

1 Loss-of-function of *Fbxo10*, encoding a post-translational
2 regulator of BCL2 in lymphomas, has no discernible effect on
3 BCL2 or B lymphocyte accumulation in mice

4 Etienne Masle-Farquhar¹, Amanda Russell¹, Yangguang Li², Fen
5 Zhu², Lixin Rui², Robert Brink^{1,3}, Christopher C Goodnow^{1,4*}

6 ¹ Immunology Division, Garvan Institute for Medical Research,
7 Sydney, NSW, Australia

8 ² Division of Hematology/Oncology, Department of Medicine,
9 University of Wisconsin, 4060 WIMR, 1111 Highland Ave,
10 Madison, WI 53705

11 ³ St Vincent's Clinical School, University of New South Wales,
12 Sydney, NSW, Australia

13 ⁴ School of Medical Sciences and Cellular Genomics Futures
14 Institute, UNSW Sydney, Sydney, NSW, Australia

15 * Corresponding author

16 E-mail: c.goodnow@garvan.org.au (CCG)

17

18

19 Abstract

20 Regulation of the anti-apoptotic BCL2 protein determines cell survival and is frequently
21 abnormal in B cell lymphomas. An evolutionarily conserved post-translational mechanism for over-
22 expression of BCL2 in human B cell lymphomas and the BCL2 parologue CED-9 in
23 *Caenorhabditis elegans* results from loss-of-function mutations in human FBXO10 and its
24 *C.elegans* parologue DRE-1, a BCL2/CED-9-binding subunit of the SKP-CULLIN-FBOX (SCF)
25 ubiquitin ligase. Here, we tested the role of FBXO10 in BCL2 regulation by producing mice with
26 two different CRISPR/Cas9-engineered *Fbxo10* mutations: an Asp54Lys (E54K) missense
27 mutation in the FBOX domain and a Cys55SerfsTer55 frameshift (fs) truncating mutation. Mice
28 homozygous for either mutant allele were born at the expected Mendelian frequency and appeared
29 normal in body weight and appearance as adults. Spleen B cells from homozygous mutant mice did
30 not have increased BCL2 protein, nor were the numbers of mature B cells or germinal centre B cells
31 increased as would be expected if BCL2 was increased. Other lymphocyte subsets that are also
32 regulated by BCL2 levels also displayed no difference in frequency in homozygous *Fbxo10* mutant
33 mice. These results support one of two conclusions: either FBXO10 does not regulate BCL2 in
34 mice, or it does so redundantly with other ubiquitin ligase complexes. Possible candidates for the
35 latter include FBXO11 or ARTS-XIAP. The difference between the role of FBXO10 in regulating
36 BCL2 protein levels in *C. elegans* and in human DLBCL, relative to single-gene deficient mouse
37 leukocytes, should be further investigated.

38

39 Introduction

40 Survival of many cells, notably mature B-lymphocytes, is promoted by and depends upon
41 the *Bcl2* gene encoding an essential inhibitor of apoptosis [1-5]. The *B-cell leukemia-lymphoma-2*
42 (*BCL2*) gene was discovered because hybrid *BCL2-Immunoglobulin Heavy chain (IGH)* fusion
43 transcripts [6-8] resulting in aberrantly high BCL2 protein expression [9] are often created by a

44 t(14; 18) chromosomal translocation that occurs in 85% of human follicular B cell lymphomas [10,
45 11] and 34% of germinal centre (GC)-type diffuse large B-cell lymphomas (DLBCL) [12]. While
46 expressed in other mature B cell subsets, BCL2 is absent in normal GC B cells due to BCL6-
47 mediated transcriptional suppression [13, 14], but this regulation is disrupted by t(14;18) that brings
48 BCL2 under control of the constitutively active *IGH* promoter [12, 15]. *BCL2* over-expression due
49 to 18q21 amplification or activated NF- κ B signalling often occurs in activated B cell (ABC)-type
50 DLBCL [16]. Missense *BCL2* point mutations are also frequently observed, associated with
51 activation-induced cytidine deaminase (AID)-mediated somatic hypermutation (SHM) and
52 exhibiting significant negative selection against *BCL2* loss-of-function mutations [17]. Together,
53 translocations, amplifications and missense mutations make *BCL2* the second most highly mutated
54 gene in DLBCL [18].

55 BCL2 is a moderately long-lived protein with a 10-hour half-life in mature B cells [19, 20].
56 Stability of BCL2 and its anti-apoptotic paralogues, relative to the even longer-lived pro-apoptotic
57 BAX and BAK proteins, is a key determinant of anti-apoptotic potency [21, 22]. Despite the
58 importance of BCL2 regulation for normal and neoplastic lymphocytes, remarkably little is known
59 about mechanisms controlling BCL2 protein accumulation and turnover [23]. Protein ubiquitination
60 resulting in proteasomal degradation is an important mechanism determining protein stability. An
61 important family of protein ubiquitin ligases comprise the S phase kinase-associated protein 1
62 (SKP1)-cullin 1 (CUL1)-F-box protein (SCF) complexes [24, 25]. Specific protein substrates for
63 ubiquitination by a given SCF complex are recognised by diverse domains in the 69 different
64 FBOX proteins. The FBOX domain itself mediates interaction with SKP1, which in turn binds
65 CUL1 and RBX1 to activate the E2 ubiquitin ligase.

66 In a genetic screen in *Caenorhabditis elegans*, Chiorazzi *et al.* [26] identified a strain with a
67 recessive S275L missense mutation in the F-box domain of the product of gene *dre-1* that prevented
68 apoptosis of the tail spike cell. Two additional *dre-1* alleles had a similar effect and
69 complementation confirmed the variant as causal, whilst transgenic over-expression of *dre-1*

70 resulted in an opposing effect of increased apoptosis. The DRE-1 protein bound weakly to the *C.*
71 *elegans* BCL2 homologue, CED-9, and strong epistasis occurred between a weak loss-of-function
72 *dre-1* mutation and a weak loss-of-function *Ced-9* mutation. The phenotypic effects of the *dre-1*
73 mutation were recapitulated by RNA interference (RNAi) against *C. elegans* SKP-Cullin complex
74 proteins *skr-1* and *cul-1*, and expression followed by co-immunoprecipitation showed the *dre-1*
75 S275L FBOX domain mutation diminished DRE-1 binding to the *C. elegans* SKP1 parologue.

76 The *C. elegans* DRE-1 protein most closely resembles two human proteins, FBXO11 and
77 FBXO10, with FBXO11 being the closest homologue [27]. Only FBXO10 and FBXO11 have the
78 same combination of F-box and a Carbohydrate-binding proteins And Sugar Hydrolases (CASH)
79 domain as DRE-1, but FBOX11 is confined to the nucleus where it controls BCL6 protein levels
80 [28] whereas BCL2 is cytoplasmic [26]. Using over-expression and RNAi experiments, Chiorazzi
81 *et al.* demonstrated that FBXO10 is the BCL2-binding subunit of an SCF cytoplasmic ubiquitin
82 ligase complex that ubiquitinates BCL2 to trigger proteasomal degradation in DLBCL. The
83 relevance of this process was supported by infrequent *FBXO10* partial loss-of-function somatic
84 mutations and frequently reduced mRNA expression in DLBCL samples from their cohort [26].
85 Low *FBXO10* mRNA resulting in high BCL2 also appears to drive accumulation of mantle cell
86 lymphomas (MCL) [29] derived from marginal zone or memory B cells [30].

87 Mice expressing *BCL2* under the control of the *IGH* enhancer (E μ) have increased
88 accumulation of BCL2 protein in B cells, dramatically increased numbers of mature B cells and GC
89 B cells, and develop low-incidence pre-B lymphomas, immunoblastic lymphomas and
90 plasmacytomas [31-34]. Constitutive over-expression of BCL2 in all hematopoietic lineages, in
91 transgenic mice where the human *BCL2* gene is fused to the *Vav* gene promoter, has a potent effect
92 on the survival, development and maturation of many blood cell types [35] and results in increased
93 incidence of follicular lymphoma [36]. We therefore hypothesized that mice with germline *Fbxo10*
94 loss-of-function mutations would have increased BCL2 protein in B cells and correspondingly
95 increased B cell and GC B cell accumulation, and increased BCL2 and dysregulated survival in

96 other blood cell types. Here, we tested this hypothesis by analysing mice with either a
97 CRISPR/Cas9-engineered germline deletion in *Fbxo10* or partial loss-of-function E54K missense
98 mutation in the F-box domain.

99

100 **Results**

101 **Germline *Fbxo10*^{E54K} and *Fbxo10*^{frameshift} mutant mice appear at
102 Mendelian frequencies, present with no visible clinical phenotype and
103 age normally.**

104 Our interest in *FBXO10* was stimulated by the identification of a very rare, predicted
105 damaging, missense variant E54K inherited in homozygous state from healthy heterozygous parents
106 in a child with multiple autoimmune diseases and possible learning difficulties (unpublished data).
107 We have since discovered compound heterozygous *TNFAIP3* mutations explaining the child's
108 autoimmunity, but it was notable that E54K had been independently found as a heterozygous *de*
109 *novo* mutation in a child with autism spectrum disorder [37]. The E54 residue lies within the F-box
110 superfamily domain (SSF81383, FBXO10 residues 6-80) required for SCF complex assembly, is
111 strictly conserved from fish to humans, and the substitution from glutamic acid to lysine represents
112 a non-conservative charge reversal (Fig 1A,B). When FLAG-tagged FBXO10 was expressed in
113 HEK293T cells, the E54K substitution decreased immunoprecipitation of endogenous SKP1 to a
114 similar extent as the partial loss-of-function R44H FBOX mutation (Fig 1C) previously
115 characterised in a human lymphoma [26].

116

117 **Fig 1. Viable mice with homozygous germline *Fbxo10*^{E54K} or *Fbxo10*^{fs} mutations. (A)**
118 Schematic of mouse *Fbxo10* mRNA CCDS51171, showing position of exons, location of
119 mutations, FBOX (SSF81383) and three tandem CASH (SM00722) domains, and the four cDNA

120 nucleotides deleted in the *Fbxo10*^{C55SfsTer55} (*fs*) allele. **(B)** Alignment of the FBOX10 amino acid
121 sequence from the indicated species: E54 in bold. **(C)** Expression vectors, either empty or encoding
122 FLAG-tagged human FBXO10 wildtype or with the indicated mutations, were transfected into
123 HEK293T cells and lysates or anti-FLAG immunoprecipitates western blotted with antibodies to
124 FLAG or SKP1. **(D)** Expected and observed numbers of offspring of the indicated genotypes from
125 intercrossed heterozygous parents. Statistical analysis by Chi-Square test with $n = 2$ degrees of
126 freedom, testing for differences relative to a 1WT:2HET:1HOM expected Mendelian ratio ($p = 0.61$
127 and $p = 0.55$ for *Fbxo10*^{E54K} or *Fbxo10*^{fs} respectively). **(E)** Body weight of *Fbxo10*^{+/+}, *Fbxo10*^{fs/fs}
128 and *Fbxo10*^{E54K/E54K} mice 9-20 weeks old ($p = 0.51$ and $p = 0.62$ for *Fbxo10*^{E54K} or *Fbxo10*^{fs},
129 respectively). Each dot represents an individual mouse of the indicated genotype. Statistical
130 comparison between each mutant and wild-type group was performed by t-test corrected for
131 multiple comparisons using the Holm-Sidak method.

132

133 To explore E54K as a candidate mutation, *Fbxo10*^{E54K} mice were produced by
134 CRISPR/Cas9 gene editing in mouse embryos following established molecular and animal
135 husbandry techniques [38]. Two independent alleles were engineered and propagated in C57BL/6J
136 mice (Fig 1A): a point mutation in exon 2 changing the Glutamate 54 codon to Lysine (E54K), or a
137 4 nucleotide deletion in codons 55 and 56 within exon 2 changing the Cysteine 55 codon to Serine
138 and creating a reading frame shift and premature stop codon after 55 codons (c.del285_288 or
139 p.Cys55SerfsTer55; abbreviated as *fs*). The *fs* deletion does not create a new splice donor site and
140 there is no evidence of alternate splice forms of *Fbxo10* that skip exon 2 in mouse or human. It is
141 therefore likely to create a null allele, although we lack suitable antibodies to test for a protein
142 remnant in primary mouse cells. When heterozygous animals were intercrossed, neither E54K nor
143 the frameshift mutation resulted in altered frequencies of heterozygous or homozygous mutant mice
144 relative to expected Mendelian ratios (Fig 1D). Adult homozygous mutant animals up to 50 weeks

145 old appeared normal and healthy, and had no significant difference in body weight from wild-type
146 littermates (Fig 1E).

147

148 **FBXO10 deletion or missense mutation had no detectable effect on B**
149 **cells in bone marrow or spleen.**

150 Flow cytometric analysis of early B cell development in the bone marrow of adult 10-20
151 week old mice (data not shown) and 40-50 week old mice (Fig 2A,B) revealed no discernable
152 difference between *Fbxo10* wild-type and mutant mice in the frequencies of bone marrow B cells,
153 nor in the subsets of mature recirculating B cells, immature B cells, or the different stages of
154 precursor B cell differentiation. Congruent with this, there were no detectable differences in
155 expression of B220, CD19, CD93, IgM, IgD, CD21, CD23 or CD86 in these various subsets (S1
156 Fig A).

157

158 **Fig 2. *Fbxo10* frameshift or missense mutation do not discernably affect B cell subsets in the**
159 **bone marrow or spleen. (A)** Representative flow cytometric gating strategy to delineate B cell
160 developmental subsets in the bone marrow. Numbers denote cells in the gate as percentage of
161 parent population. **(B)** Frequency of indicated B cell subsets in the bone marrow in *Fbxo10*^{fs/fs} and
162 *Fbxo10*^{+/+} littermate control mice (blue and left set of grey circles, respectively) and in
163 *Fbxo10*^{E54K/\$54K} and *Fbxo10*^{+/+} littermate control mice (red and right-hand grey circles,
164 respectively). **(C)** Representative flow cytometric gating strategy to delineate splenic B cell subsets.
165 **(D)** Spleen cellularity in *Fbxo10*^{fs/fs} and littermate control mice (blue and grey circles, respectively)
166 and in *Fbxo10*^{E54K/\$54K} and *Fbxo10*^{+/+} littermate control mice (red and grey circles, respectively).
167 **(E)** B cell subsets in the spleen of *Fbxo10*^{+/+}, *Fbxo10*^{fs/fs} and *Fbxo10*^{E54K/E54K} mice. **(B, D, E)** Each
168 dot represents data from an individual animal. Data are representative of $n = 2$ experiments on mice
169 40-50 weeks old, and similar results observed in $n = 2$ experiments on mice 10-20 weeks old.

170 Statistical analysis: t-test corrected for multiple comparisons using the Holm-Sidak method yielded
171 no evidence for significant differences between mutants and wild-type controls with $p < 0.05$.

172

173 Spleen cellularity was also unaffected (Fig 2D) and there was no sign of lymphadenopathy
174 in the mutant mice (data not shown). Neither mutation resulted in any changes in distribution of B
175 cell maturation subsets in the spleen of 40-50 week old (Fig 2C,D) or 10-12 week old mice (data
176 not shown), nor in any detectable changes in surface expression by splenic B cell subsets of the
177 markers listed above (S1 Fig B). Once more, the lack of a visible effect of *Fbxo10* mutation or
178 deletion, even in elderly mice, indicates that FBXO10 plays no role or a functionally redundant role
179 in B cell early development and splenic B cell maturation.

180

181 **FBXO10 deletion or missense mutation had no visible effect on the
182 magnitude or quality of a polyclonal GC B cell response to SRBC
183 immunisation.**

184 FBXO10 is particularly highly expressed by GC B cells and appears to be most important
185 for regulating BCL2 protein levels in GCB-type DLBCL, based on the reduced *FBXO10* mRNA
186 expression and low frequency heterozygous *FBXO10* hypomorphic missense alleles in DLBCL and
187 the high *FBXO10* mRNA expression in GC B cells [26]. We therefore tested for increased
188 accumulation of GC B cells in *Fbxo10^{E54K}* and *Fbxo10^{fs}* mice in a T cell-dependent response
189 following sheep red blood cell (SRBC) immunisation. Sacrifice of *Fbxo10^{fs/fs}*, *Fbxo10^{E54K/E54K}* and
190 wild-type mice 7 days post SRBC-immunisation demonstrated no significant difference in the
191 magnitude of the GC response, nor the dark zone/light zone distribution or the fraction of IgG1
192 class-switched GC B cells (Fig 3A,B).

193

194 **Fig 3. *Fbxo10* frameshift or missense mutation do not visibly expand or alter the GC response**
195 **to SRBC immunisation. (A)** Representative flow cytometric gating strategy to delineate GC B
196 cells responding to SRBC immunisation. Numbers denote cells in the gate as a percentage of parent
197 population. **(B)** Frequency of B cells, GC B cells, light zone/dark zone distribution and IgG1-class-
198 switched GC B cells in the spleen of *Fbxo10*^{+/+} (grey circles matched with mutant siblings)
199 *Fbxo10*^{fs/fs} (blue circles), and *Fbxo10*^{E54K/E54K} (red circles) mice day 7 post-immunisation. B: each
200 dot represents an individual biological replicate. Data are representative of $n = 2$ experiments on
201 mice 10-20 weeks old. Statistical analysis: t-test corrected for multiple comparisons using the
202 Holm-Sidak method yielded no evidence for significant differences between mutants and wildtype
203 controls with $p < 0.05$.

204

205 **FBXO10 deletion or missense mutation had no visible effect on B or T**
206 **cell expression of putative FBXO10 targets.**

207 Given the lack of any increase in mature B cells or GC B cells, as would be expected if
208 FBXO10 deficiency resulted in increased BCL2 protein accumulation, we measured BCL2 protein
209 levels in single B cells by intracellular antibody staining followed by flow cytometric analysis.
210 Interestingly, we observed no differences in expression of BCL2 between wild-type and mutant GC
211 B cells (Fig 4A,B) The same was true for BCL6 (Fig 4C,D) and BAFF-R that is an FBXO11 target
212 in lymphoma (Fig 4E,F). The same was true for non-GC B cells as well as for effector memory,
213 central memory and naïve CD4 and CD8 T cells (Fig 4A-F). Importantly, the well-validated
214 changes in expression of BAFF-R, BCL-6, and BCL-2 between lymphoid subsets, such as increased
215 BCL-6 expression in GC B cells relative to non-GC B cells or increased BCL-2 expression in
216 effector memory T cells relative to naïve T cells, provided a useful internal control to validate
217 successful staining in terms both of specificity and sensitivity (Fig 4B,D,F).

218

219 **Fig 4. *Fbxo10* frameshift or missense mutation do not discernably alter the protein expression**
220 **levels of putative *Fbxo10* targets in lymphoma. (A,C,E)** Mean fluorescence intensity (MFI) for
221 BCL2, BCL6 or BAFF-R expression, respectively, in splenic B and T cell subsets of *Fbxo10*^{+/+},
222 *Fbxo10*^{fs/fs}, *Fbxo10*^{E54K/E54K} mice 10-20 weeks old, day 7 post-immunisation with SRBCs. **(B,D,F)**
223 Left panel: representative histogram overlay of fluorescent antibody staining for intracellular BCL-
224 2 or BCL-6 or cell surface BAFF-R in T cells (black), non-GC B cells (green) or GC B cells
225 (purple). Right panel: representative histogram overlay for BCL2, BCL6 or BAFF-R expression in
226 *Fbxo10*^{+/+} (black) versus *Fbxo10*^{E54K/E54K} (red) GC B cells. Each dot represents an individual
227 animal, with genotypes as in Figure 2. Data are representative of $n = 2$ experiments on mice 10-20
228 weeks old, 7 days post-immunisation with SRBC, and similar results obtained for $n = 2$ experiments
229 on un-immunised mice 40-50 weeks old. Statistical analysis: t-test corrected for multiple
230 comparisons using the Holm-Sidak method yielded no evidence for significant differences between
231 mutants and wildtype controls with $p < 0.05$.

232

233

234 **FBXO10 deletion or missense mutation had no detectable effect on T**
235 **cell thymic development or T cell splenic maturation.**

236 Because expression of the *Vav-BCL2* transgene in mice also causes a marked elevation of T
237 lymphocytes and altered relative abundances of developing CD4⁻ CD8⁻ double negative (DN),
238 CD4⁺ CD8⁺ double positive (DP) and single positive (SP) thymocytes [35], we investigated T cell
239 development and maturation in *Fbxo10*^{E54K} or *Fbxo10*^{fs} mutant mice. Our analysis revealed no
240 significant difference in fractions of thymic DN, DP, CD4 and CD8 SP T cells in elderly (40-50
241 week old) *Fbxo10*^{fs} and *Fbxo10*^{E54K} mutant mice, relative to their wild-type littermate controls, nor
242 in the fractions of early developing DN1-DN4 thymocytes (Fig 5A,B). There were also no
243 detectable changes in expression of CD25, CD44, CD69, PD1 and CD62L by these thymic subsets

244 (S2 Fig A,B). In our hands, the only significant effect of *Fbxo10* deletion or missense mutation was
245 a very slight increase in frequency of Tregs in the thymus (Fig 5A,B) that was a consistent trend in
246 different cohorts. Splenic T cell subsets were also not significantly affected by *Fbxo10* mutations,
247 as the percentage of T cells, CD4:CD8 ratio, fraction of Tregs and of CD4 and CD8 effector
248 memory, central memory and naïve subsets were comparable in mutant relative to wild-type mice
249 (Fig 5C,D). Similarly, no changes in expression of maturation/activation markers were detected in
250 these various subsets between wild-type and mutant mice (S2 Fig C).

251

252 **Fig 5. *Fbxo10* frameshift or missense mutation do not discernably alter thymic or spleen T cell**
253 **subsets. (A)** Representative flow cytometric gating strategy to delineate T cell developmental
254 populations in the thymus. Numbers denote cells in gate as percentage of parent population. **(B)** T
255 cell developmental subsets in the thymus of *Fbxo10*^{+/+}, *Fbxo10*^{fs/fs}, *Fbxo10*^{E54K/E54K} mice. **(C)**
256 Representative flow cytometric gating strategy to delineate splenic T cell subsets. **(D)** T cell subsets
257 in the spleen of *Fbxo10*^{+/+}, *Fbxo10*^{fs/fs}, *Fbxo10*^{E54K/E54K} mice. B, D: each dot represents data from
258 an individual mouse: *Fbxo10*^{+/+} in grey, *Fbxo10*^{fs/fs} in blue, *Fbxo10*^{E54K/E54K} in red as in Figure 2.
259 Results representative of $n = 2$ experiments on mice 40-50 weeks old, and similar results observed
260 in $n = 2$ experiments on mice 10-20 weeks old. Statistical analysis: t-test corrected for multiple
261 comparisons using the Holm-Sidak method, ** $p < 0.01$, all other differences were not significant.

262

263 This was also true for young *Fbxo10* mutant mice (data not shown), and the lack of any
264 observable effects even in elderly mice, despite the common exacerbation of underlying immune
265 defects with age in mice and humans, indicates that FBXO10 plays no or a redundant role in murine
266 T cell development and maturation, at least in un-immunised mice. Further analysis using antigen-
267 specific challenge models may reveal a context-specific role for FBXO10 in T cells. *Fbxo10*
268 expression has for example been shown to increase in Jurkat cells upon cellular stress, downstream

269 of LEDGF signalling [39]. Nevertheless, we can conclude that FBXO10 alone is not required for
270 the development, differentiation or survival of T cells in mice.

271

272 **FBXO10 deletion or missense mutation had no detectable effect on the**
273 **distribution of murine lymphoid and myeloid leukocyte subsets in the**
274 **bone marrow or spleen.**

275 Similarly, despite the changes in lymphoid and myeloid subsets in *Vav-BCL2* transgenic
276 mice [35], the distribution of NK cells, dendritic cells, monocytes/macrophages and dendritic cells
277 in the bone marrow (Fig 6A,C) and spleen (Fig 6B,D) was not significantly different between
278 *Fbxo10* mutant or wild-type mice 10-12 weeks old (data not shown) or 40-50 weeks old (Fig 6A-
279 D). No consistent changes in size, granularity or expression of CD11b, CD11c, Ly6G, Ly6C, CD44,
280 CD62L proteins were detected in any leukocyte subset in the bone marrow (S3 Fig A) or spleen (S3
281 Fig B) of *Fbxo10*-mutant mice. As many of these proteins are well-validated markers of activation
282 and differentiation of myeloid cells, we may infer that development and maturation of myeloid cells
283 are largely unaffected by *Fbxo10*^{E54K} and *Fbxo10*^{fs}.

284

285 **Fig 6. *Fbxo10* frameshift or missense mutation do not cause discernable differences in myeloid**
286 **and lymphoid leukocytes within the spleen or bone marrow. (A)** Representative flow cytometry
287 gating strategy to delineate leukocyte populations in the bone marrow. Numbers denote cells in gate
288 as percentage of parent population. **(B)** Representative flow cytometric gating strategy to delineate
289 leukocyte populations in the spleen. **(C)** leukocyte subsets in the bone marrow of *Fbxo10*^{+/+},
290 *Fbxo10*^{fs/fs}, *Fbxo10*^{E54K/E54K} mice. **(D)** leukocyte subsets in the spleen of *Fbxo10*^{+/+}, *Fbxo10*^{fs/fs},
291 *Fbxo10*^{E54K/E54K} mice. C, D: each dot represents an individual biological replicate. Results
292 representative of $n = 2$ experiments on mice 40-50 weeks old, and similar results observed in $n = 2$

293 experiments on mice 10-20 weeks old. *Fbxo10*^{+/+} in black, *Fbxo10*^{fs/fs} in blue, *Fbxo10*^{E54K/E54K} in
294 red. Statistical analysis: t-test corrected for multiple comparisons using the Holm-Sidak method
295 yielded no evidence for significant differences between mutants and wildtype controls with p <
296 0.05.

297

298 Discussion

299 Based on somatic mutations in DLBCL, germline mutations in *C elegans*, and experimental
300 overexpression and RNAi knockdown experiments in human DLBCL cells, we hypothesised that
301 germline loss of function *Fbxo10* mutations in mice would cause increased BCL2 protein
302 accumulation in mature B cells and GC B cells and corresponding increased B cell accumulation.
303 This hypothesis was not supported here by characterisation of C57BL/6J mice with a germline
304 missense mutation or frameshift mutation in *Fbxo10*. No visible morphological or immune cellular
305 phenotype resulted from FBXO10 loss-of-function in mice. Mutant mice presented with normal
306 breeding frequencies (Fig 1), spleen cellularity (Fig 2), unchanged B and T cell early development
307 and splenic maturation (Fig 2 and 5), normal frequencies of leukocyte subsets in the bone marrow
308 or spleen (Fig 6), and identical expression of protein markers associated with development,
309 differentiation, activation and migration in all of these various leukocyte subsets (S1-S3 Fig).

310 Mutation or loss of *Fbxo10* did not affect the magnitude of a polyclonal GC B cell response
311 to SRBC immunisation, nor the GC dark zone/light zone distribution or frequency of IgG1 class-
312 switched cells (Fig 3). Finally, wild-type and mutant lymphoid subsets presented with identical
313 expression of BCL2 (Fig 4). These observations were made not only in 10-12 week old adult mice,
314 but also in elderly 40-50 week old mice where one can often observe exacerbation of underlying
315 immune defects over time. Of 59 mice aged to 30-50 weeks old, no *Fbxo10*-mutant (or wild-type)
316 mouse developed a solid organ or lymphoid malignancy. Thus, *Fbxo10* hypomorphic mutation or
317 deletion results in no visible changes in expression of FBXO10 target BCL2 in mice, even in the

318 GC (nor of FBXO11 target BCL6). The importance of FBXO10 function to BCL2 expression and
319 survival of DLBCL [26, 28] may be associated with a concomitant loss of redundant or
320 compensatory mechanisms in these cells.

321 Another role identified for FBXO10 in human lymphoma cell lines is in the negative
322 regulation of BCR signalling via BCR signalling-induced membrane re-localisation followed by
323 degradation of human germinal-centre associated lymphoma (HGAL, also called GCET2) protein
324 levels [41]. HGAL is GC B cell-specific, enhances BCR signalling by increasing activation of Syk
325 downstream effectors and human *HGAL*-transgenic mice develop lymphoid hyperplasia in elderly
326 mice [42]. Notably however, deletion of *HGAL* (also called *M17*) had no effect on the GC response
327 in mice [43]. The normal GC responses observed in mice with frameshift or missense FBXO10 do
328 not support a critical role for FBXO10 in degrading HGAL in mice, although we have not measured
329 HGAL levels in mutant GC B cells.

330 The related protein, FBXO11, may theoretically compensate for FBXO10 loss of function
331 mutations. In the gnoMAD database analysing 124,000 adult human exomes or genomes, FBXO11
332 has a pLI=1.0, due to much lower than expected occurrence of heterozygous stop gain or frameshift
333 mutations. This is consistent with evidence for human FBXO11 haploinsufficiency, with
334 heterozygous germline *de novo* loss-of-function alleles found recurrently in children with
335 neurodevelopmental disorders [37, 44, 45], and with high frequency heterozygous loss-of-function
336 somatic mutations in human B cell lymphoma [28]. In mice, an *Fbxo11* missense mutation in the
337 CASH domain causes a heterozygous developmental disorder of the ear and homozygous lethal
338 dysmorphism [46], while homozygous conditional *Fbxo11* deletion in GC B cells increases their
339 number and BCL6 protein levels [47]. By contrast, FBXO10 has a pLI=0 in gnoMAD indicating
340 that heterozygous null mutations occur at the expected frequency in the adult human population.
341 Evidence against FBXO11 as a redundant parologue for BCL2 regulation comes from FBXO11
342 siRNA knockdown in human B cell lymphoma cells, which dramatically enhanced BCL6 protein

343 stability after protein translation was pharmacologically blocked, but did not enhance BCL2 protein
344 stability analysed in the same cell lysates [28].

345 Another candidate compensatory BCL2-regulator is ARTS (gene name *SEPT4*), which
346 serves as an adapter to promote BCL2 ubiquitination by the XIAP ubiquitin ligase in apoptotic cells
347 [48]. ARTS-deficient B cells in mice nevertheless develop and accumulate in normal numbers,
348 suggesting that ARTS is also unnecessary or redundant for regulating BCL2-dependent B cell
349 survival [49]. However, ARTS deficiency does promote exaggerated mature B cell accumulation in
350 Emu-MYC transgenic B cells where MYC is dysregulated and promotes apoptosis, and this effect is
351 abolished in ARTS-XIAP double-deficient B cells [49]. Given the importance of balanced BCL2
352 and BIM protein levels for controlling normal B cell survival and suppressing B cell lymphoma [1],
353 it would not be surprising that BCL2 protein turnover be governed by multiple, redundant ubiquitin
354 ligases.

355 To our knowledge, our results constitute the first characterisation of mice with homozygous
356 loss-of-function mutations in FBXO10. They highlight the importance of investigating the
357 functional redundancy/synergy of FBXO10 loss-of-function with mutations in other pathways and
358 with loss-of-function of SCF complex members such as FBXO11. The incongruity between the role
359 of FBXO10 in inducing cell death of the *C. elegans* tail spike cell and of human DLBCL cells
360 relative to leukocyte subsets in the mouse should be further investigated.

361

362

363 **Materials and Methods**

364 **Mice**

365 Mice were bred at Australian BioResources (MossVale, NSW, Australia) and kept in
366 specific pathogen-free conditions at the Garvan Institute (Sydney, Australia). All animal studies

367 were approved and conducted in compliance with the guidelines set by the Garvan/St.Vincent's
368 Animal Ethics Committee.

369 *Fbxo10^{E54K}* and *Fbxo10^{KO}* mice were produced by the Mouse Engineering Garvan/ABR
370 (MEGA) Facility using CRISPR/Cas9 gene targeting in mouse embryos following established
371 molecular and animal husbandry techniques (Yang et al., 2014). The single guide RNA (sgRNA)
372 was based on a target site exon 2 of *Fbxo10* (CCAGTTGGGTGGCGGCACTCGG) (protospacer-
373 associated motif = PAM italicised and underlined) and was microinjected into the nucleus and
374 cytoplasm of C57BL/6J zygotes together with polyadenylated *S.pyogenes* Cas9 mRNA and a 150
375 base single-stranded, anti-sense, deoxy-oligonucleotide homologous recombination substrate
376 carrying the E54K (GAG>AAG) mutation and a PAM-inactivating silent mutation in the T53
377 codon (ACC>ACA). A founder mouse heterozygous for both substitutions was obtained and used
378 to establish the *Fbxo10E54K* line. An additional founder carrying a 4bp frame shift mutation after
379 the first base of the C55 codon was bred to establish the *Fbxo10* line. Both lines were maintained
380 on an inbred C57BL/6J background. All experiments were approved by the Garvan/St Vincent's
381 Animal Ethics Committee. Mice were bred and housed in specific pathogen-free conditions at
382 Australian BioResources (Moss Vale) and the Garvan Institute Biological Testing Facility.

383

384 **Flow cytometric analysis**

385 Mouse organs were harvested into FACS buffer (PBS/1% BSA/0.02% sodium azide) and
386 single cell suspensions passed through a 70 µm cell strainer (Falcon, Corning, NY, USA). In
387 analysis of spleen or blood immune subsets, red blood cell (RBC) lysis was performed using lysis
388 buffer solution (0.8% ammonium chloride, 0.08% sodium bicarbonate, 0.04% EDTA disodium salt,
389 pH 7.3).

390 Single cell suspensions were stained with antibodies targeting cell-surface (B220, BAFF-R,
391 IgM, IgD, IgG1, Ly-6C, Ly-6G, PD-1, TCR β , CD3, CD11b, CD11c, CD19, CD21/35, CD23,

392 CD24, CD25, CD28, CD38, CD43, CD44, CD62L, CD69, CD86, CD93, CD95, CD278) or
393 intracellular proteins (BCL-2, BCL-6, CD152) and cells were acquired on an LSR II analyser (BD
394 Pharmingen), followed by flow cytometric analysis using the FlowJo Software (FlowJo LLC,
395 Ashland, OR, USA).

396

397 **Immunoprecipitation**

398 Expression vectors, either empty or encoding FLAG-tagged human FBXO10 wild-type or
399 with the indicated mutations, were transfected into HEK293T cells and lysates or anti-FLAG
400 immunoprecipitates western blotted with antibodies to FLAG or SKP1. Immunoprecipitations were
401 performed as previously described [26], using FLAG (Sigma F3165) and SKP1 (Santa Cruz sc-
402 5281) antibodies. Construction of cDNA of FLAG-tagged FBXO10, ΔFBXO10 and FBXO10
403 R44H in a retroviral vector and transfection into HEK293T cells were also performed as previously
404 described [26]. FBXO10 E54K was generated by site-directed mutagenesis (Stratagene 200521-5)
405 using the following primers:

406 Fbxo10_E54K_F: GTCTGGGCTGCACCGAGTGCCGCCACCCAACTGG

407 Fbxo10_E54K_R: CCAGTTGGGGTGGCGGCACTCGGTGCAGCCCAGAC

408

409 **Statistical analysis**

410 GraphPad Prism 6 (GraphPad Software, San Diego, CA, USA) was used for analysis of flow
411 cytometry or ELISA data. For comparisons between genotypes, the variance was approximately
412 equal between samples and comparisons were made using a Student's t-test, and corrected for
413 multiple comparisons using the Holm-Sidak method. For these tests, $p < 0.05$ was considered
414 statistically significant. In all flow cytometry summary figures, each data point represents an

415 individual mouse. Error bars indicate the mean and standard distribution. *p<0.05; **p<0.01;
416 ***p<0.001.

417

418 Acknowledgements

419 We thank the Garvan Institute ABR, GMG and Flow Cytometry facilities for expert animal
420 husbandry, genotyping and cell sorting. This work was supported by NHMRC Grants APP1113904,
421 APP1081858, and APP1108800 and by the Ritchie Family Foundation.

422

423 References

- 424 1. Bouillet P, Cory S, Zhang LC, Strasser A, Adams JM. Degenerative disorders caused by
425 Bcl-2 deficiency prevented by loss of its BH3-only antagonist Bim. *Dev Cell*. 2001;1(5):645-53.
426 doi: 10.1016/s1534-5807(01)00083-1. PubMed PMID: 11709185.
- 427 2. Nakayama K, Nakayama K, Negishi I, Kuida K, Sawa H, Loh DY. Targeted disruption of
428 Bcl-2 alpha beta in mice: occurrence of gray hair, polycystic kidney disease, and lymphocytopenia.
429 *Proc Natl Acad Sci U S A*. 1994;91(9):3700-4. doi: 10.1073/pnas.91.9.3700. PubMed PMID:
430 8170972; PubMed Central PMCID: PMCPMC43649.
- 431 3. Strasser A, Whittingham S, Vaux DL, Bath ML, Adams JM, Cory S, et al. Enforced BCL2
432 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. *Proc
433 Natl Acad Sci U S A*. 1991;88(19):8661-5. doi: 10.1073/pnas.88.19.8661. PubMed PMID:
434 1924327; PubMed Central PMCID: PMCPMC52569.
- 435 4. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and
436 cooperates with c-myc to immortalize pre-B cells. *Nature*. 1988;335(6189):440-2. doi:
437 10.1038/335440a0. PubMed PMID: 3262202.
- 438 5. Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ. Bcl-2-deficient mice demonstrate
439 fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. *Cell*. 1993;75(2):229-
440 40. doi: 10.1016/0092-8674(93)80065-m. PubMed PMID: 8402909.
- 441 6. Bakhshi A, Jensen JP, Goldman P, Wright JJ, McBride OW, Epstein AL, et al. Cloning the
442 chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14
443 and near a transcriptional unit on 18. *Cell*. 1985;41(3):899-906. doi: 10.1016/s0092-
444 8674(85)80070-2. PubMed PMID: 3924412.
- 445 7. Cleary ML, Smith SD, Sklar J. Cloning and structural analysis of cDNAs for bcl-2 and a
446 hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. *Cell*.
447 1986;47(1):19-28. doi: 10.1016/0092-8674(86)90362-4. PubMed PMID: 2875799.
- 448 8. Tsujimoto Y, Croce CM. Analysis of the structure, transcripts, and protein products of bcl-2,
449 the gene involved in human follicular lymphoma. *Proc Natl Acad Sci U S A*. 1986;83(14):5214-8.
450 doi: 10.1073/pnas.83.14.5214. PubMed PMID: 3523487; PubMed Central PMCID:
451 PMCPMC323921.

452 9. Ngan BY, Chen-Levy Z, Weiss LM, Warnke RA, Cleary ML. Expression in non-Hodgkin's
453 lymphoma of the bcl-2 protein associated with the t(14;18) chromosomal translocation. *N Engl J*
454 *Med.* 1988;318(25):1638-44. doi: 10.1056/NEJM198806233182502. PubMed PMID: 3287162.

455 10. Weiss LM, Warnke RA, Sklar J, Cleary ML. Molecular analysis of the t(14;18)
456 chromosomal translocation in malignant lymphomas. *N Engl J Med.* 1987;317(19):1185-9. doi:
457 10.1056/NEJM198711053171904. PubMed PMID: 3657890.

458 11. Yunis JJ, Oken MM, Kaplan ME, Ensrud KM, Howe RR, Theologides A. Distinctive
459 chromosomal abnormalities in histologic subtypes of non-Hodgkin's lymphoma. *N Engl J Med.*
460 1982;307(20):1231-6. doi: 10.1056/NEJM19821113072002. PubMed PMID: 7133054.

461 12. Iqbal J, Sanger WG, Horsman DE, Rosenwald A, Pickering DL, Dave B, et al. BCL2
462 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-
463 cell lymphoma. *Am J Pathol.* 2004;165(1):159-66. doi: 10.1016/s0002-9440(10)63284-1. PubMed
464 PMID: 15215171; PubMed Central PMCID: PMCPMC1618550.

465 13. Ci W, Polo JM, Cerchietti L, Shakhnovich R, Wang L, Yang SN, et al. The BCL6
466 transcriptional program features repression of multiple oncogenes in primary B cells and is
467 deregulated in DLBCL. *Blood.* 2009;113(22):5536-48. doi: 10.1182/blood-2008-12-193037.
468 PubMed PMID: 19307668; PubMed Central PMCID: PMCPMC2689052.

469 14. Saito M, Novak U, Piovan E, Basso K, Sumazin P, Schneider C, et al. BCL6 suppression of
470 BCL2 via Miz1 and its disruption in diffuse large B cell lymphoma. *Proc Natl Acad Sci U S A.*
471 2009;106(27):11294-9. doi: 10.1073/pnas.0903854106. PubMed PMID: 19549844; PubMed
472 Central PMCID: PMCPMC2708681.

473 15. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, et al. The use of
474 molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. *N*
475 *Engl J Med.* 2002;346(25):1937-47. doi: 10.1056/NEJMoa012914. PubMed PMID: 12075054.

476 16. Iqbal J, Neppalli VT, Wright G, Dave BJ, Horsman DE, Rosenwald A, et al. BCL2
477 expression is a prognostic marker for the activated B-cell-like type of diffuse large B-cell
478 lymphoma. *J Clin Oncol.* 2006;24(6):961-8. doi: 10.1200/JCO.2005.03.4264. PubMed PMID:
479 16418494.

480 17. Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C, et al. Discovery and
481 prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome
482 sequencing. *Proc Natl Acad Sci U S A.* 2012;109(10):3879-84. doi: 10.1073/pnas.1121343109.
483 PubMed PMID: 22343534; PubMed Central PMCID: PMCPMC3309757.

484 18. Reddy A, Zhang J, Davis NS, Moffitt AB, Love CL, Waldrop A, et al. Genetic and
485 Functional Drivers of Diffuse Large B Cell Lymphoma. *Cell.* 2017;171(2):481-94 e15. doi:
486 10.1016/j.cell.2017.09.027. PubMed PMID: 28985567; PubMed Central PMCID:
487 PMCPMC5659841.

488 19. Merino R, Ding L, Veis DJ, Korsmeyer SJ, Nunez G. Developmental regulation of the Bcl-2
489 protein and susceptibility to cell death in B lymphocytes. *EMBO J.* 1994;13(3):683-91. PubMed
490 PMID: 8313913; PubMed Central PMCID: PMCPMC394859.

491 20. Reed JC. A day in the life of the Bcl-2 protein: does the turnover rate of Bcl-2 serve as a
492 biological clock for cellular lifespan regulation? *Leuk Res.* 1996;20(2):109-11. doi: 10.1016/0145-
493 2126(95)00135-2. PubMed PMID: 8628008.

494 21. Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S, et al. Programmed
495 anuclear cell death delimits platelet life span. *Cell.* 2007;128(6):1173-86. doi:
496 10.1016/j.cell.2007.01.037. PubMed PMID: 17382885.

497 22. Rooswinkel RW, van de Kooij B, de Vries E, Paauwe M, Braster R, Verheij M, et al.
498 Antiapoptotic potency of Bcl-2 proteins primarily relies on their stability, not binding selectivity.
499 *Blood.* 2014;123(18):2806-15. doi: 10.1182/blood-2013-08-519470. PubMed PMID: 24622325.

500 23. Jorgensen TN, McKee A, Wang M, Kushnir E, White J, Refaeli Y, et al. Bim and Bcl-2
501 mutually affect the expression of the other in T cells. *J Immunol.* 2007;179(6):3417-24. doi:
502 10.4049/jimmunol.179.6.3417. PubMed PMID: 17785775.

503 24. Deshaies RJ. SCF and Cullin/Ring H2-based ubiquitin ligases. *Annu Rev Cell Dev Biol.*
504 1999;15:435-67. doi: 10.1146/annurev.cellbio.15.1.435. PubMed PMID: 10611969.

505 25. Skaar JR, Pagan JK, Pagano M. Mechanisms and function of substrate recruitment by F-box
506 proteins. *Nat Rev Mol Cell Biol.* 2013;14(6):369-81. doi: 10.1038/nrm3582. PubMed PMID:
507 23657496; PubMed Central PMCID: PMCPMC3827686.

508 26. Chiorazzi M, Rui L, Yang Y, Ceribelli M, Tishbi N, Maurer CW, et al. Related F-box
509 proteins control cell death in *Caenorhabditis elegans* and human lymphoma. *Proc Natl Acad Sci U*
510 *S A.* 2013;110(10):3943-8. doi: 10.1073/pnas.1217271110. PubMed PMID: 23431138; PubMed
511 Central PMCID: PMCPMC3593917.

512 27. Fielenbach N, Guardavaccaro D, Neubert K, Chan T, Li D, Feng Q, et al. DRE-1: an
513 evolutionarily conserved F box protein that regulates *C. elegans* developmental age. *Dev Cell.*
514 2007;12(3):443-55. doi: 10.1016/j.devcel.2007.01.018. PubMed PMID: 17336909.

515 28. Duan S, Cermak L, Pagan JK, Rossi M, Martinengo C, di Celle PF, et al. FBXO11 targets
516 BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. *Nature.*
517 2012;481(7379):90-3. doi: 10.1038/nature10688. PubMed PMID: 22113614; PubMed Central
518 PMCID: PMCPMC3344385.

519 29. Li Y, Bouchlaka MN, Wolff J, Grindle KM, Lu L, Qian S, et al. FBXO10 deficiency and
520 BTK activation upregulate BCL2 expression in mantle cell lymphoma. *Oncogene.*
521 2016;35(48):6223-34. doi: 10.1038/onc.2016.155. PubMed PMID: 27157620; PubMed Central
522 PMCID: PMCPMC5102814.

523 30. Walsh SH, Rosenquist R. Immunoglobulin gene analysis of mature B-cell malignancies:
524 reconsideration of cellular origin and potential antigen involvement in pathogenesis. *Med Oncol.*
525 2005;22(4):327-41. doi: 10.1385/MO:22:4:327. PubMed PMID: 16260850.

526 31. McDonnell TJ, Deane N, Platt FM, Nunez G, Jaeger U, McKearn JP, et al. bcl-2-
527 immunoglobulin transgenic mice demonstrate extended B cell survival and follicular
528 lymphoproliferation. *Cell.* 1989;57(1):79-88. PubMed PMID: 2649247.

529 32. Strasser A, Harris AW, Vaux DL, Webb E, Bath ML, Adams JM, et al. Abnormalities of the
530 immune system induced by dysregulated bcl-2 expression in transgenic mice. *Curr Top Microbiol*
531 *Immunol.* 1990;166:175-81. PubMed PMID: 2073796.

532 33. McDonnell TJ, Korsmeyer SJ. Progression from lymphoid hyperplasia to high-grade
533 malignant lymphoma in mice transgenic for the t(14; 18). *Nature.* 1991;349(6306):254-6. doi:
534 10.1038/349254a0. PubMed PMID: 1987477.

535 34. Strasser A, Harris AW, Cory S. E mu-bcl-2 transgene facilitates spontaneous transformation
536 of early pre-B and immunoglobulin-secreting cells but not T cells. *Oncogene.* 1993;8(1):1-9.
537 PubMed PMID: 8423986.

538 35. Ogilvy S, Metcalf D, Print CG, Bath ML, Harris AW, Adams JM. Constitutive Bcl-2
539 expression throughout the hematopoietic compartment affects multiple lineages and enhances
540 progenitor cell survival. *Proc Natl Acad Sci U S A.* 1999;96(26):14943-8. doi:
541 10.1073/pnas.96.26.14943. PubMed PMID: 10611317; PubMed Central PMCID: PMCPMC24752.

542 36. Egle A, Harris AW, Bath ML, O'Reilly L, Cory S. VavP-Bcl2 transgenic mice develop
543 follicular lymphoma preceded by germinal center hyperplasia. *Blood.* 2004;103(6):2276-83. doi:
544 10.1182/blood-2003-07-2469. PubMed PMID: 14630790.

545 37. O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism
546 exomes reveal a highly interconnected protein network of de novo mutations. *Nature.*
547 2012;485(7397):246-50. doi: 10.1038/nature10989. PubMed PMID: 22495309; PubMed Central
548 PMCID: PMCPMC3350576.

549 38. Yang H, Wang H, Jaenisch R. Generating genetically modified mice using CRISPR/Cas-
550 mediated genome engineering. *Nat Protoc.* 2014;9(8):1956-68. doi: 10.1038/nprot.2014.134.
551 PubMed PMID: 25058643.

552 39. Xu X, Powell DW, Lambring CJ, Puckett AH, Deschenes L, Prough RA, et al. Human
553 MCS5A1 candidate breast cancer susceptibility gene FBXO10 is induced by cellular stress and

554 correlated with lens epithelium-derived growth factor (LEDGF). *Mol Carcinog.* 2014;53(4):300-13.
555 doi: 10.1002/mc.21977. PubMed PMID: 23138933.

556 40. Yang Y, Staudt LM. Protein ubiquitination in lymphoid malignancies. *Immunol Rev.*
557 2015;263(1):240-56. doi: 10.1111/imr.12247. PubMed PMID: 25510281; PubMed Central PMCID:
558 PMCPMC4269229.

559 41. Guo F, Luo Y, Jiang X, Lu X, Roberti D, Lossos C, et al. Recent BCR stimulation induces a
560 negative autoregulatory loop via FBXO10 mediated degradation of HGAL. *Leukemia.*
561 2020;34(2):553-66. doi: 10.1038/s41375-019-0579-5. PubMed PMID: 31570756.

562 42. Romero-Camarero I, Jiang X, Natkunam Y, Lu X, Vicente-Duenas C, Gonzalez-Herrero I,
563 et al. Germinal centre protein HGAL promotes lymphoid hyperplasia and amyloidosis via BCR-
564 mediated Syk activation. *Nat Commun.* 2013;4:1338. doi: 10.1038/ncomms2334. PubMed PMID:
565 23299888; PubMed Central PMCID: PMCPMC3545406.

566 43. Schenten D, Egert A, Pasparakis M, Rajewsky K. M17, a gene specific for germinal center
567 (GC) B cells and a prognostic marker for GC B-cell lymphomas, is dispensable for the GC reaction
568 in mice. *Blood.* 2006;107(12):4849-56. doi: 10.1182/blood-2005-10-4154. PubMed PMID:
569 16493007; PubMed Central PMCID: PMCPMC1895815.

570 44. Fritzen D, Kuechler A, Grimmel M, Becker J, Peters S, Sturm M, et al. De novo FBXO11
571 mutations are associated with intellectual disability and behavioural anomalies. *Hum Genet.*
572 2018;137(5):401-11. doi: 10.1007/s00439-018-1892-1. PubMed PMID: 29796876.

573 45. Gregor A, Sadleir LG, Asadollahi R, Azzarello-Burri S, Battaglia A, Ousager LB, et al. De
574 Novo Variants in the F-Box Protein FBXO11 in 20 Individuals with a Variable
575 Neurodevelopmental Disorder. *Am J Hum Genet.* 2018;103(2):305-16. doi:
576 10.1016/j.ajhg.2018.07.003. PubMed PMID: 30057029; PubMed Central PMCID:
577 PMCPMC6080769.

578 46. Hardisty-Hughes RE, Tateossian H, Morse SA, Romero MR, Middleton A, Tymowska-
579 Lalanne Z, et al. A mutation in the F-box gene, Fbxo11, causes otitis media in the Jeff mouse. *Hum*
580 *Mol Genet.* 2006;15(22):3273-9. doi: 10.1093/hmg/ddl403. PubMed PMID: 17035249.

581 47. Schneider C, Kon N, Amadori L, Shen Q, Schwartz FH, Tischler B, et al. FBXO11
582 inactivation leads to abnormal germinal-center formation and lymphoproliferative disease. *Blood.*
583 2016;128(5):660-6. doi: 10.1182/blood-2015-11-684357. PubMed PMID: 27166359.

584 48. Edison N, Curtz Y, Paland N, Mamriev D, Chorubczyk N, Haviv-Reingewertz T, et al.
585 Degradation of Bcl-2 by XIAP and ARTS Promotes Apoptosis. *Cell Rep.* 2017;21(2):442-54. doi:
586 10.1016/j.celrep.2017.09.052. PubMed PMID: 29020630; PubMed Central PMCID:
587 PMCPMC5667555.

588 49. Garcia-Fernandez M, Kissel H, Brown S, Gorenc T, Schile AJ, Rafii S, et al. Sept4/ARTS is
589 required for stem cell apoptosis and tumor suppression. *Genes Dev.* 2010;24(20):2282-93. doi:
590 10.1101/gad.1970110. PubMed PMID: 20952537; PubMed Central PMCID: PMCPMC2956207.

591

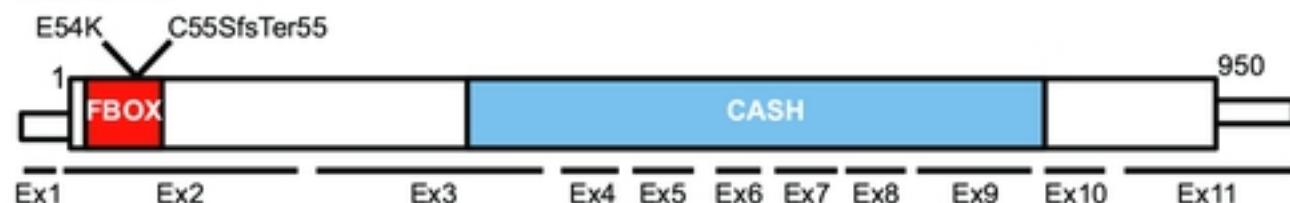
592

593 Supporting information

594 **S1 Fig. Representative graphs showing that Fbxo10 deletion or mutation do not alter the**
595 **protein expression of B cell development and maturation markers in bone**
596 **marrow or spleen.**

597 (A) Mean fluorescence intensity (MFI) for IgM, IgD, CD93, CD86 expression in splenic B cell
598 subsets of *Fbxo10*^{+/+}, *Fbxo10*^{fs/fs}, *Fbxo10*^{E54K/E54K} mice 40-50 weeks old. (B) MFI for IgM, IgD,
599 CD24, CD43 expression in bone marrow B cell subsets of *Fbxo10*^{+/+}, *Fbxo10*^{fs/fs}, *Fbxo10*^{E54K/E54K}
600 mice 40-50 weeks old. Each dot represents an individual biological replicate in *Fbxo10*^{+/+} (black),
601 *Fbxo10*^{E54K/E54K} (red) or *Fbxo10*^{fs/fs} (blue) mice. Similar results were obtained for multiple protein
602 markers (CD19, CD21/35, CD23, CD24, CD43, CD86, etc.). Results are representative of $n = 2$
603 experiments on un-immunised mice 40-50 weeks old and similar results were obtained for $n = 2$
604 experiments on mice 10-20 weeks old, 7 days post-immunisation with SRBC. Statistical analysis: t-
605 test corrected for multiple comparisons using the Holm-Sidak method yielded no evidence for
606 significant differences between mutants and wildtype controls with $p < 0.05$.

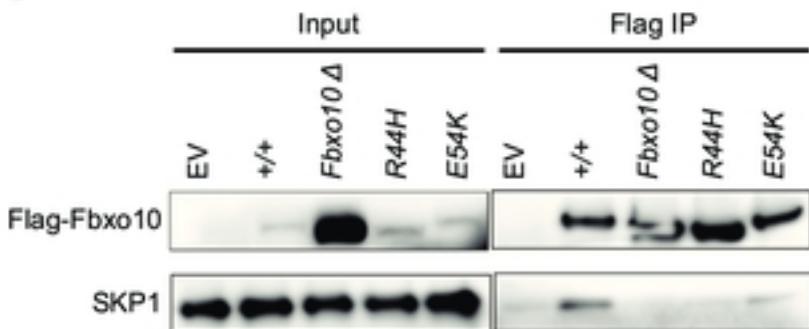
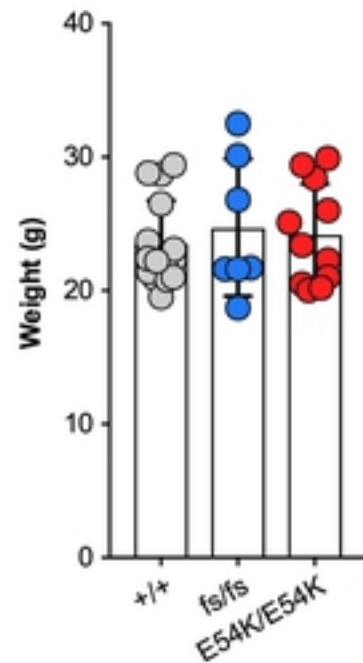
607 **S2 Fig. Representative plots showing that *Fbxo10* deletion does not alter the protein
608 expression levels of T cell activation and maturation markers in thymus or spleen. (A,B)**


609 Representative histogram overlays of *Fbxo10*^{+/+} (grey fill) or *Fbxo10*^{fs/fs} (blue fill) thymocyte
610 subsets relative to *Fbxo10*^{+/+} control thymocytes (black line) for CD44 (A) or for CD69 (B).
611 Results are representative of results obtained for other markers: CD25, CD69, PD1, CD3, etc. (C)
612 Representative histogram overlays of *Fbxo10*^{+/+} (grey fill) or *Fbxo10*^{fs/fs} (blue fill) splenic T cells
613 relative to *Fbxo10*^{+/+} control cells (black line) showing CD62L (left 3 panels) or CD44 (right 3
614 panels). Results are representative of results obtained for other markers: CD25, CD62L, PD1, CD3,
615 etc.

616 **S3 Fig. Representative graphs showing that *Fbxo10* deletion or mutation do not alter the
617 protein expression of development and maturation markers for leukocytes in bone marrow or
618 spleen.**

619 (A) Mean fluorescence intensity (MFI) for CD11b, Ly6G, CD62L, CD44 expression in spleen
620 leukocyte subsets of *Fbxo10*^{+/+}, *Fbxo10*^{fs/fs}, *Fbxo10*^{E54K/E54K} mice 40-50 weeks old. (B) Mean
621 fluorescence intensity (MFI) for CD11b, Ly6G, CD62L, CD44 expression in bone marrow
622 leukocyte subsets of *Fbxo10*^{+/+}, *Fbxo10*^{fs/fs}, *Fbxo10*^{E54K/E54K} mice 40-50 weeks old. Each dot

623 represents an individual biological replicate in *Fbxo10*^{+/+} (black), *Fbxo10*^{E54K/E54K} (red) or
624 *Fbxo10*^{fs/fs} (blue) mice. Similar results were obtained for multiple protein markers (NK1.1, Ly6G,
625 FSC, SSC-A, MHC II, etc.). Results are representative of $n = 2$ experiments on un-immunised mice
626 40-50 weeks old and similar results were obtained for $n = 2$ experiments on mice 10-20 weeks old,
627 7 days post-immunisation with SRBC. Statistical analysis: t-test corrected for multiple comparisons
628 using the Holm-Sidak method yielded no evidence for significant differences between mutants and
629 wildtype controls with $p < 0.05$.



630

ACCDS51171:

242 GACAGTACCCGCTGGCGGGCAGCTGTCTGGGCTGCACCGAGT **G**CCGCACCCCCAACTGG 301
 41 -D--S--T--R--W--R--Q-- L--C--L--G--C--T--**E**--C--R--H--P--N--W- 60
 c.del285-288

B

H.sapiens	41	DSTRWRQLCLGCT E CRHPNWPNQPDVEPESWREAFKQHYLASKT	84
P.troglodytes	57	DSTRWRQLCLGCT E CRHPNWPNQPDVEPESWREAFKQHYLASKT	100
M.mulatta	57	DSTRWRQLCLGCT E CRHPNWPNQPDVEPESWREAFKQHYLASKT	100
C.lupus	41	DSTRWRQLCLCT E CRHPNWPNQPDVEPESWREAFKQHYLASKT	84
B.taurus	41	DRTRWRQLYL G CA E CRHPNWPNQPDVEPESWREAFKQHYLASKT	84
M.musculus	41	DSTRWRQLCLGCT E CRHPNWPNQPDVEPESWREAFKQHYLASKT	84
R.norvegicus	54	DSTRWRQLCLGCT E CRHPNWPNQPDVEPESWREAFKQHYLASKT	97
D.rerio	41	DSTRWRQLCLG C E CRHPNWPRRPHLPPASWREALRQHALASRT	84
X.tropicalis	41	DNTRWRQLCLG C E CRHPNWPPIQPDVEPRSWREAFKQHYVASRT	84

C**E****D**

	WT	HET	HOM
Expected (if $n=100$)	25	50	25
Fbxo10-E54K ($n=104$)	32	46	26
Fbxo10-fs ($n=69$)	19	38	12

Figure 1

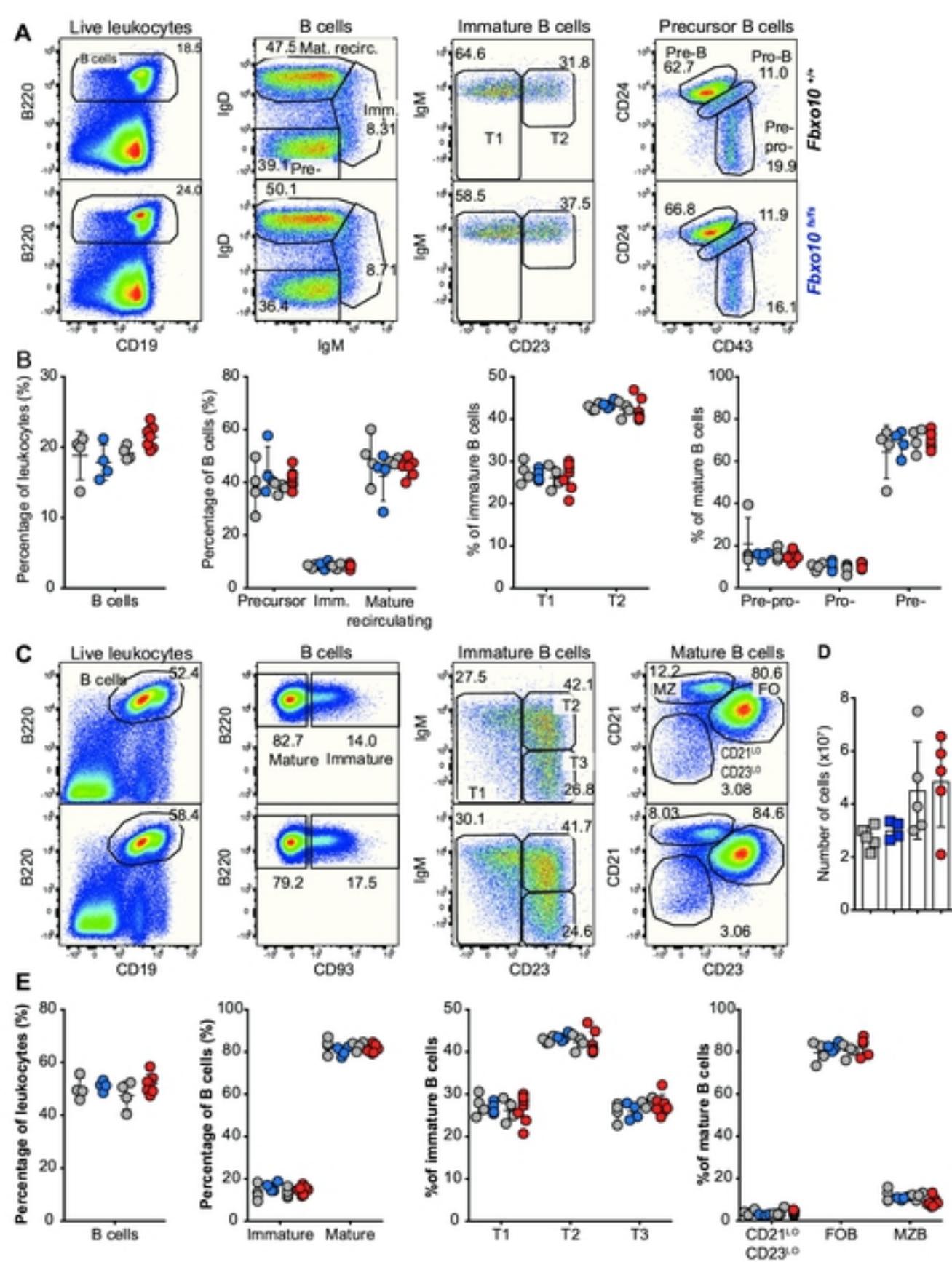
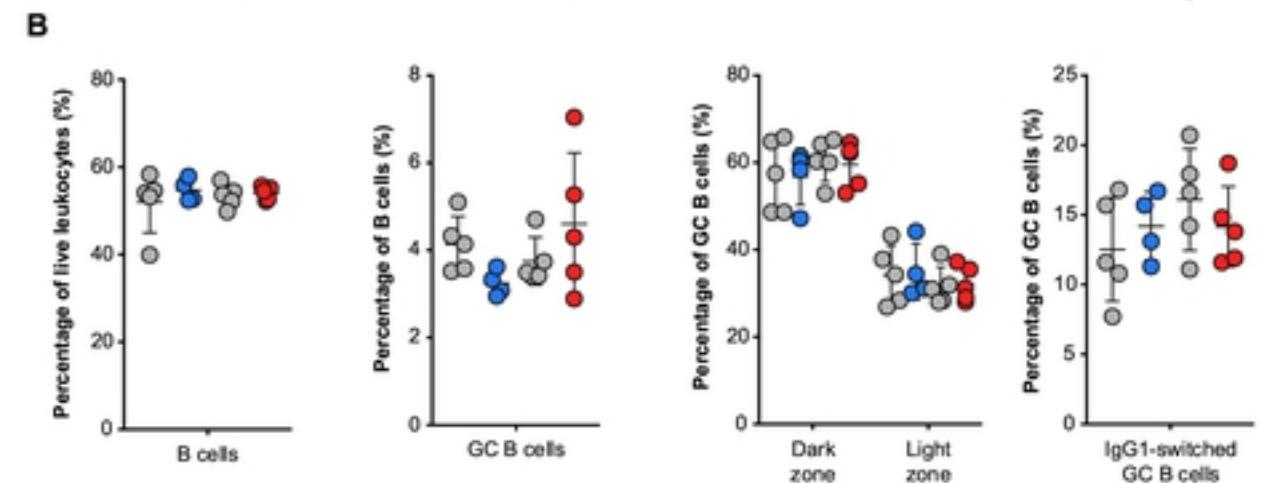
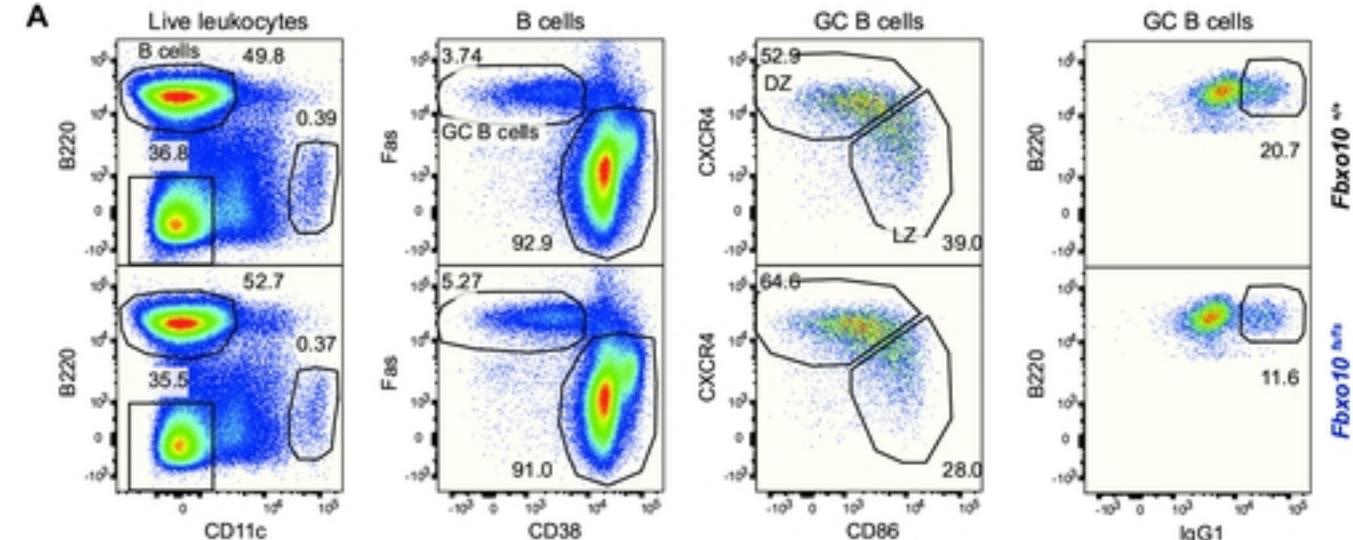




Figure 2

Figure 3

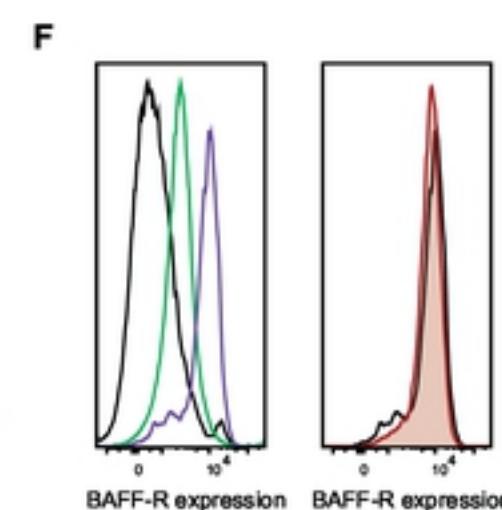
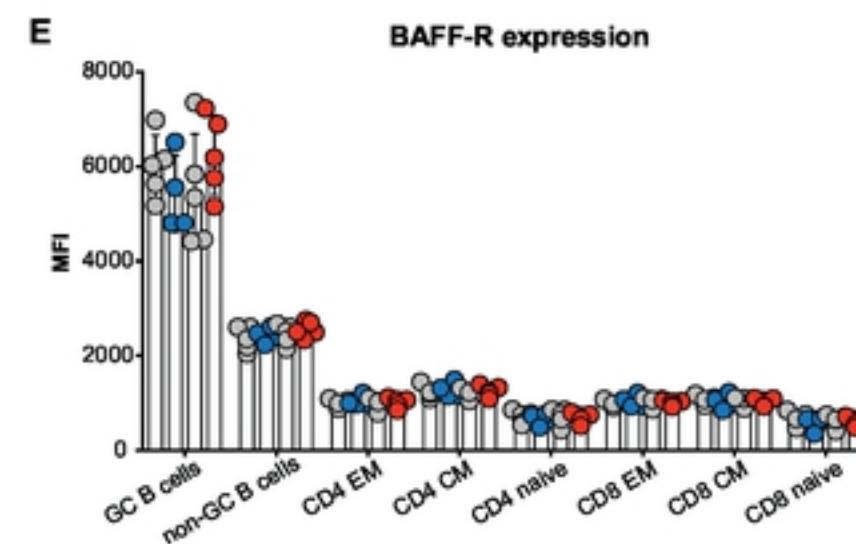
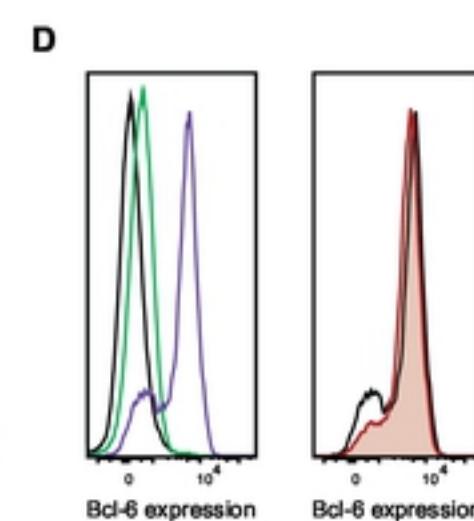
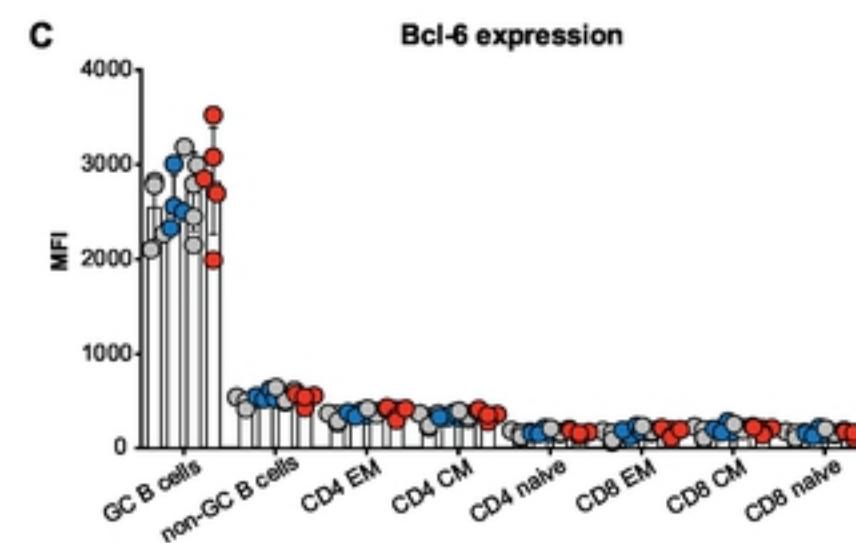
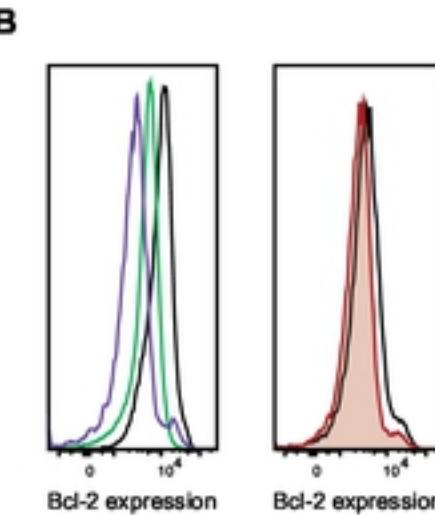
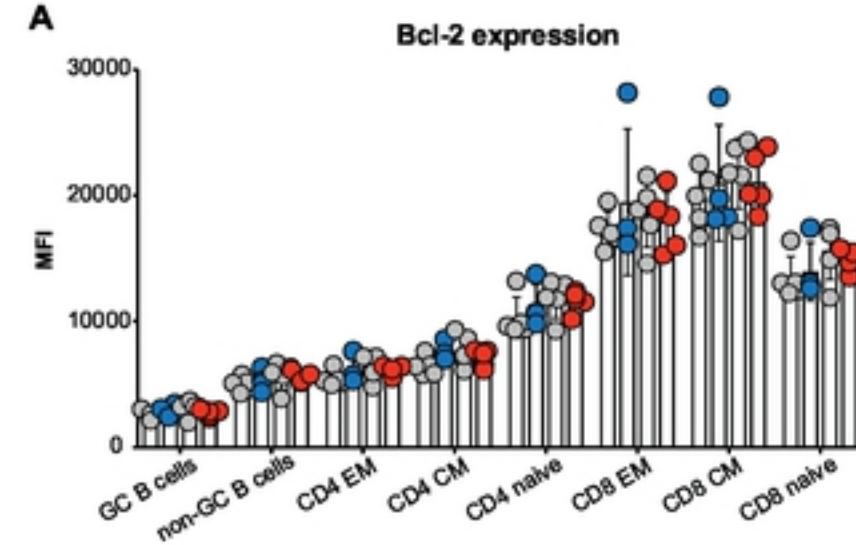







Figure 4

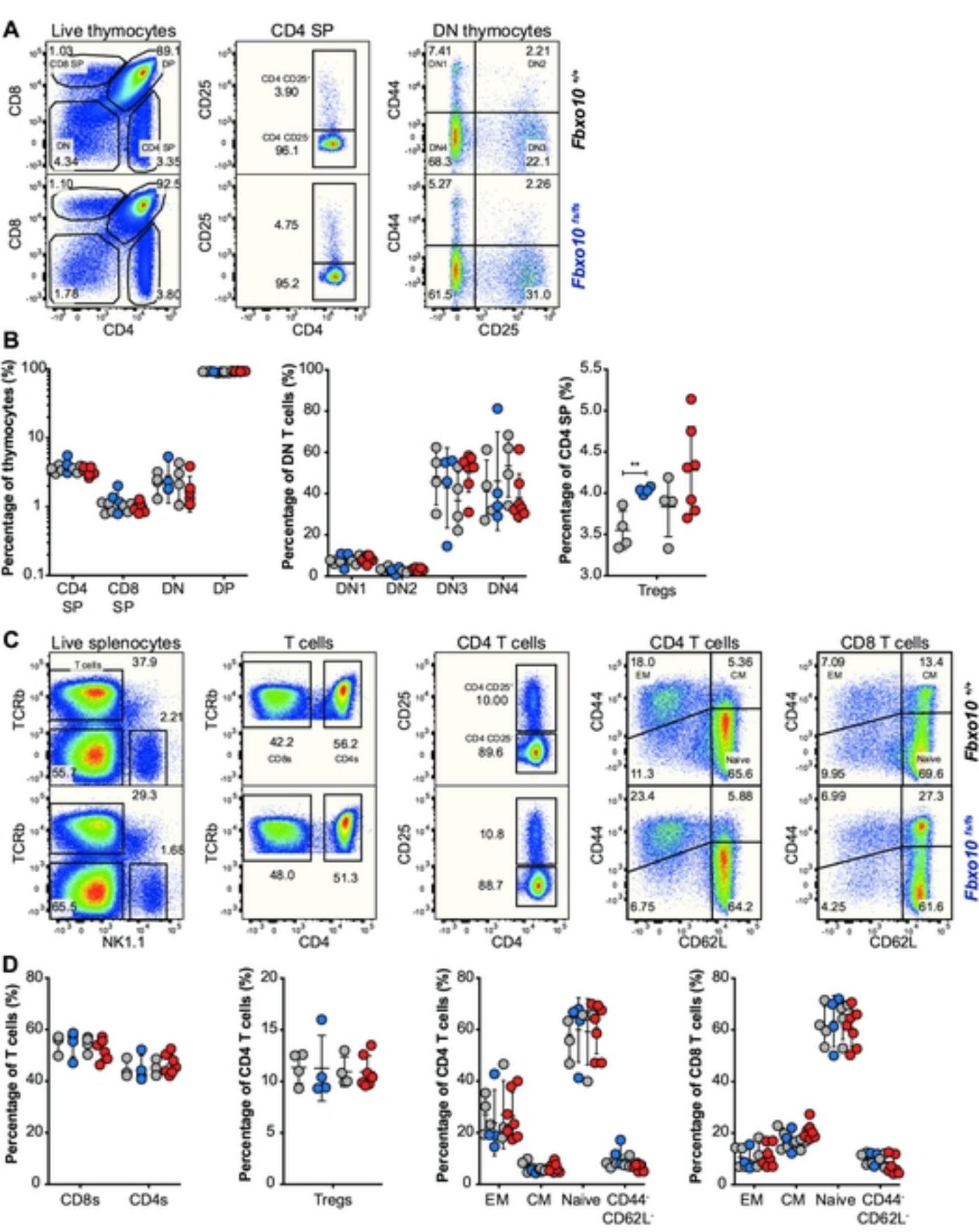
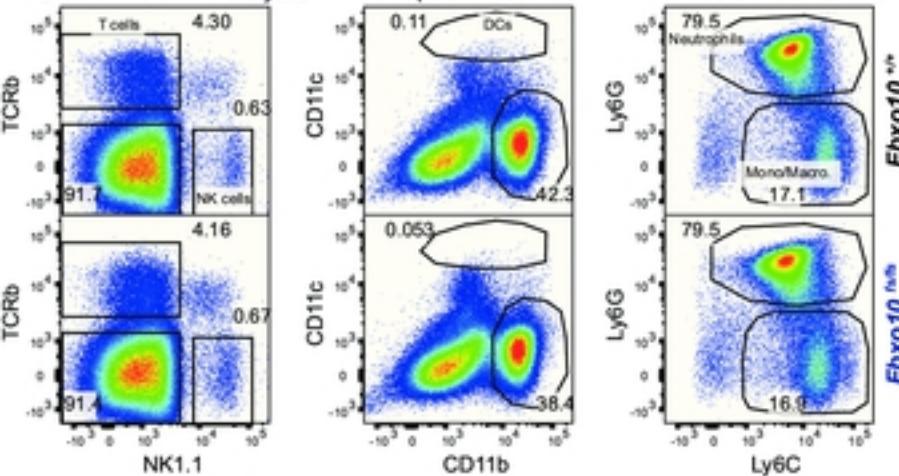
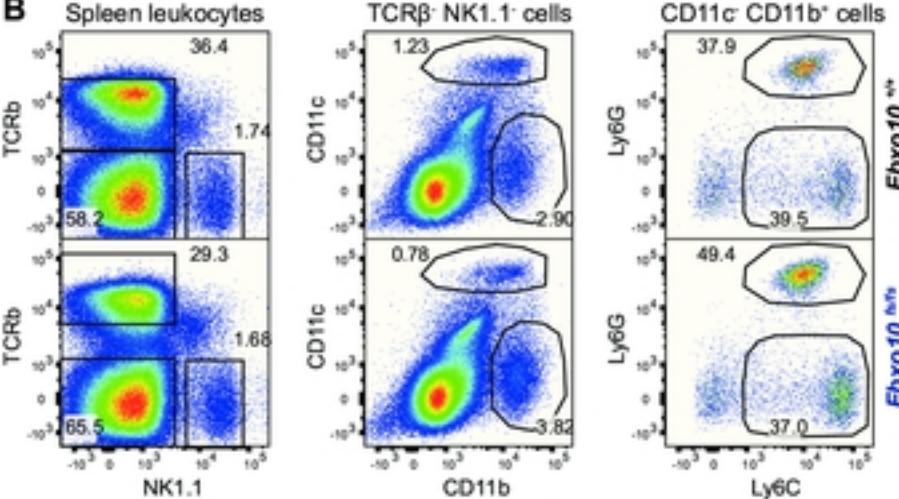
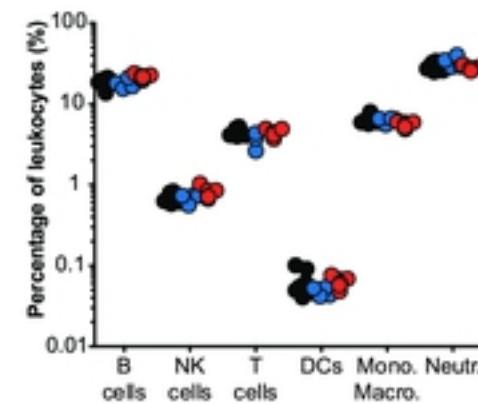
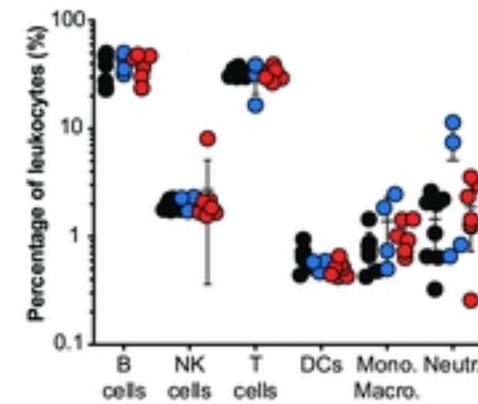






Figure 5

A Bone marrow leukocytes**B** Spleen leukocytes**C** Bone marrow leukocytes**D** Spleen leukocytes**Figure 6**