
matchms - processing and similarity evaluation of
mass spectrometry data.

Florian Huber1, Stefan Verhoeven1, Christiaan Meijer1, Hanno
Spreeuw1, Efraín Manuel Villanueva Castilla2, Cunliang Geng1,

Justin J. J. van der Hooft3, Simon Rogers2, Adam Belloum1, Faruk
Diblen1, and Jurriaan H. Spaaks1

1Netherlands eScience Center, Science Park 140, 1098XG
Amsterdam, The Netherlands

2School of Computing Science, University of Glasgow, Glasgow,
United Kingdom

3Bioinformatics Group, Plant Sciences Group, University of
Wageningen, Wageningen, the Netherlands

16 June 2020

Summary
Mass spectrometry data is at the heart of numerable applications in the biomedi-
cal and life sciences. With growing use of high throughput techniques researchers
need to analyse larger and more complex datasets. In particular through joint
effort in the research community, fragmentation mass spectrometry datasets are
growing in size and number. Platforms such as MassBank (Horai et al. 2010),
GNPS (Wang et al. 2016) or MetaboLights (Haug et al. 2020) serve as an
open-access hub for sharing of raw, processed, or annotated fragmentation mass
spectrometry data (MS/MS). Without suitable tools, however, exploitation of
such datasets remains overly challenging. In particular, large collected datasets
contain data aquired using different instruments and measurement conditions,
and can further contain a significant fraction of inconsistent, wrongly labeled, or
incorrect metadata (annotations).

Matchms is an open-access Python package to import, process, clean, and compare
mass spectrometry data (MS/MS) (see Figure 1). It allows to implement and
run an easy-to-follow, easy-to-reproduce workflow from raw mass spectra to pre-
and post-processed spectral data. Raw data can be imported from the commonly
used formats msp, mzML, mzXML, MGF (mzML, mzXML, MGF file importers
are build on top of pyteomics (Levitsky et al. 2019)(Goloborodko et al. 2013)),
as well as from json files (as provided by GNPS), but also via Universal Spectrum

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.06.239244doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.06.239244
http://creativecommons.org/licenses/by/4.0/

Identifiers (USI) (Wang et al. 2020). Further data formats or more extensive
options regarding metadata parsing can best be handled by using pyteomics
(Levitsky et al. 2019) or pymzml (Kösters et al. 2018). Matchms contains
numerous metadata cleaning and harmonizing filter functions that can easily
be stacked to construct a desired pipeline (Figure 2), which can also easily be
extended by custom functions wherever needed. Available filters include extensive
cleaning, correcting, checking of key metadata fields such as compound name,
structure annotations (InChI, Smiles, InchiKey), ionmode, adduct, or charge.
Many of the provided metadata cleaning filters were designed for handling and
improving GNPS-style MGF or json datasets. For future versions, however, we
aim to further extend this to other commonly used public databases.

Figure 1: Flowchart of matchms workflow. Reference and query spectrums
are filtered using the same set of set filters (here: filter A and filter B). Once
filtered, every reference spectrum is compared to every query spectrum using
the matchms.Scores object.

Current Python tools for working with MS/MS data include pyOpenMS (Röst
et al. 2014), a wrapper for OpenMS (Röst et al. 2016) with a strong focus on
processing and filtering of raw mass spectral data. pyOpenMS has a wide range
of peak processing functions which can be used to further complement a Matchms
filtering pipeline. Another, more lightweight and native Python package with a

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.06.239244doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.06.239244
http://creativecommons.org/licenses/by/4.0/

focus on spectra visualization is spectrum_utils (Bittremieux 2020). Matchms
focuses on comparing and linking large number of mass spectra. Many of its
build-in filters are aimed at handling large mass spectra datasets from common
public data libraries such as GNPS.

Matchms provides functions to derive different similarity scores between spectra.
Those include the established spectra-based measures of the cosine score or
modified cosine score (Watrous et al. 2012). The package also offers fast
implementations of common similarity measures (Dice, Jaccard, Cosine) that
can be used to compute similarity scores between molecular fingerprints (rdkit,
morgan1, morgan2, morgan3, all implemented using rdkit (Landrum, n.d.)).
Matchms easily facilitates deriving similarity measures between large number
of spectra at comparably fast speed due to score implementations based on
Numpy (Walt, Colbert, and Varoquaux 2011), Scipy (Virtanen et al. 2020),
and Numba (Lam, Pitrou, and Seibert 2015). Additional similarity measures
can easily be added using the matchms API. The provided API also allows to
quickly compare, sort, and inspect query versus reference spectra using either the
included similarity scores or added custom measures. The API was designed to
be easily extensible so that users can add their own filters for spectra processing,
or their own similarity functions for spectral comparisons. The present set of
filters and similarity functions was mostly geared towards smaller molecules
and natural compounds, but it could easily be extended by functions specific to
larger peptides or proteins.

Matchms is freely accessible either as conda package (https://anaconda.org/nlesc/matchms),
or in form of source-code on GitHub (https://github.com/matchms/matchms).
For further code examples and documentation see https://matchms.readthedocs.io/en/latest/.
All main functions are covered by tests and continuous integration to offer
reliable functionality. We explicitly value future contributions from a mass
spectrometry interested community and hope that matchms can serve as a
reliable and accessible entry point for handling complex mass spectrometry
datasets using Python.

Example workflow
A typical workflow with matchms looks as indicated in Figure 1, or as described
in the following code example.

from matchms.importing import load_from_mgf
from matchms.filtering import default_filters
from matchms.filtering import normalize_intensities
from matchms import calculate_scores
from matchms.similarity import CosineGreedy

Read spectrums from a MGF formatted file
file = load_from_mgf("all_your_spectrums.mgf")

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.06.239244doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.06.239244
http://creativecommons.org/licenses/by/4.0/

Apply filters to clean and enhance each spectrum
spectrums = []
for spectrum in file:

spectrum = default_filters(spectrum)
spectrum = normalize_intensities(spectrum)
spectrums.append(spectrum)

Calculate Cosine similarity scores between all spectrums
scores = calculate_scores(references=spectrums,

queries=spectrums,
similarity_function=CosineGreedy())

Print the calculated scores for each spectrum pair
for score in scores:

(reference, query, score, n_matching) = score
Ignore scores between same spectrum and
pairs which have less than 20 peaks in common
if reference is not query and n_matching >= 20:

print(f"Reference scan id: {reference.metadata['scans']}")
print(f"Query scan id: {query.metadata['scans']}")
print(f"Score: {score:.4f}")
print(f"Number of matching peaks: {n_matching}")
print("----------------------------")

Processing spectrum peaks and plotting
Matchms provides numerous filters to process mass spectra peaks. Below a simple
example to remove low intensity peaks from a spectrum (Figure 3).

from matchms.filtering import require_minimum_number_of_peaks
from matchms.filtering import select_by_mz
from matchms.filtering import select_by_relative_intensity

def process_peaks(s):
s = select_by_mz(s, mz_from=0, mz_to=1000)
s = select_by_relative_intensity(s, intensity_from=0.001)
s = require_minimum_number_of_peaks(s, n_required=10)
return s

Apply processing steps to spectra (here to a single "spectrum_raw")
spectrum_processed = process_peaks(spectrum_raw)

Plot raw spectrum (all and zoomed in)
spectrum_raw.plot()

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.06.239244doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.06.239244
http://creativecommons.org/licenses/by/4.0/

Figure 2: Matchms provided a range of filter functions to process spectrum peaks
and metadata. Filters can easily be stacked and combined to build a desired
pipeline. The API also makes it easy to extend customer pipelines by adding
own filter functions.

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.06.239244doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.06.239244
http://creativecommons.org/licenses/by/4.0/

spectrum_raw.plot(intensity_to=0.02)

Plot processed spectrum (all and zoomed in)
spectrum_processed.plot()
spectrum_processed.plot(intensity_to=0.02)

Figure 3: Example of matchms peak filtering applied to an actual spectrum
using select_by_relative_intensity to remove peaks of low relative intensity.
Spectra are plotted using the provided spectrum.plot() function.

References
Bittremieux, Wout. 2020. “Spectrum_utils: A Python Package for Mass
Spectrometry Data Processing and Visualization.” Analytical Chemistry 92 (1):
659–61. doi:10.1021/acs.analchem.9b04884.

Goloborodko, Anton A., Lev I. Levitsky, Mark V. Ivanov, and Mikhail V. Gor-
shkov. 2013. “Pyteomics - a Python Framework for Exploratory Data Analysis
and Rapid Software Prototyping in Proteomics.” Journal of the American Society

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.06.239244doi: bioRxiv preprint

https://doi.org/10.1021/acs.analchem.9b04884
https://doi.org/10.1101/2020.08.06.239244
http://creativecommons.org/licenses/by/4.0/

for Mass Spectrometry 24 (2): 301–4. doi:10.1021/jasms.8b04453.

Haug, Kenneth, Keeva Cochrane, Venkata Chandrasekhar Nainala, Mark
Williams, Jiakang Chang, Kalai Vanii Jayaseelan, and Claire O’Donovan.
2020. “MetaboLights: A Resource Evolving in Response to the Needs of
Its Scientific Community.” Nucleic Acids Research 48 (D1): D440–D444.
doi:10.1093/nar/gkz1019.

Horai, Hisayuki, Masanori Arita, Shigehiko Kanaya, Yoshito Nihei, Tasuku Ikeda,
Kazuhiro Suwa, Yuya Ojima, et al. 2010. “MassBank: A Public Repository for
Sharing Mass Spectral Data for Life Sciences.” Journal of Mass Spectrometry 45
(7): 703–14. doi:10.1002/jms.1777.

Kösters, M., J. Leufken, S. Schulze, K. Sugimoto, J. Klein, R. P. Zahedi, M.
Hippler, S. A. Leidel, and C. Fufezan. 2018. “pymzML V2.0: Introducing a
Highly Compressed and Seekable Gzip Format.” Bioinformatics 34 (14): 2513–4.
doi:10.1093/bioinformatics/bty046.

Lam, Siu Kwan, Antoine Pitrou, and Stanley Seibert. 2015. “Numba: A
LLVM-Based Python JIT Compiler.” In Proceedings of the Second Workshop
on the LLVM Compiler Infrastructure in HPC, 1–6. LLVM ’15. Austin, Texas:
Association for Computing Machinery. doi:10.1145/2833157.2833162.

Landrum, Greg. n.d. “RDKit: Open-Source Cheminformatics.” http://www.
rdkit.org.

Levitsky, Lev I., Joshua A. Klein, Mark V. Ivanov, and Mikhail V. Gor-
shkov. 2019. “Pyteomics 4.0: Five Years of Development of a Python
Proteomics Framework.” Journal of Proteome Research 18 (2): 709–14.
doi:10.1021/acs.jproteome.8b00717.

Röst, Hannes L., Timo Sachsenberg, Stephan Aiche, Chris Bielow, Hendrik
Weisser, Fabian Aicheler, Sandro Andreotti, et al. 2016. “OpenMS: A Flexible
Open-Source Software Platform for Mass Spectrometry Data Analysis.” Nature
Methods 13 (9): 741–48. doi:10.1038/nmeth.3959.

Röst, Hannes L., Uwe Schmitt, Ruedi Aebersold, and Lars Malmström. 2014.
“pyOpenMS: A Python-Based Interface to the OpenMS Mass-Spectrometry
Algorithm Library.” PROTEOMICS 14 (1): 74–77. doi:10.1002/pmic.201300246.

Virtanen, Pauli, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, et al. 2020. “SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python.” Nature Methods 17: 261–72.
doi:https://doi.org/10.1038/s41592-019-0686-2.

Walt, Stefan van der, S. Chris Colbert, and Gael Varoquaux. 2011. “The NumPy
Array: A Structure for Efficient Numerical Computation.” Computing in Science
Engineering 13 (2): 22–30. doi:10.1109/MCSE.2011.37.

Wang, Mingxun, Jeremy J. Carver, Vanessa V. Phelan, Laura M. Sanchez, Neha
Garg, Yao Peng, Don Duy Nguyen, et al. 2016. “Sharing and Community Cura-

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.06.239244doi: bioRxiv preprint

https://doi.org/10.1021/jasms.8b04453
https://doi.org/10.1093/nar/gkz1019
https://doi.org/10.1002/jms.1777
https://doi.org/10.1093/bioinformatics/bty046
https://doi.org/10.1145/2833157.2833162
http://www.rdkit.org
http://www.rdkit.org
https://doi.org/10.1021/acs.jproteome.8b00717
https://doi.org/10.1038/nmeth.3959
https://doi.org/10.1002/pmic.201300246
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1101/2020.08.06.239244
http://creativecommons.org/licenses/by/4.0/

tion of Mass Spectrometry Data with Global Natural Products Social Molecular
Networking.” Nature Biotechnology 34 (8): 828–37. doi:10.1038/nbt.3597.

Wang, Mingxun, Simon Rogers, Wout Bittremieux, Christopher Chen,
Pieter C. Dorrestein, Emma L. Schymanski, Tobias Schulze, Steffen Neu-
mann, and Rene Meier. 2020. “Interactive MS/MS Visualization with the
Metabolomics Spectrum Resolver Web Service.” bioRxiv, May, 2020.05.09.086066.
doi:10.1101/2020.05.09.086066.

Watrous, Jeramie, Patrick Roach, Theodore Alexandrov, Brandi S. Heath, Jane
Y. Yang, Roland D. Kersten, Menno van der Voort, et al. 2012. “Mass Spectral
Molecular Networking of Living Microbial Colonies.” Proceedings of the National
Academy of Sciences of the United States of America 109 (26): E1743–1752.
doi:10.1073/pnas.1203689109.

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.06.239244doi: bioRxiv preprint

https://doi.org/10.1038/nbt.3597
https://doi.org/10.1101/2020.05.09.086066
https://doi.org/10.1073/pnas.1203689109
https://doi.org/10.1101/2020.08.06.239244
http://creativecommons.org/licenses/by/4.0/

	Summary
	Example workflow
	Processing spectrum peaks and plotting
	References

