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Abstract 24 

Antibody transplacental transfer is essential for conferring protection in newborns against 25 

infectious diseases. This transfer may be affected by gestational age and maternal infections, 26 

although the effects are not consistent across studies. We measured total IgG and IgG subclasses 27 

by quantitative suspension array technology against fourteen pathogens and vaccine antigens, 28 

including target of maternal immunization, in 341 delivering HIV- and HIV+ mother-infant pairs 29 

from southern Mozambique. Maternal antibody levels were the main determinant of cord 30 

antibody levels. HIV broadly reduced the placental transfer and cord levels of IgG and IgG1, but 31 

also IgG2 to half of the antigens. Plasmodium falciparum exposure and prematurity were 32 

negatively associated with cord antibody levels and placental transfer but this was antigen-33 

subclass dependent. These findings suggest maternal infections may impact the efficacy of 34 

maternal immunization and confirm the lower transfer of antibodies as one of the causes 35 

underlying increased susceptibility to infections in HIV-exposed infants.  36 
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Introduction 37 

Each year, 2.6 million deaths occur during the neonatal period, being infectious diseases the 38 

leading cause of mortality, particularly in low-income countries [1, 2]. Newborns are highly 39 

vulnerable to pathogens due to their functional immunological differences from adults as a result 40 

of living in a semi-allogeneic sterile environment, where exposure to microbial antigens is limited 41 

[3–6]. For example, microorganisms such as respiratory syncytial virus (RSV) are generally 42 

asymptomatic or cause mild disease in adults but induce acute bronchiolitis, viral pneumoniae 43 

and croup in infants, being those between 2 and 6 months of age at the highest risk, especially in 44 

low-income countries [7, 8].  45 

Newborns mostly rely on the protection elicited by maternal antibodies transferred across the 46 

placenta, which provide passive immunity against common pathogens [9]. Neonatal and child 47 

immunization is essential for conferring protection in newborns and infants against vaccine-48 

preventable diseases [10–12]. Vaccination is among the most cost-effective public health 49 

measures worldwide [13], and regions with high rates of infant morbidity and mortality like sub-50 

Saharan Africa benefit from the implementation of the Expanded Program of Immunization (EPI) 51 

[14]. Nevertheless, acquisition of immunity from vaccination is not immediate and vaccines are 52 

not available for all infectious diseases. At present, only three vaccines are being administered at 53 

birth in some countries: Bacillus Calmette-Guérin (BCG), hepatitis B virus (HBV) and oral polio 54 

vaccine (OPV) [10, 15].  55 

Transplacental transfer of antibodies occurs in utero and it is facilitated by neonatal fragment 56 

crystallisable (Fc) region receptor (FcRn), expressed in the human syncytiotrophoblast [16]. Only 57 

IgG is transferred across the placenta, being foetal IgG concentrations higher at the third trimester 58 

[17], although some studies suggest that maternal IgE is also transferred to the foetus as IgG/IgE 59 

complexes [18]. IgG subclasses have different affinities for the FcRn receptor leading to 60 

differences in the efficiency of transfer [19]; the greatest transport occurs for IgG1, followed by 61 

IgG4, IgG3, and finally IgG2 [20]. 62 
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To be effective, the transferred IgG must reach protective levels after birth. Maternal 63 

immunization is a good strategy to prevent newborn infections, ensuring a sufficient transfer of 64 

protective antibodies to the neonate [21]. Maternal vaccination against tetanus, pertussis and 65 

influenza has been implemented in many populations and has been effective protecting young 66 

infants from these pathogens [22–24], and could be used to protect newborns from RSV [25]. 67 

A number of factors have been associated with IgG placental transfer and cord levels, such as 68 

maternal antibody concentrations, gestational age, placental integrity, maternal infections and the 69 

antigen specificity [26–30], but inconsistently. Placental malaria (PM) has been shown to reduce 70 

transplacental transfer of antibodies against tetanus, measles, Streptococcus pneumoniae (S. 71 

pneumoniae), herpes simplex virus type 1 (HSV-1), RSV and varicella-zoster virus (VZV) [26, 72 

31–33]. However, other studies have shown no impact of PM on transplacental transfer of tetanus, 73 

S. pneumoniae, Haemophilus influenzae type b (Hib), diphtheria, measles or RSV antibodies [31, 74 

33–36]. The effect of maternal HIV infection is also controversial. Some studies demonstrated 75 

that HIV infection leads to a reduction of the transplacental transfer of Hib, pertussis, 76 

pneumococcus, measles, tetanus and Plasmodium falciparum (P. falciparum) specific antibodies 77 

[26, 27, 37–39], but others have shown no effect [31, 36, 39–41]. Therefore, there are probably 78 

confounding variables that should be considered.  79 

In our study, we wanted to assess the impact of different factors, including maternal HIV infection 80 

and malaria in pregnancy on the placental transfer and cord levels of IgG and IgG subclasses to a 81 

broad range of highly prevalent microbial and vaccine antigens in a sub-Saharan African country, 82 

including: Corynebacterium diphtheriae (C. diphtheriae), Clostridium tetani (C. tetani), 83 

Bordetella pertussis (B. pertussis), Hib, S. pneumoniae, Shigella dysenteriae (S. dystenteriae), 84 

Vibrio cholerae (V. cholerae), hepatitis B virus (HBV), measles, RSV, Cryptosporidium parvum 85 

(C. parvum), Giardia intestinalis (G. intestinalis) and P. falciparum. A better understanding of 86 

factors affecting cord IgG levels will help designing better preventive measures and strategies for 87 

maternal and child health. 88 

Results 89 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.05.237503doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.05.237503
http://creativecommons.org/licenses/by/4.0/


5 
 

Description of participants 90 

A total of 341 women (197 HIV-uninfected and 144 HIV-infected) participated in the study 91 

(Table 1). HIV-infected women were older than the HIV-uninfected and there were more 92 

primigravidae among the HIV-uninfected. HIV-infected women had significantly more anaemia 93 

than the HIV-uninfected. There were no significant differences in birth weight or prematurity 94 

between infants born to HIV-infected and those born to HIV-uninfected women. Among the 155 95 

infants born from HIV-infected women, 8 tested HIV-positive at 6 weeks of age by polymerase 96 

chain reaction (PCR) analysis performed following national guidelines. Placental histology was 97 

performed on 307 samples from study participants, of which 3 had acute PM and 8 past PM. In 98 

total, 20 women had PM (positive at placental blood, by microscopy or PCR at delivery, or acute 99 

or past PM by histology), but there were no differences by HIV infection. Peripheral malaria 100 

(positive at peripheral blood by microscopy or PCR at any of the visits during pregnancy) was 101 

detected in 51 women, but there were no differences by HIV infection. Finally, P. falciparum 102 

exposure was lower among HIV-infected women.  103 

Profile of antibody levels in cord blood 104 

We first performed principal component analysis (PCA) of the cord antibody levels and maternal 105 

antibody levels separately, including IgG, IgG1, IgG2, IgG3 and IgG4 to all antigens tested, to 106 

reduce the dimensionality of the data and get insights into the overall antibody patterns. Cord and 107 

maternal PCA looked very similar (data not shown). Cord antibody responses clearly clustered 108 

by IgG subclasses (Fig. 1a) and antigens (Fig. 1b) suggesting different antibody profiles 109 

depending on the antigen specificity. IgG and IgG1 clusters were closer, showing similar 110 

responses, whereas IgG4 and IgG3 were the most distant. Hib cluster was clearly separated from 111 

the rest indicating a different antibody profile. Consistently, median IgG and IgG1 levels were 112 

higher than the rest of IgG subclasses and were both similar between them for most of the antigens 113 

with the exception of Hib (Fig. 1c). IgG2 had lower median levels than IgG1, followed by IgG3 114 

and the lowest levels were shown for IgG4.  115 
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We also determined the placental transfer of antibodies, measured as the ratio of cord blood levels 116 

to the maternal levels. The transfer efficiency was greatest for IgG1, IgG3 or IgG4 depending on 117 

the antigen: IgG1 for C. diphtheriae, P. falciparum, HBV and rotavirus, IgG3 for B. pertussis, C. 118 

tetani, Hib and V. cholerae and IgG4 for C. parvum, S. dysenteriae, measles and RSV. The less 119 

efficiently transferred subclass was IgG2 for most of the antigens, with the exception of G. 120 

intestinalis and S. pneumoniae for which IgG2 was the greatest (Fig. 1d).  121 

Altered maternal and cord blood antibody levels in HIV-infected women   122 

HIV-infected and HIV-uninfected women did not show significant differences between antibody 123 

levels except for C. tetani (IgG and IgG1), S. pneunomiae and RSV (IgG2), and C. diphtheriae 124 

and P. falciparum (IgG4), with lower antibody levels in HIV-infected compared to HIV-125 

uninfected women (Fig. 2a-2d and Figure 2-figure supplement 1). In contrast, higher G. 126 

intestinalis and HBV IgG levels were found in HIV-infected women (Fig. 2a). 127 

IgG cord blood levels were lower in HIV-infected than HIV-uninfected women for C. tetani, B. 128 

pertussis, S. pneumoniae, measles, rotavirus and C. parvum. Similarly, HIV-infected women had 129 

lower IgG1 cord levels for C. diphtheriae, C. tetani, B. pertussis, Hib, S. dysenteriae, V. cholerae 130 

and measles for IgG1 (Fig. 2b). Lower C. diphtheriae and P. falciparum IgG4 levels were also 131 

found in cord blood of HIV-infected than HIV-uninfected women, whereas no differences were 132 

observed between groups for IgG2 and IgG3 (Fig 2c-2d and Figure 2-figure supplement 1).  133 

Altered placental transfer of antibodies in HIV-infected women 134 

Placental transfer of IgG and IgG1 was significantly lower in HIV-infected women for all antigens 135 

except for Hib and V. cholerae (IgG) and C. tetani, S. pneumoniae, V. cholerae and RSV (IgG1) 136 

(Fig. 3a-3b, Figure 3-figure supplement 1 and Figure 3-figure supplement 2). For IgG2, only G. 137 

intestinalis, B. pertussis and HBV had significantly lower transfer in HIV-infected women, while 138 

S. pneumoniae and RSV had higher transfer in HIV-infected women (Fig. 3c and Figure 2-figure 139 

supplement 3). For IgG3, only C. tetani antibodies had a significantly lower transfer in HIV-140 

infected compared to HIV-uninfected women (Fig. 3d and Figure 3-figure supplement 4). No 141 
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significant differences in placental transfer between the two groups were found for IgG4 (Figure 142 

3-figure supplement 5).  143 

Factors associated with cord blood levels of IgG and IgG subclasses  144 

Maternal antibodies, HIV infection and P. falciparum exposure were the only variables with a 145 

clear general impact on univariable models and were selected for multivariable models, in which 146 

maternal antibody levels had the strongest positive correlation with cord antibody levels for all 147 

the antigens and subclasses (Fig. 4a). However, the effect of maternal antibody levels was more 148 

variable for IgG3-4 than for IgG and IgG1 subclasses. On average, a 10% increase in maternal 149 

IgG levels was associated with 8.1% to 9.7% increases in IgG cord blood levels, depending on 150 

the antigen. For IgG subclasses, a 10% increase in maternal antibody levels was associated with 151 

increases of cord blood levels from 7.6% to 10.9% for IgG1, 5.4% to 9.6% for IgG2, 5% to 9.9% 152 

for IgG3 and 5.3% to 9.3% for IgG4. 153 

Maternal HIV infection (Fig. 4b) had a negative effect on IgG cord blood levels to all antigens, 154 

except for C. diphtheriae, Hib and V. cholerae. HIV infection was associated with a 2.1% to 4.1% 155 

reduction in the IgG cord blood levels. For IgG1, HIV infection negatively impacted cord blood 156 

levels against C. diphtheriae, B. pertussis, S. dysenteriae, HBV, measles, C. parvum and G. 157 

intestinalis (2.9% to 7.1% reduction). For IgG2, an HIV negative effect was observed against B. 158 

pertussis, S. dysenteriae, HBV and G. intestinalis (2.9% to 7.1% reduction), whereas HIV was 159 

associated with an increase of 3.3% of IgG2 to RSV. Finally, we only detected a negative effect 160 

of HIV infection on IgG3 levels to C. tetani (1.1% reduction) and IgG4 to P. falciparum (1.8% 161 

reduction).  162 

P. falciparum exposure was negatively associated with cord blood IgG levels against S. 163 

dysenteriae and HBV, IgG1 against S. pneumoniae and rotavirus, IgG2 against HBV and IgG3 164 

against C. diphtheriae and rotavirus (Fig. 4c). Depending on the IgG sublcass and antigen, 10% 165 

increseas in P. falciparum exposure reduced the cord blood levels from 0.3% to 0.8%. 166 
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Previous studies suggest that PM rather than peripheral malaria affect transplacental transfer of 167 

antibodies and lead to adverse outcomes due to the damaged placental tissue [35, 42, 43]. 168 

Therefore, we explored the effect of PM on cord blood levels and placental transfer instead of P. 169 

falciparum exposure despite the low number of women with any evidence of PM. When analysing 170 

HIV-infected women only, PM was associated with lower B. pertussis IgG1, C. diphtheriae IgG2 171 

and HBV IgG3 levels in cord blood (Figure 4-figure supplement 1). 172 

Prematurity (Fig. 5a), previously shown to have a detrimental effect on placental transfer of 173 

antibodies [44], increased the quality (AIC) of some of the above multivariable models. 174 

Prematurity was associated with lower cord blood IgG levels against Hib (4.2% reduction 175 

compared with on-term cord blood levels), V. cholerae (2.3% reduction), measles (5.8% 176 

reduction) and C. parvum (3,8% reduction without statistical significance after adjusting for 177 

multiple testing) 178 

The rest of the variables (age, maternal anaemia, gravidity, low birth weight, IPTp treatment, 179 

seasonality; and CD4+ T cell counts, ART and viral load for HIV-infected women) did not provide 180 

an added value to the multivariable models. Univariable models did not show a consistent effect 181 

of any variable across antigens or IgG subclasses, but some significant associations were found 182 

for age and gravidity (Supplementary Material 1).  183 

Factors associated with placental transfer of IgG and IgG subclasses 184 

In multivariable models including HIV infection and P. falciparum exposure, HIV infection (Fig. 185 

6a) was associated with a generalized reduced placental transfer of IgG and IgG1 (from 2.1% to 186 

6.7% reduction depending on the antigen). HIV infection was also associated with a reduced 187 

transfer of IgG2 against B. pertussis, HBV and G. intestinalis, but was associated with an increase 188 

in IgG2 RSV transfer (5.4% increase). Although adjusted p-values were not significant, a similar 189 

trend of positive correlation was found for S. pneumoniae IgG2 and Hib and V. cholerae IgG3 190 

and IgG4. 191 
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P. falciparum exposure (Fig. 6b) had a negative effect on the placental transfer of antibodies for 192 

some antigens. An increase of 10% in P. falciparum exposure reduced the placental transfer of 193 

IgG against S. dysenteriae and HBV by 0.3% and 0.5%, respectively, IgG2 against HBV by 0.9% 194 

and IgG3 against C. diphtheriae by 0.6%. 195 

PM, in contrast to P. falciparum exposure, did not have any impact on transplacental transfer of 196 

antibodies in exploratory analyses and did not improve any of the models, although it had a similar 197 

trend of correlation on IgG. Nevertheless, PM was associated with a diminished placental transfer 198 

on IgG1 B. pertussis among the HIV-positive subset of women (Figure 6-figure supplement 1). 199 

When prematurity was added to the multivariable models, this additional covariable had a 200 

negative effect on placental transfer of Hib and V. cholerae IgG antibodies (4.5% and 2.3% 201 

reduction in premature vs on-term newborns, respectively) (Fig. 5b). 202 

The rest of variables were not added to the placental transfer multivariable models, because almost 203 

none of the models improved when included. Similar to cord blood levels ones, the placental 204 

transfer univariable models did not show a consistent effect of any variable not included in the 205 

multivariable models across antigens or IgG subclasses (Supplementary Material 1).  206 

Discussion 207 

Our comprehensive analysis of maternal and cord plasma IgG and IgG subclasses against a wide 208 

range of microbial and vaccine antigens allowed a depth immunoprofiling, that is essential to 209 

decipher the mechanisms affecting antibody placental transfer and maternal and newborn 210 

immunity in women chronically exposed to pathogens. We confirmed that the main determinant 211 

of cord IgG and IgG subclass levels are the maternal corresponding antibody levels, and that 212 

maternal HIV infection is associated with a generalized diminished IgG levels in the cord due to 213 

low maternal levels but also to a broadly reduction of IgG and IgG1 placental transfer. 214 

Maternal and cord blood antibody levels are usually correlated in many studies, suggesting that 215 

maternal levels are the main determinant for transfer efficiency [9, 45, 46]. However, the effect 216 

of HIV infection on placental transfer has not been consistently assessed and the few studies 217 
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looking at its effect on maternal and cord blood levels mainly focussed on total IgG. Our results 218 

showed that HIV infection reduced the IgG maternal levels for some antigens, the cord blood 219 

levels overall, and also had a negative effect on transplacental transfer of IgG antibodies. It is 220 

interesting that although we found higher maternal HBV and G. intestinalis IgG levels among 221 

HIV-infected women, cord blood levels and transplacental transfer were lower than in HIV-222 

uninfected women. Higher maternal antibody levels against these pathogens in HIV-infected 223 

women may be due to an increased susceptibility to co-infections with these pathogens, as 224 

described before [47–49], but it seems that they are not being transferred as efficiently as in HIV-225 

uninfected women. This could be due to hypergammaglobulinemia, demonstrated to be common 226 

among HIV-infected individuals [50] and previously shown to impair transplacental transfer of 227 

antibodies [9, 33]. 228 

Our results are consistent with previous studies reporting that HIV infection led to a reduction of 229 

the cord blood levels and transplacental transfer of total IgG against B. pertussis [40, 41], C. tetani 230 

[26, 38, 40, 41], S. pneumoniae [31, 38, 41, 51], RSV [52, 53] and measles [37, 38].  Some studies 231 

also found a negative effect on Hib [27, 40, 51] that is not appreciated in our study (although we 232 

found reduced IgG1 levels in cord in univariable analyses). However, our results differ from other 233 

studies that did not find any effect of HIV status on IgG levels against C. diphtheriae [36], C. 234 

tetani [31, 36], S. pneumoniae [53], HBV [36] and measles [31, 36].  235 

IgG subclasses may be differently elicited depending on the pathogen, the antigen or the epitope 236 

[54] and the efficiency of the antibody placental transfer is different for each subclass due to 237 

differential affinity of the receptors FcRn. Furthermore, the Fc region of IgG, that mediates 238 

effector functions, vary between IgG subclasses, conferring them different roles during infection 239 

and pathogen clearance [55]. We found that HIV infection reduced mainly IgG1 cord levels due 240 

to an HIV impairment of the transplacental transfer, similarly to IgG. Interestingly, maternal HIV 241 

infection increased the placental transfer of IgG2 to S. pneumoniae and RSV, although in 242 

multivariable models it was only significant for RSV. We also found that HIV infection had a 243 

positive effect on RSV IgG2 cord blood levels, although IgG2 maternal levels were lower among 244 
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HIV-infected women. To our knowledge an increased placental transfer by HIV infection has not 245 

been described before. This may have implications for maternal immunization with RSV vaccines 246 

under development. 247 

The efficacy of IgG placental transfer also depended on the antigen. IgG1, IgG3 or IgG4 248 

transferred better than IgG2, except for S. pneumoniae and G. intestinalis, for which IgG2 transfer 249 

was higher. This was unexpected because it has been previously described that the greatest 250 

transport occurs for IgG1, followed by IgG4, IgG3, and finally IgG2 [9, 20]. However, IgG1 251 

levels were the highest for almost all antigens in cord blood, probably because the overall higher 252 

levels of this IgG subclass in maternal blood. One exception was Hib that presented higher IgG2 253 

cord levels than IgG1, although IgG1 transplacental transfer was higher than IgG2 consistently 254 

with previous studies [56]. The mothers had a IgG2-predominant response to Hib, and 255 

consequently higher IgG2 than IgG1 levels were found in cord blood as previously described [57, 256 

58].  257 

Regarding other variables, our results did not show any significant association between CD4+ T 258 

cell counts or HIV viral load on cord blood levels and transplacental transfer of antibodies. Even 259 

though these results agree with previous studies that did not find any associations [40, 51, 59], 260 

other studies described that lower CD4+ T cell counts and higher HIV viral load led to a reduction 261 

on the transfer of some pathogen-specific antibodies and vaccines such as measles and S. 262 

pneumoniae [35, 60, 61]. Some studies described that HIV-infected women receiving ART 263 

transferred higher pathogen-specific antibodies than those who were not under ART [59] or who 264 

initiated it during pregnancy [62]. However, in our cohort we did not find any significant 265 

associations in regards to ART.  266 

At the time of the study, malaria transmission intensity was very low in the area and only a few 267 

women had active malaria during pregnancy. Nonetheless, we found a negative correlation 268 

between P. falciparum exposure and both placental transfer and cord blood antibody levels for 269 

some antigens and IgG subclasses. Previous studies are contradictory, as some found that PM led 270 

to a reduction of the transplacental transfer of some pathogen-specific IgG to C. tetani [32], 271 
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measles [33, 37], RSV [35] and S. pneumoniae [31], but others did not find any effect for IgG 272 

against C. diphtheriae [35, 36], C. tetani [26, 33, 36], Hib [35], HBV [36], measles [36] RSV [34] 273 

and S. pneumoniae [35]. Discrepancies between studies could be due to the different study areas, 274 

with different prevalence of malaria and study sample sizes, different type of antigens used in the 275 

studies, the different sensibilities among the serological methods used, different exposure to the 276 

pathogens tested, and other co-infections. 277 

We found prematurity to be associated with lower cord blood IgG levels and placental transfer 278 

for some antigens, as previous studies have shown [44, 63, 64], although the effect was not 279 

consistent among subclasses. It has already been reported that the greatest transport occur in the 280 

third trimester of gestation [17], and due to this fact, preterm infants may have lower amounts of 281 

transplacental IgG than term infants. 282 

Our results are important for maternal immunization implementation in settings with a high 283 

prevalence of HIV infection. In our study cohort, the only vaccine given during pregnancy was 284 

tetanus. Although HIV infection was associated with lower maternal and cord blood tetanus 285 

toxoid IgG and IgG1 levels in univariable models, HIV did not affect cord blood IgG1 levels in 286 

multivariable models adjusted by maternal levels. Systemic tetanus vaccination during pregnancy 287 

has been implemented in Africa and has demonstrated a high efficacy [65]. Pertussis vaccination 288 

in pregnancy has also been implemented in some countries, but not in Africa. Acellular pertussis 289 

vaccine induces mainly IgG and IgG1 responses that are thought to confer protection [66, 67]. 290 

We found lower cord blood levels and a reduced placental transfer of IgG and IgG1 against B. 291 

pertussis among HIV-infected women and those exposed to P. falciparum. These results highlight 292 

the need for further studies assessing the impact of these infections on pertussis vaccine efficacy 293 

and antibody placental transfer when implemented in pregnant women from African countries. A 294 

current vaccine in development for maternal immunization is RSV [68]. Natural RSV infection 295 

seems to elicit an IgG1 and IgG2 response against the F protein, the major target of the host’s 296 

immune response [69] and of some vaccines in development [70]. Antibodies binding to the F 297 

protein were protective [71] and Palivizumab, an IgG1 monoclonal antibody against RSV F 298 
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protein with neutralizing function, has shown to be effective [72]. Here, IgG and IgG1 against 299 

RSV F protein had the highest levels in cord blood compared to other subclasses, but HIV 300 

infection reduced IgG cord blood levels and placental transfer in multivariable models. Instead, 301 

IgG2 cord blood levels were increased by maternal HIV infection. Therefore, HIV infection could 302 

compromise the levels of RSV neutralizing antibodies transferred to the newborn and, 303 

consequently, diminish the effectivity of a RSV vaccine.  304 

Unfortunately, we do not know what are the thresholds of antibody levels that confer protection 305 

in our study, therefore it is difficult to infer the clinical relevance of the reductions in antibody 306 

levels detected in cord blood from the-HIV infected women. A study in South Africa reported 307 

that the frequency of HIV-infected and HIV-uninfected pregnant women with protective antibody 308 

levels against pertussis, tetanus or HBV was similar, although the overall frequencies were low 309 

(32%, 41% and 30%, respectively) [40]. This same study demonstrated that the proportion of 310 

HIV-infected pregnant women reaching anti-Hib protective antibody levels was lower than HIV-311 

uninfected women (35% vs 59%). Thus, for the implementation of maternal immunization 312 

programs, the effect of HIV infection and P. falciparum exposure must be taken into account, 313 

especially after demonstrating that both infections reduce the levels of antibodies in the cord blood 314 

and therefore may compromise vaccines protective effect in the newborn. 315 

In conclusion, our results demonstrate that maternal HIV infection was associated with reduced 316 

levels of antibodies against a broad range of pathogens and vaccine antigens in cord blood. Part 317 

of this reduction in antibody levels was due to altered antibody levels in the mother, which are 318 

the main determinants of cord blood levels, but HIV-infection also diminished transplacental 319 

transfer of antibodies. Importantly, IgG1 was the most affected by maternal HIV infection but, 320 

depending on the pathogen, other subclasses were also affected. P. falciparum exposure also 321 

reduced the levels and transfer of some antibodies, although overall the effect was lower than 322 

HIV infection. Our findings are important for effective maternal immunization strategies and for 323 

newborn and infant’s health.  324 

Materials and methods 325 
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Study design and sample collection 326 

A total of 197 HIV-uninfected and 144 HIV-infected women were recruited among those 327 

participating in two clinical trials of antimalarial intermittent preventive treatment in pregnancy 328 

(IPTp, ClinicalTrialGov NCT00811421) (Fig. 7) in the Manhiça District, Southern Mozambique 329 

[73, 74], between May 2011 and September 2012, to perform an immunology ancillary study. 330 

The first clinical trial evaluated mefloquine (MQ) as an alternative IPTp drug to sulfadoxine-331 

pyrimethamine (SP) in HIV-uninfected pregnant women. The study arms were (1) SP, (2) single 332 

dose MQ (MQ full), and (3) split dose over two days MQ (MQ split). The second trial evaluated 333 

MQ as IPTp drug in HIV-infected pregnant women in whom SP is contraindicated and who 334 

received daily cotrimoxazole (CTX), and women received either three monthly doses of MQ or 335 

placebo. All women received bed nets treated with long-lasting insecticide and supplements of 336 

folic acid and ferrous sulphate. Women also received tetanus vaccination. At the time of the study, 337 

the intensity of malaria transmission was low/moderate [75]. Antiretroviral therapy (ART) with 338 

daily monotherapy with zidovudine (AZT) was recommended when CD4+ T cell count was below 339 

<350 cells/μL and/or when women were in III or IV HIV WHO clinical stage [76].  340 

At delivery, blood samples from women (peripheral, placental and cord blood) were collected 341 

into sodium heparin and EDTA vacutainers. Plasma samples from peripheral blood and cord 342 

blood were available for this study from 332 (195 HIV-uninfected and 137 HIV-infected) and 303 343 

women (178 HIV-uninfected and 125 HIV-infected), respectively. There were 294 mother-cord 344 

paired samples.  345 

For the detection of P. falciparum species, thick and thin blood smears were assessed according 346 

to standard procedures [73, 74]. Fifty μl of maternal peripheral, placental, and cord blood samples 347 

were collected on filter papers for the detection of P. falciparum by means of a real-time 348 

quantitative polymerase-chain-reaction (qPCR) assay targeting the 18S ribosomal RNA [77]. 349 

Tissue samples from the maternal side of the placenta were also collected for the assessment of 350 

placental malaria. Microscopy data of peripheral and placental blood smears at delivery were 351 
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available for 308 and 340 women, respectively. Peripheral and placental blood qPCR data were 352 

available for 242 and 236 women, respectively.  353 

Antibody assays 354 

Quantitative suspension array technology (qSAT) assays applying the xMAP™ technology 355 

(Luminex Corp., TX) were used to measure antigen-specific IgG, IgG1, IgG2, IgG3 and IgG4 356 

responses to vaccine and pathogen antigens. A total of 16 recombinant proteins were selected for 357 

the analysis: diphtheria toxoid (Corynebacterium diphtheriae, Alpha Diagnostic DTOX15-N-358 

500), tetanus toxin (Clostridium tetani, Santa Cruz SC222347), pertussis toxin (Bordetella 359 

pertussis, Santa Cruz SC200837), Hib Oligosaccharide (BEI Resources NR12268), 360 

pneumococcal surface protein A (PspA, Streptococcus pneumoniae, BEI Resources NR33179), 361 

shiga toxin (Shigella dysenteriae, BEI Resources NR4676), anti-O-specific polysaccharide (OSP, 362 

Vibrio cholerae, Massachusetts General Hospital, MA, USA) [78], hepatitis B surface antigen 363 

(HBsAg, Abcam ab91276), hemagglutinin (measles, Alpha Diagnostic RP655), viral protein 6 364 

(VP6, rotavirus, Friedzgerald 80-1389), F protein (respiratory syncytial virus, BEI Resources 365 

NR31097), 17-kDA surface antigen (Cp17, Cryptosporidium parvum, Centres for Disease 366 

Control and Prevention, GA, USA) [79], variant-specific surface protein 5 (VSP5, Giardia 367 

intestinalis) [79], 42 kDA fragment of merozoite surface protein 1 (MSP142, P. falciparum, 368 

WRAIR) [80], merozoite surface protein 2 (MSP2, P. falciparum, University of Edinburgh) [81] 369 

and exported protein 1 (EXP1, P. falciparum, Sanaria) [82]. MSP142 antigen was selected for 370 

representing P. falciparum infection. Eight recombinant proteins represent the most prevalent 371 

pathogens circulating in the study area [83–85] and 6 were from the vaccines administrated to the 372 

infants through the EPI in Mozambique [86]. 373 

qSAT assays were previously standardized and optimized to control for sources of variability 374 

[87–89]. Briefly, antigens covalently coupled to MagPlex beads were added to a 96-well μClear® 375 

flat bottom plate (Greiner Bio-One) in multiplex resuspended in 50µL of PBS, 1% BSA, 0.05% 376 

Azide pH 7.4 (PBS-BN). Fifty µL of test samples, negative or positive controls [90] were added 377 

to multiplex wells and incubated overnight at 4ºC protected from light. After incubation, plates 378 
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were washed three times with PBS-Tween 20 0.05%, and 100µL of anti-human IgG (Sigma 379 

B1140), anti-human IgG1 (Abcam ab99775), anti-human IgG2 (Invitrogen MA1-34755), anti-380 

human IgG3 (Sigma B3523) or anti-human IgG4 (Invitrogen MA5-16716), each at their 381 

corresponding dilution, were added and incubated for 45 min. Then, plates were washed three 382 

times more and 100µL of streptavidin-R-phycoerythrin (Sigma 42250) at the appropriate dilution 383 

were added to all wells and incubated 30 min for IgG, IgG1 and IgG3. For IgG2 and IgG4, 100 384 

µL of anti-mouse IgG (Fc-specific)−biotin (Merck B7401) were added and incubated for 45 min, 385 

followed by another washing cycle and the incubation with streptavidin-R-phycoerythrin for 30 386 

min. Finally, plates were washed and beads resuspended in 100 μL/well of PBS-BN. Plates were 387 

read using the Luminex 100/200 analyser, and at least 20 microspheres per analyte were acquired 388 

per sample. Antibody levels were measured as median fluorescence intensity (MFI). Data were 389 

captured using xPonent software.  390 

Test samples were assayed at 2 dilutions for IgG (1/250 and 1/10000), and IgG1 and IgG3 (1/100 391 

and 1/2500) to ensure that at least one dilution fell in the linear range of the respective standard 392 

curve. For IgG2 and IgG4 only 1 dilution was tested (1/50) because their usual low levels. Twelve 393 

serial dilutions (1:3, starting at 1/25) of a positive control (WHO Reference Reagent for anti-394 

malaria P. falciparum human serum, NIBSC code: 10/198) were used for QA/QC and to select 395 

optimal sample dilution for data analysis. Two blanks were added to each plate also for quality 396 

control purposes. Sample distribution across plates was designed to ensure a balanced distribution 397 

of groups and time-points. Single replicates of the assay were performed.  398 

Statistical Analysis 399 

To stabilize the variance, the analysis was done on log10-transformed values of the MFI 400 

measurements. To select the sample dilution for each antigen-isotype/subclass-plate, the dilution 401 

nearest to the midpoint between the two standard curve serial dilutions ranging the maximum 402 

slope was chosen. If the maximum MFI value of a standard curve did not reach 15000, the 403 

reference value was automatically set up at 15000, since below this point, standard curve data 404 

does not seem trustworthy. If the MFI of the first sample dilution was lower than the MFI of the 405 
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second dilution (hook effect), the second one was chosen. Plates were normalized using the 406 

standard curve in each plate and the average standard curve from all plates -in both cases using 407 

the dilution of the latter with the value closest to 15000 MFI. The MFI values of samples were 408 

multiplied by the corresponding normalization factor (MFI value of the chosen dilution from the 409 

average standard curve divided by the MFI value of same dilution in the plate curve). 410 

The Shapiro-Wilk test of normality confirmed that most of the antibody data were not normally 411 

distributed. The Chi-square and the non–parametric Wilcoxon-Mann-Whitney tests were used to 412 

compare categorical and continuous variables, respectively, between HIV-infected and HIV-413 

uninfected women. Comparisons of crude Ig levels across antigens and subclasses between HIV 414 

exposure groups were assessed by Wilcoxon-Mann-Whitney tests. Univariable linear regression 415 

models were fit to determine the effect of variables on the cord blood antibody levels (log10) or 416 

the cord blood/mother ratio (log10). The variables considered in this analysis were log10 maternal 417 

antibody levels, maternal HIV infection, P. falciparum exposure, PM (acute, defined by the 418 

presence of parasites on sections without malaria pigment; chronic, by presence of parasites and 419 

pigment; or past, by the presence of pigment alone), age, gravidity (defined as primigravidae and 420 

multigravidae), maternal anaemia (defined as haemoglobin level <11g/dL), low birth weight 421 

(defined as <2500g at birth), prematurity (defined as delivery before 37 weeks of gestational age), 422 

gestational age (measured by Ballard score [91]), treatment (defined as MQ or placebo in the 423 

HIV-infected women ancillary study and MQ full, MQ split or SP in HIV-uninfected women 424 

ancillary study), antiretroviral therapy (ART) received before the initiation of the study, CD4+ T 425 

cell counts (<350 cells/μL or ≥350 cells/μL), HIV viral load (<400, 400-999, 1000-9999 and 426 

>9999 copies/mL), and seasonality (dry or rainy). Exposure to P. falciparum was computed as 427 

the sum of the maternal IgG antibody levels (MFI) for the following immunogenic P. falciparum 428 

antigens: MSP142, MSP2 and EXP1, as antibody levels to these antigens have been shown to 429 

reflect exposure to malaria [92, 93].  Seasonality was computed for each woman based on the 430 

pregnancy period - if at least 4 of the pregnancy months felt under the category of rainy period 431 

(November through April), the season was defined as such. In any other case, the season was 432 
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defined as dry. A base multivariable model including maternal antibody levels, maternal HIV 433 

infection and P. falciparum exposure was established for each antigen and IgG or IgG subclass. 434 

Base model for MSP42 did not include P. falciparum exposure as this variable includes antibodies 435 

to this antigen. We performed additional regression models testing exhaustively all possible 436 

combinations of predictor variables (added to our base model) and selected the models based on 437 

the Akaike information criterion (AIC), Bayesian information criterion (BIC) and Adjusted r-438 

square parameters. All p-values were considered statistically significant when <0.05 after 439 

adjusting for multiple testing through Benjamini-Hochberg. All data collected were pre-440 

processed, managed and analysed using the R software version 3.6.3 and its package devtools 441 

[94]. The ggplot2 package was used to perform boxplot graphs [95]. The FactoMineR and 442 

factoextra packages were used to perform Principal Component Analysis (PCA) [96, 97].  443 

Additional files 444 

Supplementary material 1: Cord blood levels and placental transfer of antibodies univariable 445 

models. 446 
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Figures legends and tables 740 

Fig. 1: Overview of levels of IgG and IgG subclasses to all pathogen antigens. a) Principal component 741 
analysis (PCA) plots of IgG and IgG subclass levels against all antigens clustered by subclass type. b) PCA 742 
plots of IgG and IgG subclass levels clustered by antigen type. The two principal components (Dim 1, 743 
Dim2) that explained the highest percentage of the variance of the data (percentage in parenthesis) were 744 
chosen for representation. Representation of the a) 10 b) 5 first variables that contributed to the principal 745 
components c) Medians of IgG and IgG subclass levels (log10 MFI) in cord blood for each antigen d) Median 746 
IgG and IgG subclass placental transfer for each antigen, represented as the cord/mother ratios. Source files 747 
of the medians of each antigen/subclass are available in the Figure 1-source data 1. 748 

 749 

Fig. 2: Mother and cord blood antibody levels (log10 MFI) in HIV-infected and HIV-uninfected women. 750 
Boxplots illustrate the medians and the interquartile range for IgG (a) and IgG1 (b), IgG2 (c) and IgG4 (d) 751 
subclasses. Levels between HIV-infected and HIV-uninfected women were compared by parametric 752 
Wilcoxon-Mann–Whitney test and p-values were adjusted for multiple testing by the Benjamini-Hochberg 753 
approach. Statistically significant differences between HIV infected and uninfected women levels are 754 
highlighted with an asterisk. Red represents HIV-infected women and blue HIV-uninfected women. Source 755 
files of the mother and cord levels of each antigen/subclass are available in the Figure 2-source data 1. 756 

 757 

Fig. 3: Antibody placental transfer in HIV-infected and HIV-uninfected women. Radar charts representing 758 
the medians of each analyte antibody cord/mother ratio in HIV-infected and HIV-uninfected women for 759 
IgG (a) and IgG subclasses (b-d). Ratios between HIV-infected and uninfected women were compared by 760 
parametric Wilcoxon-Mann-Whitney test and p-values were adjusted for multiple testing by the Benjamini-761 
Hochberg approach. Statistically significant differences between HIV-infected and uninfected women 762 
ratios are highlighted with an asterisk.  *** = p-val <  0.0001, ** = p-val < 0.001, * = p-val < 0.01. Red 763 
represents HIV-infected women and blue HIV-uninfected women. Source files of the medians and p-values 764 
of each antigen/subclass are available in the Figure 3-source data 1. 765 

 766 

Fig. 4: Factors associated with IgG and IgG subclass levels in cord blood. Forest plots show the effect of  767 
a) maternal antibody levels, b) HIV infection and c) P. falciparum exposure (Pf exposure) on cord blood 768 
levels of IgG and IgG subclasses, for all the antigens tested. Beta values, representing the increase or 769 
decrease of cord blood levels (log10MFI) were obtained from multivariable regression models using cord 770 
blood (log10MFI) levels as the outcome.  Beta values are shown when raw p-vals are significant. Asterisks 771 
are shown when adjusted p-vals by Benjamini-Hochbert are significant **** = p-val < 0.0001, *** = p-val 772 
< 0.001, ** = p-val < 0.01, * = p-val < 0.05. Source files of the multivariable model are available in the 773 
Figure 4-source data 1. 774 

 775 

Fig. 5: Association of prematurity with cord blood levels and placental transfer of IgG and IgG subclasses. 776 
Forest plots show the effect of a) prematurity and cord blood levels and b) prematurity and transplacental 777 
transfer of IgG and IgG subclasses, for all the antigens tested. Cord antibody levels are represented in 778 
log10MFI. Placental transfer is represented as cord/mother ratio (log10). Beta values are shown when raw p-779 
vals are significant. Asterisks are shown when adjusted p-vals by Benjamini-Hochbert are significant. **** 780 
= p-val < 0.0001, *** = p-val < 0.001, ** = p-val < 0.01, * = p-val < 0.05. Source files of the multivariable 781 
model are available in the Figure 5-source data 1. 782 

 783 

Fig. 6: Factors associated with IgG and IgG subclass placental transfer. Forest plots show the effect of a) 784 
HIV infection and b) P. falciparum exposure (Pf exposure) on placental transfer of IgG and IgG subclasses, 785 
for all the antigens tested. Beta values are shown when raw p-vals are significant. Asterisks are shown when 786 
adjusted p-vals by Benjamini-Hochbert are significant. **** = p-val <  0.0001, *** = p-val < 0.001, ** = 787 
p-val < 0.01, * = p-val < 0.05. Source files of the multivariable model are available in the Figure 6-source 788 
data 1. 789 
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Fig. 7: IPTp trial profile. 790 

Fig. 2-figure supplement 1: Mother and cord blood antibody levels (log10 MFI) in HIV-infected and 791 
HIV-uninfected women. Boxplots illustrate the medians and the interquartile range for IgG3. Levels 792 
between HIV-infected and HIV-uninfected women were compared by parametric Wilcoxon-Mann–793 
Whitney test and p-values were adjusted for multiple testing by the Benjamini-Hochberg approach. 794 
Statistically significant differences between HIV infected and uninfected women levels are highlighted with 795 
an asterisk. Red represents HIV-infected women and blue HIV-uninfected women.  796 

Fig. 3-figure supplement 1: Cord/mother log10 antibody ratios in HIV-infected and HIV-uninfected 797 
women. Boxplots illustrate the medians, the interquartile range (IQR) and the outlier points that are further 798 
1.5*IQR and black dots show the arithmetic means for IgG. Levels between HIV-infected and uninfected 799 
women were compared by Wilcoxon test and p-values were adjusted for multiple testing by the Benjamini-800 
Hochberg approach. ns = not significant. Red represents HIV-infected women and blue HIV-uninfected 801 
women. 802 

Fig. 3-figure supplement 2: Cord/mother log10 antibody ratios in HIV-infected and HIV-uninfected 803 
women. Boxplots illustrate the medians, the interquartile range (IQR) and the outlier points that are further 804 
1.5*IQR and black dots show the arithmetic means for IgG1. Levels between HIV-infected and uninfected 805 
women were compared by Wilcoxon test and p-values were adjusted for multiple testing by the Benjamini-806 
Hochberg approach. ns = not significant. Red represents HIV-infected women and blue HIV-uninfected 807 
women. 808 

Fig. 3-figure supplement 3: Cord/mother log10 antibody ratios in HIV-infected and HIV-uninfected 809 
women. Boxplots illustrate the medians, the interquartile range (IQR) and the outlier points that are further 810 
1.5*IQR and black dots show the arithmetic means for IgG2. Levels between HIV-infected and uninfected 811 
women were compared by Wilcoxon test and p-values were adjusted for multiple testing by the Benjamini-812 
Hochberg approach. ns = not significant. Red represents HIV-infected women and blue HIV-uninfected 813 
women. 814 

Fig. 3-figure supplement 4: Cord/mother log10 antibody ratios in HIV-infected and HIV-uninfected 815 
women. Boxplots illustrate the medians, the interquartile range (IQR) and the outlier points that are further 816 
1.5*IQR and black dots show the arithmetic means for IgG3. Levels between HIV-infected and uninfected 817 
women were compared by Wilcoxon test and p-values were adjusted for multiple testing by the Benjamini-818 
Hochberg approach. ns = not significant. Red represents HIV-infected women and blue HIV-uninfected 819 
women. 820 

Fig.3-figure supplement 5: Cord/mother log10 antibody ratios in HIV-infected and HIV-uninfected 821 
women. Boxplots illustrate the medians, the interquartile range (IQR) and the outlier points that are further 822 
1.5*IQR and black dots show the arithmetic means for IgG4. Levels between HIV-infected and uninfected 823 
women were compared by Wilcoxon test and p-values were adjusted for multiple testing by the Benjamini-824 
Hochberg approach. ns = not significant. Red represents HIV-infected women and blue HIV-uninfected 825 
women. 826 

Fig.4-figure supplement 1: Forest plots show the effect of placental malaria on cord blood levels of IgG 827 
and IgG subclasses, for all the antigens tested, in HIV-infected women. Cord antibody levels are represented 828 
in log10MFI. Beta values are shown when raw p-vals are significant. Asterisks are shown when adjusted p-829 
vals by Benjamini-Hochbert are significant. **** = p-val < 0.0001, *** = p-val < 0.001, ** = p-val < 0.01, 830 
* = p-val < 0.05. 831 

Fig. 6-figure supplement 1: Forest plots show the effect of placental malaria on placental transfer of IgG 832 
and IgG subclasses, for all the antigens tested, in HIV-infected women. Placental transfer is represented as 833 
cord/mother ratio (log10). Beta values are shown when raw p-vals are significant. Asterisks are shown when 834 
adjusted p-vals by Benjamini-Hochbert are significant. **** = p-val < 0.0001, *** = p-val < 0.001, ** = 835 
p-val < 0.01, * = p-val < 0.05. 836 

 837 

 838 
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Table 1: Characteristics of study participants. 

 

All 

N=341 

HIV-uninfected 

N=197 

HIV-infected 

N=144 

p–value  

a 

Age a (years median [IQR]) 25.0 [19.0; 29.0] 21.0 [18.0; 28.0] 27.0 [22.0; 31.0] < 0.001 

Gravidity (n, %)    < 0.001 

Multigravidae 259 (76.0) 128 (65.0) 131 (91.0)  

Primigravidae 82 (24.0) 69 (35.0) 13 (9.0)  

Maternal haemoglobin (n, %)    0.025 

Anaemia (< 11 g/dL) 208 (61.5) 109 (56.2) 99 (68.8)  

Normal (≥ 11 g/dL) 130 (38.5)  85 (43.8) 45 (31.2)  

Birth weight (n, %)    NS 

Low (< 2500 g) 29 (8.5) 17 (8.6) 12 (8.33)   

Normal (≥ 2500 g) 312 (91.5) 180 (91.4) 132 (91.7)   

Prematurity (n, %)    NS 

No (≥ 37 weeks) 312 (94.3) 181 (95.3) 131 (92.9)  

Yes (< 37 weeks) 19 (5.7) 9 (4.7) 10 (7.1)  

Treatment     < 0.001 

MQ  71 (20.9) 0 (0.0) 71 (49.7)   

MQ full  68 (20.8) 68 (34.5) 0 (0.0)  

MQ split 73 (21.5) 73 (37.1) 0 (0.0)  

Placebo 72 (21.2) 0 (0.0)  72 (50.3)  

SP 56 (16.5) 56 (28.4)  0 (0.0)  

ART at baseline (n, %)    NP 

No 24 (7.1) – 24 (17.1)  

Yes 116 (34.4) – 116 (82.9)  

CD4+ T cell counts (n, %)    NP 

Lower (< 350 c/µL) 40 (12.3) – 40 (31.2)  

Higher (≥ 350 c/µL) 88 (27.1) – 88 (68.8)  

HIV viral load (copies/mL)    NP 

< 400 21 (6.4) – 21 (16.0)  

(400–999) 41 (12.5) – 41 (31.3)  

(1000–9999) 48 (14.6) – 48 (36.6)  

> 9999 21 (6.4) – 21 (16.0)  

Placental malaria b (n, %)    NS 

No 321 (94.1) 184 (93.4) 137 (95.1)  

Yes 20 (5.9) 13 (6.6) 7 (4.9)  

Peripheral malaria c (n, %)    NS 

No 290 (85.0) 165 (83.8) 125 (86.8)  

Yes 51 (15.0) 32 (16.2) 19 (13.2)  

P. falciparum exposure (log10 MFI IgG) 5.27 [5.19; 5.34] 5.29 [5.21;5.35] 5.26 [5.18; 5.33] 0.011 

For numerical variables, the median and first and third quantile, in brackets, are given. For the categorical variables the number of 

individuals for each group and percentages, in parentheses, are given. 
a For the age, the Wilcoxon-Mann-Whitney test was used to compare differences between median values. For the categorical variables, 

the Chi-square test was used. 
b Placental malaria was considered positive if there was any evidence of P. falciparum placental parasitaemia by any method. 
c Peripheral malaria was considered positive if there was any evidence of P. falciparum peripheral parasitaemia by any method. 

The statistical significance was considered when p–value <0.05; MQ, mefloquine; NS, not significant; NP, not−performed tests; SP, 

sulfadoxine-pyrimethamine. 
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