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Abstract

PSDO95-disc large-zonula occludens (PDZ) domains are globular modules of 80-90 amino
acids that co-evolved with multicellularity. They commonly bind to carboxy-terminal
sequences of a plethora of membrane-associated proteins and influence their trafficking and
signaling. We previously built a PDZ resource (PDZome) allowing to unveil human PDZ
interactions by Yeast two-hybrid. Yet, this resource is partial according to the current
knowledge on the human PDZ proteome. Here we built the PDZome 2.0 library for Yeast
two-hybrid, based in a PDZ library manually curated from online resources. The PDZome2.0
contains 305 individual clones (266 PDZ domains in isolation and 39 tandems), for which all
boundaries have been designed based on available PDZ structures. Using as bait the E6
oncoprotein from HPV16, a known promiscuous PDZ interactor, we show that PDZome 2.0

outperforms the previous resource.


https://doi.org/10.1101/2020.08.06.239343
http://creativecommons.org/licenses/by/4.0/

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.06.239343; this version posted August 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY 4.0 International license.

Introduction

PDZ scaffold proteins are involved in a wide range of cellular processes including the
establishment and maintenance of polarity, protein trafficking, signaling and the coordination
of synaptic events (1-3). They contain one or more PDZ domain that is an abundant and
promiscuous protein interaction module. PDZ domains were first identified in the proteins
PSD-95 (postsynaptic density-95), Dlg-1 (disc large-1), and ZO-1 (zona occludens-1) (4-8).
PDZ domains generally recognize short linear motifs of minimum 4 amino acids (PDZ
binding motifs or PBM) located at the C-terminal region of receptors, co-receptors, or
adhesion molecules (9). Additionally, PDZ domains can interact with internal protein motifs,
lipids and other PDZ domains (10-12). PDZ interactions can be tuned in various ways.
Changes in salt content and pH (13), auto-inhibition (14), allosteric regulation (15) and
phosphorylation (16) are some of the features that modulate PDZ interactions (for reviews

see (17,18)).

PDZ domains are composed by 80- 90 amino acid residues which fold in six B-strands (A-F)
and two a-helices (A-B), forming a partially opened antiparallel B barrel structure (1,19). The
PBM binds in a groove formed by the a-helix B and the B-sheet B (19). The PDZ binding
groove is connected by a loop which often contains the GLGF motif. The GLGF motif, also
described as R/K-X-X-X-G-¢-G- motif where X is any and ¢ is an hydrophobic residue, can
vary significantly and contributes to the affinity of the interactions with the PBM (19,20).
Structural and functional studies suggest that PDZ domains prefer specific residues in a PBM.
One can currently identify three main PBM classes that can occur in 16 specificity sub-
classes (20). Yet, approaches like e.g. phage display suggest that PBM specifities go beyond

such classification (21,22).
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85 PDZ domains are rare in non-metazoans. For example, bacteria and yeast display no more
86  than 2 and 4 PDZ-domain containing proteins, respectively (23,24). In contrast, PDZ proteins
87 are abundant in metazoans, suggesting they co-evolved with multicellularity (24). Several

88  studies based on sequence analysis using SMART (www.smart.embl-heidelberg.de), Interpro

89  (https://www.ebi.ac.uk/interpro/), and PFAM (https://pfam.xfam.org/) suggest that the

90 number of PDZ domains in the human proteome ranges from 234 to 450 (25-27). Based on
91 these strictly in silico studies, a first collection of human PDZ domains was built (PDZome)
92  to test for PDZ interactions by Yeast-two-hybrid (Y2H) (27). This resource contains 246 PDZ
93  domains. Yet according to more refined study including a 3D-structure based approach and
94  careful manual annotation, this resource contains PDZ domains truncated at their N- and C-
95  termini, by 5 to 16 amino-acids (28). Such truncation might compromise proper folding and
96  binding activities (28-31). In this refined study, we identified 266 PDZ domains embedded in

97 150 proteins (omitting spliced forms) in the human proteome.

98 Noteworthy, it became clear that some PDZ domains occurring in tandem (separated by a
99  short conserved linker region) can function as supramodules (32,33). The binding properties
100  of these supramodules are different from those of PDZ domains taken in isolation. Generally,
101  PDZ tandems display higher affinity for their target and in some case the tandem might be

102  necessary for proper folding of individual domains (33,34).

103  Because the original Y2H PDZome resource (27) misses some PDZ domains, does not
104  contain tandems and also because of the presence of suboptimal boundaries, we prepared a
105 new resource that we called PDZome 2.0. The PDZome 2.0, is more comprehensive
106  including the 266 manually annotated sequences of single PDZ domains (28). Additionally, it
107  contains 39 PDZ domains in tandem. To test for the performance of PDZome 2.0, we used
108 the E6 oncoprotein present in the human papilloma virus-16 (HPV16). The PDZome 2.0
109  detected a total of 54 E6-PDZ interactions. Twenty-nine are common with the 36 previously

5
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110 identified by the PDZome and 25 are newly identified. We therefore propose the PDZome 2.0
111  as a more performant resource to comprehensively map human PDZ interactions by Y2H

112 approach.

113

114 Materials and Methods

115  Sub-cloning of prey and baits

116  Prey entry clones were collected in the pZeo or the pDONOR201 Gateway ® vectors
117  (NZYTech, Ltd.). All the entry clones were subcloned into the Y2H expression vector
118 pACT2-AD using Gateway ® LR reactions (Invitrogen). After sequence validation, all
119 pACT2-AD clones were transformed into the haploid Y187 yeast strain (MATa, ura3-52,
120  his3-200, ade2-101, trp1-901, leu2-3, 112, gal4A, met-, gal80A, MEL1, URA3::GAL1UAS -

121  GALITATA-lacZ).

122 The two baits used here, correspond to a fragment of the HVP16 E6 oncoprotein wildtype
123 (MSCCRSSRTRRETQL), and the same fragment without the PDZ binding motif or ATQL
124  (MSCCRSSRTRRE). The E6 fragments were subcloned into the pGBT9-BD vector for
125  expression in yeast, as reported previously (27). After sequence validation, E6 constructs
126 were transformed into the haploid AH109 yeast strain (MATa, trp1-901, leu2-3, 112, ura3-
127 52, his3-200, gal4A, gal80A, LYS2::GALIUAS -GALITATA -HIS3, GAL2UAS -

128  GAL2TATA -ADE2, URA3::MEL1UAS -MEL1 TATA -lacZ).
129

130  Y2H assays.
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131  PDZ interactions were tested screened by Y2H assay (36). Briefly, the Y2H was performed
132 through mating of the two yeast strains Y187 (o) and AH109 (a). The yeasts were grown
133 together (o + a) in liquid Yeast extract-Peptone-Dextrose (YPD) supplemented with 10%
134  PEG for 5 - 6 h at 30 °C under gentle agitation (140 rpm). After one wash in sterile water, the
135  yeasts were spotted on solid medium. To test the mating efficiency, the yeasts were spotted
136  on a solid permissive medium SC Agar -L -W. To test for interactions, the yeasts were
137  spotted on a solid selective medium SC Agar -L -W -H. All SC-Agar plates were incubated
138  atleast 72 h and up to 1 week at 30 °C or 2 weeks at room temperature. Images from the solid
139  selective medium plates were captured and analyzed. Random positive clones were verified
140 by PCR amplification and automated sequencing with the GAL-AD primer (Eurofins

141 GATC).

142

143 Results

144  Construction of the human PDZ resource for Y2H assays

145  To build the human PDZome 2.0 resource allowing to test for PDZ interactions by Y2H, the
146 266 known human PDZ domain sequences (Table S1), bearing boundaries optimized based
147  on available structural data (28), were introduced in the prey vector by Gateway ® approach
148  (Fig. 1A). We also included 39 PDZ tandems (Table S2). The PDZ tandems were designed

149  using the online UniProt resource (https://www.uniprot.org/). First, all PDZ proteins with

150  more than one PDZ domain were included in the list (multi-PDZ proteins). Then, within these
151  multi-PDZ proteins, those in which 2 PDZ domains were connected by a linker region of up
152  to 36 amino acid residues acids were included. The final list of 39 tandems, belonging to 28

153  PDZ proteins, represent around 20% of the human PDZ proteome (Table S2).
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154  All recombinant clones present in the prey pACT2-AD vector were transformed into the
155  haploid Y187 (o) yeast strain. The final collection of individual clones was arrayed in four

156 96-well plates (Fig. 1 A).

157

158  Fig 1 Construction of the PDZome 2.0 for yeast two-hybrid screens.

159  The PDZome 2.0 was built using the Gateway ® cloning system. (A) The entry clones corresponding
160  to the open reading frames (ORF) of the 266 PDZ domains and 39 PDZ domains in tandem were
161  subcloned from pZeo or pPDONOR entry vectors. The ORFs were then introduced into the pACT2-AD
162  vector using Gateway ® LR clonase. After validation by sequencing, pACT2-AD clones were
163  transformed into the Y187 (type o) yeast strain. Ready for mating yeast containing the PDZome fused
164  to the Gal4 activation domain were arranged in 4 plates of 96 wells (a, b, ¢ correspond to single PDZ
165  domains, whereas t corresponds to tandems). (B) Two peptides corresponding to the C-terminal part
166  of the E6 protein from the HPV16 were used as baits. The wild type (MSCCRSSRTRRETQL) and the
167 ATQL (or APBM) were subcloned in the pGBT9-BD vector as described previously (27) and

168  transformed into the AH109 (type a) yeast strain.

169

170  The PDZome 2.0 for Y2H screenings is validated using the HPV16 E6 oncoprotein

171 To characterize the performance of the PDZome 2.0 we used a fragment of the HPV16 E6
172 oncoprotein as bait in Y2H screenings. The HVP16 E6 oncoprotein is involved in the
173 development of human cervical cancer by exploiting its class I PBM which has been

174  previously described to bind at least 29 PDZ scaffold proteins (27,37-39).

175 Two E6 constructs were used to validate the new resource. The wild-type E6
176  (MSCCRSSRTRRETQL) and the mutant E6 APBM, in which the PBM is disrupted by

177  removing the last 3 amino acids (MSCCRSSRTRRE) (Fig. 1 B). Bait constructs were
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178  subcloned in the pGBT9-BD expression vector and fusion proteins were expressed in the

179  AHI109 yeast strain for Y2H (Fig. 1 B).

180  Y2H screens were carried out by mating the two recombinant yeast strains Y187 (a) and
181  AHI109 (a), allowing the formation of diploid yeasts expressing the prey and the bait
182  constructs (Fig. 2 A). According to Y2H principles, in case the E6 bait interacts with a given
183  PDZ prey, a complex is formed and the activating domain (AD) is recruited near the reporter
184  gene, where it can stimulate its expression (Fig. 2 B, C). To control mating efficiency, we
185  cultured our mated yeasts in SC-Agar medium lacking leucine and tryptophan (-LW). The
186  growth of dense white colonies indicated an efficient mating (Fig. 2 C upper panel).
187  Simultaneously, to test for PDZ interactions, the mated yeasts were grown in SC-Agar
188  medium lacking leucine, tryptophan, and histidine (-LWH). The growth of dense white
189  colonies in the medium -LWH were indicative of E6-PDZ interactions (Fig. 2 C middle
190 panel). As expected, when the E6 PBM was disrupted (E6 ATQL), yeasts failed to grow in

191  the -LWH medium (Fig. 2 C lower panel) indicating that the PBM is essential.

192

193  Fig 2 Y2H mating and selection process.

194  (A) Scheme illustrating the mating of the two yeasts strains. The ‘a’ type yeasts hosting the E6-
195  pGBT9-BD baits and the ‘o’ type yeasts hosting the PDZome 2.0-pACT2-AD were allowed to mate.
196  Diploid yeasts containing both the PDZ and the E6 constructs were selected in synthetic agar medium.
197  (B) Scheme illustrating the detection of protein interaction by Y2H. In case the E6-bait coupled to the
198  Gal4 binding domain (BD) interacts with the given PDZ-prey coupled to the Gal4 activation domain
199 (AD), the HIS3 reporter gene is expressed, allowing growth of the diploid yeasts in a synthetic
200 medium without histidine. In case there is no interaction between bait and prey, the AD is not
201  recruited and the HIS3 reporter gene is not expressed. (C) Photographs exemplifying the growth of

202  diploid yeasts containing both the PDZ and the E6 constructs. Diploid yeasts are selected in
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203  permissive culture medium without leucine and tryptophan (-LW). White dense colonies in the -LW
204  medium, suggest an effective mating (upper panel). Simultaneously, the phenotypic test for
205 interactions is performed in selective culture medium without leucine, tryptophan, and histidine (-
206 LWH). White and dense colonies in the -LWH medium correspond to interaction pairs (middle
207  panel). Disruption of the PBM effectively impairs the appearance of white dense colonies in the -

208  LWH medium, confirming a PBM-mediated mode of interaction (lower panel).

209

210  We identified 53 PDZ domains interacting with the PBM of the E6 protein from the HPV16.
211 These interactions were confirmed with the tandem constructs. In addition, the tandems
212 identified four interactions not detected when PDZ domains are taken in isolation (Fig. 3,
213 Fig. S1). Globally, the PDZome 2.0 outperforms the previous PDZome version that solely
214  identified 36 PDZ domain interacting with E6 (27) (Fig. 3). Nevertheless, 8 interactions
215  observed with the PDZome were not detected with the PDZome 2.0. In total, the PDZome 2.0
216  identified 43 PDZ proteins and 57 PDZ domains able to interact with the E6 protein of the
217  HPVI16. The previous version of the PDZome detected 28 PDZ proteins and 36 PDZ

218  domains.

219

220 Fig 3 Mapping of E6-PDZ interactions using PDZome 2.0 as compared to the previous
221  resource. Venn diagram representing the positive interactions identified by Y2H screens using the
222 first PDZome (yellow) and PDZome 2.0 (blue). Common interactions detected using both resources
223 are shown in the intersection region (green). Interactions revealed using PDZ tandems are highlighted
224 in red. Note that USHI1C interaction was detected using the PDZ 2 domain taken in isolation as

225  present in the first PDZome and using the tandem (USH1C _1-2) from PDZome 2.0.

226

10
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227 Discussion and conclusion

228 In this study, we built and validated a new and most comprehensive resource to test for
229  human PDZ interactions by Y2H. Compared to the previous version (27), this resource
230  contains 20 additional PDZ domains (266 instead of 246). Moreover, PDZome 2.0 contains
231 39 PDZ domains in tandem. Finally, PDZ domains are flanked by extended boundaries meant

232 to support proper folding (28) and avoid false negative results.

233 Consistently, the PDZome 2.0 revealed 25 interactions that were not detected previously for
234 the viral oncoprotein E6. Among those 25 interactions, 9 were previously detected using the
235  chromatographic holdup approach (HU) (38). Curiously, the PDZome 2.0 failed to detect 7
236  interactions that were detected with the previous version of the PDZome. The reasons are
237  unclear. One trivial reason could be that some constructs were erroneously annotated in the
238  PDZome compared to PDZome 2.0 (27,35,38). Another possible explanation could be that
239  the extended sequences in the PDZ domains restrain particular interactions or contribute to
240  the auto-inhibition of the PDZ domain (14,28). Finally, these interactions might correspond

241  to false positives (40).

242 The presence of tandem structures in a protein (i.e. co-folding domains) can enhance the
243  affinity for a particular ligand (32). Consistently, the PDZ tandem constructs not solely
244  validated interactions observed with PDZ in isolation but also revealed additional
245  interactions. Three of these extra interactions were not described previously in papers
246 reporting the HPV16-E6 -PDZ interactomes (27,38,39,41-44). Obviously, the PDZome 2.0
247  might still be prone to false negative. It is always recommended to verify interactomes using
248  complementary biochemical or biophysical methods such as HU or surface plasmon

249  resonance, before performing functional analyses (38,45,46).

11
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250 In conclusion, PDZome 2.0 represents a valuable additional resource to test for PDZ
251  interactions by Y2H and certainly an easy going first line choice when one aims to

252 investigate in a comprehensive manner the PDZ interactome of a protein of interest.
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