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A MATLAB Toolbox for Modeling Genetic Circuits
in Cell-Free Systems

Vipul Singhal, Zoltan A. Tuza, Zachary Z. Sun, and Richard M. Murray

Abstract—We introduce a MATLAB based simulation toolbox,
called txtlsim, for an E. coli based Transcription-Translation (TX-
TL) system. This toolbox accounts for several cell-free related phe-
nomena, such as resource loading, consumption, and degradation,
and in doing so, models the dynamics of TX-TL reactions for the
entire duration of batch-mode experiments. We use a Bayesian
parameter inference approach to characterize the reaction rate
parameters associated with the core transcription, translation
and mRNA degradation mechanics of the toolbox, allowing it to
reproduce constitutive mRNA and protien expression trajectories.
We demonstrate the use of this characterized toolbox in a circuit
behavior prediction case study for an incoherent feed-forward
loop.

Index Terms—Cell-Free Synthetic Biology, Genetic Circuits,
Mathematical Modeling, Chemical Reaction Networks, Param-
eter Inference

I. BACKGROUND

Synthetic biology is often described as an endeavour to
integrate engineering principles into the process of designing
novel biological systems. One of its key goals is the engineering
of genetic circuits to function in a predictable manner, so
that these circuits may be used to control cellular behavior
[1], [2]. The design-build-test cycle of these circuits in vivo,
however, can be time consuming and expensive. In disciplines
like electrical and aeronautical engineering, the design-build-
test cycle is accelerated with the help of rapid prototyping
environments like breadboards and wind tunnels, and associated
dynamics simulation software such as PSpice [3], [4] and
XFlow. Analogously, it should be possible to accelerate the
design of novel biological systems in synthetic biology using
appropriate rapid prototyping tools.

Recently, cell-free protein synthesis systems have been used
as prototyping platforms for the design of genetic circuits [5],
[6]. Cell lysate-based systems in particular are made of three
components: a cytoplasmic extract, a buffer containing energy
and raw material molecules, and a solution containing the DNA
that encodes the circuit to be implemented. One example of an
Escherichia coli (E. coli) based cell-free system is the TX-TL
(transcription-translation) system [7], [8], [9].
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Cell-free systems have numerous advantages that make them
suitable as prototyping platforms in synthetic biology. First,
since the DNA encoding the circuit is not constrained by the
need for replication, restrictions due to plasmid selection mark-
ers and antibiotic compatibility are lifted. This allows for the
rapid exploration of genetic circuit variants by trying different
combinations of DNA species. Second, time-consuming cloning
and transformation steps may be bypassed by using linearized
DNA in the form of polymerase chain reaction (PCR) products
or de novo synthesized fragments, which speeds up the DBT
cycle.

Examples of software for simulating general biochemical
reaction networks include the TABASCO [10], COPASI [11],
Bioscrape [12], and MATLAB Simbiology®. TABASCO and
COPASI are fast general purpose solvers that can incorporate
stochastic simulations into circuit dynamics. Bioscrape is a
Python-based simulator that leverages the speed of Cython to
perform fast stochastic simulations with time delays, cell lin-
eage tracking, and Bayesian parameter inference. Simbiology®

is a MATLAB toolbox that follows the Systems Biology
Markup Language (SBML) in its structure, in that it allows
for the specification of the standard SBML features such as
models, compartments, reactions, species, parameters, rules
and events in an object-oriented manner. It works well
with MATLAB’s ordinary differential equation solvers, local
and global optimization methods, plotting tools, and other
functionalities.

Examples of modeling studies specific to cell-free systems
include the one performed by Stögbauer et al. [13], who
described a minimal rate equation model of the PURExpress
reconstituted gene expression system, and performed a fit
of their model parameters to the experimentally measured
time courses of both the expressed protein and mRNA. They
did not, however, explore fitting their model to an E. coli
extract. Karzburn and Noireaux [14], on the other hand, did
fit models to protein and mRNA data from the TX-TL E. coli
extract, but restricted their analysis to the first 60 minutes
of system behavior. More recently, Moore et al. [15] have
performed extensive characterization of parts in non-model
bacteria extracts, such as those made from Bacillus Mageterium.
None of these studies, however, provide a software toolbox
or attempted to use their models to predict and validate the
behavior of whole circuits.

In this paper, we build on our initial work in [16] to describe a
MATLAB based software toolbox called txtlsim for prototyping
genetic circuits in TX-TL. This toolbox comes with a library
of parts that can be combined in different combinations to
build circuit models that are predictive of the behavior of
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circuits in vitro. It does this by accounting for the loading
of finite enzymatic resources, which can introduce complex
interactions between otherwise non-interacting elements of
genetic circuits [17]. Furthermore, it models the consumption
of resources like nulceotides and amino acids, and does so
without needing to model elongation processes at the single
base or codon resolution. Another feature of the toolbox is
its simple user interface, which requires only a few lines
of code and allows the user to specify a genetic circuit at
the level of promoters and genes, abstracting away all lower
level interactions. Finally, we demonstrate a Markov chain
Monte Carlo (MCMC) based multi-stage Bayesian inference
procedure for characterizing the toolbox’s parameters, and use
the characterized models to predict and experimentally validate
the behavior of an incoherent feed-forward loop under a variety
of experimental conditions.

The rest of this paper is organized as follows. In Section II,
we describe the implementation details of the toolbox, including
the biochemical equations, and show sample code for creating
models of genetic circuits. Section III describes inference of the
‘core’ toolbox parameters, which are parameters associated with
transcription, translation and RNA and resource degradation.
In Section IV, we demonstrate the predictive capabilities of the
toolbox using an incoherent feed-forward loop as an example
circuit. In Section V, we discuss the results and possible future
work. Finally, in Section VI, we describe the experimental and
computational methods used for data collection and parameter
inference.

II. IMPLEMENTATION

In this section, we build upon our initial work in [16] to
describe a software toolbox called txtlsim for simulating the
behavior of genetic circuits in TX-TL. This toolbox is useful
for modeling TX-TL experiments for two principal reasons.
Firstly, modeling the reactions associated with TX-TL requires
explicit accounting of the interactions of DNA and RNA
with enzymatic resource species such as RNA polymerases,
ribosomes, ribonucleases (RNases), and transcription factors.
This quickly increases the complexity of the chemical reaction
network being built, due to effects such as resource loading and
retroactivity [17]. This complexity is further compounded by
the need to account for nucleotide and amino acid consumption
and degradation. The txtlsim toolbox abstracts away the need
for the specification of these low level mechanisms and
interactions, allowing the user to specify genetic circuits at the
level of genes. Indeed, txtlsim comes with a library of parts
that can be combined in different combinations to build genetic
circuit models. Secondly, it is able to predict the behavior of
a genetic circuit, based only upon the characterization of its
constituent parts, as discussed in Section IV.

The txtlsim toolbox is written using MATLAB Simbiology®,
enabling its models to be compatible with MATLAB’s visualiza-
tion, simulation, and parameter estimation capabilities. Genetic
circuits are specified using a set of input strings that specify
DNA, small molecules, and other miscellaneous species. The
toolbox then generates a deterministic mass action kinetics
model of this circuit’s mechanics in TX-TL. A typical TX-
TL model, specified by the user at the resolution of whole

DNA, mRNA and protein species, comprises mechanisms
for transcription, translation, RNA degradation, transcriptional
regulation and the eventual inactivation of TX-TL itself. Other
mechanisms, such as linear DNA and protein degradation
or gamS-mediated protection against nucleases, may also be
included [18].

A. User Interface

We highlight several features of txtlsim. First, the toolbox
requires only a few lines of code to generate a relatively
complex chemical reaction network model of TX-TL. For
instance, the constitutive expression of green fluorescent protein
(GFP) can be modeled using the code shown below.

% Set up three Simbiology model objects.
tube1 = txtl_extract('E1'); % extract
tube2 = txtl_buffer('E1'); % buffer
tube3 = txtl_newtube('constitutive_expression');

% Add DNA to model object by specifying promoter,
RBS, CDS, concentration and type of DNA.

txtl_add_dna(tube3, 'pOR2OR1(50)', 'utr1(20)',...
'deGFP(1200)', 30, 'plasmid'); % reporter DNA

% Combine the three model objects into one.
Model_obj = txtl_combine([tube1, tube2, tube3]);

% Simulate and plot.
simData = txtl_runsim(Model_obj, 14*60*60);
txtl_plot(simData, Model_obj);

The set of commands shown in the snippet above mimic the
actual experimental protocol of setting up a TX-TL experiment.
The functions txtl_extract and txtl_buffer access
extract and buffer specific parameter configuration files, se-
lected by the input string ‘E1’ here, to set up two Simbiology®

model objects called tube1 and tube2. The configuration
files are user defined, and the parameters they contain can come
from the literature, or from parameter inference performed on
experimental data.

Next, the txtl_newtube and txtl_add_dna com-
mands are used to initialize a new Simbiology® model object
and add DNA to this model object, respectively. In its most
common use case, the txtl_add_dna function allows for
specification of a promoter, an untranslated region and a coding
sequence to form a transcriptional unit on the specified DNA,
along with the concentration of the DNA added, and whether it
is a linear fragment or plasmid DNA. For example, in the call
to txtl_add_dna above, the promoter, ribosome binding
site and coding sequence (CDS) are specified by the strings
‘pOR2OR1’, ‘utr1’ and ‘deGFP’, respectively. These
strings, each describing a component of the transcriptional unit,
are used by txtl_add_dna to access a library containing
code and parameter files associated with these components.
These component files specify the reactions and species
associated with each component, and encode interactions with
other components. This allows txtlsim to automatically link
different transcriptional units into a genetic circuit.

The txtl_combine command is used to combine the
three model objects (tube1, tube2 and tube3) into a model
object, Mobj, which is then simulated using txtl_runsim,
with the results plotted using txtl_plot. The flowchart in
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Figure 1 depicts the order these commands need to be specified
in.

txtl_extract tube 1 (model obj.)

Repeat txtl_add_dna 
for each piece of DNA. 

Plotting
Parameter Estimation

Exporting to SBML
Other Processing

txtl_buffer
con�g. �le

txtl_newtubecircuit name

prom spec

utr spec

gene spec

dna conc

dna type

txtl_add_dna tube 3

tube 2 (model obj.)

tube 3 (model obj.)

tube 3

txtl_combinemodel object

species name

conc.

txtl_addspecies

model object

Repeat txtl_addspecies 
as necessary

model object

sim. time
txtl_runsim

model object

sim. data

Figure 1. Flowchart of the user level code. The txtl_add_dna command
is the main command that is used to specify the DNA to be added to the
model. This allows for all the reactions and species associated with that DNA
to be set up in the model. The model is contained in a Simbiology® model
class object, and is simulated using the txtl_runsim command.

Figure 2 shows the result of the txtl_plot command,
which is arranged into three panels. The top panel shows the
protein species that exist within the TX-TL system. Bottom left
panel shows RNA (solid) and DNA (dashed) dynamics. The
bottom right panel (normalized to 1) shows the dynamics of
enzymatic and consumable resources. The enzymatic resources
are ribosomes, RNA polymerases, and RNases; the consumable
species in the model are the four nucleotides (ATP, GTP,
CTP, and UTP), and amino acids (AA).

The plots in Figure 2 were generated using parameters found
by fitting the deGFP and mRNA curves to corresponding data,
as described in Section III.

B. The Modeling Framework of the txtlsim Toolbox

In this section, we describe the typical reaction network
generated by txtlsim when a transcriptional unit is expressed.
More complex networks made out of multiple transcriptional
units interacting via transcription factor mediated regulation
are simply iterations of this canonical network, but coupled
via enzymatic and consumable resources, and the relevant
regulatory interactions. The species in the software toolbox may
be divided into five broad categories: DNA, mRNA, proteins,
miscellaneous species such as inducers or nucleotides, and the
biochemical complexes formed by combining these in defined
ways.

The species follow a naming convention, which allows
for the automated decision making involved in the reaction
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Figure 2. Standard output of txtlsim. Top: Gene expression profiles for
unfolded (deGFP) and folded (deGFP*) reporter protein. Bottom left: left
axis: mRNA profile, right axis: free DNA profile. Bottom right: Normalized
resource loading and consumption. AGTP = ATP + GTP, CUTP = CTP
+ UTP.

network generation. This naming convention is described in
Supplementary Section S1.2.

The main processes associated with each transcriptional
unit are transcription, translation and RNA degradation (Sup-
plementary Figure S1). Other processes include DNA and
protein degradation, transcription factor mediated activation
and repression, and inducer action.

1) Transcription: Transcription is modeled as a four step
process (RNA polymerase binding, nucleotide binding, elonga-
tion and termination) using the reactions

RNAP+DNA −−⇀↽−− RNAP:DNA,

RNAP:DNA+AGTP −−⇀↽−− AGTP:RNAP:DNA,

RNAP:DNA+ CUTP −−⇀↽−− CUTP:RNAP:DNA,

AGTP:RNAP:DNA+ CUTP −−⇀↽−− CUTP:AGTP:RNAP:DNA,

CUTP:RNAP:DNA+AGTP −−⇀↽−− CUTP:AGTP:RNAP:DNA,

CUTP:AGTP:RNAP:DNA
kTX−−→ RNAP:DNAterm +mRNA,

CUTP:AGTP:RNAP:DNA

(
Lm
4

−1
)
kTX

−−−−−−−−−→ RNAP:DNA,

RNAP:DNAterm −−→ RNAP+DNA,

(1)

where the complex formed by two species, e.g. RNAP + DNA,
is denoted as RNAP:DNA.

The catalytic machinery of transcription is lumped into a
single species, denoted by RNAP. It is assumed to encompass
RNA polymerases, sigma factors, and other cofactors. Transcrip-
tion factors are modeled separately, because they are needed
for transcriptional regulation, are user defined, and various
distinct transcription factors may exist in a single circuit.

While all four nucleotides are used as raw materials for
mRNA synthesis, GTP and ATP are also used as a source
of energy for translation. Furthermore, they are modeled to
undergo degradation about 1.5–3 hours after the initiation of
the TX-TL experiment (as seen in [19] Figure 1B, where
this degradation happens after 3 hours). Thus, the reactions
CTP and UTP take part in are identical, but distinct from
those that ATP and GTP are involved in, which are also
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identical. We have lumped these pairs of species into the so-
called ‘CUTP’ and ‘AGTP’ species, respectively, where one
molecule of CUTP models one molecule of CTP and one of
UTP (similarly for AGTP).

After the binding of the catalytic and consumable species,
the production of mRNA itself is divided into two reactions,
an mRNA production reaction and a nucleotide consumption
reaction. This latter reaction uses up AGTP and CUTP with-
out producing mRNA, and is used to balance the consumption
of nucleotides with the production of mRNA.

As an example, consider the transcription of an mRNA
species that is a thousand base-pairs long. The toolbox assumes
that each mRNA is composed of the four types of bases in
equal proportions. Then, 250 molecules each of ATP, GTP,
CTP and UTP are required for the transcription of this
mRNA species. Thus, 250 units each of AGTP and CUTP are
needed to transcribe the 1000 base-pair long mRNA molecule.
Looking at the model in equation (1), we see that the mRNA
production step consumes one unit each of AGTP and CUTP
and produces one mRNA molecule. The consumption reaction
also consumes one unit each of AGTP and CUTP, and does
not produce an mRNA molecule. Thus, to consume 250 units
each of AGTP and CUTP per mRNA produced (at quasi-
steady-state), we may set the rate of the consumption reaction
to be Lm/4− 1 = 249 times the rate of the mRNA production
step.

Finally, at the end of mRNA production, a termination
complex RNAP:DNAterm forms, which then dissociates into
RNAP and DNA in a separate reaction.

2) Translation: Translation is modeled analogously, with
the reactions

Ribo + mRNA −−⇀↽−− Ribo:mRNA,

Ribo:mRNA+AA −−⇀↽−− AA:Ribo:mRNA,

AA:Ribo:mRNA+AGTP −−⇀↽−− AA:AGTP:Ribo:mRNA,

AA:AGTP:Ribo:mRNA
kTL−−→ Ribo:mRNAterm

+ protein + AGMP,

AA:AGTP:Ribo:mRNA
(Lp−1)kTL−−−−−−−→ Ribo:mRNA+AGMP,

Ribo:mRNAterm −−→ Ribo + mRNA,

(2)

where Lp is the length of the protein in amino acids, and kTL
is the translation rate.

3) RNA Degradation: RNA degradation is mediated by
RNases, and is implemented as an enzymatic reaction,

RNase + mRNA −−⇀↽−− RNase:mRNA,

RNase:mRNA −−→ RNase.
(3)

Similar binding and degradation reactions are set up for
mRNA in its various bound forms, such as Ribo:mRNA,
AA:Ribo:mRNA, etc., which result in the degradation of the
mRNA and return of the remaining species to the species pool.
The full set of these reactions is described in Supplementary
Section S2.2.

4) AGTP Regeneration System: The final core mechanism
present in the toolbox models the AGTP regeneration system.
This system has been shown to become inactivated after some
time, leading to a degradation in its ability to express proteins
[19], [20]. This can be seen in, for instance, Figure 2, where we

observe that the inflection point for RNA production (bottom
left panel) coincides with the inactivation of ATP regeneration
system (bottom right panel).

We model this mechanism as a reversible degradation-
regeneration reaction involving AGTPand AGMP,

AGMP
αATP−−−⇀↽−−−
δATP

AGTP. (4)

After τATP seconds, the reverse (regeneration) reaction stops,
leading to pure degradation of the energy resources in the
system. The parameter τATP must be estimated from experi-
mental data, as described in Section III. In addition to ATP
hydrolysis and depletion, [20], [21] discussed the depletion
of other substrates (such as arganine, serine, cysteine and
secondary energy sources like PEP and pyruvate) as having
an effect on the inactivation of cell extracts. We simplify the
modeling of these effects by lumping them with the AGTP
degradation-regeneration mechanics.

5) Other Reactions: Additionally, txtlsim can model linear
DNA degradation mediated by RecBCD, which is a three
subunit enzyme that unwinds DNA, and RecBCD sequestration
by the GamS protein [18]. The TX-TL system has no innate
protein degradation, and degradation of tagged proteins can be
mediated by the ClpXP protease [22], [23] and transcription
factor mediated regulation, among other mechanisms. For
brevity, we describe just the transcriptional repression and
induction reactions here. Repression by the dimerizable protein
TetR and its sequestration by the inducer anhydrotetracycline
(aTc) are modeled as

2 TetR −−⇀↽−− TetRdimer,

DNA+TetRdimer
−−⇀↽−− DNA:TetRdimer,

2 aTc + TetRdimer
−−⇀↽−− aTc2:TetRdimer.

(5)

C. Circuit Example

The incoherent feed-forward loop (IFFL) is a genetic circuit
involving an activator, a repressor and a reporter (Figure 4A).
Owing to the circuit’s network topology, the repression of the
reporter is delayed with respect to its activation. The IFFL used
in this paper uses LasR as an activator, expressed constitutively
under the control of a pLac promoter. The repressor is TetR,
which is under the control of an engineered pLas promoter.
We also combined this las-activatable promoter with a tetO
operator site to form the combinatorial promoter used to control
the deGFP expression (Section VI-D). The code below shows
the commands needed to set up the IFFL in txtlsim. This gene
circuit will be used to demonstrate the predictive capabilities
of the toolbox (Section IV and Supplementary Section S3).

% Set up three Simbiology model objects.
tube1 = txtl_extract('E1'); % extract
tube2 = txtl_buffer('E1'); % buffer
tube3 = txtl_newtube('las-tet-IFFL');
% Set up LasR activator DNA.
txtl_add_dna(tube3, 'plac(50)', 'utr1(20)',

'LasR(1000)', 2, 'plasmid');
% Set up TetR repressor DNA.
txtl_add_dna(tube3, 'plas(50)', 'utr1(20)',

'TetR(1000)', 0.1, 'plasmid');
% Set up deGFP reporter DNA.
txtl_add_dna(tube3, 'plas_ptet(50)', 'utr1(20)',

'deGFP(1000)', 2, 'plasmid');
% Combine model objects and add inducers.
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Model_obj = txtl_combine([tube1, tube2, tube3]);
txtl_addspecies(Model_obj, 'OC12HSL', 1000);
txtl_addspecies(Model_obj, 'aTc', 1000);
% Simulate and plot.
simData = txtl_runsim(Model_obj, 14*60*60);
txtl_plot(simData, Model_obj);

D. Managing Chemical Reaction Network Complexity

In lower level specifications, such as Simbiology®, Bioscrape
[12] or even directly stated ODEs, modeling the IFFL at the
level of detail of the txtlsim toolbox would require several tens
to over a hundred equations, all of which would need to be
manually specified. Furthermore, modifying the network would
entail manually updating the relevant equations, a process that
is both time consuming and error prone. The txtlsim toolbox,
on the other hand, allows the user to specify genetic circuits
at a higher level of abstraction, allowing for rapid testing of
different designs.

The rationale behind this number of equations to model even
simple circuits is to account for the consumption of the limited
pool of nucleotides and amino acids, and the loading of the
finite catalytic and regulatory machinery (RNA polymerases,
ribosomes, transcription factors, etc). The consumption and
degradation of nucleotides and amino acids is thought to
underlie the inactivation of the gene expression capability,
and is therefore important to model to capture the full curves
of TX-TL experiments. Coupling between different parts of a
circuit, via the loading of enzymatic resources [17] or regulatory
elements, has been shown to introduce unintended interactions
between parts of genetic circuits in both TX-TL and in vivo [24].
The txtlsim toolbox incorporates these types of effects naturally,
since it is built on mass action—as opposed to Michaelis-
Menten or Hill—kinetics, allowing for enzymatic loading to
be modeled by the explicit formation of complexes and a
drop in the concentration of free enzyme. The use of such
mass action kinetic models also means that the models are
extensible, in the sense that once a species exists, new types of
interaction can be added without modifying any of the existing
equations—a property that does not hold for Michaelis-Menten
or Hill kinetics in general. Finally, models created with txtlsim
can be converted into SBML, and may be exported into any
other SBML compatible environment for analysis.

In Supplementary Section S1.1, we describe the software
architecture that allows for the automatic generation of these
reactions and the interactions between them without the need
for the user to specify them explicitly.

III. INFERRING THE PARAMETERS ASSOCIATED WITH THE
CORE MECHANISMS IN TX-TL

In this section, we estimate the parameters associated with the
core mechanisms of TX-TL, such as transcription, translation,
and RNA and resource degradation (equations (1)–(4)). Our
parameter inference is performed in a Bayesian framework, with
an MCMC sampler used to construct the posterior distribution
of parameters, conditioned on the data and models (See
Section VI, Materials and Methods). The experimental data
used for estimating the core parameters is from [14], [25], and

comprises fluorescence measurements of constitutive protein
and mRNA expression, along with the degradation of spiked
in mRNA (Figure 3, left column). More details about the data
can be found in Supplementary Section S2.1.

Figure 3. Estimating the core TX-TL parameters. Experimental data is
from [14], [25]. Shaded regions indicate standard error over three replicates
(left), and model simulations based on the inferred parameters (right). (A)
Decay of purified deGFP-MGapt transcripts initiated at six different mRNA
concentrations. (B) Transcription kinetics reported by a Malachite Green
aptamer. (C) Translation kinetics reported by deGFP. Rows (B) and (C) show
five different concentration of plasmid DNA that was added to each TX-TL
master mix at the beginning of the experiment.

The column on the right of Figure 3 shows the results
of fitting txtlsim models to this data. There are a total of
26 parameters in these models, of which several are non-
identifiable [26], [27]. Unlike point estimation methods, MCMC
based sampling gives an estimate of the entire joint parameter
distribution, and can be used to gain insight into which param-
eters are non-identifiable and may therefore be fixed during
parameter inference. Examples of such parameters include the
forward reaction rates associated with reversible reactions, and
in some cases, might even include the dissociation constants
themselves. The forward reaction rates set the timescales
at which fast reversible reactions reach quasi-steady-state,
and were found to be non-identifiable once they were large
enough for time-scale separation to be achieved. Some of
the dissociation constants, especially those associated with
reactions embedded deeper inside the reaction network, also
had broad distributions, indicating possible non-identifiability.
Examples of reactions with such dissociation constants include
those involving nucleotides and amino acids binding to their
respective transcription and translation complexes.
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Table I and Supplementary Figures S2-S4 show five param-
eter inference runs involving models of constitutive expression
and RNA degradation, and experimental data from [25]. In
these runs, successively more parameters were fixed as part
of an exploratory scheme designed to help elucidate the trade-
off between model fidelity and the computational tractability
of the parameter inference procedure as a function of the
number of free and fixed parameters. In Run 1, only the
forward rates in the various reversible reactions were fixed,
resulting in a 19-dimensional parameter space, which was
too large to be searched efficiently. In Run 2, in addition to
the forward reaction rates, the dissociation constants of the
reactions involved in the binding of nucleotides and amino acids
to the transcription and translation complexes were also fixed,
leading to a more manageable search space. In the remaining
runs, we successively increased the number of parameters that
were fixed, allowing for the parameter space to be searched
more efficiently. We found that Runs 3 and 4 were able to fit
the data well while still allowing the parameter space to be
searched relatively quickly.

Table I
RUNS 1 - 5: DIFFERENT COMBINATIONS OF PARAMETERS THAT WERE

FIXED DURING THE CORE PARAMETER INFERENCE. ASTERISKS DENOTE
THE PARAMETERS ARE FIXED TO THE CORRESPONDING VALUES AT THE

NOMINAL POINT.

Parameter nominal Run 1 Run 2 Run 3 Run 4 Run 5
TXcat 4.9 est est est est est
τatp 9.2 est est est * *
δatp -9.5 est est est * *
αatp -3.9 est est * * *

polKd 9.5 est est est est est
polF 1.5 * * * * *

polterm 3.3 est est est est *
nKd1 2.9 est * * * *
nF1 0 * * * * *
nKd2 14.0 est * * * *
nF2 0 * * * * *

RNAseKd 9.2 est est est * *
RNAseF 0 * * * * *
RNAsecat -4.4 est est est est *

pol 1.4 est est est est est
RNAse 6.5 est est est est *
TLcat 0.5 est est est est est

GFPmat -6.1 est est * * *
RiboKd 11.2 est est est est est
RiboF -0.2 * * * * *
aaKd 6.6 est * * * *
aaF -0.3 * * * * *

TLn,Kd 14.5 est * * * *
TLn,F -1.2 * * * * *

Riboterm 5.4 est est est est *
Ribo 7.3 est est est est est

The nominal parameter point shown in the first column
provided the values to fix the parameters to, and was found
using a combination of MCMC and manual tuning (details
in Supplementary Section S2). Ultimately, the fits shown in
Figure 3 were generated using the parameter fixing profile of
Run 3, which had a small enough number of free variables to
search over efficiently, while still being able to fit the models
to the data. Supplementary Figure S5 shows the marginal
distributions of the core parameters estimated during Run 3,

using data from both [14], [25]. All parameter values are log-
transformed (base-e).

IV. CASE STUDY: EXPERIMENTALLY VALIDATED
PREDICTION OF GENE CIRCUIT BEHAVIOR

The main role of the txtlsim toolbox is to be a high-
fidelity simulator for the TX-TL system. This section highlights
this role using a case study involving the prediction and
experimental validation of the behavior of an IFFL.

First, we collected experimental data involving the compo-
nents of an IFFL in five different experiments (Figure 4A, B
and Table II, top half). Second, we estimated the parameters
of the building blocks of IFFL, with some of the previously
estimated core parameters (Supplementary Figure S5) providing
the approximate ranges of values to search over, while
others providing the values to fix the parameters to. Third,
we assembled the whole gene circuit model of the IFFL
using these characterized parts in txtlsim (Section II-C) and
simulated it. We also collected experimental data about the
dynamical behavior of the whole IFFL in TX-TL under five
sets of experimental perturbations (Figure 5A, and lower part
of Table II), and compared the simulated model with the
experimental data (Figure 5B and C).

A. Part Characterization

The part characterization experiments involved collecting
data on the isolated behavior of the various components
of the IFFL. The experiments we chose to characterize the
components were pTet constitutive expression, TetR-mediated
repression, aTc-mediated induction, pLac constitutive expres-
sion and 3OC12HSL-mediated induction (Figure 4B, and
Table II, top half).

We used three models to fit the five IFFL characterization
data sets shown in Table II. The constitutive pLac expression
and the 3OC12HSL-mediated induction data sets had their
own models, while the remaining three data sets: constitutive
pTet expression, TetR-mediated repression and aTc-mediated
induction only needed a single model, with three different sets
of initial conditions accounting for their differences. Model
equations and associated reaction rate parameters can be found
in Supplementary Section S3.2.

The inference of the parameters associated with the parts of
the IFFL was also performed in a consensus Bayesian inference
framework (Section VI, Materials and Methods). In total, there
were 42 parameters in the model, as shown in the first column
of Table III. The first 26 parameters were those associated with
the core mechanisms in the toolbox, and were described in
Section III. The next 8 parameters were associated with the
Tet-repression system, and the final 8 parameters were those
associated with the Las-activation system.

Table III summarizes the multi-stage parameter estimation
scheme that we employed to search the parameter space. This
approach was needed because the 42 dimensional space was
too large to be searched efficiently. All columns except the one
labeled ‘Init’ describe a parameter inference run in terms of
which parameters were estimated, and which ones were fixed.
There are four types of symbols in this table: Asterisks, the
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Table II
IFFL PART CHARACTERIZATION AND CIRCUIT BEHAVIOR PREDICTION EXPERIMENTS (FIGURES 4 AND 5).

Exp. Type Experiment Species Varied Species Fixed

Characterizaton

Constitutive pTet
expression

pTet-UTR1-deGFP: 4, 2, 1, 0.5, 0.25, 0.125 and 0.0625nM

Constitutive pLac
expression

pLac-UTR1-deGFP: 2, 1, 0.5, 0.25, 0.125, 0.0625 and 0.0313nM

TetR-mediated
repression

pLac-UTR1-TetR: 2, 0.2, 0.02, 0.002, 2 × 10−4, 2 × 10−5 and 0nM pTet-UTR1-deGFP: 1nM

aTc-mediated induc-
tion

aTc: 10, 1, 0.1, 0.01, 0.001, 1 × 10−4 and 1 × 10−5 µM
pLac-UTR1-TetR: 0.1nM

pTet-UTR1-deGFP: 1nM

3OC12HSL-
mediated induction

3OC12 at 10, 1, 0.1, 0.01, 0.001, 1 × 10−4 and 1 × 10−5 µM
pLac-UTR1-LasR: 1nM

pLas-UTR1-deGFP: 1nM

Prediction

3OC12 induction 3OC12 at 10, 1, 0.1, 0.01, 0.001, 1 × 10−4 and 1 × 10−5 µM Unless in the ‘Species Varied’ col-
umn:
pLac-UTR1-LasR: 1nM

pLas-UTR1-TetR: 0.1nM

pLas tetO-UTR1-deGFP: 1nM

aTc: 10 µM

3OC13: 1 µM

LasR activation DNA pLac-UTR1-LasR: 2, 1, 0.5, 0.25, 0.125, 0.0625 and 0.031 25 µM

aTc induction aTc: 10, 1, 0.1, 0.01, 0.001, 1 × 10−4 and 1 × 10−5 µM

TetR repression DNA pLas-UTR1-TetR: 1, 0.1, 0.01, 0.001, 1 × 10−4, 1 × 10−5 and 0 µM

Reporter DNA pLas tetO-UTR1-deGFP: 4, 2, 1, 0.5, 0.25, 0.125 and 0.0625 µM

phrase ‘fixed: p’ (where p is a numerical parameter value),
numerical values, and the word ‘free’. Asterisks indicate that
the value was the same as the value in the previous column.
The phrase fixed: 1.5 means that that parameter value was
fixed to 1.5 at that stage. A numerical value indicates that that
parameter was freely estimated at that stage, and that value
was picked from the resulting distribution (jointly with any
other such fixed values) and fixed in the next stage (therefore,
every numerical value is necessarily followed by an asterisk).
Finally, the word ‘free’ means that that parameter was freely
estimated at that stage, but no value was picked for fixing in
the next stage (and is therefore never followed by an asterisk
in the next column). As in the previous section, all parameter
values are log-transformed (base-e).

The first 26 (core) parameters are specified by the ‘Init.’
(initialization) and ‘St. 1’ (Stage 1) columns of the table.
Initialization refers to the initial parameter point found using
MCMC and manual parameter tuning in Section III. The
numbers shown in the Stage 1 column correspond to a particular
parameter point from the distribution found in Run 3 during
the core inference stage.

In Stage 2a, the constitutive pTet expression, TetR-mediated
repression and aTc-mediated induction circuits described in
Table II and Figure 4 were characterized. In addition to the
core parameters, there were 8 additional Tet-system associated
parameters in the model. Stage 2b had the same models, but
with some of the core and Tet-system parameters re-estimated.
In stage 2c, the 3OC12HSL-mediated induction (activation
of the pLas promoter by the LasR activator) system was
introduced, along with 8 new parameters associated with this
model. The forward rates are fixed to a value of zero (in loge-
space), and the parameters marked ‘free’ are estimated. In
stages 2d-f, we estimated different combinations of parame-
ters, and in doing so, explored the trade-off between model
fidelity and the computational tractability of the MCMC runs.
The characterization results from the probability distribution
resulting from Stage 2f are shown in Figure 4, and the pairwise
marginal probability distributions are shown in Supplementary

Figure S7. The fitting trajectories and parameter distributions
resulting from Stage 2d are shown in Supplementary Figure S8.

B. Model Prediction and Experimental Validation

Using the part-specific parameters inferred in the previous
section, we created in silico predictions of the behavior of
the whole IFFL, and compared these to corresponding TX-TL
data. We measured the behavior of the IFFL under five sets
of perturbations away from a nominal IFFL. This nominal
condition was: pLac-UTR1-LasR at 1 nM; IPTG at 1 mM
(sequestering any native LacI in the extract); the LasR inducer
3OC12HSL at 1 µM; the repressor DNA pLas-UTR1-TetR at
0.1 nM; the reporter DNA plas tetO-UTR1-deGFP at 1 nM;
and the TetR inducer aTc at 10 µM.

With this nominal IFFL, we collected the deGFP expression
levels under perturbations of 3OC12HSL, the LasR DNA, aTc,
the TetR DNA and the deGFP DNA, as listed in lower half
of Table II. The results of these experiments are shown in
Figure 5B and C. The blue curves in Figure 5B show the
expression levels of the deGFP under the various perturbations
at 480 minutes (i.e., end-point measurements). The error bars
are the standard errors of three technical replicates. Figure 5C,
top row, shows the trajectories of the full 480 minutes of these
experiments.

The model prediction trajectories were generated by sampling
points from the joint posterior parameter distribution resulting
from Stage 2f in Table III, and simulating the IFFL model
at each of these parameter points. The orange curves in
Figure 5B are the mean and standard errors of the deGFP
species concentration at 480 minutes for 50 of these trajectories.
Similarly, the predictions shown in the bottom row of Figure 5C
are the mean trajectories of the same 50 trajectories.

V. DISCUSSION

Synthetic biology is an attempt at incorporating engineering
principles into the design of novel biological functions. These
principles include the standardization of parts, the principled
composition of these parts into larger systems, the use of
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Figure 4. Part characterization and parameter fitting for the incoherent feed-forward loop (IFFL, schematic in A). (B) Schematics describing the five part
characterization experiments used to infer the part-specific parameters. (C) Endpoint curves (mean, standard error at 480 min) corresponding to the experimental
data (blue, n = 3) and corresponding parameter fitting trajectories (orange, n = 50, sampled from the posterior parameter distribution and simulated). The
posterior distributions were generated by fitting the full time-course trajectories to the data (D).

abstraction layers to decouple phenomena at different scales,
and the use of rapid prototyping and predictive modeling to
speed up the engineering process.

The rapid prototyping paradigm has been implemented in
synthetic biology using cell-free systems like TX-TL, which
have become a tool for testing genetic circuits in vitro. In
this paper, we have described an in silico modeling toolbox
called txtlsim to accompany TX-TL. This toolbox is built
using MATLAB Simbiology® and closely mimics the species,
reactions and chemical reaction network dynamics of TX-TL.

In particular, txtlsim has a number of specific features that
make it suited as a tool for circuit behavior prediction in TX-
TL. Firstly, it explicitly models the usage of enzymes like

RNA polymerases and ribosomes using mass action kinetics.
Unlike Hill or Michaelis-Menten kinetics, this accounts for
the loading of enzymatic or consumable resources once the
binding reactions involving these resource species are specified.
Accounting for the usage of amino acids and nucleotides usually
requires modeling transcription and translation at the single
base or amino acid resolution [28], [29], making the genetic
circuit models large and unwieldy. We avoid this by modeling
these processes in a single step reaction, while accounting for
the resource usage by a separate consumption reaction, with a
reaction rate that maintains the correct stoichiometry.

This toolbox also has a library of parts that can be
composed to build a spectrum of circuits. As discussed in
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Table III
STEP-WISE PARAMETER INFERENCE STRATEGY FOR IFFL PART CHARACTERIZATION.

Stage Init. St. 1 St. 2a St. 2b St. 2c St. 2d St. 2e St. 2f

Model const. const. tet tet
lac

tet
lac
las

tet
lac
las

tet
lac
las

tet
lac
las

polF, lac (or p70) 1.5 * * * * * * *
polKd, lac (or p70) 9.5 13.6 * free free free free free

nF1 0 * * * * * * *
nKd1 2.9 * * * * * * *
nF2 0 * * * * * * *
nKd2 14.0 * * * * * * *

RiboF -0.2 * * * * * * *
aaF -0.3 * * * * * * *
aaKd 6.6 * * * * * * *
TLn,F -1.2 * * * * * * *
TLn,Kd 14.5 * * * * * * *

RNAseF 0 * * * * * * *
GFPmat -6.1 * * * * * * *
αatp -3.9 * * * * * * *

TXcat 4.9 2.4 * 2.3 * free 3.1 *
polterm 3.3 4.4 * * * free free free

pol 1.4 1.6 * free free free free free
TLcat 0.5 3.3 * 3.7 * free 3.4 *

RiboKd 11.2 0.05 * * * * * *
Riboterm 5.4 2.8 * * * free free free

Ribo 7.3 4.2 * free free free free free
RNAseKd 9.2 15.6 * * * * * *
RNAsecat -4.4 -0.2 * * * * * *
RNAse 6.5 8.6 * 9.2 * * * *
τatp 9.2 8.9 * 10.1 * 9.7 * *
δatp -9.5 -9.7 * * * * * *

polF, tet Fixed: 1.5 * * * * *
polKd, tet free free free free free free

repKd free -2.7 * -0.5 * *
repF 1.3 * * * * *

aTcKd free -6.0 * free -2.0 *
aTcF 1.6 * * * * *

dimKd -10.0 * * * * *
dimF 1.4 * * * * *

polF, las fixed: 0 * * *
polKd, las free free free free
3OC12Kd free 13.0 * *
3OC12F fixed: 0 * * *

pLas-polTF, F fixed: 0 * * *
pLas-polTF, Kd free free free free

pLasTF, F fixed: 0 * * *
pLasTF, Kd free free free free

this study, the circuit models built out of part models that have
characterized reaction rate parameters should be predictive
of the in vitro behavior of the corresponding circuits. We
demonstrated this using the IFFL circuit. We first characterized
the parameters associated with the core transcription, translation
and mRNA degradation mechanics of the toolbox, followed
by the parameters associated with the parts of the IFFL. The
characterized models were then combined into a model of
the IFFL, and we verified that the predicted model behavior
matched the corresponding experimental data.

Parameter inference of the individual circuit parts may
be performed using MATLAB’s in-built optimization tools,

or using the MCMC based consensus Bayesian inference
tools provided with this toolbox. The Bayesian approach
gave estimates of the joint distribution of the part-parameters,
conditioned on the data, models, and any fixed parameters.
Visualizing the (marginalized) probability densities can be used
to indicate which parameters might be non-identifiable, or even
co-varying with other parameters. This allowed us to fix the
values of highly non-identifiable parameters, making otherwise
computationally intractable inference problems tractable. Fur-
thermore, the ability to visualize the co-variation [30] between
parameters allows us to perform this fixing while respecting the
relationships between parameters. These considerations were
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Figure 5. Model predictions and experimental validation for the incoherent feed-forward loop (IFFL). (A) Schematics describing the five perturbations of the
IFFL that were used for the validation of model predictions. (B) IFFL behavior under these perturbations. The nominal IFFL conditions are described in
the main text. Endpoint measurements of mean and standard error for experimental (blue, n = 3) and predicted (orange, n = 50) values (t = 480 min). (E)
Corresponding experimental and model prediction trajectories.

crucial for performing the inference of both the core model
parameters and the circuit-part specific parameters.

Despite the features present in this version of txtlsim, there
are several directions it can be extended in. Most simply, various
new circuit features may be added to the library of parts, such
as antisense RNA mediated transcriptional regulation [6] or
integrase mediated DNA recombination [31]. Capabilities for
accounting and correcting for extract batch variation [30], [32],
studying the identifiability of the circuits, or for predicting the
in vivo behavior from the in vitro behavior may also be added,
although these tasks present significant research challenges.

As the field of synthetic biology matures, we expect
computational modeling to play in increasingly predictive
role in the design of genetic circuits, just as it has played
in electrical, mechanical and aeronautical engineering.

VI. MATERIALS AND METHODS

A. TX-TL Extract and Buffer Preparation

Preparation and execution of TX-TL was according to
previously described protocols [9], with a modification of the
strain used to ExpressIQ (New England Biolabs).

Briefly, the cells were grown to an OD600 of 1.5, pelleted
and washed. They were then lysed using bead beating, and
centrifuged to remove the beads and cell debris. The supernatant
was incubated at 37◦C for 80 min, and then centrifuged to
remove endogenous nucleic acids. The supernatant was dialyzed
against a pH8.2 buffer containing Mg-glutamate, K-glutamate,
Tris, and DTT. Finally, the extract was centrifuged and the
supernatant was flash-frozen in liquid nitrogen and stored at
-80◦C.

The buffer had the following components: 9.9 mg/mL protein,
9.5 mM Mg-glutamate, 95 mM K-glutamate, 0.33 mM DTT,
1.5 mM each amino acid except leucine, 1.25 mM leucine,
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50 mM HEPES, 1.5 mM ATP and GTP, 0.9 mM CTP and
UTP, 0.2 mg/mL tRNA, 0.26 mM CoA, 0.33 mM NAD, 0.75
mM cAMP, 0.068 mM folinic acid, 1 mM spermidine, 30 mM
3-PGA, 2% PEG-8000.

Both the extract and buffer were stored at -80◦C in separate
tubes, with enough volume for seven reactions per tube.

B. TX-TL Experiment

A 384-well microplate (Nunc) was used for the experiments,
and the appropriate concentrations and volumes of DNA and
inducers to be used in each reaction were calculated using
the spreadsheets provided in [9]. The extract and buffer were
thawed for 20 min on ice, mixed in the prescribed ratios,
and pipetted into each well being used in the microplate,
which was also placed on ice. The DNA was then added
to each well according to the spreadsheet. All the pipetting
was done to avoid bubbles, the plate was sealed, and spun
at 4000g for 45s at 4◦C to distribute the mix evenly at
the bottom of the wells and remove any bubbles that might
have been introduced. The plate was placed in a Synergy
H1/MF microplate reader (Biotek). Settings used for deGFP
measurement were: excitation/emission 485 nm/515 nm, at
gain 61, measured every 8 min for 8 hours.

C. Plasmid construction

DNA was cloned using standard molecular biology pro-
cedures [33], [34], [35] and propagated in a JM109 recA-
lacIQ (Zymo Research) strain for purification. Small scale
purifications were done by miniprep (PureYield, Promega)
followed by a PCR purification for desalting (QiaQuick,
Qiagen). Large scale purifications were done by midiprep or
maxiprep (NucleoBond Xtra Midi or NucleoBond Xtra Maxi,
Macherey-Nagel). All plasmids were isolated in stationary
phase and sequenced before use.

D. IFFL Part Screening in TX-TL

We first characterized a LasR-responsive promoter, pRsaL
(Porig), from previously published work by testing its ability
to express deGFP in the presence of LasR and 3OC12HSL
(Supplementary Figure S6A) [36]. While the promoter was
responsive to LasR, the Vmax of the promoter was lower
than anticipated and the dynamic range was under 6-fold
(Supplementary Figure S6B, C). To find a more robust part,
we used TX-TL to screen four more promoters taken from
the Registry of Standard Biological Parts or from RNAseq
data of known responsive elements [37]. Out of our screen,
P1 showed a 7-fold improved Vmax over Porig and a 29-
fold dynamic range (Supplementary Figure S6B, C). We also
characterized the basal leakiness of the promoters without LasR
present (Supplementary Figure S6D). Finally, we confirmed
the result from our extract was generalizable by testing all 5
promoters for Vmax in 11 independently made extracts using the
same method [9] but over four E. coli strains (Supplementary
Figure S6E). We then used P1 for the downstream LasR-
responsive promoter due to its high Vmax. To engineer a TetR-
repressible, LasR activatable combinatorial promoter, we tried

two placements of the tetO operator sites (Supplementary
Figure S6F-I) and characterized the response of these variants
under aTc activation.

E. Modeling Framework

We assume mass action kinetics, along with a well stirred,
constant temperature and volume assumption on our reactions.
This allows us to model the chemical equations as a set
of ordinary differential equations (ODEs) with the reaction
rate parameters and the unknown initial concentrations as the
parameters of the system. Formally, we define an experiment
H = (S, x0, y) to be the execution of a system S under
initial conditions x0 and output measurements y, where the
bar denotes the assumption that experimental data reflects the
ground truth. With each experiment, we associate an initialized,
parametrized ODE model Mi, with the general structure

ẋ = f(x, θ),

y = h(x, θ), x(0) = x0(θ),
(6)

where the state vectors, which encode the species concentra-
tions, are x, x0 ∈ Rn+, and are assumed to exist for all t ≥ 0.
The parameter vector symbol is θ ∈ Ω ⊆ Rp, where Ω is the
set of all possible parameter points of interest. The output is
denoted y ∈ RS , where S is the number of output variables.

F. Experiment Ensemble and Consensus Parameter Inference

In general, we have multiple experiments informing some
common set of parameters, where a given experiment may not
inform every parameter, but every parameter is informed by at
least one experiment.

Consider an ensemble of experiments {H1, . . . ,HI}, and an
associated ensemble of models {M1, . . . ,MI}, where model
Mi with parameters θ(i) ∈ Rpi captures the evolution of the
system in experiment Hi under the specified initial conditions.

The different experiments range over different doses (initial
conditions), replicates, and genetic circuits (systems). The data
are collected at a given sampling rate, which discretizes the
trajectories. For the ith experiment, the discretization of y(i)

may be written as a matrix, Y
(i) ∈ RT (i)×S(i)

, where we
note that the number of time points T (i) and measured output
variables S(i) will in general depend on i. We concatenate the
set of these matrices into a block matrix

Y ,
[
Y

(1)
Y

(2)
. . . Y

(I)
]
,

with the appropriate padding of zeros when the number of time
points differ between experiments.

We collect all the parameters from the ensemble into a
master vector, Ψ ∈ Rptot , counting a parameter that appears in
multiple θ(i)’s only once, so that ptot ≤

∑I
i=1 pi. The individual

parameter vectors can be related to the master vector via a
binary membership matrix Γ ∈ {0, 1}ptot×I , where the (k, j)-
th entry is 1 if the kth element of Ψ is present in θ(j), and 0
otherwise.

If we group the individual parameter vectors into a matrix
Θ , [ θ(1) ... θ(I) ], and consider diag(Ψ) as the square matrix
with the elements of Ψ on the diagonal, and zeros elsewhere,
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then the matrix equation Θ = diag(Ψ) · Γ relates the master
vector to the individual models’ parameters via the membership
matrix. Consensus parameter inference is described visually in
Figure 6.

k1

k3

k12

k7

k2

k3

k1

k3

k7

k1

k2

k12

kp_tot

Behavior 1

Experiment Data

Parameter Inference

Model 1

Behavior 2 Behavior 3

Model 3Model 2

Figure 6. Parameter overlap in the consensus parameter inference problem.

G. Bayesian Parameter Inference

We wish to determine the probability density of the parame-
ters, conditioned on the experiments, models, and consensus
pattern,

p
(

Ψ
∣∣∣ {Hi}Ii=1 , {Mi}Ii=1 ,Γ

)
, (7)

where the data for experiment i are included by virtue of being
an element of the experiment tuple, Hi. In what follows, we
simplify notation by replacing {Hi}Ii=1 with the data matrix
Y , as defined in the previous section. We also drop Γ and
{Mi}Ii=1, though these are assumed. Then, Bayes rule gives

p
(
Ψ | Y

)
=

p
(
Y | Ψ

)
· p (Ψ)

p
(
Y
) .

We assume the prior to be uninformative (uniform within a
hypercube, and zero outside). The likelihood function involves
data from all the experiments, measured species, replicates,
and time points, and is defined as

L(Ψ) , p
(
Y | Ψ

)
=

1

(2πσ2)
N/2

exp−
‖r(Ψ)‖22

2σ2
.

The vector r(Ψ) is defined as

r(Ψ) , vec
(
W �

(
Y − Ŷ (Ψ)

))
,

with the � symbol denoting the elementwise (Hadamard)
product, and vec denoting the column-wise reshaping of a
matrix into a vector. N denotes the total number of data points
in the output of the models. The model predictions Ŷ depend
on the parameter values Ψ, and are arranged the same way as Y .
The matrix W has the same shape as Y , and contains weights
to normalize for the different magnitudes of different output

variables. For example, the concentrations of proteins are often
much greater than those of mRNA, and fitting performance
can be improved greatly by normalizing these data sets using
W . Finally, we follow the standard practice of working with
log-probabilities, which improves both the speed and stability
of the numerical computations ([38], chapter 22).

In general, there is no analytical description of the parameter
distributions associated with biochemical reaction networks.
The standard approach is to use Markov chain Monte Carlo
(MCMC) methods to sample from the desired parameter
distribution, and construct an approximation to this distribution.
This is done by constructing a Markov chain that has this
distribution as its stationary distribution. It does this by
performing a random walk in parameter space, such that the
probability of being in a given region is proportional to the
desired probability density in that region [39]. We used the
MATLAB implementation from [40] of the emcee sampler [41],
[42], with some modifications for better walker initialization
and handling of numerical ill-conditioning.

CODE AVAILABILITY

The code for this toolbox is available at
https://github.com/vipulsinghal02/txtlsim buildacell, along
with multiple tutorials, and scripts to generate the figures in
the paper and the supplementary information.
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