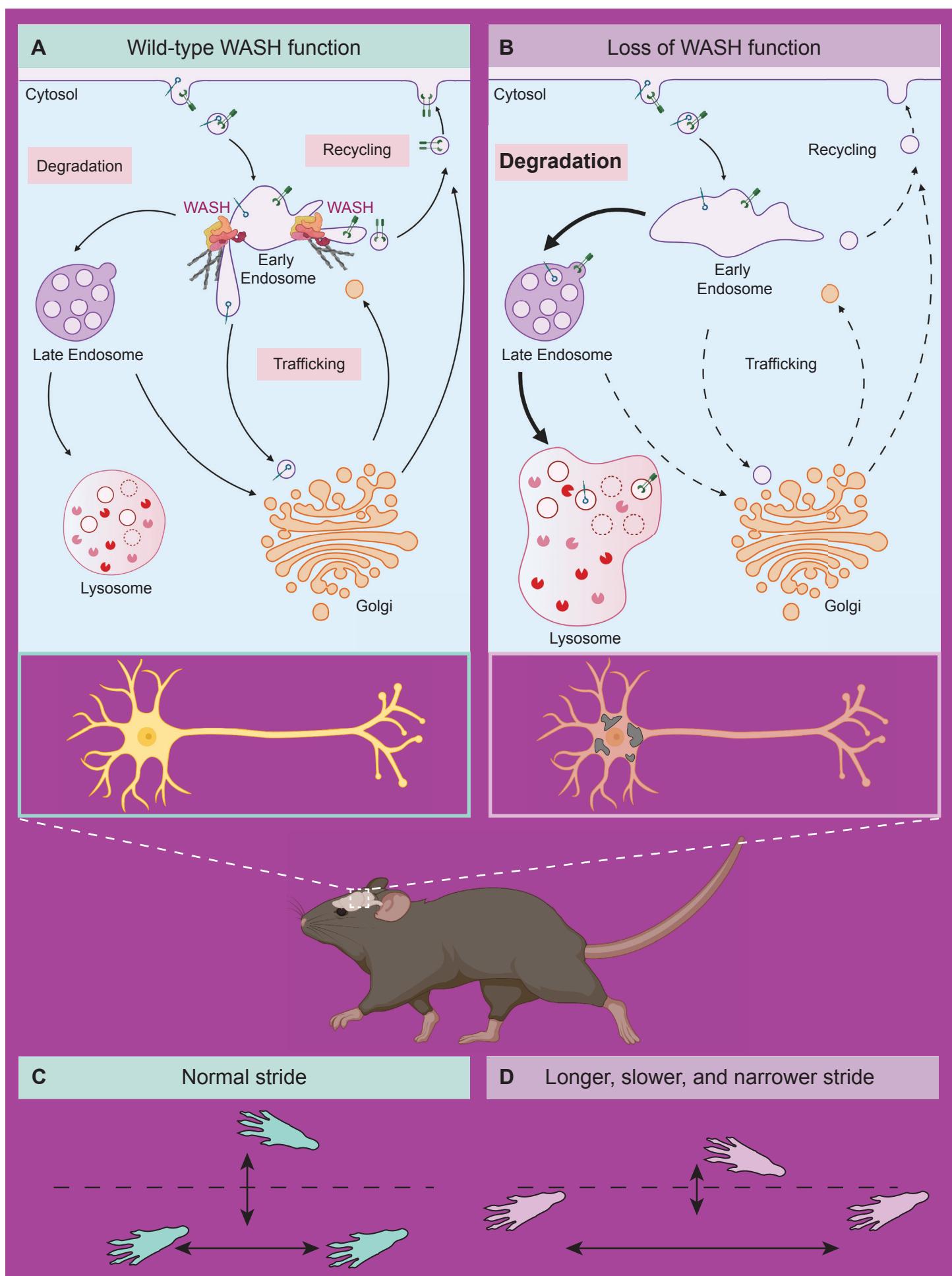
(A) Rotarod experimental setup. Mice walked atop a rod rotating at 32rpm for 5 minutes, and the duration of time they remained on the rod before falling was recorded.

(B) Line graph of average duration animals remained on the rod per genotype across four trials, with an inter-trial interval of 40 minutes. The same cohort of animals was tested at two different ages, P45 (top) and 5.5

months (bottom). Genotype had a significant effect on task performance at both ages (top, P45: genotype effect, $F_{1,25}=7.821$, $p=0.0098$. bottom, 5.5mo: genotype effect, $F_{1,23}=7.573$, $p=0.0114$).

(C) Graphs showing the average duration each animal remained on the rod across trials. At both ages, the MUT mice exhibited an almost 50% reduction in their ability to remain on the rod (Top, P45: WT 169.9 ± 25.7 s, MUT 83.8 ± 15.9 s, $U=35$, $p=0.0054$. Bottom, 5.5mo: WT 135.9 ± 20.9 s, MUT 66.7 ± 9.5 s, $t_{18}=3.011$, $p=0.0075$).

(D) TreadScan task. Mice walked on a treadmill for 20 s while their gate was captured with a high-speed camera. Diagrams of gait parameters measured in (E-G) are shown below the TreadScan apparatus.


(E) Average swing time per stride for hindlimbs. At P45 (top), there is no significant difference in rear swing time (WT 156.2 ± 22.4 ms, MUT 132.3 ± 19.6 ms, $U=83$, $p=0.7203$). At 5.5mo (bottom), MUT mice display significantly longer rear swing time (WT 140 ± 6.2 ms, MUT 252.0 ± 21.6 ms, $t_{12}=4.988$, $p=0.0003$).

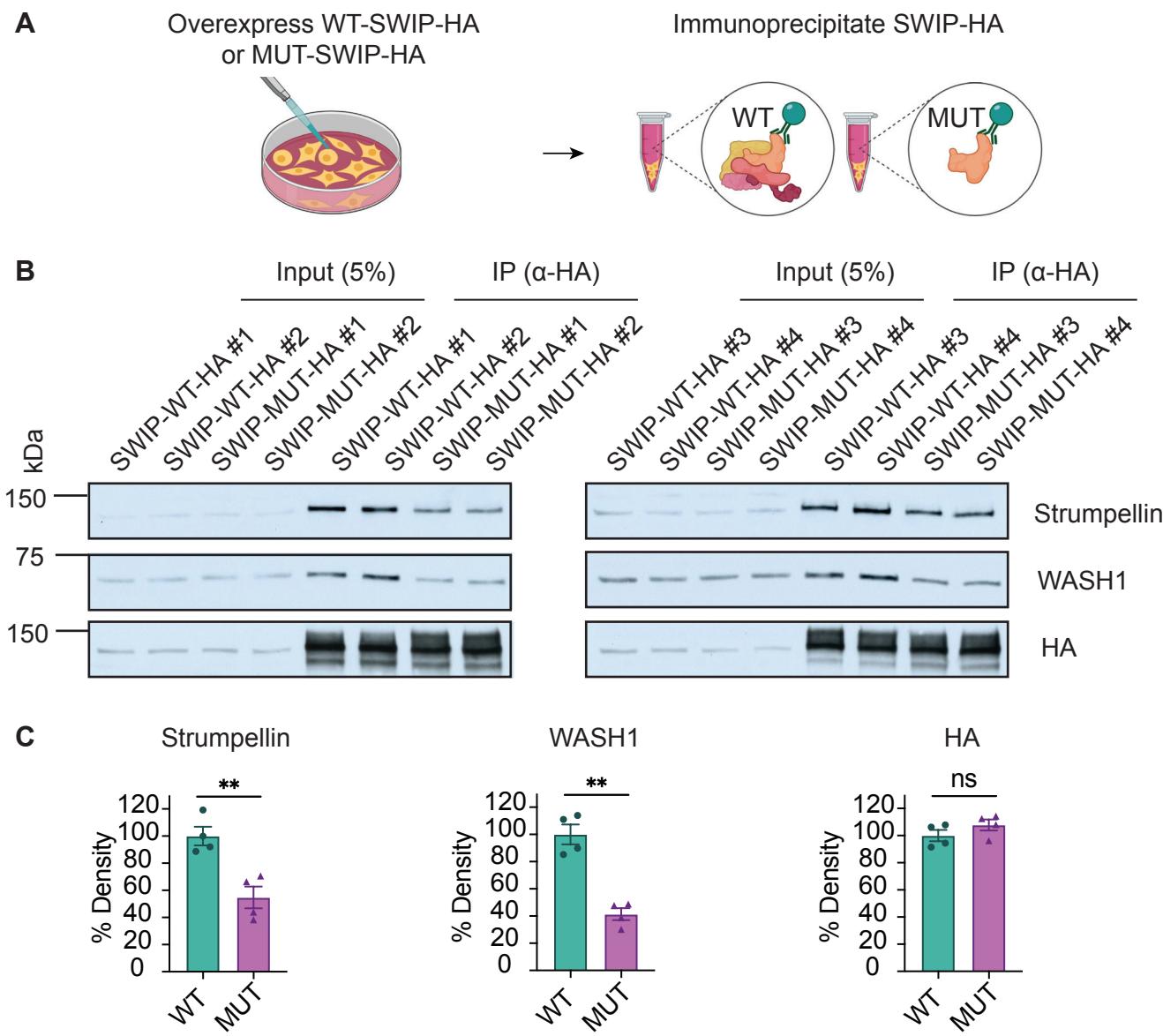
(F) Average stride length for hindlimbs. At P45 (top), there is no significant difference in stride length (WT 62.3 ± 2.0 mm, MUT 60.5 ± 2.1 mm, $U=75$, $p=0.4583$). At 5.5mo (bottom), MUT mice take significantly longer strides with their hindlimbs (WT 60.8 ± 0.8 mm, MUT 73.6 ± 2.7 mm, $t_{11.7}=4.547$, $p=0.0007$).

(G) Average homologous coupling for front and rear limbs. Homologous coupling is 0.5 when the left and right feet are completely out of phase. At P45 (top), WT and MUT mice exhibit normal homologous coupling (WT 0.48 ± 0.005 , MUT 0.48 ± 0.004 , $U=76.5$, $p=0.4920$). At 5.5 mo (bottom), MUT mice display decreased homologous coupling, suggestive of abnormal gait symmetry (WT 0.48 ± 0.003 , MUT 0.46 ± 0.004 , $t_{18.8}=3.715$, $p=0.0015$). At P45: n=14 WT, n=13 MUT; At 5.5mo: n=14 WT, n=11 MUT.

(H) Table of motor findings in clinical exam of human patients with the homozygous SWIP^{P1019R} mutation (n=7). All patients exhibit motor dysfunction (+ = symptom present). Data reported as mean \pm SEM, error bars are SEM.* $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$, two-way repeated measure ANOVAs (B), Mann-Whitney U tests and two-tailed t-tests (C-G).

Figure 8

Figure 8. Model of neuronal endo-lysosomal pathology in SWIP^{P1019R} mutant mice


(A) Wild-type WASH function in mouse brain. Under normal conditions, the WASH complex interacts with many endosomal proteins and cytoskeletal regulators, such as the Arp2/3 complex. These interactions enable restructuring of the endosome surface (actin in gray) and allow for cargo segregation and scission of vesicles. Substrates are transported to the late endosome for lysosomal degradation, to the Golgi network for modification, or to the cell surface for recycling.

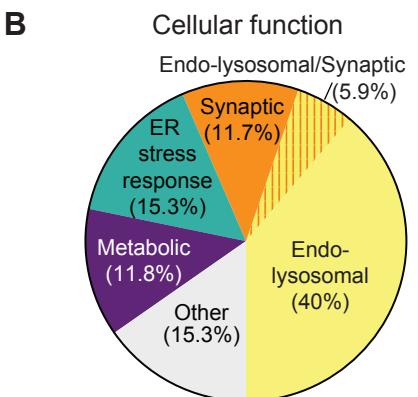
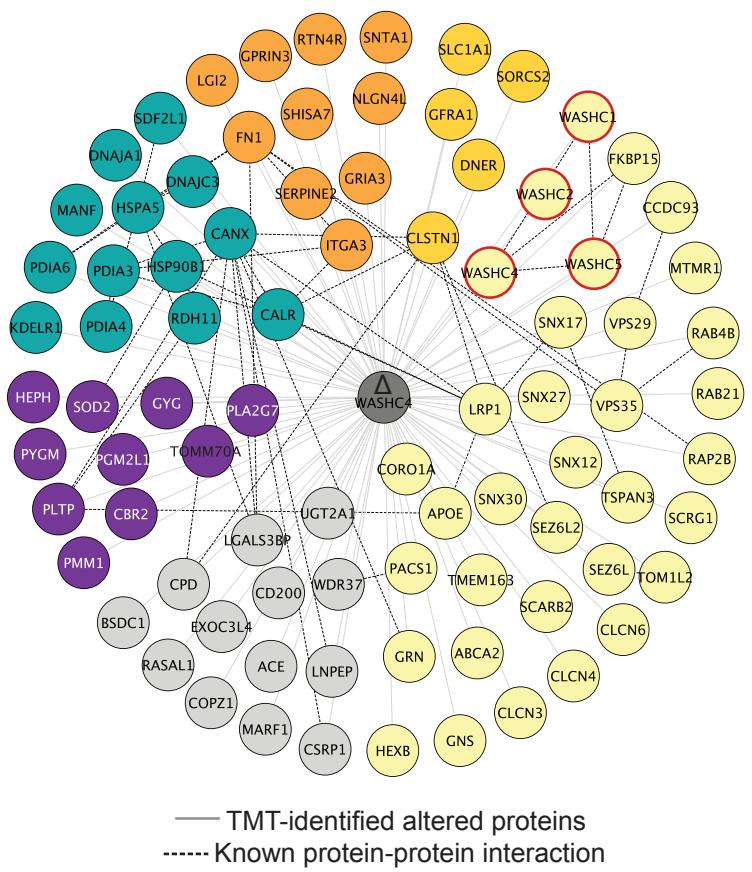
(B) Loss of WASH function leads to increased lysosomal degradation in mouse brain. Destabilization of the WASH complex leads to enlarged endosomes and lysosomes, with increased substrate accumulation at the lysosome. This suggests an increase in flux through the endo-lysosomal pathway, possibly as a result of mis-localized endosomal substrates.

(C) Wild-type mice exhibit normal motor function.

(D) SWIP^{P1019R} mutant mice display progressive motor dysfunction in association with these subcellular alterations.

Figure 2- figure supplement 1

Figure 2- figure supplement 1. Overexpression of SWIP^{P1019R} decreases WASH complex binding in cultured cells; related to Figure 2



(A) Schematic showing overexpression of WT or MUT SWIP^{P1019R} in HEK293T cells followed by immunoprecipitation.

(B) Western blots of input (5%, left) and immunoprecipitated (IP, right) protein. Two samples per condition were run on two separate gels, $n=4$ biological replicates from separate experiments.

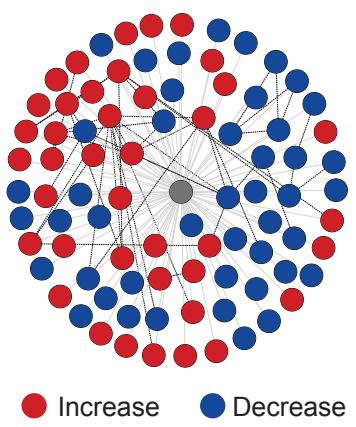
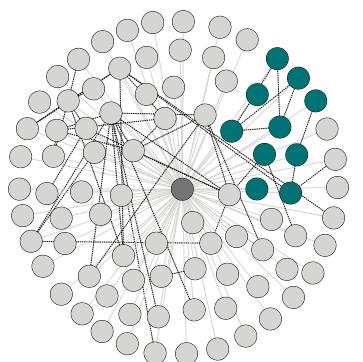
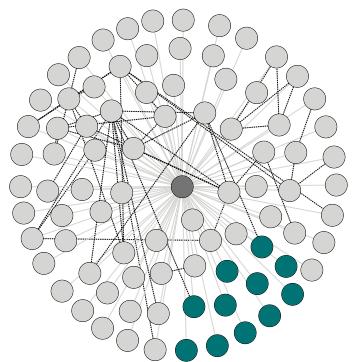
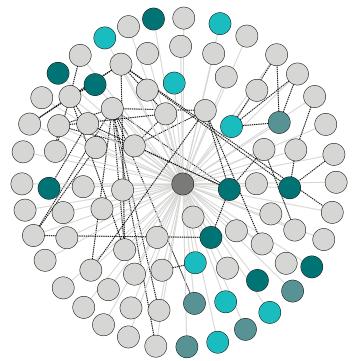

(C) Quantification of B normalized to WT. Strumpellin (WT $100.0 \pm 6.8\%$, MUT $54.8 \pm 8.0\%$, $t_{5,9}=4.290$, $p=0.0054$), WASH1 (WT $100.0 \pm 7.3\%$, MUT $41.4 \pm 4.4\%$, $t_{4,9}=6.902$, $p=0.0011$), HA (WT $100.0 \pm 4.1\%$, MUT $107.8 \pm 4.1\%$, $t_{6,0}=1.344$, $p=0.2275$). Data reported as mean \pm SEM, error bars are SEM. ** $p<0.01$, two-tailed t-tests.

Figure 2- figure supplement 2


A Altered proteins in MUT mouse brain (n=85)


C Changes in abundance


D WASH complex interactors (n=10)


E Lysosomal proteins (n=11)

F Proteins in WASH1-BioID (n=11)

G Neurological disorders (n=23)

● I.D. (n=8) ● Degen. (n=9) ● Both (n=5)

Figure 2- figure supplement 2. SWIP^{P1019R} MUT brain displays significant alterations in protein abundance compared to WT; related to Figures 2 and 3

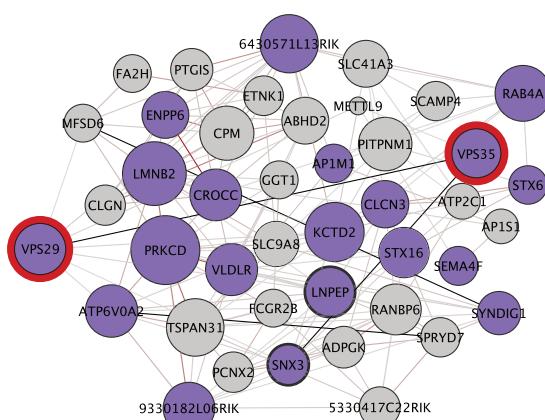
(A) Interactome of altered proteins. Nodes reflect protein name, light gray lines delineate proteins identified as different in MUT compared to WT (Δ WASHC4 in center), dark dashed lines indicate known protein-protein interactions from HitPredict database (López et al., 2015). Color reflects cellular function seen in B. Nodes with red borders delineate WASH complex proteins.

(B) Cellular function of proteins in A, as reflected in published literature. % reflects the percentage of proteins in a category out of the total 85 altered proteins.

(C-G) Clustergrams of:

(C) Proteins with increased (red) or decreased (blue) abundance in MUT brains compared to WT.

(D) Known protein components of the WASH complex and their previously reported interactors.


(E) Proteins with lysosomal function.

(F) Proteins identified in the WASH1-BioID2 proteome (Figure 1).

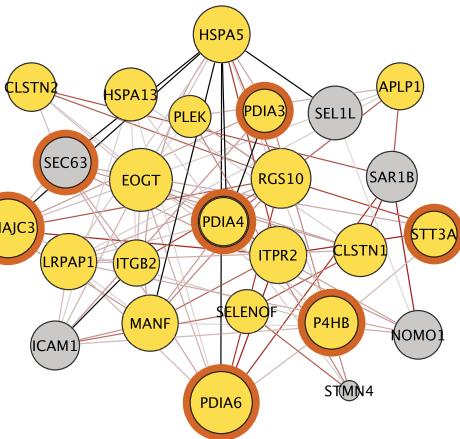
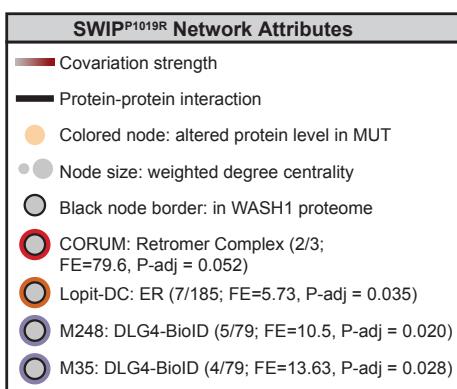
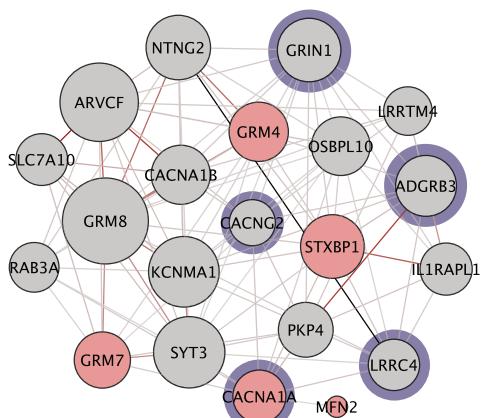
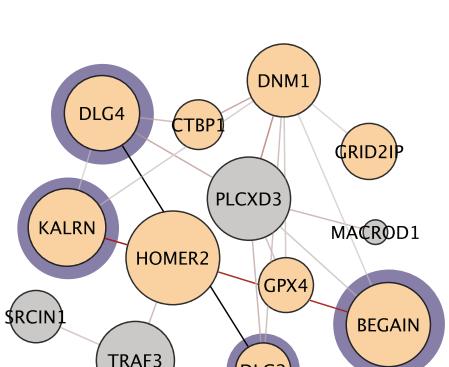
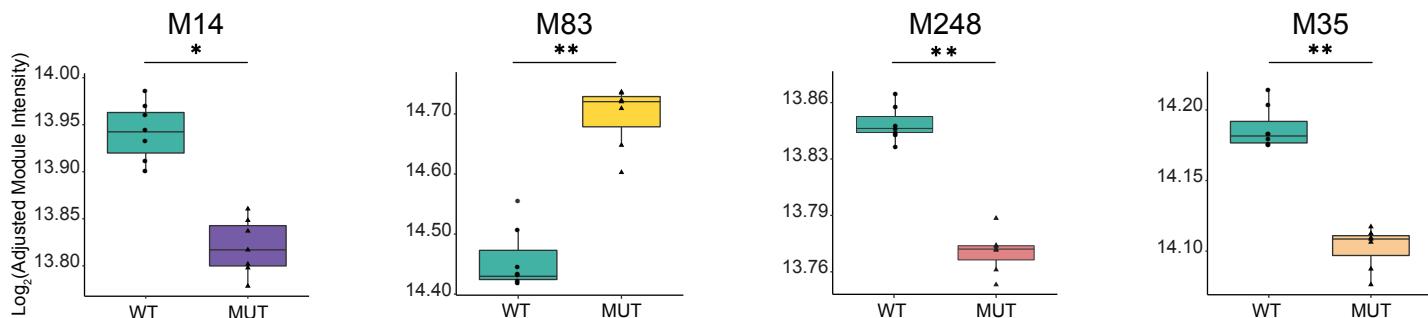
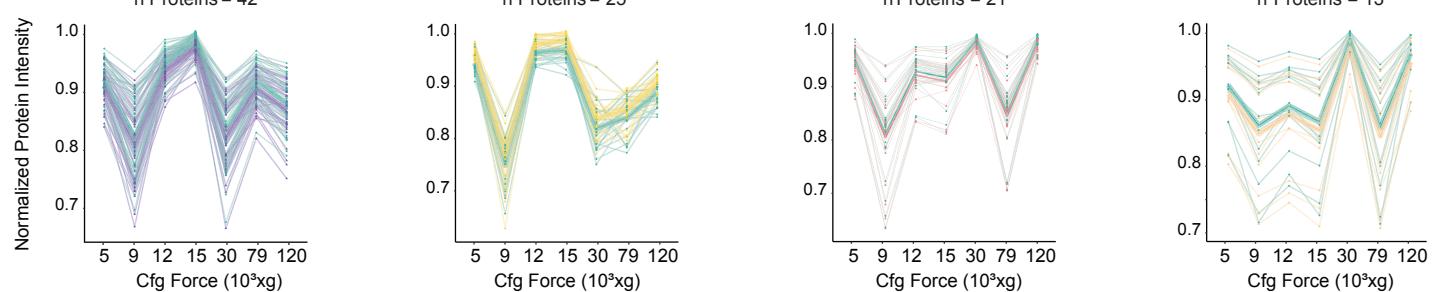

(G) Proteins with links to intellectual disability (I.D.) or neurodegeneration (Degen.).

Figure 2- figure supplement 3



A M14: Endosome


B M83: ER Stress


C M248: Synapse

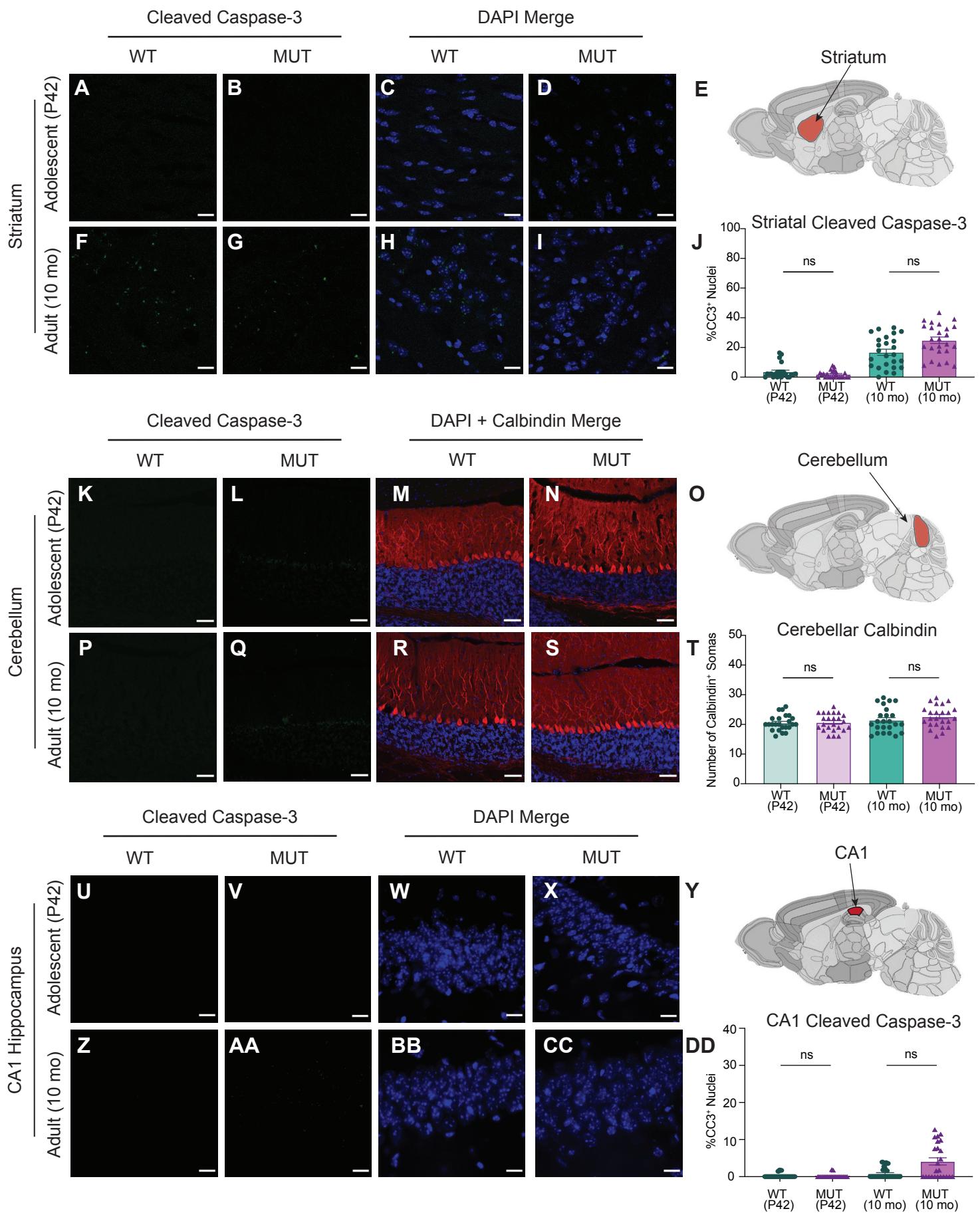

D M35: Synapse

E

F

Figure 2- figure supplement 3. Multiple protein networks display significant alterations in MUT brain compared to WT; related to Figures 2 and 3

(A) Module 14 (M14) containing endosomal proteins. Two of the three retromer sorting complex subunits are highlighted with red borders, with enrichment calculated relative to the CORUM database (Giurgiu et al., 2019).


(B) Module 83 (M83) containing endoplasmic reticulum (ER) stress response proteins. Seven of the 185 proteins identified to have ER function by LOPIT-DC spatial proteomics are highlighted with orange borders (Geladaki et al., 2019).

(C-D) Modules 248 and 35 (M248, M35, respectively) containing synaptic proteins. Network attributes for graphs in B-E: Node size denotes its weighted degree centrality (~importance in module), colored node indicates altered abundance in MUT brain relative to WT, black node border denotes proteins identified in the WASH1-BioID proteome (Figure 1), colored node border denotes proteins identified in other datasets, black edges indicate known protein-protein interactions, and grey-red edges denote the relative strength of protein covariation within a module (gray = weak, red = strong). P-adjust enrichment values are calculated relative to the CORUM database (B), Lopit-DC dataset (C), or excitatory postsynapse proteome (DLG4-BioID, D-E) (Geladaki et al., 2019; Giurgiu et al., 2019; Uezu et al., 2016).

(E) Summary box plots of module abundance for all seven brain fractions analyzed presented as $\log_2(\text{adjusted module intensities})$. All modules display significant differences between WT and MUT groups (M14: WT 13.94 ± 0.002 MUT 13.82 ± 0.002 , $p=0.0207$; M83: WT 14.46 ± 0.004 , MUT 14.70 ± 0.003 , $p=0.0088$; M248: WT 13.83 ± 0.001 , MUT 13.77 ± 0.001 , $p=0.00134$; M35: WT 14.19 ± 0.001 , MUT 14.10 ± 0.001 , $p=0.0030$).

(F) Normalized protein abundance for all proteins in each module across the seven subcellular fractions analyzed. Plots correspond to modules seen in F, and data colors reflect genotypes in F. Thick lines represent the mean protein intensity per genotype. Number of proteins in each module are indicated at the top of each graph. Data reported as mean \pm SEM, error bars are SEM. * $p<0.05$, ** $p<0.01$, *** $p<0.001$, GLM (model: 0 ~ Fraction + Module) and empirical Bayes quasi-likelihood F-test with Bonferroni correction (F).

Figure 5- figure supplement 1

Figure 5- figure supplement 1. There is no significant difference in striatal, cerebellar, or hippocampal cell death between WT and MUT mice; related to Figure 5

(A) Representative image of adolescent (P42) WT striatum stained with cleaved caspase-3 (CC3, green).

(B) Representative image of adolescent (P42) MUT striatum stained with cleaved caspase-3 (CC3, green).

(C and D) DAPI co-stained images of A and B, respectively.

(E) Anatomical representation of mouse brain with striatum highlighted in red, adapted from the Allen Brain Atlas (Oh et al., 2014).

(F) Representative image of adult (10 mo) WT striatum stained with CC3 (green).

(G) Representative image of adult (10 mo) MUT striatum stained with CC3 (green).

(H and I) DAPI co-stained images of F and G, respectively. Scale bars for A-I are 15 μ m.

(J) Graph depicting the normalized % of DAPI+ nuclei that are positive for CC3 per image. No difference is seen between genotypes at either age (P42 WT $3.70 \pm 0.99\%$, P42 MUT $1.95 \pm 0.49\%$, 10mo WT $16.77 \pm 2.09\%$, 10mo MUT $24.86 \pm 2.17\%$, H=61.87, p<0.0001).

(K) Representative image of adolescent (P42) WT cerebellum stained with cleaved caspase-3 (CC3, green).

(L) Representative image of adolescent (P42) MUT cerebellum stained with cleaved caspase-3 (CC3, green).

(M and N) DAPI and Calbindin co-stained images of K and L, respectively.

(O) Anatomical representation of mouse cerebellum, adapted from the Allen Brain Atlas (Oh et al., 2014). Red region highlights area used for imaging.

(P) Representative image of adult (10 mo) WT cerebellum stained with CC3 (green).

(Q) Representative image of adult (10 mo) MUT cerebellum stained with CC3 (green). No significant CC3 staining is observed at either age.

(R and S) DAPI and Calbindin co-stained images of P and Q, respectively. Scale bars for K-S are 50 μ m.

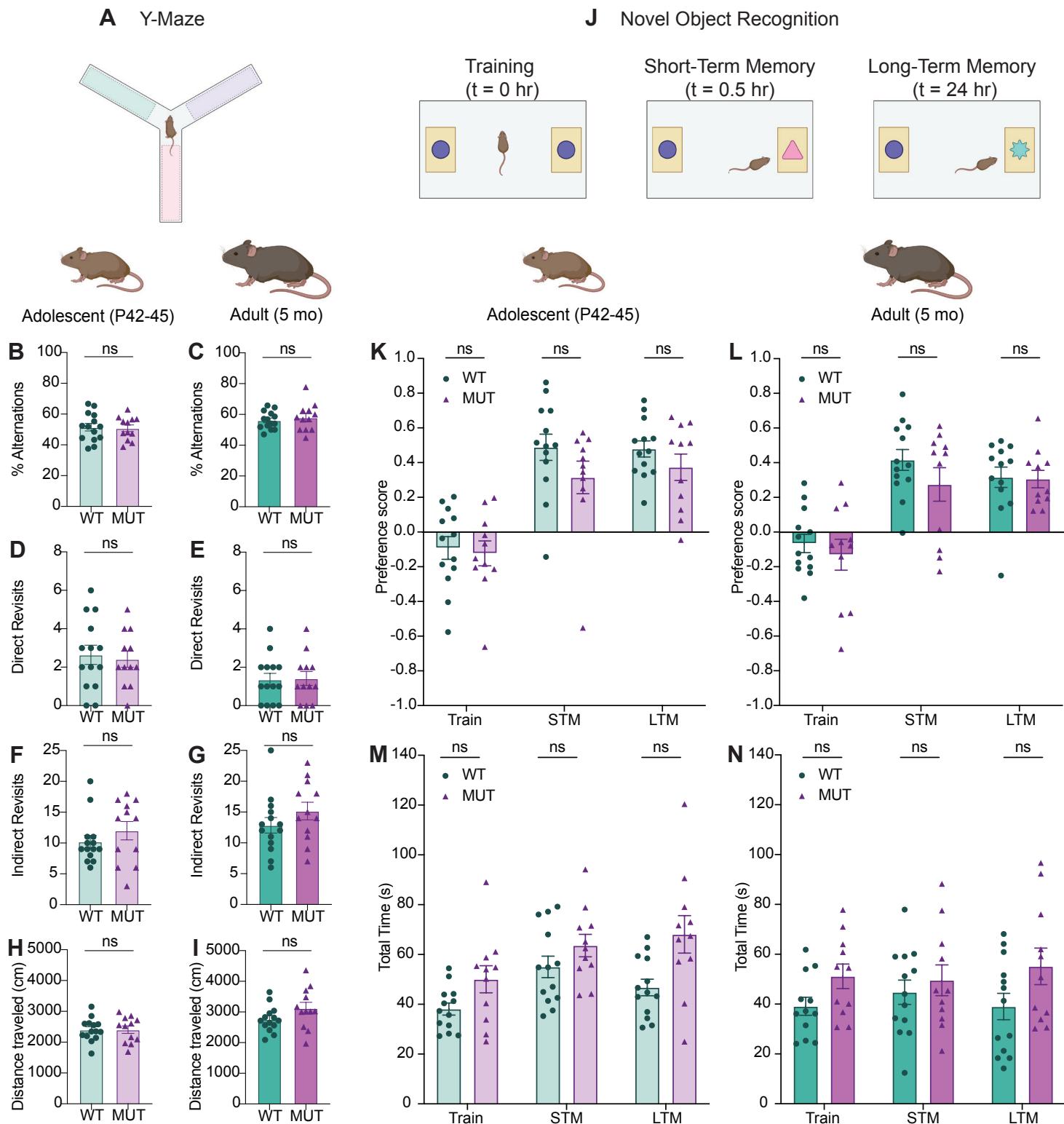
(T) Graph depicting the number of Calbindin+ somas per image, a marker for Purkinje cells. No difference is seen between genotypes at either age (P42 WT 20.50 ± 0.53 , P42 MUT 20.67 ± 0.59 , 10mo WT 21.42 ± 0.85 , 10mo MUT 22.63 ± 0.74 , H=4.891, p=0.1799).

(U) Representative image of adolescent (P42) WT cerebellum stained with cleaved caspase-3 (CC3, green).

(V) Representative image of adolescent (P42) MUT cerebellum stained with cleaved caspase-3 (CC3, green).

(W and X) DAPI and Calbindin co-stained images of U and V, respectively.

(Y) Anatomical representation of mouse hippocampus CA1, adapted from the Allen Brain Atlas (Oh et al., 2014). Red region highlights area used for imaging.


(Z) Representative image of adolescent (P42) WT cerebellum stained with cleaved caspase-3 (CC3, green).

(AA) Representative image of adolescent (P42) MUT cerebellum stained with cleaved caspase-3 (CC3, green).

(BB and CC) DAPI and Calbindin co-stained images of U and V, respectively.

(DD) Graph of the normalized % of DAPI+ nuclei that are positive for CC3 per image. Very little CC3 staining is seen at either age, regardless of genotype (P42 WT $0.21 \pm 0.11\%$, P42 MUT $0.15 \pm 0.11\%$, 10mo WT $0.81 \pm 0.28\%$, 10mo MUT $4.13 \pm 0.96\%$, H=20.27, p=0.0001). Data obtained from four animals per condition, and reported as mean \pm standard error of the mean (SEM), with error bars as SEM. Kruskal-Wallis test (J,T, and DD).

Figure 6- figure supplement 1

Figure 6- figure supplement 1. SWIP^{P1019R} mutant mice do not display deficits in spatial working memory or novel object recognition; related to Figure 6

(A) Y-maze paradigm. Mice were placed in the center of the maze and allowed to explore all three arms freely for five minutes. Each arm had distinct visual cues.

(B) Graph depicting the percent alternations achieved for each mouse at adolescence (WT $51.48 \pm 2.47\%$, MUT $50.81 \pm 2.19\%$, $t_{24}=0.2036$, $p=0.8404$).

(C) Graph depicting the percent alternations achieved for each mouse at adulthood (WT $56.12 \pm 1.53\%$, MUT $57.93 \pm 2.56\%$, $t_{18}=0.6074$, $p=0.5511$).

(D) Graphs of the number of direct revisits mice made to the arm they just explored reveal no difference between genotypes at adolescence (WT 2.64 ± 0.50 , MUT 2.42 ± 0.42 , $t_{24}=0.3482$, $p=0.7308$).

(E) Graphs of the number of direct revisits mice made at adulthood (WT 1.36 ± 0.33 , MUT 1.42 ± 0.36 , $t_{24}=0.1231$, $p=0.9031$).

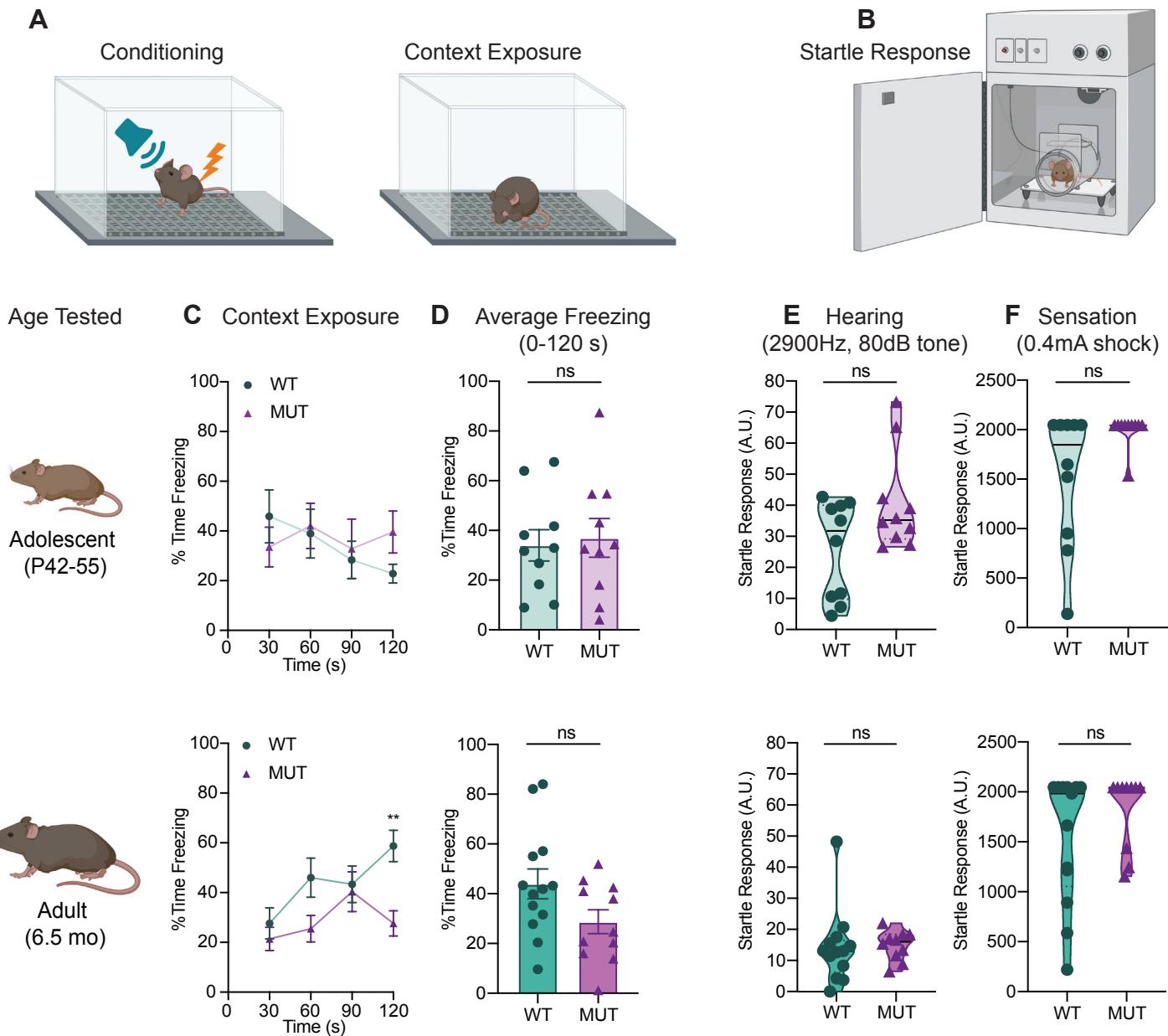
(F) Similar to D-E, there were no differences in the number of indirect revisits (ex: arm A→ arm B→arm A) between genotypes at adolescence (WT 10.21 ± 1.03 , MUT 12.00 ± 1.48 , $U=69$, $p=0.4515$).

(G) Indirect revisits at adulthood (WT 12.86 ± 1.26 , MUT 15.17 ± 1.43 , $t_{23}=1.211$, $p=0.2380$).

(H) There were no significant differences in total distance travelled at adolescence, suggesting that motor function did not affect Y-maze performance (WT 2401 ± 98.9 cm, MUT 2406 ± 121.0 cm, $t_{22}=0.03281$, $p=0.9741$).

(I) No difference in distance travelled at adulthood (WT 2761 ± 111.6 cm, MUT 3124 ± 191.1 cm, $t_{18}=1.638$, $p=0.1189$).

(J) Novel object task. Mice first performed a 5-minute trial in which they were placed in an arena with two identical objects and allowed to explore freely, while their behavior was tracked with video software. Mice were returned to their home cage, and then re-introduced to the arena a half an hour later, where one of the objects had been replaced with a novel object, and their behavior was again tracked. Twenty-four hours later the same test was performed, but the novel object was replaced with another new object.


(K) Graph depicting adolescent animals' preference for the novel object during the three phases of the task, training (Train), short-term memory (STM), and long-term memory (LTM). No significant difference in object preference is seen between genotypes for any phase (Train WT -0.092 ± 0.065 , Train MUT -0.123 ± 0.072 , STM WT 0.488 ± 0.076 , STM MUT 0.315 ± 0.094 , LTM WT 0.479 ± 0.046 , LTM MUT 0.373 ± 0.076 , $F_{1,22}=1.840$, $p=0.1887$).

(L) Graph depicting adult animals' preference for the novel object. (Train WT -0.066 ± 0.053 , Train MUT -0.130 ± 0.089 , STM WT 0.416 ± 0.060 , STM MUT 0.274 ± 0.096 , LTM WT 0.316 ± 0.059 , LTM MUT 0.306 ± 0.050 , $F_{1,22}=0.9735$, $p=0.3345$).

(M) Graph depicting the total amount of time (in seconds) adolescent animals spent exploring both objects in each phase of the task. No significant difference in exploration time was observed across genotypes, suggesting that genotype does not hinder object exploration (Train P44 WT 38.10 ± 2.45 s, Train P44 MUT 50.04 ± 5.44 s, STM P44 WT 55.02 ± 4.31 s, STM P44 MUT 63.60 ± 4.50 s, LTM P45 WT 46.75 ± 3.34 s, LTM P45 MUT 68.08 ± 7.54 s, $F_{1,22}=7.373$, $p=0.0126$).

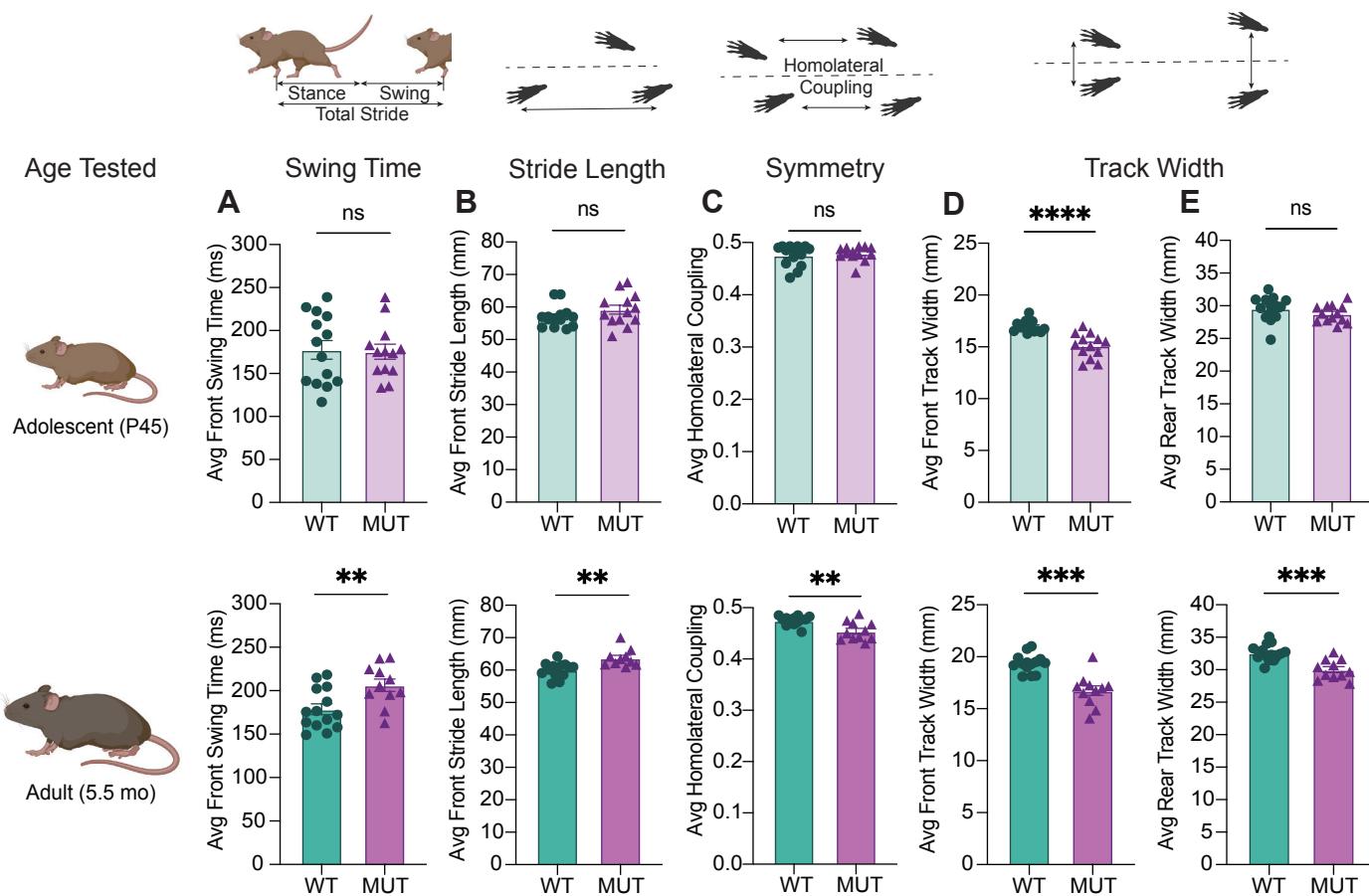
(N) Graph depicting the total time adult animals spent exploring both objects in each the task (Train WT 39.10 ± 3.62 s, Train MUT 51.15 ± 4.91 s, STM WT 44.75 ± 4.87 s, STM MUT 49.56 ± 6.16 s, LTM WT 39.02 ± 5.29 s, LTM MUT 55.15 ± 7.34 s, $F_{1,22}=2.936$, $p=0.1007$). For all Y-maze measures, WT n=14, MUT n=12. For all novel object measures, WT n=13, MUT n=11. Data reported as mean \pm SEM, error bars are SEM. Two-tailed t-tests or Mann-Whitney U tests (B-I), two-way ANOVAs (K-N).

Figure 6- figure supplement 2

Figure 6- figure supplement 2. *SWIP*^{P1019R} mutant mice do not have significant deficits in contextual fear memory recall, auditory perception, or tactile sensation; related to Figure 6

(A) Experimental fear conditioning scheme. After acclimation, mice received a mild aversive 0.4mA footshock paired with a 2900Hz tone in a conditioning chamber. 24 hours later, the mice were placed back in the same chamber to assess freezing behavior (without footshock or tone).

(B) Experimental startle response setup used to assess hearing and somatosensation. Mice were placed in a plexiglass tube atop a load cell that measured startle movements in response to stimuli.


(C) Line graphs of WT and MUT freezing response during the contextual memory recall task. Data represented as average freezing per genotype in 30 second time bins. The task was performed with two different cohorts for the different ages, P42 (top) and 6.5mo (bottom). Top: no significant difference in freezing at P42 (Two-way repeated measure ANOVA, Genotype effect, $F_{1,18}=0.088$, $p=0.7698$. Sidak's post-hoc analysis, 30 s $p=0.8388$, 60 s $p=0.9990$, 90 s $p=0.9964$, 120 s $p=0.3281$), Bottom: no significant difference in freezing at 6.5mo (Two-way repeated measure ANOVA, Genotype effect, $F_{1,22}=3.723$, $p=0.0667$. Sidak's post-hoc analysis, 30 s $p=0.8977$, 60 s $p=0.1636$, 90 s $p=0.9979$, 120 s $p=0.0037$).

(D) Graphs showing the average total freezing time per animal during context exposure. Top: no significant difference is seen between WT and MUT mice at P42 (WT $34.01 \pm 6.32\%$, MUT $36.99 \pm 7.81\%$, $t_{17}=2.985$, $p=0.7699$). Bottom: no significant difference is seen between genotypes at 6.5mo (WT $43.94 \pm 6.00\%$, MUT $28.73 \pm 4.80\%$, $t_{21.6}=1.980$, $p=0.0606$).

(E) Graphs of individual animals' startle response to a 2900Hz tone played at 80dB. MUT mice were not significantly more reactive to the tone than WT at P50 (WT 25.96 ± 4.95 , MUT 40.68 ± 5.05 , $U=35$, $p=0.2799$), or at 6.5mo (WT 14.07 ± 3.27 , MUT 14.85 ± 1.49 , $U=47$, $p=0.2768$).

(F) Graphs of individual animals' startle response to a 0.4mA footshock. No significant difference observed between genotypes at either age (P55 WT 1527 ± 215.7 , P55 MUT 1996 ± 51.0 , $U=28.50$, $p=0.0542$; 6.5mo WT 1545 ± 179.5 , 6.5mo MUT 1817 ± 119.1 , $U=47$, $p=0.2360$). Startle response reported in arbitrary units (A.U.). For all adolescent measures: WT $n=10$, MUT $n=10$. For adult freezing measures: WT $n=13$, MUT $n=11$. For adult startle responses: WT $n=13$, MUT $n=10$. Data reported as mean \pm SEM, error bars are SEM.* $p<0.05$, ** $p<0.01$, two-way repeated measure ANOVAs (C), two-tailed t-tests (D), and Mann-Whitney U tests (E-F).

Figure 7- figure supplement 1

Figure 7- figure supplement 1. Progressive gait changes in SWIP^{P1019R} mutant mice are not restricted to rear limbs; related to Figure 7

(A) Graph of average swing time per stride for front limbs. At P45 (top), there is no significant difference in front swing time (WT 177.5 ± 10.9 ms, MUT 175.3 ± 8.7 ms, $t_{24}=0.1569$, $p=0.8766$). At 5.5 mo (bottom), MUT mice take significantly longer to swing their forelimbs (WT 178.6 ± 6.2 ms, MUT 206.3 ± 7.2 ms, $t_{21.4}=2.927$, $p=0.0079$).

(B) Graph of average stride length for front limbs. At P45 (top), there is no difference in WT and MUT stride length (WT 57.0 ± 0.9 mm, MUT 59.2 ± 1.4 mm, $U=68$, $p=0.2800$). At 5.5mo (bottom), MUT mice take significantly longer strides with their forelimbs (WT 60.0 ± 0.6 mm, MUT 63.7 ± 0.9 mm, $t_{17}=3.545$, $p=0.0024$).

(C) Graph of average homolateral coupling, the fraction of a reference foot's stride when its ipsilateral foot starts its stride. At P45, there is no significant difference in homolateral coupling (WT 0.48 ± 0.005 , MUT 0.48 ± 0.004 , $U=90$, $p=0.9713$), but at 5.5mo, MUT mice display decreased homolateral coupling (WT 0.48 ± 0.002 , MUT 0.45 ± 0.005 , $t_{13.5}=3.469$, $p=0.0039$).

(D) Graph of average track width between front limbs. At P45 (top), there is a significantly narrower front track width in MUT compared to WT (WT 16.99 ± 0.15 mm, MUT 15.12 ± 0.33 mm, $t_{17}=5.192$, $p<0.0001$). This difference persists into adulthood at 5.5mo (WT 19.36 ± 0.23 mm, MUT 16.74 ± 0.46 mm, $t_{15}=5.055$, $p=0.0001$).

(E) Graph of average track width between rear limbs. At P45 (top), there is no difference in WT and MUT rear track widths (WT 29.58 ± 0.51 mm, MUT 28.77 ± 0.36 mm, $t_{23}=1.292$, $p=0.2091$). At 5.5mo (bottom), mutants display significantly narrower rear track widths (WT 32.59 ± 0.34 mm, MUT 30.01 ± 0.46 mm, $t_{19.4}=4.502$, $p=0.0002$). For P45 measures: WT n=14, MUT n=13; for 5.5mo measures: WT n=14, MUT n=11. Data reported as mean \pm SEM, error bars are SEM. ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$, two-tailed t-tests or Mann-Whitney U tests.

544 **ACKNOWLEDGEMENTS**

545 We are very grateful for the human *WASHC4*^{c.3056C>G} patients' contributions to this study.
546 We also thank the Duke Transgenic Core Facility for their work in generating the
547 *SWIP*^{P1019R} mutant mice, as well as the Duke Behavioral Core Facility, the Duke
548 Proteomics and Metabolomics Shared Resource, the Duke Electron Microscopy Core
549 Facility, and the Duke Light Microscopy Core Facility for their support in completing these
550 experiments. We also greatly appreciate everyone who provided advice on this project
551 and reviewed this manuscript, including Drs. Alicia Purkey, Shataakshi Dube, Anne West,
552 Cagla Eroglu, and Nicole Calakos. We generated experimental schematics using a
553 personal academic [BioRender.com](https://biorender.com) license. This work was supported by a Translating
554 Duke Health Neuroscience Initiative Grant to SHS, NIH grants (MH111684 and
555 DA047258) to SHS, an NIH grant (MH117429) and NARSAD young investigator grant
556 (25163) to IHK, NIH F30 fellowship funding (MH117851) and MSTP training grant support
557 (GM007171) for JLC, and NIH F31 fellowship funding (5F31NS113738-03) to TWAB.

558

559 **AUTHOR CONTRIBUTIONS**

560 Conceptualization: JLC, TWAB, IHK, and SHS; Methodology: JLC, TWAB, IHK, and SHS;
561 Investigation: JLC, TWAB, IHK, GW, TH, RV, ES, and AR; Resources: ES, RV, and SHS;
562 Writing—Original Draft: JLC and SHS; Writing—Editing: JLC, TWAB, IHK, and SHS;
563 Visualization: JLC; Funding Acquisition: JLC, TWAB, IHK, and SHS. All authors
564 discussed the results and commented on the manuscript.

565

566 **DECLARATION OF INTERESTS**

567 The authors declare no competing interests.

568 **RESOURCE AVAILABILITY**

569 **Lead Contact**

570 Further information and requests for resources and reagents should be directed to and
571 will be fulfilled by the Lead Contact, Scott Soderling (scott.soderling@duke.edu).

572 **Materials Availability**

573 Plasmids generated by this study are available upon request from corresponding author
574 Scott H. Soderling (scott.soderling@duke.edu).

575 **Data and Code Availability**

576 The data and source code used in this study are available online at
577 <https://github.com/twesleyb/SwipProteomics>.

578

579 **MATERIALS AND METHODS**

580 **Animals**

581 We generated *Washc4* mutant (SWIP^{P1019R}) mice in collaboration with the Duke
582 Transgenic Core Facility to mimic the *de novo* human variant at amino acid 1019 of
583 human *WASHc4*. A CRISPR-induced CCT>CGT point mutation was introduced into exon
584 29 of *Washc4*. 50ng/μl of the sgRNA (5'-ttgagaatactcacaagaggagg-3'), 100ng/μl Cas9
585 mRNA, and 100ng/μl of a repair oligonucleotide containing the C>G mutation were
586 injected into the cytoplasm of B6SJLF1/J mouse embryos (Jax #100012) (See Table S4
587 for the sequence of the repair oligonucleotide). Mice with germline transmission were then
588 backcrossed into a C57BL/ 6J background (Jax #000664). At least 5 backcrosses were
589 obtained before animals were used for behavior. We bred heterozygous SWIP^{P1019R} mice

590 together to obtain age-matched mutant and wild-type genotypes for cell culture and
591 behavioral experiments. Genetic sequencing was used to screen for germline
592 transmission of the C>G point mutation (*FOR*: 5'-tgctttagatgtttcct-3', *REV*: 5'-
593 gttaacatgatcctatggcg-3'). All mice were housed in the Duke University's Division of
594 Laboratory Animal Resources or Behavioral Core facilities at 2-5 animals/cage on a
595 14:10h light:dark cycle. All experiments were conducted with a protocol approved by the
596 Duke University Institutional Animal Care and Use Committee in accordance with NIH
597 guidelines.

598 **Human Subjects**

599 We retrospectively analyzed clinical findings from seven children with homozygous
600 *WASHC4*^{c.3056C>G} mutations (obtained by Dr. Rajab in 2010 at the Royal Hospital, Muscat,
601 Oman). The original report of these human subjects and parental consent for data use
602 can be found in (Ropers et al., 2011).

603 **Cell Lines**

604 HEK293T cells (ATCC #CRL-11268) were purchased from the Duke Cell Culture
605 facility. and were tested for mycoplasma contamination. HEK239T cells were used for co-
606 immunoprecipitation experiments and preparation of AAV viruses.

607 **Primary Neuronal Culture**

608 Primary neuronal cultures were prepared from P0 mouse cortex. P0 mouse pups
609 were rapidly decapitated and cortices were dissected and kept individually in 5ml
610 Hibernate A (Thermo #A1247501) supplemented with 2% B27(Thermo #17504044) at
611 4°C overnight to allow for individual animal genotyping before plating. Neurons were then
612 treated with Papain (Worthington #LS003120) and DNase (VWR #V0335)-supplemented

613 Hibernate A for 18min at 37°C and washed twice with plating medium (plating medium:
614 Neurobasal A (Thermo #10888022) supplemented with 10% horse serum, 2% B-27, and
615 1% GlutaMAX (Thermo #35050061)), and triturated before plating at 250,000 cells/well
616 on poly-L-lysine-treated coverslips (Sigma #P2636) in 24-well plates. Plating medium was
617 replaced with growth medium (Neurobasal A, 2% B-27, 1% GlutaMAX) 2 hours later. Cell
618 media was supplemented and treated with AraC at DIV5 (5uM final concentration/well).
619 Half-media changes were then performed every 4 days.

620 **Plasmid DNA Constructs**

621 For immunoprecipitation experiments, a pmCAG-SWIP-WT-HA construct was
622 generated by PCR amplification of the human *WASHC4* sequence, which was then
623 inserted between NheI and Sall restriction sites of a pmCAG-HA backbone generated in
624 our lab. Site-directed mutagenesis (Agilent #200517) was used to introduce a C>G point
625 mutation into this pmCAG-SWIP-WT-HA construct for generation of a pmCAG-SWIP-
626 MUT-HA construct (*FOR*: 5'-ctacaaagttgagggtcagacggggacaattatataaaaa-3', *REV*: 5'-
627 ttcttatataattgttccccgtctgaccctcaacttttag-3'). For iBiID experiments, an AAV construct
628 expressing hSyn1-WASH1-BiID2-HA was generated by cloning a *Washc1* insert
629 between Sall and HindIII sites of a pAAV-hSyn1-Actin Chromobody-Linker-BiID2-pA
630 construct (replacing Actin Chromobody) generated in our lab. This backbone included a
631 25nm GS linker-BiID2-HA fragment from Addgene #80899, generated by Kim *et al.* (Kim
632 *et al.*, 2016). An hSyn1-solubleBiID2-HA construct was created similarly, by removing
633 Actin Chromobody from the above construct. Oligonucleotide sequences are reported in
634 Table S4. Sequences of the plasmid DNA constructs are available online (see Key
635 Resources Table).

636 **AAV Viral Preparation**

637 AAV preparations were performed as described previously(Uezu et al., 2016). The
638 day before transfection, HEK293T cells were plated at a density of 1.5×10^7 cells per
639 15cm^2 plate in DMEM media with 10% fetal bovine serum and 1% Pen/Strep (Thermo
640 #11965-092, Sigma #F4135, Thermo #15140-122). Six HEK293T 15cm^2 plates were
641 used per viral preparation. The next day, 30 μg of pAd-DeltaF6 helper plasmid, 15 μg of
642 AAV2/9 plasmid, and 15 μg of an AAV plasmid carrying the transgene of interest were
643 mixed in OptiMEM with PEI-MAX (final concentration 80 $\mu\text{g}/\text{ml}$, Polysciences #24765).
644 2ml of this solution were then added dropwise to each of the 6 HEK293T 15cm^2 plates.
645 Eight hours later, the media was replaced with 20ml DMEM+10%FBS. 72 hours post-
646 transfection, cells were scraped and collected in the media, pooled, and centrifuged at
647 1,500rpm for 5min at RT. The final pellet from the 6 cell plates was resuspended in 5ml
648 of cell lysis buffer (15 mM NaCl, 5 mM Tris-HCl, pH 8.5), and freeze-thawed three times
649 using an ethanol/dry ice bath. The lysate was then treated with 50U/ml of Benzonase
650 (Novagen #70664), for 30min in a 37°C water bath, vortexed, and then centrifuged at
651 4,500rpm for 30min at 4°C. The resulting supernatant containing AAV particles was added
652 to the top of an iodixanol gradient (15%, 25%, 40%, 60% top to bottom) in an Optiseal
653 tube (Beckman Coulter #361625). The gradient was then centrifuged using a Beckman
654 Ti-70 rotor in a Beckman XL-90 ultracentrifuge at 67,000rpm for 70min, 18°C. The purified
655 viral solution was extracted from the 40%/60% iodixanol interface using a syringe, and
656 placed into an Amicon 100kDa filter unit (#UFC910024). The viral solution was washed
657 in this filter 3 times with 1X ice-cold PBS by adding 5ml of PBS and centrifuging at

658 4,900rpm for 45min at 4°C to obtain a final volume of approximately 200µl of concentrated
659 virus that was aliquoted into 5-10µl aliquots and stored at -80°C until use.

660 **Immunocytochemistry**

661 Primary antibodies: Rabbit anti-EEA1 (Cell Signaling Technology #C45B10,
662 1:500), Rat anti-CathepsinD (Novus #204712, 1:250), Guinea Pig anti-MAP2 (Synaptic
663 Systems #188004, 1:500)

664 Secondary antibodies: Goat anti-Rabbit Alexa Fluor 568 (Invitrogen #A11036,
665 1:1000), Goat anti-Guinea Pig Alexa Fluor 488 (Invitrogen #A11073, 1:1000), Goat anti-
666 Rat Alexa Fluor 488 (Invitrogen #A11006, 1:1000), Goat anti-Guinea Pig Alexa Fluor 555
667 (Invitrogen #A21435, 1:1000)

668 At DIV15, neurons were fixed for 15 minutes using ice-cold 4%PFA/4% sucrose in
669 1X PBS, pH 7.4 (for EEA1 staining), or 30 minutes with 50% Bouin's solution/4% sucrose
670 (for CathepsinD staining, Sigma #HT10132), pH 7.4(Cheng et al., 2018). Fixed neurons
671 were washed with 1X PBS, then permeabilized with 0.25% TritonX-100 in PBS for 8
672 minutes at room temperature (RT), and blocked with 5%normal goat serum/0.2%Triton-
673 X100 in PBS (blocking buffer) for 1 hour at RT with gentle rocking. For EEA1/MAP2
674 staining, samples were incubated with primary antibodies diluted in blocking buffer at RT
675 for 1 hour. For CathepsinD/MAP2 staining, samples were incubated with primary
676 antibodies diluted in blocking buffer overnight at 4°C. For both conditions, samples were
677 washed three times with 1X PBS, and incubated for 30min at RT with secondary
678 antibodies, protected from light. After secondary antibody staining, coverslips were
679 washed three times with 1X PBS, and mounted with FluoroSave mounting solution

680 (Sigma #345789). See antibody section for primary and secondary antibody
681 concentrations.

682 **Immunohistochemistry**

683 Primary antibodies: Rabbit anti-Cleaved Caspase-3 (Cell Signaling Technology
684 #9661, 1:2000), Mouse anti-Calbindin (Sigma #C9848, 1:2000), Rat anti-HA 3F10 (Sigma
685 #12158167001, 1:500)

686 Secondary antibodies: Donkey anti-Rabbit Alexa Fluor 488 (Invitrogen #A21206,
687 1:2000), Goat anti-Mouse Alexa Fluor 594 (Invitrogen #A11032, 1:2000), Goat anti-Rat
688 Alexa Fluor 488 (Invitrogen #A11006, 1:5000), Streptavidin Alexa Fluor 594 conjugate
689 (Invitrogen #S32356, 1:5000), 4',6-diamidino-2-phenylindole (DAPI, Sigma #D9542,
690 1:1000 for 10min at RT)

691 Mice were deeply anesthetized with isoflurane and then transcardially perfused
692 with ice-cold heparinized PBS (25U/ml) by gravity flow. After clearing of liver and lungs
693 (~2min), perfusate was switched to ice-cold 4% PFA in 1X PBS (pH 7.4) for 15 minutes.
694 Brains were dissected, post-fixed in 4%PFA overnight at 4°C, and then cryoprotected in
695 30% sucrose/1X PBS for 48hr at 4°C. Fixed brains were then mounted in OTC (Sakura
696 TissueTek #4583) and stored at -20°C until cryosectioning. Every third sagittal section
697 (30 µm thickness) was collected from the motor cortex and striatal regions. Free-floating
698 sections were then permeabilized with 1%TritonX-100 in 1X PBS at RT for 2 hr, and
699 blocked in 1X blocking solution (Abcam #126587) diluted in 0.2%TritonX-100 in 1X PBS
700 for 1hr at RT. Sections were then incubated in primary antibodies diluted in the 1X
701 blocking solution for two overnights at 4°C. After three washes with 0.2%TritonX-100 in
702 1X PBS, the sections were then incubated in secondary antibodies diluted in 1X blocking

703 buffer for one overnight at 4°C. Sections were then washed four times with 0.2% TritonX-
704 100 in 1X PBS at RT, and mounted onto coverslips with FluoroSave mounting solution
705 (Sigma #345789).

706 **Western Blotting**

707 Primary antibodies: Rabbit anti-Strumpellin (Santa Cruz #sc-87442, 1:500), Rabbit
708 anti-WASH1 c-terminal (Sigma #SAB4200373, 1:500), Mouse anti-Beta Tubulin III
709 (Sigma #T8660, 1:10,000), Mouse anti-HA (BioLegend #MMS-101P, 1:5000)

710 Secondary antibodies: Donkey anti-Rabbit-HRP (GE Life Sciences #NA934,
711 1:5,000), Goat anti-mouse-HRP (GE Life Sciences #NA931, 1:5000)

712 Ten micrograms of each sample were electrophoresed through a 12-well, 4-20%
713 SDS-PAGE gel (Bio-Rad #4561096) at 100V for 1hr at RT, transferred onto a
714 nitrocellulose membrane (GE Life Sciences #GE10600002) at 100V for 70min at RT on
715 ice, and blocked with 5% nonfat dry milk in TRIS-buffered saline containing 0.05% Tween-
716 20 (TBST, pH 7.4). Gels were saved for Coomassie staining at RT for 30 min. Membranes
717 were probed with one primary antibody at a time for 24hr at 4°C, then washed four times
718 with TBST at RT before incubating with the corresponding species-specific secondary
719 antibody at RT for 1hr. Membranes were washed with TBST, and then enhanced
720 chemiluminescence (ECL) substrate was added (Thermo Fischer #32109). Membranes
721 were exposed to autoradiography films and scanned with an Epson 1670 at 600dpi. We
722 probed each membrane with one antibody at a time, then stripped the membrane with
723 stripping buffer (Thermo Fischer #21059) for 10min at RT, and then blocked for 1hr at RT
724 before probing with the next antibody. Order of probes: Strumpellin, then β-Tubulin, then
725 WASH1. We determined the optical density of the bands using Image J software (NIH).

726 Data obtained from three independent experiments were plotted and statistically analyzed
727 using GraphPad Prism (version 8) software.

728 **Immunoprecipitation**

729 HEK293T cells were transfected with pmCAG-SWIP-WT-HA or pmCAG-SWIP-
730 MUT-HA constructs for three days, as previously described(Mason et al., 2011). Cells
731 were lysed with lysis buffer (25mM HEPES, 150mM NaCl, 1mM EDTA, 1% NonidetP-40,
732 pH 7.4) containing protease inhibitors (5mM NaF, 1mM orthovanadate, 1mM AEBSF, and
733 2 µg/mL leupeptin/pepstatin) and centrifuged at 1,700g for 5 min. Collected supernatant
734 was incubated with 30µl of pre-washed anti-HA agarose beads (Sigma #A2095) on a
735 sample rotator (15 rpm) for 2 hrs at 4°C. Beads were then washed 3 times with lysis
736 buffer, and sample buffer was added before subjecting to immunoblotting as described
737 above. The protein-transferred membrane was probed individually for WASH1,
738 Strumpellin, and HA. Data were collected from four separate preparations of WT and MUT
739 conditions.

740 **Electron Microscopy**

741 Adult (7mo) WT and MUT SWIP^{P1019R} mice were deeply anesthetized with
742 isoflurane and then transcardially perfused with warmed heparinized saline (25U/ml
743 heparin) for 4 minutes, followed by ice-cold 0.15M cacodylate buffer pH 7.4 containing
744 2.5% glutaraldehyde (Electron Microscopy Sciences #16320), 3% paraformaldehyde,
745 and 2mM CaCl₂ for 15 minutes. Brain samples were dissected and stored on ice in the
746 same fixative for 2 hours before washing in 0.1M sodium cacodylate buffer (3 changes
747 for 15 minutes each). Samples were then post-fixed in 1.0% OsO₄ in 0.1 M Sodium
748 cacodylate buffer for 1 hour on a rotator. Samples were then washed in 3, 15-minute

749 changes of 0.1M sodium cacodylate. Samples were then placed into *en bloc* stain (1%
750 uranyl acetate) overnight at 4°C. Subsequently, samples were dehydrated in a series of
751 ascending acetone concentrations including 50%, 70%, 95%, and 100% for three cycles
752 with 15 minutes incubation at each concentration change. Samples were then placed in
753 a 50:50 mixture of epoxy resin (Epon) and acetone overnight on a rotator. This solution
754 was then replaced twice with 100% fresh Epon for at least 2 hours at room temperature
755 on a rotator. Samples were embedded with 100% Epon resin in BEEM capsules (Ted
756 Pella) for 48 hours at 60°C. Samples were ultrathin sectioned to 60-70nm on a Reichert
757 Ultracut E ultramicrotome. Harvested grids were then stained with 2% uranyl acetate in
758 50% ethanol for 30 minutes and Sato's lead stain for 1 min. Micrographs were acquired
759 using a Phillips CM12 electron microscope operating at 80Kv, at 1700x magnification.
760 Micrographs were analyzed in Adobe Photoshop 2019, using the “magic wand” tool to
761 demarcate and measure the area of electron-dense and electron-lucent regions of
762 interest (ROIs). Statistical analyses of ROI measurements were performed in GraphPad
763 Prism (version 8) software. The experimenter was blinded to genotype for image
764 acquisition and analysis.

765 **iBiID Sample Preparation**

766 AAV2/9 viral probes, hSyn1-WASH1-BiID2-HA or hSyn1-solubleBiID2-HA, were
767 injected into wild-type CD1 mouse brains using a Hamilton syringe (#7635-01) at age P0-
768 P1 to ensure viral spread throughout the forebrain(Glascock et al., 2011). 15 days post-
769 viral injection, biotin was subcutaneously administered at 24mg/kg for seven consecutive
770 days for biotinylation of proteins in proximity to BiID2 probes. Whole brains were
771 extracted on the final day of biotin injections, snap frozen, and stored in liquid nitrogen

772 until protein purification. Seven brains were used for protein purification of each probe,
773 and each purification was performed three times independently (21 brains total for
774 WASH1-BioID2, 21 for solubleBioID2).

775 We performed all homogenization and protein purification on ice. A 2ml Dounce
776 homogenizer was used to individually homogenize each brain in a 1:1 solution of Lysis-
777 R:2X-RIPA buffer solution with protease inhibitors (Roche cOmplete tablets
778 #11836153001). Each sample was sonicated three times for 7 seconds and then
779 centrifuged at 5000g for 5min at 4°C. Samples were transferred to Beckman Coulter 1.5ml
780 tubes (#344059), and then spun at 45,000rpm in a Beckman Coulter tabletop
781 ultracentrifuge (TLA-55 rotor) for 1hr at 4°C. SDS was added to supernatants (final 1%)
782 and samples were then boiled for 5min at 95°C. We next combined supernatants from
783 the same condition together (WASH1-BioID2 vs. solubleBioID2) in 15ml conical tubes to
784 rotate with 30µl high-capacity NeutrAvidin beads overnight at 4°C (Thermo #29204).

785 The following day, all steps were performed under a hood with keratin-free
786 reagents. Samples were spun down at 6000rpm, 4°C for 5min to pellet the beads and
787 remove supernatant. The pelleted beads then went through a series of washes, each for
788 10 min at RT with 500ul of solvent, and then spun down on a tabletop centrifuge to pellet
789 the beads for the next wash. The washes were as follows: 2% SDS twice, 1% TritonX100-
790 1%deoxycholate-25mM LiCl2 once, 1M NaCL twice, 50mM Ammonium Bicarbonate
791 (Ambic) five times. Beads were then mixed 1:1 with a 2X Laemmli sample buffer that
792 contained 3mM biotin/50mM Ambic, boiled for 5 mins at 95°C, vortexed three times, and
793 then biotinylated protein supernatants were stored at -80°C until LC-MS/MS.

794 **LC-MS/MS for iBioID**

795 We gave the Duke Proteomics and Metabolomics Shared Resource (DPMSR) six
796 eluents from streptavidin resins (3 x WASH1-BioID2, 3 x solubleBioID2), stored on dry
797 ice. Samples were reduced with 10 mM dithiolthreitol for 30 min at 80°C and alkylated
798 with 20 mM iodoacetamide for 30 min at room temperature. Next, samples were
799 supplemented with a final concentration of 1.2% phosphoric acid and 256 μ L of S-Trap
800 (Protifi) binding buffer (90% MeOH/100mM TEAB). Proteins were trapped on the S-Trap,
801 digested using 20 ng/ μ L sequencing grade trypsin (Promega) for 1 hr at 47°C, and eluted
802 using 50 mM TEAB, followed by 0.2% FA, and lastly using 50% ACN/0.2% FA. All
803 samples were then lyophilized to dryness and resuspended in 20 μ L 1%TFA/2%
804 acetonitrile containing 25 fmol/ μ L yeast alcohol dehydrogenase (UniProtKB P00330;
805 ADH_YEAST). From each sample, 3 μ L was removed to create a pooled QC sample
806 (SPQC) which was run analyzed in technical triplicate throughout the acquisition period.

807 Quantitative LC/MS/MS was performed on 2 μ L of each sample, using a
808 nanoAcuity UPLC system (Waters) coupled to a Thermo QExactive HF-X high resolution
809 accurate mass tandem mass spectrometer (Thermo) via a nanoelectrospray ionization
810 source. Briefly, the sample was first trapped on a Symmetry C18 20 mm \times 180 μ m
811 trapping column (5 μ L/min at 99.9/0.1 v/v water/acetonitrile), after which the analytical
812 separation was performed using a 1.8 μ m Acquity HSS T3 C18 75 μ m \times 250 mm column
813 (Waters) with a 90-min linear gradient of 5 to 30% acetonitrile with 0.1% formic acid at a
814 flow rate of 400 nanoliters/minute (nL/min) with a column temperature of 55°C. Data
815 collection on the QExactive HF-X mass spectrometer was performed in a data-dependent
816 acquisition (DDA) mode of acquisition with a $r=120,000$ (@ m/z 200) full MS scan from
817 m/z 375 – 1600 with a target AGC value of $3e^6$ ions followed by 30 MS/MS scans at

818 r=15,000 (@ m/z 200) at a target AGC value of 5e⁴ ions and 45 ms. A 20s dynamic
819 exclusion was employed to increase depth of coverage. The total analysis cycle time for
820 each sample injection was approximately 2 hours.

821 **LOPIT-DC Subcellular Fractionation**

822 We performed three independent fractionation experiments with one adult SWIP
823 mutant brain and one WT mouse brain fractionated in each experiment. Each mouse was
824 sacrificed by isoflurane inhalation and its brain was immediately extracted and placed into
825 a 2ml Dounce homogenizer on ice with 1ml isotonic TEVP homogenization buffer (320mM
826 sucrose, 10mM Tris base, 1mM EDTA, 1mM EGTA, 5mM NaF, pH7.4 (Hallett et al.,
827 2008)). A cOmplete mini protease inhibitor cocktail tablet (Sigma #11836170001) was
828 added to a 50ml TEVP buffer aliquot immediately before use. Brains were homogenized
829 for 15 passes with a Dounce homogenizer to break the tissue, and then this lysate was
830 brought up to a 5ml volume with additional TEVP buffer. Lysates were then passed
831 through a 0.5ml ball-bearing homogenizer for two passes (14 µm ball, Isobiotec) to
832 release organelles. Final brain lysate volumes were approximately 7.5ml each. Lysates
833 were then divided into replicate microfuge tubes (Beckman Coulter #357448) to perform
834 differential centrifugation, following Geladaki et. al's LOPIT-DC protocol(Geladaki et al.,
835 2019). Centrifugation was carried out at 4°C in a tabletop Eppendorf 5424 centrifuge for
836 spins at 200g, 1,000g, 3,000g, 5,000g, 9,000g, 12,000g, and 15,000g. To isolate the final
837 three fractions, a tabletop Beckman TLA-100 ultracentrifuge with a TLA-55 rotor was used
838 at 4°C with speeds of: 30,000g, 79,000g, and 120,000g, respectively. Samples were kept
839 on ice at all times and pellets were stored at -80°C. Pellets from seven fractions (5,000g-
840 120,000g) were used for proteomic analyses.

841 **16-plex TMT LC-MS/MS**

842 The Duke Proteomics and Metabolomics Shared Resource (DPMSR) processed
843 and prepared fraction pellets from all 42 frozen samples simultaneously (7 fractions per
844 brain from 3 WT and 3 MUT brains). Due to volume constraints, each sample was split
845 into 3 tubes, for a total of 126 samples, which were processed in the following manner:
846 100 μ L of 8M Urea was added to the first aliquot then probe sonicated for 5 seconds with
847 an energy setting of 30%. This volume was then transferred to the second and then third
848 aliquot after sonication in the same manner. All tubes were centrifuged at 10,000g and
849 any residual volume from tubes 1 and 2 were added to tube 3. Protein concentrations
850 were determined by BCA on the supernatant in duplicate (5 μ L each assay). Total protein
851 concentrations for each replicate ranged from 1.1 mg/mL to 7.8 mg/mL with total protein
852 quantities ranging from 108.3 to 740.81 μ g. 60 μ g of each sample was removed and
853 normalized to 52.6 μ L with 8M Urea and 14.6 μ L 20% SDS. Samples were reduced with
854 10 mM dithiolthreitol for 30 min at 80°C and alkylated with 20 mM iodoacetamide for 30
855 min at room temperature. Next, they were supplemented with 7.4 μ L of 12% phosphoric
856 acid, and 574 μ L of S-Trap (Protifi) binding buffer (90% MeOH/100mM TEAB). Proteins
857 were trapped on the S-Trap, digested using 20 ng/ μ L sequencing grade trypsin (Promega)
858 for 1 hr at 47°C, and eluted using 50 mM TEAB, followed by 0.2% FA, and lastly using
859 50% ACN/0.2% FA. All samples were then lyophilized to dryness.

860 Each sample was resuspended in 120 μ L 200 mM triethylammonium bicarbonate,
861 pH 8.0 (TEAB). From each sample, 20 μ L was removed and combined to form a pooled
862 quality control sample (SPQC). Fresh TMTPro reagent (0.5 mg for each 16-plex reagent)
863 was resuspended in 20 μ L 100% acetonitrile (ACN) and was added to each sample.

864 Samples were incubated for 1 hour at RT. After the 1-hour reaction, 5 μ L of 5%
865 hydroxylamine was added and incubated for 15 minutes at room temperature to quench
866 the reaction. Each 16-plex TMT experiment consisted of the WT and MUT fractions from
867 one mouse, as well as the 2 SPQC samples. Samples corresponding to each experiment
868 were concatenated and lyophilized to dryness.

869 Samples were resuspended in 800 μ L 0.1% formic acid. 400 μ g was fractionated
870 into 48 unique high pH reversed-phase fractions using pH 9.0 20 mM Ammonium formate
871 as mobile phase A and neat acetonitrile as mobile phase B. The column used was a 2.1
872 mm x 50 mm XBridge C18 (Waters) and fractionation was performed on an Agilent 1100
873 HPLC with G1364C fraction collector. Throughout the method, the flow rate was 0.4
874 mL/min and the column temperature was 55°C. The gradient method was set as follows:
875 0 min, 3% B; 1 min, 7% B; 50 min, 50% B; 51 min, 90% B; 55 min, 90% B; 56 min, 3% B;
876 70 min, 3% B. 48 fractions were collected in equal time segments from 0 to 52 minutes,
877 then concatenated into 12 unique samples using every 12th fraction. For instance,
878 fraction 1, 13, 25, and 37 were combined, fraction 2, 14, 26, and 38 were combined, etc.
879 Fractions were frozen and lyophilized overnight. Samples were resuspended in 66 μ L
880 1%TFA/2% acetonitrile prior to LC-MS analysis.

881 Quantitative LC/MS/MS was performed on 2 μ L (1 μ g) of each sample, using a
882 nanoAcuity UPLC system (Waters) coupled to a Thermo Orbitrap Fusion Lumos high
883 resolution accurate mass tandem mass spectrometer (Thermo) equipped with a FAIMS
884 Pro ion-mobility device via a nanoelectrospray ionization source. Briefly, the sample was
885 first trapped on a Symmetry C18 20 mm \times 180 μ m trapping column (5 μ l/min at 99.9/0.1
886 v/v water/acetonitrile), after which the analytical separation was performed using a 1.8

887 μ m Acquity HSS T3 C18 75 μ m \times 250 mm column (Waters) with a 90-min linear gradient
888 of 5 to 30% acetonitrile with 0.1% formic acid at a flow rate of 400 nanoliters/minute
889 (nL/min) with a column temperature of 55°C. Data collection on the Fusion Lumos mass
890 spectrometer was performed for three different compensation voltages (CV: -40v, -60v, -
891 80v). Within each CV, a data-dependent acquisition (DDA) mode of acquisition with a
892 r=120,000 (@ m/z 200) full MS scan from m/z 375 – 1600 with a target AGC value of 4e⁵
893 ions was performed. MS/MS scans were acquired in the Orbitrap at r=50,000 (@ m/z 200)
894 from m/z 100 with a target AGC value of 1e⁵ and max fill time of 105 ms. The total cycle
895 time for each CV was 1s, with total cycle times of 3 sec between like full MS scans. A 45s
896 dynamic exclusion was employed to increase depth of coverage. The total analysis cycle
897 time for each sample injection was approximately 2 hours.

898 Following UPLC-MS/MS analyses, data were imported into Proteome Discoverer
899 2.4 (Thermo Scientific). The MS/MS data were searched against a SwissProt Mouse
900 database (downloaded November 2019) plus additional common contaminant proteins,
901 including yeast alcohol dehydrogenase (ADH), bovine casein, bovine serum albumin, as
902 well as an equal number of reversed-sequence “decoys” for FDR determination. Mascot
903 Distiller and Mascot Server (v 2.5, Matrix Sciences) were utilized to produce fragment ion
904 spectra and to perform the database searches. Database search parameters included
905 fixed modification on Cys (carbamidomethyl) and variable modification on Met (oxidation),
906 Asn/Gln (deamidation), Lys (TMTPro) and peptide N-termini (TMTPro). Data were
907 searched at 5 ppm precursor and 0.02 product mass accuracy with full trypsin enzyme
908 rules. Reporter ion intensities were calculated using the Reporter Ions Quantifier

909 algorithm in Proteome Discoverer. Percolator node in Proteome Discoverer was used to
910 annotate the data at a maximum 1% protein FDR.

911 **Mouse Behavioral Assays**

912 Behavioral tests were performed on age-matched WT and homozygous
913 SWIP^{P1019R} mutant littermates. Male and female mice were used in all experiments.
914 Testing was performed at two time points: P42-55 days old as a young adult age, and 5.5
915 months old as mid-adulthood, so that we could compare disease progression in this
916 mouse model to human patients(Ropers et al., 2011). The sequence of behavioral testing
917 was: Y-maze (to measure working memory), object novelty recognition (to measure short-
918 term and long-term object recognition memory), TreadScan (to assess gait), and steady-
919 speed rotarod (to assess motor control and strength) for 40-55 day old mice. Testing was
920 performed over 1.5 weeks, interspersed with rest days for acclimation. This sequence
921 was repeated with the same cohort at 5.5-6 months old, with three additional measures
922 added to the end of testing: fear conditioning (to assess associative fear memory), a
923 hearing test (to measure tone response), and a shock threshold test (to assess
924 somatosensation). Of note, a separate, second cohort of mice was evaluated for fear
925 conditioning, hearing, and shock threshold testing at adolescence. After each trial,
926 equipment was cleaned with Labsan to remove residual odors. The experimenter was
927 blinded to genotype for all behavioral analyses.

928 **Y-maze**

929 Working memory was evaluated by measuring spontaneous alternations in a 3-
930 arm Y-maze under indirect illumination (80-90 lux). A mouse was placed in the center of
931 the maze and allowed to freely explore all arms, each of which had different visual cues

932 for spatial recognition. Trials were 5 min in length, with video data and analyses captured
933 by EthoVision XT 11.0 software (Noldus Information Technology). Entry to an arm was
934 define as the mouse being >1 body length into a given arm. An alternation was defined
935 as three successive entries into each of the different arms. Total % alternation was
936 calculated as the total number of alternations/the total number of arm entries minus 2
937 x100.

938 **Novel Object Recognition**

939 One hour before testing, mice were individually exposed to the testing arena (a 48
940 x 22 x 18cm white opaque arena) for 10min under 80-100lux illumination without any
941 objects. The test consisted of three phases: training (day 1), short-term memory test
942 (STM, day 1), and long-term memory test (LTM, day 2). For the training phase, two
943 identical objects were placed 10 cm apart, against opposing walls of the arena. A mouse
944 was placed in the center of the arena and given full access to explore both objects for 5
945 min and then returned to its home cage. For STM testing, one of the training objects
946 remained (the now familiar object), and a novel object replaced one of the training objects
947 (similar in size, different shape). The mouse was returned to the arena 30 minutes after
948 the training task and allowed to explore freely for 5 mins. For LTM testing, the novel object
949 was replaced with another object, and the familiar object remained unchanged. The LTM
950 test was also 5 min in duration, conducted 24hr after the training task. Behavior was
951 scored using Ethovision 11.0 XT software (Noldus) and analyzed by a blind observer.
952 Object contact was defined as the mouse's nose within 1 cm of the object. We analyzed
953 both number of nose contacts with each object and duration of contacts. Preference
954 scores were calculated as (duration contact_{novel} - duration contact_{familiar}) / total duration

955 contact_{novel+familiar}. Positive scores signified a preference for the novel object; whereas,
956 negative scores denoted a preference for the familiar object, and scores approaching
957 zero indicated no preference.

958 **TreadScan**

959 A TreadScan forced locomotion treadmill system (CleversSys Inc, Reston,
960 Virginia) was used for gait recording and analysis. Each mouse was recorded walking on
961 a transparent treadmill at 45 days old, and again at 5.5 months old. Mice were acclimated
962 to the treadmill chamber for 1 minute before the start of recording to eliminate exploratory
963 behavior confounding normal gait. Trials were 20 seconds in length, with mice walking at
964 speeds between 13.83 and 16.53 cm/sec (P45 WT average 15.74 cm/s; P45 MUT
965 average 15.80 cm/s; 5.5mo WT average 15.77 cm/s; 5.5mo MUT average 15.85 cm/s).
966 A high-speed digital camera attached to the treadmill captured limb movement at a frame
967 rate of 100 frames/second. We used TreadScan software (CleversSys) and
968 representative WT and MUT videos to generate footprint templates, which were then used
969 to identify individual paw profiles for each limb. Parameters such as stance time, swing
970 time, step length, track width, and limb coupling were recorded for the entire 20 sec
971 duration for each animal. Output gait tracking was verified manually by a blinded
972 experimenter to ensure consistent limb tracking throughout the duration of each video.

973 **Steady Speed Rotarod**

974 A 5-lane rotarod (Med Associates, St. Albans, VT) was used for steady-speed
975 motor analysis. The rod was run at a steady speed of 32rpm for four, 5-minute trials, with
976 a 40-minute inter-trial interval. We recorded mouse latency to fall by infrared beam break,

977 or manually for any mouse that completed two or more rotations on the rod without
978 walking. Mice were randomized across lanes for each trial.

979 **Fear Conditioning**

980 Animals were examined in contextual and cued fear conditioning as described by
981 Rodriguez and Wetsel(Rodriguez and Wetsel, 2006). Two separate cohorts of mice were
982 used testing the two age groups. A three-day testing paradigm was used to assess
983 memory: conditioning on day 1, context testing 24-hr post-conditioning on day 2, and cued
984 tone testing 48hr post-conditioning on day 3. All testing was conducted in fear
985 conditioning chambers (Med Associates). In the conditioning phase, mice were first
986 acclimated to the test chamber for two minutes under ~100 lux illumination. Then a
987 2900Hz, 80dB tone (conditioned stimulus, CS) played for 30 sec, which terminated with
988 a paired 0.4mA, 2 sec scrambled foot shock (unconditioned stimulus, US). Mice were
989 removed from the chamber and returned to their home cage 30 sec later. In the context
990 testing phase, mice were placed in the same conditioning chamber and monitored for
991 freezing behavior for a 5 min trial period, in the absence of the CS and US. For cued tone
992 testing, the chambers were modified to different dimensions and shapes, contained
993 different floor and wall textures, and lighting was adjusted to 50 lux. Mice acclimated to
994 the chamber for 2 min, and then the CS was presented continuously for 3 min. Contextual
995 and cued fear memory was assessed by freezing behavior, captured by automated video
996 software (CleversSys).

997 **Hearing Test**

998 We tested mouse hearing using a startle platform (Med Associates) connected to
999 Startle Pro Software in a sound-proof chamber. Mice were placed in a ventilated restraint

1000 cylinder connected to the startle response detection system to measure startle to each
1001 acoustic stimulus. After two minutes of acclimation, mice were assessed for an acoustic
1002 startle response to seven different tone frequencies, 2kHz, 3kHz, 4kHz, 8kHz, 12kHz,
1003 16kHz, and 20kHz that were randomly presented three times each at four different
1004 decibels, 80, 100, 105, and 110dB, for a total of 84 trials. A random inter-trial interval of
1005 15-60 seconds (average 30sec) was used to prevent anticipation of a stimulus. An
1006 animal's reaction to the tone was recorded as startle reactivity in the first 100msec of the
1007 stimulus presentation, which was transduced through the platform's load cell and
1008 expressed in arbitrary units (AU).

1009 **Startle Response (Somatosensation)**

1010 Mouse somatosensation was tested by placing mice in a startle chamber (Med
1011 Associates) connected to Startle Pro Software. Mice were placed atop a multi-bar cradle
1012 within a ventilated plexiglass restraint cylinder, which allows for horizontal movement
1013 within the chamber, but not upright rearing. After two minutes of acclimation, each mouse
1014 was exposed to 10 different scrambled shock intensities, ranging from 0 to 0.6mA with
1015 randomized inter-trial intervals of 20-90 seconds. Each animal's startle reactivity during
1016 the first 100 msec of the shock was transduced through the platform's load cell and
1017 recorded as area under the curve (AUC) in arbitrary units (AU).

1018

1019 **QUANTIFICATION AND STATISTICAL ANALYSIS**

1020 Experimental conditions, number of replicates, and statistical tests used are stated
1021 in each figure legend. Each experiment was replicated at least three times (or on at least
1022 3 separate animals) to assure rigor and reproducibility. Both male and female age-

1023 matched mice were used for all experiments, with data pooled from both sexes. Data
1024 compilation and statistical analyses for all non-proteomic data were performed using
1025 GraphPad Prism (version 8, GraphPad Software, CA), using a significance level of
1026 alpha=0.05. Prism provides exact p values unless p<0.0001. All data are reported as
1027 mean \pm SEM. Each data set was tested for normal distribution using a D'Agostino-Person
1028 normality test to determine whether parametric (unpaired Student's t-test, one-way
1029 ANOVA, two-way ANOVA) or non-parametric (Mann-Whitney, Kruskal-Wallis) tests
1030 should be used. Parametric assumptions were confirmed with the Shapiro-Wilk test
1031 (normality) and Levine's test (error variance homogeneity) for ANOVA with repeated
1032 measures testing. The analysis of iBiID and TMT proteomics data are described below.
1033 All proteomic data and analysis scripts are available online (see Resource Availability).

1034 **Imaris 3D reconstruction**

1035 For EEA1+ and CathepsinD+ puncta analyses, coverslips were imaged on a Zeiss
1036 LSM 710 confocal microscope. Images were sampled at a resolution of 1024 x 1024
1037 pixels with a dwell time of 0.45 μ sec using a 63x/1.4 oil immersion objective, a 2.0 times
1038 digital zoom, and a z-step size of 0.37 μ m. Images were saved as ".lsm" formatted files,
1039 and quantification was performed on a POGO Velocity workstation in the Duke Light
1040 Microscopy Core Facility using Imaris 9.2.0 software (Bitplane, South Windsor, CT). For
1041 analyses, we first used the "surface" tool to make a solid fill surface of the MAP2-stained
1042 neuronal soma and dendrites, with the background subtraction option enabled. We
1043 selected a threshold that demarcated the neuron structure accurately while excluding
1044 background. For EEA1 puncta analyses, a 600 x 800 μ m selection box was placed around
1045 the soma in each image and surfaces were created for EEA1 puncta within the selection

1046 box. Similarly, for CathepsinD puncta analyses, a 600 x 600 μm selection box was placed
1047 around the soma(s) in each image for surface creation. The same threshold settings were
1048 used across all images, and individual surface data from each soma were exported for
1049 aggregate analyses. The experimenter was blinded to sample conditions for both image
1050 acquisition and analysis.

1051 **Cleaved Caspase-3 Image Analysis**

1052 Z-stack images were acquired on a Zeiss 710 LSM confocal microscope. Images
1053 were sampled at a resolution of 1024 x 1024 pixels with a dwell time of 1.58 μsec , using
1054 a 63x/1.4 oil immersion objective (for cortex, striatum, and hippocampus) or 20x/0.8 dry
1055 objective (cerebellum), a 1.0 times digital zoom, and a z-step size of 0.67 μm . Images
1056 were saved as “.lsm” formatted files, and then converted into maximum intensity
1057 projections (MIP) using Zen 2.3 SP1 software. Quantification of CC3 colocalization with
1058 DAPI was performed on the MIPs using the Particle Analyzer function in FIJI ImageJ
1059 software. The experimenter was blind to sample conditions for both image acquisition and
1060 analysis.

1061 **iBioID Quantitative Analysis**

1062 Following UPLC-MS/MS analyses, data was imported into Proteome Discoverer
1063 2.2 (Thermo Scientific Inc.), and aligned based on the accurate mass and retention time
1064 of detected ions (“features”) using Minora Feature Detector algorithm in Proteome
1065 Discoverer. Relative peptide abundance was calculated based on area-under-the-curve
1066 (AUC) of the selected ion chromatograms of the aligned features across all runs. The
1067 MS/MS data was searched against the SwissProt *Mus musculus* database (downloaded
1068 in April 2018) with additional proteins, including yeast ADH1, bovine serum albumin, as

1069 well as an equal number of reversed-sequence “decoys” for false discovery rate (FDR)
1070 determination. Mascot Distiller and Mascot Server (v 2.5, Matrix Sciences) were utilized
1071 to produce fragment ion spectra and to perform the database searches. Database search
1072 parameters included fixed modification on Cys (carbamidomethyl), variable modifications
1073 on Meth (oxidation) and Asn and Gln (deamidation), and were searched at 5 ppm
1074 precursor and 0.02 Da product mass accuracy with full trypsin enzymatic rules. Peptide
1075 Validator and Protein FDR Validator nodes in Proteome Discoverer were used to annotate
1076 the data at a maximum 1% protein FDR.

1077 Protein intensities were exported from Proteome Discoverer and processed using
1078 custom R scripts. Carboxylases and keratins, as well as 315 mitochondrial proteins(Calvo
1079 et al., 2016), were removed from the identified proteins as known contaminants. Next, we
1080 performed sample loading normalization to account for technical variation between the 9
1081 individual MS runs. This is done by multiplying intensities from each MS run by a scaling
1082 factor, such that the average of all total run intensities are equal. As QC samples were
1083 created by pooling equivalent aliquots of peptides from each biological replicate, the
1084 average of all biological replicates should be equal to the average of all technical SPQC
1085 replicates. We performed sample pool normalization to SPQC samples to standardize
1086 protein measurements across all samples and correct for batch effects between MS
1087 analyses. Sample pool normalization adjusts the protein-wise mean of all biological
1088 replicates to be equal to the mean of all SPQC replicates. Finally, proteins that were
1089 identified by a single peptide, and/or identified in less than 50% of samples were removed.
1090 Any remaining missing values were inferred to be missing not at random due to the left
1091 shifted distribution of proteins with missing values and imputed using the k-nearest

1092 neighbors algorithm using the impute.knn function in the R package impute
1093 (impute::impute.knn). Normalized protein data was analyzed using edgeR, an R package
1094 for the analysis of differential expression/abundance that models count data using a
1095 binomial distribution methodology. Differential enrichment of proteins in the WASH1-
1096 BiOID2 pull-down relative to the solubleBiOID2 control pull-down were evaluated with an
1097 exact test as implemented by the edgeR::exactTest function. To consider a protein
1098 enriched in the WASH interactome, we required that a protein exhibit a fold change
1099 greater than 3 over the negative control with an exact test Benjamini Hochberg adjusted
1100 p-value (FDR) less than 0.1. With these criteria, 174 proteins were identified as WASH1
1101 interactome proteins. Raw peptide and final normalized protein data as well as the
1102 statistical results can be found in Table S1.

1103 Proteins that function together often interact directly. We compiled experimentally-
1104 determined protein-protein interactions (PPIs) among the WASH1 interactome from the
1105 HitPredict database(López et al., 2015) using a custom R package, getPPIs, (available
1106 online at t wesleyb/getPPIs). We report PPIs among the WASH1 interactome in Table S1.

1107 Bioinformatic GO analysis was conducted by manual annotation of identified
1108 proteins and confirmed with Metascape analysis(Zhou et al., 2019) of WASH1-BiOID2
1109 enriched proteins using the 2,311 proteins identified in the mass spec analysis as
1110 background.

1111 Raw peptide intensities were exported from Proteome Discover for downstream
1112 analysis and processing in R. Following database searching, protein scoring using the
1113 Protein FDR Validator algorithm, and removal of contaminant species, the dataset

1114 retained 86,551 peptides corresponding to the identification of 7,488 unique proteins.

1115 These data, as well as statistical results can be found in Table S2.

1116 **TMT Proteomics Quantitative Analysis**

1117 Peptide level data from the spatial proteomics analysis of SWIP^{P1019R} MUT and
1118 MUT brain were exported from Proteome Discoverer (version 2.4) and analyzed using
1119 custom R and Python scripts. Peptides from contaminant and non-mouse proteins were
1120 removed. First, we performed sample loading normalization, normalizing the total ion
1121 intensity for each TMT channel within an experiment to be equal. Sample loading
1122 normalization corrects for small differences in the amount of sample analyzed and
1123 labeling reaction efficiency differences between individual TMT channels within an
1124 experiment.

1125 We found that in each TMT experiment there were a small number of missing
1126 values (mean percent missing = 1.6 +/- 0.17%). Missing values were inferred to be
1127 missing at random based on the overlapping distributions of peptides with missing values
1128 and peptides without missing values. We imputed these missing values using the k-
1129 nearest neighbor algorithm (impute::impute.knn). Missing values for SPQC samples were
1130 not imputed. Peptides with any missing SPQC data were removed.

1131 Following sample loading normalization, SPQC replicates within each experiment
1132 should yield identical measurements. As peptides with irreproducible QC measurements
1133 are unlikely to be quantitatively robust, and their inclusion may bias downstream
1134 processing (see IRS normalization below), we sought to remove them. To assess intra-
1135 batch variability, we utilized the method described by Ping et al., 2019(Ping et al., 2018).
1136 Briefly, peptides were binned into 5 groups based on the average intensity of the two

1137 SPQC replicates. For each pair of SPQC measurements, the log ratio of SPQC intensities
1138 was calculated. To identify outlier QC peptides, we plotted the distribution of these log
1139 ratios for each bin. Peptides with ratios that were more than four standard deviations away
1140 from the mean of its intensity bin were considered outliers and removed (Total number of
1141 SPQC outlier peptides removed = 474).

1142 Proteins were summarized as the sum of all unique peptide intensities
1143 corresponding to a unique UniProtKB Accession identifier, and sample loading
1144 normalization was performed across all three experiments to account for inter-
1145 experimental technical variability. In a TMT experiment, the peptides selected for MS2
1146 fragmentation for any given protein is partially random, especially at lower signal-to-noise
1147 peptides. This stochasticity means that proteins are typically quantified by different
1148 peptides in each experiment. Thus, although SPQC samples should yield identical protein
1149 measurements in each of the three experiments (as it is the same sample analyzed in
1150 each experiment), the observed protein measurements exhibit variability due to their
1151 quantification by different peptides. To account for this protein-level bias, we utilized the
1152 internal reference scaling (IRS) approach described by Plubell *et al.*, 2017(Plubell *et al.*,
1153 2017). IRS normalization scales the protein-wise geometric average of all SPQC
1154 measurements across all experiments to be equal, and simultaneously adjusts biological
1155 replicates. In brief, each protein is multiplied by a scaling factor which adjusts its intra-
1156 experimental SPQC values to be equal to the geometric mean of all SPQC values for the
1157 three experiments. This normalization step effectively standardizes protein
1158 measurements between different mass spectrometry experiments.

1159 The final normalization step was to perform sample pool normalization using
1160 SPQC samples as a reference. This normalization step, sometimes referred to as global
1161 internal standard normalization, accounts for batch effects between experiments, and
1162 reflects the fact that after technical normalization, the mean of biological replicates should
1163 be equal to the mean of SPQC replicates.

1164 Before assessing protein differential abundance, we removed irreproducible
1165 proteins. This included proteins that were quantified in less than 50% of all samples,
1166 proteins that were identified by a single peptide, and proteins that had missing SPQC
1167 values. Across all 42 biological replicates, we observed that a small number of proteins
1168 had potential outlier measurements that were either several orders of magnitude greater
1169 or less than the mean of its replicates. In order to identify and remove these proteins, we
1170 assessed the reproducibility of protein measurements within a fraction in the same
1171 manner used to identify and filter SPQC outlier peptides. A small number of proteins were
1172 identified as outliers if the average log ratio of their 3 technical replicates was more than
1173 4 standard deviations away from the mean of its intensity bin (n=349). In total, we retained
1174 5,897 of the original 7,488 proteins in the final dataset.

1175 Differential protein abundance was assessed using the final normalized protein
1176 data for intrafraction comparisons between WT and MUT groups using a general linear
1177 model as implemented by the edgeR::glmQLFit and edgeR::glmQLFTest functions(MD
1178 et al., 2009). Although this approach was originally devised for analysis of single-cell
1179 RNA-sequencing data, this approach is also appropriate for proteomics count data which
1180 is over-dispersed, negative binomially distributed, and often only includes a small number
1181 of replicates (for an example of edgeR's application to proteomics see Plubell et al.,

1182 2017(Plubell et al., 2017))(McCarthy et al., 2012; MD et al., 2009). For intrafraction
1183 comparisons, P-values were corrected using the Benjamini Hochberg procedure within
1184 edgeR. An FDR threshold of 0.1 was set for significance for intrafraction comparisons.

1185 We utilized edgeR's flexible GLM framework to test the hypothesis that the
1186 abundance of proteins in the WT group was significantly different from that in the MUT
1187 group irrespective of fraction differences (Table S2). For WT vs. MUT contrasts, we
1188 considered proteins with an FDR < 0.05 significant (n=687). For plotting, we adjusted
1189 normalized protein abundances for fraction differences by fitting the data with an additive
1190 linear model with fraction as a blocking factor, as implemented by the removeBatchEffect
1191 algorithm from the R limma package(Ritchie et al., 2015).

1192 To construct a protein covariation graph, we assessed the pairwise covariation
1193 (correlation) between all 5,897 proteins using the biweight midcorrelation
1194 (WGCNA::bicor) statistic(Seyfried et al., 2017), a robust alternative to Pearson's
1195 correlation. The resulting complete, signed, weighted, and symmetric adjacency matrix
1196 was then re-weighted using the 'Network Enhancement' approach. Network
1197 enhancement removes noise from the graph, and facilitates downstream community
1198 detection(Wang et al., 2018).

1199 The enhanced adjacency matrix was clustered using the Leiden algorithm(Traag
1200 et al., 2019), a recent extension and improvement of the well-known Louvain
1201 algorithm(Mucha et al., 2010). The Leiden algorithm functions to optimize the partition of
1202 a graph into modules by maximizing a quality statistic. We utilized the 'Surprise' quality
1203 statistic(Traag et al., 2015) to identify optimal partitions of the protein covariation graph.
1204 To facilitate biological inferences drawn from the network's organization, we recursively

1205 split 27 modules that contained more than 100 nodes and removed modules that were
1206 smaller than 5 proteins. Initial clustering of the network resulted in the identification of 324
1207 modules.

1208 To reduce the likelihood of identifying false positive modules, we enforced module
1209 quality using a permutation procedure (NetRep::modulePreservation)(Ritchie et al., 2016)
1210 and removed modules with any insignificant permutation statistics (Bonferroni P-Adjust >
1211 0.05). The following statistics were used to enforce module quality: 'avg.weight' (average
1212 edge weight), 'avg.cor' (average bicor correlation R^2), and 'avg.contrib' (quantifies how
1213 similar an individual protein's abundance profile is to the summary of its module). Proteins
1214 which were assigned to modules with insignificant module quality statistics were not
1215 considered clustered as the observed quality of their module does not differ from random.
1216 After filtering, approximately 85% of all proteins were assigned a cluster. The median
1217 percent variance explained by the first principle component of a module (a measure of
1218 module cohesiveness) was high (59.8%). After removal of low-quality modules, the
1219 analysis retained 255 distinct modules of proteins that strongly covaried together (Table
1220 S3).

1221 To evaluate modules that were changing between WT and MUT genotypes, we
1222 extended the GLM framework to test for protein differential abundance. Modules were
1223 summarized as the sum of their proteins and fit with a GLM, with fraction as a blocking
1224 factor. In this statistical design, we were interested in the average effect of genotype on
1225 all proteins in a module. For plotting, module abundance was adjusted for fraction
1226 differences using the removeBatchEffect function (package: limma). We utilized the

1227 Bonferroni method to adjust P-values for 255 module level comparisons and considered
1228 modules with an adjusted P-value less than 0.05 were considered significant (n=37).

1229 **Module Gene Set Enrichment Analysis**

1230 Modules were analyzed for enrichment of the WASH interactome (this paper),
1231 Retriever complex (McNally et al., 2017), CORUM protein complexes (Giurgiu et al.,
1232 2019), and subcellular predictions generated by Geladaki *et al.* (Geladaki et al., 2019)
1233 using the hypergeometric test with Bonferroni P-value correction for multiple
1234 comparisons. The union of all clustered and pathway proteins was used as background
1235 for the hypergeometric test. In addition to analysis of these general cellular pathways, we
1236 analyzed modules for enrichment of neuron-specific subcellular compartments—this
1237 included the presynapse (Takamori et al., 2006), excitatory postsynapse (Uezu et al.,
1238 2016), and inhibitory postsynapse (Uezu et al., 2016). These gene lists are available
1239 online at <https://github.com/twesleyb/geneLists>.

1240 **Network Visualization**

1241 Network graphs were visualized in Cytoscape (Version 3.7.2). We used the
1242 Perfusion Force Directed Layout (weight = edge weight). In this layout, strongly connected
1243 nodes tend to be positioned closer together. In some instances, node location was
1244 manually adjusted to visualize the module more compactly. Node size was set to be
1245 proportional to the weighted degree centrality of a node in its module subgraph. Node
1246 size thus reflects node importance in the module. Visualizing co-expression or co-
1247 variation networks is challenging because every node is connected to every other node
1248 (the graph is complete). To aid visualization of module topology, we removed weak edges
1249 from the graphs. A threshold for each module was set to remove the maximal number of

1250 edges before the module subgraph split into multiple components. This strategy enables
1251 visualization of the strongest paths in a network.

1252

1253 **SUPPLEMENTARY FILES**

1254 • **Supplementary File 1:** Representative modules from major subcellular
1255 compartments.

1256 • **Supplementary File 2:** Source data for Western blots.

1257 • **Table S1:** WASH iBiLD raw and normalized data and the corresponding
1258 statistical results.

1259 • **Table S2:** SWIP^{P1019R} TMT raw and normalized proteomics data and the
1260 corresponding statistical results.

1261 • **Table S3:** Module-level data and statistical results from network analysis of
1262 SWIP^{P109R} proteomics.

1263 • **Table S4:** DNA oligonucleotides used in this study.

1264 • **Table S5:** Key resources.

1265

1266 **REFERENCES**

1267 Alekhina O, Burstein F, Billadeau D. 2017. Cellular function of WASP family proteins at
1268 a glance. *J Cell Sci* **130**:2235–2241. doi:10.1242/jcs.199570

1269 Assoum M, Ange-Line Bruel |, Crenshaw ML, Delanne | Julian, Wentzensen IM,
1270 Mcwalter K, Dent KM, Vitobello | Antonio, Kuentz P, Thevenon J, Duffourd Y,
1271 Thauvin-Robinet C, Faivre | Laurence. 2020. Novel KIAA1033/WASHC4 mutations
1272 in three patients with syndromic intellectual disability and a review of the literature.

1273 *Am J Med Genet* 182. doi:10.1002/ajmg.a.61487

1274 Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C,

1275 Snowden J, Adamson J, Sadovnick AD, Rollinson S, Cannon A, Dwosh E, Neary

1276 D, Melquist S, Richardson A, Dickson D, Berger Z, Eriksen J, Robinson T, Zehr C,

1277 Dickey CA, Crook R, McGowan E, Mann D, Boeve B, Feldman H, Hutton M. 2006.

1278 Mutations in progranulin cause tau-negative frontotemporal dementia linked to

1279 chromosome 17. *Nature* **442**:916–919. doi:10.1038/nature05016

1280 Barnett MW, Watson RF, Vitalis T, Porter K, Komiyama NH, Stoney PN, Gillingwater

1281 TH, Grant SGN, Kind PC. 2006. Synaptic Ras GTPase activating protein regulates

1282 pattern formation in the trigeminal system of mice. *J Neurosci* **26**:1355–1365.

1283 doi:10.1523/JNEUROSCI.3164-05.2006

1284 Bartels AK, Göttert S, Desel C, Schäfer M, Krossa S, Scheidig AJ, Grötzing J,

1285 Lorenzen I. 2019. KDEL receptor 1 contributes to cell surface association of protein

1286 disulfide isomerases. *Cell Physiol Biochem* **52**:850–868. doi:10.33594/000000059

1287 Bartuzi P, Billadeau DD, Favier R, Rong S, Dekker D, Fedoseienko A, Fieten H, Wijers

1288 M, Levels JH, Huijkman N, Kloosterhuis N, Van Der Molen H, Brufau G, Groen AK,

1289 Elliott AM, Kuivenhoven JA, Plecko B, Grangl G, McGaughan J, Horton JD,

1290 Burstein E, Hofker MH, Van De Sluis B. 2016. CCC- and WASH-mediated

1291 endosomal sorting of LDLR is required for normal clearance of circulating LDL. *Nat*

1292 *Commun* **7**. doi:10.1038/ncomms10961

1293 Beare JE, Morehouse JR, Devries WH, Enzmann GU, Burke DA, Magnuson DSK,

1294 Whittemore SR. 2009. Gait analysis in normal and spinal contused mice using the

1295 treadscan system. *J Neurotrauma* **26**:2045–2056. doi:10.1089/neu.2009.0914

1296 Billadeau DD, Jia D, Rosen MK, Gomez TS, Umetani J, Metlagel Z, Otwinowski Z.

1297 2010. WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein

1298 (WASP) family are controlled by analogous structurally related complexes. *Proc*

1299 *Natl Acad Sci.* doi:10.1073/pnas.0913293107

1300 Binda CS, Nakamura Y, Henley JM, Wilkinson KA. 2019. Sorting nexin 27 rescues

1301 neuroligin 2 from lysosomal degradation to control inhibitory synapse number.

1302 *Biochem J* **476**:293–306. doi:10.1042/BCJ20180504

1303 Blackstone C, O’Kane CJ, Reid E. 2011. Hereditary spastic paraplegias: Membrane

1304 traffic and the motor pathway. *Nat Rev Neurosci.* doi:10.1038/nrn2946

1305 Boatright KM, Salvesen GS. 2003. Mechanisms of caspase activation. *Curr Opin Cell*

1306 *Biol.* doi:10.1016/j.ceb.2003.10.009

1307 Brunk UT, Terman A. 2002. Lipofuscin: Mechanisms of age-related accumulation and

1308 influence on cell function. *Free Radic Biol Med* **33**:611–619. doi:10.1016/S0891-

1309 5849(02)00959-0

1310 Cai Y, Arikath J, Yang L, Guo ML, Periyasamy P, Buch S. 2016. Interplay of

1311 endoplasmic reticulum stress and autophagy in neurodegenerative disorders.

1312 *Autophagy.* doi:10.1080/15548627.2015.1121360

1313 Calvo SE, Clauer KR, Mootha VK. 2016. MitoCarta2.0: An updated inventory of

1314 mammalian mitochondrial proteins. *Nucleic Acids Res.* doi:10.1093/nar/gkv1003

1315 Carnell M, Zech T, Calaminus SD, Ura S, Hagedorn M, Johnston SA, May RC, Soldati

1316 T, Machesky LM, Insall RH. 2011. Actin polymerization driven by WASH causes V-

1317 ATPase retrieval and vesicle neutralization before exocytosis. *J Cell Biol* **193**:831–

1318 839. doi:10.1083/jcb.201009119

1319 Chen M, Wan Y, Ade K, Ting J, Feng G, Calakos N. 2011. Sapap3 deletion
1320 anomalously activates short-term endocannabinoid-mediated synaptic plasticity. *J
1321 Neurosci* **31**:9563–9573. doi:10.1523/JNEUROSCI.1701-11.2011

1322 Cheng XT, Xie YX, Zhou B, Huang N, Farfel-Becker T, Sheng ZH. 2018.
1323 Characterization of LAMP1-labeled nondegradative lysosomal and endocytic
1324 compartments in neurons. *J Cell Biol* **217**:3127–3139. doi:10.1083/jcb.201711083

1325 Clement JP, Aceti M, Creson TK, Ozkan ED, Shi Y, Reish NJ, Almonte AG, Miller BH,
1326 Wiltgen BJ, Miller CA, Xu X, Rumbaugh G. 2012. Pathogenic SYNGAP1 mutations
1327 impair cognitive development by disrupting maturation of dendritic spine synapses.
1328 *Cell* **151**:709–723. doi:10.1016/j.cell.2012.08.045

1329 Connor-Robson N, Booth H, Martin JG, Gao B, Li K, Doig N, Vowles J, Browne C,
1330 Klinger L, Juhasz P, Klein C, Cowley SA, Bolam P, Hirst W, Wade-Martins R. 2019.
1331 An integrated transcriptomics and proteomics analysis reveals functional endocytic
1332 dysregulation caused by mutations in LRRK2. *Neurobiol Dis* **127**:512–526.
1333 doi:10.1016/j.nbd.2019.04.005

1334 De Bot ST, Vermeer S, Buijsman W, Heister A, Voorendt M, Verrips A, Scheffer H,
1335 Kremer HPH, Van De Warrenburg BPC, Kamsteeg EJ. 2013. Pure adult-onset
1336 Spastic Paraplegia caused by a novel mutation in the KIAA0196 (SPG8) gene. *J
1337 Neuro* **260**:1765–1769. doi:10.1007/s00415-013-6870-x

1338 Del Olmo T, Lauzier A, Normandin C, Larcher R, Lecours M, Jean D, Lessard L,
1339 Steinberg F, Boisvert F-M, Jean S. 2019. APEX2-mediated RAB proximity labeling
1340 identifies a role for RAB21 in clathrin-independent cargo sorting. *EMBO Rep* **20**.
1341 doi:10.15252/embr.201847192

1342 Derivery E, Gautreau A. 2010. Evolutionary conservation of the WASH complex, an
1343 actin polymerization machine involved in endosomal fission. *Commun Integr Biol*
1344 3:227–230. doi:10.4161/cib.3.3.11185

1345 Derivery E, Sousa C, Gautier J, Lombard B, Loew D, Gautreau A. 2009. The Arp2/3
1346 activator WASH controls the fission of endosomes through a large multiprotein
1347 complex. *Dev Cell* 17:712–23. doi:10.1016/j.devcel.2009.09.010

1348 Dutta S, Sengupta P. 2016. Men and mice: Relating their ages. *Life Sci.*
1349 doi:10.1016/j.lfs.2015.10.025

1350 Edvardson S, Cinnamon Y, Ta-Shma A, Shaag A, Yim YI, Zenvirt S, Jalas C, Lesage S,
1351 Brice A, Taraboulos A, Kaestner KH, Greene LE, Elpeleg O. 2012. A deleterious
1352 mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating Co-
1353 chaperone auxilin, is associated with juvenile parkinsonism. *PLoS One* 7.
1354 doi:10.1371/journal.pone.0036458

1355 Elliott AM, Simard LR, Coghlan G, Chudley AE, Chodirker BN, Greenberg CR, Burch T,
1356 Ly V, Hatch GM, Zelinski T. 2013. A novel mutation in KIAA0196: Identification of a
1357 gene involved in Ritscher-Schinzel/3C syndrome in a First Nations cohort. *J Med*
1358 *Genet* 50:819–822. doi:10.1136/jmedgenet-2013-101715

1359 Eng CM, Desnick RJ. 1994. Molecular basis of fabry disease: Mutations and
1360 polymorphisms in the human α -galactosidase A gene. *Hum Mutat* 3:103–111.
1361 doi:10.1002/humu.1380030204

1362 English WR, Puente XS, Freije JMP, Knäuper V, Amour A, Merryweather A, López-Otín
1363 C, Murphy G. 2000. Membrane type 4 matrix metalloproteinase (MMP17) has
1364 tumor necrosis factor- α convertase activity but does not activate pro-MMP2. *J Biol*

1365 *Chem* **275**:14046–14055. doi:10.1074/jbc.275.19.14046

1366 Farfán P, Lee J, Larios J, Sotelo P, Bu G, Marzolo MP. 2013. A Sorting Nexin 17-
1367 Binding Domain Within the LRP1 Cytoplasmic Tail Mediates Receptor Recycling
1368 Through the Basolateral Sorting Endosome. *Traffic* **14**:823–838.
1369 doi:10.1111/tra.12076

1370 Fedoseienko A, Wijers M, Wolters JC, Dekker D, Smit M, Huijkman N, Kloosterhuis N,
1371 Klug H, Schepers A, Van Dijk KW, Levels JHM, Billadeau DD, Hofker MH, Van
1372 Deursen J, Westerterp M, Burstein E, Kuivenhoven JA, Van De Sluis B. 2018. The
1373 COMMD family regulates plasma LDL levels and attenuates atherosclerosis
1374 through stabilizing the CCC complex in endosomal LDLR trafficking. *Circ Res*
1375 **122**:1648–1660. doi:10.1161/CIRCRESAHA.117.312004

1376 Follett J, Fox JD, Gustavsson EK, Kadgien C, Munsie LN, Cao LP, Tatarnikov I,
1377 Milnerwood AJ, Farrer MJ. 2019. DNAJC13 p.Asn855Ser, implicated in familial
1378 parkinsonism, alters membrane dynamics of sorting nexin 1. *Neurosci Lett*
1379 **706**:114–122. doi:10.1016/j.neulet.2019.04.043

1380 Garcia-Huerta P, Bargsted L, Rivas A, Matus S, Vidal RL. 2016. ER chaperones in
1381 neurodegenerative disease: Folding and beyond. *Brain Res* **1648**:580–587.
1382 doi:10.1016/j.brainres.2016.04.070

1383 Geladaki A, Kočevá Britovšek N, Breckels LM, Smith TS, Vennard OL, Mulvey CM,
1384 Crook OM, Gatto L, Lilley KS. 2019. Combining LOPIT with differential
1385 ultracentrifugation for high-resolution spatial proteomics. *Nat Commun.*
1386 doi:10.1038/s41467-018-08191-w

1387 Giurgiu M, Reinhard J, Brauner B, Dunger-Kaltenbach I, Fobo G, Frishman G, Montrone

1388 C, Ruepp A. 2019. CORUM: The comprehensive resource of mammalian protein
1389 complexes - 2019. *Nucleic Acids Res.* doi:10.1093/nar/gky973

1390 Glascock JJ, Osman EY, Coady TH, Rose FF, Shababi M, Lorson CL. 2011. Delivery of
1391 therapeutic agents through intracerebroventricular (ICV) and intravenous (IV)
1392 injection in mice. *J Vis Exp.* doi:10.3791/2968

1393 Gomez TS, Billadeau DD. 2009. A FAM21-Containing WASH Complex Regulates
1394 Retromer-Dependent Sorting. *Dev Cell* **17**:699–711.
1395 doi:10.1016/j.devcel.2009.09.009

1396 Gomez TS, Gorman JA, de Narvajas AAM, Koenig AO, Billadeau DD. 2012. Trafficking
1397 defects in WASH-knockout fibroblasts originate from collapsed endosomal and
1398 lysosomal networks. *Mol Biol Cell* **23**:3215–3228. doi:10.1091/mbc.e12-02-0101

1399 Goosens KA, Maren S. 2001. Contextual and auditory fear conditioning are mediated by
1400 the lateral, basal, and central amygdaloid nuclei in rats. *Learn Mem* **8**:148–155.
1401 doi:10.1101/lm.37601

1402 Halff EF, Szulc BR, Lesept F, Kittler JT. 2019. SNX27-Mediated Recycling of
1403 Neuroligin-2 Regulates Inhibitory Signaling. *Cell Rep* **29**:2599-2607.e6.
1404 doi:10.1016/j.celrep.2019.10.096

1405 Hallett PJ, Collins TL, Standaert DG, Dunah AW. 2008. Biochemical fractionation of
1406 brain tissue for studies of receptor distribution and trafficking. *Curr Protoc Neurosci.*
1407 doi:10.1002/0471142301.ns0116s42

1408 Harbour ME, Breusegem SY, Seaman MNJ. 2012. Recruitment of the endosomal
1409 WASH complex is mediated by the extended “tail” of Fam21 binding to the retromer
1410 protein Vps35. *Biochem J* **442**:209–220. doi:10.1042/BJ20111761

1411 Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS,
1412 Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR,
1413 Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M,
1414 Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B,
1415 Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox
1416 N, Rossor M, Collinge J, Maier W, Jessen F, Schürmann B, Heun R, Van Den
1417 Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frölich L, Hampel H,
1418 Hüll M, Rujescu D, Goate AM, Kauwe JSK, Cruchaga C, Nowotny P, Morris JC,
1419 Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Livingston G, Bass
1420 NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE,
1421 Tsolaki M, Singleton AB, Guerreiro R, Mühleisen TW, Nöthen MM, Moebus S,
1422 Jöckel KH, Klopp N, Wichmann HE, Carrasquillo MM, Pankratz VS, Younkin SG,
1423 O'Donovan M, Owen MJ, Williams J. 2009. Genome-wide association study
1424 identifies variants at CLU and PICALM associated with Alzheimer's disease. *Nat
1425 Genet* **41**:1088–1093. doi:10.1038/ng.440

1426 Hetz C, Saxena S. 2017. ER stress and the unfolded protein response in
1427 neurodegeneration. *Nat Publ Gr* **13**. doi:10.1038/nrneurol.2017.99

1428 Höhn A, Grune T. 2013. Lipofuscin: Formation, effects and role of macroautophagy.
1429 *Redox Biol.* doi:10.1016/j.redox.2013.01.006

1430 Hopwood JJ, Bunge S, Morris CP, Wilson PJ, Steglich C, Beck M, Schwinger E, Gal A.
1431 1993. Molecular basis of mucopolysaccharidosis type II: Mutations in the iduronate-
1432 2-sulphatase gene. *Hum Mutat* **2**:435–442. doi:10.1002/humu.1380020603

1433 Jahic A, Khundadze M, Jaenisch N, Schüle R, Klimpe S, Klebe S, Frahm C, Kassubek

1434 J, Stevanin G, Schöls L, Brice A, Hübner CA, Beetz C. 2015. The spectrum of
1435 KIAA0196 variants, and characterization of a murine knockout: Implications for the
1436 mutational mechanism in hereditary spastic paraplegia type SPG8 Rare
1437 neurological diseases. *Orphanet J Rare Dis* **10**. doi:10.1186/s13023-015-0359-x

1438 Jia D, Gomez TS, Metlagel Z, Umetani J, Otwinowski Z, Rosen MK, Billadeau DD.
1439 2010. WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein
1440 (WASP) family are controlled by analogous structurally related complexes. *Proc
1441 Natl Acad Sci U S A* **107**:10442–10447. doi:10.1073/pnas.0913293107

1442 Kim DI, Jensen SC, Noble KA, Kc B, Roux KH, Motamedchaboki K, Roux KJ. 2016. An
1443 improved smaller biotin ligase for BioID proximity labeling. *Mol Biol Cell* **27**:1188–
1444 1196. doi:10.1091/mbc.E15-12-0844

1445 Kim HJ, Kim SY, Kim DH, Park JS, Jeong SH, Choi YW, Kim CH. 2020. Crosstalk
1446 between HSPA5 arginylation and sequential ubiquitination leads to AKT
1447 degradation through autophagy flux. *Autophagy*.
1448 doi:10.1080/15548627.2020.1740529

1449 Kim JH, Lee HK, Takamiya K, Huganir RL. 2003. The role of synaptic GTPase-
1450 activating protein in neuronal development and synaptic plasticity. *J Neurosci*
1451 **23**:1119–1124. doi:10.1523/jneurosci.23-04-01119.2003

1452 Klaassen R V., Stroeder J, Coussen F, Hafner AS, Petersen JD, Renancio C, Schmitz
1453 LJM, Normand E, Lodder JC, Rotaru DC, Rao-Ruiz P, Spijker S, Mansvelder HD,
1454 Choquet D, Smit AB. 2016. Shisa6 traps AMPA receptors at postsynaptic sites and
1455 prevents their desensitization during synaptic activity. *Nat Commun* **7**.
1456 doi:10.1038/ncomms10682

1457 Kustermann M, Manta L, Paone C, Kustermann J, Lausser L, Wiesner C, Eichinger L,

1458 Clemen CS, Schröder R, Kestler HA, Sandri M, Rottbauer W, Just S. 2018. Loss of

1459 the novel Vcp (valosin containing protein) interactor Washc4 interferes with

1460 autophagy-mediated proteostasis in striated muscle and leads to myopathy in vivo.

1461 *Autophagy* **14**:1911–1927. doi:10.1080/15548627.2018.1491491

1462 Kvainickas A, Jimenez-Orgaz A, Nägele H, Hu Z, Dengjel J, Steinberg F. 2017. Cargo-

1463 selective SNX-BAR proteins mediate retromer trimer independent retrograde

1464 transport. *J Cell Biol* **216**:3677–3693. doi:10.1083/jcb.201702137

1465 Lee S, Chang J, Blackstone C. 2016. FAM21 directs SNX27-retromer cargoes to the

1466 plasma membrane by preventing transport to the Golgi apparatus. *Nat Commun* **7**.

1467 doi:10.1038/ncomms10939

1468 Linardopoulou E V., Parghi SS, Friedman C, Osborn GE, Parkhurst SM, Trask BJ.

1469 2007. Human subtelomeric WASH genes encode a new subclass of the WASP

1470 family. *PLoS Genet* **3**:2477–2485. doi:10.1371/journal.pgen.0030237

1471 López Y, Nakai K, Patil A. 2015. HitPredict version 4: Comprehensive reliability scoring

1472 of physical protein-protein interactions from more than 100 species. *Database*.

1473 doi:10.1093/database/bav117

1474 Mann A, Chesselet MF. 2015. Techniques for Motor Assessment in RodentsMovement

1475 Disorders: Genetics and Models: Second Edition. Elsevier Inc. pp. 139–157.

1476 doi:10.1016/B978-0-12-405195-9.00008-1

1477 Mao W, Watanabe T, Cho S, Frost JL, Truong T, Zhao X, Futai K. 2015. Shank1

1478 regulates excitatory synaptic transmission in mouse hippocampal parvalbumin-

1479 expressing inhibitory interneurons. *Eur J Neurosci* **41**:1025–1035.

1480 doi:10.1111/ejn.12877

1481 Maren S, Holt W. 2000. The hippocampus and contextual memory retrieval in Pavlovian
1482 conditioning. *Behav Brain Res* **110**:97–108. doi:10.1016/s0166-4328(99)00188-6

1483 Maruzs T, Lorincz P, Szatmári Z, Széplaki S, Sándor Z, Lakatos Z, Puska G, Juhász G,
1484 Sass M. 2015. Retromer Ensures the Degradation of Autophagic Cargo by
1485 Maintaining Lysosome Function in Drosophila. *Traffic* **16**:1088–1107.
1486 doi:10.1111/tra.12309

1487 Mason FM, Heimsath EG, Higgs HN, Soderling SH. 2011. Bi-modal Regulation of a
1488 Formin by srGAP2 * Downloaded from. *J Biol Chem* **286**:6577–6586.
1489 doi:10.1074/jbc.M110.190397

1490 Mayor S, Presley JF, Maxfield FR. 1993. Sorting of membrane components from
1491 endosomes and subsequent recycling to the cell surface occurs by a bulk flow
1492 process. *J Cell Biol*. doi:10.1083/jcb.121.6.1257

1493 McCarthy DJ, Chen Y, Smyth GK. 2012. Differential expression analysis of multifactor
1494 RNA-Seq experiments with respect to biological variation. *Nucleic Acids Res*.
1495 doi:10.1093/nar/gks042

1496 McNally KE, Faulkner R, Steinberg F, Gallon M, Ghai R, Pim D, Langton P, Pearson N,
1497 Danson CM, Nägele H, Morris LL, Singla A, Overlee BL, Heesom KJ, Sessions R,
1498 Banks L, Collins BM, Berger I, Billadeau DD, Burstein E, Cullen PJ. 2017. Retriever
1499 is a multiprotein complex for retromer-independent endosomal cargo recycling. *Nat
1500 Cell Biol* **19**:1214–1225. doi:10.1038/ncb3610

1501 MD R, DJ M, GK S. 2009. edgeR: a Bioconductor package for differential expression
1502 analysis of digital gene expression data. *Bioinformatics*.

1503 Mok A, Cao H, Hegele RA. 2003. Genomic basis of mucopolysaccharidosis type IIID
1504 (MIM 252940) revealed by sequencing of GNS encoding N-acetylglucosamine-6-
1505 sulfatase. *Genomics* **81**:1–5. doi:10.1016/S0888-7543(02)00014-9

1506 Monteiro P, Feng G. 2017. SHANK proteins: roles at the synapse and in autism
1507 spectrum disorder. *Nat Rev Neurosci* **18**:147–157. doi:10.1038/nrn.2016.183

1508 Montibeller L, de Belleroche J. 2018. Amyotrophic lateral sclerosis (ALS) and
1509 Alzheimer's disease (AD) are characterised by differential activation of ER stress
1510 pathways: focus on UPR target genes. *Cell Stress Chaperones* **23**:897–912.
1511 doi:10.1007/s12192-018-0897-y

1512 Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, Janke E, Lubejko ST, Greig
1513 NH, Mattison JA, Duzel E, van Praag H. 2016. Running-Induced Systemic
1514 Cathepsin B Secretion Is Associated with Memory Function. *Cell Metab.*
1515 doi:10.1016/j.cmet.2016.05.025

1516 Moreno-García A, Kun A, Calero O, Medina M, Calero M. 2018. An overview of the role
1517 of lipofuscin in age-related neurodegeneration. *Front Neurosci.*
1518 doi:10.3389/fnins.2018.00464

1519 Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP. 2010. Community structure
1520 in time-dependent, multiscale, and multiplex networks. *Science (80-)* **328**:876–878.
1521 doi:10.1126/science.1184819

1522 Mukherjee AB, Appu AP, Sadhukhan T, Casey S, Mondal A, Zhang Z, Bagh MB. 2019.
1523 Emerging new roles of the lysosome and neuronal ceroid lipofuscinoses. *Mol
1524 Neurodegener.* doi:10.1186/s13024-018-0300-6

1525 Nagel BM, Bechtold M, Rodriguez LG, Bogdan S. 2017. Drosophila WASH is required

1526 for integrin-mediated cell adhesion, cell motility and lysosomal neutralization. *J Cell*
1527 *Sci* **130**:344–359. doi:10.1242/jcs.193086

1528 Pal A, Severin F, Lommer B, Shevchenko A, Zerial M. 2006. Huntington-HAP40 complex
1529 is a novel Rab5 effector that regulates early endosome motility and is up-regulated
1530 in Huntington's disease. *J Cell Biol* **172**:605–618. doi:10.1083/jcb.200509091

1531 Pan YF, Viklund IM, Tsai HH, Pettersson S, Maruyama IN. 2010. The ulcerative colitis
1532 marker protein WAFL interacts with accessory proteins in endocytosis. *Int J Biol Sci*
1533 **6**:163–171. doi:10.7150/ijbs.6.163

1534 Patel S, Homaei A, El-Seedi HR, Akhtar N. 2018. Cathepsins: Proteases that are vital
1535 for survival but can also be fatal. *Biomed Pharmacother*.
1536 doi:10.1016/j.biopha.2018.05.148

1537 Phillips-Krawczak CA, Singla A, Starokadomskyy P, Deng Z, Osborne DG, Li H, Dick
1538 CJ, Gomez TS, Koenecke M, Zhang JS, Dai H, Sifuentes-Dominguez LF, Geng LN,
1539 Kaufmann SH, Hein MY, Wallis M, McGaughran J, Gecz J, Van De Sluis B,
1540 Billadeau DD, Burstein E. 2015. COMMD1 is linked to the WASH complex and
1541 regulates endosomal trafficking of the copper transporter ATP7A. *Mol Biol Cell*
1542 **26**:91–103. doi:10.1091/mbc.E14-06-1073

1543 Ping L, Duong DM, Yin L, Gearing M, Lah JJ, Levey AI, Seyfried NT. 2018. Global
1544 quantitative analysis of the human brain proteome in Alzheimer's and Parkinson's
1545 Disease. *Sci Data*. doi:10.1038/sdata.2018.36

1546 Piotrowski JT, Gomez TS, Schoon RA, Mangalam AK, Billadeau DD. 2013. WASH
1547 Knockout T Cells Demonstrate Defective Receptor Trafficking, Proliferation, and
1548 Effector Function. *Mol Cell Biol*. doi:10.1128/MCB.01288-12

1549 Plubell DL, Wilmarth PA, Zhao Y, Fenton AM, Minnier J, Reddy AP, Klimek J, Yang X,

1550 David LL, Pamir N. 2017. Extended multiplexing of tandem mass tags (TMT)

1551 labeling reveals age and high fat diet specific proteome changes in mouse

1552 epididymal adipose tissue. *Mol Cell Proteomics*. doi:10.1074/mcp.M116.065524

1553 Poët M, Kornak U, Schweizer M, Zdebik AA, Scheel O, Hoelter S, Wurst W, Schmitt A,

1554 Fuhrmann JC, Planells-Cases R, Mole SE, Hübner CA, Jentsch TJ. 2006.

1555 Lysosomal storage disease upon disruption of the neuronal chloride transport

1556 protein CIC-6. *Proc Natl Acad Sci U S A* **103**:13854–13859.

1557 doi:10.1073/pnas.0606137103

1558 Porter AG, Jänicke RU. 1999. Emerging roles of caspase-3 in apoptosis. *Cell Death*

1559 *Differ*. doi:10.1038/sj.cdd.4400476

1560 Pottier C, Ravenscroft TA, Sanchez-Contreras M, Rademakers R. 2016. Genetics of

1561 FTLD: overview and what else we can expect from genetic studies. *J Neurochem*.

1562 doi:10.1111/jnc.13622

1563 Powell SR, Wang P, Divald A, Teichberg S, Haridas V, McCloskey TW, Davies KJA,

1564 Katzeff H. 2005. Aggregates of oxidized proteins (lipofuscin) induce apoptosis

1565 through proteasome inhibition and dysregulation of proapoptotic proteins. *Free*

1566 *Radic Biol Med* **38**:1093–1101. doi:10.1016/j.freeradbiomed.2005.01.003

1567 Quadri M, Fang M, Picillo M, Olgiati S, Breedveld GJ, Graafland J, Wu B, Xu F, Erro R,

1568 Amboni M, Pappatà S, Quarantelli M, Annesi G, Quattrone A, Chien HF, Barbosa

1569 ER, Oostra BA, Barone P, Wang J, Bonifati V. 2013. Mutation in the SYNJ1 gene

1570 associated with autosomal recessive, early-onset parkinsonism. *Hum Mutat*

1571 **34**:1208–1215. doi:10.1002/humu.22373

1572 Ramirez-Montealegre D, Pearce DA. 2005. Defective lysosomal arginine transport in
1573 juvenile Batten disease. *Hum Mol Genet* **14**:3759–3773. doi:10.1093/hmg/ddi406

1574 Ramirez A, Heimbach A, Gründemann J, Stiller B, Hampshire D, Cid LP, Goebel I,
1575 Mubaidin AF, Wriegat AL, Roeper J, Al-Din A, Hillmer AM, Karsak M, Liss B,
1576 Woods CG, Behrens MI, Kubisch C. 2006. Hereditary parkinsonism with dementia
1577 is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase.
1578 *Nat Genet* **38**:1184–1191. doi:10.1038/ng1884

1579 Regier DS, Tifft CJ. 1993. GLB1-Related Disorders, GeneReviews®. University of
1580 Washington, Seattle.

1581 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015. Limma powers
1582 differential expression analyses for RNA-sequencing and microarray studies.
1583 *Nucleic Acids Res.* doi:10.1093/nar/gkv007

1584 Ritchie SC, Watts S, Fearnley LG, Holt KE, Abraham G, Inouye M. 2016. A Scalable
1585 Permutation Approach Reveals Replication and Preservation Patterns of Network
1586 Modules in Large Datasets. *Cell Syst* **3**:71–82. doi:10.1016/j.cels.2016.06.012

1587 Rodriguez RM, Wetsel WC. 2006. Assessments of cognitive deficits in mutant
1588 miceAnimal Models of Cognitive Impairment. CRC Press. pp. 223–282.
1589 doi:10.1201/9781420004335.ch12

1590 Ropers F, Derivery E, Hu H, Garshasbi M, Karbasiyan M, Herold M, Nürnberg G,
1591 Ullmann R, Gautreau A, Sperling K, Varon R, Rajab A. 2011. Identification of a
1592 novel candidate gene for non-syndromic autosomal recessive intellectual disability:
1593 The WASH complex member swip. *Hum Mol Genet.* doi:10.1093/hmg/ddr158

1594 Rosenbaum EE, Vasiljevic E, Brehm KS, Colley NJ. 2014. Mutations in Four Glycosyl

1595 Hydrolases Reveal a Highly Coordinated Pathway for Rhodopsin Biosynthesis and
1596 N-Glycan Trimming in *Drosophila melanogaster*. *PLoS Genet* **10**.
1597 doi:10.1371/journal.pgen.1004349

1598 Schröder W, Wulff K, Wehnert M, Seidlitz G, Herrmann FH. 1994. Mutations of the
1599 iduronate-2-sulfatase (IDS) gene in patients with Hunter syndrome
1600 (mucopolysaccharidosis II). *Hum Mutat* **4**:128–31. doi:10.1002/humu.1380040206

1601 Seaman MN, Freeman CL. 2014. Analysis of the Retromer complex-WASH complex
1602 interaction illuminates new avenues to explore in Parkinson disease. *Commun
1603 Integr Biol.* doi:10.4161/cib.29483

1604 Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, Bis JC,
1605 Smith A V., Carassquillo MM, Lambert JC, Harold D, Schrijvers EMC, Ramirez-
1606 Lorca R, Debette S, Longstreth WT, Janssens ACJW, Pankratz VS, Dartigues JF,
1607 Hollingworth P, Aspelund T, Hernandez I, Beiser A, Kuller LH, Koudstaal PJ,
1608 Dickson DW, Tzourio C, Abraham R, Antunez C, Du Y, Rotter JI, Aulchenko YS,
1609 Harris TB, Petersen RC, Berr C, Owen MJ, Lopez-Arrieta J, Varadarajan BN,
1610 Becker JT, Rivadeneira F, Nalls MA, Graff-Radford NR, Campion D, Auerbach S,
1611 Rice K, Hofman A, Jonsson P V., Schmidt H, Lathrop M, Mosley TH, Au R, Psaty
1612 BM, Uitterlinden AG, Farrer LA, Lumley T, Ruiz A, Williams J, Amouyel P, Younkin
1613 SG, Wolf PA, Launer LJ, Lopez OL, Van Duijn CM, Breteler MMB. 2010. Genome-
1614 wide analysis of genetic loci associated with Alzheimer disease. *JAMA - J Am Med
1615 Assoc* **303**:1832–1840. doi:10.1001/jama.2010.574

1616 Seyfried NT, Dammer EB, Swarup V, Nandakumar D, Duong DM, Yin L, Deng Q,
1617 Nguyen T, Hales CM, Wingo T, Glass J, Gearing M, Thambisetty M, Troncoso JC,

1618 Geschwind DH, Lah JJ, Levey AI. 2017. A Multi-network Approach Identifies
1619 Protein-Specific Co-expression in Asymptomatic and Symptomatic Alzheimer's
1620 Disease. *Cell Syst* **4**:60-72.e4. doi:10.1016/j.cels.2016.11.006

1621 Simonetti B, Cullen PJ. 2019. Actin-dependent endosomal receptor recycling. *Curr Opin*
1622 *Cell Biol.* doi:10.1016/j.ceb.2018.08.006

1623 Simonetti B, Danson CM, Heesom KJ, Cullen PJ. 2017. Sequence-dependent cargo
1624 recognition by SNX-BARs mediates retromer-independent transport of CI-MPR. *J*
1625 *Cell Biol* **216**:3695–3712. doi:10.1083/jcb.201703015

1626 Simpson JC, Griffiths G, Wessling-Resnick M, Fransen JAM, Bennett H, Jones AT.
1627 2004. A role for the small GTPase Rab21 in the early endocytic pathway. *J Cell Sci*
1628 **117**:6297–6311. doi:10.1242/jcs.01560

1629 Singla A, Fedoseienko A, Giridharan SSP, Overlee BL, Lopez A, Jia D, Song J, Huff-
1630 Hardy K, Weisman L, Burstein E, Billadeau DD. 2019. Endosomal PI(3)P regulation
1631 by the COMMD/CCDC22/CCDC93 (CCC) complex controls membrane protein
1632 recycling. *Nat Commun* **10**. doi:10.1038/s41467-019-12221-6

1633 Slosarek EL, Schuh AL, Pustova I, Johnson A, Bird J, Johnson M, Frankel EB,
1634 Bhattacharya N, Hanna MG, Burke JE, Ruhl DA, Quinney K, Block S, Peotter JL,
1635 Chapman ER, Sheets MD, Butcher SE, Stagg SM, Audhya A. 2018. Pathogenic
1636 TFG Mutations Underlying Hereditary Spastic Paraparesis Impair Secretory Protein
1637 Trafficking and Axon Fasciculation. *Cell Rep* **24**:2248–2260.
1638 doi:10.1016/j.celrep.2018.07.081

1639 Sun M, Kotler JLM, Liu S, Street TO. 2019. The endoplasmic reticulum (ER)
1640 chaperones BiP and Grp94 selectively associate when BiP is in the ADP

1641 conformation. *J Biol Chem* **294**:6387–6396. doi:10.1074/jbc.RA118.007050

1642 Synofzik M, Haack TB, Kopajtich R, Gorza M, Rapaport D, Greiner M, Schönfeld C,
1643 Freiberg C, Schorr S, Holl RW, Gonzalez MA, Fritsche A, Fallier-Becker P,
1644 Zimmermann R, Strom TM, Meitinger T, Züchner S, Schüle R, Schöls L, Prokisch
1645 H. 2014. Absence of BiP Co-chaperone DNAJC3 causes diabetes mellitus and
1646 multisystemic neurodegeneration. *Am J Hum Genet* **95**:689–697.
1647 doi:10.1016/j.ajhg.2014.10.013

1648 Tachibana M, Holm ML, Liu CC, Shinohara M, Aikawa T, Oue H, Yamazaki Y, Martens
1649 YA, Murray ME, Sullivan PM, Weyer K, Glerup S, Dickson DW, Bu G, Kanekiyo T.
1650 2019. APOE4-mediated amyloid- β pathology depends on its neuronal receptor
1651 LRP1. *J Clin Invest* **129**:1272–1277. doi:10.1172/JCI124853

1652 Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck
1653 S, Brügger B, Ringler P, Müller SA, Rammner B, Gräter F, Hub JS, De Groot BL,
1654 Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R.
1655 2006. Molecular Anatomy of a Trafficking Organelle. *Cell*.
1656 doi:10.1016/j.cell.2006.10.030

1657 Tanaka Y, Suzuki G, Matsuwaki T, Hosokawa M, Serrano G, Beach TG, Yamanouchi K,
1658 Hasegawa M, Nishihara M. 2017. Progranulin regulates lysosomal function and
1659 biogenesis through acidification of lysosomes. *Hum Mol Genet* **26**:969–988.
1660 doi:10.1093/hmg/ddx011

1661 Terman A, Brunk UT. 1998. Lipofuscin: Mechanisms of formation and increase with
1662 age. *APMIS* **106**:265–276. doi:10.1111/j.1699-0463.1998.tb01346.x

1663 Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, Alm T, Asplund A,

1664 Björk L, Breckels LM, Bäckström A, Danielsson F, Fagerberg L, Fall J, Gatto L,

1665 Gnann C, Hober S, Hjelmare M, Johansson F, Lee S, Lindskog C, Mulder J,

1666 Mulvey CM, Nilsson P, Oksvold P, Rockberg J, Schutten R, Schwenk JM,

1667 Sivertsson Å, Sjöstedt E, Skogs M, Stadler C, Sullivan DP, Tegel H, Winsnes C,

1668 Zhang C, Zwahlen M, Mardinoglu A, Pontén F, von Feilitzen K, Lilley KS, Uhlén M,

1669 Lundberg E. 2017. A subcellular map of the human proteome. *Science* (80-).

1670 doi:10.1126/science.aal3321

1671 Traag VA, Aldecoa R, Delvenne JC. 2015. Detecting communities using asymptotical

1672 surprise. *Phys Rev E - Stat Nonlinear, Soft Matter Phys* **92**:022816.

1673 doi:10.1103/PhysRevE.92.022816

1674 Traag VA, Waltman L, van Eck NJ. 2019. From Louvain to Leiden: guaranteeing well-

1675 connected communities. *Sci Rep* **9**:1–12. doi:10.1038/s41598-019-41695-z

1676 Uezu A, Kanak DJ, Bradshaw TW, Soderblom EJ, Catavero CM, Burette AC, Weinberg

1677 RJ, Soderling SH. 2016. Identification of an elaborate complex mediating

1678 postsynaptic inhibition **353**:960–962. doi:10.1126/science.aag0821

1679 Valdez C, Wong YC, Schwake M, Bu G, Wszolek ZK, Krainc D. 2017. Progranulin-

1680 mediated deficiency of cathepsin D results in FTD and NCL-like phenotypes in

1681 neurons derived from FTD patients. *Hum Mol Genet* **26**:4861–4872.

1682 doi:10.1093/hmg/ddx364

1683 Valdmanis PN, Meijer IA, Reynolds A, Lei A, MacLeod P, Schlesinger D, Zatz M, Reid

1684 E, Dion PA, Drapeau P, Rouleau GA. 2007. Mutations in the KIAA0196 gene at the

1685 SPG8 locus cause hereditary spastic paraparesis. *Am J Hum Genet*.

1686 doi:10.1086/510782

1687 Vazdarjanova A, McGaugh JL. 1998. Basolateral amygdala is not critical for cognitive
1688 memory of contextual fear conditioning. *Proc Natl Acad Sci U S A* **95**:15003–
1689 15007. doi:10.1073/pnas.95.25.15003

1690 Wan Y, Feng G, Calakos N. 2011. Sapap3 deletion causes mGluR5-dependent
1691 silencing of AMPAR synapses. *J Neurosci* **31**:16685–16691.
1692 doi:10.1523/JNEUROSCI.2533-11.2011

1693 Wang B, Pourshafeie A, Zitnik M, Zhu J, Bustamante CD, Batzoglou S, Leskovec J.
1694 2018. Network enhancement as a general method to denoise weighted biological
1695 networks. *Nat Commun* **9**:1–8. doi:10.1038/s41467-018-05469-x

1696 Wang T, Yuan Y, Zou H, Yang J, Zhao S, Ma Y, Wang Y, Bian J, Liu X, Gu J, Liu Z, Zhu
1697 J. 2016. The ER stress regulator Bip mediates cadmium-induced autophagy and
1698 neuronal senescence. *Sci Rep* **6**. doi:10.1038/srep38091

1699 Wang X, Huang T, Bu G, Xu H. 2014. Dysregulation of protein trafficking in
1700 neurodegeneration. *Mol Neurodegener*. doi:10.1186/1750-1326-9-31

1701 Ward ME, Chen R, Huang HY, Ludwig C, Telpoukhovskaia M, Taubes A, Boudin H,
1702 Minami SS, Reichert M, Albrecht P, Gelfand JM, Cruz-Herranz A, Cordano C, Alavi
1703 M V., Leslie S, Seeley WW, Miller BL, Bigio E, Mesulam MM, Bogyo MS,
1704 Mackenzie IR, Staropoli JF, Cotman SL, Huang EJ, Gan L, Green AJ. 2017.
1705 Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid
1706 lipofuscinosis. *Sci Transl Med* **9**. doi:10.1126/scitranslmed.aah5642

1707 Ye H, Ojelade SA, Li-Kroeger D, Zuo Z, Wang L, Li Y, Gu JY, Tepass U, Rodal AA,
1708 Bellen HJ, Shulman JM. 2020. Retromer subunit, VPS29, regulates synaptic
1709 transmission and is required for endolysosomal function in the aging brain. *Elife* **9**.

1710 doi:10.7554/elife.51977

1711 Yoshikawa M, Uchida S, Ezaki J, Rai T, Hayama A, Kobayashi K, Kida Y, Noda M,

1712 Koike M, Uchiyama Y, Marumo F, Kominami E, Sasaki S. 2002. CLC-3 deficiency

1713 leads to phenotypes similar to human neuronal ceroid lipofuscinosis. *Genes to*

1714 *Cells* **7**:597–605. doi:10.1046/j.1365-2443.2002.00539.x

1715 Zech T, Calaminus SDJ, Caswell P, Spence HJ, Carnell M, Insall RH, Norman J,

1716 Machesky LM. 2011. The Arp2/3 activator WASH regulates $\alpha 5\beta 1$ -integrin-mediated

1717 invasive migration. *J Cell Sci* **124**:3753–3759. doi:10.1242/jcs.080986

1718 Zhang H, Lin S, Chen X, Gu L, Zhu X, Zhang Y, Reyes K, Wang B, Jin K. 2019. The

1719 effect of age, sex and strains on the performance and outcome in animal models of

1720 stroke. *Neurochem Int*. doi:10.1016/j.neuint.2018.10.005

1721 Zhou X, Sullivan PM, Paushter DH, Hu F. 2018. The interaction between progranulin

1722 with sortilin and the lysosomeMethods in Molecular Biology. Humana Press Inc. pp.

1723 269–288. doi:10.1007/978-1-4939-8559-3_18

1724 Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C,

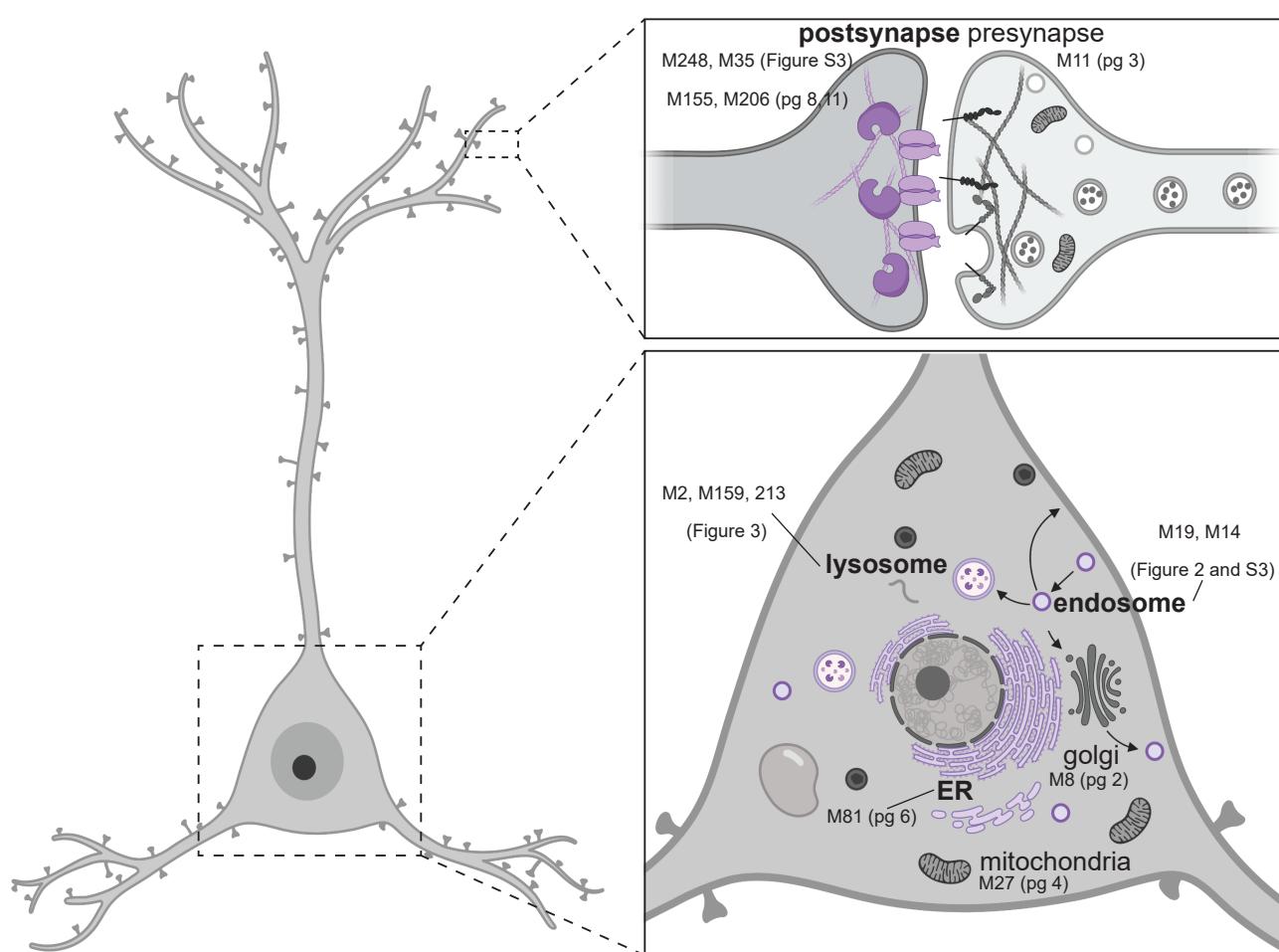
1725 Chanda SK. 2019. Metascape provides a biologist-oriented resource for the

1726 analysis of systems-level datasets. *Nat Commun* **10**. doi:10.1038/s41467-019-

1727 09234-6

1728 Zimprich A, Benet-Pagès A, Struhal W, Graf E, Eck SH, Offman MN, Haubenberger D,

1729 Spielberger S, Schulte EC, Lichtner P, Rossle SC, Klopp N, Wolf E, Seppi K, Pirker


1730 W, Presslauer S, Mollenhauer B, Katzenschlager R, Foki T, Hotzy C, Reinthaler E,

1731 Harutyunyan A, Kralovics R, Peters A, Zimprich F, Brücke T, Poewe W, Auff E,

1732 Trenkwalder C, Rost B, Ransmayr G, Winkelmann J, Meitinger T, Strom TM. 2011.

1733 A mutation in VPS35, encoding a subunit of the retromer complex, causes late-
1734 onset parkinson disease. *Am J Hum Genet* **89**:168–175.
1735 doi:10.1016/j.ajhg.2011.06.008
1736

Supplementary File 1. Representative modules from major subcellular compartments.

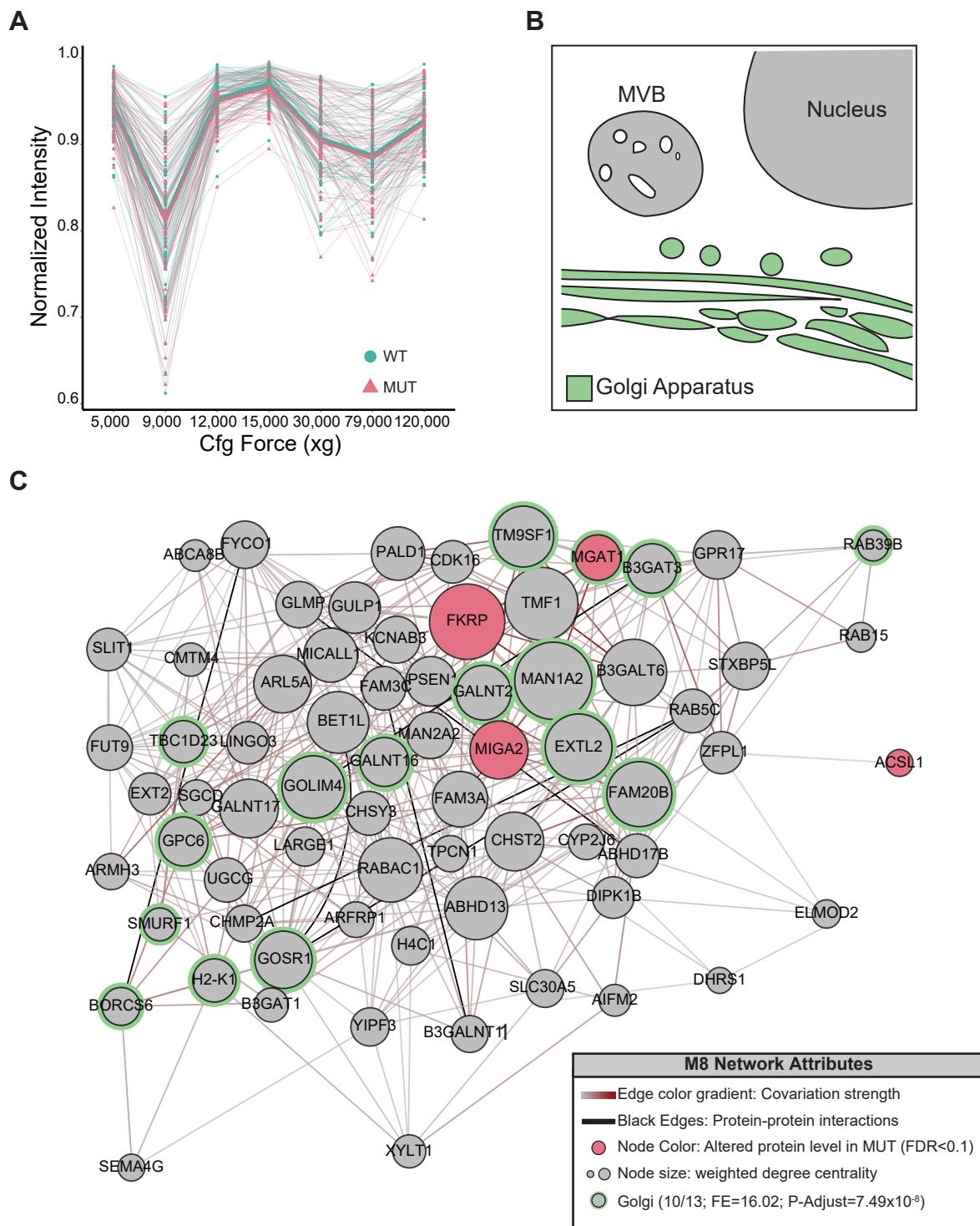
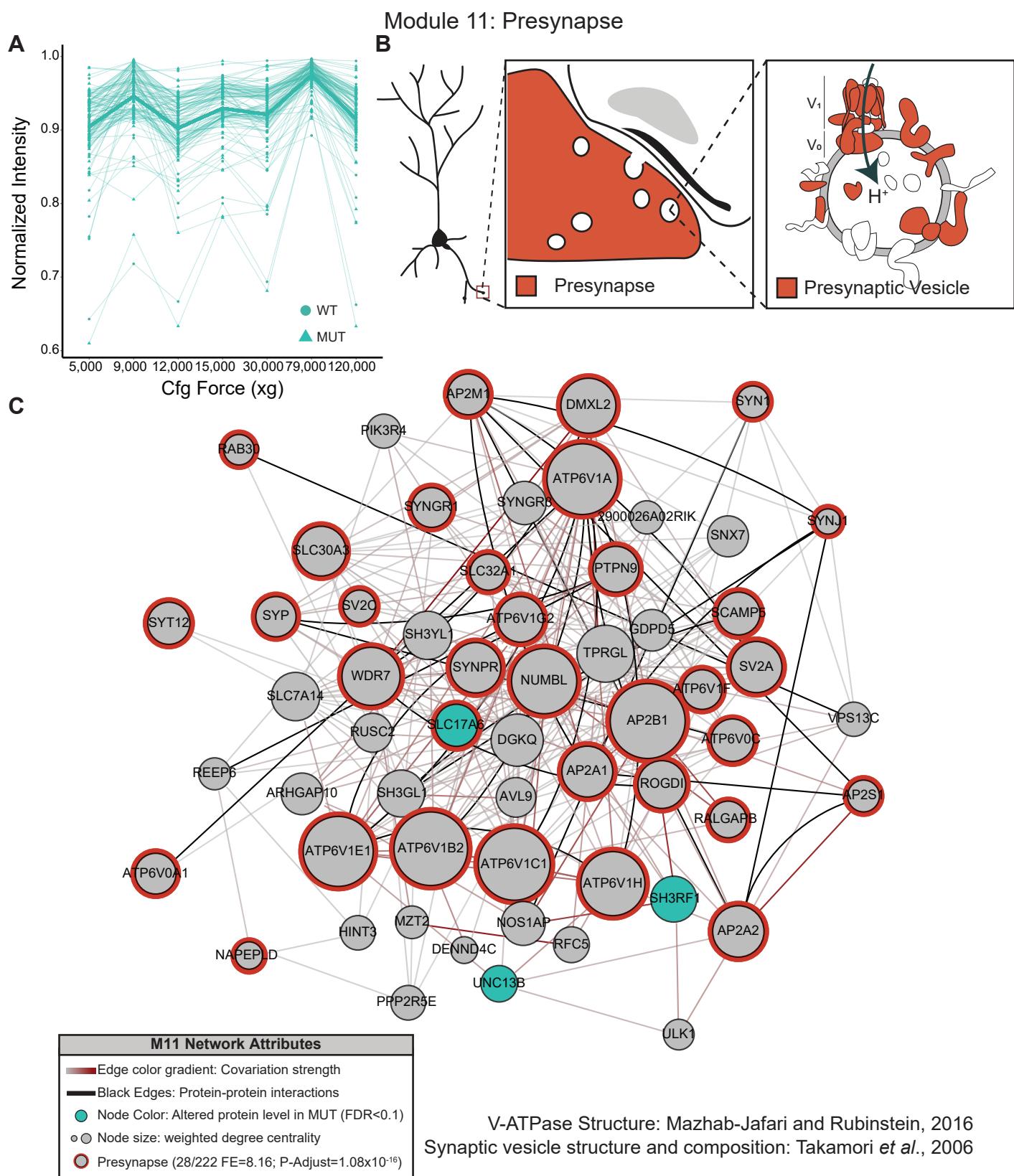

- Subcellular compartment with modules exhibiting significant changes in abundance between WT and SWIP MUT brain.
- Subcellular compartments with no significant difference between WT and MUT brain.

Figure 1. Schematic overview of major subcellular compartments in neurons.

SWIP^{P1019R} MUT mouse brain exhibited significant differences in endosomal, lysosomal, ER, and postsynaptic modules compared to WT.


Each of the following figures contains (A) normalized protein abundance for all proteins in a module, (B) schematic of the predicted subcellular compartment, and (C) network subgraph visualization of a module. These modules, which do not exhibit a significant difference between WT and SWIP^{P1019R} brain, support the hypothesis that the primary cellular deficit resulting from SWIP^{P1019R} is dysregulation of endo-lysosomal pathways.

Module 8: Golgi Apparatus

Figure 2. No significant difference in a predicted golgi apparatus module.

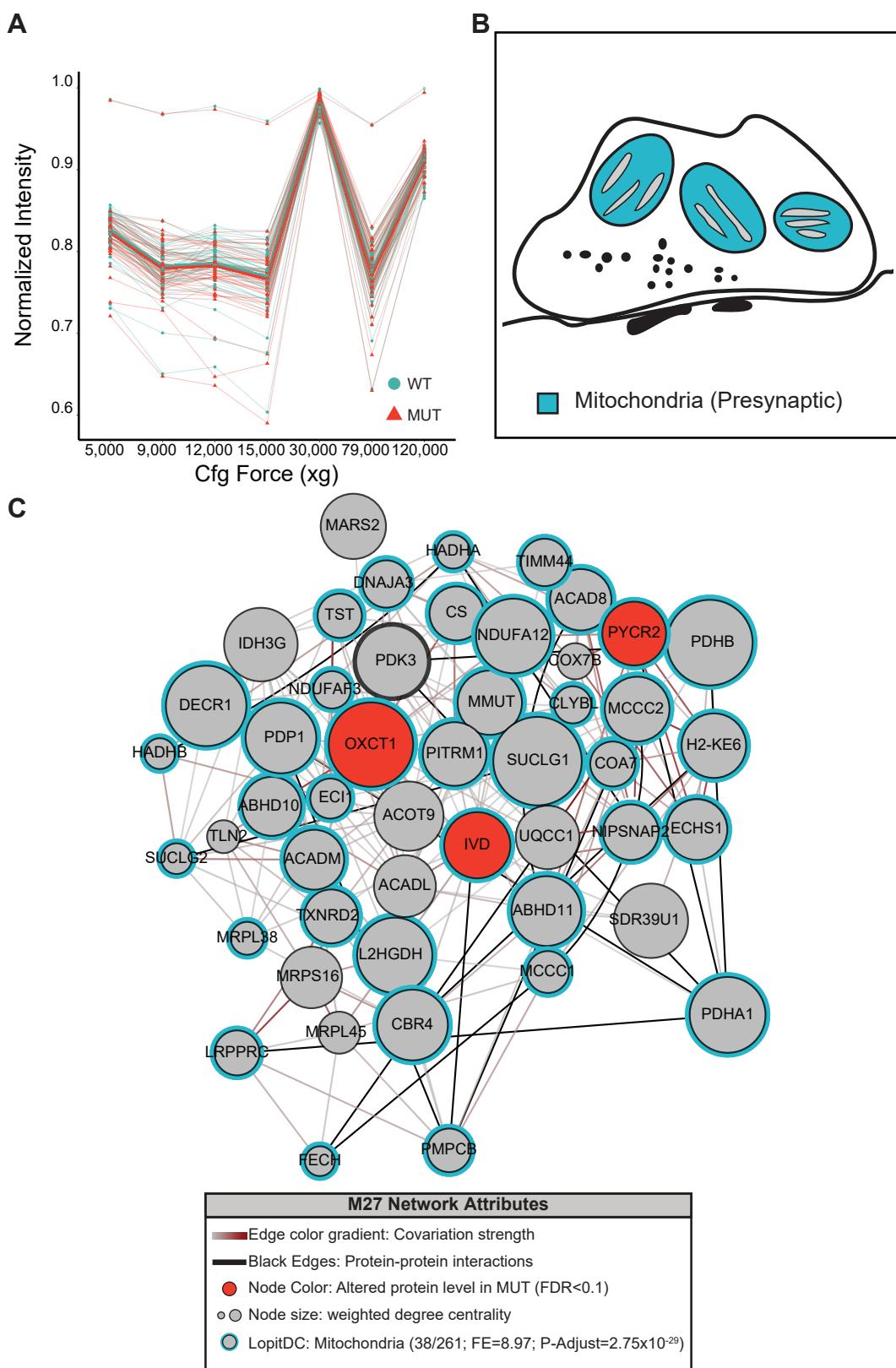

(A) normalized protein abundance for all proteins in M8, which is predicted to represent the golgi apparatus based on its significant enrichment of golgi proteins from Geladaki *et al.*, (2019). (B) schematic representation of the golgi apparatus. (C) M8 subnetwork showing organization of M8 proteins including 10 out of the 13 golgi proteins quantified in this study. Note the presence of MAN1A2 a mannosidase which resides in the golgi and functions in protein glycosylation.

Figure 3. No significant difference in a predicted presynapse module.

(A) normalized protein abundance for all proteins in M11, a module which is enriched for proteins known to reside in the presynaptic compartment or in presynaptic vesicles, of neurons (Takamori *et al.*, 2006). (B) schematic of the vesicle-enriched presynaptic compartment and inset showing the protein composition of a presynaptic vesicle. (C) M11 network graph.

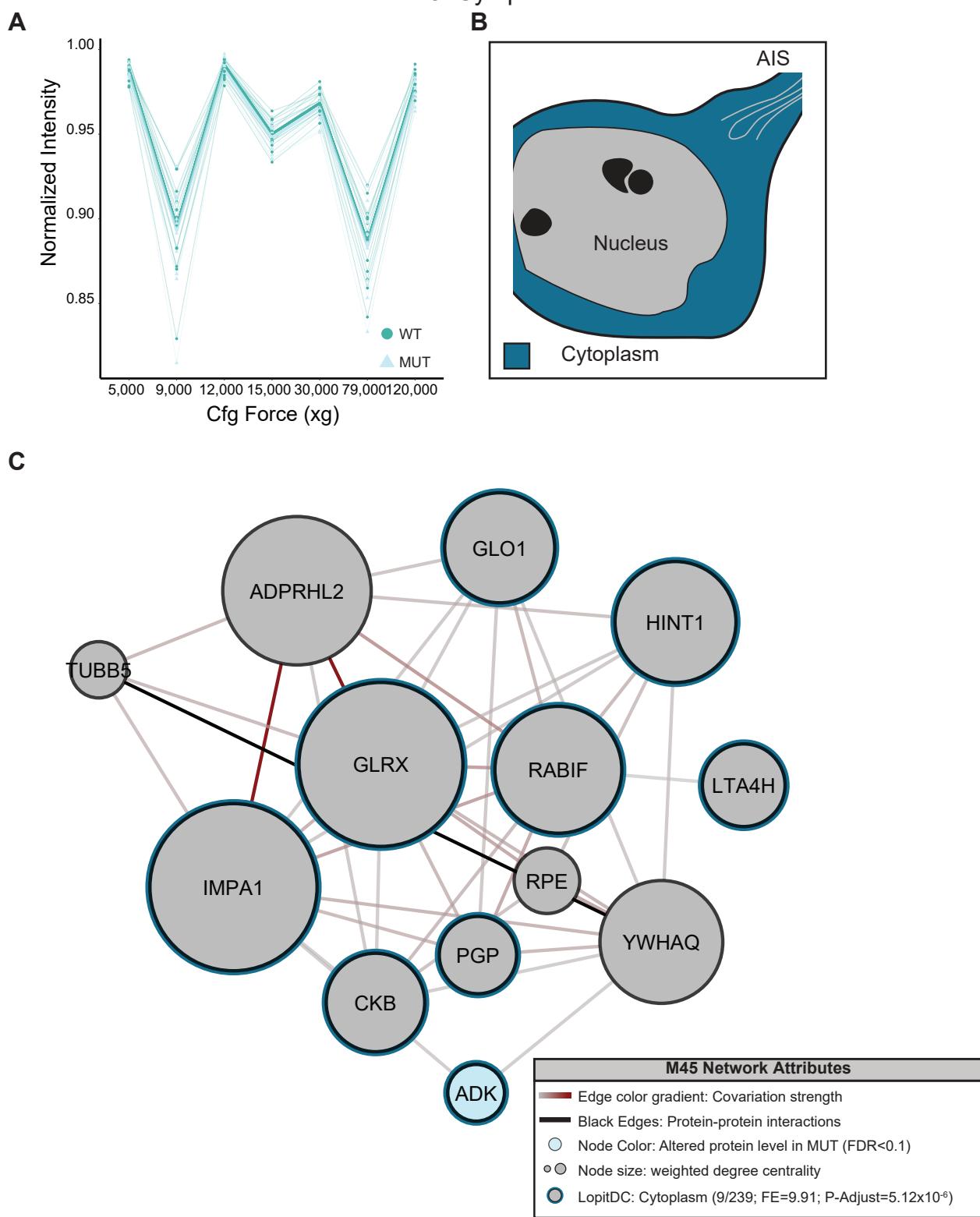

Module 27: Mitochondria

Figure 4. No significant difference in a predicted mitochondrial module.

(A) normalized protein abundance for all proteins in M27, predicted to have mitochondrial function by its enrichment of mitochondrial proteins (Geladaki *et al.*, 2019). (B) schematic of the neuronal mitochondria found in the presynapse. (C) M27 network which contains 38 of the 261 mitochondrial proteins quantified in this study.

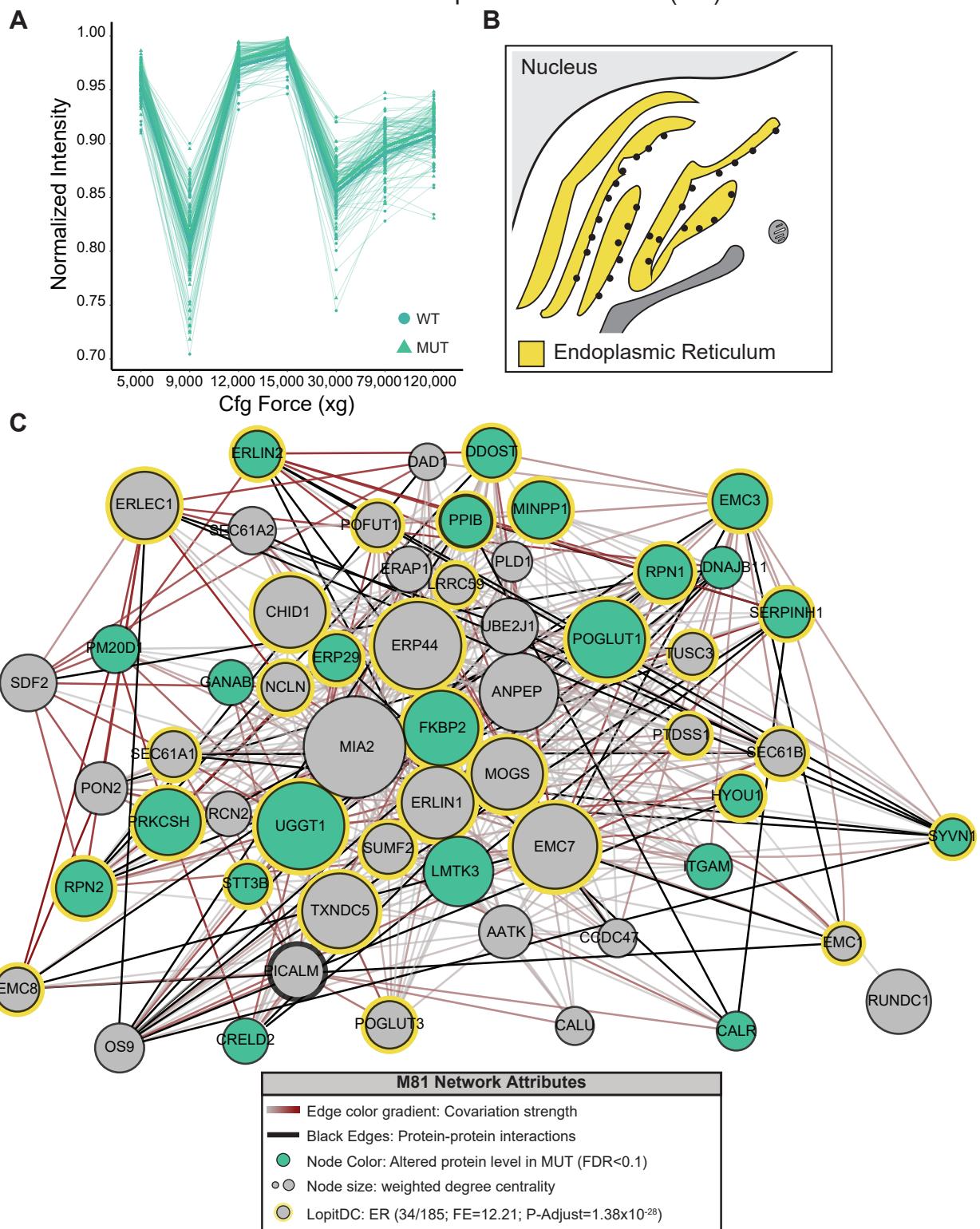

Module 45: Cytoplasm

Figure 5. No significant difference in a predicted cytoplasmic module.

(A) normalized protein abundance for all proteins in M45, predicted to have cytoplasmic localization. (B) schematic of the predicted cytoplasmic compartment, and (C) M45 network. M45 contained 9 of the 239 cytoplasmic proteins (Geladaki *et al.*, 2019) quantified in this study.

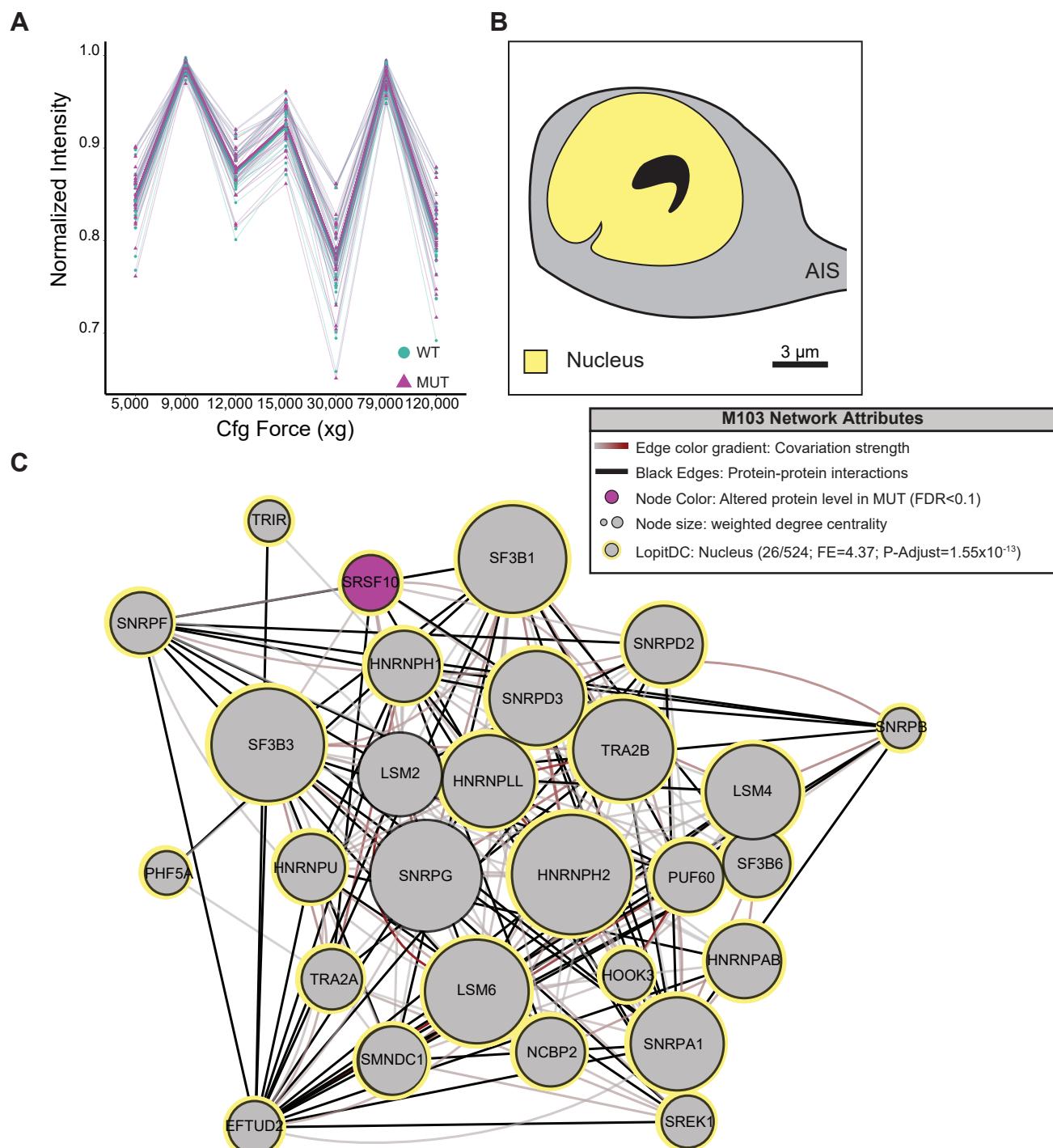

Module 81: Endoplasmic Reticulum (ER)

Figure 6. No significant difference in a predicted ER module.

(A) normalized protein abundance for all proteins in M81, predicted to represent the endoplasmic reticulum (ER) based on its enrichment of ER proteins (Geladaki et al., 2006). Note that unlike M83 (Fig. S3), there is no significant difference between MUT WT brain. (B) Schematic of the predicted ER compartment, and (C) M81 network. M81 contains 34 ER proteins including Erlin1/2 which function in a complex as a part of the ERAD pathway.

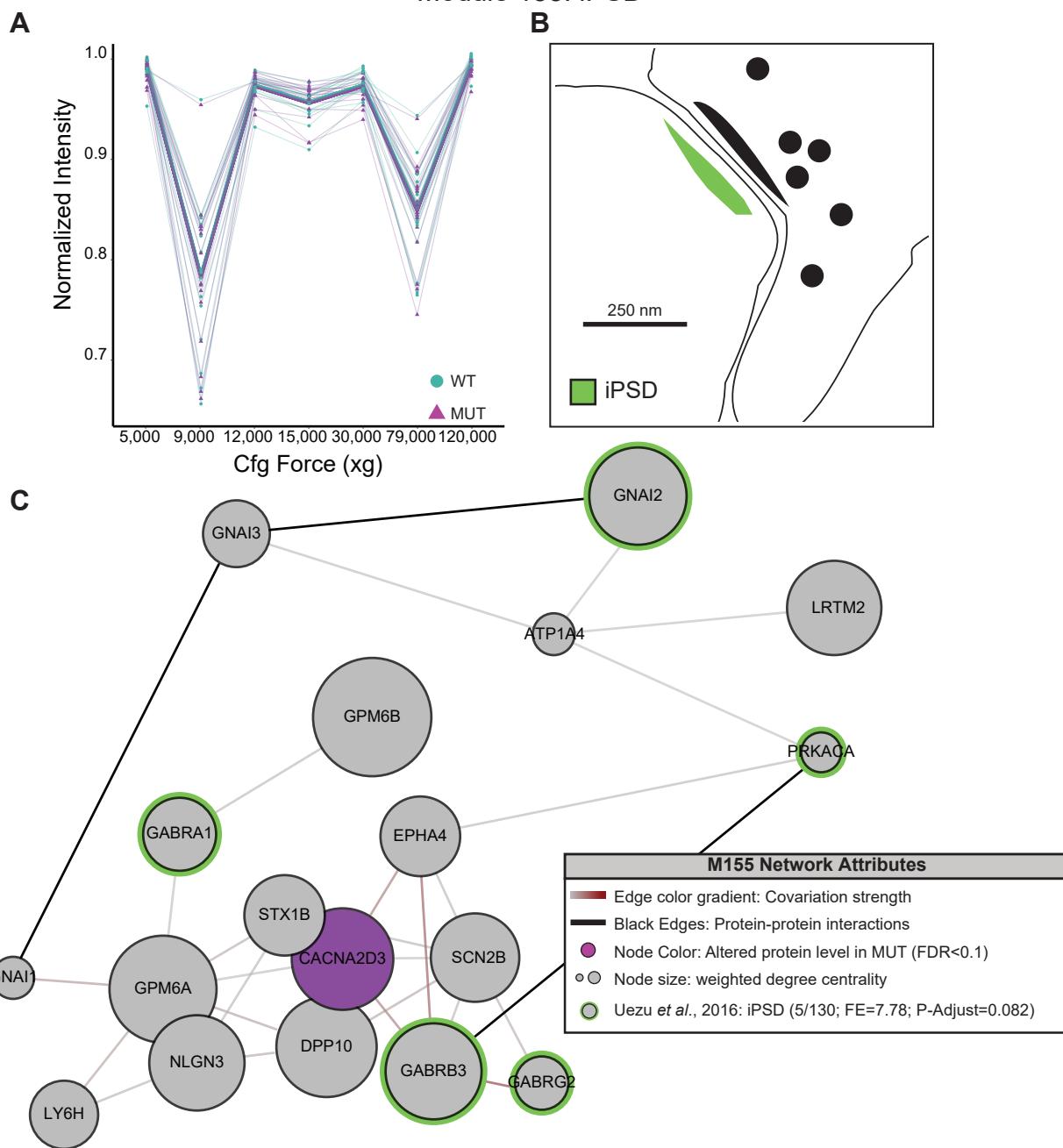
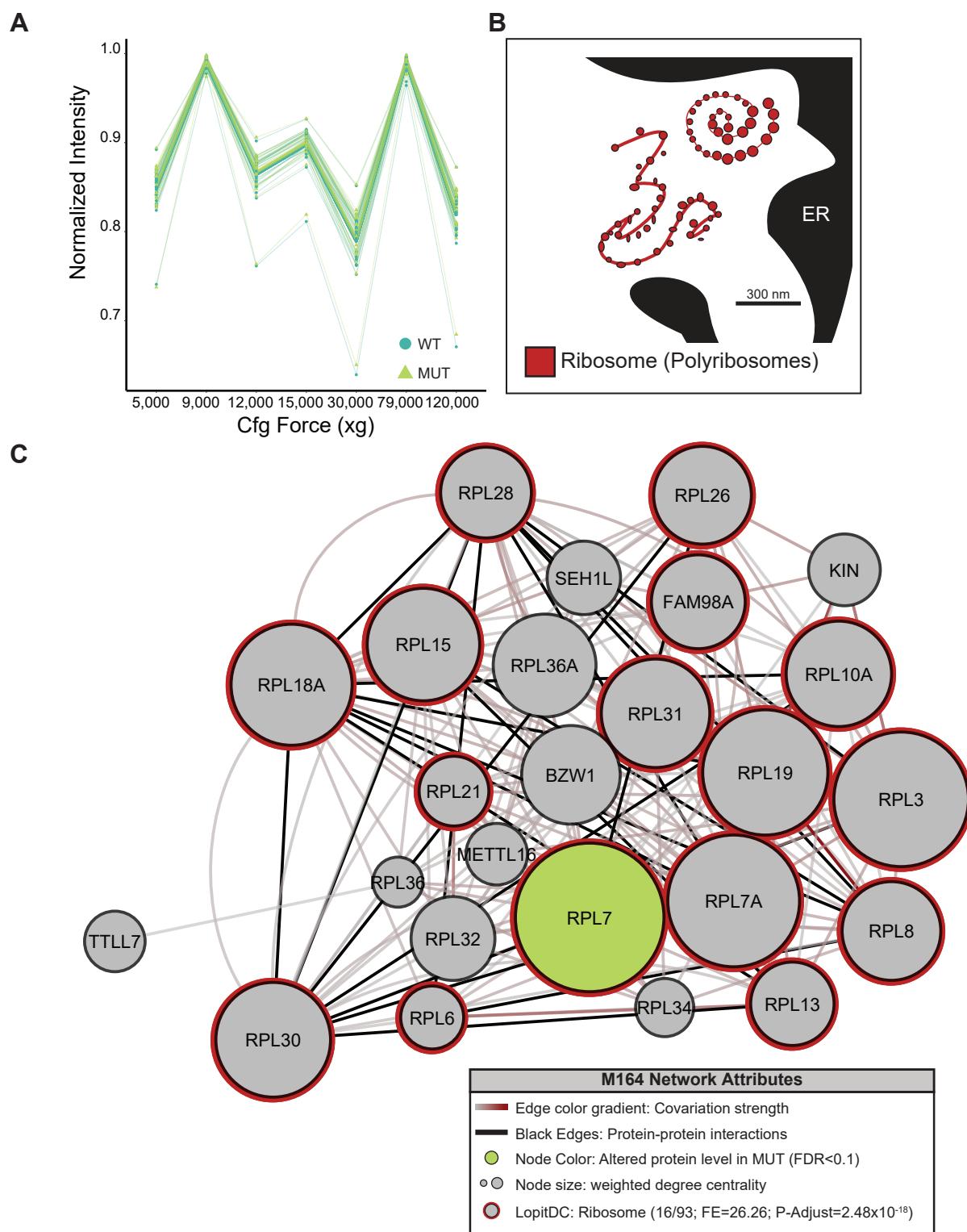

Module 103: Nucleus

Figure 7. No significant difference in a predicted nuclear module.


(A) normalized protein abundance for all proteins in M103, a predicted nuclear module. (B) schematic of the predicted nuclear compartment, and (C) M103 network. M103 contains 26 resident nuclear proteins, including LSM4 and LSM4, which function in spliceosome assembly.

Module 155: iPSD

Figure 8. No significant difference in a predicted inhibitory postsynaptic density (iPSD) module. (A) normalized protein abundance for all proteins in M155, a predicted iPSD module. (B) schematic of the predicted iPSD compartment, and (C) M155 network. M155 contains 5 iPSD proteins including two GABA_AR subunits and one GABA_BR subunit identified by Uezu et al., 2016.

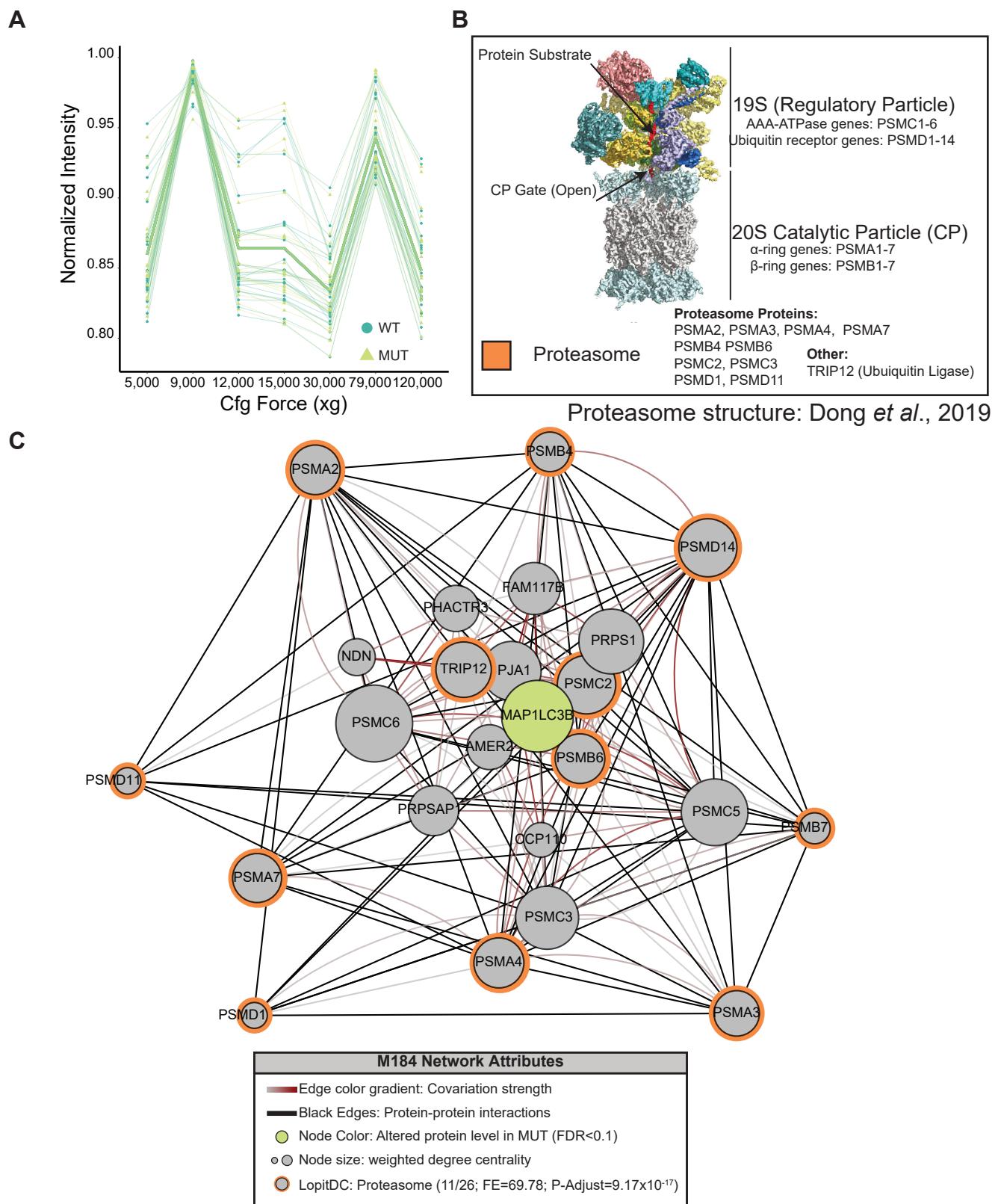

Module 164: Ribosome

Figure 9. No significant difference in a predicted ribosome module.

(A) normalized protein abundance for all proteins in M164, predicted to have ribosomal function by enrichment of ribosome proteins (Geladaki *et al.*, 2019). (B) schematic of the predicted ribosomal compartment, and (C) M164 network.

Module 184: Proteasome

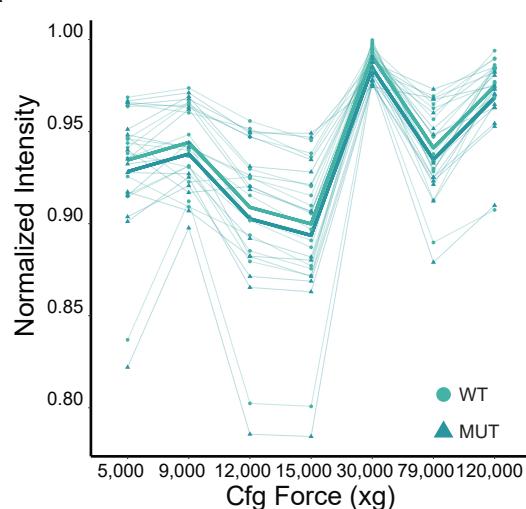
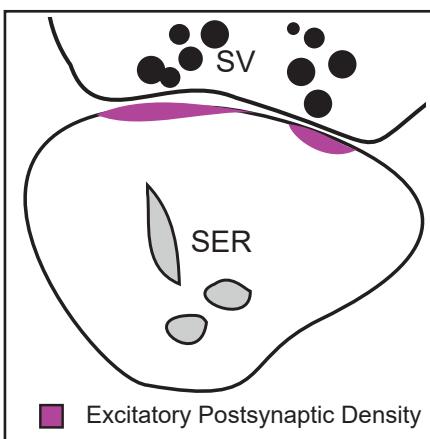
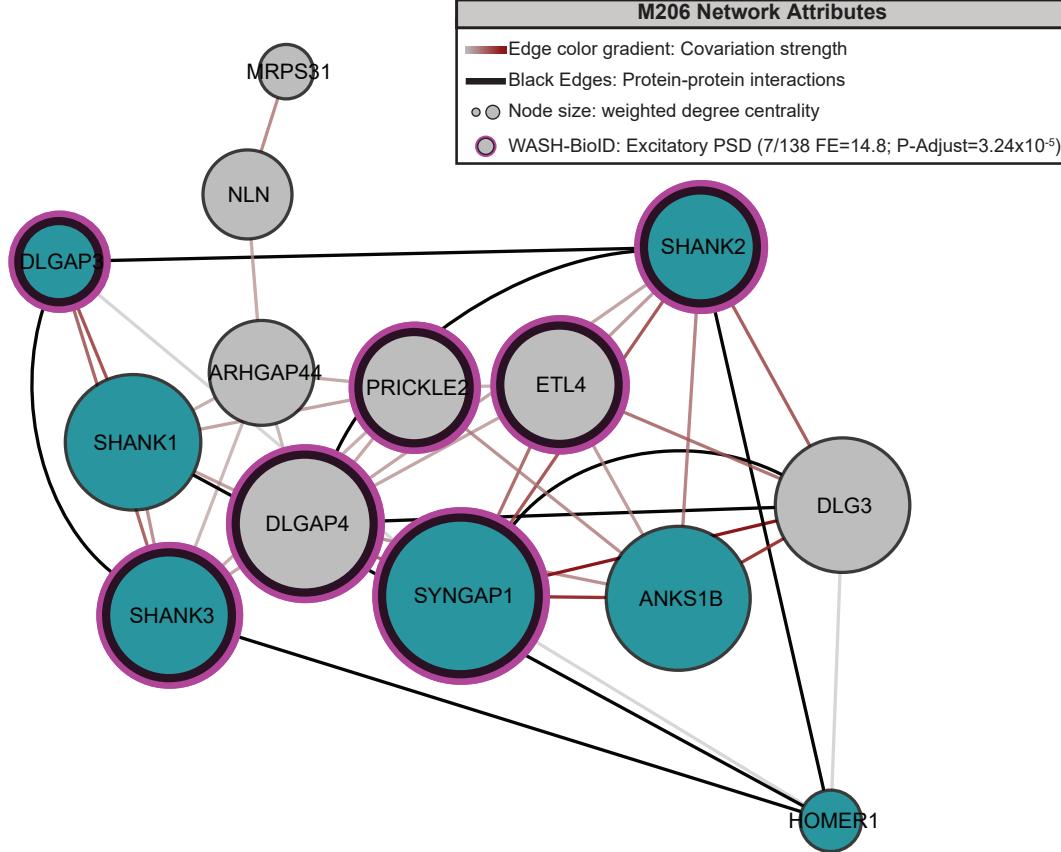


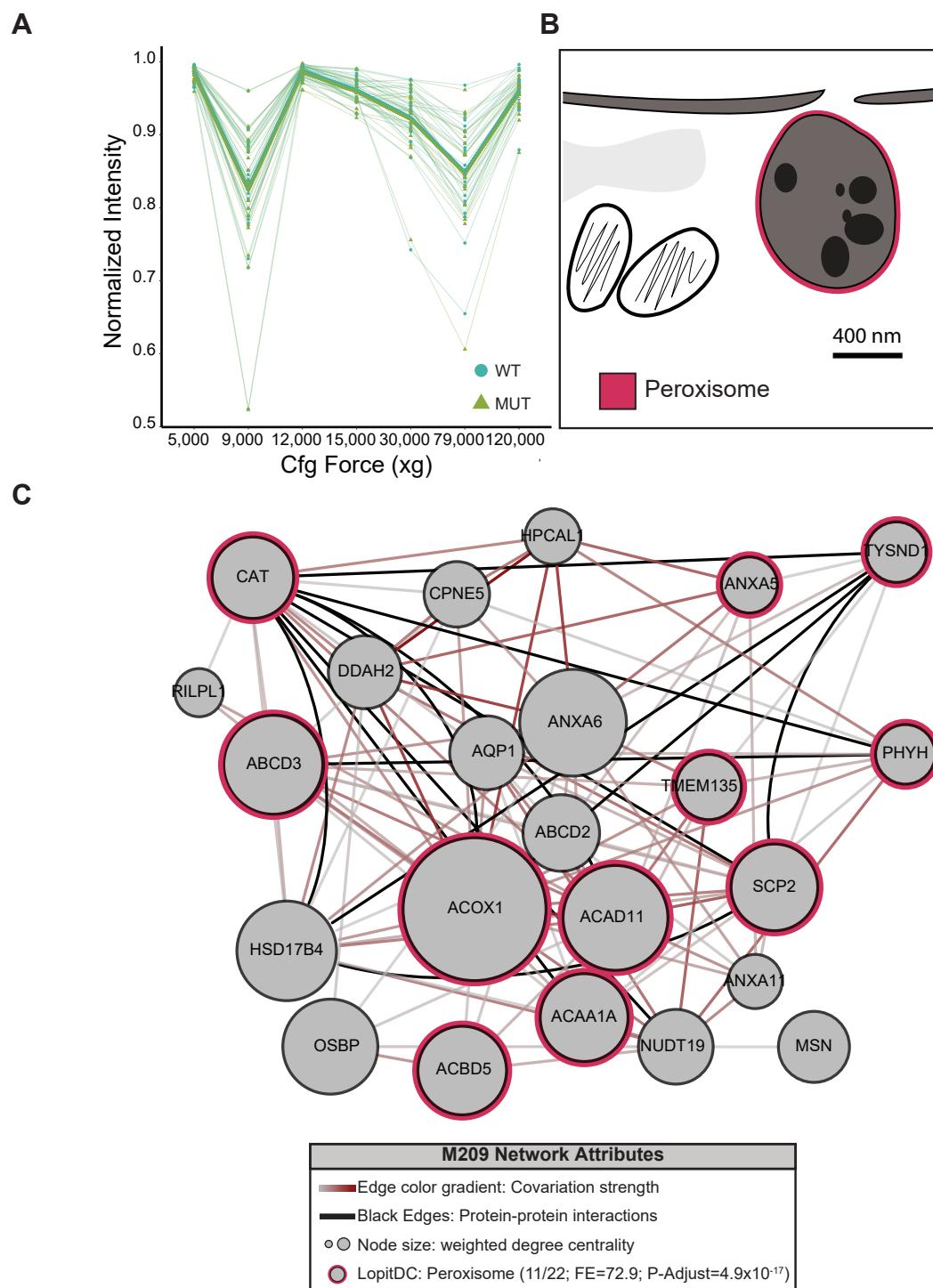
Figure 10. No significant difference in a predicted proteasome module.


(A) normalized protein abundance for all proteins in M184, predicted to represent the proteasome. (B) schematic of the predicted proteasomal compartment, and (C) M184 network. M184 contained 11 out of the 26 proteasomal proteins from Geladaki *et al.*, (2019) that were quantified in this study.

Module 206: Excitatory Postsynapse


A

B



C

Figure 11. No significant difference in a predicted excitatory postsynapse (ePSD) module. (A) normalized protein abundance for all proteins in M206, predicted to have postsynaptic function by enrichment of proteins known to reside in the excitatory postsynapse. (B) schematic of the predicted ePSD compartment, and (C) M206 network. M206 contained 7 out of the 138 ePSD proteins reported by Uezu *et al.*, (2016) and is also enriched for proteins identified by WASH-BioID (this study). In contrast to modules M35 and M143, which exhibited decreased abundance in SWIP MUT brain, M206 does not exhibit a global difference between WT and MUT brain.

Module 209: Peroxisome

Figure 12. No significant difference in a predicted peroxisome module.

(A) normalized protein abundance for all proteins in M209, predicted to represent the peroxisome based on its enrichment of peroxisomal proteins (Geladaki et al., 2019). (B) Schematic of the peroxisome and (C) network of the M209 module which contains 11 of the 22 peroxisomal proteins quantified in this study.