

1 The human PDZone 2.0: characterization of a new

2 resource to test for PDZ interactions by Yeast Two-

3 Hybrid

4 Monica Castro-Cruz ^{1,2}, Frédérique Lembo ², Jean-Paul Borg³, Gilles Trave ⁴, Renaud
5 Vincentelli ⁵, Pascale Zimmermann ^{1,2 *}

6 ¹ Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium

7 ² Équipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM),
8 Aix-Marseille Université, Marseille F-13284, France

9 ³ Marseille Proteomics Platform, CRCM, Institute Paoli-Calmettes, Aix-Marseille Université,
10 Inserm, CNRS, 13009 Marseille, France

11 ⁴ Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de
12 Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR
13 7104/Université de Strasbourg, Illkirch, France

14 ⁵ Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de
15 Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-
16 Marseille Université, Marseille cedex 9, France

17

18 *Correspondence should be addressed to Pascale Zimmermann
19 pascale.zimmermann@kuleuven.be

20

21

22 **Keywords**

23 PDZ, PDZome, protein-protein interaction, HPV16-E6, Yeast two-hybrid.

24

25 **Abbreviations**

26 HPV16, human papilloma virus-16

27 PDZ, postsynaptic density-95, disc large-1, zona occludens-1.

28 PBM, PDZ binding motif

29 PDZome, PDZ proteome

30 Y2H, Yeast two-hybrid

31

32

33

34

35

36

37

38

39

40

41 **Abstract**

42 PSD95-disc large-zonula occludens (PDZ) domains are globular modules of 80-90 amino
43 acids that co-evolved with multicellularity. They commonly bind to carboxy-terminal
44 sequences of a plethora of membrane-associated proteins and influence their trafficking and
45 signaling. We previously built a PDZ resource (PDZome) allowing to unveil human PDZ
46 interactions by Yeast two-hybrid. Yet, this resource is partial according to the current
47 knowledge on the human PDZ proteome. Here we built the PDZome 2.0 library for Yeast
48 two-hybrid, based in a PDZ library manually curated from online resources. The PDZome2.0
49 contains 305 individual clones (266 PDZ domains in isolation and 39 tandems), for which all
50 boundaries have been designed based on available PDZ structures. Using as bait the E6
51 oncoprotein from HPV16, a known promiscuous PDZ interactor, we show that PDZome 2.0
52 outperforms the previous resource.

53

54

55

56

57

58

59

60

61

62 Introduction

63 PDZ scaffold proteins are involved in a wide range of cellular processes including the
64 establishment and maintenance of polarity, protein trafficking, signaling and the coordination
65 of synaptic events (1–3). They contain one or more PDZ domain that is an abundant and
66 promiscuous protein interaction module. PDZ domains were first identified in the proteins
67 **PSD-95** (postsynaptic density-95), **Dlg-1** (disc large-1), and **ZO-1** (zona occludens-1) (4–8).
68 PDZ domains generally recognize short linear motifs of minimum 4 amino acids (PDZ
69 binding motifs or PBM) located at the C-terminal region of receptors, co-receptors, or
70 adhesion molecules (9). Additionally, PDZ domains can interact with internal protein motifs,
71 lipids and other PDZ domains (10–12). PDZ interactions can be tuned in various ways.
72 Changes in salt content and pH (13), auto-inhibition (14), allosteric regulation (15) and
73 phosphorylation (16) are some of the features that modulate PDZ interactions (for reviews
74 see (17,18)).

75 PDZ domains are composed by 80- 90 amino acid residues which fold in six β -strands (A-F)
76 and two α -helices (A-B), forming a partially opened antiparallel B barrel structure (1,19). The
77 PBM binds in a groove formed by the α -helix B and the β -sheet B (19). The PDZ binding
78 groove is connected by a loop which often contains the GLGF motif. The GLGF motif, also
79 described as R/K-X-X-X-G- φ -G- motif where X is any and φ is an hydrophobic residue, can
80 vary significantly and contributes to the affinity of the interactions with the PBM (19,20).
81 Structural and functional studies suggest that PDZ domains prefer specific residues in a PBM.
82 One can currently identify three main PBM classes that can occur in 16 specificity sub-
83 classes (20). Yet, approaches like e.g. phage display suggest that PBM specificities go beyond
84 such classification (21,22).

85 PDZ domains are rare in non-metazoans. For example, bacteria and yeast display no more
86 than 2 and 4 PDZ-domain containing proteins, respectively (23,24). In contrast, PDZ proteins
87 are abundant in metazoans, suggesting they co-evolved with multicellularity (24). Several
88 studies based on sequence analysis using SMART (www.smart.embl-heidelberg.de), Interpro
89 (<https://www.ebi.ac.uk/interpro/>), and PFAM (<https://pfam.xfam.org/>) suggest that the
90 number of PDZ domains in the human proteome ranges from 234 to 450 (25–27). Based on
91 these strictly *in silico* studies, a first collection of human PDZ domains was built (PDZome)
92 to test for PDZ interactions by Yeast-two-hybrid (Y2H) (27). This resource contains 246 PDZ
93 domains. Yet according to more refined study including a 3D-structure based approach and
94 careful manual annotation, this resource contains PDZ domains truncated at their N- and C-
95 termini, by 5 to 16 amino-acids (28). Such truncation might compromise proper folding and
96 binding activities (28–31). In this refined study, we identified 266 PDZ domains embedded in
97 150 proteins (omitting spliced forms) in the human proteome.

98 Noteworthy, it became clear that some PDZ domains occurring in tandem (separated by a
99 short conserved linker region) can function as supramodules (32,33). The binding properties
100 of these supramodules are different from those of PDZ domains taken in isolation. Generally,
101 PDZ tandems display higher affinity for their target and in some case the tandem might be
102 necessary for proper folding of individual domains (33,34).

103 Because the original Y2H PDZome resource (27) misses some PDZ domains, does not
104 contain tandems and also because of the presence of suboptimal boundaries, we prepared a
105 new resource that we called PDZome 2.0. The PDZome 2.0, is more comprehensive
106 including the 266 manually annotated sequences of single PDZ domains (28). Additionally, it
107 contains 39 PDZ domains in tandem. To test for the performance of PDZome 2.0, we used
108 the E6 oncoprotein present in the human papilloma virus-16 (HPV16). The PDZome 2.0
109 detected a total of 54 E6-PDZ interactions. Twenty-nine are common with the 36 previously

110 identified by the PDZone and 25 are newly identified. We therefore propose the PDZone 2.0
111 as a more performant resource to comprehensively map human PDZ interactions by Y2H
112 approach.

113

114 **Materials and Methods**

115 **Sub-cloning of prey and baits**

116 Prey entry clones were collected in the pZeo or the pDONOR201 Gateway ® vectors
117 (NzyTech, Ltd.). All the entry clones were subcloned into the Y2H expression vector
118 pACT2-AD using Gateway ® LR reactions (Invitrogen). After sequence validation, all
119 pACT2-AD clones were transformed into the haploid Y187 yeast strain (MAT α , ura3-52,
120 his3-200, ade2-101, trp1-901, leu2-3, 112, gal4 Δ , met-, gal80 Δ , MEL1, URA3::GAL1UAS -
121 GAL1TATA-lacZ).

122 The two baits used here, correspond to a fragment of the HVP16 E6 oncoprotein wildtype
123 (MSCCRSSRTRRETQL), and the same fragment without the PDZ binding motif or Δ TQL
124 (MSCCRSSRTRRE). The E6 fragments were subcloned into the pGBT9-BD vector for
125 expression in yeast, as reported previously (27). After sequence validation, E6 constructs
126 were transformed into the haploid AH109 yeast strain (MAT α , trp1-901, leu2-3, 112, ura3-
127 52, his3-200, gal4 Δ , gal80 Δ , LYS2::GAL1UAS -GAL1TATA -HIS3, GAL2UAS -
128 GAL2TATA -ADE2, URA3::MEL1UAS -MEL1 TATA -lacZ).

129

130 **Y2H assays.**

131 PDZ interactions were tested screened by Y2H assay (36). Briefly, the Y2H was performed
132 through mating of the two yeast strains Y187 (α) and AH109 (α). The yeasts were grown
133 together ($\alpha + \alpha$) in liquid Yeast extract-Peptone-Dextrose (YPD) supplemented with 10%
134 PEG for 5 - 6 h at 30 °C under gentle agitation (140 rpm). After one wash in sterile water, the
135 yeasts were spotted on solid medium. To test the mating efficiency, the yeasts were spotted
136 on a solid permissive medium SC Agar -L -W. To test for interactions, the yeasts were
137 spotted on a solid selective medium SC Agar -L -W -H. All SC-Agar plates were incubated
138 at least 72 h and up to 1 week at 30 °C or 2 weeks at room temperature. Images from the solid
139 selective medium plates were captured and analyzed. Random positive clones were verified
140 by PCR amplification and automated sequencing with the GAL-AD primer (Eurofins
141 GATC).

142

143 **Results**

144 *Construction of the human PDZ resource for Y2H assays*

145 To build the human PDZome 2.0 resource allowing to test for PDZ interactions by Y2H, the
146 266 known human PDZ domain sequences (**Table S1**), bearing boundaries optimized based
147 on available structural data (28), were introduced in the prey vector by Gateway ® approach
148 (**Fig. 1A**). We also included 39 PDZ tandems (**Table S2**). The PDZ tandems were designed
149 using the online UniProt resource (<https://www.uniprot.org/>). First, all PDZ proteins with
150 more than one PDZ domain were included in the list (multi-PDZ proteins). Then, within these
151 multi-PDZ proteins, those in which 2 PDZ domains were connected by a linker region of up
152 to 36 amino acid residues acids were included. The final list of 39 tandems, belonging to 28
153 PDZ proteins, represent around 20% of the human PDZ proteome (**Table S2**).

154 All recombinant clones present in the prey pACT2-AD vector were transformed into the
155 haploid Y187 (α) yeast strain. The final collection of individual clones was arrayed in four
156 96-well plates (**Fig. 1 A**).

157

158 **Fig 1 Construction of the PDZone 2.0 for yeast two-hybrid screens.**

159 The PDZone 2.0 was built using the Gateway ® cloning system. **(A)** The entry clones corresponding
160 to the open reading frames (ORF) of the 266 PDZ domains and 39 PDZ domains in tandem were
161 subcloned from pZeo or pDONOR entry vectors. The ORFs were then introduced into the pACT2-AD
162 vector using Gateway ® LR clonase. After validation by sequencing, pACT2-AD clones were
163 transformed into the Y187 (type α) yeast strain. Ready for mating yeast containing the PDZone fused
164 to the Gal4 activation domain were arranged in 4 plates of 96 wells (a, b, c correspond to single PDZ
165 domains, whereas t corresponds to tandems). **(B)** Two peptides corresponding to the C-terminal part
166 of the E6 protein from the HPV16 were used as baits. The wild type (MSCCRSSLRRETQL) and the
167 Δ TQL (or Δ PBM) were subcloned in the pGBT9-BD vector as described previously (27) and
168 transformed into the AH109 (type a) yeast strain.

169

170 *The PDZone 2.0 for Y2H screenings is validated using the HPV16 E6 oncoprotein*

171 To characterize the performance of the PDZone 2.0 we used a fragment of the HPV16 E6
172 oncoprotein as bait in Y2H screenings. The HVP16 E6 oncoprotein is involved in the
173 development of human cervical cancer by exploiting its class I PBM which has been
174 previously described to bind at least 29 PDZ scaffold proteins (27,37–39).

175 Two E6 constructs were used to validate the new resource. The wild-type E6
176 (MSCCRSSLRRETQL) and the mutant E6 Δ PBM, in which the PBM is disrupted by
177 removing the last 3 amino acids (MSCCRSSLRRE) (**Fig. 1 B**). Bait constructs were

178 subcloned in the pGBT9-BD expression vector and fusion proteins were expressed in the
179 AH109 yeast strain for Y2H (**Fig. 1 B**).

180 Y2H screens were carried out by mating the two recombinant yeast strains Y187 (α) and
181 AH109 (α), allowing the formation of diploid yeasts expressing the prey and the bait
182 constructs (**Fig. 2 A**). According to Y2H principles, in case the E6 bait interacts with a given
183 PDZ prey, a complex is formed and the activating domain (AD) is recruited near the reporter
184 gene, where it can stimulate its expression (**Fig. 2 B, C**). To control mating efficiency, we
185 cultured our mated yeasts in SC-Agar medium lacking leucine and tryptophan (-LW). The
186 growth of dense white colonies indicated an efficient mating (**Fig. 2 C upper panel**).
187 Simultaneously, to test for PDZ interactions, the mated yeasts were grown in SC-Agar
188 medium lacking leucine, tryptophan, and histidine (-LWH). The growth of dense white
189 colonies in the medium -LWH were indicative of E6-PDZ interactions (**Fig. 2 C middle**
190 **panel**). As expected, when the E6 PBM was disrupted (E6 Δ TQL), yeasts failed to grow in
191 the -LWH medium (**Fig. 2 C lower panel**) indicating that the PBM is essential.

192

193 **Fig 2 Y2H mating and selection process.**

194 **(A)** Scheme illustrating the mating of the two yeasts strains. The ‘ α ’ type yeasts hosting the E6-
195 pGBT9-BD baits and the ‘ α ’ type yeasts hosting the PDZome 2.0-pACT2-AD were allowed to mate.
196 Diploid yeasts containing both the PDZ and the E6 constructs were selected in synthetic agar medium.
197 **(B)** Scheme illustrating the detection of protein interaction by Y2H. In case the E6-bait coupled to the
198 Gal4 binding domain (BD) interacts with the given PDZ-prey coupled to the Gal4 activation domain
199 (AD), the *HIS3* reporter gene is expressed, allowing growth of the diploid yeasts in a synthetic
200 medium without histidine. In case there is no interaction between bait and prey, the AD is not
201 recruited and the *HIS3* reporter gene is not expressed. **(C)** Photographs exemplifying the growth of
202 diploid yeasts containing both the PDZ and the E6 constructs. Diploid yeasts are selected in

203 permissive culture medium without leucine and tryptophan (-LW). White dense colonies in the -LW
204 medium, suggest an effective mating (upper panel). Simultaneously, the phenotypic test for
205 interactions is performed in selective culture medium without leucine, tryptophan, and histidine (-
206 LWH). White and dense colonies in the -LWH medium correspond to interaction pairs (middle
207 panel). Disruption of the PBM effectively impairs the appearance of white dense colonies in the -
208 LWH medium, confirming a PBM-mediated mode of interaction (lower panel).

209

210 We identified 53 PDZ domains interacting with the PBM of the E6 protein from the HPV16.
211 These interactions were confirmed with the tandem constructs. In addition, the tandems
212 identified four interactions not detected when PDZ domains are taken in isolation (**Fig. 3**,
213 **Fig. S1**). Globally, the PDZome 2.0 outperforms the previous PDZome version that solely
214 identified 36 PDZ domain interacting with E6 (27) (**Fig. 3**). Nevertheless, 8 interactions
215 observed with the PDZome were not detected with the PDZome 2.0. In total, the PDZome 2.0
216 identified 43 PDZ proteins and 57 PDZ domains able to interact with the E6 protein of the
217 HPV16. The previous version of the PDZome detected 28 PDZ proteins and 36 PDZ
218 domains.

219

220 **Fig 3 Mapping of E6-PDZ interactions using PDZome 2.0 as compared to the previous**
221 **resource.** Venn diagram representing the positive interactions identified by Y2H screens using the
222 first PDZome (yellow) and PDZome 2.0 (blue). Common interactions detected using both resources
223 are shown in the intersection region (green). Interactions revealed using PDZ tandems are highlighted
224 in red. Note that USH1C interaction was detected using the PDZ 2 domain taken in isolation as
225 present in the first PDZome and using the tandem (USH1C_1-2) from PDZome 2.0.

226

227 Discussion and conclusion

228 In this study, we built and validated a new and most comprehensive resource to test for
229 human PDZ interactions by Y2H. Compared to the previous version (27), this resource
230 contains 20 additional PDZ domains (266 instead of 246). Moreover, PDZome 2.0 contains
231 39 PDZ domains in tandem. Finally, PDZ domains are flanked by extended boundaries meant
232 to support proper folding (28) and avoid false negative results.

233 Consistently, the PDZome 2.0 revealed 25 interactions that were not detected previously for
234 the viral oncoprotein E6. Among those 25 interactions, 9 were previously detected using the
235 chromatographic holdup approach (HU) (38). Curiously, the PDZome 2.0 failed to detect 7
236 interactions that were detected with the previous version of the PDZome. The reasons are
237 unclear. One trivial reason could be that some constructs were erroneously annotated in the
238 PDZome compared to PDZome 2.0 (27,35,38). Another possible explanation could be that
239 the extended sequences in the PDZ domains restrain particular interactions or contribute to
240 the auto-inhibition of the PDZ domain (14,28). Finally, these interactions might correspond
241 to false positives (40).

242 The presence of tandem structures in a protein (i.e. co-folding domains) can enhance the
243 affinity for a particular ligand (32). Consistently, the PDZ tandem constructs not solely
244 validated interactions observed with PDZ in isolation but also revealed additional
245 interactions. Three of these extra interactions were not described previously in papers
246 reporting the HPV16-E6 -PDZ interactomes (27,38,39,41–44). Obviously, the PDZome 2.0
247 might still be prone to false negative. It is always recommended to verify interactomes using
248 complementary biochemical or biophysical methods such as HU or surface plasmon
249 resonance, before performing functional analyses (38,45,46).

250 In conclusion, PDZome 2.0 represents a valuable additional resource to test for PDZ
251 interactions by Y2H and certainly an easy going first line choice when one aims to
252 investigate in a comprehensive manner the PDZ interactome of a protein of interest.

253 Acknowledgements

254 This work was supported by grants from the French National Research Agency (ANR-18-
255 CE13-0017, Project SynTEV), the Fund for Scientific Research–Flanders (Fonds
256 Wetenschappelijk Onderzoek—Vlaanderen Grants G.0846.15 and G0C5718N), and the
257 Institut National du Cancer (Projets Libres de Recherche “Biologie et Sciences du Cancer”
258 INCa 9474). J.-P.B. is a scholar of Institut Universitaire de France. M.C. benefited of a
259 CONACYT fellowship.

260

261 References

- 262 1. Harris BZ, Lim WA. Mechanism and role of PDZ domains in signaling complex assembly. *J
263 Cell Sci.* 2001 Sep;114(Pt 18):3219–31.
- 264 2. Nourry C, Grant SGN, Borg J-P. PDZ Domain Proteins: Plug and Play! *Sci Signal.* 2003 Apr
265 22;2003(179):re7–re7.
- 266 3. Manjunath GP, Ramanujam PL, Galande S. Structure function relations in PDZ-domain-
267 containing proteins: Implications for protein networks in cellular signalling. *J Biosci.* 2018
268 Mar;43(1):155–71.
- 269 4. Cho KO, Hunt CA, Kennedy MB. The rat brain postsynaptic density fraction contains a
270 homolog of the Drosophila discs-large tumor suppressor protein. *Neuron.* 1992 Nov;9(5):929–
271 42.
- 272 5. Itoh M, Nagafuchi A, Yonemura S, Kitani-Yasuda T, Tsukita S, Tsukita S. The 220-kD protein
273 colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-
274 associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. *J Cell
275 Biol.* 1993 May;121(3):491–502.
- 276 6. Woods DF, Bryant PJ. ZO-1, DlgA and PSD-95/SAP90: homologous proteins in tight, septate
277 and synaptic cell junctions. *Mech Dev.* 1993 Dec;44(2–3):85–9.

278 7. Woods DF, Bryant PJ. The discs-large tumor suppressor gene of *Drosophila* encodes a
279 guanylate kinase homolog localized at septate junctions. *Cell*. 1991 Aug;66(3):451–64.

280 8. Kennedy M. Origin of PDZ (DHR, GLGF) domains. *Trends Biochem Sci*. 1995 Sep;20(9):350.

281 9. Songyang Z. Recognition of Unique Carboxyl-Terminal Motifs by Distinct PDZ Domains.
282 *Science*. 1997 Jan 3;275(5296):73–7.

283 10. Zimmermann P, Meerschaert K, Reekmans G, Leenaerts I, Small JV, Vandekerckhove J, et al.
284 PIP(2)-PDZ domain binding controls the association of syntenin with the plasma membrane.
285 *Mol Cell*. 2002 Jun;9(6):1215–25.

286 11. Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, et al. Interaction of
287 Nitric Oxide Synthase with the Postsynaptic Density Protein PSD-95 and $\alpha 1$ -Syntrophin
288 Mediated by PDZ Domains. *Cell*. 1996 Mar;84(5):757–67.

289 12. Harris BZ, Hillier BJ, Lim WA. Energetic Determinants of Internal Motif Recognition by PDZ
290 Domains. *Biochemistry*. 2001 May;40(20):5921–30.

291 13. Liu W, Wen W, Wei Z, Yu J, Ye F, Liu C-H, et al. The INAD scaffold is a dynamic, redox-
292 regulated modulator of signaling in the *Drosophila* eye. *Cell*. 2011 Jun 24;145(7):1088–101.

293 14. LaLonde DP, Bretscher A. The scaffold protein PDZK1 undergoes a head-to-tail intramolecular
294 association that negatively regulates its interaction with EBP50. *Biochemistry*.
295 2009;48(10):2261–71.

296 15. van den Berk LCJ, Landi E, Walma T, Vuister GW, Dente L, Hendriks WJAJ. An allosteric
297 intramolecular PDZ-PDZ interaction modulates PTP-BL PDZ2 binding specificity.
298 *Biochemistry*. 2007 Nov 27;46(47):13629–37.

299 16. Raghuram V, Hormuth H, Foskett JK. A kinase-regulated mechanism controls CFTR channel
300 gating by disrupting bivalent PDZ domain interactions. *Proc Natl Acad Sci U S A*. 2003 Aug
301 5;100(16):9620–5.

302 17. Ivarsson Y. Plasticity of PDZ domains in ligand recognition and signaling. *FEBS Lett*. 2012
303 Aug 14;586(17):2638–47.

304 18. Lee H-J, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and
305 modification. *Cell Commun Signal CCS*. 2010 May 28;8:8.

306 19. Doyle DA, Lee A, Lewis J, Kim E, Sheng M, MacKinnon R. Crystal structures of a complexed
307 and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by
308 PDZ. *Cell*. 1996 Jun 28;85(7):1067–76.

309 20. Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh J-H, Reva B, et al. A specificity map for the
310 PDZ domain family. *PLoS Biol*. 2008 Sep 30;6(9):e239.

311 21. Ivarsson Y, Arnold R, McLaughlin M, Nim S, Joshi R, Ray D, et al. Large-scale interaction
312 profiling of PDZ domains through proteomic peptide-phage display using human and viral
313 phage peptidomes. *Proc Natl Acad Sci*. 2014 Feb 18;111(7):2542–7.

314 22. Garrido-Urbani S, Garg P, Ghossoub R, Arnold R, Lembo F, Sundell GN, et al. Proteomic
315 peptide phage display uncovers novel interactions of the PDZ1-2 supramodule of syntenin.
316 Valencia A, editor. *FEBS Lett*. 2016 Jan;590(1):3–12.

317 23. Ponting CP. Evidence for PDZ domains in bacteria, yeast, and plants. *Protein Sci Publ Protein*
318 *Soc.* 1997 Feb;6(2):464–8.

319 24. Sakarya O, Conaco C, Egecioglu O, Solla SA, Oakley TH, Kosik KS. Evolutionary Expansion
320 and Specialization of the PDZ Domains. *Mol Biol Evol.* 2010 May 1;27(5):1058–69.

321 25. Letunic I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation
322 resource. *Nucleic Acids Res.* 2012 Jan;40(Database issue):D302-305.

323 26. Spaller MR. Act globally, think locally: systems biology addresses the PDZ domain. *ACS Chem*
324 *Biol.* 2006 May 23;1(4):207–10.

325 27. Belotti E, Polanowska J, Daulat AM, Audebert S, Thomé V, Lissitzky J-C, et al. The Human
326 PDZome: A Gateway to PSD95-Disc Large-Zonula Occludens (PDZ)-mediated Functions. *Mol*
327 *Cell Proteomics.* 2013 Sep;12(9):2587–603.

328 28. Luck K, Charbonnier S, Travé G. The emerging contribution of sequence context to the
329 specificity of protein interactions mediated by PDZ domains. *FEBS Lett.* 2012 Aug
330 14;586(17):2648–61.

331 29. Wawrzyniak AM, Vermeiren E, Zimmermann P, Ivarsson Y. Extensions of PSD-95/discs
332 large/ZO-1 (PDZ) domains influence lipid binding and membrane targeting of syntenin-1. *FEBS*
333 *Lett.* 2012 May 21;586(10):1445–51.

334 30. Wang CK, Pan L, Chen J, Zhang M. Extensions of PDZ domains as important structural and
335 functional elements. *Protein Cell.* 2010 Aug;1(8):737–51.

336 31. Zhang J, Petit CM, King DS, Lee AL. Phosphorylation of a PDZ domain extension modulates
337 binding affinity and interdomain interactions in postsynaptic density-95 (PSD-95) protein, a
338 membrane-associated guanylate kinase (MAGUK). *J Biol Chem.* 2011 Dec 2;286(48):41776–
339 85.

340 32. Feng W, Zhang M. Organization and dynamics of PDZ-domain-related supramodules in the
341 postsynaptic density. Vol. 10, *Nature Reviews Neuroscience.* 2009. p. 87–99.

342 33. Ye F, Zhang M. Structures and target recognition modes of PDZ domains: recurring themes and
343 emerging pictures. *Biochem J.* 2013 Oct 1;455(1):1–14.

344 34. Grootjans JJ, Reekmans G, Ceulemans H, David G. Syntenin-syndecan binding requires
345 syndecan-synteny and the co-operation of both PDZ domains of syntenin. *J Biol Chem.* 2000
346 Jun 30;275(26):19933–41.

347 35. Duhoo Y, Girault V, Turchetto J, Ramond L, Durbesson F, Fourquet P, et al. High-Throughput
348 Production of a New Library of Human Single and Tandem PDZ Domains Allows Quantitative
349 PDZ-Peptide Interaction Screening Through High-Throughput Holdup Assay. *Methods Mol*
350 *Biol Clifton NJ.* 2019;2025:439–76.

351 36. Fields S, Song O. A novel genetic system to detect protein–protein interactions. *Nature.* 1989
352 Jul;340(6230):245–6.

353 37. Thomas M, Narayan N, Pim D, Tomaić V, Massimi P, Nagasaka K, et al. Human
354 papillomaviruses, cervical cancer and cell polarity. *Oncogene.* 2008 Nov 24;27(55):7018–30.

355 38. Vincentelli R, Luck K, Poirson J, Polanowska J, Abdat J, Blémont M, et al. Quantifying
356 domain-ligand affinities and specificities by high-throughput holdup assay. *Nat Methods*. 2015
357 Aug;12(8):787–93.

358 39. Ganti K, Broniarczyk J, Manoubi W, Massimi P, Mittal S, Pim D, et al. The Human
359 Papillomavirus E6 PDZ Binding Motif: From Life Cycle to Malignancy. *Viruses*. 2015 Jul
360 2;7(7):3530–51.

361 40. Brückner A, Polge C, Lentze N, Auerbach D, Schlattner U. Yeast Two-Hybrid, a Powerful Tool
362 for Systems Biology. *Int J Mol Sci*. 2009 Jun 18;10(6):2763–88.

363 41. Javier RT, Rice AP. Emerging theme: cellular PDZ proteins as common targets of pathogenic
364 viruses. *J Virol*. 2011 Nov;85(22):11544–56.

365 42. Neveu G, Cassonnet P, Vidalain P-O, Rolloy C, Mendoza J, Jones L, et al. Comparative analysis
366 of virus-host interactomes with a mammalian high-throughput protein complementation assay
367 based on *Gaussia princeps* luciferase. *Methods San Diego Calif*. 2012 Dec;58(4):349–59.

368 43. Pim D, Bergant M, Boon SS, Ganti K, Kranjec C, Massimi P, et al. Human papillomaviruses
369 and the specificity of PDZ domain targeting. *FEBS J*. 2012 Oct;279(19):3530–7.

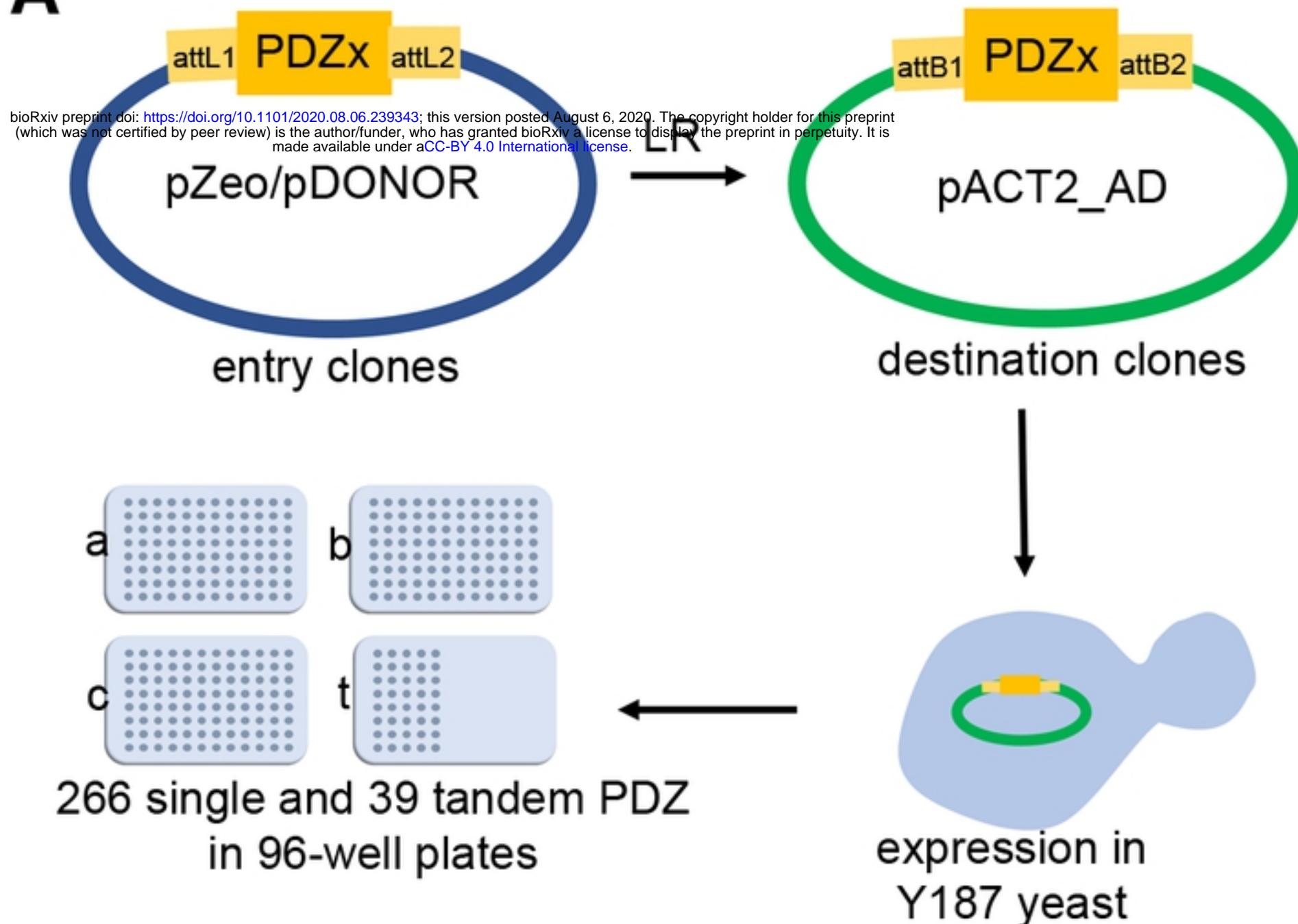
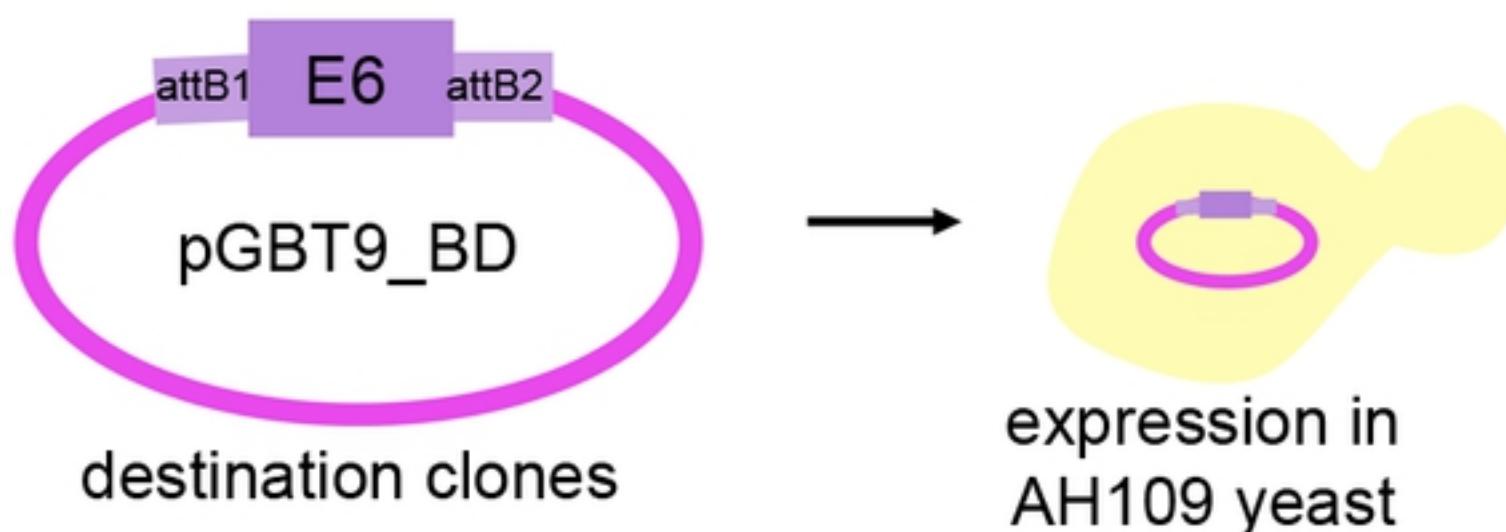
370 44. Poirson J, Biquand E, Straub M-L, Cassonnet P, Nominé Y, Jones L, et al. Mapping the
371 interactome of HPV E6 and E7 oncoproteins with the ubiquitin-proteasome system. *FEBS J*.
372 2017;284(19):3171–201.

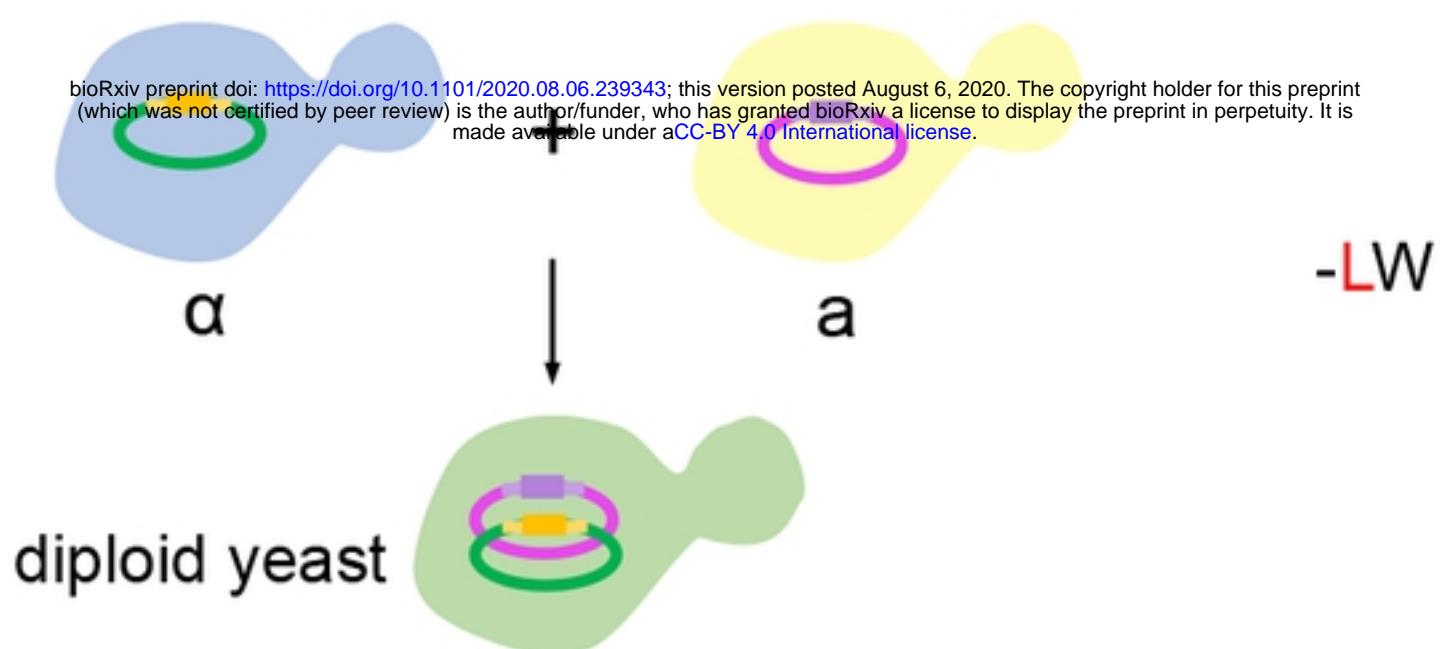
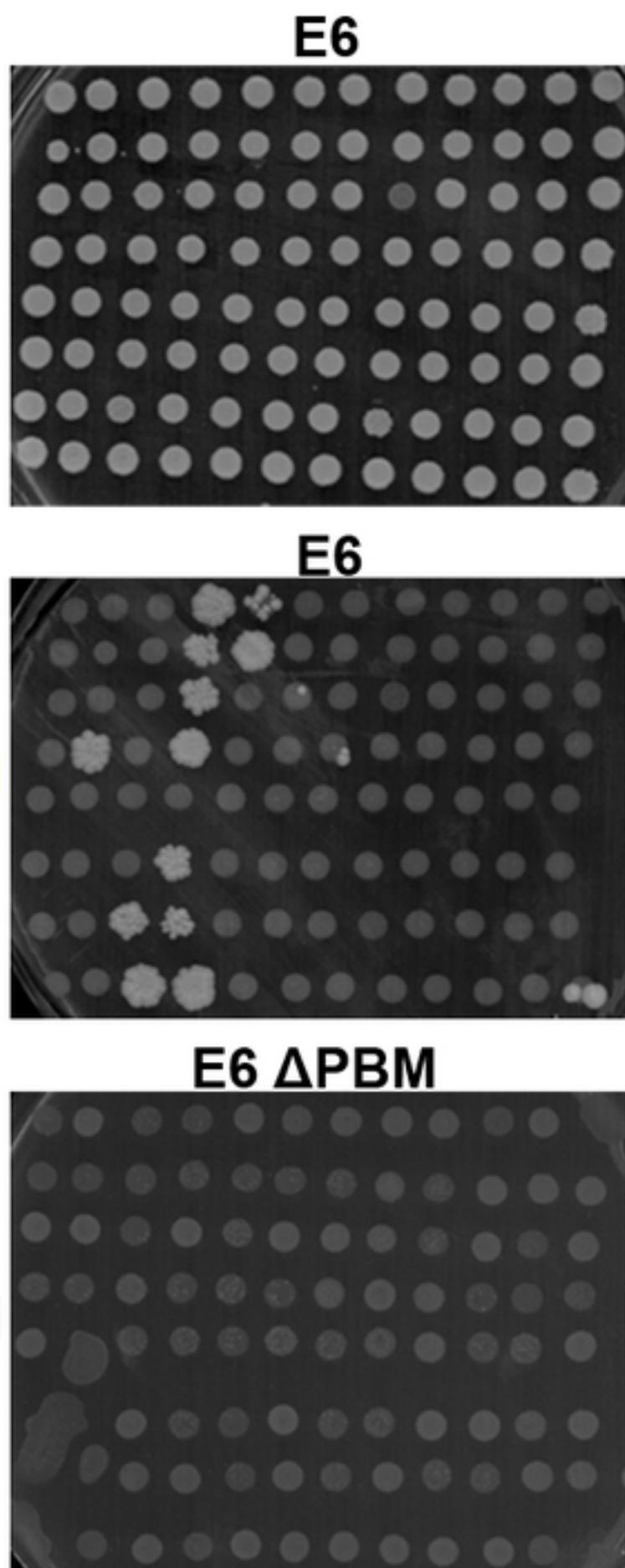
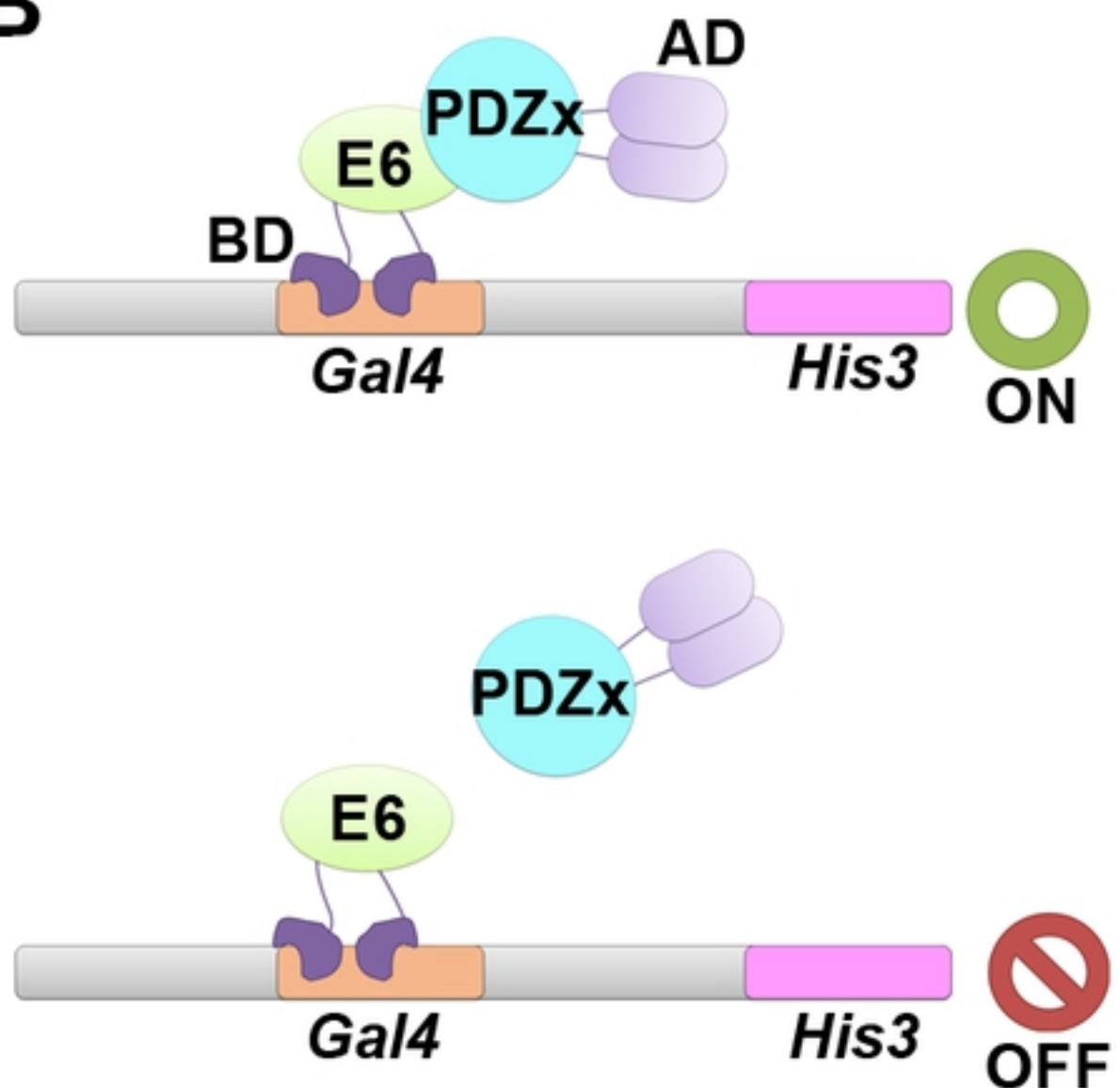
373 45. Grootjans JJ, Zimmermann P, Reekmans G, Smets A, Degeest G, Durr J, et al. Syntenin, a PDZ
374 protein that binds syndecan cytoplasmic domains. *Proc Natl Acad Sci*. 1997 Dec
375 94(25):13683–8.

376 46. Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, et al. Syndecan–
377 syntenin–ALIX regulates the biogenesis of exosomes. *Nat Cell Biol*. 2012 Jul;14(7):677–85.

378

379 **Supporting information**



380 **Fig. S1. Summary of the Yeast-Two-Hybrid raw data.** Summary of the PDZ interactions
381 detected by Yeast-Two-Hybrid using the E6 protein C-terminal region of HPV16 wild type as
382 bait. (A) Comparison of the interactions detected using the PDZome and the single PDZ
383 collection of the PDZome 2.0 (as indicated). (B) Comparison of the interactions detected
384 using the collection of tandems of the PDZome 2.0 and the correspondent PDZ taken in
385 isolation in PDZome and PDZome 2.0 (as indicated). No interaction detected is indicated in
386 red, positive interaction detected is indicated in blue. Numbers correspond to positive
387 colonies / detected from n independent experiments.




388 **S1 Table. Single PDZ domain constructs used to comprehensively map PDZ**

389 **interactions.**

390 **S2 Table. Tandem PDZ constructs used as preys to comprehensively map PDZ**

391 **interactions.**

A**B****MSCCRSSRTRRE**TQL******Figure 1**

A**C****B****Figure 2**

PDZome

PDZome 2.0

CASK	ARHGEF12	DLG1_1	AHNAK	ARHGEF11	DLG3_2			
	DLG1_2	DLG1_3						
	DLG2_2	DLG2_3						
	DLG3_3	DLG4_1						
	FRMPD2_1	LIN7C						
	MAGI2_2	MAGI2_5						
	MAGI3_2	MAST1						
	NHERF3_1	NOS1						
	PDZRN3_1							
	SCRIB_3	SNTB1						
FRMPD4A	TX1B3		PTPN4	PTPN4	PTPN4			
	*USH1C_1-2							
	DLG1_2	DLG2_1						
	DLG2_2	DLG2_3						
	DLG3_3	DLG4_2						
	FRMPD2_1	MAGI1_2						
	MAGI2_2	MAGI2_6						
	MAGI3_2	MPDZ_7						
	NHERF3_1	MPDZ_13						
	PDZRN3_1	PTPN3						
INADI_5	SCRIB_3	SNTB1	PTPN13_3	PTPN13_3	PTPN13_3			
	TX1B3	SNX27						
	*USH1C_1-2							
	DLG1_2	DLG2_1						
	DLG2_2	DLG2_3						
	DLG3_3	DLG4_2						
	FRMPD2_1	MAGI1_2						
	MAGI2_2	MAGI2_6						
	MAGI3_2	MPDZ_7						
	NHERF3_1	MPDZ_13						
LRRK7	PDZRN3_1	PTPN3						
	SCRIB_3	SNTB1						
	TX1B3	SNX27						
	*USH1C_1-2							
	DLG1_2	DLG2_1						
	DLG2_2	DLG2_3						
	DLG3_3	DLG4_2						
	FRMPD2_1	MAGI1_2						
	MAGI2_2	MAGI2_6						
	MAGI3_2	MPDZ_7						
PDLIM1	NHERF3_1	MPDZ_13						
	PDZRN3_1	PTPN3						
	SCRIB_3	SNTB1						
	TX1B3	SNX27						
	*USH1C_1-2							
	DLG1_2	DLG2_1						
	DLG2_2	DLG2_3						
	DLG3_3	DLG4_2						
	FRMPD2_1	MAGI1_2						
	MAGI2_2	MAGI2_6						
RGS12	MAGI3_2	MPDZ_7						
	NHERF3_1	MPDZ_13						
	PDZRN3_1	PTPN3						
	SCRIB_3	SNTB1						
	TX1B3	SNX27						
	*USH1C_1-2							
	DLG1_2	DLG2_1						
	DLG2_2	DLG2_3						
	DLG3_3	DLG4_2						
	FRMPD2_1	MAGI1_2						
SNTA1	MAGI2_2	MAGI2_6						
	MAGI3_2	MPDZ_7						
	NHERF3_1	MPDZ_13						
	PDZRN3_1	PTPN3						
	SCRIB_3	SNTB1						
	TX1B3	SNX27						
	*USH1C_1-2							
	DLG1_2	DLG2_1						
	DLG2_2	DLG2_3						
	DLG3_3	DLG4_2						
*USH1C_2	FRMPD2_1	MAGI1_2						
	MAGI2_2	MAGI2_6						
	MAGI3_2	MPDZ_7						
	NHERF3_1	MPDZ_13						
	PDZRN3_1	PTPN3						
	SCRIB_3	SNTB1						
	TX1B3	SNX27						
	*USH1C_1-2							
	DLG1_2	DLG2_1						
	DLG2_2	DLG2_3						
common								

Figure 3