

1 **Identification of a prostaglandin E2 receptor that regulates mosquito
2 oenocytoid immune cell function in limiting bacteria and parasite
3 infection**

4

5 Hyeogsun Kwon, David R. Hall and Ryan C. Smith*

6 Department of Entomology, Iowa State University, Ames, Iowa 50010, USA

7 * Corresponding author: smithr@iastate.edu

8

9 **Abstract**

10 Lipid-derived signaling molecules known as eicosanoids have integral roles in mediating
11 immune and inflammatory processes across metazoans. This includes the function of
12 prostaglandins and their cognate G protein-coupled receptors (GPCRs) to employ their
13 immunological actions. In insects, prostaglandins have been implicated in the regulation
14 of both cellular and humoral immune responses, yet studies have been limited by the
15 absence of a described prostaglandin receptor. Here, we characterize a prostaglandin E2
16 receptor (*AgPGE2R*) in the mosquito *Anopheles gambiae* and examine its contributions
17 to innate immunity. *AgPGE2R* expression is most abundant in circulating hemocytes
18 where it is primarily localized to oenocytoid immune cell populations. Through the
19 administration of prostaglandin E2 (PGE2) and *AgPGE2R*-silencing by RNAi, we
20 demonstrate that PGE2 signaling regulates the expression of a subset of
21 prophenoloxidases (PPOs) and antimicrobial peptides (AMPs). PGE2 priming via the
22 *AgPGE2R* significantly limited bacterial replication and suppressed *Plasmodium* oocyst
23 survival. Additional experiments establish that PGE2 priming increases phenoloxidase
24 (PO) activity through the increased expression of *PPO1* and *PPO3*, which significantly
25 influence *Plasmodium* oocyst survival. We also provide evidence that PGE2 priming is
26 concentration-dependent, where high concentrations of PGE2 promote oenocytoid lysis,
27 negating the protective effects of PGE2 priming on anti-*Plasmodium* immunity. Taken
28 together, our results characterize the *AgPGE2R* and the role of prostaglandin signaling
29 on immune cell function, providing new insights into the role of PGE2 on anti-bacterial
30 and anti-*Plasmodium* immune responses in the mosquito host.

31

32 **Introduction**

33 Eicosanoids are lipid-derived signaling molecules that include prostaglandins (PGs),
34 leukotrienes (LTs), lipoxins (LXAs), and epoxyeicosatrienoic acid (EETs), that serve
35 important roles in immune regulation (1–3). Evidence suggests that these responses are
36 evolutionarily conserved across metazoa, where eicosanoids significantly influence insect
37 cellular immunity (4–10). In the mosquito, *Anopheles gambiae*, eicosanoids such as
38 prostaglandin E2 (PGE2) and lipoxins have integral roles in mediating immune priming
39 and mosquito susceptibility to malaria parasite infection (11, 12). However, our
40 understanding of eicosanoid-mediated immune regulation in insects has remained
41 incomplete due to the lack of characterized eicosanoid biosynthesis pathways and
42 cognate receptors to initiate signaling. Therefore, the identification and characterization
43 of eicosanoid receptors are needed to properly examine the roles of eicosanoids in insect
44 immunity.

45 The recent characterization of a PGE2 receptor in the lepidopteran systems *Manduca*
46 *sexta* (8) and *Spodoptera exigua* (10) have implicated the PGE2 receptor in immune
47 activation pathogen-associated molecular patterns (PAMPs)(8) and cellular immune
48 function (13). Yet, despite the implication of PGE2 on mosquito immunity (4, 11), the
49 cognate prostaglandin receptor has not yet been described in mosquitoes. Therefore, the
50 aim of this study was to identify and characterize the PGE2 receptor (AgPGE2R) in the
51 mosquito *An. gambiae*, and to describe its function in the mosquito innate immune
52 response.

53 Based on *in silico* analyses using the *Manduca* PGE2 receptor (8) and human PG
54 receptors, we identified a putative PGE2 receptor (AgPGE2R) in *An. gambiae*
55 orthologous to human PGE2-EP2 and EP4 receptors. Herein, we provide compelling
56 evidence that AgPGE2R is predominantly expressed in the oenocytoid immune cell
57 populations and promotes the production of antimicrobial peptides (AMPs) and a subset
58 of prophenoloxidases (PPOs) that limit bacterial and *Plasmodium* survival in the mosquito
59 host. Therefore, our study provides important new insights into mosquito PGE2 signaling,
60 oenocytoid cell function, and the immune mechanisms that limit pathogens in the
61 mosquito host. Moreover, our study represents a significant advance in our understanding

62 of prostaglandin signaling in insect innate immunity, as well as an invaluable resource for
63 comparative immunology to identify eicosanoid receptors in other dipteran species.

64 **Results**

65 **Characterization of the AgPGE2 receptor**

66 Based on the prostaglandin E2 receptor from the tobacco hornworm, *Manduca sexta*(8),
67 a putative PGE2 receptor (AgPGE2R; AGAP001561) was identified in *An. gambiae*.
68 Based on this annotation, a full-length transcript consisting of 1463 bp and encoding a
69 404 amino acid protein (~46 kDa) was isolated from perfused naïve *An. gambiae*
70 hemolymph (Figure S1). *In silico* analysis supports that the AgPGE2R contains 7
71 transmembrane domains and belongs to the rhodopsin-like family of G protein-coupled
72 receptors (GPCRs; Figures S1 and S2). Moreover, four N-glycosylated and six
73 phosphorylation sites are predicted at the respective N- and C- terminus (Figures S1 and
74 S2A), suggesting that the AgPGE2R undergoes post-translational modifications as in
75 mammalian systems (14, 15). AgPGE2R also contains core residues characteristic of
76 other Family A GPCRs and human prostanoid receptors (Figure S2A). Phylogenetic
77 analysis reveals a unique clade of insect receptors where AgPGE2R is most similar to
78 other putative dipteran PGE2 receptors (Figure S2B). In addition, insect PGE2Rs are
79 more closely related to human prostanoid receptors than human leukotriene receptors
80 (CYSLTR1/2), which also serve as important eicosanoid receptors belonging to Family A
81 GPCRs (Figure S2B).

82 To more closely characterize the role of the putative mosquito prostaglandin receptor, we
83 examined *AgPGE2R* expression in multiple tissues from different physiological conditions
84 (naïve, 24 h blood-fed, and 24 h *P. berghei*-infected; Figure 1A). Under naïve conditions,
85 receptor expression is highly enriched in hemocytes (Figure 1A). In addition, *AgPGE2R*
86 was also highly expressed in the malpighian tubules following blood-feeding, suggesting
87 potential roles for the receptor in maintaining water homeostasis after blood-feeding
88 (Figure 1A). However, when receptor expression was evaluated in the same tissue under
89 different feeding conditions, only hemocytes displayed significant differences in
90 *AgPGE2R* expression (Figure 1B, Figure S3). Western blot analysis using mosquito
91 hemolymph samples result in a single band of approximately 70 kDa (Figure 1C), much

92 higher than the expected ~46 kDa MW of the annotated AgPGE2R. Enzymatic
93 deglycosylation through the use of PNGase F decreased the size of the AgPGE2R protein
94 to the expected size of ~46 kDa (Figure 1C), indicating that the AgPGE2R undergoes
95 substantial post-translational modifications by glycosylation. No specific bands were
96 detected with the incubation of pre-immune serum (Figure 1C). Immunofluorescence
97 assays revealed that AgPGE2R is predominantly expressed in oenocytoid immune cell
98 populations (Figure 1D), although weak signal is also detected in a sub-set of
99 granulocytes (Figure S4A). To further validate AgPGE2R localization to the oenocytoid,
100 phagocytic granulocyte populations were ablated by clodronate liposome (CLD)
101 treatment as previously described (16). qRT-PCR analysis demonstrates that AgPGE2R
102 transcript remains unchanged in perfused hemolymph samples from mosquitoes treated
103 with CLD, while the expression of *eater* (a known phagocytic marker (17, 18)) was
104 significantly reduced (Figure S4B). Taken together, these results support that AgPGE2R
105 is expressed primarily in oenocytoid immune cell populations and confirmed by recent
106 scRNA-seq studies of mosquito immune cell populations (19).

107 **PGE2 biosynthesis and the influence of PGE2 signaling on mosquito immunity**

108 To understand the molecular mechanisms of PGE2 signaling in *An. gambiae*, PGE2 titers
109 were measured from whole mosquitoes or perfused hemolymph under naïve, 24 h blood-
110 fed, or 24 h *P. berghei*-infected conditions. In whole mosquitoes, PGE2 titers were
111 significantly increased in blood-fed and infected mosquitoes when compared to naïve
112 mosquitoes (Figure S5). Yet, similar to previous reports(11), PGE2 levels in the
113 hemolymph reach measurable levels only following *P. berghei* infection (Figure S5).
114 These results suggest that the ELISA assay may detect PGE2 present in mouse blood
115 (20), while PGE2 levels in the hemolymph are increased in response to ookinete invasion
116 (11). Based on our earlier observations of AgPGE2R localization in oenocytoid cell
117 populations (Figure 1D), we explored what role PGE2 signaling may have on
118 prophenoloxidase (PPO) expression. qRT-PCR analysis demonstrates that a subset of
119 PPOs which includes *PPO1*, *PPO3*, *PPO7* and *PPO8* were upregulated in response to
120 PGE2 priming (Figure 2A). In contrast, AgPGE2R-silencing (Figure S6) downregulated
121 the same subset of PPOs (Figure 2B), suggesting that *PPO1*, *PPO3*, *PPO7* and *PPO8*

122 are regulated by PGE2 signaling. To determine if the PGE2-mediated PPO regulation
123 also influences phenoloxidase (PO) activity, we performed dopa conversion assays in
124 response to PGE2 signaling. Compared to PBS controls, PGE2 priming significantly
125 increased hemolymph PO activity (Figure 2C). Moreover, PGE2 priming in *AgPGE2R*-
126 silenced mosquitoes resulted in substantially less PO activity than GFP-silenced controls
127 (Figure 2D), providing additional support that PGE2 signaling promotes PO activity via
128 the *AgPGE2R*.

129 In addition, previous studies have implicated PGE2 signaling on the synthesis of
130 antimicrobial peptides (AMPs) in *Anopheles albimanus* (4). Therefore, we examined the
131 expression of major AMPs in mosquitoes primed with PGE2 or following *AgPGE2R*-
132 silencing. Similar to the regulation of PPOs, PGE2 priming significantly increased the
133 expression of *cecropin 1* (*CEC1*) and *defensin 1* (*DEF1*) (Figure 2E), while the silencing
134 of *AgPGE2R* reduced *CEC1*, *CEC4* and *DEF1* (Figure 2F). These data support that
135 prostaglandin signaling via *AgPGE2R*, directly influences PPO expression and
136 subsequent PO activity, as well as AMP expression.

137 **PGE2 signaling promotes antimicrobial activity**

138 Based on the regulation of AMP expression in response to PGE2 treatment and requiring
139 *AgPGE2R* function (Figure 2), we examined the antimicrobial effects of PGE2 signaling
140 by challenging mosquitoes with *E. coli* following PGE2 priming. At 6 h post-challenge,
141 PGE2-primed mosquitoes displayed significantly less bacteria when compared to PBS
142 controls (Figure S7A). We identified a similar trend at 24 h post-challenge, yet these
143 results were not significant (Figure S7A). In addition, we demonstrate that the effects of
144 PGE2 priming are abrogated following *AgPGE2R*-silencing (Figure S7B), providing
145 further support that prostaglandin signaling limits bacterial growth

146 **PGE2 signaling mediates anti-*Plasmodium* immunity**

147 In agreement with the previously reported effects of PGE2 priming on anti-*Plasmodium*
148 immunity (11), we confirm that mosquitoes primed with PGE2 have significantly reduced
149 oocyst numbers eight days post-infection (Figure 3A). To confirm the involvement of
150 *AgPGE2R* in mediating these responses, we performed RNAi experiments to silence the
151 receptor and evaluate its contributions to *Plasmodium* survival. As previously described,

152 RNAi significantly reduced *AgPGE2R* at four days post-injection, as well as 24 h post-*P.*
153 *berghei* infection (Figure S6). *AgPGE2R*-silencing had no effect on early oocyst numbers
154 two days post-infection, yet resulted in an increase in oocyst survival at eight days post-
155 infection (Figure 3B) similar to other known mediators of mosquito late-phase immunity
156 (16, 21–24). To further validate the role of *AgPGE2R* in mediating the anti-*Plasmodium*
157 effects of PGE2 signaling, we demonstrate that PGE2 priming requires *AgPGE2R*
158 function (Figure 3C).

159 Since PGE2 signaling regulates the expression of multiple PPO and AMP genes (Figure
160 2), we hypothesized that these immune molecules may directly mediate the effects of
161 PGE2 priming on oocyst survival. Previous studies have shown that PPO3 (16) and CEC3
162 (25) antagonize *Plasmodium* survival, while DEF1 does not directly impact parasite
163 infection (26). However, *PPO-1, 7, 8* and *CEC1* have not previously been evaluated by
164 RNAi for their role in anti-*Plasmodium* immunity. While each transcript was significantly
165 reduced (Figures 4A and S8A), only PPO1 significantly influenced oocyst survival at
166 seven days post-infection (Figures 4A). With previous evidence supporting that PPOs
167 contribute to the late-phase immune responses that mediate oocyst survival(16), we
168 wanted to examine the potential that PPO1 and PPO3 were responsible for the anti-
169 *Plasmodium* effects of PGE2 signaling. When *PPO1* and *PPO3* were co-silenced (Figure
170 4B), PGE2 priming had no effect on *Plasmodium* oocyst numbers at seven days post-
171 infection, in contrast to GFP-silenced controls (Figure 4B). This provides strong support
172 that PPO1 and PPO3 mediate the oocyst killing responses produced by PGE2 signaling
173 activation.

174 **PGE2 triggers oenocytoid cell lysis**

175 Given the increase in PO activity following PGE2 treatment (Figure 2), and studies
176 implicating PGE2 in the release of PPOs as a result of oenocytoid cell lysis in lepidopteran
177 insects (6, 27), we investigated whether PGE2 might similarly induce oenocytoid lysis in
178 *An. gambiae*. In contrast to the induction of *PPO* genes upregulated by PGE2 treatment
179 at 500 nM (Figure 2A), higher concentrations of PGE2 (1 μ M and 2 μ M) decreased the
180 expression of the same subset of PPO genes as compared to PBS controls (Figures S10
181 and 5A). Moreover, relative *AgPGE2R* transcript was similarly reduced in mosquitoes

182 primed with higher PGE2 concentrations (Figures S10 and 5B), although *AgPGE2R*
183 expression was unchanged by PGE2 priming at 500 nM (Figure 5B). To more closely
184 examine these differences, we focused on only the 500 nM and 2 μ M PGE2
185 concentrations. Using immunofluorescence assays (IFAs), we demonstrate that the
186 administration of 500 nM of PGE2 has no effect on the proportion of *AgPGE2R*⁺ cells, yet
187 at higher concentrations of PGE2 (2 μ M), the proportion of *AgPGE2R*⁺ cells was
188 significantly reduced (Figure 5C) with a corresponding increase in PO activity (Figure S9).
189 In intact oenocytoid cells, transcripts such as *AgPGE2R* and *PPO1* can readily be
190 distinguished, yet can no longer be detected after cell lysis (Figure 5). Together, these
191 results support that high concentrations of PGE2 initiate oenocytoid lysis, releasing their
192 contents into the mosquito hemolymph that initiate subsequent PO activity. To determine
193 the effects of oenocytoid lysis on malaria parasite survival, mosquitoes pretreated with 2
194 μ M of PGE2 were challenged with *P. berghei* infection. Interestingly, when mosquitoes
195 were primed with 2 μ M of PGE2 to reduce oenocytoid populations before *P. berghei*
196 challenge, oocyst survival was significantly increased (Figure 5D), suggesting that
197 oenocytoid populations are integral to anti-*Plasmodium* immunity and the effects of PGE2
198 priming.

199 **Discussion**

200 The interactions between the innate immune system and malaria parasites are key
201 determinants in shaping mosquito vector competence (28, 29). Therefore, much effort
202 has been devoted to define the immune molecules and immunological mechanisms that
203 determine malaria parasite killing in the mosquito host. Over the last 30 years,
204 prostaglandins have been implicated in mediating insect cellular immune responses such
205 as hemocyte spreading and chemotaxis, nodule formation, melanization, and
206 encapsulation (11, 13, 30, 31). However, our current understanding of the immunological
207 mechanisms of prostaglandin signaling have been limited by the lack of characterized
208 prostaglandin receptors.

209 In this study, we cloned and sequenced a putative PGE2 receptor (*AgPGE2R*) in *An.*
210 *gambiae*, exhibiting similarities to recently characterized insect PGE2 receptors in *M.*
211 *sexta* (8) and *S. exigua* (13). With prostaglandin signaling implicated in diverse

212 physiological roles in insects such as cellular immunity, renal physiology and reproduction
213 (1, 8, 11, 32–34), we examined *AgPGE2R* expression across tissues and feeding status,
214 finding that *AgPGE2R* was most prevalent in populations of hemocytes and malpighian
215 tubules. While we did not further explore the role of *AgPGE2R* in the malpighian tubule,
216 previous studies in other insect systems suggest potential roles for *AgPGE2R* in water
217 homeostasis (33, 35, 36). With significant roles described for prostaglandins in the insect
218 cellular immune response (6, 8, 11), our efforts herein are focused on the function of
219 *AgPGE2R* in mosquito immune cell populations where the receptor was most highly
220 expressed.

221 Using immunofluorescence assays, we demonstrate that *AgPGE2R* is predominantly
222 expressed in the oenocytoid, a non-phagocytic immune cell sub-type traditionally
223 associated with prophenoloxidase (PPO) production (37). However, *AgPGE2R* was also
224 immunolocalized in a subset of phagocytic cells at a lower signal intensity. These cell
225 identifications are supported herein by the use of clodronate liposomes (16) to
226 demonstrate that *AgPGE2R* is unaffected by phagocyte depletion experiments, and
227 recent single-cell RNA-seq studies of *An. gambiae* immune cell populations (19). Our
228 findings are also consistent with recent evidence that the *M. sexta* PGE2R is
229 immunolocalized to oenocytoid immune cell populations (8). Based on these expression
230 patterns, we therefore argue that oenocytoids are central to prostaglandin signaling.

231 Our data demonstrate an integral role for *AgPGE2R* in oenocytoid function, influencing
232 the transcription of PPO and AMP genes, PO activity, and oenocytoid lysis. Moreover,
233 these data provide definitive evidence for the role of oenocytoids in mosquito innate
234 immunity, with involvement in limiting bacteria and malaria parasite survival (summarized
235 in Figure 6). However, we cannot discount other PGE2 signaling events that may
236 influence the immune system. With weak expression on a subset of granulocytes,
237 *AgPGE2R* may also directly or indirectly mediate hemocyte recruitment to the midgut
238 basal lamina and granulocyte proliferation as previously described (11). In addition, the
239 expression of *AgPGE2R* in other tissues, such as the salivary gland, may also have
240 important roles in mosquito physiology that require further investigation.

241 Focusing on the influence of *AgPGE2R* in mosquito immune function, we demonstrate
242 that PGE2 priming influences PPO gene expression and subsequent downstream PO
243 activity. Of interest, we found that only a subset of PPO genes (*PPO1*, -3, -7 and -8) were
244 influenced by prostaglandin signaling. This same subset of PPO genes was upregulated
245 in response to PGE2 priming, while *AgPGE2R*-silencing significantly reduced their
246 expression. As a result, these data support that prostaglandin signaling is central to the
247 regulation of *PPO1*, -3, -7 and -8. This same subset of PPOs is highly enriched in
248 mosquito oenocytoid populations and display regulation by the transcription factor
249 lozenge(19), an important regulator of oenocytoid (or comparable *Drosophila* crystal cell)
250 differentiation(19, 38, 39). Recent data suggest that the remaining PPO genes, *PPO2*, -
251 4, -5, -6, -9 are highly expressed in granulocyte populations (16, 19), providing additional
252 support for distinct mechanisms of PPO regulation in mosquito immune cell populations.

253 Previous studies have demonstrated that injury and bacterial infection cause the release
254 of PPO from *Drosophila* crystal cells (40), supporting that the increase in PGE2 levels
255 that accompany ookinete invasion may similarly trigger oenocytoid lysis. We provide
256 evidence that PGE2 promotes oenocytoid lysis in a concentration-dependent manner,
257 where increasing PGE2 concentrations result in increased oenocytoid lysis. This is
258 supported by the role of prostaglandins in mediating the release of PPO through
259 oenocytoid rupture in the beet armyworm *S. exigua* (6, 27, 41), although evidence
260 suggests that lysis is independent of the prostaglandin receptor (6, 41).

261 Our data support that PPO regulation via prostaglandin signaling is an integral component
262 of mosquito “late-phase” immunity that limits *Plasmodium* oocyst survival (16, 21–23, 28).
263 Similar to the phenotypes previously described for *PPO2*-, *PPO3*- and *PPO9*-silencing
264 (16), we demonstrate that *PPO1*-silencing increase the post-invasion survival of immature
265 oocysts. In addition, co-silencing of *PPO1* and *PPO3* eliminated the protective effects of
266 PGE2 priming, arguing that PPO expression is central to anti-*Plasmodium* effects of
267 prostaglandin signaling. This is further supported by our experiments using high PGE2
268 concentrations to deplete oenocytoid populations prior to *P. berghei* challenge which
269 importantly implicate oenocytoid function in the establishment of anti-*Plasmodium*
270 immunity.

271 In addition to PPO regulation, we also provide evidence that PGE2 signaling stimulates
272 the production of AMPs in *An. gambiae*, similar to previous studies in other systems (4,
273 42). In light of this result, we demonstrate the role of PGE2 priming in mediating
274 antibacterial immune responses that suppress bacterial growth. These effects are
275 abrogated by *AgPGE2R*-silencing, indicating that *AgPGE2R* is required for the
276 antibacterial responses associated with PGE2 signaling.

277 In summary, our characterization of the prostaglandin receptor in *An. gambiae* provides
278 important new insights into the roles of prostaglandin signaling in oenocytoid immune cell
279 function and mosquito innate immunity. We demonstrate that *AgPGE2R* mediates PPO
280 and AMP gene expression that limit *Plasmodium* oocyst survival and suppress bacterial
281 infection, and establish that PGE2 promotes oenocytoid lysis. Together, this work reveals
282 an integral role of oenocytoids in prostaglandin signaling and mosquito innate immunity.

283 **Materials and Methods**

284 **Mosquito rearing and *Plasmodium* infection**

285 *Anopheles gambiae* mosquitoes (Keele strain) were reared at 27°C and 80%
286 relative humidity, with a 14/10 hour day/night cycle. Larvae were fed on fish flakes
287 (Tetramin, Tetra), and adult mosquitoes were maintained on 10% sucrose solution.
288 Female Swiss Webster mice were infected with a mCherry strain of *Plasmodium*
289 *berghei* as previously described (16).

290 **Sequencing and phylogenetic analysis of the *AgPGE2* receptor**

291 A putative prostaglandin E2 receptor (AGAP001561) was identified in *Anopheles*
292 *gambiae* by BLAST P using orthologous sequence from the functionally characterized
293 PGE2R in *M. sexta* (8). Cloning and sequencing of the full ORF cDNA of *AgPGE2R* was
294 performed from total RNA isolated from hemocytes perfused from non-blood fed female
295 mosquitoes (n=50) using Direct-zol RNA Miniprep kit (Zymo research). After DNase I
296 treatment following manufacturer's protocol (New England Biolabs), 200 ng of total RNA
297 was used for cDNA synthesis using the RevertAid First Strand cDNA Synthesis kit
298 (Thermo Fisher Scientific). To obtain full length ORF cDNA (1463 bp), PCR was
299 performed at 96°C for 2 min, followed by 40 cycles of 96°C 30s, 62°C for 60s, 72°C 60s,
300 with a final extension at 72°C for 5 min using pge2R-F and pge2R-R primers listed in

301 Table S1. Following gel purification of the PCR product, the amplified PCR product was
302 cloned into pJET1.2/blunt Cloning Vector (Thermo Fisher Scientific) and sequenced by
303 the Iowa State DNA Core Facility. A phylogenetic tree was generated from amino acid
304 sequences of human prostanoid and leukotriene receptors, and chemokine receptor 3
305 obtained from NCBI as previously described (8). Putative insect PGE2 receptors were
306 predicted by protein BLAST search using PGE2 receptors sequenced from *M. sexta* and
307 *An. gambiae*. The phylogenetic tree was produced with MEGA 7 software (43)

308 **AgPGE2R expression analysis**

309 Naïve and *P. berghei* infected mice were used for mosquito blood feeding and
310 *Plasmodium* infection, respectively. To quantify relative abundance of receptor transcript
311 level in various tissues, midgut, fat body, malpighian tubules and ovary were isolated from
312 naïve (3-5 days old), 24 h blood-fed or 24 h *P. berghei* infected mosquitoes (n=40 per
313 condition) in 1x sterile PBS. Hemolymph was separately perfused from mosquitoes (n=50)
314 from similar conditions as described previously (16). Total RNA from isolated tissues was
315 prepared using TRIzol (Thermo Fisher Scientific). Following hemolymph lysis in TRIzol
316 reagent, total RNA was isolated using Direct-zolTMRNA MiniPrep (Zymo Research). After
317 DNase I treatment according to manufacturer's protocol (New England Biolabs), Total
318 RNA from tissues (2 µg) and hemolymph (200 ng) was used for cDNA synthesis using
319 the RevertAid First Strand cDNA Synthesis kit (Thermo Fisher Scientific). qRT-PCR was
320 performed using PowerUpTMSYBR[®]Green Master Mix (Thermo Fisher Scientific) with the
321 ribosomal S7 protein transcript serving as an internal reference as previously (16). cDNA
322 (1:5 dilution) amplification was performed with 500 nM of each specific primer pair using
323 the following cycling conditions: 95°C for 10 min, 40 cycles with 95°C for 15 s and 65°C
324 for 60 s. A comparative Ct ($2^{-\Delta\Delta Ct}$) method was employed to evaluate relative transcript
325 abundance for each transcript (44). A list of primers used for gene expression analyses
326 are listed in Table S1.

327 **Western blot analysis**

328 Western blot analysis was performed as previously described (16). Hemolymph was
329 perfused from individual mosquitoes (n=35) at naïve, 24 h blood fed, or 24 h *P. berghei*-
330 infected mosquitoes using incomplete buffer (anticoagulant solution without fetal bovine

331 serum) containing a protease inhibitor cocktail (Sigma). Hemolymph protein
332 concentrations were measured using Quick StartTMBradford Dye reagent (Bio-Rad).
333 Protein samples (2 µg) were mixed with BoltTMLDS sampling buffer and sample reducing
334 agent (Life Technologies), and heated at 70°C for 5 min before separation on 4-12% Bis-
335 Tris Plus ready gel (Thermo Fisher Scientific). To determine PGE2R glycosylation in the
336 hemolymph samples, protein samples were treated with PNGase F (Promega) according
337 to manufacturer's instruction under denaturing conditions. Samples were resolved using
338 BoltTMMES SDS running buffer (Thermo Fisher Scientific) for 90 min at 100 V. Proteins
339 were transferred to PVDF membrane in BoltTMTransfer buffer (Life Technologies) for 1 h
340 at 20 V, and then blocked in TBST buffer (10 mM Tris base, 140 mM NaCl, 0.05% Tween
341 20, pH 7.6) containing 5% non-fat milk for 1 hour at RT. For western blotting, the
342 membrane was incubated with a 1:1000 dilution of rabbit anti-AgPGE2R (Cys-
343 NRSMSQTPKSSSFTDSNIIR: third intracellular loop) affinity purified antibodies (3.1
344 mg/ml; Pacific Immunology), pre-immune serum (1:1000), or rabbit anti-serpin3 (SRPN3)
345 antibodies (1:1000) (16) in TBST blocking buffer overnight at 4°C. Membranes were
346 washed three times for 5 min in TBST, then incubated with a secondary anti-rabbit
347 alkaline phosphatase-conjugated antibody (1:7500, Thermo Fisher Scientific) for 2 h at
348 RT. Following washing in TBST, the membrane was incubated with 1-StepTMNBT/BCIP
349 (Thermo Fisher Scientific) to enable colorimetric detection.

350 **Immunofluorescence assays (IFAs)**

351 Hemocyte immunofluorescence assays (IFAs) were performed as previously described
352 (16). Hemolymph perfused from mosquitoes at naïve, 24 h post-blood meal and 24 h
353 post-infection was placed on a multi-well glass slide (MP Biomedicals) and allowed to
354 adhere at RT for 30 min. Cells were fixed with 4% paraformaldehyde for 15 minutes at
355 RT, then washed three times in 1xPBS. Samples were incubated with blocking buffer (0.1%
356 Triton X-100, 1% BSA in 1xPBS) for 24 h at 4°C and incubated with a 1:500 of rabbit anti-
357 AgPGE2R (CVRYRSATEPID: second extracellular loop) affinity purified antibodies (0.6
358 mg/ml) (Pacific Immunology), or pre-immune serum (1:1000) in blocking buffer overnight
359 at 4°C. After washing 3 times in 1xPBS, an Alexa Fluor 568 goat anti-rabbit IgG (1:500,
360 Thermo Fisher Scientific) secondary antibody was added in blocking buffer for 2 h at RT.
361 Slides were rinsed three times in 1xPBS and mounted with ProLong[®]Diamond Antifade

362 mountant with DAPI (Life Technologies). Images were analyzed by a fluorescence
363 microscopy (Nikon Eclipse 50i, Nikon) and confocal microscopy (Leica SP5 X MP
364 confocal/multiphoton microscope) at the Iowa State University Microscopy Facility.

365 **Phagocytic cell depletion using clodronate liposomes**

366 To validate that the *AgPGE2R* is predominantly expressed on non-phagocytic oenocytoid
367 immune cells, female mosquitoes were treated with either control liposome or clodronate
368 liposome as previously described to deplete phagocytic immune cell populations (16).
369 Hemolymph was perfused from naïve mosquitoes (n=40) at 24 h post-injection. Total RNA
370 isolation, cDNA synthesis and qRT-PCR experiment were performed as described above.
371 Relative abundance of *AgPGE2R* transcript level was determined between treatments.

372 **Endogenous PGE2 titer in the hemolymph**

373 Mosquito samples for analysis of prostaglandin E2 (PGE2) were prepared as previously
374 described (11). To determine how endogenous PGE2 level is regulated in the mosquito
375 at different conditions (naïve, 24 h blood fed and 24 h *P. berghei* infection), mosquitoes
376 (n=5) were homogenized in 400 µl of Hanks Buffer Salt Solution (HBSS, Sigma) with
377 calcium and magnesium and incubated for 1 h at 28 °C. After centrifugation at 12,000
378 rpm for 10 minutes at 4°C, the supernatant was collected and stored at -80°C until
379 analyzed. In addition to measurement of PGE2 titer in whole mosquito, hemolymph (5 µl
380 per mosquito) was perfused from naïve, 24 h blood fed and 24 h *P. berghei* mosquitoes
381 using the HBSS buffer, and a pool of hemolymph (50 µl) perfused from ten mosquitoes
382 was used for measurement of PGE2 titer. PGE2 titer was measured by Prostaglandin E2
383 Monoclonal ELISA kit (Cayman Chemical) according to the manufacturer's instructions.
384 Absorbance was read at 412 nm using a microplate reader (Multi-mode reader, Biotek).
385 PGE2 level was calculated using the Prostaglandin E2- Monoclonal program (4PL) at
386 <http://www.myassays.com> (MyAssays LTD., UK).

387 **Silencing *AgPGE2R* by RNAi**

388 dsRNA synthesis was performed as previously described (16). The N-terminus of
389 *AgPGE2R* including the 5' UTR and first 61 amino acid residues was selected for dsRNA
390 synthesis. Specific primers listed in Table S1 were designed to amplify a 421 bp DNA
391 template for subsequent dsRNA production using cDNA synthesized from naïve whole

392 female mosquitoes. The amplified PCR product was excised from an agarose gel, purified
393 using Zymoclean Gel DNA Recovery Kit (Zymo research), and cloned into a
394 pJET1.2/blunt vector (Thermo Fisher Scientific). The plasmid DNA was amplified with T7
395 primers (Table S1) at 96°C for 2 min, followed by initial 10 cycles of 96°C 30s, 58°C for
396 60s, 72°C 60s, and subsequent 30 cycles of 96°C 30s, 72°C for 60s, 72°C 60s, with a
397 final extension at 72°C for 5 min. MEGAscript RNAi kit (Thermo Fisher scientific) was
398 used for dsRNAs synthesis following the manufacturer's instructions. dsRNA was
399 precipitated with ethanol and resuspended in nuclease free water to 3 µg/µl. To determine
400 the role of *AgPGE2R* in *Plasmodium* development, mosquitoes (3-5 days old) were
401 anesthetized on ice and intrathoracically injected with 69 nl (~200 ng) of dsRNA per
402 mosquito using Nanoject III injector (Drummond Scientific Company). The dsRNA treated
403 mosquitoes were kept at 19°C for 4 days, then the effects of gene silencing on expression
404 of immune effectors, development of *P. berghei*, and clearance of *E. coli* infection were
405 evaluated. To determine RNAi efficiency, mosquitoes (n=15) at 4 days post-injection and
406 mosquitoes (n=15) at 24 h post-*P. berghei* infection were collected for total RNA isolation,
407 cDNA synthesis and qRT-PCR analysis as described above.

408 **Effects of PGE2 signaling on gene expression and PO activity**

409 To determine if PGE2 signaling via *AgPGE2R* influences prophenoloxidase (PPO) and
410 antimicrobial peptide (AMP) gene expression as previously described (27), we examined
411 phenoloxidase activity and gene expression following PGE2 priming. Naïve mosquitoes
412 were injected with 69 nl of either 500 nM or 2 µM PGE2, with 0.05% ethanol in 1xPBS as
413 a control. At 24 h post-injection, mosquitoes (n=15 per treatment) were collected for RNA
414 isolation, cDNA synthesis, qRT-PCR analysis of *PPO* and *AgPGE2R* gene expression
415 and IFA as described above. At 24 h post-injection of either PGE2 or 0.05% ethanol PBS,
416 a pool of hemolymph perfused from mosquitoes (n=15, 10 µl per mosquito) in nuclease
417 free water was prepared for analysis of phenoloxidase (PO) activity. The perfused
418 hemolymph (10 µl) was mixed with 90 µl of 3, 4-Dihydroxy-L-phenylalanine (L-DOPA, 4
419 mg/ml) dissolved in nuclease free water as previously described (16). After initial 10 min
420 incubation at room temperature, PO activity was measured at 490 nm every 5 min for 30
421 min, then the final activity was measured at 60 min using a microplate reader. Similar
422 experiments were performed following *AgPGE2R*-silencing 4 days post-injection of

423 dsRNA. PO activity was measured in gene-silenced mosquitoes injected with 500 nM
424 PGE2 using perfused hemolymph from mosquitoes (n=15) at 24 h post-injection.

425 **PGE2 priming on bacterial challenge**

426 Bacterial challenge experiments were performed with slight modification from previous
427 studies (45). Naïve female mosquitoes (3-5 day old) were intrathoracically injected with
428 69 nl of PGE2 (500 nM) or 0.05% ethanol PBS using a Nanoject III (Drummond Scientific).
429 Kanamycin resistant *E.coli* constructed by transformation with mCherry2-N1 plasmid was
430 cultured in Luria Bertani (LB) broth containing kanamycin (50 µg/ml) overnight at 37°C.
431 This *E. coli* suspension (OD₆₀₀ = 0.4, 10⁸ cells) was spun down at 8000 rpm for 5 min and
432 the bacterial pellet was washed twice in 1xPBS. At 24 h post-PGE2 application,
433 mosquitoes were challenged *E. coli* (~6950 cells in 69 nl) and collected at 6 h and 24 h
434 post infection. Individual mosquitoes were homogenized in 1 ml of LB broth. Mosquito
435 homogenates (100 µl) were spread onto LB-kanamycin (50 µg/ml) agar plates. Bacterial
436 plates were incubated overnight at 37°C and colony-forming units (CFU) per plate were
437 assessed to quantify the level of infection. Additional experiments were performed in
438 control- and AgPGE2R-silenced mosquitoes to determine the role of AgPGE2R in
439 antimicrobial immunity was performed by similar *E. coli* challenge experiments as
440 described above.

441 **Contributions of PGE2 and AgPGE2R to *Plasmodium* survival**

442 Naïve mosquitoes (3-5 days old) were injected with either 69 nl of 500 nM PGE2 or 0.05%
443 ethanol PBS. At 24 h post-injection, mosquitoes were challenged with *P. berghei* infection
444 and kept at 19°C. Oocyst survival was assessed at 8 days post-infection. To evaluate
445 effect of silencing AgPGE2R on parasite development, dsRNA treated mosquitoes were
446 challenged with *P. berghei* and kept at 19°C until assessment of oocyst survival at either
447 2 days or 8 days post-infection. To determine whether anti-*Plasmodium* immunity
448 mediated by PGE2 priming requires AgPGE2R activation, mosquitoes with silenced
449 PGE2R were primed with PGE2 (500 nM) before challenging with *P. berghei* infection
450 and oocyst survival was assessed at 8 days post-infection.

451 **Effect of prophenoloxidases and antimicrobial peptides on *P. berghei* infection**

452 Due to the effect of the PGE2 signaling system on regulation of a set of PPOs and
453 antimicrobial peptide genes, RNAi experiments were carried out with selected genes:
454 *PPO1* (AGAP002825), *PPO7* (AGAP004980), *PPO8* (AGAP004976) and *CEC1*
455 (AGAP000693). T7 primers were designed using the E-RNAi web application
456 (<http://www.dkfz.de/signaling/e-rnai3/idseq.php>) and listed in Table S1. dsRNA synthesis
457 was performed as described above. The effects of gene silencing were measured 2 days
458 post-injection in whole mosquitoes (n=15) by qRT-PCR as described above. Mosquitoes
459 were challenged with *P. berghei* at 2 days post-injection of dsRNA, and oocyst survival
460 was assessed at 7 days post-infection. The influence of PPOs in limiting oocyst survival
461 was further examined in mosquitoes co-silenced with *PPO1* and *PPO3* at 2 days post-
462 injection of dsRNA were primed with PGE2 (500 nM) and challenged with *P. berghei*
463 infection. Oocyst survival was assessed at 7 days post-infection.

464 **Acknowledgments**

465 This work was supported by a Postdoctoral Association Seed Grant Award from Iowa
466 State University (to H.K.) and R21AI44705 from the National Institutes of Health, National
467 Institute of Allergy and Infectious Diseases (to R.C.S.).

468 References

- 469 1. Dennis EA, Norris PC (2015) Eicosanoid storm in infection and inflammation. *Nat Rev Immunol* 15(8):511–23.
- 470 2. Moreno JJ (2017) Eicosanoid receptors: Targets for the treatment of disrupted 472 intestinal epithelial homeostasis. *Eur J Pharmacol* 796(December 2016):7–19.
- 473 3. Woodward DF, Jones RL, Narumiya S (2011) International Union of Basic and 474 Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 475 years of progress. *Pharmacol Rev* 63(3):471–538.
- 476 4. García Gil de Muñoz FL, Martínez-Barnetche J, Lanz-Mendoza H, Rodríguez MH, 477 Hernández-Hernández FC (2008) Prostaglandin E2 modulates the expression of 478 antimicrobial peptides in the fat body and midgut of *Anopheles albimanus*. *Arch Insect Biochem Physiol* 68(1):14–25.
- 480 5. Ramos S, Custódio A, Silveira H (2014) *Anopheles gambiae* eicosanoids modulate 481 Plasmodium berghei survival from oocyst to salivary gland invasion. *Mem Inst 482 Oswaldo Cruz* 109(5):668–671.
- 483 6. Shrestha S, Stanley D, Kim Y (2011) PGE2 induces oenocytoid cell lysis via a G 484 protein-coupled receptor in the beet armyworm, *Spodoptera exigua*. *J Insect 485 Physiol* 57(11):1568–1576.
- 486 7. Merchant D, Ertl RL, Rennard SI, Stanley DW, Miller JS (2008) Eicosanoids 487 mediate insect hemocyte migration. *J Insect Physiol* 54(1):215–221.
- 488 8. Kwon H, et al. (2020) Characterization of the first insect prostaglandin (PGE2) 489 receptor: MansePGE2R is expressed in oenocytoids and lipoteichoic acid (LTA) 490 increases transcript expression. *Insect Biochem Mol Biol* 117:103290.
- 491 9. Kwon H, Smith RC (2019) Inhibitors of eicosanoid biosynthesis reveal that multiple 492 lipid signaling pathways influence malaria parasite survival in *Anopheles gambiae*. 493 *Insects* 10:307.
- 494 10. Kim Y, et al. (2020) Deletion mutant of PGE2 receptor using CRISPR-Cas9 exhibits 495 larval immunosuppression and adult infertility in a lepidopteran insect, *Spodoptera* 496 *exigua*. *Dev Comp Immunol*:103743.
- 497 11. Barletta ABF, Trisnadi N, Ramirez JL, Barillas-Mury C (2019) Mosquito midgut 498 prostaglandin release establishes systemic immune priming. *iScience* 19:54–62.
- 499 12. Ramirez JL, et al. (2015) A mosquito lipoxin/lipocalin complex mediates innate 500 immune priming in *Anopheles gambiae*. *Nat Commun* 6(May):7403.
- 501 13. Kim Y, et al. (2020) Deletion mutant of PGE2 receptor using CRISPR-Cas9 exhibits 502 larval immunosuppression and adult infertility in a lepidopteran insect, *Spodoptera* 503 *exigua*. *Dev Comp Immunol* 111:103743.
- 504 14. Zhang Z, Austin SC, Smyth EM (2001) Glycosylation of the human prostacyclin 505 receptor: Role in ligand binding and signal transduction. *Mol Pharmacol* 60(3):480–

506 487.

507 15. Hirata T, Narumiya S (2012) *Prostanoids as Regulators of Innate and Adaptive*
508 *Immunity* (Elsevier Inc.). 1st Ed. doi:10.1016/B978-0-12-394300-2.00005-3.

509 16. Kwon H, Smith RC (2019) Chemical depletion of phagocytic immune cells in
510 *Anopheles gambiae* reveals dual roles of mosquito hemocytes in anti- *Plasmodium*
511 immunity. *Proc Natl Acad Sci* 116(28):14119–14128.

512 17. Midega J, et al. (2013) Discovery and characterization of two Nimrod superfamily
513 members in *Anopheles gambiae*. *Pathog Glob Health* 107(8):463–474.

514 18. Estévez-Lao TY, Hillyer JF (2014) Involvement of the *Anopheles gambiae* Nimrod
515 gene family in mosquito immune responses. *Insect Biochem Mol Biol* 44(1):12–22.

516 19. Kwon H, Franzén O, Mohammed M, Ankarklev J, Smith RC (2020) Single-cell
517 analysis of mosquito hemocytes identifies signatures of immune cell sub-types and
518 cell differentiation. *bioRxiv*.

519 20. Crescente M, et al. (2020) Profiling the eicosanoid networks that underlie the anti-
520 and pro-thrombotic effects of aspirin. *FASEB J*:1–14.

521 21. Gupta L, et al. (2009) The STAT pathway mediates late-phase immunity against
522 *Plasmodium* in the mosquito *Anopheles gambiae*. *Cell Host Microbe* 5(5):498–507.

523 22. Smith RC, Barillas-Mury C, Jacobs-Lorena M (2015) Hemocyte differentiation
524 mediates the mosquito late-phase immune response against *Plasmodium* in
525 *Anopheles gambiae*. *Proc Natl Acad Sci* 112:E3412-20.

526 23. Kwon H, Arends BR, Smith RC (2017) Late-phase immune responses limiting
527 oocyst survival are independent of TEP1 function yet display strain specific
528 differences in *Anopheles gambiae*. *Parasit Vectors* 10(1):369.

529 24. Goulielmaki E, Siden-Kiamos I, Loukeris TG (2014) Functional characterization of
530 *Anopheles* matrix metalloprotease 1 reveals its agonistic role during sporogonic
531 development of malaria parasites. *Infect Immun* 82:4865–4877.

532 25. Reynolds RA, Kwon H, Smith RC (2020) 20-hydroxyecdysone primes innate
533 immune responses that limit bacterial and malarial parasite survival in *Anopheles*
534 *gambiae*. *mSphere* 5(2):e00983-19.

535 26. Blandin S, et al. (2002) Reverse genetics in the mosquito *Anopheles gambiae*:
536 Targeted disruption of the Defensin gene. *EMBO Rep* 3(9):852–856.

537 27. Shrestha S, Kim Y (2008) Eicosanoids mediate prophenoloxidase release from
538 oenocytoids in the beet armyworm *Spodoptera exigua*. *Insect Biochem Mol Biol*
539 38:99–112.

540 28. Smith RC, Barillas-Mury C (2016) Plasmodium oocysts: overlooked targets of
541 mosquito immunity. *Trends Parasitol*. doi:10.1016/j.pt.2016.08.012.

542 29. Smith RC, Vega-Rodríguez J, Jacobs-Lorena M (2014) The *Plasmodium*
543 bottleneck: malaria parasite losses in the mosquito vector. *Mem Inst Oswaldo Cruz*

544 109(5):644–661.

545 30. Stanley D, Kim Y (2011) Prostaglandins and their receptors in insect biology. *Front*
546 *Endocrinol* 2:1–11.

547 31. Kim Y, Ahmed S, Stanley D, An C (2018) Eicosanoid-mediated immunity in insects.
548 *Dev Comp Immunol* 83:130–143.

549 32. Machado E, et al. (2007) Prostaglandin signaling and ovarian follicle development
550 in the silkworm, *Bombyx mori*. *Insect Biochem Mol Biol* 37:876–885.

551 33. Petzel DH, et al. (1993) Arachidonic acid and prostaglandin E2 in malpighian
552 tubules of female yellow fever mosquitoes. *Insect Biochem Mol Biol* 23(4):431–7.

553 34. Murtaugh MP, Denlinger DL (1982) Prostaglandins E and F2 α in the house cricket
554 and other insects. *Animals* 12(6):599–603.

555 35. Van Kerkhove E, Pirotte P, Petzel DH, Stanley-Samuelson DW (1995) Eicosanoid
556 biosynthesis inhibitors modulate basal fluid secretion rates in the malpighian
557 tubules of the ant, *Formica polyctena*. *J Insect Physiol* 41(5):435–441.

558 36. Petzel DH, Stanley-Samuelson DW (1992) Inhibition of eicosanoid biosynthesis
559 modulates basal fluid secretion in the malpighian tubules of the yellow fever
560 mosquito (*Aedes aegypti*). *J Insect Physiol* 38(1):1–8.

561 37. Hillyer JF, Strand MR (2014) Mosquito hemocyte-mediated immune responses.
562 *Curr Opin Insect Sci* 3:14–21.

563 38. Fossett N, Hyman K, Gajewski K, Orkin SH, Schulz R a (2003) Combinatorial
564 interactions of serpent, lozenge, and U-shaped regulate crystal cell lineage
565 commitment during *Drosophila* hematopoiesis. *Proc Natl Acad Sci U S A*
566 100:11451–11456.

567 39. Waltzer L, Ferjoux G, Bataillé L, Haenlin M (2003) Cooperation between the GATA
568 and RUNX factors Serpent and Lozenge during *Drosophila* hematopoiesis. *EMBO*
569 *J* 22(24):6516–6525.

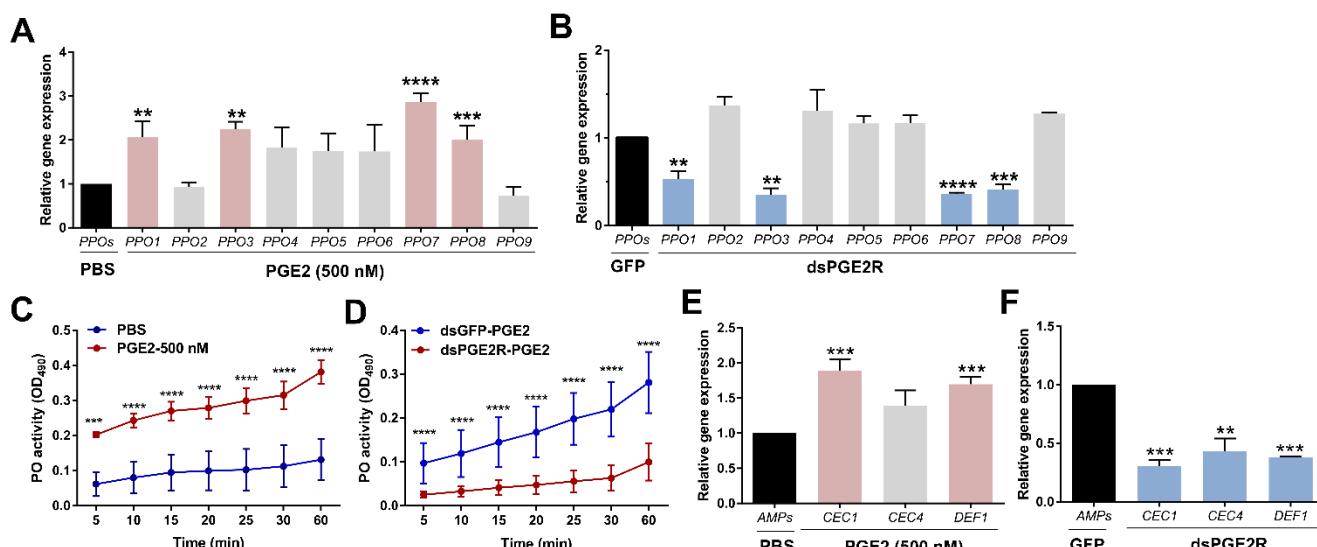
570 40. Bidla G, Dushay MS, Theopold U (2007) Crystal cell rupture after injury in
571 *Drosophila* requires the JNK pathway, small GTPases and the TNF homolog Eiger.
572 *J Cell Sci* 120:1209–1215.

573 41. Shrestha S, Park J, Ahn SJ, Kim Y (2015) Pge2 mediates oenocytoid cell lysis via
574 a sodium-potassium-chloride cotransporter. *Arch Insect Biochem Physiol*
575 89(4):218–229.

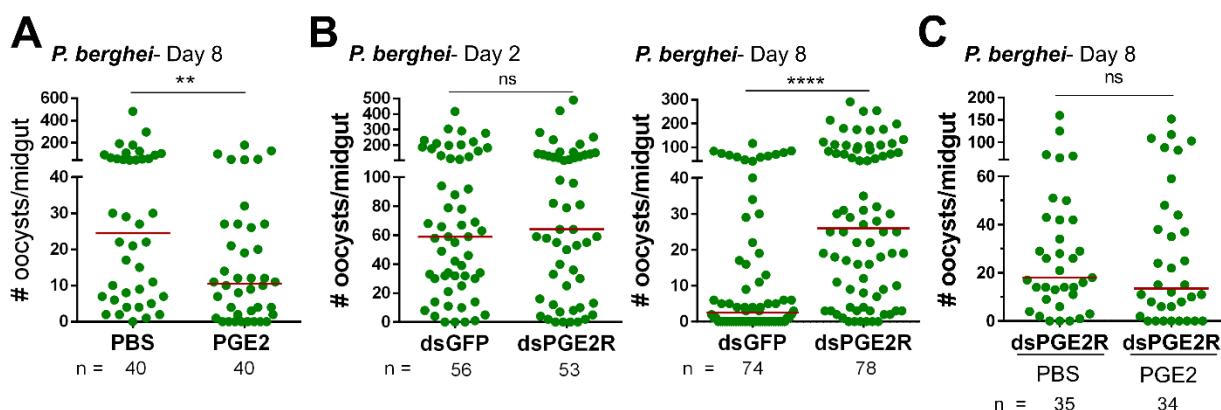
576 42. Bernard JJ, Gallo RL (2010) Cyclooxygenase-2 enhances antimicrobial peptide
577 expression and killing of *Staphylococcus aureus*. *J Immunol* 185(11):6535–6544.

578 43. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics
579 analysis version 7.0 for bigger datasets. *Mol Biol Evol* 33(7):1870–1874.

580 44. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using
581 real-time quantitative PCR and. *Methods* 25:402–408.

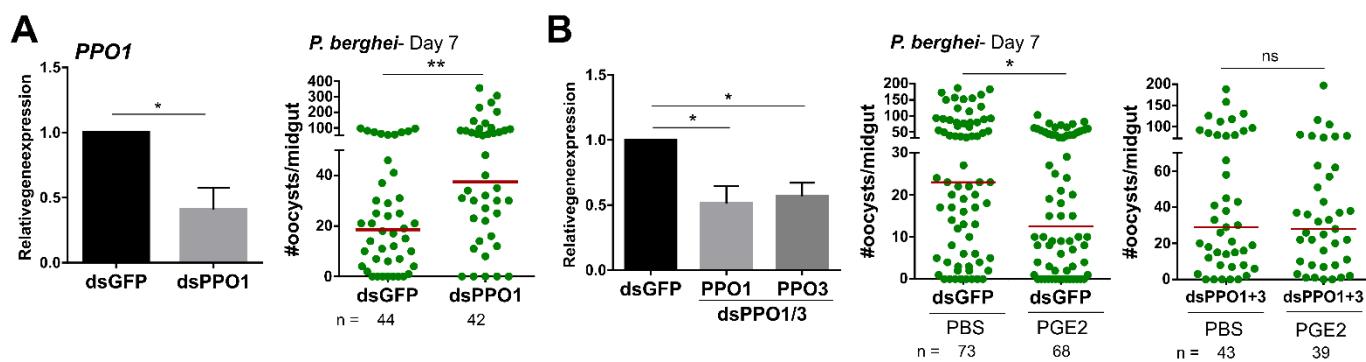

582 45. Kim IH, et al. (2020) A mosquito juvenile hormone binding protein (mJHBP)
583 regulates the activation of innate immune defenses and hemocyte development.
584 *PLoS Pathog* 16(1):1–24.

585

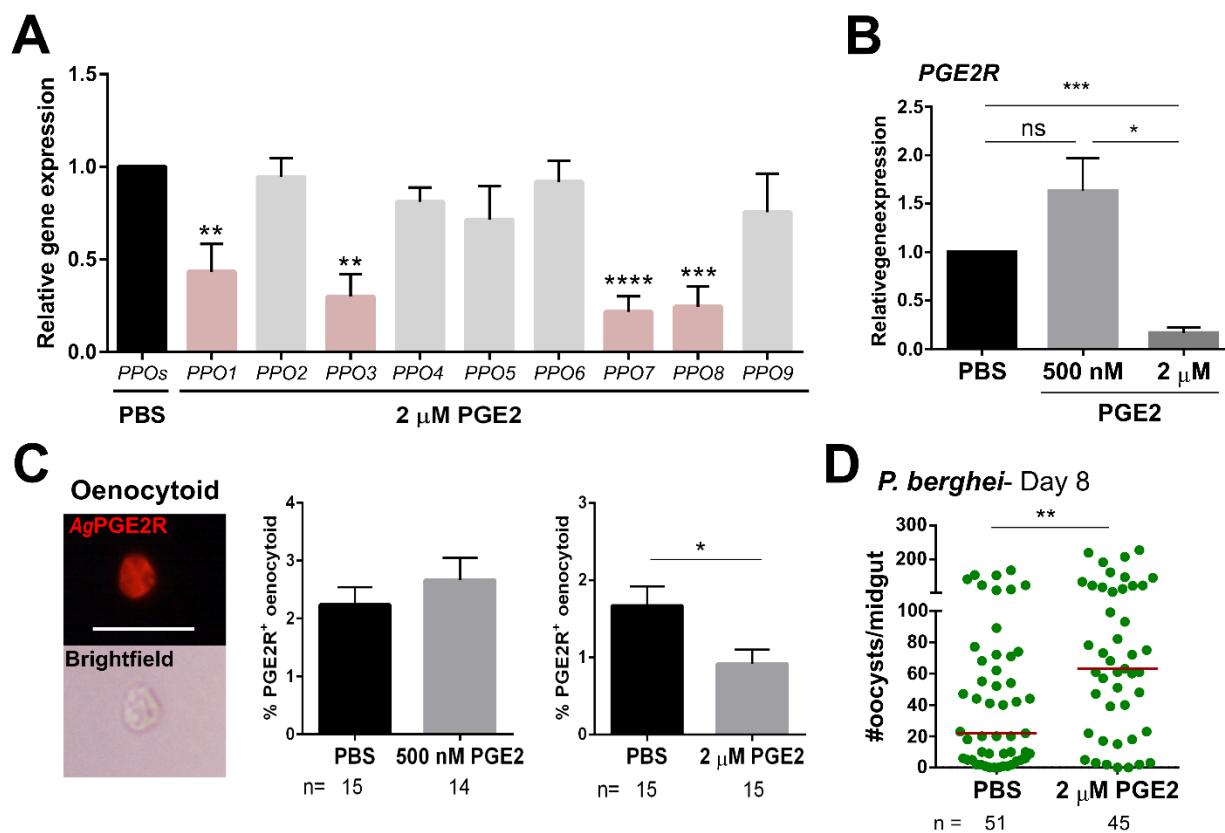


586

587 **Figure 1. Characterization of a prostaglandin E2 receptor (PGE2R) in *Anopheles***
588 ***gambiae*.** (A) AgPGE2R gene expression was examined by qRT-PCR in midgut (MG),
589 fat body (FB), ovary (OV), malpighian tubules (MT), and perfused hemocytes (HE) under
590 naïve (NV), blood-fed (24 h BF), or *P. berghei*-infected (24 h *P.b*) conditions. (B)
591 AgPGE2R expression was more closely examined in hemocytes and compared across
592 physiological conditions. For both A and B, letters indicate statistically significant
593 differences ($P < 0.05$) when analyzed by a one-way ANOVA followed by a Tukey's
594 multiple comparison test using GraphPad Prism 6.0. Bars represent the mean \pm SE of
595 either three or four independent biological replicates. (C) Perfused hemolymph from naïve
596 (NV), blood-fed (BF), or *P. berghei* infected (*P.b*) mosquitoes were examined by Western
597 blot analysis. Specific bands were detected corresponding to a glycosylated AgPGE2R
598 product (bands at \sim 70 kDa, open arrowhead), or in which the receptor underwent
599 deglycosylation with PNGase F treatment (\sim 46 kDa, black arrowhead). The AgPGE2R
600 was detected using a rabbit antibody (1:1000) directed against intracellular loop 3 (ICL3).
601 No bands were detected in a 24 h BF hemolymph sample incubated with pre-immune
602 serum. Serpin 3 (SRPN3) was used as a protein loading control. (D) Immunofluorescence
603 assays were performed on perfused hemocytes using a rabbit polyclonal antibody (1:500)
604 against extracellular loop 2 (ECL2), revealing that PGE2R is localized to oenocytoid
605 immune cell populations (scale bar, 5 μ m).

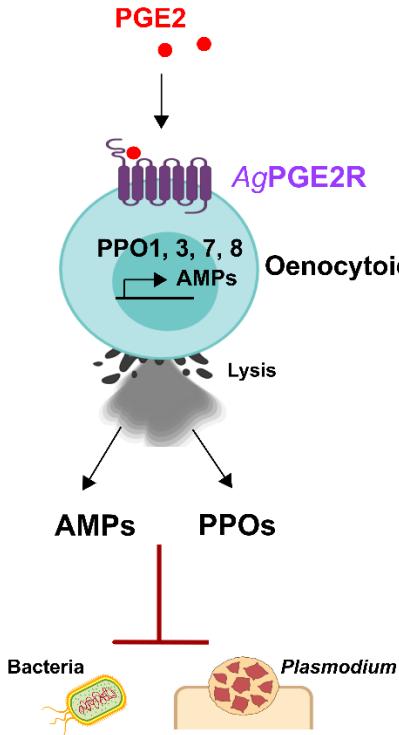


606 **Figure 2. PGE2 signaling influences phenoloxidase (PO) activity and antimicrobial
607 peptide (AMP) gene expression.** Following treatment with PGE2 (500nM) (**A**) or when
608 *AgPGE2R* was silenced (**B**), the expression of all 9 mosquito prophenoloxidases (PPOs)
609 were examined by qRT-PCR and compared to respective PBS or GFP controls. For both
610 **A** and **B**, mosquitoes were pooled (n=15) for analysis. Data were analyzed using an
611 unpaired t test to determine differences in relative gene expression for each respective
612 PPO gene between treatments. Bars represent mean \pm SE of three independent
613 biological replicates. (**C**) PO activity was measured from perfused hemolymph in
614 mosquitoes primed with PGE2 (500 nM) and compared to PBS controls 24 h post-
615 treatment (n=15 per treatment). (**D**) Additional experiments were performed measuring
616 PO activity in which PGE2 (500nM) was injected into *AgPGE2R*- or *GFP*-silenced (control)
617 mosquitoes (n=15 per treatment). For both **C** and **D**, measurements (OD₄₉₀) were taken
618 for DOPA conversion assays at 5-min intervals from 0 to 30 min, as well as a final readout
619 at 60 min. Data were analyzed using a two-way repeated-measures ANOVA followed by
620 Sidak's multiple comparisons using GraphPad Prism 6.0. Bars represent mean \pm SE of 3
621 independent experiments. In addition, PGE2 priming induced expression of antimicrobial
622 peptide (AMP) genes (**E**), while *AgPGE2R*-silencing reduced AMP expression (**F**). For **E**
623 and **F**, data were analyzed using an unpaired t-test to determine differences in relative
624 gene expression of each respective AMP gene between treatments. Bars represent mean
625 \pm SE of three independent replications. For all data, asterisks denote significance (**P <
626 0.01, ***P < 0.001, ****P < 0.0001); ns, not significant.



627

628 **Figure 3. PGE2 signaling mediates *An. gambiae* anti-*Plasmodium* immunity.**
629 Following priming with PGE2 (500 nM), *P. berghei* infection was measured by evaluating
630 oocyst numbers 8 days post-infection (**A**) and compared to PBS controls. When
631 *AgPGE2R*-silenced mosquitoes were challenged with *P. berghei*, early oocyst numbers
632 (Day 2) were comparable to GFP controls, yet displayed significant differences at Day 8
633 (**B**), reminiscent of previously described late-phase immunity phenotypes. When PGE2
634 was administered to *AgPGE2R*-silenced mosquitoes, there were no effects of PGE2
635 priming on oocyst survival (**C**). All infection data were analyzed by a Mann–Whitney test
636 using GraphPad Prism 6.0. Median oocyst numbers are indicated by the horizontal red
637 line. Bars represent mean \pm SE of three or more independent biological replicates.
638 Asterisks denote significance ($**P < 0.01$, $****P < 0.0001$); ns, not significant.



639 **Figure 4. Anti-*Plasmodium* effects of PGE2 priming are mediated by mosquito**
640 **prophenoloxidases.** Significant reduction of PPO1 gene expression enhanced oocyst
641 survival at 7 days post-infection **(A)** *PPO1* gene expression was efficiently reduced
642 following RNAi, resulting in a significant increase in *P. berghei* oocyst survival when
643 evaluated 8 days post-infection. To verify the role of mosquito prophenoloxidases in
644 mediating PGE2 immune activation, *PPO1* and *PPO3* were co-silenced and then primed
645 with either PBS (control) or PGE2 **(B)**. Following challenge with *P. berghei*, oocyst
646 survival was examined 7 days post-infection. Data were analyzed by an unpaired t test to
647 determine RNAi efficiency and a Mann-Whitney test to assess oocyst survival using
648 GraphPad Prism 6.0. Bars represent mean \pm SE of three independent biological
649 replicates. Median oocyst numbers are indicated by the horizontal red line. Asterisks
650 denote significance (* $P < 0.05$, ** $P < 0.01$); ns, not significant.

651

652 **Figure 5. High concentrations of PGE2 trigger oenocytoid lysis.** (A) The influence of
653 high PGE2 concentrations (2 μ M) was examined on prophenoloxidase (PPO) gene
654 expression, where the subset of PPO genes regulated by PGE2 treatment (*PPO1, 3, 7*
655 and *8*) are significantly reduced. (B) Similarly, *AgPGE2R* expression was also reduced
656 when mosquitoes were primed with 2 μ M PGE2, yet was unaffected by 500 nM PGE2.
657 To determine if oenocytoid immune cell populations were influenced by PGE2 levels,
658 immunofluorescence assays (IFAs) were performed to label mosquito oenocytoids (C).
659 There was no difference in the proportion of *AgPGE2R*⁺ oenocytoid cells between PBS
660 and 500 nM PGE2 treatments, yet 2 μ M PGE2 treatments reduced oenocytoid
661 populations supporting that high levels of PGE2 promote oenocytoid lysis. The scale bar
662 represents 10 μ m. (D) When oenocytoid lysis was triggered by 2 μ M PGE2 treatment
663 prior to *P. berghei* infection, *Plasmodium* survival was significantly increased when oocyst
664 numbers were examined 8 days post-infection. Data presented in A-C were analyzed
665 using an unpaired t-test to determine differences in relative gene expression or
666 oenocytoid abundance using GraphPad Prism 6.0. Bars represent mean \pm SE of three
667 independent biological replicates for A and B, and two independent biological replicates
668 for C. Oocyst data from three independent experiments were analyzed by Mann-Whitney.
669 Median oocyst numbers are indicated by the horizontal red line. Asterisks denote
670 significance (* $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$); ns, not significant.

671

672 **Figure 6. Summary of PGE2 signaling via PGE2R to activate *A. gambiae* immunity**
673 **in oenocytoid immune cell populations.** We demonstrate that PGE2 interacts with its
674 cognate receptor, AgPGE2R, to initiate innate immune expression of prophenoloxidases
675 and AMPs in oenocytoid immune cell populations. The release of these molecules via
676 ookinete lysis mediate the killing of bacteria and malaria parasites.