

1 Reduced placental transfer of antibodies against microbial and
2 vaccine antigens in HIV-infected women in Mozambique

3 Selena Alonso¹, Marta Vidal¹⁺, Gemma Ruiz-Olalla¹⁺, Raquel González^{1,2}, M. Nelia Manaca²,
4 Chenjerai Jairoce², Miquel Vázquez-Santiago¹, Reyes Balcells^{1,2}, Anifa Vala², María Ruperez^{1,2,4},
5 Pau Cisteró¹, Laura Fuente-Soro^{1,2}, Marta Cova¹, Evelina Angov⁵, Arsenio Nhacolo², Esperança
6 Sevane^{2,3}, John J. Aponte^{1,2}, Eusébio Macete², Ruth Aguilar¹, Alfredo Mayor^{1,2}, Clara
7 Menéndez^{1,2}, Carlota Dobaño^{1,2*#}, Gemma Moncunill^{1,2*#}

8 ¹ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona,
9 Catalonia, Spain.

10 ²Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP
11 1929 Maputo, Mozambique.

12 ³Department of Physiologic Science, Clinical Pharmacology, Faculty of Medicine, Eduardo
13 Mondlane University, Maputo, Mozambique.

14 ⁴Present address: London School of Hygiene and Tropical Medicine (LSHTM). Keppel Street,
15 WC1E 7HT, London, UK.

16 ⁵U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR),
17 Silver Spring, Maryland, USA.

18

19 +Contributed equally

20 #Contributed equally and share senior authorship.

21 *Correspondence: gemma.moncunill@isglobal.org; carlota.dobano@isglobal.org

22

23

24 **Abstract**

25 Antibody transplacental transfer is essential for conferring protection in newborns against
26 infectious diseases. This transfer may be affected by gestational age and maternal infections,
27 although the effects are not consistent across studies. We measured total IgG and IgG subclasses
28 by quantitative suspension array technology against fourteen pathogens and vaccine antigens,
29 including target of maternal immunization, in 341 delivering HIV- and HIV+ mother-infant pairs
30 from southern Mozambique. Maternal antibody levels were the main determinant of cord
31 antibody levels. HIV broadly reduced the placental transfer and cord levels of IgG and IgG1, but
32 also IgG2 to half of the antigens. *Plasmodium falciparum* exposure and prematurity were
33 negatively associated with cord antibody levels and placental transfer but this was antigen-
34 subclass dependent. These findings suggest maternal infections may impact the efficacy of
35 maternal immunization and confirm the lower transfer of antibodies as one of the causes
36 underlying increased susceptibility to infections in HIV-exposed infants.

37 **Introduction**

38 Each year, 2.6 million deaths occur during the neonatal period, being infectious diseases the
39 leading cause of mortality, particularly in low-income countries [1, 2]. Newborns are highly
40 vulnerable to pathogens due to their functional immunological differences from adults as a result
41 of living in a semi-allogeneic sterile environment, where exposure to microbial antigens is limited
42 [3–6]. For example, microorganisms such as respiratory syncytial virus (RSV) are generally
43 asymptomatic or cause mild disease in adults but induce acute bronchiolitis, viral pneumoniae
44 and croup in infants, being those between 2 and 6 months of age at the highest risk, especially in
45 low-income countries [7, 8].

46 Newborns mostly rely on the protection elicited by maternal antibodies transferred across the
47 placenta, which provide passive immunity against common pathogens [9]. Neonatal and child
48 immunization is essential for conferring protection in newborns and infants against vaccine-
49 preventable diseases [10–12]. Vaccination is among the most cost-effective public health
50 measures worldwide [13], and regions with high rates of infant morbidity and mortality like sub-
51 Saharan Africa benefit from the implementation of the Expanded Program of Immunization (EPI)
52 [14]. Nevertheless, acquisition of immunity from vaccination is not immediate and vaccines are
53 not available for all infectious diseases. At present, only three vaccines are being administered at
54 birth in some countries: Bacillus Calmette-Guérin (BCG), hepatitis B virus (HBV) and oral polio
55 vaccine (OPV) [10, 15].

56 Transplacental transfer of antibodies occurs in utero and it is facilitated by neonatal fragment
57 crystallisable (Fc) region receptor (FcRn), expressed in the human syncytiotrophoblast [16]. Only
58 IgG is transferred across the placenta, being foetal IgG concentrations higher at the third trimester
59 [17], although some studies suggest that maternal IgE is also transferred to the foetus as IgG/IgE
60 complexes [18]. IgG subclasses have different affinities for the FcRn receptor leading to
61 differences in the efficiency of transfer [19]; the greatest transport occurs for IgG1, followed by
62 IgG4, IgG3, and finally IgG2 [20].

63 To be effective, the transferred IgG must reach protective levels after birth. Maternal
64 immunization is a good strategy to prevent newborn infections, ensuring a sufficient transfer of
65 protective antibodies to the neonate [21]. Maternal vaccination against tetanus, pertussis and
66 influenza has been implemented in many populations and has been effective protecting young
67 infants from these pathogens [22–24], and could be used to protect newborns from RSV [25].

68 A number of factors have been associated with IgG placental transfer and cord levels, such as
69 maternal antibody concentrations, gestational age, placental integrity, maternal infections and the
70 antigen specificity [26–30], but inconsistently. Placental malaria (PM) has been shown to reduce
71 transplacental transfer of antibodies against tetanus, measles, *Streptococcus pneumoniae* (*S.*
72 *pneumoniae*), herpes simplex virus type 1 (HSV-1), RSV and varicella-zoster virus (VZV) [26,
73 31–33]. However, other studies have shown no impact of PM on transplacental transfer of tetanus,
74 *S. pneumoniae*, *Haemophilus influenzae* type *b* (*Hib*), diphtheria, measles or RSV antibodies [31,
75 33–36]. The effect of maternal HIV infection is also controversial. Some studies demonstrated
76 that HIV infection leads to a reduction of the transplacental transfer of *Hib*, pertussis,
77 pneumococcus, measles, tetanus and *Plasmodium falciparum* (*P. falciparum*) specific antibodies
78 [26, 27, 37–39], but others have shown no effect [31, 36, 39–41]. Therefore, there are probably
79 confounding variables that should be considered.

80 In our study, we wanted to assess the impact of different factors, including maternal HIV infection
81 and malaria in pregnancy on the placental transfer and cord levels of IgG and IgG subclasses to a
82 broad range of highly prevalent microbial and vaccine antigens in a sub-Saharan African country,
83 including: *Corynebacterium diphtheriae* (*C. diphtheriae*), *Clostridium tetani* (*C. tetani*),
84 *Bordetella pertussis* (*B. pertussis*), *Hib*, *S. pneumoniae*, *Shigella dysenteriae* (*S. dysenteriae*),
85 *Vibrio cholerae* (*V. cholerae*), hepatitis B virus (HBV), measles, RSV, *Cryptosporidium parvum*
86 (*C. parvum*), *Giardia intestinalis* (*G. intestinalis*) and *P. falciparum*. A better understanding of
87 factors affecting cord IgG levels will help designing better preventive measures and strategies for
88 maternal and child health.

89 **Results**

90 Description of participants

91 A total of 341 women (197 HIV-uninfected and 144 HIV-infected) participated in the study
92 (Table 1). HIV-infected women were older than the HIV-uninfected and there were more
93 primigravidae among the HIV-uninfected. HIV-infected women had significantly more anaemia
94 than the HIV-uninfected. There were no significant differences in birth weight or prematurity
95 between infants born to HIV-infected and those born to HIV-uninfected women. Among the 155
96 infants born from HIV-infected women, 8 tested HIV-positive at 6 weeks of age by polymerase
97 chain reaction (PCR) analysis performed following national guidelines. Placental histology was
98 performed on 307 samples from study participants, of which 3 had acute PM and 8 past PM. In
99 total, 20 women had PM (positive at placental blood, by microscopy or PCR at delivery, or acute
100 or past PM by histology), but there were no differences by HIV infection. Peripheral malaria
101 (positive at peripheral blood by microscopy or PCR at any of the visits during pregnancy) was
102 detected in 51 women, but there were no differences by HIV infection. Finally, *P. falciparum*
103 exposure was lower among HIV-infected women.

104 Profile of antibody levels in cord blood

105 We first performed principal component analysis (PCA) of the cord antibody levels and maternal
106 antibody levels separately, including IgG, IgG1, IgG2, IgG3 and IgG4 to all antigens tested, to
107 reduce the dimensionality of the data and get insights into the overall antibody patterns. Cord and
108 maternal PCA looked very similar (data not shown). Cord antibody responses clearly clustered
109 by IgG subclasses (Fig. 1a) and antigens (Fig. 1b) suggesting different antibody profiles
110 depending on the antigen specificity. IgG and IgG1 clusters were closer, showing similar
111 responses, whereas IgG4 and IgG3 were the most distant. *Hib* cluster was clearly separated from
112 the rest indicating a different antibody profile. Consistently, median IgG and IgG1 levels were
113 higher than the rest of IgG subclasses and were both similar between them for most of the antigens
114 with the exception of *Hib* (Fig. 1c). IgG2 had lower median levels than IgG1, followed by IgG3
115 and the lowest levels were shown for IgG4.

116 We also determined the placental transfer of antibodies, measured as the ratio of cord blood levels
117 to the maternal levels. The transfer efficiency was greatest for IgG1, IgG3 or IgG4 depending on
118 the antigen: IgG1 for *C. diphtheriae*, *P. falciparum*, HBV and rotavirus, IgG3 for *B. pertussis*, *C.*
119 *tetani*, *Hib* and *V. cholerae* and IgG4 for *C. parvum*, *S. dysenteriae*, measles and RSV. The less
120 efficiently transferred subclass was IgG2 for most of the antigens, with the exception of *G.*
121 *intestinalis* and *S. pneumoniae* for which IgG2 was the greatest (Fig. 1d).

122 Altered maternal and cord blood antibody levels in HIV-infected women

123 HIV-infected and HIV-uninfected women did not show significant differences between antibody
124 levels except for *C. tetani* (IgG and IgG1), *S. pneumoniae* and RSV (IgG2), and *C. diphtheriae*
125 and *P. falciparum* (IgG4), with lower antibody levels in HIV-infected compared to HIV-
126 uninfected women (Fig. 2a-2d and Figure 2-figure supplement 1). In contrast, higher *G.*
127 *intestinalis* and HBV IgG levels were found in HIV-infected women (Fig. 2a).

128 IgG cord blood levels were lower in HIV-infected than HIV-uninfected women for *C. tetani*, *B.*
129 *pertussis*, *S. pneumoniae*, measles, rotavirus and *C. parvum*. Similarly, HIV-infected women had
130 lower IgG1 cord levels for *C. diphtheriae*, *C. tetani*, *B. pertussis*, *Hib*, *S. dysenteriae*, *V. cholerae*
131 and measles for IgG1 (Fig. 2b). Lower *C. diphtheriae* and *P. falciparum* IgG4 levels were also
132 found in cord blood of HIV-infected than HIV-uninfected women, whereas no differences were
133 observed between groups for IgG2 and IgG3 (Fig 2c-2d and Figure 2-figure supplement 1).

134 Altered placental transfer of antibodies in HIV-infected women

135 Placental transfer of IgG and IgG1 was significantly lower in HIV-infected women for all antigens
136 except for *Hib* and *V. cholerae* (IgG) and *C. tetani*, *S. pneumoniae*, *V. cholerae* and RSV (IgG1)
137 (Fig. 3a-3b, Figure 3-figure supplement 1 and Figure 3-figure supplement 2). For IgG2, only *G.*
138 *intestinalis*, *B. pertussis* and HBV had significantly lower transfer in HIV-infected women, while
139 *S. pneumoniae* and RSV had higher transfer in HIV-infected women (Fig. 3c and Figure 2-figure
140 supplement 3). For IgG3, only *C. tetani* antibodies had a significantly lower transfer in HIV-
141 infected compared to HIV-uninfected women (Fig. 3d and Figure 3-figure supplement 4). No

142 significant differences in placental transfer between the two groups were found for IgG4 (Figure
143 3-figure supplement 5).

144 Factors associated with cord blood levels of IgG and IgG subclasses

145 Maternal antibodies, HIV infection and *P. falciparum* exposure were the only variables with a
146 clear general impact on univariable models and were selected for multivariable models, in which
147 maternal antibody levels had the strongest positive correlation with cord antibody levels for all
148 the antigens and subclasses (Fig. 4a). However, the effect of maternal antibody levels was more
149 variable for IgG3-4 than for IgG and IgG1 subclasses. On average, a 10% increase in maternal
150 IgG levels was associated with 8.1% to 9.7% increases in IgG cord blood levels, depending on
151 the antigen. For IgG subclasses, a 10% increase in maternal antibody levels was associated with
152 increases of cord blood levels from 7.6% to 10.9% for IgG1, 5.4% to 9.6% for IgG2, 5% to 9.9%
153 for IgG3 and 5.3% to 9.3% for IgG4.

154 Maternal HIV infection (Fig. 4b) had a negative effect on IgG cord blood levels to all antigens,
155 except for *C. diphtheriae*, *Hib* and *V. cholerae*. HIV infection was associated with a 2.1% to 4.1%
156 reduction in the IgG cord blood levels. For IgG1, HIV infection negatively impacted cord blood
157 levels against *C. diphtheriae*, *B. pertussis*, *S. dysenteriae*, HBV, measles, *C. parvum* and *G.*
158 *intestinalis* (2.9% to 7.1% reduction). For IgG2, an HIV negative effect was observed against *B.*
159 *pertussis*, *S. dysenteriae*, HBV and *G. intestinalis* (2.9% to 7.1% reduction), whereas HIV was
160 associated with an increase of 3.3% of IgG2 to RSV. Finally, we only detected a negative effect
161 of HIV infection on IgG3 levels to *C. tetani* (1.1% reduction) and IgG4 to *P. falciparum* (1.8%
162 reduction).

163 *P. falciparum* exposure was negatively associated with cord blood IgG levels against *S.*
164 *dysenteriae* and HBV, IgG1 against *S. pneumoniae* and rotavirus, IgG2 against HBV and IgG3
165 against *C. diphtheriae* and rotavirus (Fig. 4c). Depending on the IgG subclass and antigen, 10%
166 increases in *P. falciparum* exposure reduced the cord blood levels from 0.3% to 0.8%.

167 Previous studies suggest that PM rather than peripheral malaria affect transplacental transfer of
168 antibodies and lead to adverse outcomes due to the damaged placental tissue [35, 42, 43].

169 Therefore, we explored the effect of PM on cord blood levels and placental transfer instead of *P.*
170 *falciparum* exposure despite the low number of women with any evidence of PM. When analysing
171 HIV-infected women only, PM was associated with lower *B. pertussis* IgG1, *C. diphtheriae* IgG2
172 and HBV IgG3 levels in cord blood (Figure 4-figure supplement 1).

173 Prematurity (Fig. 5a), previously shown to have a detrimental effect on placental transfer of
174 antibodies [44], increased the quality (AIC) of some of the above multivariable models.

175 Prematurity was associated with lower cord blood IgG levels against *Hib* (4.2% reduction
176 compared with on-term cord blood levels), *V. cholerae* (2.3% reduction), measles (5.8%
177 reduction) and *C. parvum* (3.8% reduction without statistical significance after adjusting for
178 multiple testing)

179 The rest of the variables (age, maternal anaemia, gravidity, low birth weight, IPTp treatment,
180 seasonality; and CD4⁺ T cell counts, ART and viral load for HIV-infected women) did not provide
181 an added value to the multivariable models. Univariable models did not show a consistent effect
182 of any variable across antigens or IgG subclasses, but some significant associations were found
183 for age and gravidity (Supplementary Material 1).

184 Factors associated with placental transfer of IgG and IgG subclasses

185 In multivariable models including HIV infection and *P. falciparum* exposure, HIV infection (Fig.
186 6a) was associated with a generalized reduced placental transfer of IgG and IgG1 (from 2.1% to
187 6.7% reduction depending on the antigen). HIV infection was also associated with a reduced
188 transfer of IgG2 against *B. pertussis*, HBV and *G. intestinalis*, but was associated with an increase
189 in IgG2 RSV transfer (5.4% increase). Although adjusted p-values were not significant, a similar
190 trend of positive correlation was found for *S. pneumoniae* IgG2 and *Hib* and *V. cholerae* IgG3
191 and IgG4.

192 *P. falciparum* exposure (Fig. 6b) had a negative effect on the placental transfer of antibodies for
193 some antigens. An increase of 10% in *P. falciparum* exposure reduced the placental transfer of
194 IgG against *S. dysenteriae* and HBV by 0.3% and 0.5%, respectively, IgG2 against HBV by 0.9%
195 and IgG3 against *C. diphtheriae* by 0.6%.

196 PM, in contrast to *P. falciparum* exposure, did not have any impact on transplacental transfer of
197 antibodies in exploratory analyses and did not improve any of the models, although it had a similar
198 trend of correlation on IgG. Nevertheless, PM was associated with a diminished placental transfer
199 on IgG1 *B. pertussis* among the HIV-positive subset of women (Figure 6-figure supplement 1).

200 When prematurity was added to the multivariable models, this additional covariate had a
201 negative effect on placental transfer of *Hib* and *V. cholerae* IgG antibodies (4.5% and 2.3%
202 reduction in premature vs on-term newborns, respectively) (Fig. 5b).

203 The rest of variables were not added to the placental transfer multivariable models, because almost
204 none of the models improved when included. Similar to cord blood levels ones, the placental
205 transfer univariable models did not show a consistent effect of any variable not included in the
206 multivariable models across antigens or IgG subclasses (Supplementary Material 1).

207 **Discussion**

208 Our comprehensive analysis of maternal and cord plasma IgG and IgG subclasses against a wide
209 range of microbial and vaccine antigens allowed a depth immunoprofiling, that is essential to
210 decipher the mechanisms affecting antibody placental transfer and maternal and newborn
211 immunity in women chronically exposed to pathogens. We confirmed that the main determinant
212 of cord IgG and IgG subclass levels are the maternal corresponding antibody levels, and that
213 maternal HIV infection is associated with a generalized diminished IgG levels in the cord due to
214 low maternal levels but also to a broadly reduction of IgG and IgG1 placental transfer.

215 Maternal and cord blood antibody levels are usually correlated in many studies, suggesting that
216 maternal levels are the main determinant for transfer efficiency [9, 45, 46]. However, the effect
217 of HIV infection on placental transfer has not been consistently assessed and the few studies

218 looking at its effect on maternal and cord blood levels mainly focussed on total IgG. Our results
219 showed that HIV infection reduced the IgG maternal levels for some antigens, the cord blood
220 levels overall, and also had a negative effect on transplacental transfer of IgG antibodies. It is
221 interesting that although we found higher maternal HBV and *G. intestinalis* IgG levels among
222 HIV-infected women, cord blood levels and transplacental transfer were lower than in HIV-
223 uninfected women. Higher maternal antibody levels against these pathogens in HIV-infected
224 women may be due to an increased susceptibility to co-infections with these pathogens, as
225 described before [47–49], but it seems that they are not being transferred as efficiently as in HIV-
226 uninfected women. This could be due to hypergammaglobulinemia, demonstrated to be common
227 among HIV-infected individuals [50] and previously shown to impair transplacental transfer of
228 antibodies [9, 33].

229 Our results are consistent with previous studies reporting that HIV infection led to a reduction of
230 the cord blood levels and transplacental transfer of total IgG against *B. pertussis* [40, 41], *C. tetani*
231 [26, 38, 40, 41], *S. pneumoniae* [31, 38, 41, 51], RSV [52, 53] and measles [37, 38]. Some studies
232 also found a negative effect on *Hib* [27, 40, 51] that is not appreciated in our study (although we
233 found reduced IgG1 levels in cord in univariable analyses). However, our results differ from other
234 studies that did not find any effect of HIV status on IgG levels against *C. diphtheriae* [36], *C.*
235 *tetani* [31, 36], *S. pneumoniae* [53], HBV [36] and measles [31, 36].

236 IgG subclasses may be differently elicited depending on the pathogen, the antigen or the epitope
237 [54] and the efficiency of the antibody placental transfer is different for each subclass due to
238 differential affinity of the receptors FcRn. Furthermore, the Fc region of IgG, that mediates
239 effector functions, vary between IgG subclasses, conferring them different roles during infection
240 and pathogen clearance [55]. We found that HIV infection reduced mainly IgG1 cord levels due
241 to an HIV impairment of the transplacental transfer, similarly to IgG. Interestingly, maternal HIV
242 infection increased the placental transfer of IgG2 to *S. pneumoniae* and RSV, although in
243 multivariable models it was only significant for RSV. We also found that HIV infection had a
244 positive effect on RSV IgG2 cord blood levels, although IgG2 maternal levels were lower among

245 HIV-infected women. To our knowledge an increased placental transfer by HIV infection has not
246 been described before. This may have implications for maternal immunization with RSV vaccines
247 under development.

248 The efficacy of IgG placental transfer also depended on the antigen. IgG1, IgG3 or IgG4
249 transferred better than IgG2, except for *S. pneumoniae* and *G. intestinalis*, for which IgG2 transfer
250 was higher. This was unexpected because it has been previously described that the greatest
251 transport occurs for IgG1, followed by IgG4, IgG3, and finally IgG2 [9, 20]. However, IgG1
252 levels were the highest for almost all antigens in cord blood, probably because the overall higher
253 levels of this IgG subclass in maternal blood. One exception was *Hib* that presented higher IgG2
254 cord levels than IgG1, although IgG1 transplacental transfer was higher than IgG2 consistently
255 with previous studies [56]. The mothers had a IgG2-predominant response to *Hib*, and
256 consequently higher IgG2 than IgG1 levels were found in cord blood as previously described [57,
257 58].

258 Regarding other variables, our results did not show any significant association between CD4⁺ T
259 cell counts or HIV viral load on cord blood levels and transplacental transfer of antibodies. Even
260 though these results agree with previous studies that did not find any associations [40, 51, 59],
261 other studies described that lower CD4⁺ T cell counts and higher HIV viral load led to a reduction
262 on the transfer of some pathogen-specific antibodies and vaccines such as measles and *S.*
263 *pneumoniae* [35, 60, 61]. Some studies described that HIV-infected women receiving ART
264 transferred higher pathogen-specific antibodies than those who were not under ART [59] or who
265 initiated it during pregnancy [62]. However, in our cohort we did not find any significant
266 associations in regards to ART.

267 At the time of the study, malaria transmission intensity was very low in the area and only a few
268 women had active malaria during pregnancy. Nonetheless, we found a negative correlation
269 between *P. falciparum* exposure and both placental transfer and cord blood antibody levels for
270 some antigens and IgG subclasses. Previous studies are contradictory, as some found that PM led
271 to a reduction of the transplacental transfer of some pathogen-specific IgG to *C. tetani* [32],

272 measles [33, 37], RSV [35] and *S. pneumoniae* [31], but others did not find any effect for IgG
273 against *C. diphtheriae* [35, 36], *C. tetani* [26, 33, 36], *Hib* [35], HBV [36], measles [36] RSV [34]
274 and *S. pneumoniae* [35]. Discrepancies between studies could be due to the different study areas,
275 with different prevalence of malaria and study sample sizes, different type of antigens used in the
276 studies, the different sensibilities among the serological methods used, different exposure to the
277 pathogens tested, and other co-infections.

278 We found prematurity to be associated with lower cord blood IgG levels and placental transfer
279 for some antigens, as previous studies have shown [44, 63, 64], although the effect was not
280 consistent among subclasses. It has already been reported that the greatest transport occur in the
281 third trimester of gestation [17], and due to this fact, preterm infants may have lower amounts of
282 transplacental IgG than term infants.

283 Our results are important for maternal immunization implementation in settings with a high
284 prevalence of HIV infection. In our study cohort, the only vaccine given during pregnancy was
285 tetanus. Although HIV infection was associated with lower maternal and cord blood tetanus
286 toxoid IgG and IgG1 levels in univariable models, HIV did not affect cord blood IgG1 levels in
287 multivariable models adjusted by maternal levels. Systemic tetanus vaccination during pregnancy
288 has been implemented in Africa and has demonstrated a high efficacy [65]. Pertussis vaccination
289 in pregnancy has also been implemented in some countries, but not in Africa. Acellular pertussis
290 vaccine induces mainly IgG and IgG1 responses that are thought to confer protection [66, 67].

291 We found lower cord blood levels and a reduced placental transfer of IgG and IgG1 against *B.*
292 *pertussis* among HIV-infected women and those exposed to *P. falciparum*. These results highlight
293 the need for further studies assessing the impact of these infections on pertussis vaccine efficacy
294 and antibody placental transfer when implemented in pregnant women from African countries. A
295 current vaccine in development for maternal immunization is RSV [68]. Natural RSV infection
296 seems to elicit an IgG1 and IgG2 response against the F protein, the major target of the host's
297 immune response [69] and of some vaccines in development [70]. Antibodies binding to the F
298 protein were protective [71] and Palivizumab, an IgG1 monoclonal antibody against RSV F

299 protein with neutralizing function, has shown to be effective [72]. Here, IgG and IgG1 against
300 RSV F protein had the highest levels in cord blood compared to other subclasses, but HIV
301 infection reduced IgG cord blood levels and placental transfer in multivariable models. Instead,
302 IgG2 cord blood levels were increased by maternal HIV infection. Therefore, HIV infection could
303 compromise the levels of RSV neutralizing antibodies transferred to the newborn and,
304 consequently, diminish the effectivity of a RSV vaccine.

305 Unfortunately, we do not know what are the thresholds of antibody levels that confer protection
306 in our study, therefore it is difficult to infer the clinical relevance of the reductions in antibody
307 levels detected in cord blood from the-HIV infected women. A study in South Africa reported
308 that the frequency of HIV-infected and HIV-uninfected pregnant women with protective antibody
309 levels against pertussis, tetanus or HBV was similar, although the overall frequencies were low
310 (32%, 41% and 30%, respectively) [40]. This same study demonstrated that the proportion of
311 HIV-infected pregnant women reaching anti-*Hib* protective antibody levels was lower than HIV-
312 uninfected women (35% vs 59%). Thus, for the implementation of maternal immunization
313 programs, the effect of HIV infection and *P. falciparum* exposure must be taken into account,
314 especially after demonstrating that both infections reduce the levels of antibodies in the cord blood
315 and therefore may compromise vaccines protective effect in the newborn.

316 In conclusion, our results demonstrate that maternal HIV infection was associated with reduced
317 levels of antibodies against a broad range of pathogens and vaccine antigens in cord blood. Part
318 of this reduction in antibody levels was due to altered antibody levels in the mother, which are
319 the main determinants of cord blood levels, but HIV-infection also diminished transplacental
320 transfer of antibodies. Importantly, IgG1 was the most affected by maternal HIV infection but,
321 depending on the pathogen, other subclasses were also affected. *P. falciparum* exposure also
322 reduced the levels and transfer of some antibodies, although overall the effect was lower than
323 HIV infection. Our findings are important for effective maternal immunization strategies and for
324 newborn and infant's health.

325 **Materials and methods**

326 Study design and sample collection

327 A total of 197 HIV-uninfected and 144 HIV-infected women were recruited among those
328 participating in two clinical trials of antimalarial intermittent preventive treatment in pregnancy
329 (IPTp, ClinicalTrialGov NCT00811421) (Fig. 7) in the Manhiça District, Southern Mozambique
330 [73, 74], between May 2011 and September 2012, to perform an immunology ancillary study.
331 The first clinical trial evaluated mefloquine (MQ) as an alternative IPTp drug to sulfadoxine-
332 pyrimethamine (SP) in HIV-uninfected pregnant women. The study arms were (1) SP, (2) single
333 dose MQ (MQ full), and (3) split dose over two days MQ (MQ split). The second trial evaluated
334 MQ as IPTp drug in HIV-infected pregnant women in whom SP is contraindicated and who
335 received daily cotrimoxazole (CTX), and women received either three monthly doses of MQ or
336 placebo. All women received bed nets treated with long-lasting insecticide and supplements of
337 folic acid and ferrous sulphate. Women also received tetanus vaccination. At the time of the study,
338 the intensity of malaria transmission was low/moderate [75]. Antiretroviral therapy (ART) with
339 daily monotherapy with zidovudine (AZT) was recommended when CD4⁺ T cell count was below
340 <350 cells/ μ L and/or when women were in III or IV HIV WHO clinical stage [76].

341 At delivery, blood samples from women (peripheral, placental and cord blood) were collected
342 into sodium heparin and EDTA vacutainers. Plasma samples from peripheral blood and cord
343 blood were available for this study from 332 (195 HIV-uninfected and 137 HIV-infected) and 303
344 women (178 HIV-uninfected and 125 HIV-infected), respectively. There were 294 mother-cord
345 paired samples.

346 For the detection of *P. falciparum* species, thick and thin blood smears were assessed according
347 to standard procedures [73, 74]. Fifty μ l of maternal peripheral, placental, and cord blood samples
348 were collected on filter papers for the detection of *P. falciparum* by means of a real-time
349 quantitative polymerase-chain-reaction (qPCR) assay targeting the 18S ribosomal RNA [77].
350 Tissue samples from the maternal side of the placenta were also collected for the assessment of
351 placental malaria. Microscopy data of peripheral and placental blood smears at delivery were

352 available for 308 and 340 women, respectively. Peripheral and placental blood qPCR data were
353 available for 242 and 236 women, respectively.

354 Antibody assays

355 Quantitative suspension array technology (qSAT) assays applying the xMAP™ technology
356 (Luminex Corp., TX) were used to measure antigen-specific IgG, IgG1, IgG2, IgG3 and IgG4
357 responses to vaccine and pathogen antigens. A total of 16 recombinant proteins were selected for
358 the analysis: diphtheria toxoid (*Corynebacterium diphtheriae*, Alpha Diagnostic DTOX15-N-
359 500), tetanus toxin (*Clostridium tetani*, Santa Cruz SC222347), pertussis toxin (*Bordetella*
360 *pertussis*, Santa Cruz SC200837), *Hib* Oligosaccharide (BEI Resources NR12268),
361 pneumococcal surface protein A (PspA, *Streptococcus pneumoniae*, BEI Resources NR33179),
362 shiga toxin (*Shigella dysenteriae*, BEI Resources NR4676), anti-O-specific polysaccharide (OSP,
363 *Vibrio cholerae*, Massachusetts General Hospital, MA, USA) [78], hepatitis B surface antigen
364 (HBsAg, Abcam ab91276), hemagglutinin (measles, Alpha Diagnostic RP655), viral protein 6
365 (VP6, rotavirus, Friedzgerald 80-1389), F protein (respiratory syncytial virus, BEI Resources
366 NR31097), 17-kDA surface antigen (Cp17, *Cryptosporidium parvum*, Centres for Disease
367 Control and Prevention, GA, USA) [79], variant-specific surface protein 5 (VSP5, *Giardia*
368 *intestinalis*) [79], 42 kDA fragment of merozoite surface protein 1 (MSP1₄₂, *P. falciparum*,
369 WRAIR) [80], merozoite surface protein 2 (MSP2, *P. falciparum*, University of Edinburgh) [81]
370 and exported protein 1 (EXP1, *P. falciparum*, Sanaria) [82]. MSP1₄₂ antigen was selected for
371 representing *P. falciparum* infection. Eight recombinant proteins represent the most prevalent
372 pathogens circulating in the study area [83–85] and 6 were from the vaccines administrated to the
373 infants through the EPI in Mozambique [86].

374 qSAT assays were previously standardized and optimized to control for sources of variability
375 [87–89]. Briefly, antigens covalently coupled to MagPlex beads were added to a 96-well μClear®
376 flat bottom plate (Greiner Bio-One) in multiplex resuspended in 50μL of PBS, 1% BSA, 0.05%
377 Azide pH 7.4 (PBS-BN). Fifty μL of test samples, negative or positive controls [90] were added
378 to multiplex wells and incubated overnight at 4°C protected from light. After incubation, plates

379 were washed three times with PBS-Tween 20 0.05%, and 100 μ L of anti-human IgG (Sigma
380 B1140), anti-human IgG1 (Abcam ab99775), anti-human IgG2 (Invitrogen MA1-34755), anti-
381 human IgG3 (Sigma B3523) or anti-human IgG4 (Invitrogen MA5-16716), each at their
382 corresponding dilution, were added and incubated for 45 min. Then, plates were washed three
383 times more and 100 μ L of streptavidin-R-phycoerythrin (Sigma 42250) at the appropriate dilution
384 were added to all wells and incubated 30 min for IgG, IgG1 and IgG3. For IgG2 and IgG4, 100
385 μ L of anti-mouse IgG (Fc-specific)-biotin (Merck B7401) were added and incubated for 45 min,
386 followed by another washing cycle and the incubation with streptavidin-R-phycoerythrin for 30
387 min. Finally, plates were washed and beads resuspended in 100 μ L/well of PBS-BN. Plates were
388 read using the Luminex 100/200 analyser, and at least 20 microspheres per analyte were acquired
389 per sample. Antibody levels were measured as median fluorescence intensity (MFI). Data were
390 captured using xPonent software.

391 Test samples were assayed at 2 dilutions for IgG (1/250 and 1/10000), and IgG1 and IgG3 (1/100
392 and 1/2500) to ensure that at least one dilution fell in the linear range of the respective standard
393 curve. For IgG2 and IgG4 only 1 dilution was tested (1/50) because their usual low levels. Twelve
394 serial dilutions (1:3, starting at 1/25) of a positive control (WHO Reference Reagent for anti-
395 malaria *P. falciparum* human serum, NIBSC code: 10/198) were used for QA/QC and to select
396 optimal sample dilution for data analysis. Two blanks were added to each plate also for quality
397 control purposes. Sample distribution across plates was designed to ensure a balanced distribution
398 of groups and time-points. Single replicates of the assay were performed.

399 Statistical Analysis

400 To stabilize the variance, the analysis was done on \log_{10} -transformed values of the MFI
401 measurements. To select the sample dilution for each antigen-isotype/subclass-plate, the dilution
402 nearest to the midpoint between the two standard curve serial dilutions ranging the maximum
403 slope was chosen. If the maximum MFI value of a standard curve did not reach 15000, the
404 reference value was automatically set up at 15000, since below this point, standard curve data
405 does not seem trustworthy. If the MFI of the first sample dilution was lower than the MFI of the

406 second dilution (hook effect), the second one was chosen. Plates were normalized using the
407 standard curve in each plate and the average standard curve from all plates -in both cases using
408 the dilution of the latter with the value closest to 15000 MFI. The MFI values of samples were
409 multiplied by the corresponding normalization factor (MFI value of the chosen dilution from the
410 average standard curve divided by the MFI value of same dilution in the plate curve).

411 The Shapiro-Wilk test of normality confirmed that most of the antibody data were not normally
412 distributed. The Chi-square and the non-parametric Wilcoxon-Mann-Whitney tests were used to
413 compare categorical and continuous variables, respectively, between HIV-infected and HIV-
414 uninfected women. Comparisons of crude Ig levels across antigens and subclasses between HIV
415 exposure groups were assessed by Wilcoxon-Mann-Whitney tests. Univariable linear regression
416 models were fit to determine the effect of variables on the cord blood antibody levels (\log_{10}) or
417 the cord blood/mother ratio (\log_{10}). The variables considered in this analysis were \log_{10} maternal
418 antibody levels, maternal HIV infection, *P. falciparum* exposure, PM (acute, defined by the
419 presence of parasites on sections without malaria pigment; chronic, by presence of parasites and
420 pigment; or past, by the presence of pigment alone), age, gravidity (defined as *primigravidae* and
421 *multigravidae*), maternal anaemia (defined as haemoglobin level <11g/dL), low birth weight
422 (defined as <2500g at birth), prematurity (defined as delivery before 37 weeks of gestational age),
423 gestational age (measured by Ballard score [91]), treatment (defined as MQ or placebo in the
424 HIV-infected women ancillary study and MQ full, MQ split or SP in HIV-uninfected women
425 ancillary study), antiretroviral therapy (ART) received before the initiation of the study, CD4⁺ T
426 cell counts (<350 cells/ μ L or \geq 350 cells/ μ L), HIV viral load (<400, 400-999, 1000-9999 and
427 >9999 copies/mL), and seasonality (dry or rainy). Exposure to *P. falciparum* was computed as
428 the sum of the maternal IgG antibody levels (MFI) for the following immunogenic *P. falciparum*
429 antigens: MSP1₄₂, MSP2 and EXP1, as antibody levels to these antigens have been shown to
430 reflect exposure to malaria [92, 93]. Seasonality was computed for each woman based on the
431 pregnancy period - if at least 4 of the pregnancy months fell under the category of rainy period
432 (November through April), the season was defined as such. In any other case, the season was

433 defined as dry. A base multivariable model including maternal antibody levels, maternal HIV
434 infection and *P. falciparum* exposure was established for each antigen and IgG or IgG subclass.
435 Base model for MSP₄₂ did not include *P. falciparum* exposure as this variable includes antibodies
436 to this antigen. We performed additional regression models testing exhaustively all possible
437 combinations of predictor variables (added to our base model) and selected the models based on
438 the Akaike information criterion (AIC), Bayesian information criterion (BIC) and Adjusted r-
439 square parameters. All p-values were considered statistically significant when <0.05 after
440 adjusting for multiple testing through Benjamini-Hochberg. All data collected were pre-
441 processed, managed and analysed using the R software version 3.6.3 and its package *devtools*
442 [94]. The *ggplot2* package was used to perform boxplot graphs [95]. The *FactoMineR* and
443 *factoextra* packages were used to perform Principal Component Analysis (PCA) [96, 97].

444 **Additional files**

445 Supplementary material 1: Cord blood levels and placental transfer of antibodies univariable
446 models.

447 **Acknowledgments**

448 We are grateful to the volunteers and their families; the clinical, field, and lab teams at the from
449 the Manhiça Health Research Centre, particularly the lab personnel Bendita Zavale, Lázaro
450 Quimice, Elias Matusse, Eugenio Mussa and Edmundo José. Special thanks to Laura Puyol from
451 ISGlobal for her logistic support. We thank Luis Izquierdo for the assessment in the protein
452 expression protocol. We are grateful to Jeffrey Priest from CDC for the Cp17 and VSP5 plasmid
453 proteins, Edward Ryan from Massachusetts General Hospital for the OSP antigen, and David
454 Cavanagh from University of Edinburgh for the MSP2.

455 **Competing interests**

456 The authors declare that they have no competing interests.

457 **References**

458 [1] World Health Organization. *World Health Statistics 2018: Monitoring health for the*
459 *SDGs*. 2018.

460 [2] WHO | Infant mortality. *WHO*,
461 https://www.who.int/gho/child_health/mortality/neonatal_infant_text/en/ (2018, accessed
462 27 November 2019).

463 [3] Kollmann TR, Kampmann B, Mazmanian SK, et al. Protecting the Newborn and Young
464 Infant from Infectious Diseases: Lessons from Immune Ontogeny. *Immunity* 2017; 46:
465 350–363.

466 [4] Basha S, Surendran N, Pichichero M. Immune responses in neonates. *Expert Review of*
467 *Clinical Immunology* 2014; 10: 1171–1184.

468 [5] Prabhudas M, Adkins B, Gans H, et al. Challenges in infant immunity: Implications for
469 responses to infection and vaccines. *Nature Immunology* 2011; 12: 189–194.

470 [6] Zhang X, Zhivaki D, Lo-Man R. Unique aspects of the perinatal immune system. *Nat*
471 *Rev Immunol* 2017; 17: 495–507.

472 [7] O'Brien KL, Baggett HC, Brooks WA, et al. Causes of severe pneumonia requiring
473 hospital admission in children without HIV infection from Africa and Asia: the PERCH
474 multi-country case-control study. *Lancet* 2019; 394: 757–779.

475 [8] Kabego L, Balol'Ebwami S, Kasengi JB, et al. Human respiratory syncytial virus:
476 Prevalence, viral co-infections and risk factors for lower respiratory tract infections in
477 children under 5 years of age at a general hospital in the democratic republic of Congo. *J*
478 *Med Microbiol* 2018; 67: 514–522.

479 [9] Palmeira P, Quinello C, Silveira-Lessa AL, et al. IgG placental transfer in healthy and
480 pathological pregnancies. *Clinical and Developmental Immunology*; 2012. Epub ahead
481 of print 2012. DOI: 10.1155/2012/985646.

482 [10] Wood N, Siegrist CA. Neonatal immunization: Where do we stand? *Curr Opin Infect*

483 *Dis* 2011; 24: 190–195.

484 [11] Morris MC, Surendran N. Neonatal vaccination: Challenges and intervention strategies.

485 *Neonatology* 2016; 109: 161–169.

486 [12] Demirjian A, Levy O. Safety and efficacy of neonatal vaccination. *European Journal of*

487 *Immunology* 2009; 39: 36–46.

488 [13] Deogaonkar R, Hutubessy R, van der Putten I, et al. Systematic review of studies

489 evaluating the broader economic impact of vaccination in low and middle income

490 countries. *BMC Public Health* 2012; 12: 878.

491 [14] Clemens J, Holmgren J, Kaufmann SHE, et al. Ten years of the global Alliance for

492 vaccines and immunization: Challenges and progress. *Nature Immunology* 2010; 11:

493 1069–1072.

494 [15] Saso A, Kampmann B. Vaccine responses in newborns. *Seminars in Immunopathology*

495 2017; 39: 627–642.

496 [16] Simister NE, Story CM, Chen H-L, et al. An IgG-transporting Fc receptor expressed in

497 the syncytiotrophoblast of human placenta. *Eur J Immunol* 1996; 26: 1527–1531.

498 [17] Malek A, Sager R, Kuhn P, et al. Evolution of Maternofetal Transport of

499 Immunoglobulins During Human Pregnancy. *Am J Reprod Immunol* 1996; 36: 248–255.

500 [18] Bundhoo A, Paveglio S, Rafti E, et al. Evidence that FcRn mediates the transplacental

501 passage of maternal IgE in the form of IgG anti-IgE/IgE immune complexes. *Clin Exp*

502 *Allergy* 2015; 45: 1085–1098.

503 [19] Ferrante A, Beard LJ, Feldman RG. IgG subclass distribution of antibodies to bacteria

504 and viral antigens. *Pediatr Infect Dis J* 1990; 9: S16–S24.

505 [20] Costa-Carvalho BT, Vieira HM, Dimantas RBR, et al. Transfer of IgG subclasses across

506 placenta in term and preterm newborns. *Brazilian J Med Biol Res* 1996; 29: 201–204.

507 [21] Marchant A, Sadarangani M, Garand M, et al. Maternal immunisation: collaborating
508 with mother nature. *The Lancet Infectious Diseases* 2017; 17: e197–e208.

509 [22] Buchy P, Badur S, Kassianos G, et al. Vaccinating pregnant women against influenza
510 needs to be a priority for all countries: An expert commentary. *International Journal of*
511 *Infectious Diseases* 2020; 92: 1–12.

512 [23] Thwaites CL, Beeching NJ, Newton CR. Maternal and neonatal tetanus. In: *The Lancet*.
513 Lancet Publishing Group, 2015, pp. 362–370.

514 [24] Gkentzi D, Katsakiori P, Marangos M, et al. Maternal vaccination against pertussis: A
515 systematic review of the recent literature. *Archives of Disease in Childhood: Fetal and*
516 *Neonatal Edition* 2017; 102: F456–F463.

517 [25] Heath PT, Culley FJ, Jones CE, et al. Group B streptococcus and respiratory syncytial
518 virus immunisation during pregnancy: a landscape analysis. *The Lancet Infectious*
519 *Diseases* 2017; 17: e223–e234.

520 [26] Cumberland P, Shulman CE, Maple PA, et al. Maternal HIV infection and placental
521 malaria reduce transplacental antibody transfer and tetanus antibody levels in newborns
522 in Kenya. *J Infect Dis* 2007; 196: 550–557.

523 [27] Jones CE, Kampmann B, Hesseling A. Maternal HIV infection and antibody responses
524 in uninfected infants: In reply. *JAMA - Journal of the American Medical Association*
525 2011; 305: 1964–1965.

526 [28] Caceres VM, Strebel PM, Sutter RW. Factors Determining Prevalence of Maternal
527 Antibody to Measles Virus throughout Infancy: A Review. *Clin Infect Dis* 2000; 31:
528 110–119.

529 [29] Wilcox CR, Holder B, Jones CE. Factors affecting the FcRn-mediated transplacental
530 transfer of antibodies and implications for vaccination in pregnancy. *Frontiers in*
531 *Immunology*; 8. Epub ahead of print 13 October 2017. DOI: 10.3389/fimmu.2017.01294.

532 [30] Van Den Berg JP, Westerbeek EAM, Berbers GAM, et al. Transplacental transport of
533 IgG antibodies specific for pertussis, diphtheria, tetanus, haemophilus influenzae type b,
534 and neisseria meningitidis serogroup C is lower in preterm compared with term infants.
535 *Pediatr Infect Dis J* 2010; 29: 801–805.

536 [31] De Moraes-Pinto MI, Verhoeff F, Chimsuku L, et al. Placental antibody transfer:
537 Influence of maternal HIV infection and placental malaria. *Arch Dis Child Fetal
538 Neonatal Ed*; 79. Epub ahead of print 1998. DOI: 10.1136/fn.79.3.F202.

539 [32] Brair M-E, Brabin B, Milligan P, et al. Reduced transfer of tetanus antibodies with
540 placental malaria. *Lancet* 1994; 343: 208–209.

541 [33] Okoko BJ, Wesuperuma LH, Ota MO, et al. Influence of placental malaria infection and
542 maternal hypergammaglobulinaemia on materno-foetal transfer of measles and tetanus
543 antibodies in a rural west African population. *J Health Popul Nutr* 2001; 19: 59–65.

544 [34] Atwell JE, Thumar B, Robinson LJ, et al. Impact of placental malaria and
545 hypergammaglobulinemia on transplacental transfer of respiratory syncytial virus
546 antibody in Papua New Guinea. *J Infect Dis* 2016; 213: 423–431.

547 [35] Okoko BJ, Wesumperuma LH, Ota MO, et al. The influence of placental malaria
548 infection and maternal hypergammaglobulinemia on transplacental transfer of antibodies
549 and IgG subclasses in a rural West African population. *J Infect Dis* 2001; 184: 627–632.

550 [36] Ray JE, Dobbs KR, Ogolla SO, et al. Reduced Transplacental Transfer of Antimalarial
551 Antibodies in Kenyan HIV-Exposed Uninfected Infants. *Open Forum Infect Dis*; 6. Epub
552 ahead of print 1 June 2019. DOI: 10.1093/ofid/ofz237.

553 [37] Scott S, Cumberland P, Shulman CE, et al. Neonatal Measles Immunity in Rural Kenya:
554 The Influence of HIV and Placental Malaria Infections on Placental Transfer of
555 Antibodies and Levels of Antibody in Maternal and Cord Serum Samples. *J Infect Dis*
556 2005; 191: 1854–1860.

557 [38] de Moraes-Pinto MI, Almeida AC, Kenj G, et al. Placental transfer and maternally
558 acquired neonatal IgG immunity in human immunodeficiency virus infection. *J Infect*
559 *Dis* 1996; 173: 1077–84.

560 [39] Moro L, Bardaji A, Nhampossa T, et al. Malaria and HIV Infection in Mozambican
561 Pregnant Women Are Associated With Reduced Transfer of Antimalarial Antibodies to
562 Their Newborns. *J Infect Dis* 2015; 211: 1004–1014.

563 [40] Jones CE, Naidoo S, De Beer C, et al. Maternal HIV infection and antibody responses
564 against vaccine-preventable diseases in uninfected infants. *JAMA - J Am Med Assoc*
565 2011; 305: 576–584.

566 [41] Jones C, Pollock L, Barnett SM, et al. Specific antibodies against vaccine-preventable
567 infections: A mother-infant cohort study. *BMJ Open*; 3. Epub ahead of print 2013. DOI:
568 10.1136/bmjopen-2012-002473.

569 [42] Dechavanne C, Cottrell G, Garcia A, et al. Placental Malaria: Decreased transfer of
570 maternal antibodies directed to *Plasmodium falciparum* and impact on the incidence of
571 febrile infections in infants. *PLoS One*; 10. Epub ahead of print 1 December 2015. DOI:
572 10.1371/journal.pone.0145464.

573 [43] Boudová S, Divala T, Mungwira R, et al. Placental but Not Peripheral *Plasmodium*
574 *falciparum* Infection During Pregnancy Is Associated With Increased Risk of Malaria in
575 Infancy. In: *Journal of Infectious Diseases*. 2017. Epub ahead of print 2017. DOI:
576 10.1093/infdis/jix372.

577 [44] van den Berg JP, Westerbeek EAM, van der Klis FRM, et al. Transplacental transport of
578 IgG antibodies to preterm infants: A review of the literature. *Early Human Development*
579 2011; 87: 67–72.

580 [45] Fu C, Lu L, Wu H, et al. Placental antibody transfer efficiency and maternal levels:
581 Specific for measles, coxsackievirus A16, enterovirus 71, poliomyelitis I-III and HIV-1

582 antibodies. *Sci Rep* 2016; 6: 1–6.

583 [46] Pou C, Nkulikiyimfura D, Henckel E, et al. The repertoire of maternal anti-viral
584 antibodies in human newborns. *Nat Med* 2019; 25: 591–596.

585 [47] Askari A, Hakimi H, Nasiri Ahmadabadi B, et al. Prevalence of hepatitis B co-infection
586 among HIV positive patients: Narrative review article. *Iranian Journal of Public Health*
587 2014; 43: 705–712.

588 [48] Feitosa G, Bandeira AC, Sampaio DP, et al. High prevalence of giardiasis and
589 stronglyloidiasis among HIV-infected patients in Bahia, Brazil. *Braz J Infect Dis* 2001;
590 5: 339–344.

591 [49] Angarano G, Maggi P, Di Bari MA, et al. Giardiasis in hiv: A possible role in patients
592 with severe immune deficiency. *Eur J Epidemiol* 1997; 13: 485–487.

593 [50] De Milito A, Nilsson A, Titanji K, et al. Mechanisms of hypergammaglobulinemia and
594 impaired antigen-specific humoral immunity in HIV-1 infection. *Blood* 2004; 103:
595 2180–2186.

596 [51] Gupta A, Mathad JS, Yang WT, et al. Maternal pneumococcal capsular IgG antibodies
597 and transplacental transfer are low in South Asian HIV-infected mother-infant pairs.
598 *Vaccine* 2014; 32: 1466–1472.

599 [52] Jallow S, Agosti Y, Kgagudi P, et al. Impaired Transplacental Transfer of Respiratory
600 Syncytial Virus–neutralizing Antibodies in Human Immunodeficiency Virus–infected
601 Versus –uninfected Pregnant Women. *Clin Infect Dis* 2019; 69: 151–154.

602 [53] Weinberg A, Mussi-Pinhata MM, Yu Q, et al. Excess respiratory viral infections and low
603 antibody responses among HIV-exposed, uninfected infants. *AIDS* 2017; 31: 669–679.

604 [54] Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: From structure to
605 effector functions. *Front Immunol* 2014; 5: 520.

606 [55] Irani V, Guy AJ, Andrew D, et al. Molecular properties of human IgG subclasses and

607 their implications for designing therapeutic monoclonal antibodies against infectious
608 diseases. *Molecular Immunology* 2015; 67: 171–182.

609 [56] Einhorn MS, Granoff DM, Nahm MH, et al. Concentrations of antibodies in paired
610 maternal and infant sera: Relationship to IgG subclass. *J Pediatr* 1987; 111: 783–788.

611 [57] Seppälä I, Sarvas H, Mäkelä O, et al. Human Antibody Responses to Two Conjugate
612 Vaccines of *Haemophilus influenzae* Type B Saccharides and Diphtheria Toxin. *Scand J*
613 *Immunol* 1988; 28: 471–479.

614 [58] Parkkali T, Käyhty H, Anttila M, et al. IgG subclasses and avidity of antibodies to
615 polysaccharide antigens in allogeneic BMT recipients after vaccination with
616 pneumococcal polysaccharide and *Haemophilus influenzae* type b conjugate vaccines.
617 *Bone Marrow Transplant* 1999; 24: 671–678.

618 [59] Bosire R, Farquhar C, Nduati R, et al. Higher Transplacental Pathogen-Specific
619 Antibody Transfer among Pregnant Women Randomized to Triple Antiretroviral
620 Treatment Versus Short Course Zidovudine. *Pediatr Infect Dis J* 2018; 37: 246–252.

621 [60] Baroncelli S, Galluzzo CM, Mancinelli S, et al. Antibodies against pneumococcal
622 capsular polysaccharide in Malawian HIV-positive mothers and their HIV-exposed
623 uninfected children. *Infect Dis (Auckl)* 2016; 48: 317–321.

624 [61] Farquhar C, Nduati R, Haigwood N, et al. High maternal HIV-1 viral load during
625 pregnancy is associated with reduced placental transfer of measles IgG antibody. *J*
626 *Acquir Immune Defic Syndr* 2005; 40: 494–497.

627 [62] Goetghebuer T, Smolen KK, Adler C, et al. Initiation of Antiretroviral Therapy Before
628 Pregnancy Reduces the Risk of Infection-related Hospitalization in Human
629 Immunodeficiency Virus-exposed Uninfected Infants Born in a High-income Country.
630 *Clin Infect Dis*. Epub ahead of print 2019. DOI: 10.1093/cid/ciy673.

631 [63] Wesumperuma HL, Perera AJ, Pharoah POD, et al. The influence of prematurity and low

632 birthweight on transplacental antibody transfer in Sri Lanka. *Ann Trop Med Parasitol*
633 1999; 93: 169–177.

634 [64] Okoko BJ, Wesumperuma LH, Hart AC. Materno-foetal transfer of *H. influenzae* and
635 pneumococcal antibodies is influenced by prematurity and low birth weight: implications
636 for conjugate vaccine trials. *Vaccine* 2001; 20: 647–50.

637 [65] Messeret ES, Masresha B, Yakubu A, et al. Maternal and Neonatal Tetanus Elimination
638 (MNTE) in The WHO African Region. *J Immunol Sci* 2018; Suppl: 103–107.

639 [66] Zackrisson G, Lagergård T, Trollfors B. Subclass compositions of immunoglobulin G to
640 pertussis toxin in patients with whooping cough, in healthy individuals, and in recipients
641 of a pertussis toxoid vaccine. *J Clin Microbiol* 1989; 27: 1567–71.

642 [67] Granström M, Ferngren H, Linde A, et al. IgG subclass responses to *Bordetella pertussis*
643 filamentous haemagglutinin and pertussis toxin in whooping cough. *Serodiagn*
644 *Immunother Infect Dis* 1989; 3: 403–412.

645 [68] Munoz FM. Respiratory syncytial virus in infants: Is maternal vaccination a realistic
646 strategy? *Current Opinion in Infectious Diseases*. Epub ahead of print 2015. DOI:
647 10.1097/QCO.0000000000000161.

648 [69] Wagner DK, Muelenaer P, Henderson FW, et al. Serum immunoglobulin G antibody
649 subclass response to respiratory syncytial virus F and G glycoproteins after first, second,
650 and third infections. *J Clin Microbiol* 1989; 27: 589–92.

651 [70] Higgins D, Trujillo C, Keech C. Advances in RSV vaccine research and development -
652 A global agenda. *Vaccine*. Epub ahead of print 2016. DOI:
653 10.1016/j.vaccine.2016.03.109.

654 [71] Piedra PA, Jewell AM, Cron SG, et al. Correlates of immunity to respiratory syncytial
655 virus (RSV) associated-hospitalization: Establishment of minimum protective threshold
656 levels of serum neutralizing antibodies. In: *Vaccine*. Elsevier BV, 2003, pp. 3479–3482.

657 [72] Connor EM. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody,
658 reduces hospitalization from respiratory syncytial virus infection in high-risk infants.
659 *Pediatrics* 1998; 102: 531–537.

660 [73] González R, Mombo-Ngoma G, Ouédraogo S, et al. Intermittent Preventive Treatment of
661 Malaria in Pregnancy with Mefloquine in HIV-Negative Women: A Multicentre
662 Randomized Controlled Trial. *PLoS Med* 2014; 11: e1001733.

663 [74] González R, Desai M, Macete E, et al. Intermittent Preventive Treatment of Malaria in
664 Pregnancy with Mefloquine in HIV-Infected Women Receiving Cotrimoxazole
665 Prophylaxis: A Multicenter Randomized Placebo-Controlled Trial. *PLoS Med* 2014; 11:
666 e1001735.

667 [75] Mayor A, Bardají A, Macete E, et al. Changing Trends in *P. falciparum* Burden,
668 Immunity, and Disease in Pregnancy. *N Engl J Med* 2015; 373: 1607–17.

669 [76] WHO. *Interim WHO Clinical Staging of HIV/AIDS and HIV/AIDS Case definitions for*
670 *surveillance. African Region.* 2005. Epub ahead of print 2005. DOI:
671 10.1300/j187v04n01_05.

672 [77] Mayor A, Serra-Casas E, Bardají A, et al. Sub-microscopic infections and long-term
673 recrudescence of *Plasmodium falciparum* in Mozambican pregnant women. *Malar J*
674 2009; 8: 1–10.

675 [78] Sayeed MA, Bufano MK, Xu P, et al. A Cholera Conjugate Vaccine Containing O-
676 specific Polysaccharide (OSP) of *V. cholerae* O1 Inaba and Recombinant Fragment of
677 Tetanus Toxin Heavy Chain (OSP:rTTHc) Induces Serum, Memory and Lamina Proprial
678 Responses against OSP and Is Protective in Mice. *PLoS Negl Trop Dis* 2015; 9:
679 e0003881.

680 [79] Priest JW, Moss DM, Visvesvara GS, et al. Multiplex assay detection of
681 immunoglobulin G antibodies that recognize *Giardia intestinalis* and *Cryptosporidium*

682 parvum antigens. *Clin Vaccine Immunol* 2010; 17: 1695–1707.

683 [80] Angov E, Aufiero BM, Turgeon AM, et al. Development and pre-clinical analysis of a
684 Plasmodium falciparum Merozoite Surface Protein-142 malaria vaccine. *Mol Biochem
685 Parasitol* 2003; 128: 195–204.

686 [81] Metzger WG, Okenu DMN, Cavanagh DR, et al. Serum IgG3 to the Plasmodium
687 falciparum merozoite surface protein 2 is strongly associated with a reduced prospective
688 risk of malaria. *Parasite Immunol* 2003; 25: 307–312.

689 [82] Doolan DL, Hedstrom RC, Rogers WO, et al. Identification and characterization of the
690 protective hepatocyte erythrocyte protein 17 dDa gene of Plasmodium yoelii, homolog
691 of Plasmodium falciparum exported protein 1. *J Biol Chem* 1996; 271: 17861–17868.

692 [83] Dgedge M, Novoa A, Macassa G, et al. The burden of disease in Maputo City,
693 Mozambique: registered and autopsied deaths in 1994. *Bull World Health Organ* 2001;
694 79: 546–52.

695 [84] Kotloff KL, Nataro JP, Blackwelder WC, et al. Burden and aetiology of diarrhoeal
696 disease in infants and young children in developing countries (the Global Enteric
697 Multicenter Study, GEMS): A prospective, case-control study. *Lancet* 2013; 382: 209–
698 222.

699 [85] Troeger C, Blacker B, Khalil IA, et al. Estimates of the global, regional, and national
700 morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries,
701 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. *Lancet
702 Infect Dis* 2018; 18: 1191–1210.

703 [86] Lanaspa M, Balcells R, Sacoor C, et al. The performance of the expanded programme on
704 immunization in a rural area of Mozambique. *Acta Trop* 2015; 149: 262–266.

705 [87] Vidal M, Aguilar R, Campo JJ, et al. Development of quantitative suspension array
706 assays for six immunoglobulin isotypes and subclasses to multiple Plasmodium

707 falciparum antigens. *J Immunol Methods* 2018; 455: 41–54.

708 [88] Ubillos I, Jiménez A, Vidal M, et al. Optimization of incubation conditions of
709 Plasmodium falciparum antibody multiplex assays to measure IgG, IgG1-4, IgM and IgE
710 using standard and customized reference pools for sero-epidemiological and vaccine
711 studies. *Malar J*; 17. Epub ahead of print 1 June 2018. DOI: 10.1186/s12936-018-2369-
712 3.

713 [89] Ubillos I, Aguilar R, Sanz H, et al. Analysis of factors affecting the variability of a
714 quantitative suspension bead array assay measuring IgG to multiple Plasmodium
715 antigens. *PLoS One*; 13. Epub ahead of print 1 July 2018. DOI:
716 10.1371/journal.pone.0199278.

717 [90] Bryan D, Silva N, Rigsby P, et al. The establishment of a WHO Reference Reagent for
718 anti-malaria (Plasmodium falciparum) human serum. *Malar J*; 16. Epub ahead of print 5
719 August 2017. DOI: 10.1186/s12936-017-1958-x.

720 [91] Ballard JL, Khoury JC, Wedig K, et al. New Ballard Score, expanded to include
721 extremely premature infants. *J Pediatr* 1991; 119: 417–423.

722 [92] Weiss GE, Traore B, Kayentao K, et al. The plasmodium falciparum-specific human
723 memory b cell compartment expands gradually with repeated malaria infections. *PLoS*
724 *Pathog* 2010; 6: 1–13.

725 [93] Dobaño C, Ubillos I, Jairoce C, et al. RTS,S/AS01E immunization increases antibody
726 responses to vaccine-unrelated Plasmodium falciparum antigens associated with
727 protection against clinical malaria in African children: a case-control study. *BMC Med*
728 2019; 17: 157.

729 [94] Wickham H, Hester J, Chang W. devtools: Tools to make developing R packages easier.
730 R package devtools version 2.3.0., <https://cran.r-project.org/package=devtools> (2020,
731 accessed 7 July 2020).

732 [95] Wickham H. *ggplot2: Elegant Graphics for Data Analysis*. Springer.

733 [96] Lê S, Josse J, Husson F. FactoMineR: An R package for multivariate analysis. *J Stat*
734 *Softw* 2008; 25: 1–18.

735 [97] Kassambara A, Mundt F. factoextra: Extract and Visualize the Results of Multivariate
736 Data Analyses. R package version 1.0.7., <https://cran.r-project.org/package=factoextra>
737 (2020).

738

739

740 **Figures legends and tables**

741 **Fig. 1:** Overview of levels of IgG and IgG subclasses to all pathogen antigens. a) Principal component
742 analysis (PCA) plots of IgG and IgG subclass levels against all antigens clustered by subclass type. b) PCA
743 plots of IgG and IgG subclass levels clustered by antigen type. The two principal components (Dim 1,
744 Dim2) that explained the highest percentage of the variance of the data (percentage in parenthesis) were
745 chosen for representation. Representation of the a) 10 b) 5 first variables that contributed to the principal
746 components c) Medians of IgG and IgG subclass levels (\log_{10} MFI) in cord blood for each antigen d) Median
747 IgG and IgG subclass placental transfer for each antigen, represented as the cord/mother ratios. Source files
748 of the medians of each antigen/subclass are available in the Figure 1-source data 1.

749

750 **Fig. 2:** Mother and cord blood antibody levels (\log_{10} MFI) in HIV-infected and HIV-uninfected women.
751 Boxplots illustrate the medians and the interquartile range for IgG (a) and IgG1 (b), IgG2 (c) and IgG4 (d)
752 subclasses. Levels between HIV-infected and HIV-uninfected women were compared by parametric
753 Wilcoxon-Mann-Whitney test and p-values were adjusted for multiple testing by the Benjamini-Hochberg
754 approach. Statistically significant differences between HIV infected and uninfected women levels are
755 highlighted with an asterisk. Red represents HIV-infected women and blue HIV-uninfected women. Source
756 files of the mother and cord levels of each antigen/subclass are available in the Figure 2-source data 1.

757

758 **Fig. 3:** Antibody placental transfer in HIV-infected and HIV-uninfected women. Radar charts representing
759 the medians of each analyte antibody cord/mother ratio in HIV-infected and HIV-uninfected women for
760 IgG (a) and IgG subclasses (b-d). Ratios between HIV-infected and uninfected women were compared by
761 parametric Wilcoxon-Mann-Whitney test and p-values were adjusted for multiple testing by the Benjamini-
762 Hochberg approach. Statistically significant differences between HIV-infected and uninfected women
763 ratios are highlighted with an asterisk. *** = p-val < 0.0001, ** = p-val < 0.001, * = p-val < 0.01. Red
764 represents HIV-infected women and blue HIV-uninfected women. Source files of the medians and p-values
765 of each antigen/subclass are available in the Figure 3-source data 1.

766

767 **Fig. 4:** Factors associated with IgG and IgG subclass levels in cord blood. Forest plots show the effect of
768 a) maternal antibody levels, b) HIV infection and c) *P. falciparum* exposure (Pf exposure) on cord blood
769 levels of IgG and IgG subclasses, for all the antigens tested. Beta values, representing the increase or
770 decrease of cord blood levels (\log_{10} MFI) were obtained from multivariable regression models using cord
771 blood (\log_{10} MFI) levels as the outcome. Beta values are shown when raw p-vals are significant. Asterisks
772 are shown when adjusted p-vals by Benjamini-Hochbert are significant *** = p-val < 0.0001, *** = p-val
773 < 0.001, ** = p-val < 0.01, * = p-val < 0.05. Source files of the multivariable model are available in the
774 Figure 4-source data 1.

775

776 **Fig. 5:** Association of prematurity with cord blood levels and placental transfer of IgG and IgG subclasses.
777 Forest plots show the effect of a) prematurity and cord blood levels and b) prematurity and transplacental
778 transfer of IgG and IgG subclasses, for all the antigens tested. Cord antibody levels are represented in
779 \log_{10} MFI. Placental transfer is represented as cord/mother ratio (\log_{10}). Beta values are shown when raw p-
780 vals are significant. Asterisks are shown when adjusted p-vals by Benjamini-Hochbert are significant. *** =
781 = p-val < 0.0001, *** = p-val < 0.001, ** = p-val < 0.01, * = p-val < 0.05. Source files of the multivariable
782 model are available in the Figure 5-source data 1.

783

784 **Fig. 6:** Factors associated with IgG and IgG subclass placental transfer. Forest plots show the effect of a)
785 HIV infection and b) *P. falciparum* exposure (Pf exposure) on placental transfer of IgG and IgG subclasses,
786 for all the antigens tested. Beta values are shown when raw p-vals are significant. Asterisks are shown when
787 adjusted p-vals by Benjamini-Hochbert are significant. *** = p-val < 0.0001, *** = p-val < 0.001, ** =
788 p-val < 0.01, * = p-val < 0.05. Source files of the multivariable model are available in the Figure 6-source
789 data 1.

790 **Fig. 7: IPTp trial profile.**

791 **Fig. 2-figure supplement 1:** Mother and cord blood antibody levels (\log_{10} MFI) in HIV-infected and
792 HIV-uninfected women. Boxplots illustrate the medians and the interquartile range for IgG3. Levels
793 between HIV-infected and HIV-uninfected women were compared by parametric Wilcoxon-Mann-
794 Whitney test and p-values were adjusted for multiple testing by the Benjamini-Hochberg approach.
795 Statistically significant differences between HIV infected and uninfected women levels are highlighted with
796 an asterisk. Red represents HIV-infected women and blue HIV-uninfected women.

797 **Fig. 3-figure supplement 1:** Cord/mother \log_{10} antibody ratios in HIV-infected and HIV-uninfected
798 women. Boxplots illustrate the medians, the interquartile range (IQR) and the outlier points that are further
799 1.5*IQR and black dots show the arithmetic means for IgG. Levels between HIV-infected and uninfected
800 women were compared by Wilcoxon test and p-values were adjusted for multiple testing by the Benjamini-
801 Hochberg approach. ns = not significant. Red represents HIV-infected women and blue HIV-uninfected
802 women.

803 **Fig. 3-figure supplement 2:** Cord/mother \log_{10} antibody ratios in HIV-infected and HIV-uninfected
804 women. Boxplots illustrate the medians, the interquartile range (IQR) and the outlier points that are further
805 1.5*IQR and black dots show the arithmetic means for IgG1. Levels between HIV-infected and uninfected
806 women were compared by Wilcoxon test and p-values were adjusted for multiple testing by the Benjamini-
807 Hochberg approach. ns = not significant. Red represents HIV-infected women and blue HIV-uninfected
808 women.

809 **Fig. 3-figure supplement 3:** Cord/mother \log_{10} antibody ratios in HIV-infected and HIV-uninfected
810 women. Boxplots illustrate the medians, the interquartile range (IQR) and the outlier points that are further
811 1.5*IQR and black dots show the arithmetic means for IgG2. Levels between HIV-infected and uninfected
812 women were compared by Wilcoxon test and p-values were adjusted for multiple testing by the Benjamini-
813 Hochberg approach. ns = not significant. Red represents HIV-infected women and blue HIV-uninfected
814 women.

815 **Fig. 3-figure supplement 4:** Cord/mother \log_{10} antibody ratios in HIV-infected and HIV-uninfected
816 women. Boxplots illustrate the medians, the interquartile range (IQR) and the outlier points that are further
817 1.5*IQR and black dots show the arithmetic means for IgG3. Levels between HIV-infected and uninfected
818 women were compared by Wilcoxon test and p-values were adjusted for multiple testing by the Benjamini-
819 Hochberg approach. ns = not significant. Red represents HIV-infected women and blue HIV-uninfected
820 women.

821 **Fig.3-figure supplement 5:** Cord/mother \log_{10} antibody ratios in HIV-infected and HIV-uninfected
822 women. Boxplots illustrate the medians, the interquartile range (IQR) and the outlier points that are further
823 1.5*IQR and black dots show the arithmetic means for IgG4. Levels between HIV-infected and uninfected
824 women were compared by Wilcoxon test and p-values were adjusted for multiple testing by the Benjamini-
825 Hochberg approach. ns = not significant. Red represents HIV-infected women and blue HIV-uninfected
826 women.

827 **Fig.4-figure supplement 1:** Forest plots show the effect of placental malaria on cord blood levels of IgG
828 and IgG subclasses, for all the antigens tested, in HIV-infected women. Cord antibody levels are represented
829 in \log_{10} MFI. Beta values are shown when raw p-vals are significant. Asterisks are shown when adjusted p-
830 vals by Benjamini-Hochbert are significant. **** = p-val < 0.0001, *** = p-val < 0.001, ** = p-val < 0.01,
831 * = p-val < 0.05.

832 **Fig. 6-figure supplement 1:** Forest plots show the effect of placental malaria on placental transfer of IgG
833 and IgG subclasses, for all the antigens tested, in HIV-infected women. Placental transfer is represented as
834 cord/mother ratio (\log_{10}). Beta values are shown when raw p-vals are significant. Asterisks are shown when
835 adjusted p-vals by Benjamini-Hochbert are significant. **** = p-val < 0.0001, *** = p-val < 0.001, ** =
836 p-val < 0.01, * = p-val < 0.05.

837

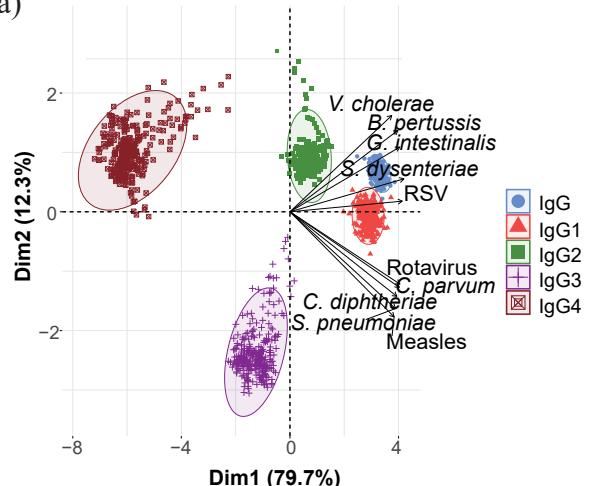
838

Table 1: Characteristics of study participants.

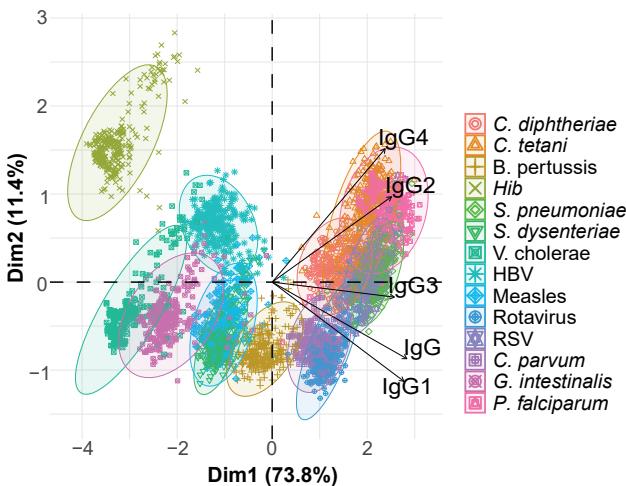
	All N=341	HIV-uninfected N=197	HIV-infected N=144	p-value ^a
Age ^a (years median [IQR])	25.0 [19.0; 29.0]	21.0 [18.0; 28.0]	27.0 [22.0; 31.0]	< 0.001
Gravidity (n, %)				< 0.001
<i>Multigravidae</i>	259 (76.0)	128 (65.0)	131 (91.0)	
<i>Primigravidae</i>	82 (24.0)	69 (35.0)	13 (9.0)	
Maternal haemoglobin (n, %)				0.025
Anaemia (< 11 g/dL)	208 (61.5)	109 (56.2)	99 (68.8)	
Normal (≥ 11 g/dL)	130 (38.5)	85 (43.8)	45 (31.2)	
Birth weight (n, %)				NS
Low (< 2500 g)	29 (8.5)	17 (8.6)	12 (8.33)	
Normal (≥ 2500 g)	312 (91.5)	180 (91.4)	132 (91.7)	
Prematurity (n, %)				NS
No (≥ 37 weeks)	312 (94.3)	181 (95.3)	131 (92.9)	
Yes (< 37 weeks)	19 (5.7)	9 (4.7)	10 (7.1)	
Treatment				< 0.001
MQ	71 (20.9)	0 (0.0)	71 (49.7)	
MQ full	68 (20.8)	68 (34.5)	0 (0.0)	
MQ split	73 (21.5)	73 (37.1)	0 (0.0)	
Placebo	72 (21.2)	0 (0.0)	72 (50.3)	
SP	56 (16.5)	56 (28.4)	0 (0.0)	
ART at baseline (n, %)				NP
No	24 (7.1)	—	24 (17.1)	
Yes	116 (34.4)	—	116 (82.9)	
CD4+ T cell counts (n, %)				NP
Lower (< 350 c/µL)	40 (12.3)	—	40 (31.2)	
Higher (≥ 350 c/µL)	88 (27.1)	—	88 (68.8)	
HIV viral load (copies/mL)				NP
< 400	21 (6.4)	—	21 (16.0)	
(400–999)	41 (12.5)	—	41 (31.3)	
(1000–9999)	48 (14.6)	—	48 (36.6)	
> 9999	21 (6.4)	—	21 (16.0)	
Placental malaria ^b (n, %)				NS
No	321 (94.1)	184 (93.4)	137 (95.1)	
Yes	20 (5.9)	13 (6.6)	7 (4.9)	
Peripheral malaria ^c (n, %)				NS
No	290 (85.0)	165 (83.8)	125 (86.8)	
Yes	51 (15.0)	32 (16.2)	19 (13.2)	
<i>P. falciparum</i> exposure (\log_{10} MFI IgG)	5.27 [5.19; 5.34]	5.29 [5.21; 5.35]	5.26 [5.18; 5.33]	0.011

For numerical variables, the median and first and third quartile, in brackets, are given. For the categorical variables the number of individuals for each group and percentages, in parentheses, are given.

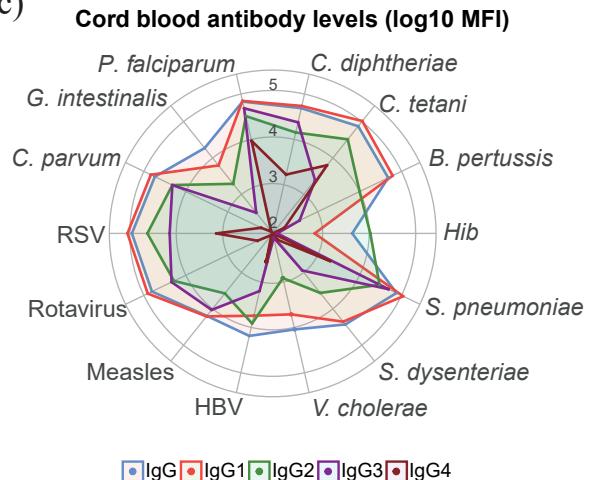
^a For the age, the Wilcoxon-Mann-Whitney test was used to compare differences between median values. For the categorical variables, the Chi-square test was used.

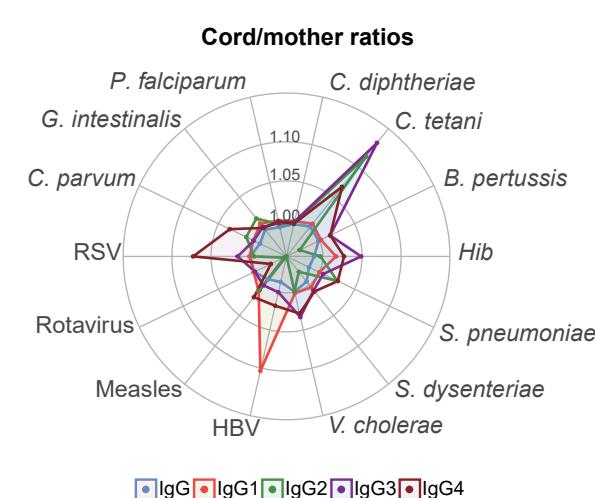

^b Placental malaria was considered positive if there was any evidence of *P. falciparum* placental parasitaemia by any method.

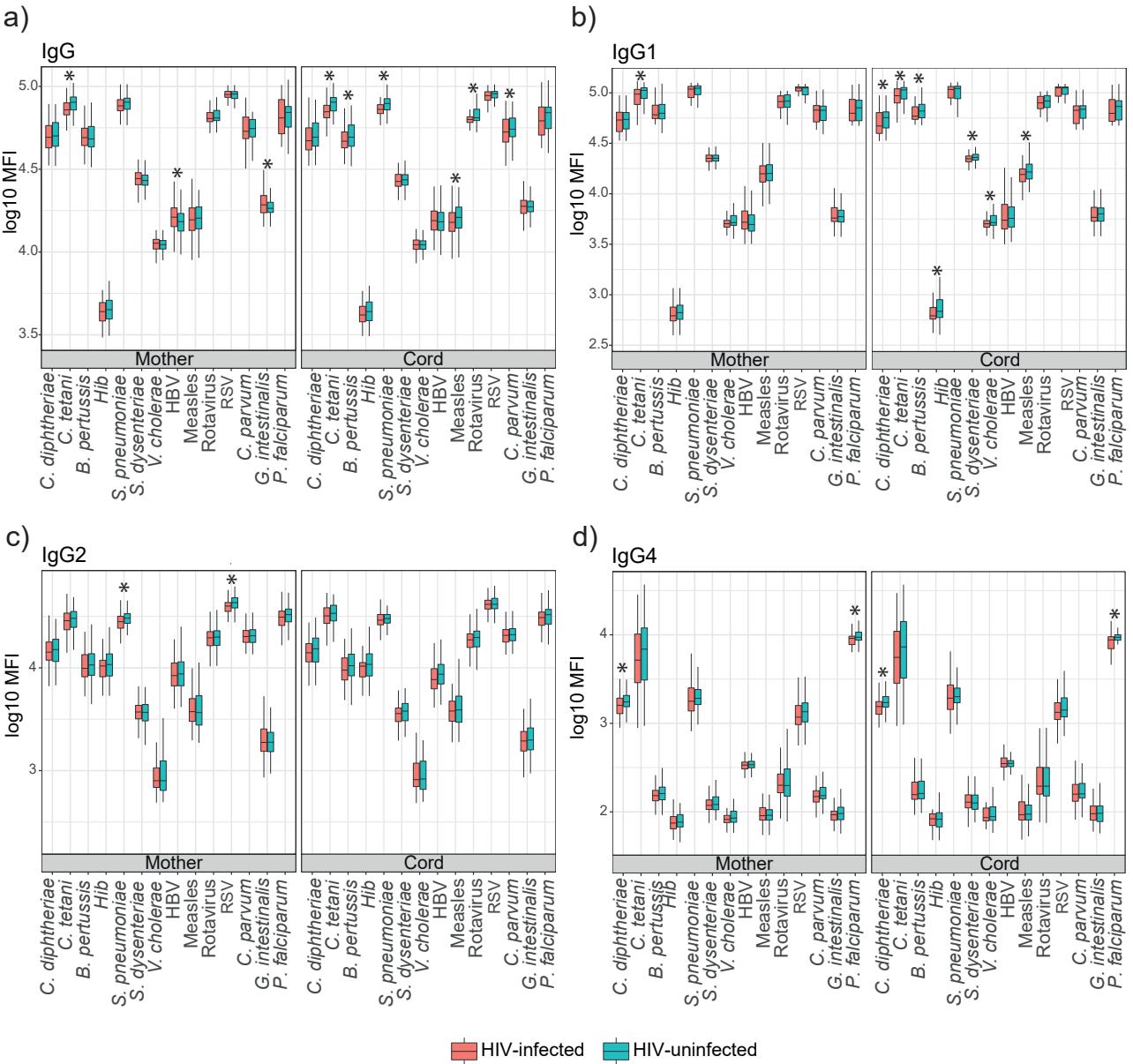
^c Peripheral malaria was considered positive if there was any evidence of *P. falciparum* peripheral parasitaemia by any method.


The statistical significance was considered when p -value <0.05; MQ, mefloquine; NS, not significant; NP, not-performed tests; SP, sulfadoxine-pyrimethamine.

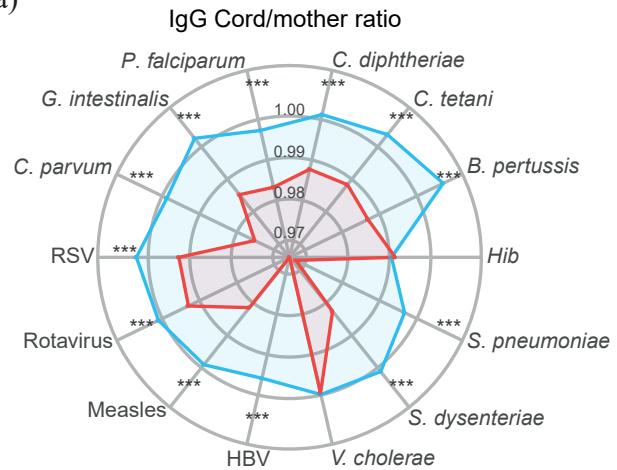
839


a)

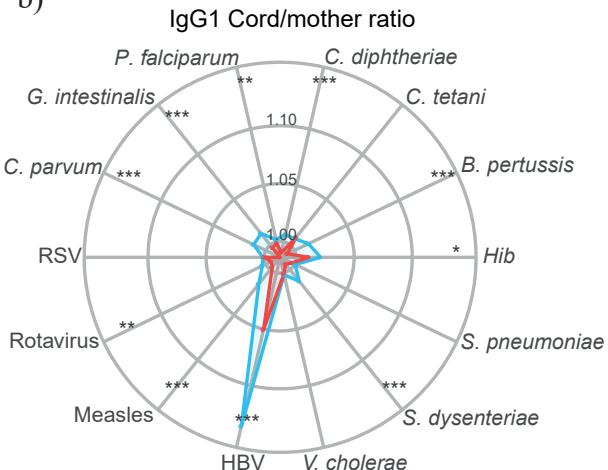

b)

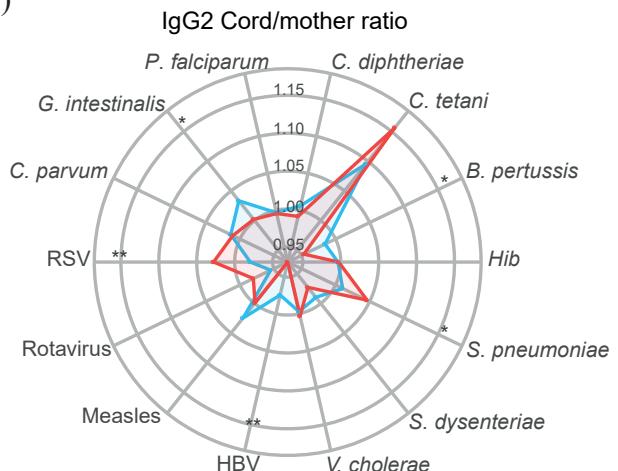


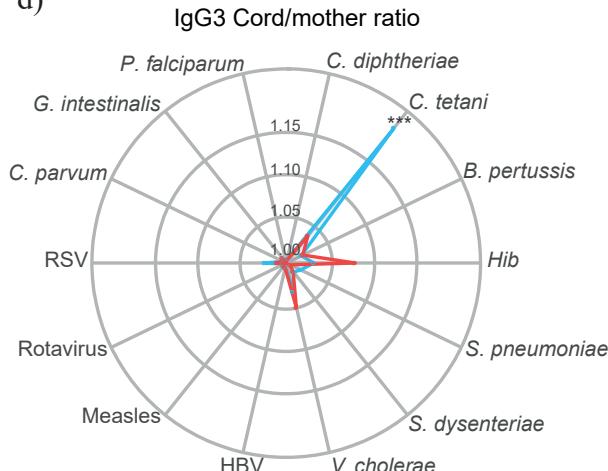
c)

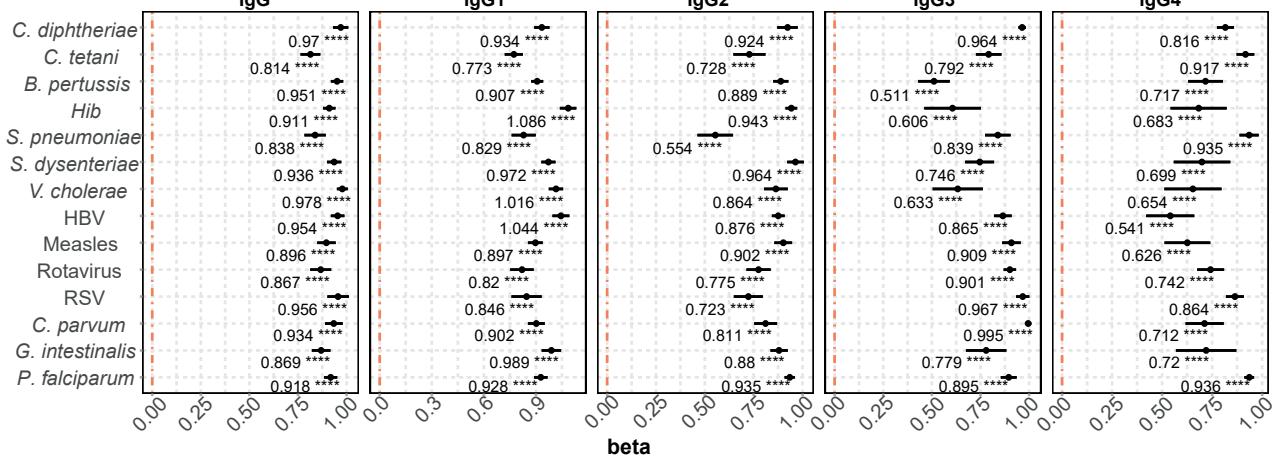


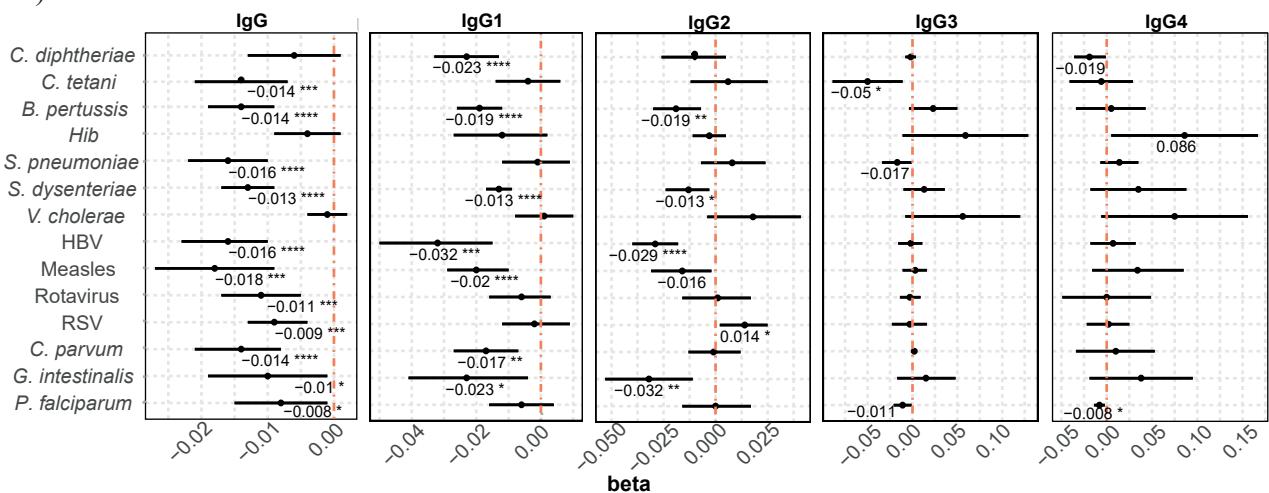
d)

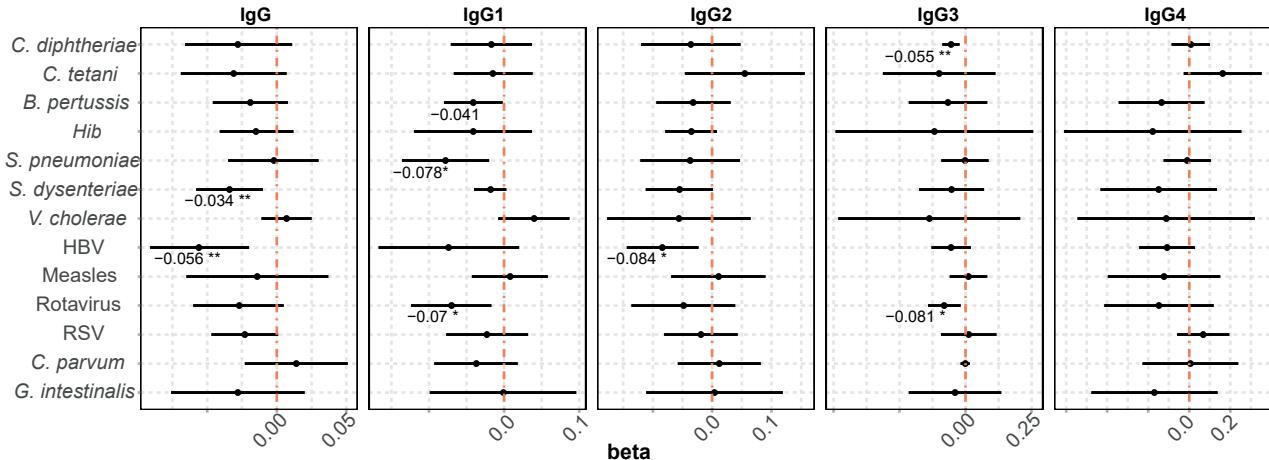



a)

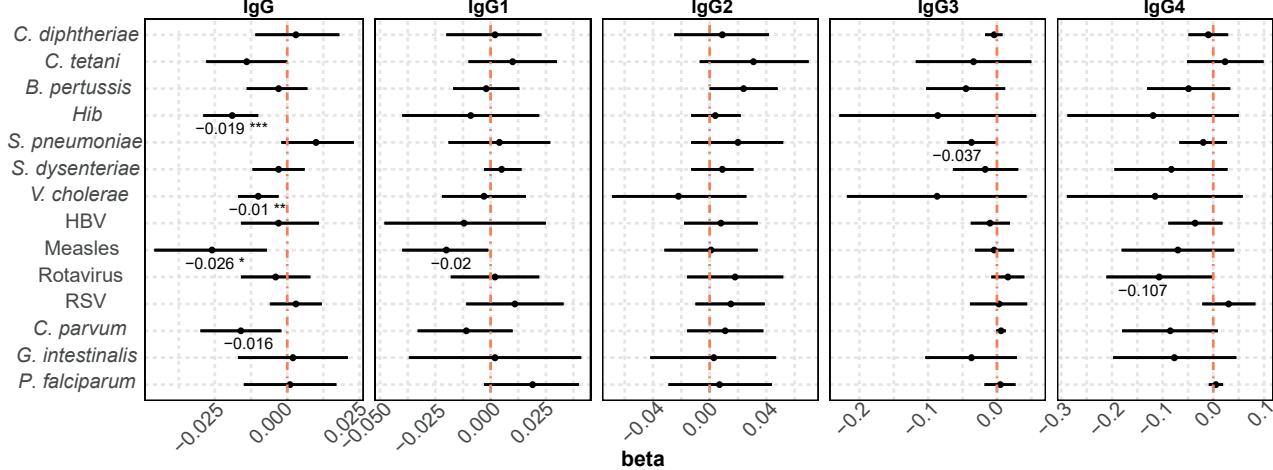

b)


c)

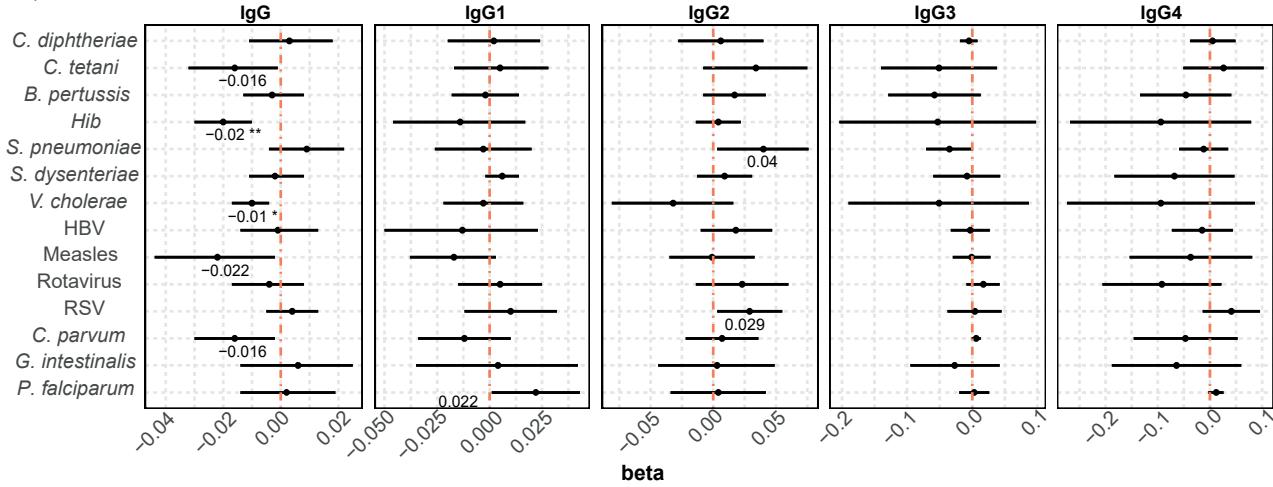

d)


a)

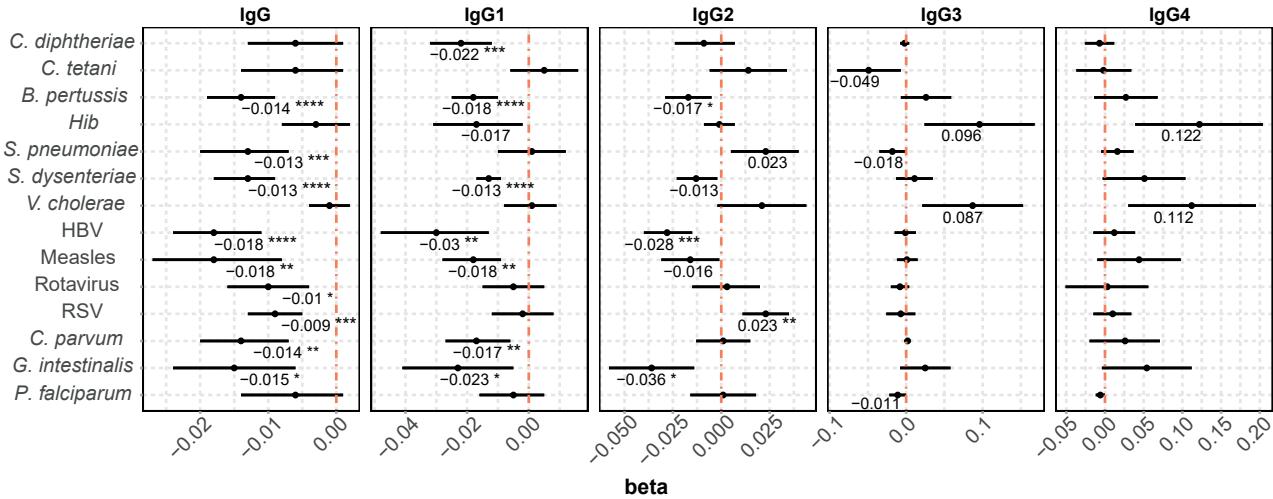
Maternal levels

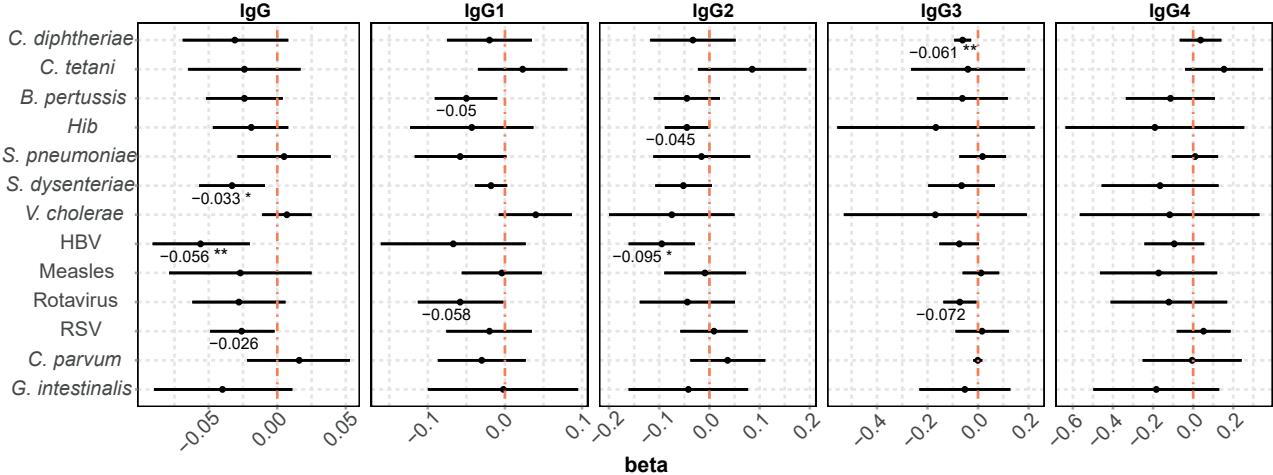

b)

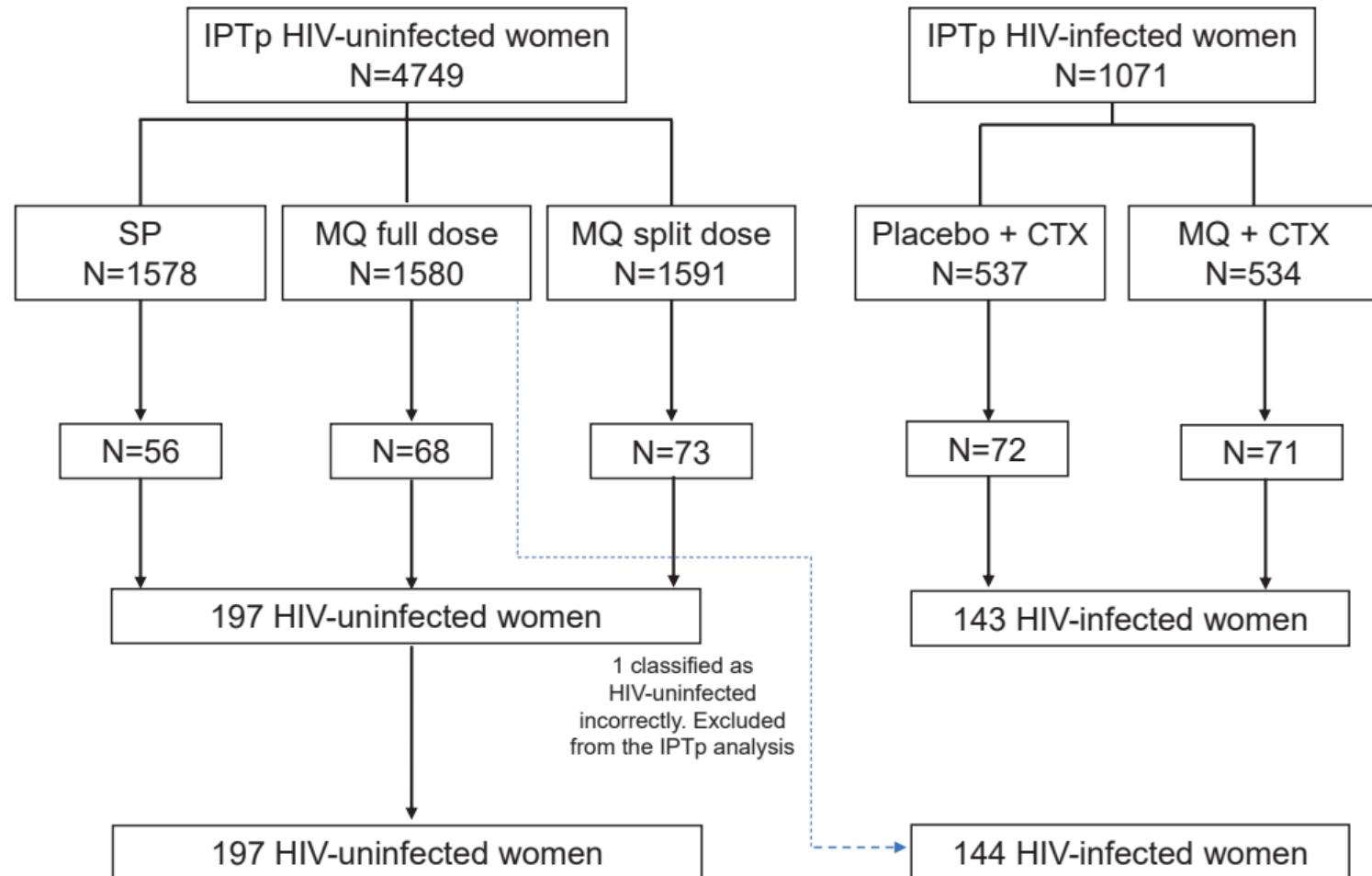
HIV infection


c)

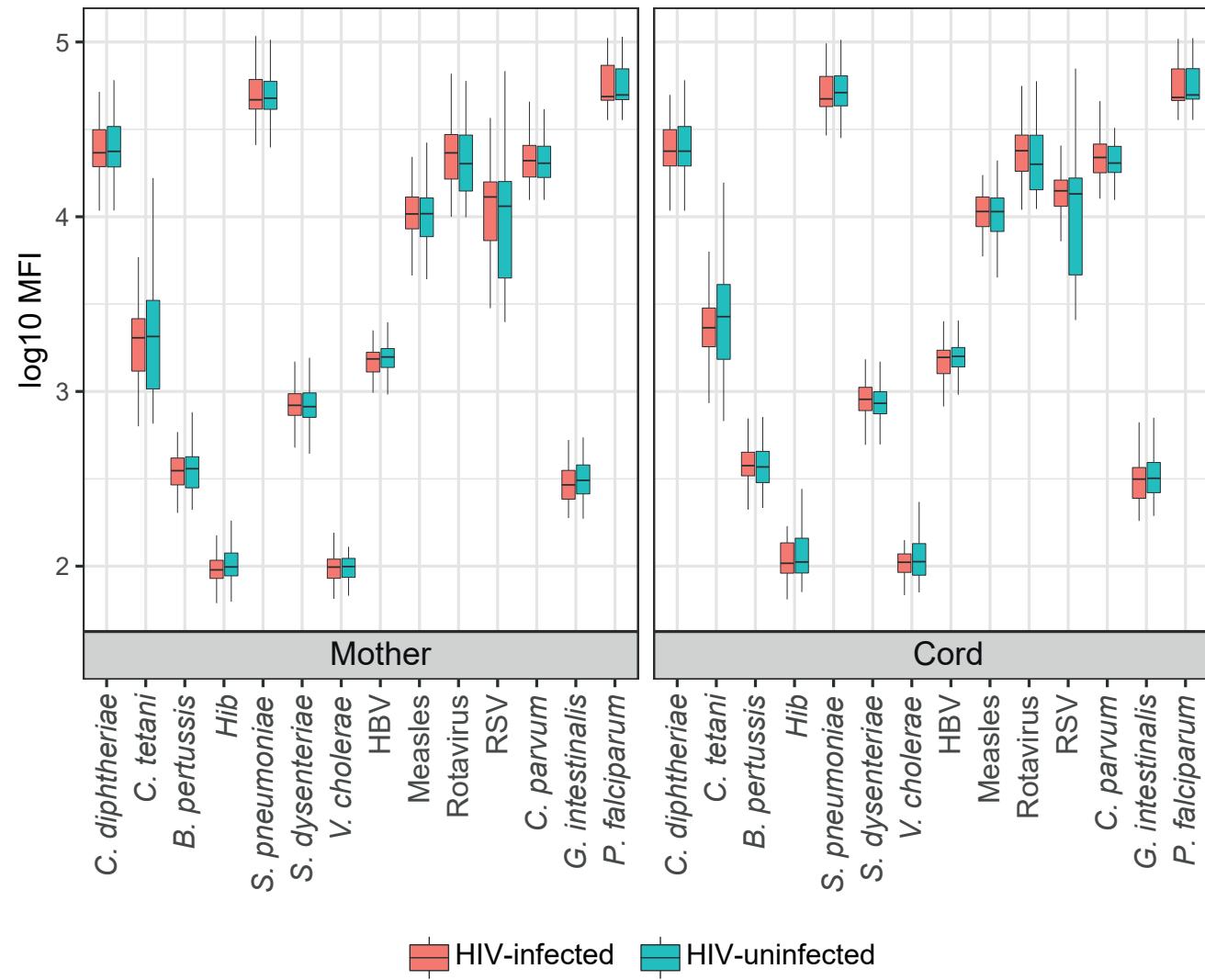
Pf exposure


a) Cord blood levels & Prematurity

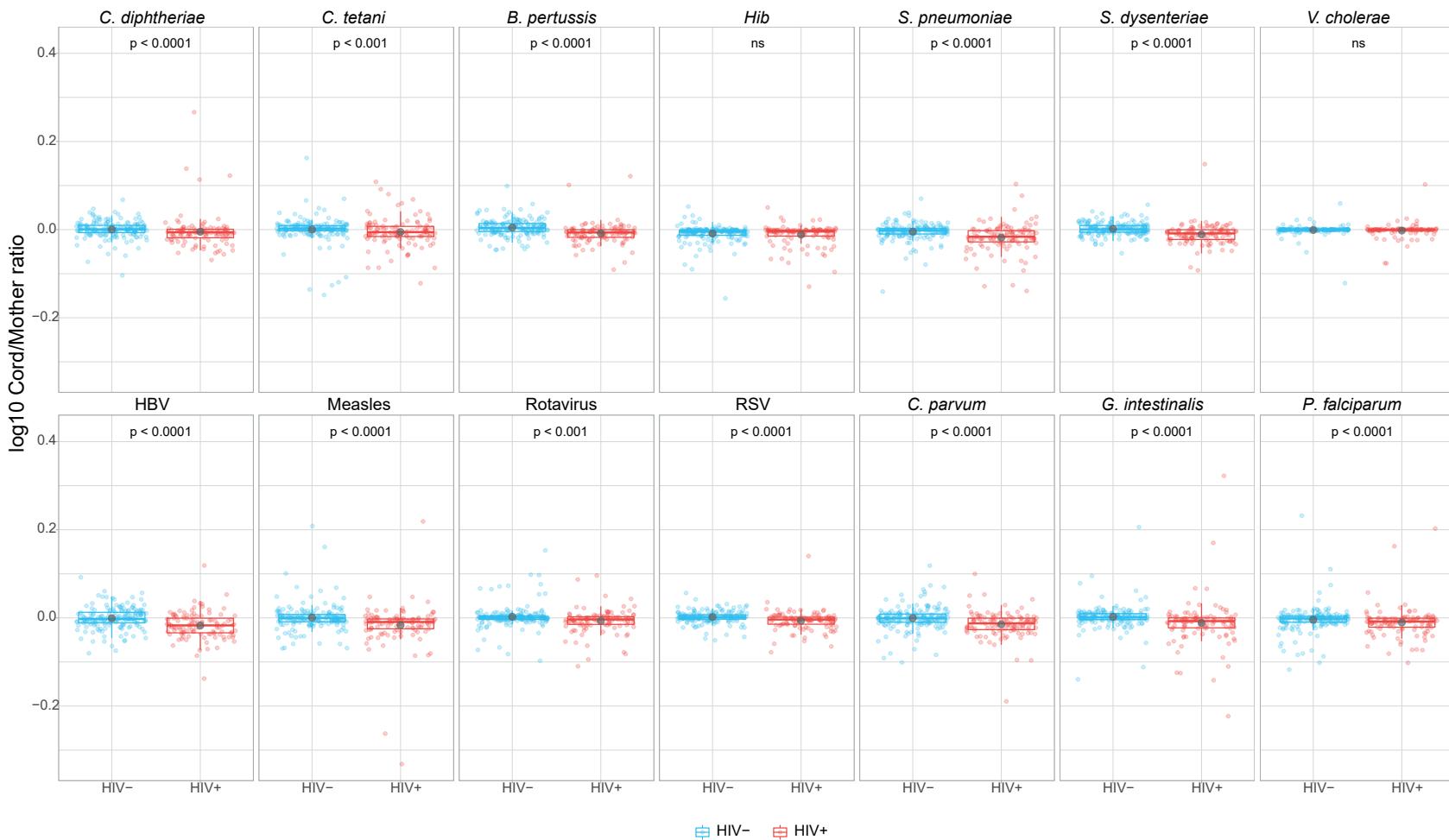

b) Placental transfer & Prematurity

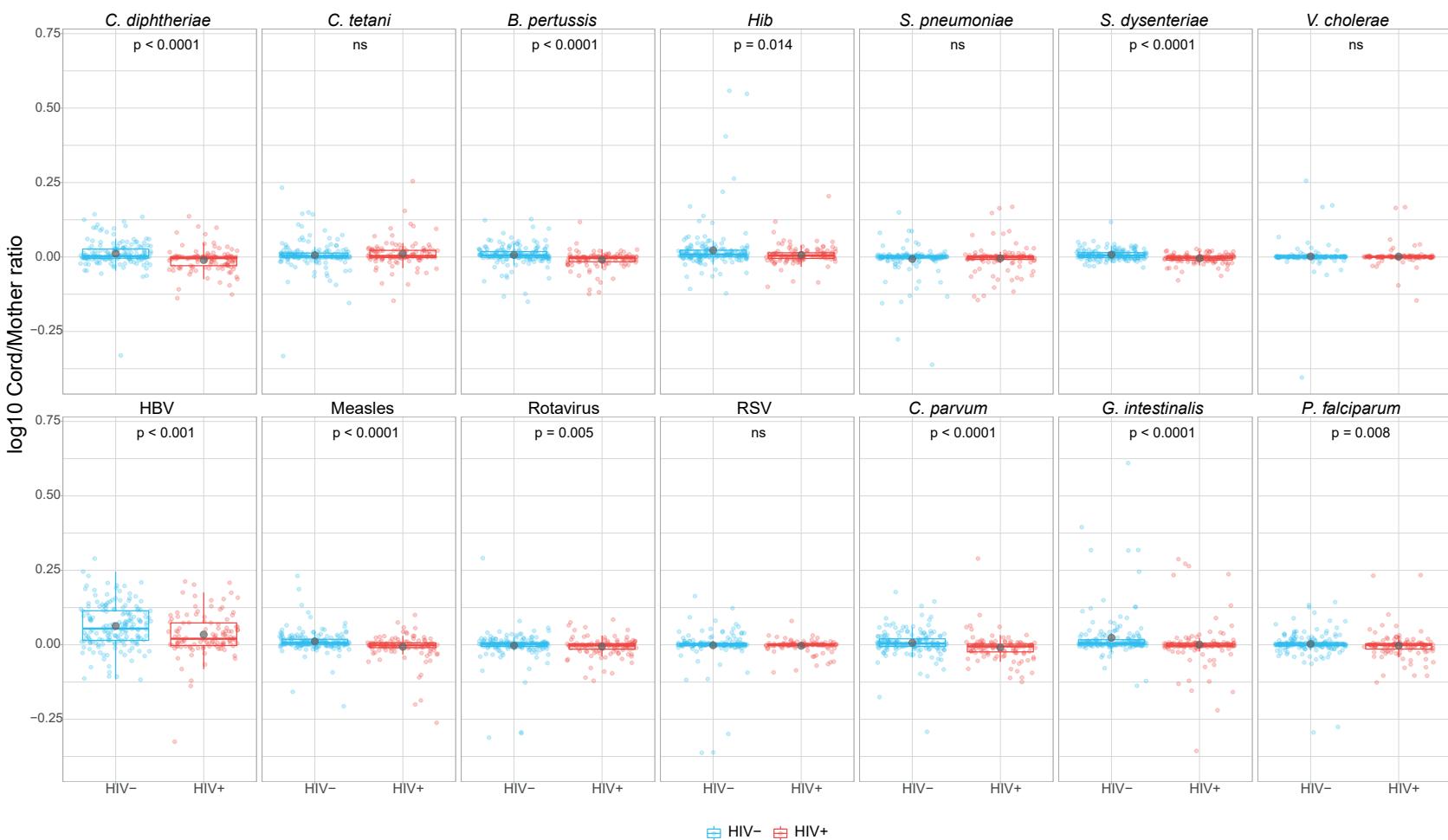

a)

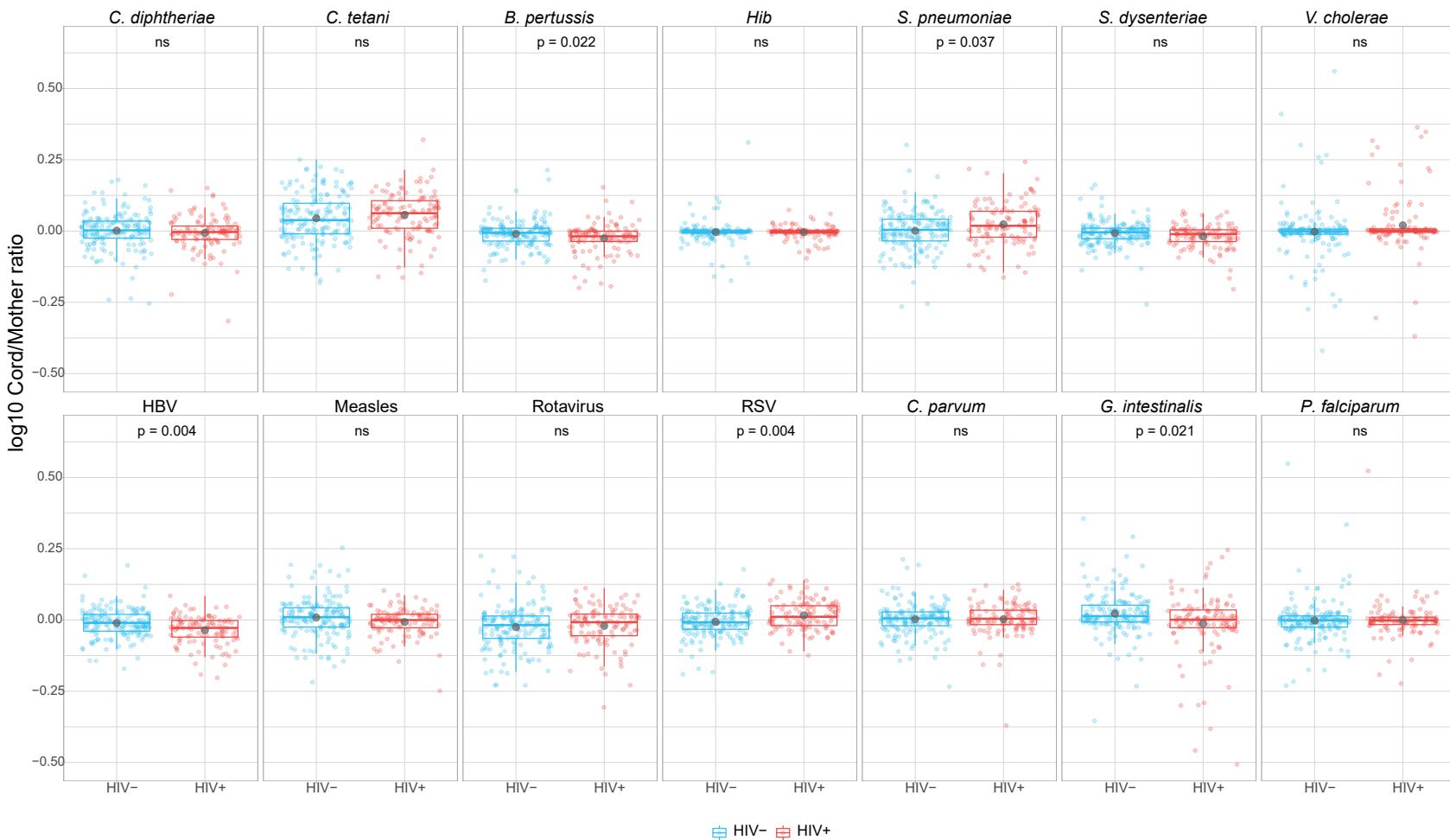
HIV infection

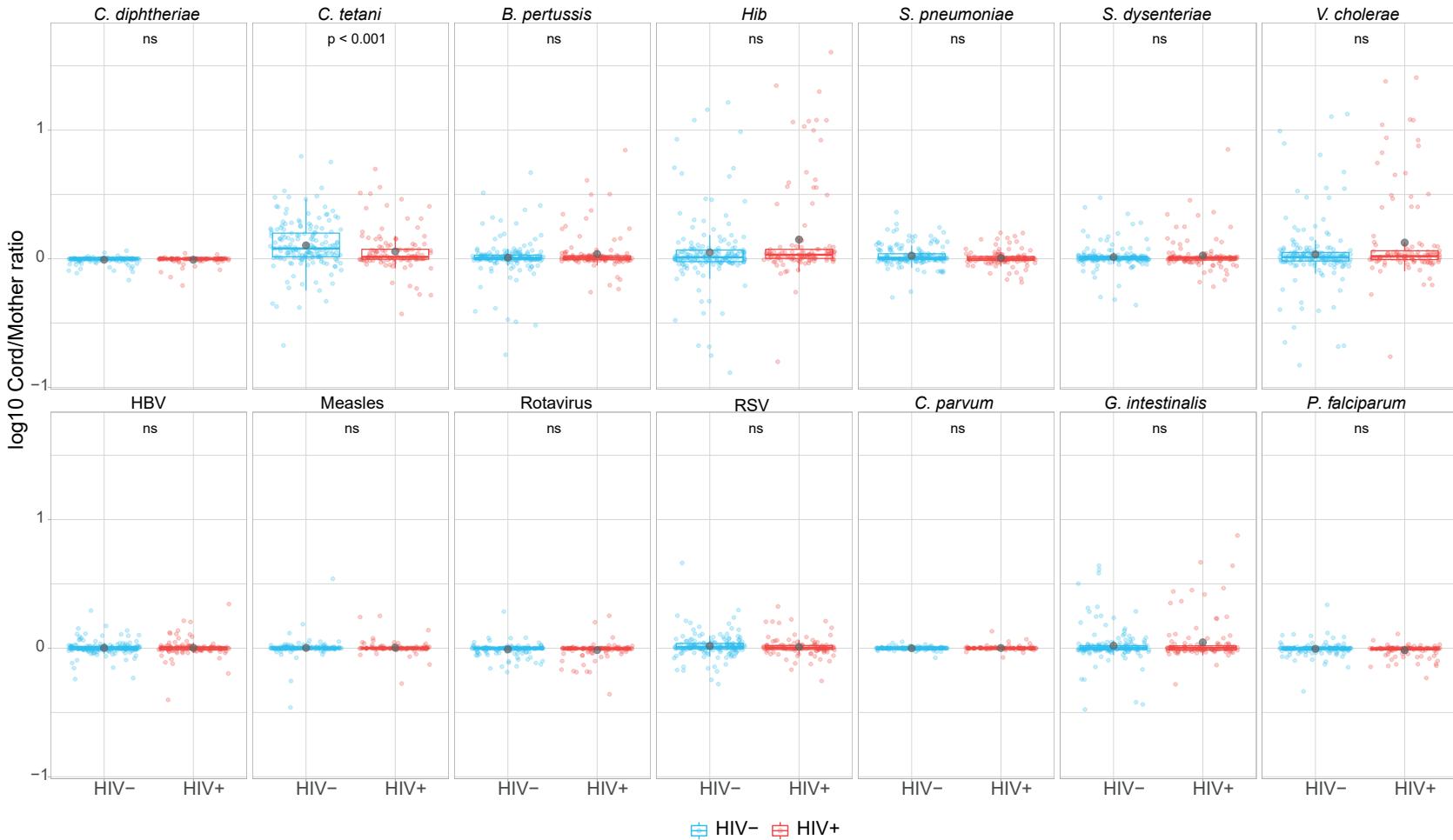

b)

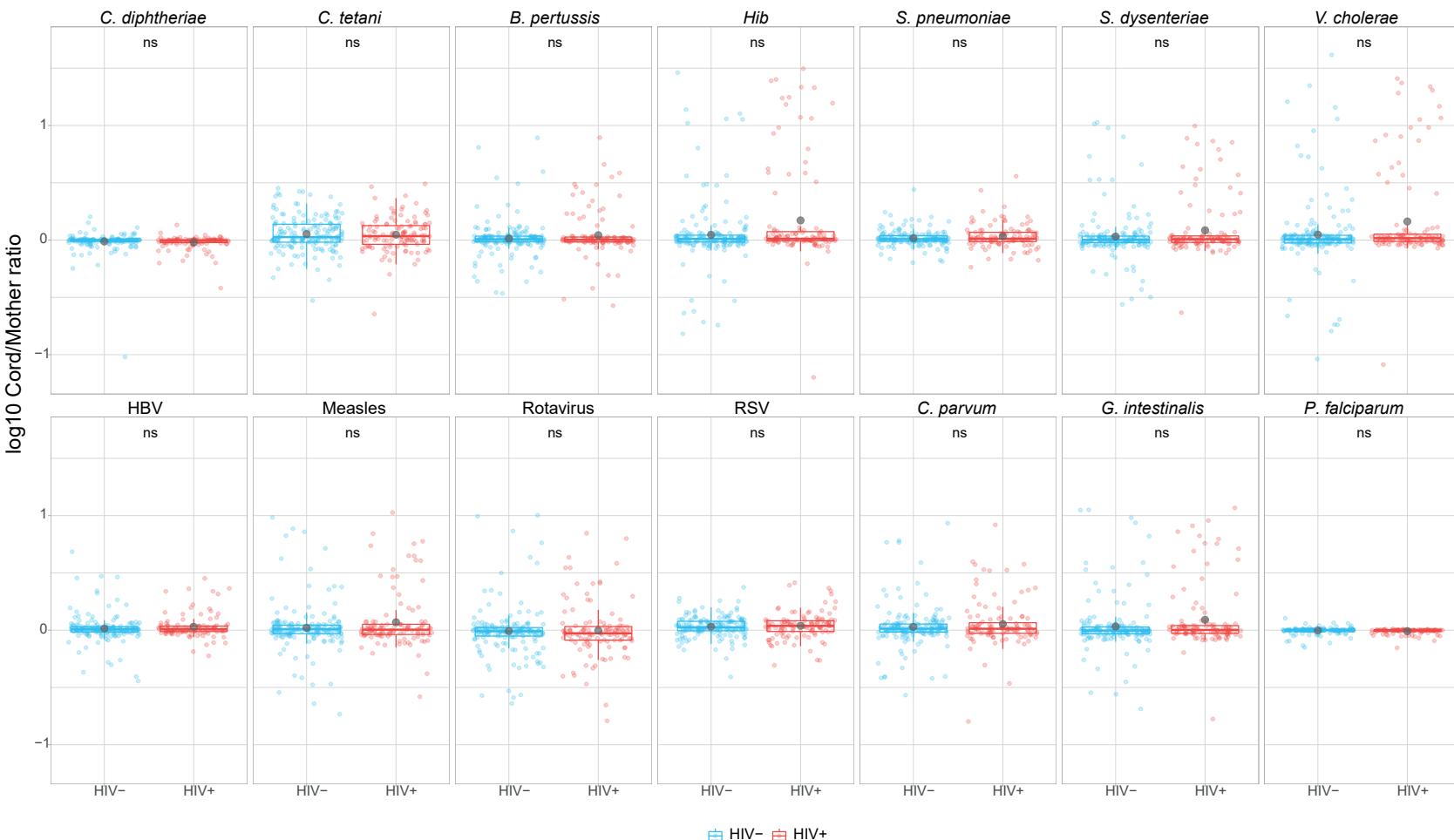
Pf exposure

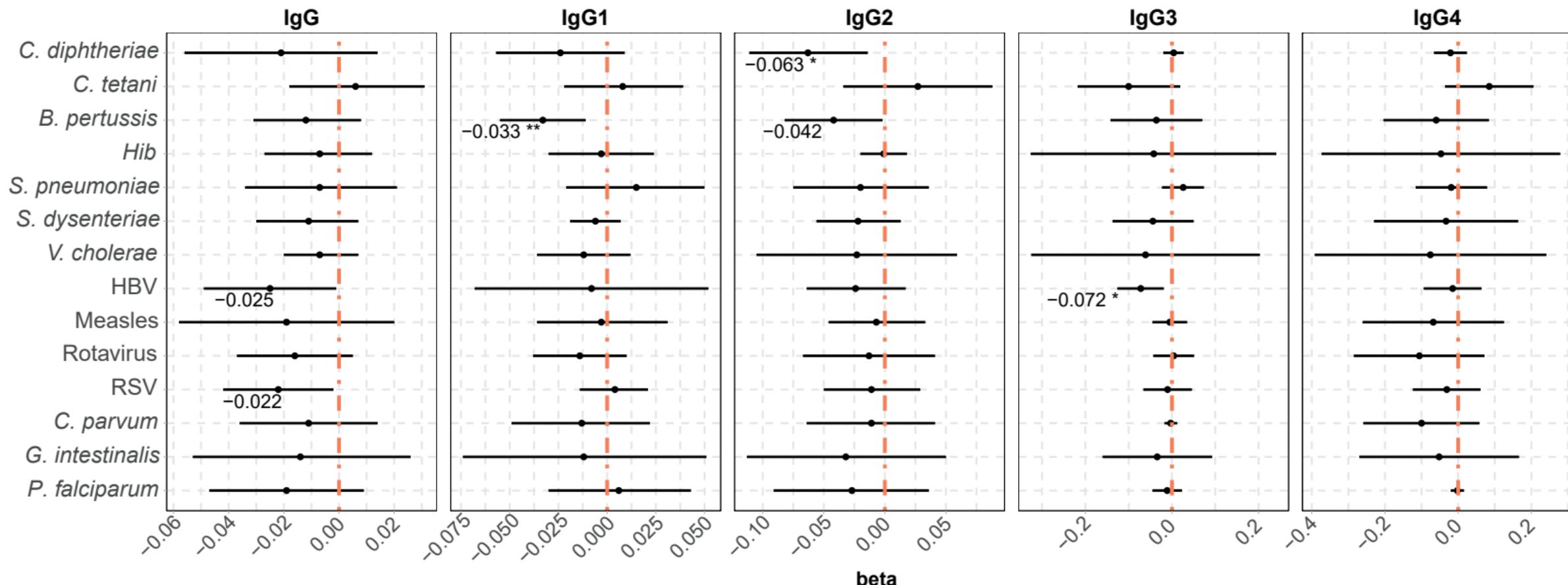

MiPPAD Clinical trial

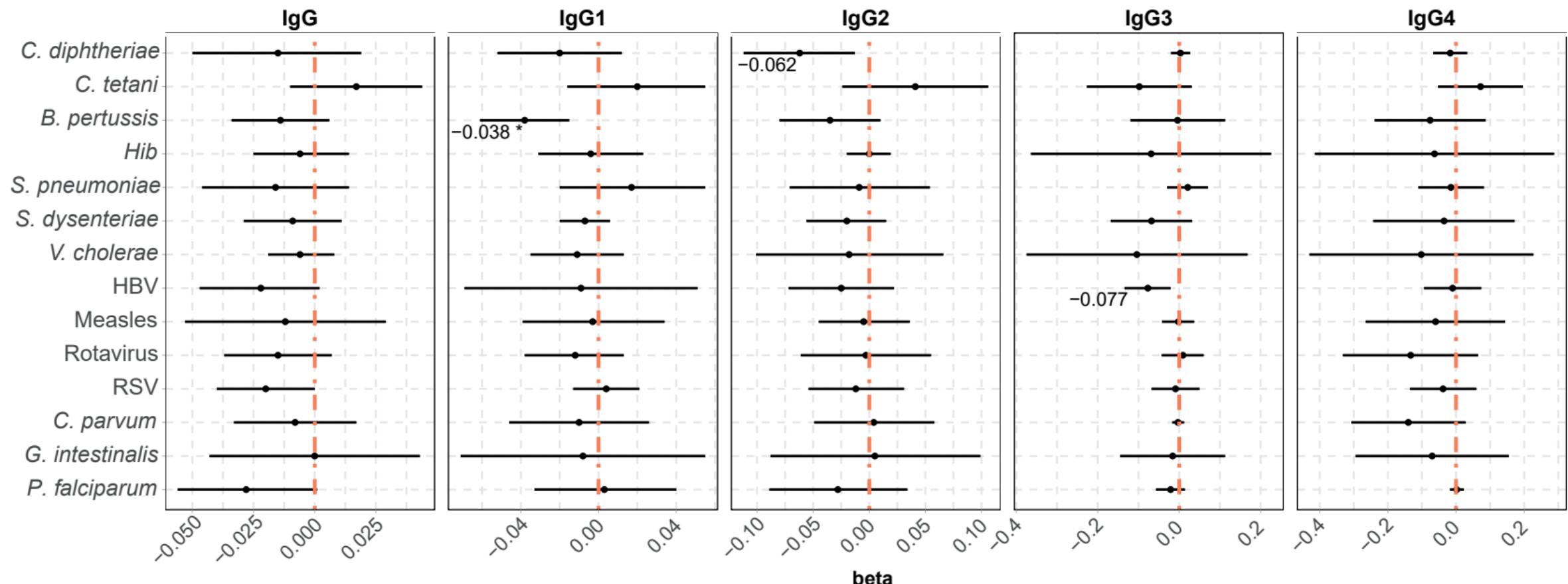

IgG3


IgG


IgG1


IgG2


IgG3


IgG4

Cord blood levels & Placental malaria

Placental transfer & Placental malaria

