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Introductory paragraph

Clostridioides difficile is a bacterial pathogen that causes a range of clinical disease from mild to
moderate diarrhea, pseudomembranous colitis, and toxic megacolon. Typically, C. difficile
infections (CDIs) occur after antibiotic treatment, which alters the gut microbiota, decreasing
colonization resistance against C. difficile. Disease is mediated by two large toxins and the
expression of their genes is induced upon nutrient depletion via the alternative sigma factor
TcdR. Using tcdR mutants in two strains of C. difficile, we defined how toxin-induced
inflammation alters C. difficile metabolism, tissue gene expression, and the gut microbiota to
determine how inflammation by the host may be beneficial to C. difficile. Here we show that C.
difficile metabolism is significantly different in the face of inflammation, with changes in many
carbohydrate and amino acid uptake and utilization pathways. Host gene expression signatures
suggest that degradation of collagen and other components of the extracellular matrix by matrix
metalloproteinases is a major source of peptides and amino acids that supports C. difficile growth
in vivo. Lastly, the inflammation induced by C. difficile toxin activity alters the gut microbiota,
excluding members from the genus Bacteroides that are able to compete against C. difficile for
the same essential nutrients released from collagen degradation.

Introduction

Clostridioides difficile (C. difficile) is a Gram-positive anaerobic gut pathogen that causes
diarrhea, with severe cases resulting in significant morbidity and mortality’. C. difficile produces
two large toxins, TcdA and TcdB, that glycosylate host Rho and Rac GTPases, leading to a
disruption in the actin cytoskeleton and loss of epithelial barrier integrity; the subsequent
apoptosis and tissue damage results in significant inflammation?. Previous work revealed

inflammation can be beneficial for prominent enteric pathogens such as Salmonella enterica and
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Vibrio cholerae by providing a metabolic niche for them in the gut. Whether inflammation can
benefit C. difficile is not clear, yet patients with Inflammatory bowel disease are four times more
likely to acquire C. difficile infection (CDI) compared to the general population, suggesting C.
difficile may thrive in an inflamed environment*-’. CDI-mediated inflammation results in drastic
shifts to the murine gut metabolome, with alterations in amino acid and peptide metabolite
concentrations, indicating that toxin activity induces an altered gut metabolic profile®. Although
a nutritional generalist, C. difficile is auxotrophic and requires multiple amino acids, including the
branched chain amino acids and proline that are used in Stickland metabolism for ATP
production and regeneration of NAD+; thus, C. difficile must acquire these nutrients from its
environment®'2. We therefore hypothesized that C. difficile gains access to these nutrients by
exploiting the host inflammatory response. We hypothesized that toxin-mediated inflammation
alters the host gut environment to benefit C. difficile growth and persistence, either through
nutrient availability and/or the composition of the gut microbiota, potentially excluding
competitors or selecting for allies> 4.

We addressed this hypothesis by taking a holistic approach to define the response of the
pathogen, the host, and the gut microbiota in the face of inflammation induced by C. difficile
toxins. Here we show that the toxin producing strain (wild type C. difficile) induces a unique C.
difficile transcriptomic signature compared to the toxin null strain (isogenic fcdR mutant),
indicating that inflammation shapes C. difficile metabolism in vivo. C. difficile transcripts for
carbohydrate and branched chain amino acid metabolism genes were increased in response to
toxin-induced inflammation, which is a reflection of the nutrients available in the inflamed gut.
Host tissue extracellular matrix (ECM)-degrading matrix metalloproteinase (MMP) transcripts,
encoding enzymes responsible for breaking down amino acid rich collagen, were also increased
in expression during peak inflammation. Additionally, we show that toxin activity leads to a

reduction and reorganization in collagen around cells in vitro, which provided C. difficile a
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mechanism to acquire essential Stickland reaction substrates, supporting growth. Colonization
with toxin producing C. difficile also led to alterations in the gut microbial community structure,
with inflammation suppressing the return of members from the Bacteroidaceae Family. Our
results were conserved across different strains, as toxin activity of the epidemic C. difficile
R20291 strain elicits similar responses in a mouse model, suggesting that these effects may be
conserved across toxigenic C. difficile strains from phylogenetically distinct backgrounds.
Materials and methods

Bacterial strains, growth conditions, and mutagenesis. C. difficile strains 630Aerm and an
isogenic tcdR::ermB ClosTron insertion mutant (both kindly gifted by Rita Tamayo), as well as
the R20291 strain and its isogenic AfcdR mutant were routinely grown in and on Brain Heart
Infusion (BHI) or Tryptone Yeast (TY) broth and agar; plates and cultures were grown at 37°C
in an anaerobic chamber (Coy). For genetic manipulation of C. difficile, strains were grown on
and in BHI agar and broth supplemented as necessary with 10 ug/ml of thiamphenicol, 50 ug/ml
of kanamycin, and 16 pg/ml of cefoxitin to select for transconjugants or thiamphenicol alone for
plasmid maintenance. Samples derived from in vivo studies were plated onto CCFA (cefoxitin,
cycloserine, fructose agar) to select for and enumerate vegetative C. difficile CFUs, and TCCFA,
containing the germinant taurocholate to enumerate spore CFUs.

The R20291 ApyrE strain was used to construct the AtcdR mutant'®. Briefly, ~1.2 kb
upstream and downstream of the tcdR gene were PCR amplified with Phusion High-Fidelity DNA
polymerase (NEB M0530S). All primers used for construction of the mutagenesis vector and for
PCR screening of transconjugants can be found in Supplemental Table 1. The homology arms
were then combined into one single linear fragment via splice overlap extension PCR, then A-
tailed with Taq polymerase (NEB M0267S). The A-tailed product was ligated into pCR2.1

(Thermo Fisher K202020); the resulting plasmid was digested with BamHI and Kpnl and the
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~2.4 kb homology arm fragment was ligated into the corresponding sites in pMTL_YN4 using T4
DNA Ligase (NEB M0202S). The final plasmid was conjugated into the R20291 ApyrE strain
with E. coli SD46, and thiamphenicol resistant large colony variants were screened by PCR for
plasmid integration into the chromosome. After confirming plasmid integration, colonies were
grown in BHI broth overnight in the absence of selection to allow for plasmid excision, then plated
onto minimal media agar supplemented with 5 ug/ml uracil and 2 mg/ml of 5-fluoroorotic acid to
select for bacteria that had excised and lost the mutagenesis vector. Individual colonies were re-
streaked twice on the same selective media, then PCR screened for loss of tcdR.

Spore preparation. Spores were prepared as in Edwards and McBride'®. 500 uL of mid-log
phase cultures was spread onto 70:30 agar plates and incubated at 37°C for 4 days, after which
time the plates were removed from the anaerobic chamber. The bacterial lawns were scraped
off and suspended in 10 mL sterile PBS, mixed 1:1 with 96% ethanol, vortexed vigorously for 30
sec, and allowed to sit at room temperature on the benchtop for 1 hr. The suspension was
centrifuged at 3,000 rpm for 10 min. The pellet was suspended in 10 ml fresh sterile PBS, and
centrifuged again; this was repeated twice. The final pellet was suspended in 1 ml PBS and
serial dilutions were plated on BHI agar with 0.1% of the germinant taurocholate for spore CFU
enumeration. Spore stocks were also enumerated one day prior to the day of challenge to
confirm spore stock CFUs prior to making the inocula for in vivo studies; inocula were also diluted
and plated the day of challenge.

Mouse model of C. difficile infection. C57BL/6J WT mice (5 to 8 weeks old; n=18 male and
n=18 female) were purchased from Jackson Labs. The mice were given 0.5 mg/mL
cefoperazone in their drinking water for five days to make them susceptible to C. difficile
infection'”.18, The mice were then given plain water for two days, after which time they (n=12,

males and females) received 10° spores of either 630Aerm or tcdR::ermB via oral gavage. One
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group of mice (n=12, males and females) received no C. difficile spores. Mice were weighed
daily and monitored for clinical signs of distress (ruffled fur, hunched posture, slow ambulation,
etc.). Fecal pellets were collected 1 and 3 days after challenge and diluted 1:10 w/v in sterile
PBS, then serially diluted in 96 well PCR plates and plated onto CCFA for vegetative C. difficile
CFU enumeration. The serially diluted samples were then removed from the anaerobic chamber
and heated to 65°C for 20 min to kill vegetative cells; the heat-treated dilution plate was passed
back into the anaerobic chamber and the dilutions were plated onto TCCFA to enumerate spore
CFUs.

At day 2 and 4 post challenge, mice were humanely sacrificed (n=6 per treatment), and
necropsy was performed. Cecal content was harvested for enumeration of vegetative C. difficile
and spore CFUs, as well as for RNA extraction and toxin activity. Cecal tissue was harvested
for RNA extraction for gene expression analysis, 16S rRNA sequencing, and histopathology.
Colon tissue was harvested for histopathology. Samples for sequencing and toxin activity were
immediately flash frozen in liquid nitrogen and stored at -80°C until processing. Toxin activity in
the cecal content was quantified using the Vero Cell cytotoxicity assay'®. Briefly, the content was
diluted 1:10 w/v in sterile PBS, and 10-fold dilutions were added to Vero cells in a 96-well dish
for ~16 hr. The reciprocal of the lowest dilution in which ~80% of the cells have rounded was
reported as the titer.

The R20291 study was conducted similarly to the one described above with some minor
differences. C57BL/6J mice (5 to 8 weeks old, n=14 male and 14 female) were orally gavaged
with 10° spores of R20291 or the AtcdR mutant (n=14 per strain). Weight and clinical signs of
distress were monitored daily. Fecal pellets were collected at 1, 2, and 4 days after challenge
and total C. difficile CFUs were enumerated on TCCFA agar; samples were then heat-treated to
kill vegetative cells for spore CFU enumeration. Necropsy was performed 2 and 4 days after

challenge, and cecal tissue was harvested for 16S rRNA sequencing (n=5 per group on day 4
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post challenge); cecal tissue RNA was isolated from mice (n=3 per group) on day 2 for gene
expression analysis via NanoString.

Histopathological examination of the mouse cecum and colon. At the time of necropsy,
tissue from the cecum and colon were prepared for histology by placing the intact tissue into
histology cassettes and stored in 10% buffered formalin for 48 hr at room temperature, then
transferred to 70% ethyl alcohol for long term storage. Tissues were processed, paraffin
embedded, sectioned at 4 pm thickness, and hematoxylin and eosin stained for
histopathological examination (University of North Carolina Animal Histopathology & Lab
Medicine core). Histological specimens were randomized and scored in a blinded manner by a
board-certified veterinary pathologist (SM). Edema, inflammation (cellular infiltration), and
epithelial damage for the cecum and colon were each scored 0-4 based on a previously
published numerical scoring scheme'”. Edema scores were as follows: 0, no edema; 1, mild
edema with minimal (2x) multifocal submucosal expansion or a single focus of moderate (2-3x)
sub-mucosal expansion; 2, moderate edema with moderate (2—3x) multifocal sub-mucosal
expansion; 3, severe edema with severe (3x) multifocal sub-mucosal expansion; 4, same as
score 3 with diffuse sub-mucosal expansion. Cellular infiltration scores were as follows: 0, no
inflammation; 1, minimal multifocal neutrophilic inflammation of scattered cells that do not form
clusters; 2, moderate multifocal neutrophilic inflammation (greater submucosal involvement); 3,
severe multifocal to coalescing neutrophilic inflammation (greater submucosal + mural
involvement); 4, same as score 3 with abscesses or extensive mural involvement. Epithelial
damage was scored as follows: 0, no epithelial changes; 1, minimal multifocal superficial
epithelial damage (vacuolation, apoptotic figures, villus tip attenuation/necrosis); 2, moderate
multifocal superficial epithelial damage (vacuolation, apoptotic figures, villus tip
attenuation/necrosis); 3, severe multifocal epithelial damage (same as above) +/-

pseudomembrane (intraluminal neutrophils, sloughed epithelium in a fibrinous matrix); 4, same
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as score 3 with significant pseudomembrane or epithelial ulceration (focal complete loss of
epithelium). Photomicrographs were captured on an Olympus BX43 light microscope with a
DP27 camera using cellSens Dimension software.

RNA extraction from cecal tissue and cecal content. RNA was extracted from cecal tissue
using the PureLink RNA Mini kit (Thermo Fisher, 12183025) following the manufacturer’s
protocol. The RNA was treated with Turbo DNase (Thermo Fisher, AM2239); the protocol was
modified by increasing the amount of enzyme to 5 ul per sample. After 30 min of incubation in a
water bath at 37°C, 2 ul of Turbo DNase enzyme was added to each sample for a further 30 min
of incubation. The RNA was then column purified according to the manufacturer’s instructions
(Zymo, R1019). PCR with primers specific to intron 1 and exon 3 from the mouse B-actin gene
were used to screen samples for genomic DNA after DNase treatment.

For extraction of RNA from cecal content for bacterial RNAseq, the content was thawed
on ice, then added to 10 mL of TRIzol Reagent (Thermo Fisher, 15596018) in a 15 mL conical.
The content was dispersed by vortexing for 10 sec, and then was given 20 min on the benchtop
to settle. The TRIzol-cecal content mix was then transferred in 1.2 mL aliquots to eight 1.7 mL
centrifuge tubes. 350 pl of chloroform was added, and the tubes were vigorously inverted for 15
sec each, after which they were incubated at room temperature for 20 min. The samples were
centrifuged at 14,000 rpm at 4°C for 20 min. The aqueous phase (~650 pul) was then added to
650 ul of isopropanol that had been supplemented with 5 pg/mL glycogen. Samples were
vortexed and incubated on ice for 20 min, and then were centrifuged at 4°C for 30 min. Pellets
were washed three times with 70% ethanol, and then dissolved in sterile deionized water. The
samples were then treated with Turbo DNase, with the same augmentation of the protocol that
was done for the cecal tissue RNA. For reasons that are unclear, the in vivo samples required

multiple rounds of Turbo DNase treatment to remove contaminating genomic DNA, resulting in
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degradation of the RNA in some samples. After column purification, PCR was performed with
primers specific to tcdA and rpoC to confirm removal of genomic DNA.

RNA extraction from C. difficile cultures in vitro. Three independent colonies of 630Aerm
and tcdR::ermB each were inoculated into 5 ml of TY broth and grown overnight. These were
subcultured 1:500 in 5 ml fresh TY and allowed to grow for 18 hr at 37°C in the anaerobic
chamber. The cultures were centrifuged and supernatants were decanted. Pellets were
dissolved in 1 ml TRIzol Reagent for 20 min on the bench top, after which time 200 ul of
chloroform was added and the cultures were vigorously inverted for 15 sec and incubated on the
benchtop for a further 20 min. The RNA was precipitated as described above, with ~500 pul of
the aqueous phase added to 500 ul of isopropanol with glycogen supplementation. The Turbo
DNase treatment as described above was performed once, and RNA was confirmed to be free
of genomic DNA with the aforementioned primer sets.

RNA sequencing and transcriptome analysis. Sequencing of RNA derived from cecal content
and in vitro cultures was performed at the Roy J. Carver Biotechnology Center at the University
of lllinois at Urbana-Champaign. Ribosomal RNA was removed from the samples using the
RiboZero Epidemiology Kit (Illumina). RNAseq libraries were prepped with the TruSeq Stranded
mRNA Sample Prep Kit (lllumina). Library quantification was done via qPCR, and the samples
were sequenced on one lane for 151 cycles from each end of the fragments on a NovaSeq 6000
using a NovaSeq S4 reagent kit. The FASTQ files were generated and demultiplexed using the
bcl2fastq v2.20 Conversion Software (lllumina). Raw paired lllumina reads were imported into
Geneious 10.2.6, where adapters and low-quality reads were removed using BBDuk with a Kmer
length of 27, a minimum base quality score of 30, and a minimum average read quality of 30°.
Reads less than 30 bases in length (and their paired read) were also discarded. The filtered

reads were mapped to the C. difficile 630Aerm genome (NCBI accession no. NC_009089.1)
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using BBMap with a Kmer length of 10 and no other changes to the default settings. Visual
inspection of the data indicated that the majority of reads from three wild type and three fcdR
samples, each from day 4, mapped to ribosomal RNA genes. These samples were excluded
from the analysis, but are included in the SRA submission. The average number of reads that
mapped from wild type (n=5) and the tcdR mutant (n=6) from day 2 were 7,395,921 and
22,768,296, respectively; average reads mapped from day 4 for wild type (n=3) and the fcdR
mutant (n=3) were 12,959,255 and 4,319,864, respectively. Differential expression analysis was
performed using DESeqg2 with no changes to the default settings, and genes were considered
differentially expression if they had +1 log2 fold change and an adjusted p value of <0.05.%.
Gene set enrichment analysis of differentially expressed genes was performed using the GSEA-
Pro v3 program (http://gseapro.molgenrug.nl) with user defined cutoff values of -1 and 1. Bar plots
of enriched Gene Ontology (GO) terms and log2 fold change values of individual transcripts were
generated in GraphPad Prism 8.

Quantitative reverse transcription PCR. RNA from cecal tissue, cecal content, and in vitro
bacterial cultures was used as template in reverse transcription reactions using the Murine
Moloney Leukemia Virus Reverse Transcriptase (NEB M0253S) following the manufacturer’'s
protocol. The resulting cDNA was diluted 1:5 in deionized water and used as template for
quantitative PCR with the SsoAdvanced Universal SYBR Green Supermix (Bio Rad).
Quantification of each gene assayed (Supplemental Table 1 for primers) was performed via
standard curve and copy number was determined by comparison to the housekeeping genes
tbp (TATA Binding Protein) for host genes and rpoC (RNA polymerase subunit beta) for C.
difficile genes.

NanoString analysis. RNA from cecal tissue was submitted to the Lineberger Comprehensive
Cancer Center Pre-Clinical Genomic Pathology Core at the University of North Carolina at

Chapel Hill for quantification of transcripts via NanoString technology?'. The RNA was hybridized
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to probes on the Mouse nCounter Immunology Panel, plus custom probes targeting mouse
Mmps and Timps. Raw data was imported into the nSolver Advanced Analysis software for data
normalization and differential expression analysis. One mouse (challenged with wild type, day 4
post challenge) was excluded after principal components analysis and hierarchical clustering of
the data identified it as an outlier with respect to all other samples. The data were normalized
and differential expression analysis was performed within the nSolver Advanced Analysis
software. Correction for multiple comparisons was performed using the method of Benjamini-
Hochberg. Heatmaps of the data were constructed in R using the ‘pheatmaps’ package
(https://cran.r-project.org/web/packages/pheatmap/index.html) and volcano plots were
constructed in R with the ‘EnhancedVolcano’ package??. Gene set enrichment analysis was
performed using the WebGestalt server (http://www.webgestalt.org) with the following changes
to the default parameters: the minimum number of genes required for a pathway was lowered to
5 and the False Discovery Rate was adjusted to 0.1. Enriched pathways were visualized in Prism
8. Cecal tissue RNA from mice infected with R20291 and the AfcdR mutant was also used in a
separate run with the NanoString Mouse nCounter Inflammation panel customized to include
code sets for the Mmps and Timps. The data was analyzed identically in the nSolver Advanced
program as described above.

Confocal microscopy. IMR90 human fibroblasts were cultured in Eagle’s Minimum Essential
Medium (EMEM) (ATCC, USA) supplemented with 10% fetal bovine serum at 37 °C with 5%
CO:s.. Cells were seeded on glass coverslips in 24-well plates for 3 days, followed by incubation
with 0.5 pM of TcdA and TcdB. After 12 hr or 15 hr, cells were fixed in PBS with 4%
paraformaldehyde for 20 min at room temperature and blocked in 10% normal goat serum
(Sigma). Collagen was detected using a mix of antibodies against collagen types |, lll, and V
(Santa Cruz) in a 1:1:1 ratio, and Alexa Fluor 568-conjugated goat anti-mouse secondary

antibody (ThermoFisher). Glass coverslips were mounted using VECTASHEIELD mounting
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media with DAPI (Vector Laboratories). Confocal imaging was performed on Zeiss LSM 880
confocal microscope using a 40x Plan-Apochromat objective lens (numerical aperature of 1.4)
and operated with ZEN software (Carl Zeiss, Inc ).

C. difficile growth in defined minimal media supplemented with heat-degraded collagen.
Heat-degraded collagen was generated by heating type | collagen (Advanced BioMatrix) at
100°C for 4 hr. Degraded collagen was then concentrated and the pH was adjusted to 7.0. C.
difficile was grown in a well-established defined minimal media (CDMM), from which proline was
omitted and 0.5 mg of heat-degraded collagen was substituted. The media was passed into the
anaerobic chamber and allowed to reduce for 24 hr before inoculation. At the same time,
individual colonies of C. difficile were inoculated into TY media for overnight growth, after which
they were subcultured 1:100 into fresh TY. After 4 hr of growth, the cultures were centrifuged in
a microcentrifuge in the anaerobic chamber and washed three times in 1 ml sterile PBS, then
inoculated 1:500 into the CDMM. Immediately after inoculation, the cultures were serially diluted
and plated onto BHI agar for enumeration of C. difficile at O hr and 24 hr time points. Growth was
calculated from 4 independent experiments.

C. difficile and Bacteroides growth in defined minimal media supplemented with Pro-Gly
or Gly-Pro dipeptides, and other collagen degradation substrates. To assess the ability of
C. difficile to acquire the essential amino acid proline from dipeptides, we utilized a well-
established defined minimal media (CDMM), from which proline was omitted and Proline-Glycine
or Glycine-Proline dipeptides were substituted. The media was passed into the anaerobic
chamber and allowed to reduce for 24 hr before inoculation. At the same time, individual colonies
of C. difficile were inoculated into TY media for overnight growth, after which they were
subcultured 1:100 into fresh TY for 4 hr. After the 4 hr growth, the cultures were centrifuged in a
microcentrifuge in the anaerobic chamber and washed three times in 1 ml sterile PBS, then

inoculated 1:500 into the CDMM. Immediately after inoculation, the cultures were serially diluted
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and plated onto BHI agar for enumeration of C. difficile at the O hr time point. 24 hr later, the
cultures were serially diluted and plated for CFU enumeration again. Growth was calculated from
3 independent experiments.

Bacteroides thetaiotaomicron VVP1-5482 and Bacteroides fragilis Bf NCTC 9343 were
cultured anaerobically at 37°C from glycerol stocks into tryptone-yeast extract-glucose (TYG)
medium and grown overnight?3. Cultures were back diluted to an OD 600 nm of ~0.1 the next
day into minimal media (MM) containing 0.25% glucose, proline, or hydroxyproline®*. CFUs
were enumerated on BHI-blood agar plates at O hr and after 16 hr of growth. Fold change in
growth was calculated from 3 independent experiments.
16S rRNA lllumina sequencing and microbiome analysis. DNA was isolated from cecal snips
at the University of Michigan Microbial Systems Molecular Biology Laboratory. The Mag Attract
Power Microbiome kit (Mo Bio Laboratories, Inc.) was used to isolate DNA from cecal snips.
Dual-indexing sequencing approach was used to amplify the V4 region of the 16S rRNA gene.
Each PCR mixture contained 2 pl of 10X Accuprime PCR buffer Il (Life Technologies, CA, USA),
0.15 ul of Accuprime high-fidelity polymerase (Life Technologies, CA, USA), 5 ul of a 4.0 uM
primer set, 1 yl DNA, and 11.85 pl sterile nuclease free water. The template DNA concentration
was 1 to 10 ng/pl for a high bacterial DNA/host DNA ratio. The PCR conditions were as follows:
2 min at 95°C, followed by 30 cycles of 95°C for 20 sec, 55°C for 15 sec, and 72°C for 5 min,
followed by 72°C for 10 min. Libraries were normalized using a Life Technologies SequalPrep
normalization plate kit as per manufacturer's instructions for sequential elution. The
concentration of the pooled samples was determined using the Kapa Biosystems library
quantification kit for lllumina platforms (Kapa Biosystems, MA, USA). Agilent Bioanalyzer high-
sensitivity DNA analysis kit (Agilent CA, USA) was used to determine the sizes of the amplicons
in the library. The final library consisted of equal molar amounts from each of the plates,

normalized to the pooled plate at the lowest concentration. Sequencing was done on the Illumina
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MiSeq platform, using a MiSeq reagent kit V2 (llumina, CA, USA) with 500 cycles according to
the manufacturer’s instructions, with modifications?®. Sequencing libraries were prepared
according to lllumina’s protocol for preparing libraries for sequencing on the MiSeq (llumina, CA,
USA) for 2 or 4 nM libraries. PhiX and genomes were added in 16S amplicon sequencing to add
diversity. Sequencing reagents were prepared according to the Schloss SOP
(https://www.mothur.org/wiki/MiSeq_SOP#Getting_started), and custom read 1, read 2 and
index primers were added to the reagent cartridge. FASTQ files were generated for paired end
reads.

Raw reads were processed in QIIME2, with DADA2 used for de-noising and generating
amplicon sequence variants (ASVs)?%?7. Taxonomic assignment of the ASVs was done using
the Silva reference database (silva-132-99-nb-classifier.qza)?®. The code used to process the
reads can be found in Supplemental File 7 for 630Aerm and Supplemental File 8 for R20291.
Percent relative abundances of Family level ASVs were calculated for each sample in Excel,
averaged across treatment groups, and visualized in GraphPad Prism 8.

Principal components analysis (PCA) (Fig. 5b) was performed in the R statistical
programming environment (https://www.r-project.org). ASVs from the V4 region that differ by just
one base pair may come from the different 16S copies in the same genome?®. We therefore
aggregated ASVs into 99%-identity OTUs using complete-linkage clustering on the Levenshtein
edit distances between ASV sequences. Principal components analysis was then performed on
Hellinger-transformed OTU abundances®® and the first two principal components plotted with
sample scaling (scaling 1). The R code can be found in Supplemental File 9. The essential R
packages used were biomformat, Biostrings, phyloseq, vegan, ggplot2, and data importing and
manipulation packages from the tidyverse package collection3'-32,

Statistical analysis. With the exception of the RNAseq analysis, all statistical tests were

performed in GraphPad Prism 8. Kruskal-Wallis One-Way ANOVA with Dunn’s correction for
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multiple comparisons was used to test for significance when comparing C. difficile CFUs, mouse
weights, and cecal toxin activity. A mixed effects model with Tukey’s multiple comparison’s test
was used to test for significance on qRT-PCR data. Histopathology summary scores were tested
for significance using a Geissner-Greenhouse corrected ordinary Two-Way ANOVA with Tukey’s
multiple comparisons test. A Mann-Whitney test was used to compare the fluorescence
quantification of IMRO0 cells treated with vehicle or toxins. DESeq2 identified statistically
significant differentially expressed genes in the RNAseq study. A p-value of < 0.05 was
considered statistically significant, with *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
Results

Wild type C. difficile induces significantly more inflammation and tissue damage than a
tcdR mutant. Antibiotic treated mice were challenged with 10° spores of C. difficile 630Aerm
(wild type, or wild type mice hereafter) or an isogenic tcdR::ermB (tcdR, or tcdR mice) mutant
on day 0 and clinical signs of disease were monitored for four days post challenge (Fig. 1a).
Mutation of tcdR has been reported to significantly reduce levels of both toxin gene expression
and toxin protein production in vitro®34. Nearly five-fold fewer tcdR vegetative cells were
recovered in the feces relative to wild type at day 1 (p=0.0314, Kruskal-Wallis with Dunn’s
correction for multiple comparisons); however, there was no difference by day 3, nor were
significant differences detected in fecal spores between the two strains at either day (Fig. 1b and
1c). Cecal content from day 2 and 4 did not harbor significantly different vegetative cells or
spores, however nearly 10°-fold more toxin activity was detected in wild type mice compared to
tcdR mice at both days, indicating that the tcdR mutant behaves similarly in vivo as it does in
vitro with respect to toxin production (Fig. S1a-c, Fig. 1d). Accordingly, histopathological analysis
of cecal tissue found significantly increased inflammation in wild type mice when compared to
uninfected controls (no C. difficile) at day 2 (p=0.006; Two-Way ANOVA with Tukey’s multiple

comparisons test), as well as significantly more epithelial damage when compared to both
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uninfected controls and fcdR mice at day 4 (p=0.024 for both; Two-Way ANOVA with Tukey’s
multiple comparisons test) (Fig. 1e-f). While cecal inflammation, epithelial damage, and edema
were lower in tcdR mice at day 2 relative to wild type mice, it was not statistically significant.
Tissue damage in wild type mice was even more pronounced in colonic tissue (Fig. S1d).
Together, these data show that the tcdR mutant fails to produce much detectable toxin activity
in vivo, and consequently does not elicit significant inflammatory damage to host gut tissue.

Toxin-mediated inflammation significantly alters the C. difficile transcriptome in vivo. As
colonization with wild type C. difficile leads to significant increases in inflammation and damage
to the cecal epithelium, we hypothesized that C. difficile would shift its transcriptome to reflect
such dramatic differences in the inflammatory environment®. However, a tcdR mutant in the
R20291 strain has numerous differentially expressed genes in vitro®**. To assess whether the
tcdR mutation is pleiotropic in 630Aerm, we performed RNAseq on wild type and the tcdR mutant
grown for 18 hours in TY media as an in vitro control. We found that other than the genes of the
Pathogenicity Locus (PalLoc), only two genes were differentially expressed (log2 fold change +1
and adjusted p value<0.05) between the strains in vitro (CD1917, encoding eutE, and CD3087,
encoding a transcription factor of the RpiR family) (Supplemental File 3). When comparing in
vivo expression profiles between the two strains, the majority of differentially expressed genes
were detected at day 2, with 86 transcripts increased and 82 decreased in wild type relative to
tcdR (Supplemental File 3). After four days, wild type had 15 transcripts increased and 4
decreased. Consistent with the cecal content toxin activity assay, among the most significantly
increased transcripts in wild type relative to the tcdR mutant were of the PalLoc. Interestingly,
time was a more important variable with respect to the number of differentially expressed genes
in vivo in both wild type and the fcdR mutant. When comparing wild type at day 4 to wild type at
day 2, 249 genes had increased transcript levels and 155 decreased; the tcdR mutant at day 4

relative to day 2 had even more dramatic changes in gene expression, with 380 transcripts


https://doi.org/10.1101/2020.08.06.238881
http://creativecommons.org/licenses/by-nc-nd/4.0/

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.06.238881; this version posted August 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

increased and 338 decreased. A subset of genes identified as differentially expressed between
wild type and the fcdR mutant were selected for quantitative real-time PCR (qRT-PCR)
validation, which confirmed trends in expression from the RNAseq (Fig. S3a-d). Together, these
data show that inflammation is an important environmental determinant of the C. difficile
transcriptome in vivo.

Toxin-induced inflammation alters C. difficile metabolism. We used prokaryotic gene set
enrichment analysis to summarize the main patterns in differential gene expression (Fig. 2a, Fig.
S2, and Supplemental File 4). Gene Ontology (GO) terms related to carbohydrate metabolism
were enriched in wild type relative to fcdR at both days post challenge, suggesting that wild type
C. difficile may have had access to different carbohydrate nutrient sources. An operon encoding
a phosphoenolpyruvate:carbohydrate phosphotransferase (PTS) system annotated to be
specific to mannose/fructose/sorbose was significantly increased in wild type C. difficile at day
2 (Fig. 2b). PTS systems are typically induced by the presence of the carbohydrate that they
import (and absence of a repressing carbohydrate) via a transcriptional antitermination
mechanism?3®. Expression of this operon normalized between wild type and the tcdR mutant by
day 4, though at this time point the wild type had increased expression of genes predicted to be
involved in fructose/mannitol and tagatose metabolism, as well as genes involved in extracellular
polysaccharide production (Fig. 2b).

Among the most abundant GO terms in the set of transcripts that were decreased in wild
type were those for oxidation-reduction and catalytic processes, as well as those for leucine
biosynthesis. The transcript levels for ilvD, involved in isoleucine and valine biosynthesis, were
also decreased in wild type relative to fcdR (Fig. 2b). Both the leu operon and ilvD in C. difficile
are transcriptionally repressed by CodY, whose repressive activity is high when bound by
branched chain amino acids and/or GTP3"38, Similar patterns of decreased expression in wild

type were seen in the CodY-regulated operon encoding the machinery for metabolism of
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succinate to butyrate (Fig. 2b). CodY has also been shown to positively regulate the expression
of some genes in vitro, including pfiIB*. We found that pfIB expression in vivo was increased at
day 2 in wild type C. difficile (Fig. 2b). These data, when combined with previous metabolomic
studies, suggest that the metabolomic environment of the inflamed gut may be enriched for
specific carbohydrates and oxidative Stickland reaction substrates in the form of branched chain
amino acids.

Wild type C. difficile also had increased transcript levels of a number of genes involved in
amino acid acquisition and metabolism compared to tcdR in vivo. One such gene, CD3442,
encodes a putative M24 family Xaa-Pro prolidase. Eukaryotic prolidases are intimately linked to
collagen metabolism, while prokaryotic prolidases are often involved in protein turnover and
proline recycling®®4°. In contrast, the gene encoding 4-hydroxyphenylacetate decarboxylase
(hpdB) was decreased in wild type at day 4; the transcript from the hpdC gene immediately
downstream was also decreased (p=0.08) (Fig. 2b). HpdB is involved in the fermentation of
tyrosine to p-cresol, which has been shown to affect fithess in vivo in a murine relapse model
and to modulate gut microbial community structure; the decreased hpdB transcript levels we
observed may be consistent with lower levels of its substrate in the ceca of wild type mice*'=43.
Gene expression for multiple aspects of C. difficile physiology is altered in the presence
of inflammation. Multiple genes encoding structural components of the flagella, including some
that have been shown to induce inflammatory responses from host cells in vitro and in vivo, were
decreased in expression in wild type (Fig. 2b). In contrast to flagellar genes, wild type had
increased expression of the cdd operon, comprised of three genes (cdd4, cdd3, and cdd?) that
are divergently transcribed from a two-component system (TCS) response regulator and
histidine kinase (Fig. 2b). The cdd genes are annotated to encode the components of a
multidrug/antibiotic ABC transport system, and given their genomic association with a TCS, it is

tempting to speculate that it may encode an undescribed defense mechanism against
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antimicrobial peptides that could function semi-analogously to the CprK-CprR/CprABC system
that has been described for C. difficile**4.
Wild type C. difficile induces a robust inflammatory and proteolytic gene expression
profile in host gut tissue. To determine how the host responds to C. difficile toxin-induced
inflammation we compared the cecal tissue gene expression between three groups of mice
(uninfected or no C. diff, wild type, and tcdR) with the NanoString Mouse Immunology panel
modified to include probes targeting transcripts encoding matrix metalloproteinases (MMPs) and
tissue inhibitors of metalloproteinases (TIMPs) (Fig. 3, Fig. S4-S6, and Supplemental File 1).
The top 50 differentially expressed transcripts (in terms of significance) from the wild type relative
to tcdR comparisons from both days were combined and plotted in a heatmap with hierarchical
clustering of samples, and two distinct clusters were observed (Fig. 3a). All samples from fcdR
mice and uninfected controls formed one large cluster, while all wild type mice formed their own
distinct cluster; neither cluster showed sub-clustering based on time points. Only 42% of the
differentially expressed genes in wild type mice relative to tcdR mice were significant at both day
2 and 4, suggesting that the nature of the immune response to wild type C. difficile changed over
the course of infection (Fig. S5). In contrast to wild type mice, tcdR mice had no significant
differentially expressed genes in their cecal tissue when compared to uninfected controls (data
not shown). A number of transcripts were selected for further analysis via qRT-PCR, which
confirmed expression patterns observed via the NanoString approach (Fig.S6a-e). These data
are consistent with the histopathological analysis, and show that in the absence of toxin activity,
the fcdR mutant is relatively inert in vivo with respect to stimulating a host immune response.
We next performed gene set enrichment analysis for each group of differentially
expressed genes, using GO biological process terms and considering the direction of expression
for each transcript (Fig. 3b and Supplemental File 2). The GO term for regulation of inflammatory

processes was enriched in transcripts with increased abundance in cecal tissue from wild type
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mice at both days. The second most enriched at day 2 was regulation of peptide secretion,
consistent with the role of host-derived antimicrobial peptides being produced as an arm of the
innate immune response. Of particular interest was the enrichment of genes involved in the
positive regulation of proteolysis, as peptide fragments derived from these processes may serve
as nutrient sources for C. difficile, which is well-known for using amino acid fermentation as an
energy source in vitro and in vivo893%46-50 |n addition to the upstream regulators of various
proteolytic processes, cecal tissue from wild type mice had significant increases in transcripts
from genes encoding multiple MMPs including Mmp3, Mmp10, Mmp12, and Mmp13; probes
targeting Mmp3 were not included in the NanoString custom panel, so fold change for this
transcript is reported based on gRT-PCR results (Fig. 3c, Fig S6¢). Taken together, these data
show that C. difficile toxin activity induces a highly inflammatory gut environment, and implicate
MMP substrates, such as collagen and other ECM components, as reservoirs of Stickland
substrate amino acids in vivo.

Toxin activity induces collagen degradation which supports C. difficile growth in vitro.
The increase in numerous Mmp transcripts during toxin-induced inflammation suggested the
ECM may be altered during CDI. We chose to examine whether toxin activity on cells in vitro
affected collagen integrity, as it is highly abundant and an excellent source of proline,
hydroxyproline, glycine, and alanine, all of which are amino acids that C. difficile can ferment via
the Stickland reaction’. Confluent ECM-producing IMR90 human fibroblast monolayers were
cultured on 24-well plates for three days prior to toxin treatment. Collagen remodeling was then
visualized using immunofluorescence (Fig. 4a). By confocal microscopy, we observed toxins
caused a notable disruption of the collagen network over a 12 hour period. Extensive networks
of collagen fibrils were apparent in untreated cells, whereas collagen in toxin-treated cells

appeared fragmented and condensed into globular structures. Moreover, we observed a
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significant decrease in collagen fluorescence over a 15 hour period, validating that collagen was
being degraded in the presence of toxins (Mann-Whitney test p<0.0001) (Fig. 4b).

Given that toxins induced the degradation of collagen in IMR9O0 cells, we next speculated
that C. difficile can acquire nutrients from degraded collagen. To test this, C. difficile was grown
in a minimal media with proline, without proline, or without proline and supplemented with heat-
degraded collagen for 24 hours (Fig. 4c). Although not statistically significant (p=0.233, Kruskal
Wallis one-way ANOVA), C. difficile grew approximately ten-fold higher in media supplemented
with degraded collagen compared to media with no proline, indicating collagen can provide a
source of proline for C. difficile growth. Additionally, when host collagen rich dipeptides Pro-Gly
and Gly-Pro, were substituted for collagen degradation products, C. difficile grew to levels
comparable to the standard minimal media control after 24 hours (p=0.0015 for both conditions
compared to their respective 0 hour time point CFUs, two-way ANOVA with Sidak’s multiple
comparisons test) (Fig. 4d). This suggests that C. difficile can exploit host collagen degrading
activity as a means to acquire nutrients.

Toxin-mediated inflammation suppresses the return of the Bacteroidaceae in the gut
microbiota. Given the importance of the microbiota in rendering the gut an inhospitable
environment for C. difficile, we hypothesized that toxin-mediated inflammation may exclude or
suppress members of the gut microbiota that contribute to colonization resistance, and/or select
for microbes that may benefit C. difficile through further niche modification/preservation, or other
mechanisms like cross-feeding. We performed 16S rRNA amplicon sequencing on cecal DNA
from mice challenged with wild type, the tcdR mutant, and uninfected controls or no C. diff
(Supplemental File 5 for ASV relative abundances and taxonomy). As expected, a significant
driver of community similarity was C. difficile colonization status, however a number of mice from
the uninfected controls (no C. diff) and the tcdR mice had community structures with an

increased abundance of ASVs from the Akkermansaceae (at day 2) and Bacteroidaceae (both
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days) Families, which were low or undetected in the cecal microbiota of wild type mice (Fig. 5a).
Additionally, a number of low abundance Family members, including the Coriobacterales,
Paenibacillaceae, and Burkholderiaceae, were present in either uninfected controls, tcdR mice,
or both, but undetected in the cecal microbiota of wild type mice (Supplemental File 5). Amplicon
sequence variants (ASVs) from the Staphylococcaceae Family were detected at relatively high
abundance in uninfected controls at both days, but were in low abundance or undetected in mice
challenged with either strain of C. difficile (Fig. 5a). ASVs generated by DADAZ2 were clustered
into operational taxonomic units (OTUs) at 99% sequence identity, and Hellinger-transformed
OTU abundances were analyzed by principal components analysis (PCA) to determine the
similarity of each cecal community (Fig. 5b). At day 2, both wild type mice and all but one of the
uninfected controls formed tight, distinct clusters, while tcdR mice showed no specific clustering.
By day 4, no group clustered very closely. Some wild type and fcdR mice community structures
were driven by ASVs from various Lachnospiraceae and Erysipelotrichaceae Families, while
community structures of other fcdR and uninfected mice were driven by ASVs from the
Bacteroidaceae, Akkermansaceae, and Staphylococcaceae Families. These data show that
colonization with C. difficile and toxin-mediated inflammation can significantly impact the return
of the gut microbial community structure.

The ASV from the Bacteroidaceae Family identified in this study classified as genus
Bacteroides. Since the Bacteroidaceae were more abundant in some mice in the absence of
inflammation, and hydroxyproline utilization genes are enriched in this Family, we sought to
characterize the growth of two representative members, Bacteroides thetaiotaomicron and
Bacteroides fragilis, in a minimal media with and without supplementation of collagen rich
substrates, proline or hydroxyproline (Fig. 5¢-d)®'. Supplementation of the minimal media with
either amino acid led to approximately ten-fold increased growth for both species over 16 hours

relative to un-supplemented media. Glucose was required for robust growth, however when
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minimal media with glucose was supplemented with either amino acid there was almost two-fold
higher growth of B. thetaiotaomicron and B. fragilis relative to glucose alone, though this was
not statistically significant. This trend of increased growth in supplemented media indicates that
both proline and hydroxyproline can be utilized by members of the genus Bacteroides, and that
these amino acids may be valuable nutrients to compete for in the gut.

Toxin-mediated alterations of host Mmp expression and the gut microbiota are conserved
in mice challenged with epidemic R20291 C. difficile strain. As the wild type strain used in
this study (630Aerm) is a multi-passaged, erythromycin sensitive lab strain, we sought to
replicate our findings in the clinically relevant R20291 strain. A AtcdR mutant was constructed
via allelic replacement, and the parent strain was used to challenge antibiotic treated mice (Fig.
6). No differences in total fecal C. difficile load (vegetative cells + spore) were observed between
the strains at any day post challenge, however, significantly fewer AfcdR spores were recovered
from feces at day 2 (p<0.0001, Kruskal-Wallis with Dunn’s correction for multiple comparisons),
consistent with a previous report on a tcdR ClosTron mutant in R20291 showing decreased
sporulation efficiency in vitro (Fig. 6a-b)**. Similar to what was observed for 630Aerm and its
tcdR::ermB derivative, cecal content from mice challenged with wild type R20291 had
significantly higher toxin titers than that from AfcdR at both days (Fig. 6c). Importantly,
comparable patterns of increased expression of the same Mmps was observed in cecal tissue
from wild type R20291 mice relative to the AtcdR mice (Fig. 6d). Given the pleiotropic nature of
the tcdR mutation in the R20291 strain, we elected not to perform C. difficile gene expression
studies in vivo. 16S rRNA amplicon sequencing on cecal tissue isolated at day 4 showed similar
patterns in the microbial community structures as observed in mice challenged with the 630Aerm
strains. Wild type R20291 mice had very low or undetectable Bacteroidaceae ASVs, while AfcdR

mice had considerably higher levels (2% average relative abundance vs. 32%, respectively) (Fig.


https://doi.org/10.1101/2020.08.06.238881
http://creativecommons.org/licenses/by-nc-nd/4.0/

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.06.238881; this version posted August 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

6e and Supplemental File 6). The ASV designated as Bacteroides in this study is identical to the
Bacteroides ASV that was identified in the cecal communities of uninfected controls and tcdR
mice from the 630Aerm study in Fig. 5a-b. Collectively, these data show that induction of host
Mmp gene expression is a conserved component of the immune response to C. difficile toxin
activity, and that the decreased levels of Bacteroidaceae in the inflamed gut may be biologically
significant and an additional mechanism where C. difficile is able to exploit a niche and thrive
due to host inflammation.

Discussion

C. difficile is a major nosocomial pathogen and cases of CDI are beginning to be diagnosed in
individuals who lack the classic predisposing traits of recent antibiotic use or compromised
immune status®2. While effective treatments exist for C. difficile, some patients require fecal
microbiota transplants (FMTs) to resolve their infections, highlighting the need to better
understand how this pathogen creates a niche for persistence in a host. CDI is highly
inflammatory; therefore, we leveraged the power of bacterial genetics with tcdR mutants in two
strains of C. difficile to define how toxin-mediated inflammation alters the gut environment in
vivo, with a focus on bacterial metabolism and the gut microbiome. We observed changes in
numerous C. difficile metabolic genes in vivo, consistent with the hypothesis that toxin-induced
inflammation alters the nutrient landscape in the host gut environment. In particular, we found
time-dependent increases and decreases in the expression of multiple PTS carbohydrate import
genes, and decreased expression of CodY-regulated genes for branched chain amino acid
biosynthesis and butyrate production in wild type C. difficile. On its face, this represents a
paradox: CodY de-repression of tcdR, tcdA, and tcdB leads to extremely high levels of the toxins,
yet in our study we found that a number of CodY regulated genes were repressed in vivo in the
presence of inflammation. Two possible mechanisms may explain this discrepancy: phase

variation in the expression of sigD, a positive regulator of fcdR, and bimodal expression of tcdR
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and the toxin genes®3%3. Our transcriptomic approach captured average expression of genes
within large populations of bacteria in each sample, but cannot detect differences in expression
between individual cells. Future studies examining the per-cell expression levels of the CodY-
regulated genes identified in our RNAseq studies are warranted. Regardless, our RNAseq
approach has identified numerous targets for further study via mutagenesis with respect to C.
difficile metabolic requirements in vivo, or how it resists the deleterious effects of host
inflammation. Further, it highlights the need to fully understand the spectrum of behavior of
individual bacterial cells across a population during the infection process. This may open novel
avenues for therapeutic targeting of specific subsets of pathogens within a metabolically
heterogeneous population.

Our data support a model where the activity of the toxins stimulate an inflammatory host
response that includes gene expression signatures consistent with degradation of collagen and
other components of the ECM. Collagen is rich in Stickland reaction substrates like proline (and
hydroxyproline, which C. difficile can dehydrate to proline) and glycine, amongst other amino
acids that C. difficile can ferment'?>'4 Hence, the ECM and collagen may serve as a reservoir
of preferred amino acid nutrients that sustain the metabolic burden of large bacterial populations
and production of the toxins over time within the host gut environment. Aberrant MMP activity
has been reported as a factor in the pathogenesis of Inflammatory bowel disease (IBD), and IBD
patients may be more likely to contract CDI than the non-IBD population, suggesting that ECM
remodeling could contribute to creating a niche in humans that C. difficile can more readily
colonize and thrive®>~’. The gastrointestinal pathogens, Salmonella enterica and Vibrio cholerae,
have also been shown to benefit from inflamed host tissue, gaining access to nutrients that
increase their fitness as pathogens'31455-57_ Future studies are needed to determine the extent
to which MMP activity contributes to the peptides and amino acids that C. difficile has access to

in the inflamed gut.
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Lastly, we show that the community structure of the gut microbiota is altered by the
presence of C. difficile and the activity of its toxins, supporting the hypothesis that inflammation
can benefit C. difficile by selecting against competitors and for potential allies. In particular, we
found that the Bacteroidaceae tended to bloom in the uninflamed ceca of antibiotic treated
uninfected controls, or mice challenged with two fcdR mutants from phylogenetically divergent
C. difficile strains®. In the latter case, the experiments were conducted over a year apart,
suggesting that the inflammation induced by wild type C. difficile in our mouse model selects
against a Bacteroidaceae population expansion. In support of this, negative associations
between C. difficile and members of the Bacteroidaceae have been reported in human studies,
as well as in vitro, and in mouse models of CDI®®-63, Further work is necessary to identify which
mediator(s) of host inflammation are responsible for the restriction of the Bacteroidaceae in our
model of CDI. B. thetaiotaomicron has been shown to cross-feed C. difficile with succinate in a
co-colonization model and our RNAseq studies support this, in that fcdR mice colonized with the
Bacteroidaceae had increased expression of the succinate to butyrate operon. Interestingly,
homologs of the C. difficile hydroxyproline dehydratase gene, hypD, are enriched in the
Bacteroidaceae, and C. difficile can satisfy its proline requirements through utilization of
hydroxyproline in vitro®'. Given the high levels of hydroxyproline in collagen, it is possible that
toxin-mediated exclusion or suppression of the Bacteroidaceae removes a competitor for a vital
nutrient. Additional studies are needed to determine if members of this Family produce
antagonistic effects against C. difficile in vitro and in vivo.

Use of a toxin null or tcdR mutant combined with omic technologies and in vivo models
represents a powerful approach for asking how C. difficile toxin-induced inflammation alters the
host gastrointestinal environment in ways that may create or preserve a niche during
colonization and disease. These results provide multiple avenues for future study of the basic

biology of CDI at the level of host response, pathogen response to inflammation, and
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manipulation of the host gut microbiota. While it was outside the scope of this work, we think the
approach of querying the gut microbiota of mice colonized with wild type and mutant strains of
C. difficile, in particular mutants in key metabolic pathways, may be fruitful for identifying bacterial
taxa that bloom in the presence of a nutrient(s) that a mutant C. difficile population can no longer
use. This approach may, with enough mutants in important metabolic pathways, contribute to a
rationally designed consortium of bacteria that could compete with C. difficile for essential
nutrients in models of colonization and disease.

Data availability.

Raw sequences have been deposited in the Sequence Read Archive (SRA) with SRA
accession number SUB6663505 and BioProject ID PRINAG612095.

Biological materials availability.

Available upon request.
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Figure legends.

Fig. 1. Inflammation is attenuated in tcdR mice in a mouse model of C. difficile infection.
A) Schematic depicting experimental design. All mice (n=36) received the antibiotic
cefoperazone in their drinking water. Subsets were orally gavaged with wild type (n=12) or tcdR
(n=12) after antibiotic treatment. B) C. difficile vegetative cell CFUs in feces (n=6-8 per strain).
C) C. difficile spore CFUs in the feces (n=6-8 per strain). D) Toxin activity in the cecal content of
mice (n=4-6). E) Histopathological summary scores of the cecum. F) Representative images of
H&E stained ceca; scale bar, 500 um. Kruskal-Wallis test with Dunn’s correction for multiple
comparisons was used to test for statistical significance in B, C, and D. Geissner-Greenhouse
corrected ordinary Two-Way ANOVA with Tukey’s multiple comparisons test was used in E. *p
< 0.05, **p < 0.01, **p < 0.001, ****p < 0.0001.

Fig. 2. Metabolic gene expression in C. difficile is significantly altered by toxin-mediated
inflammation. A) Gene set enrichment analysis of the differentially expressed genes in vivo
from wild type C. difficile relative to the tcdR mutant from both days 2 and 4. GO terms that had
transcripts with decreased levels are depicted in black bars and GO terms containing transcripts
with increased levels are shown as red bars. B) Heatmap of the log2 fold change of key operons
and transcripts that were differentially expressed in wild type C. difficile (n=5 on day 2, n=3 on
day 4) relative to tcdR (n=6 on day 2, n=3 on day 4). The labels of known CodY regulated
transcripts are color-coded in red if they increased in expression in a codY mutant and green if

they decreased.
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Fig. 3. C. difficile induces expression of numerous transcripts associated with
inflammation and ECM degradation. A) Heatmap of the top 50 differentially regulated
transcripts (by adj. p value) in the ceca of uninfected controls, wild type mice, and tcdR mice
(n=5-6 per treatment and time point). B) Gene set enrichment analysis of the differentially
expressed genes in wild type mice relative to fcdR mice. C) Log2 fold changes of various Mmps
and associated transcripts from wild type vs. tcdR mouse ceca. Significance for all transcripts
except Mmp3 was determined using differential expression analysis within the NanoString
nSolver Advanced analysis software. Mmp3 expression levels were determined via qRT-PCR
on cDNA generated from the same RNA used in the NanoString analysis.

Fig. 4. Toxin-mediated degradation of collagen supports C. difficile growth in vitro. A)
Representative images of collagen (red) produced by IMR90 cells. Confluent cell monolayers
were treated with 0.5 pM TcdA and TcdB and images were collected 12 hours later. Collagen
was stained with a mix of antibodies against collagen types I, lll and V in a 1:1:1 ratio; scale bar,
10 um. B) Mean fluorescent intensity of Alexa Fluor 568 stained collagen produced by IMR90
cells cultured in the presence or absence of 0.5 pM TcdA and TcdB for 15 hours calculated using
Imaged software. Statistical significance was determined by Mann-Whitney rank-sum test. C) C.
difficile was grown in complete CDMM, CDMM lacking proline, or CDMM lacking proline and
supplemented with heat-degraded collagen. CFUs/ml were enumerated at 0 and 24 hours. D)
Similar to the scheme in C, except that purified Pro-Gly or Gly-Pro dipeptides were added to
CDMM lacking proline. Statistical significance was determined by two-way ANOVA with Sidak’s
multiple comparisons test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Fig. 5. C. difficile toxin activity suppresses the Bacteroidaceae that are able to compete
with C. difficile for amino acids. A) Averaged percent relative abundance of Family-level ASVs
in each treatment group per timepoint. ASVs with less than 1% relative abundance in all samples

were not included. B) PCA biplot of 16S rRNA amplicon sequences derived from cecal tissue
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from uninfected or no C. diff controls (n=5 on day 2, n=6 on day 4), and wild type mice (n=4 on
day 2, n=6 on day 4) or tcdR mice (n=5 on day 2, n=6 on day 4). Each colored symbol represents
an individual mouse’s cecal microbiome, with circles being those from day 2 and triangles from
day 4. 99% of OTUs are shown as gray crosses; the 10 OTUs furthest from the origin are labeled
by the finest taxonomic rank identified (family, genus, or species). C) 16 hour fold change in
CFUs of B. thetaiotaomicron in minimal media with or without glucose, supplemented with either
proline or hydroxyproline. D) 16 hour fold change growth of B. fragilis in identical media
conditions as in C.

Fig. 6. C. difficile R20291 toxin activity similarly shapes the host gut transcriptome and
microbiota community structure in mice. A) Total C. difficile CFUs (vegetative and spores) in
feces over time (n=6-8 per strain). B) Fecal spore CFUs over time (n=6-8 per strain). C) Toxin
activity in the cecal content of R20291 or AfcdR mice, as assessed by the Vero cell cytotoxicity
assay (n=5 per strain on day 2, n=4 per strain on day 4). D) Log2 fold change of Mmp and Timp
transcripts (n=3 per strain). E) Averaged percent relative abundances of 16S rRNA amplicon
sequences from cecal tissue isolated at day 4 (n=5 per strain). Kruskal-Wallis test with Dunn’s
correction for multiple comparisons was used to test for statistical significance. *p < 0.05, **p <
0.01, ****p < 0.0001.

Fig. S1. Extended data from the mouse model of C. difficile infection. A) Mouse weights
over the course of the experiments (n=12 on day 2, n=6 on day 4). B) Vegetative cell CFUs in
the cecal content on day 2 and 4 (n=6 per strain). C) Spore CFUs in cecal content from B (n=6
per strain). D) Histopathological summary scores of the colon. Geissner-Greenhouse corrected
ordinary Two-Way ANOVA with Tukey’s multiple comparisons test was used to test for
significance. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Fig. S2. C. difficile transcriptome shifts over the course of infection. A) Enriched GO terms

in the differentially expressed genes in wild type C. difficile and B) tcdR at day 4 (n=3 per strain)


https://doi.org/10.1101/2020.08.06.238881
http://creativecommons.org/licenses/by-nc-nd/4.0/

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.06.238881; this version posted August 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

relative to day 2 (n=5-6 per strain). GO terms for transcripts with decreased or increased levels
are shown in black and red bars, respectively.

Fig. S3. Validation of differentially expressed C. difficile transcripts by qRT-PCR. A-D)
Expression was quantified from cDNA generated from the same RNA that was used in the
RNAseq experiment, including samples from in vitro C. difficile cultures.

Fig. S4. Volcano plots depicting log2 fold change in expression and the adjusted p-value
for mouse cecal tissue transcriptomes. A and B) Gene expression in wild type ceca relative
to fcdR ceca at days 2 and 4, respectively. C and D) Gene expression in wild type ceca relative
to ceca from uninfected, cefoperazone treated controls at 2 and 4 days, respectively. E and F)
Gene expression at day 4 relative to day 2 in wild type ceca and fcdR ceca, respectively. The
number of genes increased in expression are in red font and decreased are in green font.

Fig. S5. Shared and unique differentially expressed genes in ceca of wild type relative to
tcdR mice over time. A) Transcripts that increased in expression. B) Transcripts that
decreased in expression. Venn diagrams were created using Venny 2.1
(https://bioinfogp.cnb.csic.es/tools/venny/).

Fig. S6. Validation of transcripts from NanoString cecal tissue analysis by qRT-PCR. A-E)
Expression was quantified in cONA generated from the same cecal RNA that was used in the
NanoString analysis. F) Unscaled heatmap depicting the log2 fold change of each Mmp and
Timp in every differential expression analysis. The heatmap was created using the R package

pheatmap (https://cran.r-project.org/web/packages/pheatmap/index.html). A mixed effects

model with Tukey’s multiple comparison’s test was used to test for significance. *p < 0.05, **p <

0.01.
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