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Abstr act

In many regions, malaria transmission is seasonal, but it is not well understood whether P. falciparum modulates its
investment in transmission in response to seasonal vector abundance. In two sites in western Kenya (Chulaimbo and
Homa Bay), we sampled 1116 asymptomatic individuals in the wet season, when vectors are abundant, and 1743 in
the dry season. We screened for P. falciparum by qPCR, and gametocytes by pfs25 RT-gPCR. Parasite prevalence in
Chulaimbo and Homa Bay was 27.1% and 9.4% in the dry season, and 48.2% and 7.8% in the wet season
respectively. Mean parasite densities did not differ between seasons (P=0.562). A contrasting pattern of gametocyte
carriage was observed. In the wet season, fewer infections harbored gametocytes (22.3% vs. 33.8%, P=0.009), but
densities were 3-fold higher (P<0.001). Thus, in the wet season, among gametocyte positive individuals, higher

proportion of all parasites were gametocytes, reflecting an increased investment in transmission.
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Introduction

Malaria control requires mapping potential silent gametocyte reservoirs in time and space. In many settings with
pronounced seasonality in rainfall, Anopheles mosquitoes are few in the dry season as opposed to wet season where
they are plentiful, resulting in transmission primarily occurring during and shortly after the wet season (Machani et
al., 2020; Huestis & Lehmann, 2014; Jawara et a., 2008; Ouédraogo et al., 2008; Hamad et a., 2002). It is not
known how far Plasmodium falciparum adapts its transmission potential to changes in vector abundance across
seasons. Adaptions to increase transmission potential when chances for onward transmission are plenty could
maximize the fitness of the parasite population. Understanding such adaptations are crucial to design transmission-
reducing interventions.

Over the course of the red blood cell cycle, a small proportion of P. falciparum parasites develop into
gametocytes, the sexual form of the parasite (Sinden, 1983). A mosquito blood meal needs to contain at least one
female and one male gametocyte to be infective (Reece et al., 2008; Paul et al., 2000). The ingested gametocytes
develop into oocysts and after approximately two weeks, into sporozoites that are transmitted to the next vertebrate
host (Bruce et al., 1990). P. falciparum gametocytes exist in five morphologically distinguishable stages (Hawking
et a., 1971). Early ring stage gametocytes circulate in peripheral blood (Farid et a., 2017) while late stages I-1V
sequester for 7 to 12 days in inner organs including bone marrow and spleen until maturity (Farfour et al., 2012;
Eichner et al., 2001; Paul et a., 2000). The mature stage V gametocytes re-enter the peripheral circulation where
they require an additional 3 days to become fully infective (Lensen et a., 1999; Smalley & Sinden, 1977). Stage V
gametocytes remain in the circulation for a mean period of 6.4 days to a maximum of 3 weeks (Eichner et al., 2001).
Due to the sequestration of developing gametocytes, they are rarely detected in periphera blood during the first two
weeks following sporozoite inoculation.

A large proportion of all P. falciparum infections remain asymptomatic. Untreated infections can persist for
several months (Rodriguez-Barraquer et al., 2018; Moormann et al., 2013; Nassir et al., 2005). During this time,
parasite densities fluctuate and are often below the limit of detection by microscopy. Transmission stemming from
asymptomatic infections is a key obstacle for malaria control and elimination. A previous study in western Kenya
found asymptomatic individuals to be more infective than clinical cases (Gouagna et a., 2004). Even after
antimalarial treatment, gametocytes may continue to circulate for up to 2-3 weeks (Bousema et a., 2010).

Gametocyte densities are an important measure to predict the infectiousness of humans to mosquitoes (Gongalves et
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78  a., 2017; Ouédraogo et al., 2016; Churcher et al., 2013), and thus useful for evaluating the effects of interventions
79  that aim to reduce transmission (malERA, 2017).
80 Gametocyte density in the blood is governed by the conversion rate, i.e., the proportion of early ring stage
81  parasites committed to sexual vs. asexual development. A higher proportion of parasites developing into
82  gametocytes will increase transmission if vectors are present. On the other hand, the investment in gametocytes is
83 lost if gametocytes are not taken up by mosquitoes. The factors affecting the conversion rate are not well
84 understood. In laboratory culture and rodent malaria models, factors such as high parasite density (Mitri et al., 2009)
85  and drug pressure (Buckling et al., 1999) have been found to impact gametocyte conversion. Few studies have
86  measured the conversion rate directly in natural infections and observed pronounced variation (Usui et al., 2019;
87  Poranetal., 2017, Smalley et al., 1981).
88 Areas of western Kenya experience perennial malaria transmission with peaks in vector density and
89  transmission coinciding with seasonal rains in April-August and October-November (Machani et al., 2020; Desai et
90 4., 2014). In regions with pronounced seasonality in vector abundance, parasites could increase their fitness by
91  increasing their gametocyte conversion rate in the wet season. A small study involving 25 individuals in Sudan
92  observed such a pattern (Gadalla et al., 2016). However, it remains unclear whether this is a general phenomenon,
93 i.e, whether asymptomatic P. falciparum infections modulate the investment in gametocytes to coincide with the
94  appearance of vectors at the start of transmission period.
95 To understand seasonal changes in gametocyte carriage, we compared P. falciparum gametocyte densities
96  in asymptomatic individuals between the dry and wet seasons in a low-transmission setting (Homa Bay) and a
97  moderate-transmission setting (Chulaimbo) in western Kenya. Blood stage parasites were diagnosed by varATS
98  gPCR, and mature female gametocytes were quantified using pfs25 reverse transcriptase gPCR.
99

100

101 Results

102  Prevalence and density of P. falciparum infections
103 2859 samples with age distribution representative of the population were analyzed in this study. The demographic
104  characteristics of the study participants are summarized in Table 1.

105
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106
107  Tablel. Characteristics of study participants
Chulaimbo Homa Bay
Parameter dry wet dry wet N=1324
N=262 N=419 N=854
Demographic
data
Agegroupin N (%) N (%) N (%) N (%)
years
<5 45 (17.2) 62 (14.8) 158(185) = 227 (17.1)
5-15 75 (28.6) 173 (41.3) 154 (18.0) 419 (31.6)
>15 142 (54.2)  184(43.9) 542 (635)  678(51.2)
Female (%) 155 (59.2)  234(55.8) 578 (67.7) 840 (63.4)
Parasitological P value P value
data
Parasite 71/262 202/419 <0.0001* 80/8%4 103/1324  0.1921
prevalence (27.1%) (48.2%) (9.4%) (7.8%)
Geometric mean 7.79 117 0.8433 6.87 5.31 0.9638
parasite density [3.07-19.7]  [6.80-20.2] [3.53-13.4] [2.88-9.81]
Proportion 48/71 135/202 0.9050 63/80 83/103 0.7595
subpatent (67.6%) (66.8%) (78.8%) (80.6%)
infections (<100
parasite/pL)
Population 27/262 50/419 0.5140 241854 18/1324 0.0162*
gametocyte (10.3%) (11.9%) (2.8%) (1.4%)
prevalence
Proportion 2771 50/202 0.0325* 24/80 18/103 0.0457*
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gametocyte (38.0%) (24.8%) (30.0%) (17.5%)

positive infections

Geometric mean 1.37 4.74 0.0181* 0.77 142 0.0638

pfs25 density [0.79-236]  [2.36-9.55] [0.54-1.10]  [0.76-2.65]
108  Numbersin box brackets[ ] are 95% confidence intervals; asterisk (*) indicate significant at P<0.05
109
110 In both seasons, prevalence of P. falciparum infection was significantly higher in Chulaimbo than Homa
111  Bay (wet: P<0.001, dry: P<0.001, Table 1). In Chulaimbo, the prevalence was significantly higher in the wet season
112  (P<0.001, Table 1), but did not differ between seasons in Homa Bay (P=0.192, Table 1). Across all surveys,
113  prevalence was higher in males than females (21.4% vs. 12.8%, P<0.001). School-age children (5-15 years) were at
114  highest risk of infection (Fig 1).
115 Parasite densities by gPCR did not differ between seasons (Table 1). Across all surveys, parasite densities
116  differed significantly between age groups (P<0.001, Fig 1). The densities peaked in children aged 5-15 years with a
117  mean of 20.8 parasites/uL (95% confidence interval [CI95]: 12.6-34.5), and thus were 6-fold higher than in adults

118  aged >15 years (3.3 parasites/yL, CI95: 2.1-5.1).
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121  Figure 1. Agetrendsin P. falciparum parasite and gametocyte prevalence and density. Blood stage parasite density

122  was measured by varATS gPCR, and gametocyte density by pfs25 mRNA reverse transcription gPCR. The
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123  proportion of gametocyte positive infections refers to proportion of all individuals with blood stage parasite who
124  were positive for gametocytes.

125

126  Proportion of gametocyte positive infections and gametocyte density

127  Across al surveys, gametocytes were detected in 119/2859 (4.2%) individuals. The population gametocyte
128  prevalence differed significantly between sites across seasons (Table 1, wet: P<0.001, dry: P<0.001), and ranged
129  from 1.4% in Homa Bay in the wet season to 11.4% in Chulaimbo in the wet season (P<0.001, Table 1). The
130  proportion of all individuals with blood stage parasites who were positive for gametocytes (the proportion of
131  gametocyte positive infections) was significantly higher in the dry season (33.2%) than in wet season (22.3%,
132  P=0.009, Table 1), but no difference was observed between sites (wet: P=0.149, dry: P=0.298).

133 The proportion of parasite and gametocyte carriers, and proportion of gametocyte positive infections was
134  highest in school-age children aged 5-15 years across seasons and sites (Fig 1). pfs25 transcripts/uL differed
135  significantly between age groups (P=0.004, Fig 1). The transcript copies/IL peaked in children aged 5-15 years with
136 a mean of 3.6 transcript/uL (C195: 2.0-6.4), and thus were 3-fold higher than in adults aged >15 years (1.1
137  transcript/pL, Cl95: 0.8-1.5). The correlation between varATS copy numbers and pfs25 transcripts was moderate,
138  but highly significant (R=0.36, P<0.001, Fig 2). Likewise, the probability to detect gametocytes was correlated with
139  parasite density. Each 10-fold increase in genome copies resulted in 3.23-fold higher odds in carrying pfs25

140  transcripts.

141
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143  Figure 2. Correlation between P. falciparum asexual parasite and gametocyte densities across seasons. Dotted lines
144  show 95% confidence intervals.

145

146  Seasonal differencesin gametocyte carriage

147  Seasonal patterns in gametocyte carriage were similar in Homa Bay and Chulaimbo. Thus, results are presented for
148  both sites combined, with site-specific data in Table 1. The proportion of gametocyte positive infections was
149  dgnificantly higher in the dry season (33.8%, 51/151) compared to the wet season (22.3%, 68/305, P=0.009). In
150  contrast, mean gametocyte densities were 3-fold higher in the wet season (wet: 3.46 pfs25 transcripts/uL (C195: 2.0-
151 6.0), dry: 1.05 pfs25 transcripts/ulL (CI195: 0.8-1.5), P<0.001, even though parasite densities did not differ across
152  seasons (wet: 8.98 varATS copies/genome (C195: 5.9-13.6), dry: 7.29 varATS copies/genome (CI95: 4.2-12.7),
153 P=0.562). The difference in pfs25 transcript numbers between seasons remained highly significant when including
154  logtransformed parasite densities as a predictor in multivariable analysis (Table 2). No interaction was observed
155  between parasite density and the probability that an individual carried gametocytes, and season (P=0.739).

156 Pronounced variation in gametocyte carriage was observed among infections, with many medium- or high-
157  density infections not carrying any detectable gametocytes. Among infections with a density of >2000 varATS
158  copies/uL (corresponding to >100 parasites/uL), in the wet season 60.0% (24/40) carried gametocytes versus 36.8%
159  (32/87) inthedry season (P=0.014). Very few individuals carried gametocytes at high densities. For example, across
160  both surveys, only 30 individuals carried pfs25 transcripts at densities >5 transcripts/uL, 6 in the dry and 24 in the

161  wet season. Among them, 4/6 and 19/24 were school-age children aged 5-15 years.

9
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In multivariable analysis, only parasite density and season where found to be significantly associated with
the probability that an individual was gametocyte positive (Table 2). Age group (P=0.195), sex (P=0.214), and site
(P=0.364) were not associated. Likewise, gametocyte density was only significantly associated with parasite density

and season, but not site (P=0.063), age group (P=0.733), or sex (P=0.611) (Table 2).

Table 2. Multivariable predictors of gametocyte positivity and density

pfs25 positivity aOR P value
log10 Pf copies 0.53 <0.001
Wet season -0.716 0.002
Constant -1.198 0.005

l0g10 pfs25 density ~ Coefficient P value

log10 Pf copies 0.246 <0.001
Wet season 0.42 0.004
Constant -1.098 <0.001

Gametocyte carriage among patent and subpatent infections

A sensitivity of 100 blood stage parasites/pIL (i.e. asexual parasites and gametocytes) was assumed to determine the
proportion of infections that could be detected by Rapid Diagnostic Test (RDT) or light microscopy. Given this
threshold, 72.1% (329/456) of all infections were subpatent across all surveys. No difference in the proportion of
subpatent infections was observed between seasons (dry: 73.5% (111/151), wet: 71.5% (218/305), P=0.648). 52.9%
(63/119) of all infections with gametocytes detected by RT-qPCR were subpatent across all surveys with equal
proportions in the dry (52.9% (27/51)) and wet season (52.9% (36/68)). Mean pfs25 densities were 3-fold lower in

subpatent infections compared to patent infections (1.26 vs. 3.64 transcripts/uL, P=0.003).

10
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179

180

181  Discussion

182  We observed a contragting pattern of gametocyte carriage between the dry and the wet season in blood samples
183  collected from 2859 hedlthy afebrile individuals residing in a malaria endemic area of western Kenya. In the wet
184  season, when most transmission is expected to occur, fewer infections harbored gametocytes, but gametocyte
185  densities were higher. The higher gametocyte densities in the wet season are particularly noteworthy as parasite
186  densities did not differ between seasons. Thus, the proportion of gametocytes among total blood stage parasites was
187  higher in the wet season compared to the dry season. Our results imply that parasites increase investment in
188  gametocytesin the high transmission period to be synchronized with increased vector abundance in the rainy season.
189  However, the adjustment was not uniform across all infections. Less than a quarter of infections carried detectable
190  gametocytes in the wet season. Among low-density asymptomatic infections gametocytes might be below the limit
191  of detection even by RT-gPCR (Koepfli & Yan, 2018). Yet, in the current study, even among medium-to-high
192  density infections (above 100 parasites/uL), more than half did not carry gametocytes. Given the high sensitivity of
193  our RT-gPCR, limited detectability cannot cause this result.

194 While our quantification of pfs25 transcripts is a good marker of infectivity at time of sample collection
195  (Bradley et al., 2018; Gongalves et al., 2017; Churcher et al., 2013), it is only an indirect measure of commitment to
196 transmission. Asexua parasite densities are expected to pesk early in the infection, when mature gametocytes are
197  not yet circulating. Likely, some of the high-density infections were recently acquired and carried sequestered
198  gametocytes that appeared in the blood a few days after sample collection. Among infections with above average
199  proportions of gametocytes, asexual densities might have been higher two weeks prior when gametocyte
200  development was initiated. Alternatively, the pattern might reflect true differences in gametocyte conversion. Few
201  studies have measured the conversion rate directly on field isolates, and found pronounced variation among P.
202  falciparum dtrains (Usui et al., 2019; Poran et a., 2017, Smalley et a., 1981). The factors underlying these
203  differences remain poorly understood.

204 Our findings of higher gametocyte densities in the wet season are in line with xenodiagnostic surveys
205  conducted from asymptomatic residents of Burkina Faso and Kilifi, Kenya. Gametocyte densities determined by

206  molecular assays targeting pfs25 transcripts and infectivity were substantially higher in the wet compared to the dry

11
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207  season (Gongalves et al., 2017; Ouédraogo et al., 2016). Similarly, the present study corroborates previous work on
208  asymptomatic individuals in eastern Sudan, in which gametocyte densities significantly increased during the period
209  of expected mosquitoes appearance relative to the transmission-free season with no corresponding substantial
210  increasein parasite densities (Gadalla et al., 2016). Increasing investment in gametocytes is beneficial to the parasite
211  in maximizing onward transmission when mosquitoes are plentiful.

212 As opposed to Chulaimbo where parasite prevalence doubled in the wet season, in Homa Bay the
213  prevalence did not change. The variations in seasonal parasite prevalence pattern between Chulaimbo and Homa
214  Bay may be due to differences in species composition of local vector populations (Ayanful-Torgby et al., 2018). In
215  Chulaimbo, An. Arabiensis forms the predominant mosquito vector species followed by Anopheles gambiae s.s.
216  (Machani et al., 2020), whereas in Homa Bay An. funestus is the predominant mosquito vector species (McCann et
217 4., 2014). An. funestus prefers permanent bodies of water like irrigated rice fields that last beyond the wet seasons,
218  while An. arabiensis prefers temporary holes and pools that dry out once the rainy season ends (Kweka et al., 2012;
219 Mala& Irungu, 2011; Ndengaet al., 2011; Fillinger et al., 2004).

220 In al surveys, 67-80% of infections were subpatent. In both sites and seasons, approximately half of all
221  individuals that had gametocyte detected by RT-gPCR carried infections at densities below the limit of detection of
222  microscopy or rapid diagnostic test. They thus would escape screening of asymptomatic individuals using field-
223  deployable diagnostics. Gametocyte densities were 3-fold lower in subpatent individuals, thus they would likely
224 infect fewer mosguitoes than patent individuals. Subpatent P. falciparum gametocyte carriers in natural infections
225  have the potential to infect mosquitoes (Gongalves et al., 2017; Ouédraogo et al., 2016; Churcher et al., 2013).
226  However, the contribution of these infections to transmission in different settings is not known (malERA, 2017).
227 P. falciparum parasite prevalence and density, and gametocyte prevalence and the proportion of
228  gametocyte-positive infections were highest in school-age children. The higher mean gametocyte density in school-
229  age children mirrored asexual parasite densities and no impact of host age on gametocyte carriage independently of
230  parasite density was apparent. Yet, among the small number of individuals carrying gametocytes at moderate-to-
231  high densities (>5 transcripts/ul), three quarters were in this age group. Our findings are in line with several studies
232  that had identified this age group as an important source of ongoing malaria transmission (Coalson et al., 2018;
233  Gongalveset al., 2017; Coalson et al., 2016; Ouédraogo et al., 2016; Churcher et al., 2013).

234
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235 Conclusions

236  We have observed changes in the investment in transmission across seasons in a large survey of asymptomatic P.
237  falciparum infections. Future research is needed to investigate how parasites sense changes in seasonality and to
238  understand the factors underlying the increase in gametocyte density in the wet season. Our findings confirm that
239  seasonality is an important aspect to consider when designing control measures targeted at asymptomatic carriers.
240  Thefrequent carriage of gametocytes in the dry season implies that these infections congtitute an important reservoir
241  that initiate transmission in the wet season. A small number of individuals, mostly school children, carried very high
242  gametocyte densities and likely contributed disproportionally to transmission. Targeted treatment of school children
243  at the beginning of the wet season might thus reduce transmission substantially.

244

245  Materialsand Methods

246

247  Study sitesand participants

248 2859 asymptomatic individuals were sampled in cross-sectional surveysin the dry season (n=1116) between January
249  and March 2019, and the wet season (n=1743) between June and August 2019 in Western Kenya, in Homa Bay (low
250 transmission) and Chulaimbo (moderate transmission) (Table 1, Figure 3). In these areas, P. falciparum is the
251  primary malaria parasite species (Idris et al., 2016). The study population included asymptomatic individuals aged 2
252  months to 99 years with no clinical symptoms. None of the study participants had been treated with antimalarial
253  drugs within the three days prior blood sampling.

254
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255
256  Figure 3. Map of study sites.
257
258 In Chulaimbo, Anopheles arabiensis is the primary vector. It is abundant in the wet season. An. gambiae s.s

259  isthe second predominant mosquito vector (Machani et al., 2020). In Homa Bay, An. funestus has re-emerged as the
260  predominant species following development of pyrethroid resistance (McCann et al., 2014). According to the Kenya
261 “End of Spray” Report (2018), indoor residual spraying (IRS) in Homa Bay has resulted in a reduction in malaria
262  vector densities and sporozoite rates compared with Chulaimbo, where IRS has not been implemented.

263

264  Ethical consideration

265  Ethical approval to conduct the study was obtained from Maseno University Ethics Review Committee (MUERC
266  protocol number 00456), the University of California, Irvine Institutional Review Board (HS# 2017-3512), and the
267  University of Notre Dame (#20076141). All study participants and guardians of minors gave informed consent prior
268  toobtaining clinical and demographic information and drawing a blood sample.

269
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270  Samplecollection and processing

271  350-400 pL of capillary blood was collected into EDTA microtainer tubes (Becton Dickinson, New Jersey, United
272  States) by finger prick. For RNA preservation, 100 uL of whole blood was transferred to a tube containing 500 pL
273  of RNAlater (Sigma-Aldrich, Missouri, United States) within 2 hours of collection and stored at -80°C until RNA
274  extraction (Koepfli et al., 2015; Wampfler et al., 2013). The remaining blood was centrifuged, plasma removed and
275  stored at -20°C. Thered cell pellet was stored at -20°C until DNA extraction.

276

277  Molecular parasite screening and quantification

278  DNA was extracted from 100 pL blood using the Genomic DNA Extraction kit (Macherey-Nagel, Diren, Germany)
279  and eluted in an equivalent volume of elution buffer. DNA was screened for P. falciparum using ultrasensitive
280 gPCR that amplifies a conserved region of the var gene acidic terminal sequence (varATS) according to a
281  previously published protocol (Hofmann et a., 2015). The varATS gene assay amplifies ~20 copies/genome
282  (Hofmann et al., 2015). The gPCR results were converted to var ATS copies/pL using external standard curve of ten-
283  fold seria dilutions (5-steps) of 3D7 P. falciparum parasites quantified by droplet digital PCR (ddPCR) (Koepfli et
284 4., 2016). The ddPCR thermocycling conditions, sequences and concentration of primers and probe are given in
285  supplementary materials. Asexual parasite densities were calculated by dividing varATS copy numbers by 20,
286  reflecting the approximate number of copies per genome.

287 For al the gametocytes assays, RNA was extracted using the pathogen Nucleic Acid Extraction kit
288  (Macherey-Nagel, Duren, Germany) and eluted in 50 pL elution buffer, i.e., RNA was concentrated two-fold during
289  extraction. RNA samples were DNase treated (Macherey-Nagel, Diren, Germany) to remove genomic DNA that
290  could result in afalse positive pfs25 signal (Meerstein-Kessel et al., 2018). A subset of RNA samples was tested by
291 varATS(QPCR, and al tested negative.

292

293  Molecular gametocyte screening and quantification

294 For gametocyte detection by reverse-transcription quantitative PCR (RT-gPCR), RNA was extracted from
295  all P. falciparum gPCR-positive samples. Gametocytes were quantified by the female pfs25 mRNA transcripts using
296 onestep RT-gPCR assays (Alkai Scientific, Florida, United States). All gPCR conditions, sequences and

297  concentration of primers and probes are given in supplementary materials. The pfs25 RT-gPCR results were
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298  converted to pfs25 transcript copies/uL using external standard curve of ten-fold serial dilutions (5-steps) of 3D7
299  culture parasites quantified by ddPCR (supplementary materials).

300

301 statistical analysis

302 Parasite and gametocyte densities were log,, transformed and geometric means per uL blood calculated
303  whenever densities were reported. The Shapiro-Wilk test and graphical normality was employed to determine
304  normal distribution of data following log transformation. Differences in prevalence between seasons and sites were
305  determined using the y* test. Differences in densities between seasons and sites were determined using T-test.
306 Differences in densities between age-groups were determined by ANOVA'’s Tukey's multiple comparisons test.
307  Multivariable analysis was employed to determine association of age, site and season with asexual parasite and
308  gametocyte positivity and density. The associations were investigated by regression analysis. Pearson’s correlation
309 test was conducted to establish the relationship between asexual parasite and gametocyte densities. Data analysis
310  wasdonein GraphPad Prism version 8 and STATA version 14.

311

312  Abbreviations

313 IRS: indoor residua spraying; RT-qPCR: reverse transcriptase — quantitative polymerase chain reaction; ddPCR:
314  droplet digital PCR; varATS: var gene acidic terminal sequence; RNA: ribonucleic acid; DNA: deoxyribonucleic
315  acid; EDTA: ethylenediaminetetraacetic acid.
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512  Supplementary materials

513 Droplet digital PCR varATS protocol

Component Final concentration Volume/Reaction
Bio-Rad supermix for probe (No | 1X 11 uL

duTP)

Probe 10puM 0.55 pL

Primer set (Fwd+Rev) 10 pM 1.98 uL
Nuclease-free water 6.47 uL

Template DNA 2L

514

515  Thermocycling conditions

516  95°C (10 min)

517  94°C (30 se0)

518 55°C(1min) ~45cycles

519  98°C (10 min)

520

521  Primersand probe

522 varATS fwd CCCATACACAACCAAYTGGA

523 varATSrev TTCGCACATATCTCTATGTCTATCT
524 varATSprobe 6-FAM-TRTTCCATAAATGGT-NFQ-MGB
525

526

527  pfs25 RT-gPCR gametocyte screening

528  Master mix (12 uL)

Component Final concentration Volume/Reaction

Radiant ™ 1-step Lo-Rox 2X Mix | 1X 6 uL

(Alkali Scientific)
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20x RTase 1X 0.6 pL
Primer set (Fw+Rv) 10 uM 1puL
Nuclease-free water 2.4 uL
Template RNA 2 uL
529
530

531  Thermocycling conditions
532  45°C (10 min)
533  95°C (2 min)

534  95°C (10 sec)

535  58°C (30 sec) 45 cycles

536

537  Primers

538 pfs25 fwd CGTTTCATACGCTTGTAAATG
539 pfs25_rev TTAACAGGATTGCTT GTATCT AA
540
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