

1 **JQ-1 ameliorates schistosomiasis liver fibrosis by suppressing**

2 **JAK2 and STAT3 activation**

3 **Short title: JQ-1 ameliorates schistosomiasis liver fibrosis through JAK2/STAT3**

4 Han Ding^{1¶}, Jiaming Tian^{1¶}, Xuhan Yang¹, Yongsheng Ji¹, Saeed El-Ashram², Xin
5 Hou¹, Cuiping Ren¹, Jijia Shen^{1*}, Miao Liu^{1*}

6

7 1. *Department of Microbiology and Parasitology, Anhui Provincial Laboratory*
8 *of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, School of*
9 *Basic Medical Sciences, Anhui Medical University, 81#Meishan Road, Hefei, Anhui*
10 *230032, People's Republic of China ; 2. College of Life Science and Engineering,*
11 *Foshan University, 18 Jiangwan Street, Foshan, Guangdong 528231 People's*
12 *Republic of China*

13 ¶These authors contributed equally to this work.

14 *Corresponding author:

15 Miao Liu, E--mail: iammiaoliu@126.com

16 Jijia Shen, E--mail:shenjijia@hotmail.com

17

18 **Abstract**

19 Schistosomiasis is a serious parasitic infection caused by *Schistosoma*. The parasite
20 deposits eggs in the host liver, causing inflammation that activates hepatic stellate cells
21 (HSCs), which leads to liver fibrosis. Currently, there is no effective therapy for liver
22 fibrosis; thus, treatments are urgently needed. Therefore, in the present study, mice
23 infected with *Schistosoma japonicum* were treated with JQ-1, a small-molecule
24 bromodomain inhibitor with reliable anti-tumor and anti-inflammatory activities. The
25 fibrotic area of the liver measured by computer-assisted morphometric analysis and the
26 expression levels of the cytoskeletal protein alpha smooth muscle actin (α -SMA) and
27 of collagen assessed by quantitative PCR and immunohistochemistry were significantly
28 decreased in the liver following JQ-1 treatment compared with vehicle-treated controls.
29 Total RNA was extracted from the liver of JQ-1–treated *Schistosoma*-infected mice for
30 RNA-sequencing analysis. Gene ontology and Kyoto Encyclopedia of Genes and
31 Genomes analyses indicated that JQ-1 affected biological processes and the expression
32 of cellular components known to play key roles in HSC transdifferentiation into
33 myofibroblasts. In vitro treatment with JQ-1 of JS-1 cells, a mouse HSC line, indicated
34 that JQ-1 significantly inhibited JS-1 proliferation but had no effect on JS-1 activity,
35 senescence, or apoptosis. Western blot results showed that JQ-1 inhibited the
36 expression of phosphorylated JAK2 and phosphorylated STAT3 without altering
37 expression levels of these non-phosphorylated proteins. Taken together, these findings
38 suggested that JQ-1 treatment ameliorated *S. japonicum* egg–induced liver fibrosis, at
39 least in part, by suppressing HSC activation and proliferation through the inhibition of
40 JAK2/STAT3 signaling. These results lay a foundation for the development of novel
41 approaches to treat and control liver fibrosis caused by *S. japonicum*.

42 **Key words:** *Schistosoma japonicum*; Fibrosis; JQ-1; JAK2/STAT3

43

44 **Author summary**

45

46 When a host is infected with *Schistosoma*, a common parasite that affects more than a
47 million people and hundreds of thousands of livestock, the parasite deposits eggs in the
48 liver of the host. The eggs lead to liver inflammation, which activates stellate cells in
49 the liver. These stellate cells generate most of the excessive extracellular matrix that
50 replaces healthy liver parenchyma with fibrous tissue, causing liver fibrosis.
51 *Schistosoma japonicum* causes the most severe liver damage of all the schistosome
52 parasites. Therefore, inhibiting the activation of the liver stellate cells and removing the
53 activated stellate cells are key strategies for treating liver fibrosis caused by this parasite.
54 JQ-1 is a potent inhibitor of the BET family of bromodomain proteins and is structurally
55 similar to inhibitors being tested in clinical trials for various types of cancers. Here we
56 found that administering JQ-1 to mice infected with *S. japonicum* decreased the degree
57 of liver fibrosis. JQ-1 inhibited the activation and proliferation of liver stellate cells by
58 blocking the phosphorylation and thus the activation of JAK2 and STAT3 to achieve
59 its therapeutic effects. Thus, this study provides insights into the development of new
60 therapeutic strategies for *Schistosoma*-induced liver fibrosis.

61

62

63 **Key words:** *Schistosoma japonicum*; Fibrosis; JQ-1; JAK2/STAT3

64

65

66 **1. Introduction**

67

68 Among the three major schistosomes known to infect humans (*Schistosoma japonicum*,
69 *Schistosoma mansoni*, and *Schistosoma haematobium*), *S. japonicum* causes the most
70 severe pathological damage. In China, *S. japonicum* is a common parasite associated
71 with chronic liver fibrosis [1]. Currently, zoonotic schistosomiasis caused by *S.*
72 *japonicum* is major public health threat affecting more than a million people and
73 hundreds of thousands of livestock in China [1]. Egg-induced lesions in the liver and
74 intestinal wall of the host are important complications of infection with *S. japonicum*.
75 The immune response of the host to the eggs results in granuloma and fibrosis [2].
76 Because the mechanism of fibrosis is not fully understood, there is no effective therapy
77 for liver fibrosis. Although the U.S. Food and Drug Administration (FDA) has recently
78 approved pirfenidone and nintedanib as treatments, additional new therapies are needed
79 for treating liver fibrosis [3].

80

81 The bromodomain and extra-terminal (BET) family contains four members
82 (bromodomain motif-containing proteins BRD2, BRD3, BRD4, and BRDT) that
83 specifically recognize acetylated lysine residue sites and participate in the regulation of
84 epigenetic protein expression, which plays a key role in regulating various biological
85 processes, including inflammation, the cell cycle, maintenance of the higher-order
86 chromatin structure, and identification of DNA damage signals [4-5]. JQ-1 is a selective
87 inhibitor of the BET family and has been shown to have promising anti-tumor and anti-
88 inflammation effects [6]. JQ-1 has been found to inhibit the development of fibrosis in
89 both a mouse model of hepatic fibrosis induced by carbon tetrachloride (CCl4) and a
90 mouse model of bleomycin-induced pulmonary fibrosis [7-8]. Therefore, we
91 hypothesized that JQ-1 would be effective in the treatment of hepatic fibrosis caused
92 by *S. japonicum*. However, little is known about the mechanisms underlying the effect

93 of JQ-1 on hepatic fibrosis caused by *S. japonicum*.

94 Therefore, the aim of the present study was to explore the mechanisms of action
95 underpinning the therapeutic effect of JQ-1 by using a mouse model of hepatic fibrosis
96 naturally caused by *S. japonicum*. We found that the degree of liver fibrosis in mice
97 treated with JQ-1 was significantly decreased, mainly through inhibiting the activation
98 and proliferation of hepatic stellate cells (HSCs). The activation and proliferation of
99 HSCs were inhibited by decreasing the phosphorylation and thus activation of Janus
100 kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3). These
101 findings lay a foundation for the development of new approaches for the treatment and
102 control of liver fibrosis caused by *S. japonicum*.

103

104 **2. Materials and methods**

105 **2.1. Ethics statement**

106 All animal experiments were approved by the Institutional Animal Care and Use
107 Committee at Anhui Medical University (Approval Number: LLSC20140061) and
108 conformed to the guidelines outlined in the Guide for the Care and Use of Laboratory
109 Animals. All infection was performed under anesthesia, and all efforts were made to
110 minimize suffering.

111

112 **2.2. Mouse model of fibrosis, cell culture, and reagents**

113 Female C57BL/6 mice (6 weeks old) were purchased from the Experimental Animal
114 Center of Anhui Province in Hefei, China. Mice were housed under specific pathogen-
115 free conditions at Anhui Medical University, with free access to food and water food.
116 The protocols for the animal experiments were approved by the Institutional Animal
117 Care and Use Committee at Anhui Medical University. Freshwater

118 *Oncomelania hupensis* snails infected with *S. japonicum* (provided by Hunan
119 Provincial Institute of Parasitic Diseases in China) were exposed to light for 3–4 h (25–
120 28 °C) to induce the release of cercariae. Hepatic fibrosis was experimentally induced
121 in 18 mice by infecting them with 18 ± 2 of these cercariae through the skin of abdomen.
122 The infected mice were randomly divided into two groups, experimental and control,
123 with nine mice in each group.

124

125 Six weeks after the infection, the mice were treated with praziquantel by intragastric
126 gavage (500 mg/kg/d for 2 days). In the seventh week, mice in the experimental group
127 were injected intraperitoneally (I.P.) with JQ-1 (50 mg/kg body weight/day; Cat. No.
128 HY-13030, MedChem Express; USA), and mice in the control group were injected I.P.
129 with vehicle, that is, (2-hydroxypropyl)- β -cyclodextrin (HP- β -CD; Cat. No. 778966,
130 Sigma; USA) 10% (wt/vol), once daily for 15 days. Animals were humanely killed 24
131 h after the final injection. They serum and the liver from each mouse were collected for
132 subsequent experimental analyses.

133

134 The murine HSC line, JS-1 cells, had been previously purchased from BeNa Culture
135 Collection (Beijing, China) and preserved in our laboratory. For the present study, JS-
136 1 cells were cultured in Dulbecco's modified Eagle medium with 10% fetal bovine
137 serum.

138

139 **2.3. Egg count in liver tissue**

140 Potassium hydroxide (10%; 1 mL) was added to 0.1 g of liver tissue and digested at 37
141 °C for 2 h. The number of eggs in the sample was then counted using a light microscope.

142

143 **2.4. Assessment of liver fibrosis**

144 Sections (5 μ m thick) of formalin-fixed, paraffin-embedded liver specimens were
145 stained with Sirius red. The red-stained collagen fibers were quantified by determining
146 the percentage of the stained area per total liver section as measured by computer-
147 assisted morphometric analysis. Immunostaining for alpha smooth muscle actin (α -
148 SMA), a marker for a subset of activated fibrogenic cells and myofibroblasts, and
149 collagen Ia1 (Col1a1) was performed using polyclonal α -SMA at a dilution of 1:500
150 and Col1a1 (1:250) primary antibodies (Bioss Inc.; Beijing, China).
151 Immunohistochemical analysis was performed with the PowerVision two-step
152 detection system (Zhongshan Biotechnology Co.; Beijing, China). Six to ten
153 photomicrographs per mouse liver were captured using an inverted microscope (Nikon
154 80I, Japan). Quantitative and qualitative changes were analyzed using morphometric
155 software (Image-Pro Plus; Media Cybernetics). At least three noncontinuous tissue
156 sections were measured, and the mean values obtained from nine mice were used for
157 statistical analysis.

158

159 Hydroxyproline content has been described as a surrogate for collagen content in
160 fibrogenesis. We measured the hydroxyproline content of the liver using a commercial
161 kit (Nanjing Jiancheng Bioengineering Institute; China). Briefly, 1 mL of hydrolysate
162 was added to a liver tissue sample (0.1 g), mixed, and fermented/heated in a boiling
163 water bath for 20 min. The suspension was mixed every few minutes to hydrolyze the
164 tissue components. The resulting components were used to detect the hydroxyproline
165 content according to the kit manufacturer's instructions. Absorbance was read at a
166 wavelength of 550 nm, and the total hydroxyproline content in the samples was
167 extrapolated from a standard curve.

168

169 **2.5. Serum liver enzyme quantification**

170 The levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase
171 (AST) were determined using a serum aminotransferase test kit (Nanjing Jiancheng
172 Bioengineering Institute; China) according to the manufacturer's instructions and
173 reported in terms of units per liter.

174

175 **2.6. RNA sequencing and data analysis**

176 Three individual liver samples from each group were pooled to generate one sample for
177 RNA sequencing. Liver samples were finely ground, and total RNA was extracted using
178 TRIzol (Invitrogen; Carlsbad, CA, USA). The quantity and purity of the total RNA
179 were assessed using a Bioanalyzer 2100 system. A 5- μ g sample of total RNA was used
180 to isolate poly(A) mRNA with a poly(T) oligo primer attached to magnetic beads
181 (Invitrogen). Briefly, mRNA was extracted from total RNA using oligo (dT) magnetic
182 beads and sheared into short fragments. These fragments of mRNA were then used as
183 templates for cDNA synthesis. The cDNAs were amplified by polymerase chain
184 reaction (PCR) to complete the library. The cDNA library was constructed from the
185 RNA samples and sequenced with an Illumina Hiseq 2500 system according to the
186 manufacturer's instructions. Differentially expressed genes were submitted to
187 enrichment analysis by gene ontology (GO) and Kyoto Encyclopedia of Genes and
188 Genomes (KEGG). *P* values were calculated using the Benjamini-corrected modified
189 Fisher's exact test, and *P* \leq 0.05 was considered statistically significant.

190

191 **2.7. Quantitative PCR**

192 Total RNA was extracted from the liver of each mouse. The mRNA was reverse
193 transcribed to cDNA using a PrimeScript RT reagent kit (Takara; Dalian, China). Real-
194 time reverse transcription quantitative PCR (qPCR) was performed in duplicate using
195 1 μ L of cDNA from each sample and SYBR Premix Ex Taq II (Takara) according to
196 the manufacturer's instructions. All reactions were performed using an ABI-Prism
197 StepOnePlus sequence detector system under the following conditions: 10 s at 95 °C;
198 40 cycles of 15 s at 95 °C and 40 s at 60 °C followed by 15 s at 95 °C; 1 min at 60 °C;
199 and 95 °C for 15 s. This allowed for the generation of a standard regression curve using
200 threshold settings and software analysis. Primers for qPCR were designed and
201 synthesized by Sangon Biotech Co. Ltd. Quantification was performed by comparing
202 the cycle threshold (Ct) values of each sample after normalization to GAPDH. Primer
203 sequences are summarized in Supplementary Table 1. The relative quantification levels
204 were calculated using the $2^{(-\Delta\Delta CT)}$ method.

205

206 **2.8. Cell viability assay**

207 The mouse HSC line JS-1 cells were cultured on six-well chamber slides in the presence
208 of DMSO (0.1%) or JQ-1 (500 nM) for 24 h. The exponentially growing cells were
209 trypsinized and washed twice with phosphate-buffered saline (PBS). Then, 450 μ L of
210 cell suspension was mixed with 50 μ L of 0.4% trypan blue dye and left for 5 min at
211 room temperature. Trypan blue exclusion was assessed, viable cells were counted using
212 a hemocytometer, and the percentage of viable cells was determined.

213

214 **2.9. Cell proliferation assay**

215 JS-1 cells were cultured on six-well chamber slides in the presence of DMSO (0.1%)
216 or JQ-1 (500 nM) for 24 h. The Cell Counting Kit-8 (CCK-8; Dojindo Laboratories;

217 Japan) solution (10 μ L/well) was added to measure cell proliferation at specific
218 intervals (0, 12, and 24 h of incubation). After 2 h of further incubation at 37 °C in 5%
219 CO₂, the absorbance of each well was measured at a wavelength of 450 nm by a Model
220 680 microplate reader (Bio-Rad; Richmond, CA, USA).

221

222 **2.10. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)**

223 **Assay**

224 JS-1 cells were cultured on six-well chamber slides in the presence of DMSO (0.1%)
225 or JQ-1 (500 nM) for 24 h. After incubation, JQ-1-induced apoptosis of JS-1 cells was
226 determined using a One-Step TUNEL Apoptosis Assay Kit (Beyotime; China)
227 according to the manufacturer's instructions. Briefly, JQ-1-treated cells were washed
228 twice with ice-cold PBS, fixed with 4% paraformaldehyde for 30 min, and
229 permeabilized with 0.5% Triton X-100 for 5 min. The cells were subsequently
230 incubated with the TUNEL detection reagent at 37 °C for 1 h. Cell fluorescence was
231 observed under a fluorescence microscope.

232

233 **2.11. Senescent cell staining**

234 JS-1 cells cultured on six-well chamber slides in the presence of DMSO (0.1%) or JQ-
235 1 (500 nM) were stained for a senescence-associated marker using a β -galactosidase
236 staining kit (Beyotime; Shanghai, China).

237

238 **2.12. Western blot analysis**

239 JS-1 cells were rinsed with ice-cold PBS, harvested, and lysed in a lysis buffer (HEPES,
240 25 mM; 1.5% Triton X-100; 1% sodium deoxycholate; 0.1% sodium dodecyl sulfate
241 [SDS]; NaCl, 0.5 M; EDTA, 5 mM; NaF, 50 mM; sodium vanadate, 0.1 mM;

242 phenylmethylsulfonyl fluoride, 1 mM; and leupeptin, 0.1 g/L; pH 7.8) containing a
243 protease inhibitor (Roche Applied Science; Indianapolis, IN, USA). Cell lysates were
244 solubilized in SDS sample buffer, separated by 12% SDS–polyacrylamide gel
245 electrophoresis with 60 µg of protein loaded per lane, and transferred to a nitrocellulose
246 membrane, which was blocked with blocking buffer (5% non-fat dry milk) for 2 h at
247 room temperature. To detect activation of the JAK2-STAT3 signaling pathway, the
248 membranes were then incubated with the primary antibodies against phosphorylated
249 (p)-JAK2 (Cat. No. 3771), JAK2 (Cat. No. 3230), p-STAT3 (Cat No. 4113), STAT3
250 (Cat. No. 4904), and β-actin (Cat. No. 3700) (all from Cell Signaling Technology;
251 USA), all diluted 1:1000 and incubated overnight at 4 °C. To detect the expression level
252 of α-SMA, collagen I, and collagen III, the membranes were then incubated with the
253 primary antibodies against α-SMA (Cat. No. 3771, Abcam; Cambridge, MA, USA),
254 collagen Ia1 (Col1a1; Servicebio; Wuhan, China), collagen III (Col3a1; Servicebio),
255 and GAPDH (Cat. No. 3700, Abcam) followed by incubation with the corresponding
256 horseradish peroxidase-conjugated secondary antibody (1:3,000; EMD Millipore, MA,
257 USA) for 2 h at room temperature. Finally, the membranes were developed by enhanced
258 chemiluminescence solutions (Thermo Fisher Scientific) and visualized using the
259 chemical luminescence imaging apparatus FluorChem FC3 (GeneTech; Shanghai,
260 China). Immunoreactive bands were quantified using densitometry (multiplex band
261 analysis from FluorChem FC3).

262

263 **2.13. Statistical analysis**

264 All data were obtained in three independent experiments, with triplicate samples used
265 for each experiment. Data sets were analyzed with Student's *t* test using GraphPad
266 Prism 6.01 software. Data are presented as means ± SEM. Two-sided values of *P* < 0.05

267 were considered statistically significant.

268

269 **3. Results**

270 **3.1 JQ-1 ameliorates liver fibrosis caused by *S. japonicum***

271 In the seventh week after *S. japonicum* infection, mice in the experimental group were
272 injected with JQ-1, and mice in the control group were injected with the vehicle HP- β -
273 CD, once daily for 15 days. All mice were humanely killed after 15 days of treatment
274 (Fig. 1A). The numbers of *S. japonicum* eggs were counted in the livers and were found
275 to be similar in both groups (Fig. 1B). As shown in Fig. 1C, the overall color of the
276 liver from mice in the HP- β -CD group was dark and the surface was irregular,
277 suggestive of severe fibrosis. In comparison, the color of the liver in the JQ-1-treated
278 group was lighter and more vivid, and the surface was relatively smooth.

279

280 Three non-continuous fixed, embedded, and sectioned liver slices were selected from
281 nine mice for Sirius red staining and morphological analysis. As shown in Fig. 1D and
282 1E, Sirius red staining indicated that the area of liver fibrosis in the group treated with
283 JQ-1 was significantly smaller than that in the control HP- β -CD group. Fibrosis was
284 observed throughout the liver of mice in the HP- β -CD group as wide scars. By contrast,
285 the infiltration of inflammatory cells and collagen fiber in the liver tissue was
286 significantly reduced in the group of mice treated with JQ-1.

287

288 The degree of liver cell damage was evaluated by measuring the enzyme levels of AST
289 and ALT in the serum of the mice. As shown in Figure 1F, serum transaminase activity
290 in the JQ-1 group was significantly lower than that in the HP- β -CD group ($P < 0.05$).
291 In the JQ-1 group, the level of hydroxyproline in the liver tissue of mice was also

292 significantly lower than that in the HP- β -CD group (Figure 1G, $P < 0.05$). Taken
293 together, these results indicated that the degree of liver fibrosis in the JQ-1 group was
294 significantly decreased.

295

296 **3.2 . JQ-1 treatment decreases collagen expression in the liver by reducing
297 activation of HSCs**

298 The immunohistochemical results showed that the expression levels of α -SMA and
299 Col1a1 in mouse liver significantly decreased after JQ-1 treatment (Fig. 2A and 2B).
300 The expression level of α -SMA was significantly lower in the JQ-1 treated group than
301 in the control group ($P < 0.05$). In addition, the expression levels of Col1a1 and Col3a1
302 in the HSCs of the JQ-1–treated group were also significantly lower than those in the
303 control group (Fig. 2C, $P < 0.05$). These results indicated that JQ-1 treatment decreased
304 the expression of collagen in the liver by inhibiting the activation of HSCs in the liver
305 to ameliorate hepatic fibrosis.

306

307 **3.3. GO and KEGG pathway enrichment analyses**

308 After RNA-sequencing analysis, we analyzed 25,228 genes (Supplemental Information
309 I). Differential gene clustering analysis results showed that compared with the HP- β -
310 CD–treated control group (Group 1; G1), there were 550 differentially expressed genes
311 (≥ 2 -fold difference) in the JQ-1–treated group (Group 2; G2), of which 263 genes were
312 upregulated and 287 genes were downregulated ($P < 0.05$) (Figure 3A and
313 Supplemental Information II). The results of subsequent analyses using qPCR were
314 consistent with the bioinformatics analyses and identified the differentially expressed
315 genes (Fig. 3B).

316

317 The 186 downregulated genes were submitted to the Database for Annotation,
318 Visualization and Integrated Discovery (DAVID) for GO term analysis. The GO
319 annotation indicated that JQ-1 affected a broad spectrum of biological processes and
320 expression of cellular components that are known to play key roles in HSC
321 transdifferentiation into myofibroblasts. These components included the extracellular
322 regions, extracellular matrix, extracellular region part and receptor activity, regulation
323 of ion transport, lipid metabolic processes, and integrin pathway (Supplementary Table
324 2). Based on the KEGG pathway database, a pathway analysis was performed to predict
325 the significantly enriched metabolic pathways and signal transduction pathways in the
326 host differentially expressed mRNAs. The significantly enriched pathways are shown
327 in Figure 3C. There were six significant signaling pathways: xenobiotic biodegradation
328 and metabolism, lipid metabolism, cancers, metabolism of cofactor and vitamins,
329 endocrine and metabolic diseases, and carbohydrate metabolism (Supplementary Table
330 3).

331

332 **3.4. Cytology results**

333 In cytology studies, we found that although JQ-1 had no effect on cell viability (Fig.
334 4A) or senescence-associated β -galactosidase activity (Fig. 4B), it significantly
335 inhibited the proliferation of JS-1 cells (Fig. 4C). The results of a TUNEL assay (Fig.
336 4D and 4E) provided further evidence that this inhibition of JS-1 cells was specific to
337 proliferation and was not caused by apoptosis.

338

339 **3.5. JQ-1 inhibits activation of JS-1 cells**

340 We used α -SMA to assess the degree of HSC activation. Using western blot and
341 quantitative PCR analyses, we found that the expression level of α -SMA in JQ-1-

342 treated JS-1 cells was significantly lower than that in the vehicle-treated (DMSO)
343 control group (Fig. 5A; $P < 0.05$). We also found that the protein expression levels of
344 collagen as assessed with Col1a1 and Col3a1 in JQ-1-treated JS-1 cells were
345 significantly lower than those in the vehicle-treated (DMSO) control group (Fig. 5B; P
346 < 0.05). These results indicated that JQ-1 treatment decreases the expression of collagen
347 in the liver by inhibiting the activation of JS-1 cells.

348

349 **3.6. JQ-1 treatment inhibits the phosphorylation of JAK2 and STAT3 in JS-1 cells**
350 As shown in Fig. 6, the expression levels of p-JAK2 and p-STAT3 were significantly
351 decreased in JS-1 cells treated with JQ-1 compared with those in the DMSO-treated
352 (vehicle control) group ($P < 0.05$). These results suggested that JAK2 and STAT3 were
353 less active in JS-1 cells after treatment with JQ-1.

354

355 **4. Discussion**

356 Previous studies have shown that JQ-1 blocks the expression of profibrotic factors by
357 competitively binding BRD4 in the carbon tetrachloride (CCl4)-induced model of liver
358 fibrosis in mice, inhibiting the development of fibrosis [7]. However, the observed
359 effect and mechanisms in the CCl4 model may not be applicable to infectious liver
360 fibrosis. In the present study, a mouse model of liver fibrosis was generated by infection
361 with *S. japonicum* to gain insight into the effects and mechanisms underlying treatment
362 with JQ-1 in *S. japonicum* egg-induced liver fibrosis. We found that JQ-1 treatment
363 significantly attenuated *S. japonicum* egg-induced fibrosis and significantly improved
364 the gross appearance of the liver (Fig. 1). We also observed that JQ-1 treatment
365 significantly inhibited expression of α -SMA, a marker of activation of HSCs in liver
366 tissue (Fig. 1).

367

368 The process of fibrosis formation from granular tissue induced by *S. japonicum* eggs
369 deposited in the liver is dependent on HSCs, which can undergo activation and
370 transform into myofibroblast-like cells [9]. This activation is characterized by the
371 gradual release of intracellular vitamin A, a high rate of cell proliferation, the synthesis
372 of a fibrogenic matrix rich in type I or type III collagen, activation of α -SMA, and a
373 high expression of extracellular matrix (ECM) [10]. Gradual deposition of ECM leads
374 to structural and functional disorders of the liver [11]. Because HSCs are the main
375 fibrogenic precursor cells in the liver, the blockade, reversal, or both of this activation
376 determines the efficacy of antifibrotic therapy and is key for the treatment of
377 schistosomiasis-induced liver fibrosis [12].

378

379 HSCs are typically non-proliferative in normal liver tissue but become activated after
380 liver injury or in vitro culture [13]. Non-activated HSCs are characterized by the storage
381 of vitamin A and the accumulation of liposomes [14]. When HSCs are stimulated and
382 become activated, they are transdifferentiated into myofibroblasts with characteristics
383 of hyperplasia, contraction, inflammation, the disappearance of lipid droplets,
384 chemotaxis, and a massive deposition of ECM [13]. Our sequencing results showed that
385 genes downregulated by JQ-1 treatment and the signaling pathways regulated by these
386 downregulated genes were involved in vitamin metabolism, lipid metabolism, and
387 ECM synthesis. This finding indicates that treatment with JQ-1 decreased the level of
388 vitamin A and lipid metabolism in HSCs, resulting in a decrease in ECM content, and
389 suggests that JQ-1 reduced the severity of liver fibrosis by inhibiting activation of HSCs.
390 Our immunohistochemistry and western blot analysis results showed that the
391 expression levels of collagen I and collagen III also decreased in liver tissue after

392 treatment with JQ-1.

393

394 The JAK/STAT signaling pathway transmits extracellular information from the cell
395 membrane to the nucleus to modulate the transcription of target genes, including genes
396 whose protein products are crucial for defense against pathogens, differentiation,
397 proliferation, and apoptosis [15]. The JAK2/STAT3 signaling pathway is directly
398 involved in HSC activation and transdifferentiation and subsequent formation of
399 hepatic fibrosis [16]. The blockade of the JAK2/STAT3 signaling pathway impedes the
400 morphological transdifferentiation of HSCs and reduces mRNA expression of
401 profibrotic genes [17]. Cao et al. (2019) found that intragastric administration of
402 dextran sulfate sodium reduced hepatic fibrosis by inhibiting the JAK2/STAT3
403 signaling pathway, both in vitro and in vivo [18]. Magnesium isoglycyrrhizinate
404 ameliorates high fructose-induced liver fibrosis in rats via inhibiting the JAK2/STAT3
405 signaling pathway and TGF- β 1/Smad signaling [19].

406

407 Recent studies have shown that JQ-1 inhibits the growth of pancreatic cancer cells,
408 regulates the expression of inflammatory cytokines associated with tumor growth, and
409 regulates the expression of several proteins known to be important in pancreatic cancer,
410 such as c-Myc, p-Erk1/2, interleukin 6, and p-STAT3 [20]. Moreover, a study
411 investigating JQ-1 treatment of acute myeloid leukemia cells indicated that this
412 treatment inhibits the expression of p-STAT3 [21]. JQ-1 has been shown to inhibit
413 CCl4-induced liver fibrosis by preventing HSC activation; however, the mechanism
414 underlying the inhibition of HSC activation requires further study [7, 22].

415

416 To further investigate the mechanism by which JQ-1 inhibits HSC activation in the
417 present study, the mouse HSC line (JS-1 cells) was cultured and JQ-1 administered in
418 subsequent in vitro experiments. We found that the expression levels of p-JAK2 and p-
419 STAT3 were significantly reduced in the JQ-1 treated JS-1 cells (Fig. 6), suggesting
420 that JQ-1 inhibits activation of HSCs by suppressing the phosphorylation of JAK2 and
421 STAT3. As shown in Fig. 7, JQ-1 inhibits the JAK2/STAT3 signaling pathway in JS-1
422 cells, thereby blocking the activation and proliferation of HSCs and reducing the
423 severity of liver fibrosis. JQ-1 can inhibit all BET proteins that disturb the binding of
424 BET to acetylated lysine, which can regulate numerous targets to affect hepatic fibrosis.
425 Suppressing JAK2 and STAT3 activation may be a JQ-1 mechanism that inhibits
426 schistosomal hepatic fibrosis. However, our study did not determine whether one of the
427 BET proteins is responsible for the transcription of genes involved in the activation and
428 proliferation of HSCs; thus, the underlying mechanism requires future investigation.

429

430 In summary, the administration of JQ-1 decreased the degree of liver fibrosis caused by
431 *S. japonicum*. JQ-1 inhibited the activation and proliferation of HSCs by blocking the
432 phosphorylation of JAK2 and STAT3 in the JAK2/STAT3 signaling pathway to
433 achieve this therapeutic effect. Our study provides new insight into the potential
434 development of new therapeutic strategies for *Schistosoma*-induced liver fibrosis.

435

436 Acknowledgments

437 We thank a native English speaker (Science/Medical English Editing for International
438 Researchers) for modifying the manuscript.

439 Funding Statement

440 This work was supported by grants from the National Natural Science Foundation of

441 China (<http://www.nsfc.gov.cn>) (grant numbers 81471982) and Key University Science
442 Research Project of Anhui Province of China (KJ2019A0223). The funders had no role
443 in study design, data collection and analysis, decision to publish, or preparation of the
444 manuscript.

445

446 **Data Availability**

447 All relevant data are within the manuscript and its Supporting Information files.

448 **References**

- 449 1. McManus DP, Gray DJ, Li Y, Feng Z, Williams GM, Stewart D, Rey-Ladino J,
450 Ross AG. Schistosomiasis in the People's Republic of China: the era of the Three
451 Gorges Dam. *Clin Microbiol Rev.* 2010;23(2):442-66. doi: 10.1128/CMR.00044-
452 09.
- 453 2. Wu W, Feng A, Huang Y. Research and control of advanced schistosomiasis
454 japonica in China. *Parasitol Res.* 2015;114(1):17-27. doi: 10.1007/s00436-014-
455 4225-x.
- 456 3. Sathiyamoorthy G, Sehgal S, Ashton RW. Pirfenidone and Nintedanib for
457 Treatment of Idiopathic Pulmonary Fibrosis. *South Med J.* 2017;110(6):393-398.
458 doi: 10.14423/SMJ.0000000000000655.
- 459 4. Belkina AC, Denis GV. BET domain co-regulators in obesity, inflammation and
460 cancer. *Nat Rev Cancer.* 2012;12(7):465-77. doi: 10.1038/nrc3256.
- 461 5. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. *Cell.*
462 2012;150(1):12-27. doi: 10.1016/j.cell.2012.06.013.
- 463 6. Ferri E, Petosa C, McKenna CE. Bromodomains: Structure, function and
464 pharmacology of inhibition. *Biochem Pharmacol.* 2016;106:1-18. doi:
465 10.1016/j.bcp.2015.12.005. Epub 2015 Dec 18. PMID: 26707800.
- 466 7. Ding N, Hah N, Yu RT, Sherman MH, Benner C, Leblanc M, He M, Liddle C,
467 Downes M, Evans RM. BRD4 is a novel therapeutic target for liver fibrosis. *Proc
468 Natl Acad Sci U S A.* 2015 ;112(51):15713-8. doi: 10.1073/pnas.1522163112.
- 469 8. Tang X, Peng R, Phillips JE, Deguzman J, Ren Y, Apparsundaram S, Luo Q, Bauer

470 CM, Fuentes ME, DeMartino JA, Tyagi G, Garrido R, Hogaboam CM, Denton CP,
471 Holmes AM, Kitson C, Stevenson CS, Budd DC. Assessment of Brd4 inhibition in
472 idiopathic pulmonary fibrosis lung fibroblasts and in vivo models of lung fibrosis.
473 *Am J Pathol.* 2013;183(2):470-9. doi: 10.1016/j.ajpath.2013.04.020.

474 9. Carson JP, Ramm GA, Robinson MW, McManus DP, Gobert GN. Schistosome-
475 Induced Fibrotic Disease: The Role of Hepatic Stellate Cells. *Trends Parasitol.*
476 2018;34(6):524-540. doi: 10.1016/j.pt.2018.02.005.

477 10. Reeves HL, Friedman SL. Activation of hepatic stellate cells--a key issue in liver
478 fibrosis. *Front Biosci.* 2002;7:d808-26. doi: 10.2741/reeves.

479 11. Neubauer K, Saile B, Ramadori G. Liver fibrosis and altered matrix synthesis. *Can*
480 *J Gastroenterol.* 2001;15(3):187–193. doi:10.1155/2001/870205.

481 12. Li H, Hua J, Guo CX, Wang WX, Wang BJ, Yang DL, Wei P, Lu YP. Pentoxifylline
482 inhibits liver fibrosis via hedgehog signaling pathway. *J Huazhong Univ Sci*
483 *Technolog Med Sci.* 2016;36(3):372-376. doi: 10.1007/s11596-016-1594-7.

484 13. Puche et al., 2013 Puche JE, Saiman Y, Friedman SL. Hepatic stellate cells and
485 liver fibrosis. *Compr Physiol.* 2013;3(4):1473-92. doi: 10.1002/cphy.c120035.

486 14. Molenaar MR, Vaandrager AB, Helms JB. Some Lipid Droplets Are More Equal
487 Than Others: Different Metabolic Lipid Droplet Pools in Hepatic Stellate Cells.
488 *Lipid Insights.* 2017;10:1178635317747281. doi: 10.1177/1178635317747281.

489 15. Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via
490 the JAK/STAT pathway. *Protein Sci.* 2018;27(12):1984-2009. doi:
491 10.1002/pro.3519.

492 16. Cao et al., 2007 Cao Q, Mak KM, Lieber CS. Leptin represses matrix
493 metalloproteinase-1 gene expression in LX2 human hepatic stellate cells. *J Hepatol.*
494 2007;46(1):124-33. doi: 10.1016/j.jhep.2006.07.027.

495 17. Lakner AM, Moore CC, Gulledge AA, Schrum LW. Daily genetic profiling
496 indicates JAK/STAT signaling promotes early hepatic stellate cell
497 transdifferentiation. *World J Gastroenterol.* 2010;16(40):5047-56. doi:
498 10.3748/wjg.v16.i40.5047.

499 18. Cao G, Zhu R, Jiang T, Tang D, Kwan HY, Su T. Danshensu, a novel indoleamine

500 2,3-dioxygenase1 inhibitor, exerts anti-hepatic fibrosis effects via inhibition of
501 JAK2-STAT3 signaling. Phytomedicine. 2019;63:153055. doi:
502 10.1016/j.phymed.2019.153055.

503 19. Yang YZ, Zhao XJ, Xu HJ, Wang SC, Pan Y, Wang SJ, Xu Q, Jiao RQ, Gu HM,
504 Kong LD. Magnesium isoglycyrrhizinate ameliorates high fructose-induced liver
505 fibrosis in rat by increasing miR-375-3p to suppress JAK2/STAT3 pathway and
506 TGF- β 1/Smad signaling. Acta Pharmacol Sin. 2019;40(7):879-894. doi:
507 10.1038/s41401-018-0194-4.

508 20. Leal AS, Williams CR, Royce DB, Pioli PA, Sporn MB, Liby KT. Bromodomain
509 inhibitors, JQ1 and I-BET 762, as potential therapies for pancreatic cancer. Cancer
510 Lett. 2017;394:76-87. doi: 10.1016/j.canlet.2017.02.021.

511 21. Belkina AC, Nikolajczyk BS, Denis GV. BET protein function is required for
512 inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse
513 macrophage inflammatory responses. J Immunol. 2013;190(7):3670-8. doi:
514 10.4049/jimmunol.1202838.

515 22. Hassan R, Tammam SN, Safy SE, Abdel-Halim M, Asimakopoulou A,
516 Weiskirchen R, Mansour S. Prevention of hepatic stellate cell activation using JQ1-
517 and atorvastatin-loaded chitosan nanoparticles as a promising approach in therapy
518 of liver fibrosis. Eur J Pharm Biopharm. 2019;134:96-106. doi:
519 10.1016/j.ejpb.2018.11.018.

520

521 **Figure legend**

522 **Fig. 1. JQ-1 treatment ameliorates liver fibrosis caused by *S. japonicum*.**

523 (A) Therapeutic regimen used in the mouse model of liver fibrosis. (B) Effect of JQ-
524 1 or vehicle (HP- β -CD) treatment on the number of eggs per gram in the liver. (C)
525 Effect of JQ-1 treatment on general liver morphology of mice infected with *S.*
526 *japonicum*. (D) Effect of JQ-1 treatment on hepatic fibrosis in mice infected with *S.*
527 *japonicum*. (E) Area of the liver with hepatic fibrosis as measured by computer-assisted
528 morphometric analysis. (F) Effect of JQ-1 treatment on serum alanine aminotransferase

529 (ALT) and aspartate aminotransferase (AST) levels and (G) liver hydroxyproline levels
530 in mice infected with *S. japonicum*. Data represent the mean \pm SEM (n = 9 for each
531 group). Asterisks denote statistically significant differences (Student's *t* test, $P < 0.05$)
532 vs. the HP- β -CD-treated control group.

533

534 **Fig. 2 Effect of JQ-1 treatment on expression levels of α -SMA and collagen in**
535 **mouse liver.** Immunohistochemistry images of (A) α -SMA and (B) Col1a1 expression
536 in mouse liver after JQ-1 or vehicle (HP- β -CD) treatment. (C) Quantitative PCR
537 analysis of liver α -SMA and liver collagen protein levels after JQ-1 or vehicle (HP- β -
538 CD) treatment in mice. Data represent the mean \pm SEM (n = 9 for each group). each
539 performed in triplicate. Asterisks denote statistically significant differences (Student's
540 *t* test, $*P < 0.05$).

541

542 **Fig. 3 Bioinformatics Analysis.** (A) Heat map of differential clustering analysis of
543 mRNA in the JQ-1 treated group (Group 2; G2) versus the HP- β -CD group (Group 1;
544 G1). (B) Differentially expressed genes identified using quantitative PCR. The mRNA
545 levels are expressed relative to those in controls following normalization to GAPDH.
546 Data represent the mean \pm SEM (n = 9 for each group). Asterisks denote statistically
547 significant differences (Student's *t* test, $*P < 0.05$) vs. HP- β -CD group. (C) KEGG
548 analysis of downregulated genes involved in the metabolic pathway of the proteins. The
549 abscissa indicates *P* values; red bars, highly enriched and meaningful metabolic
550 pathways; and blue bars, a less enriched and reference metabolic pathway. The ordinate
551 shows the name of the metabolic pathway.

552

553 **Fig. 4 Effect of JQ-1 treatment on hepatic stellate cell (HSC) activity, aging,**

554 **proliferation, and apoptosis.**

555 (A) Cell viability of JQ-1–treated (500 nM) HSCs as measured by trypan blue staining.

556 (B) Cellular senescence of JQ-1–treated (500 nM) HSCs measured by β -galactosidase

557 staining. (C) Cell proliferation of JQ-1–treated (500 nM) HSCs measured by CCK-8

558 ($*P < 0.05$). OD represents optical density. (D) Apoptosis in JQ-1–treated (500 nM)

559 HSCs measured by a TUNEL assay. Data represent the mean \pm SEM of at least three

560 independent experiments, each performed in triplicate. Asterisks denote statistically

561 significant differences (Student's *t* test, $*P < 0.05$).

562

563 **Fig. 5 Effect of JQ-1 treatment on the expression levels of α -SMA and collagen in**

564 **hepatic stellate cells (HSCs).** (A) Representative western blot images for α -SMA,

565 Coll1a1, and Col3a1 in HSCs after JQ-1 treatment. (B) Relative quantitative PCR

566 analysis of α -SMA and collagen levels in HSCs after JQ-1 treatment. Data represent

567 the mean \pm SEM of at least three independent experiments, each performed in triplicate.

568 Asterisks denote statistically significant differences (Student's *t* test, $*P < 0.05$).

569

570 **Fig. 6 JQ-1 inhibits STAT3 and JAK2 phosphorylation.** (A) Representative western

571 blot images for JAK2, phosphorylated (p)-JAK2, STAT3, and p-STAT3 in JS-1 cells

572 after JQ-1 or vehicle control (DMSO) treatment. (B) Relative quantitative analysis of

573 JAK2, p-JAK2, STAT3, and p-STAT3 levels. β -Actin was used as an internal control.

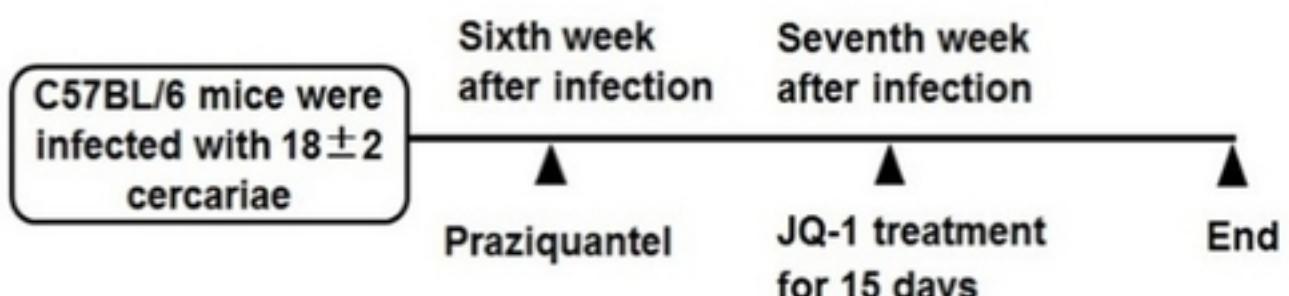
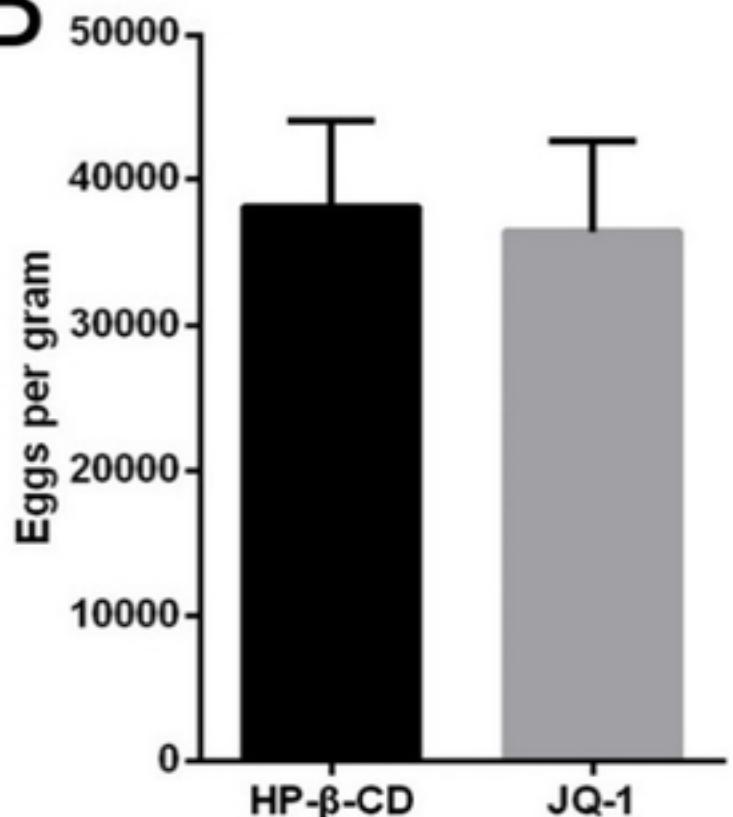
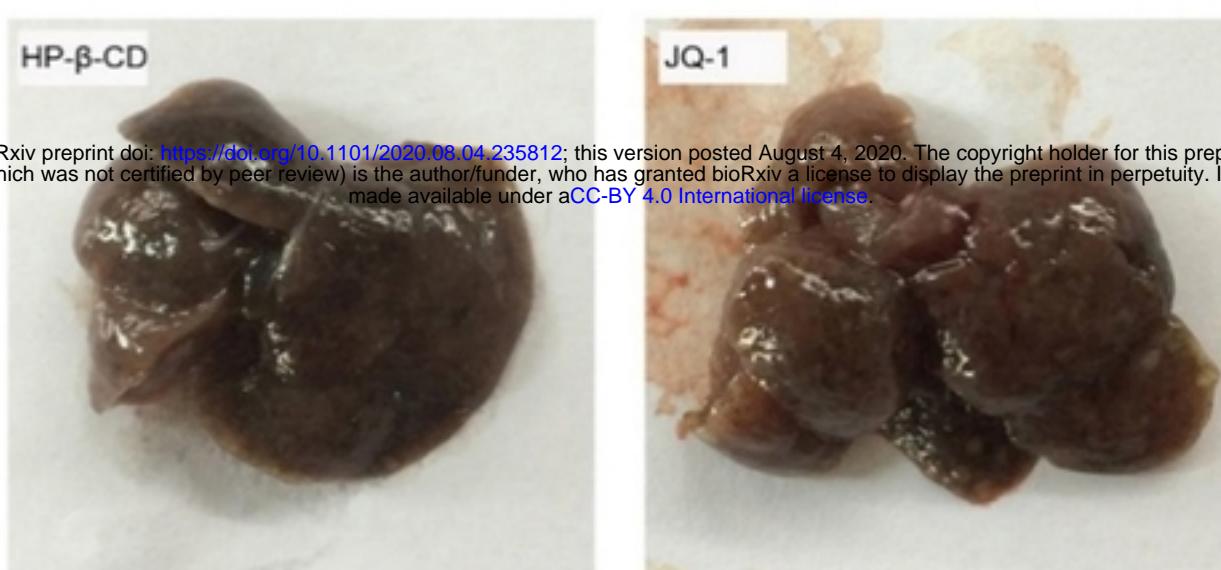
574 Data represent the mean \pm SEM of at least three independent experiments, each

575 performed in triplicate. Asterisks denote statistically significant differences (Student's

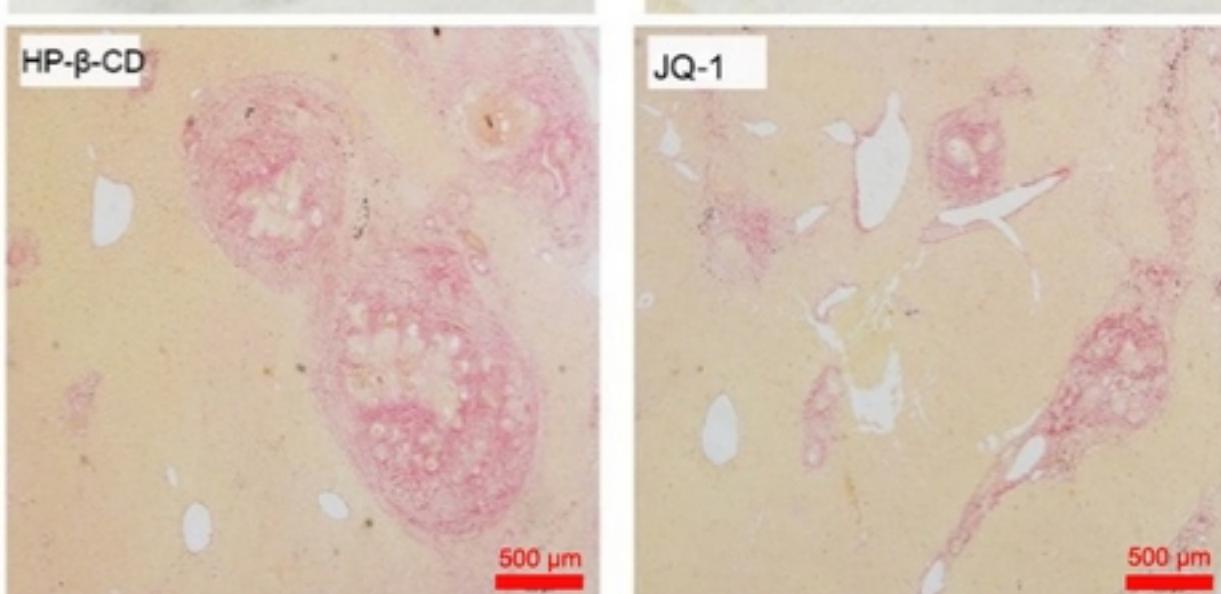
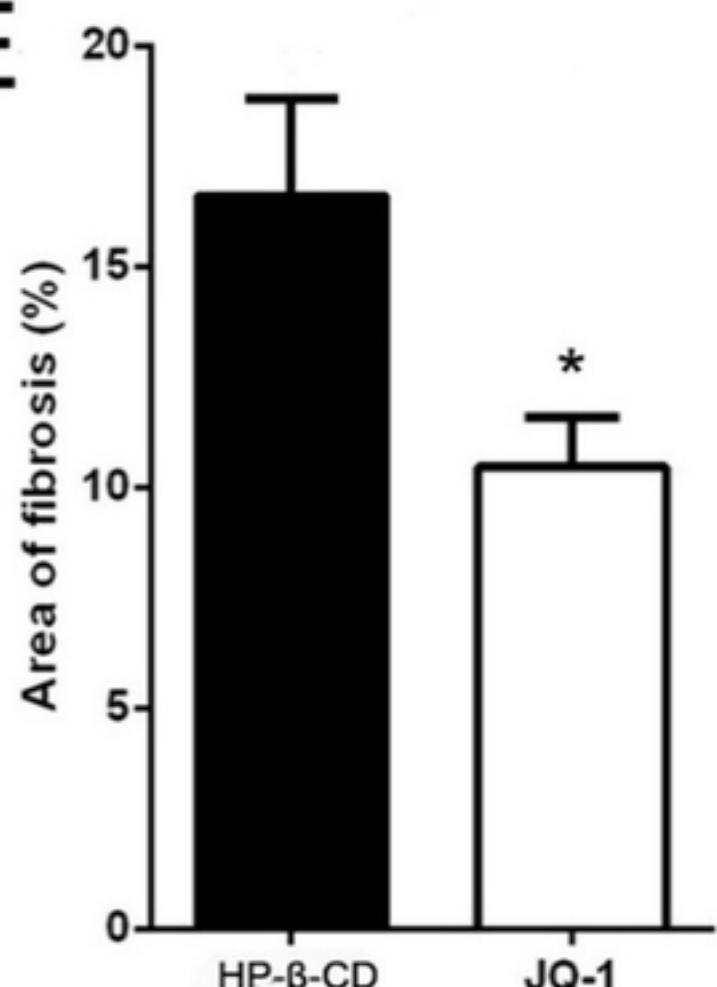
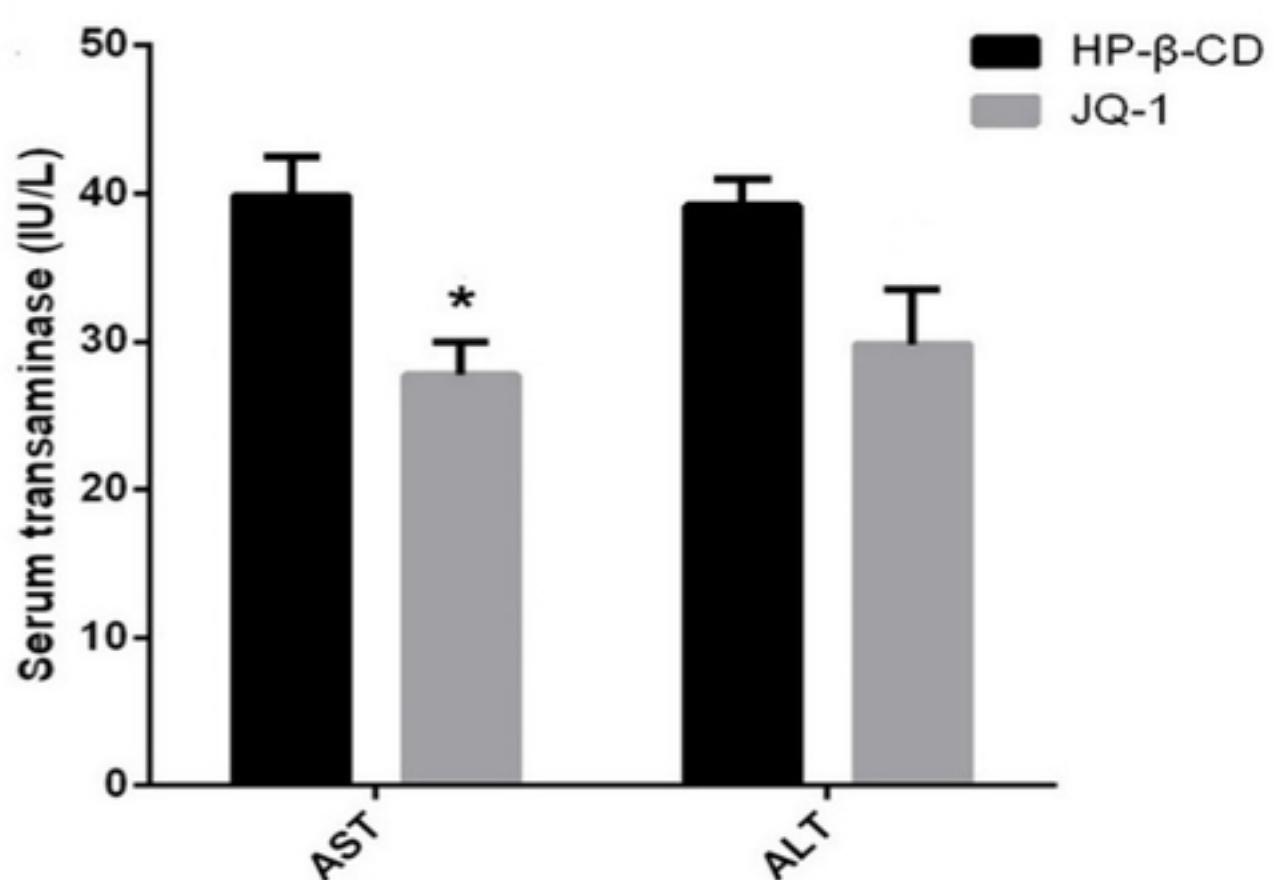
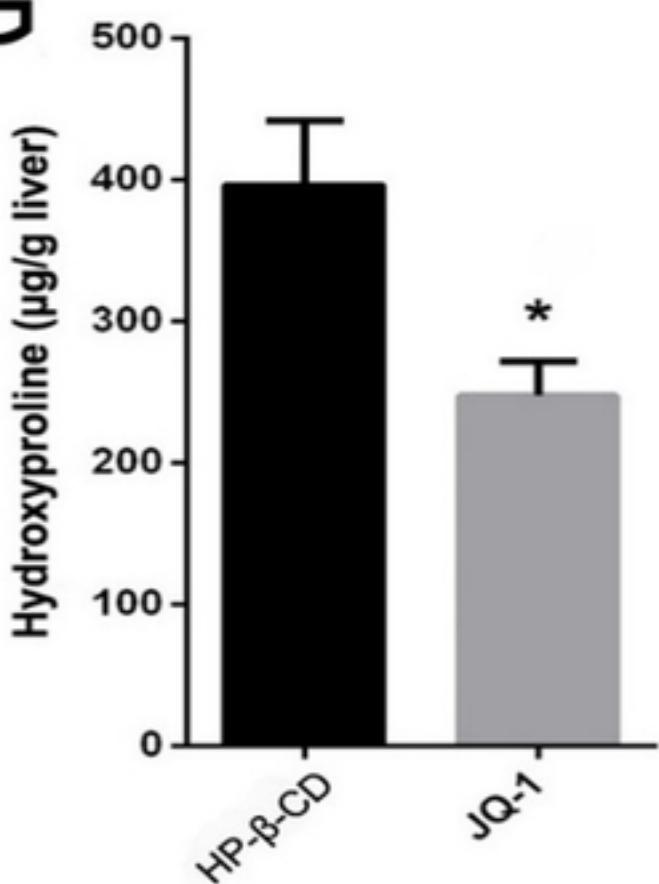
576 *t* test, $*P < 0.05$).

577

578 **Fig. 7 Schematic diagram of the inhibition of hepatic stellate cell (HSC) activation**




579 **and proliferation by JQ-1.**

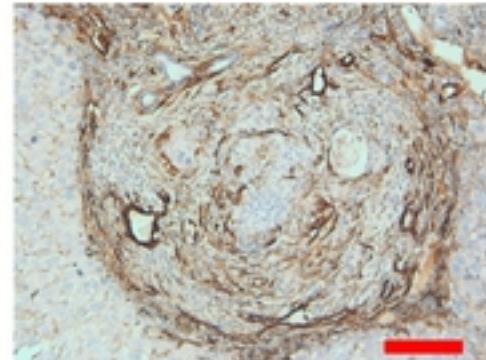
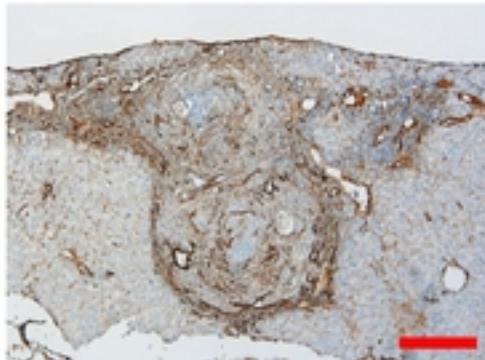
580 JQ-1 blocks downstream transcriptional regulation by binding to BRD4, thereby





581 blocking phosphorylation of JAK2 and STAT3 in the JAK2/STAT3 signaling pathway

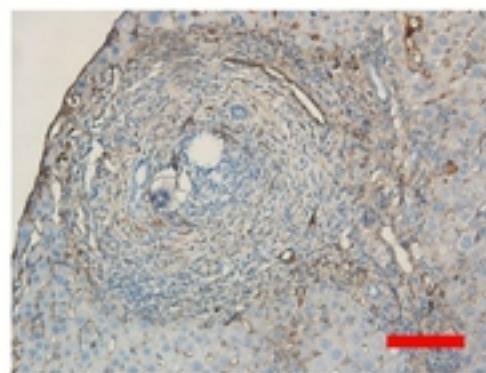
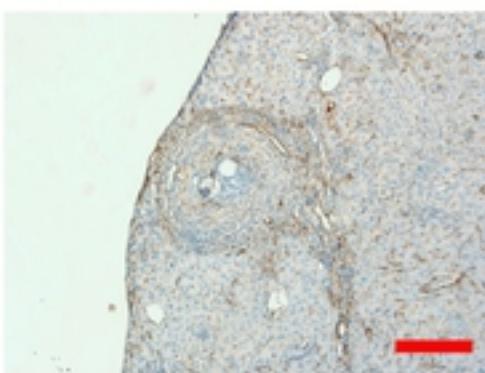
582 and inhibiting HSC activation and proliferation.

583

A**B****C**

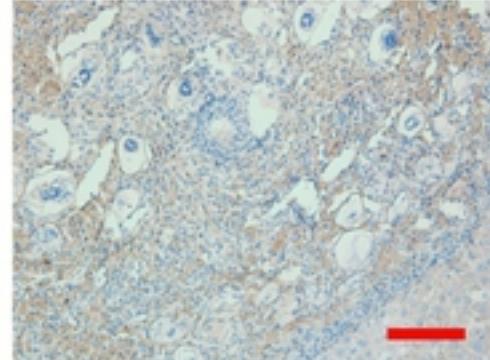


bioRxiv preprint doi: <https://doi.org/10.1101/2020.08.04.235812>; this version posted August 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

D**E****F****G****Fig 1**

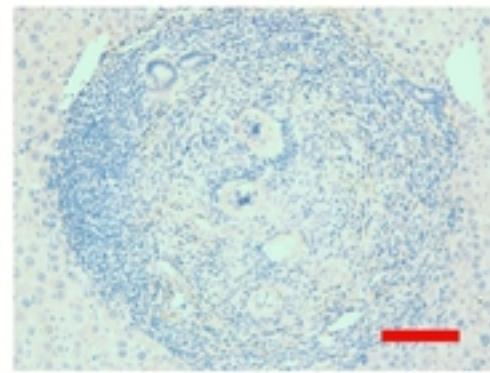
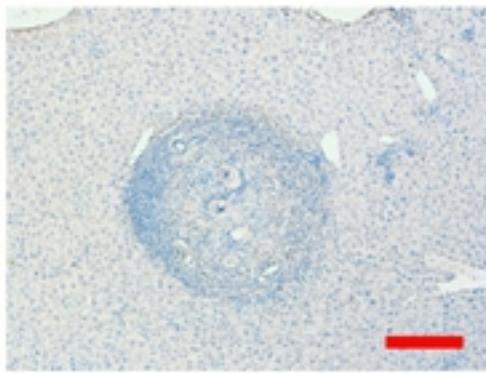


A

α -SMA

HP- β -CD



JQ-1



B

Col1a1

HP- β -CD

JQ-1

C

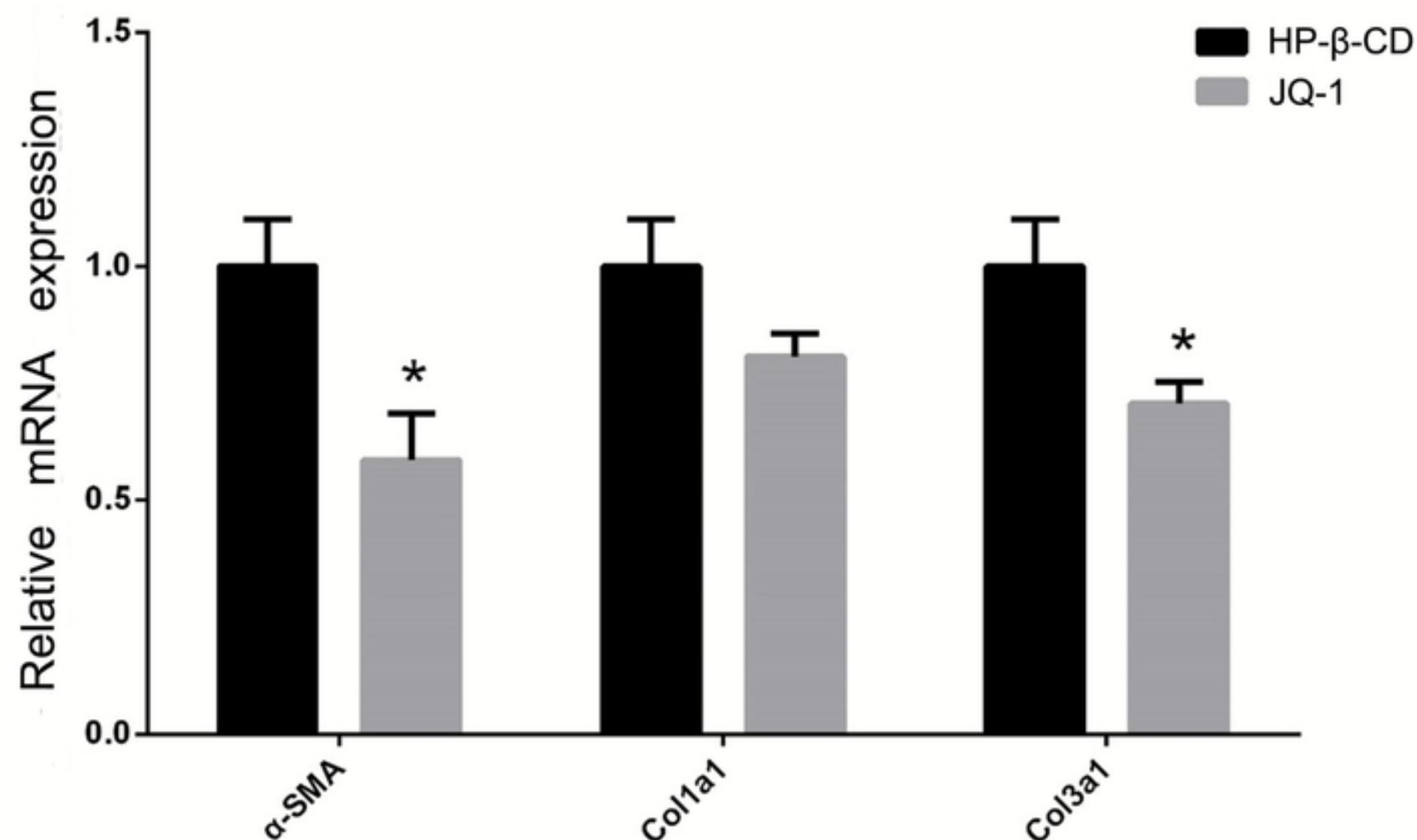
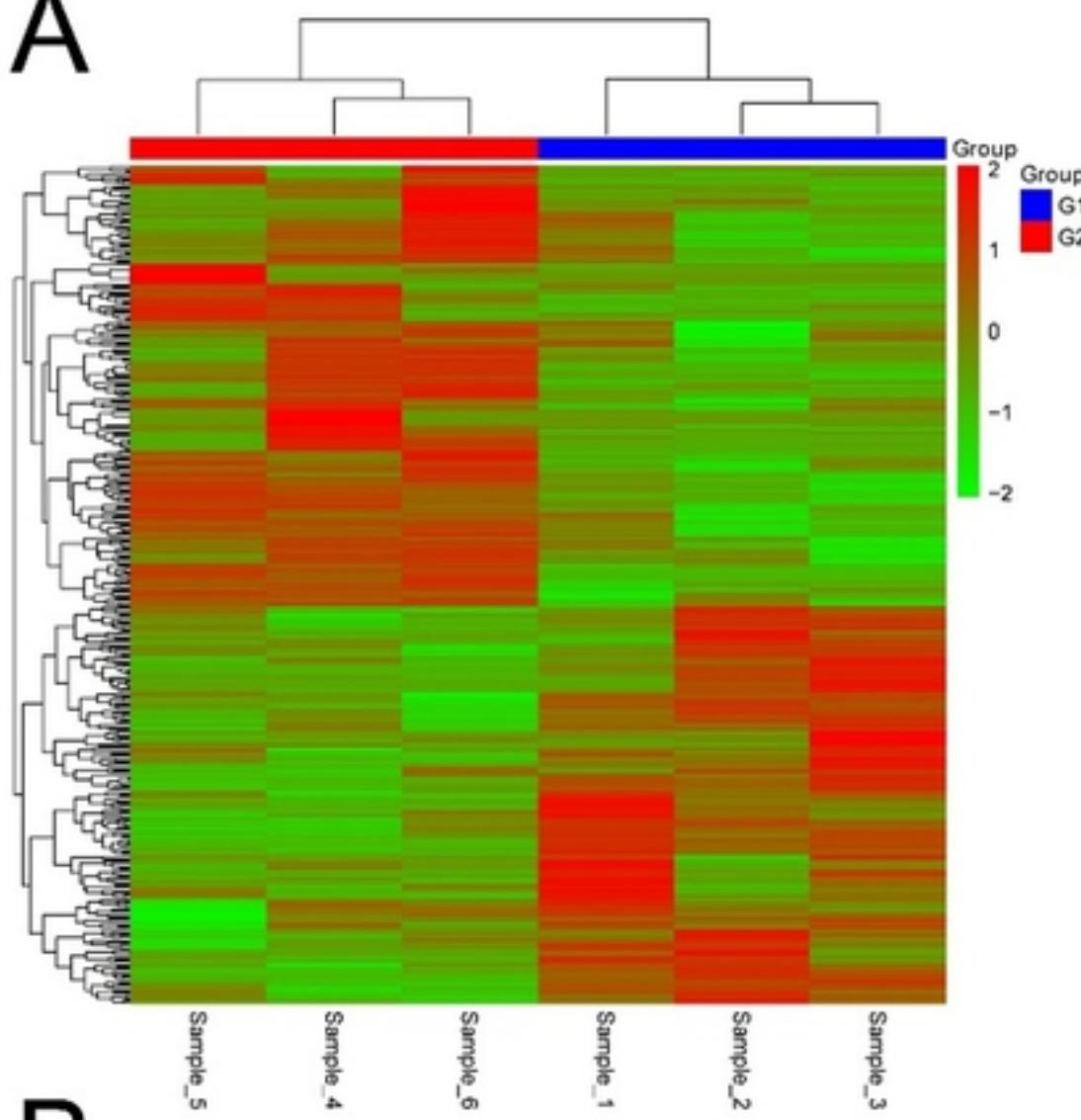
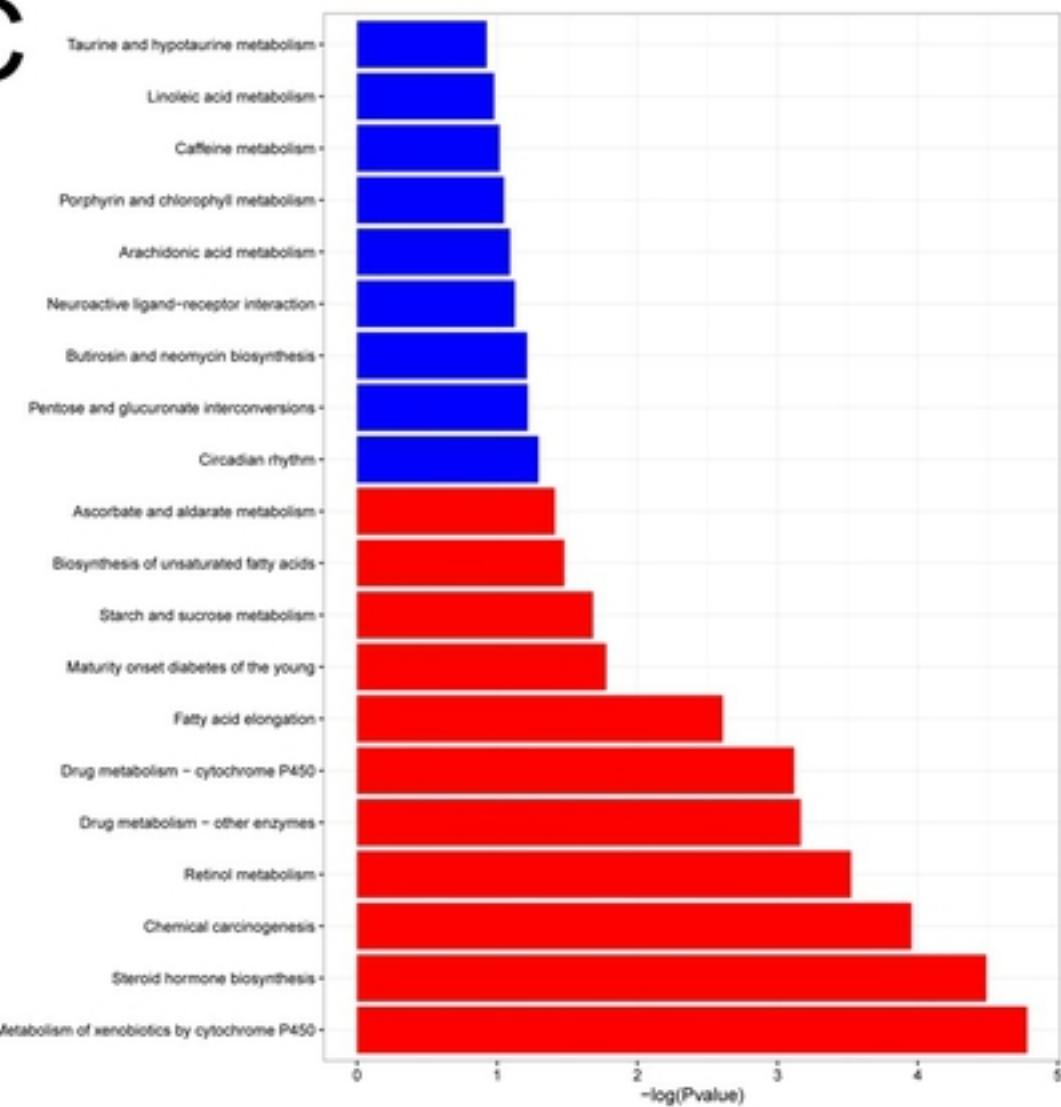
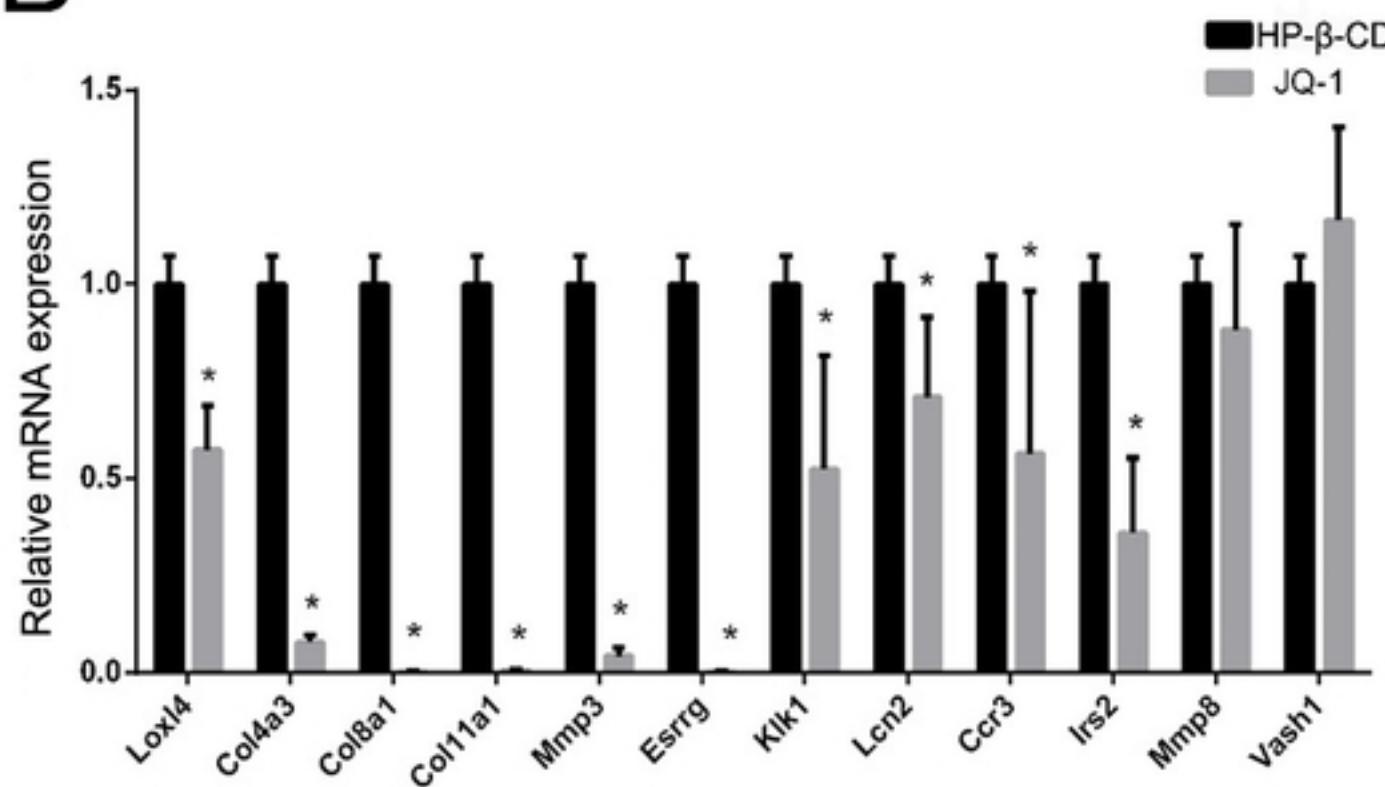
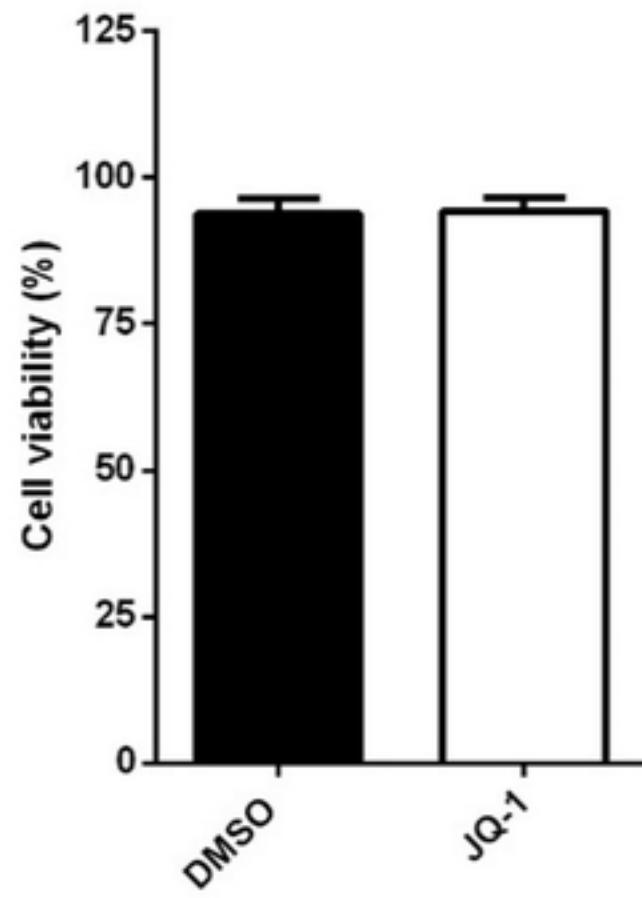
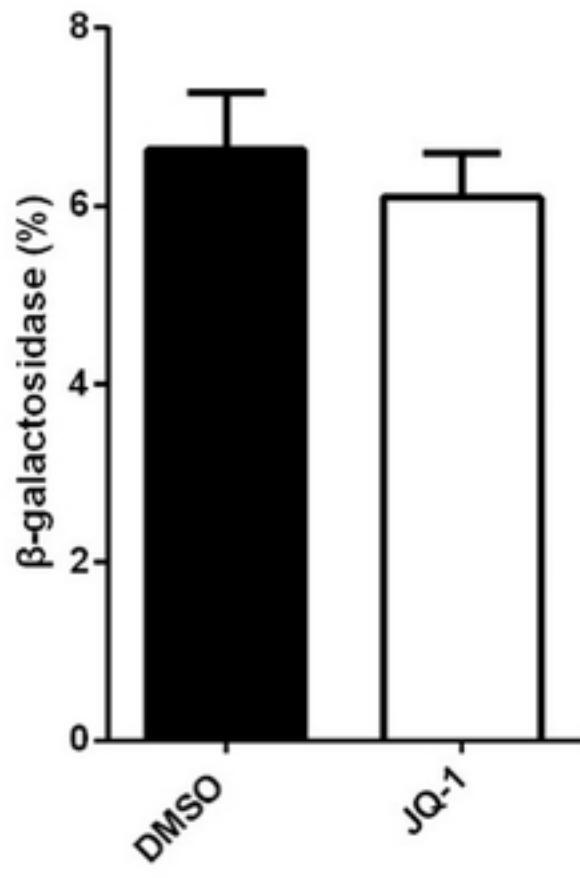
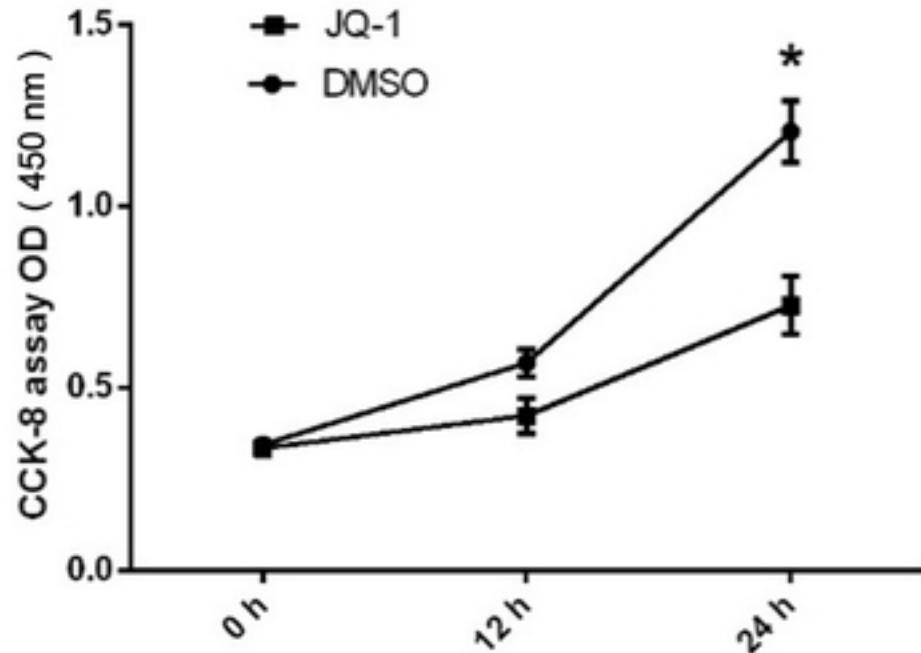
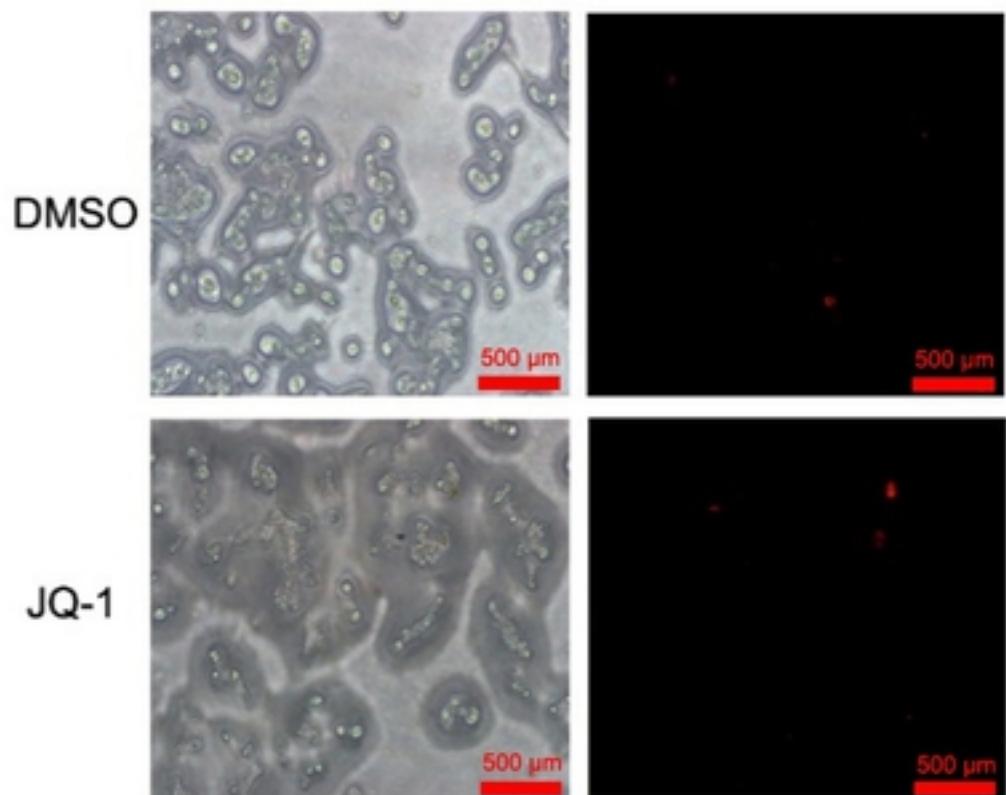
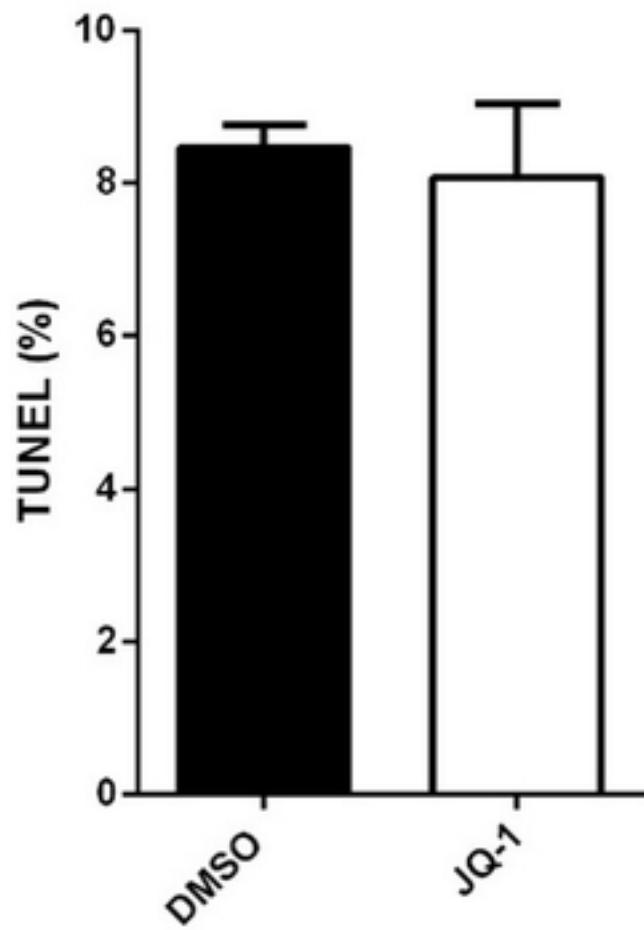
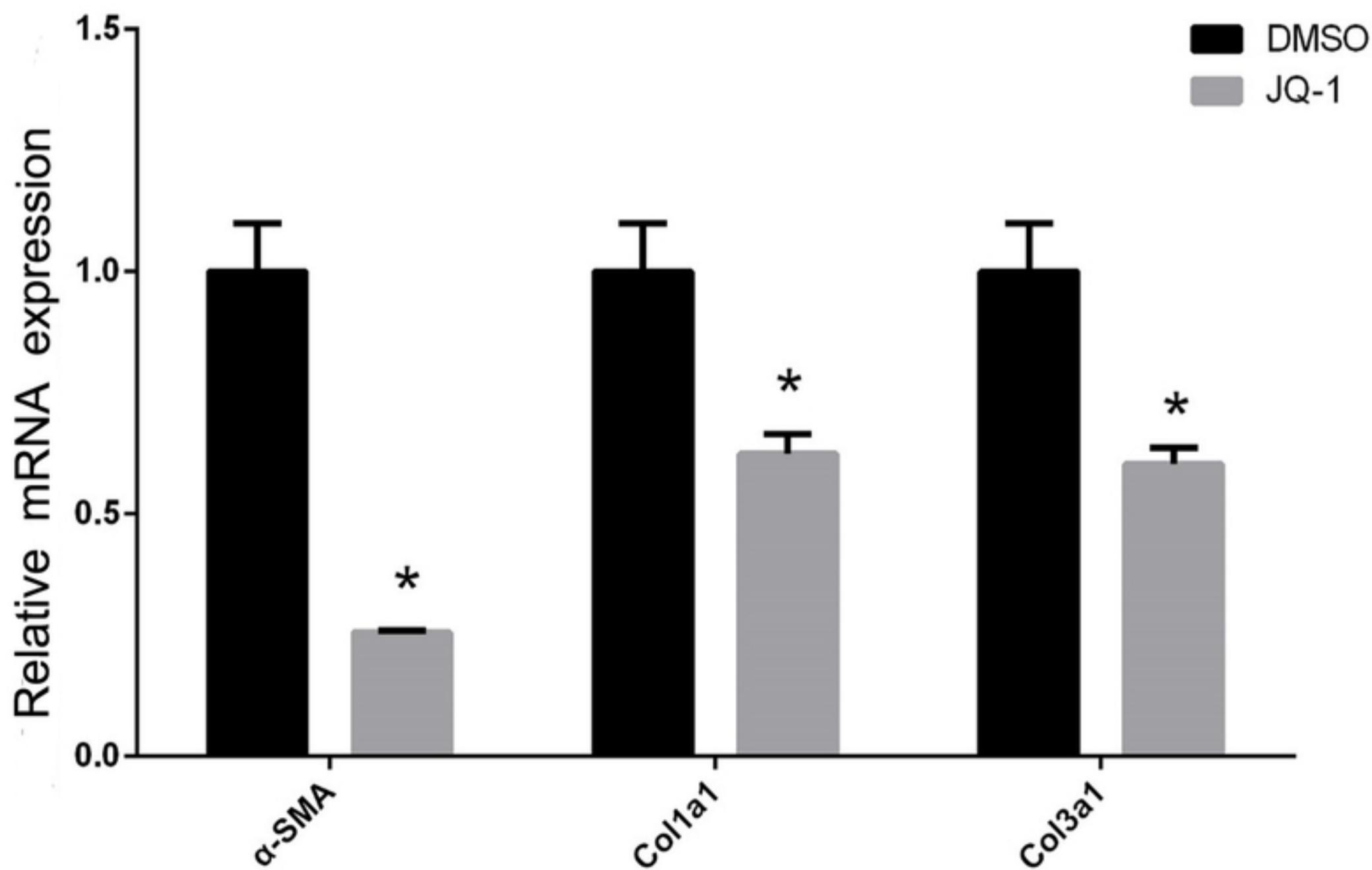




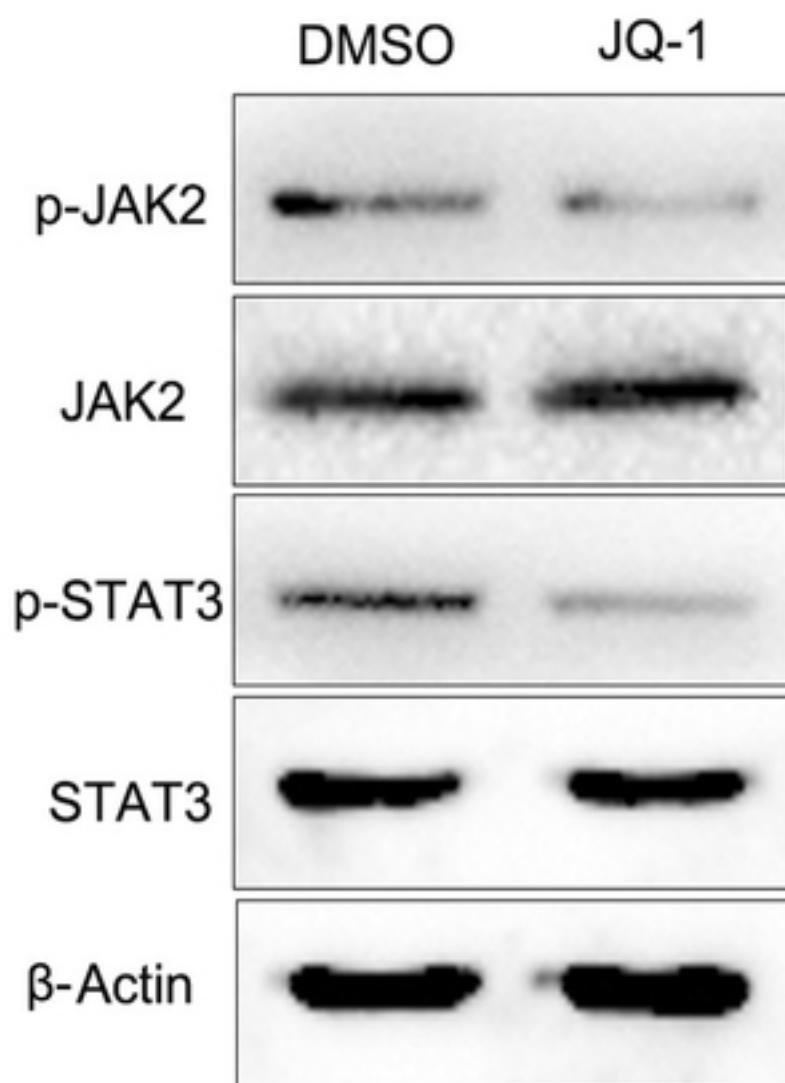
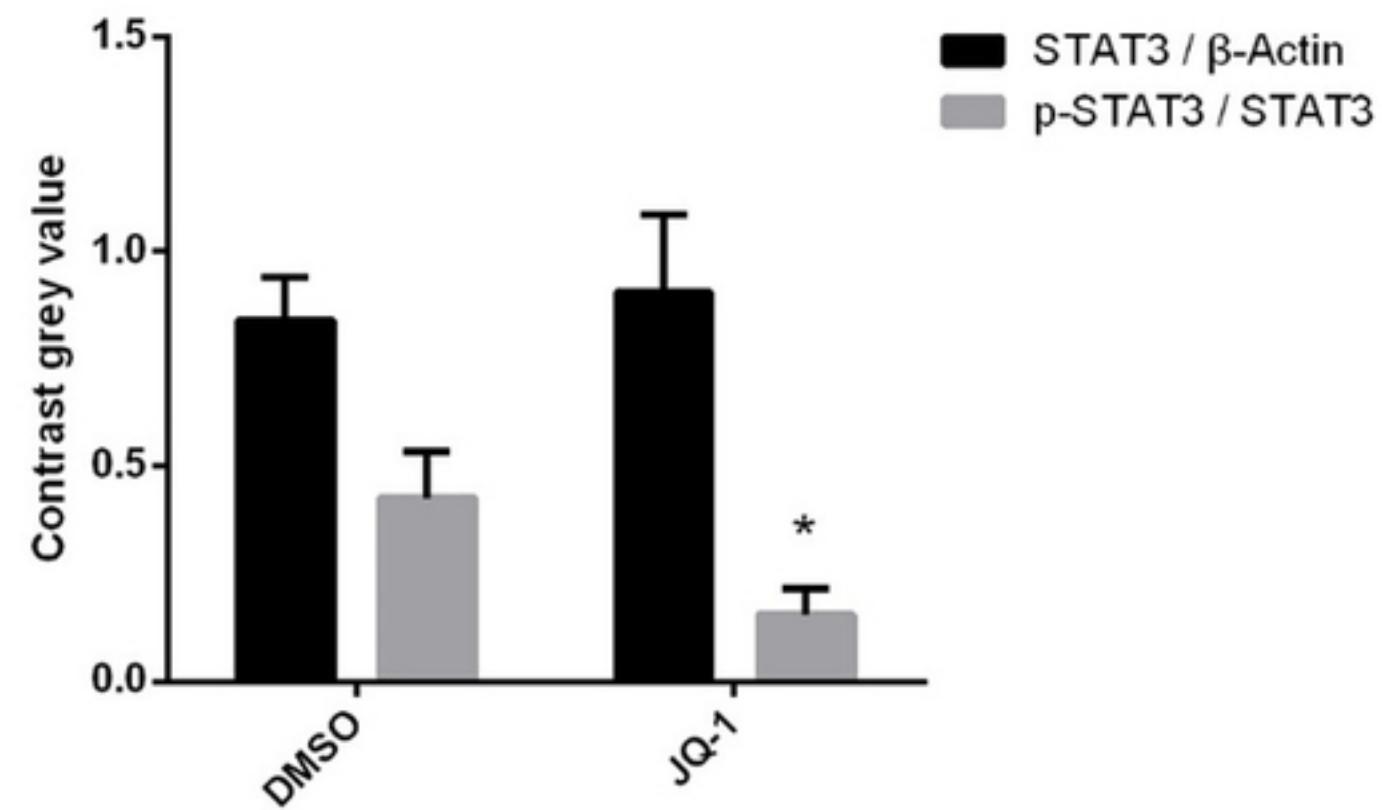
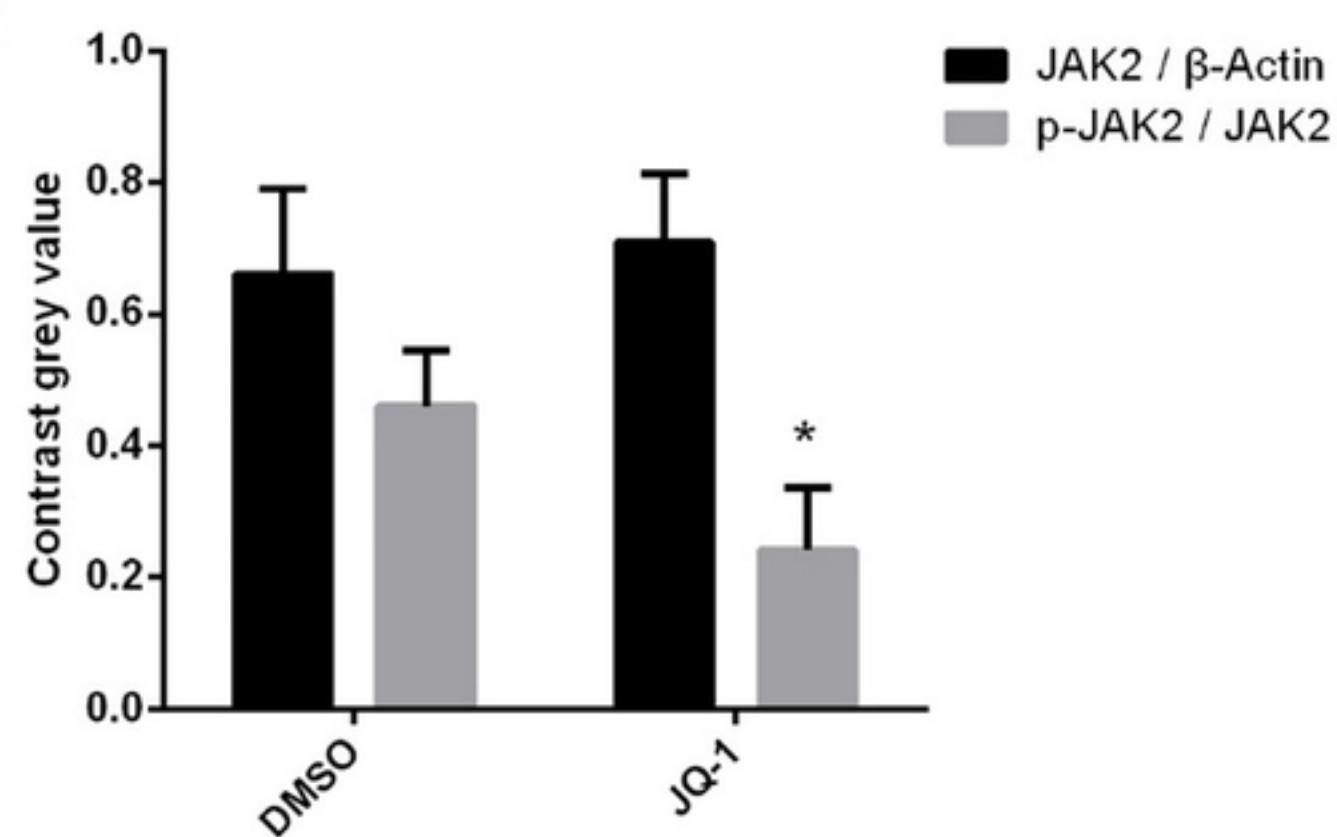
Fig 2

A

C

B




Fig 3

A**Trypan Blue Staining****B** **β -Galactosidase Staining****C****D****E****TUNEL Staining****Fig 4**

A**JQ-1****DMSO** **α -SMA*****Col1a1******Col3a1*****GAPDH**

bioRxiv preprint doi: <https://doi.org/10.1101/2020.08.04.235812>; this version posted August 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B**Fig 5**

A**B****C****Fig 6**

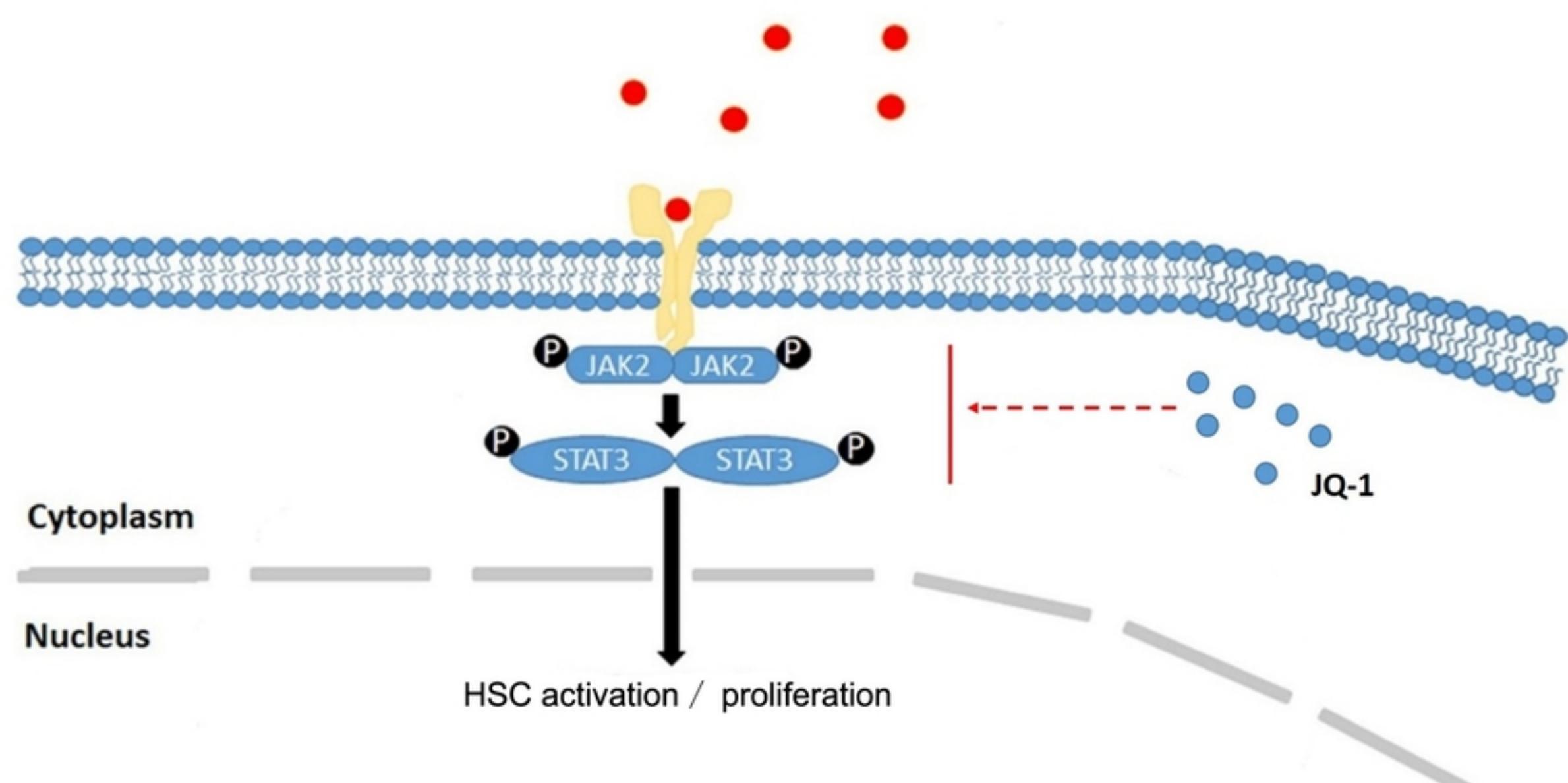


Fig 7