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Abstract 23 

Epidemiological studies have identified innumerable ways in which cancer presentation 24 

and behaviour is associated with patient ancestry. The molecular bases for these 25 

relationships remain largely unknown. We analyzed ancestry associations in the somatic 26 

mutational landscape of 12,774 tumours across 33 tumour-types, including 2,562 with 27 

whole-genome sequencing. Ancestry influences both the number of mutations in a tumour 28 

and the evolutionary timing of when they occur. Specific mutational signatures are 29 

associated with ancestry, reflecting potential differences in exogenous and endogenous 30 

oncogenic processes. A subset of known cancer driver genes was mutated in ancestry-31 

associated patterns, with transcriptomic consequences. Cancer genome sequencing data 32 

is not well-balanced in epidemiologic factors; these data suggest ancestry strongly 33 

shapes the somatic mutational landscape of cancer, with potential functional implications.  34 
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Introduction 35 

Racial differences in cancer are pervasive across myriad measures of cancer burden. 36 

Epidemiological studies have reported race-associated differences in incidence1–4, 37 

survival3,5,6, and mortality1,2,7,8 rates, amongst others. These persist despite 38 

advancements in cancer detection and treatment9. Across all cancer types, incidence 39 

rates in Black and White populations are comparable, but Black mortality rates are ~13% 40 

higher1. In contrast, all cancer incidence and mortality rates are lower in US Asian, Native 41 

Hawaiian and Pacific Islanders in the US4, and in UK East Asians and South Asians3 42 

when compared with Whites. North American indigenous populations such as American 43 

Indians and Canadian First Nations have a risk of cancer death significantly higher than 44 

that for Whites, despite regional variation1,10,11. 45 

There are more striking differences in the rates of diagnosis and mortality for specific 46 

tumour-types. Black men are twice as likely to be diagnosed with prostate cancer than 47 

White men, and twice as likely to die of their disease1,2,12. While breast cancer incidence 48 

rates in Black and White women have converged and are now comparable1,2, Black 49 

women still experience higher breast cancer mortality due in part to higher rates of 50 

aggressive triple negative disease and late stage at diagnosis13–15. In East Asians, the 51 

incidence rate of liver cancers is over twice that in Whites, and nasopharyngeal cancer 52 

incidence is six times greater: East Asians also have higher mortality for liver, 53 

nasopharyngeal, and stomach cancers4,16–18. 54 

The causes of racial difference in cancer are multifactorial. Some differences in cancer 55 

survival are associated with differences in treatment effectiveness. For example, US 56 

studies have found that liver cancer survival in Black populations is lower after surgical 57 

interventions including hepatectomies and liver transplantation19,20. Black American men 58 

have been found to have poorer recurrence-free survival after radical prostatectomy21,22, 59 

but these differences in treatment response are at least in part, and perhaps mostly, 60 

attributable to differences in clinical and pathological characteristics at diagnosis and to 61 

socioeconomic factors23,24. Indeed, socioeconomic factors play an important role in 62 

cancer rates and outcomes: socioeconomic status directly affects critical variables such 63 

as living conditions and access to healthcare, and is strongly associated with health 64 

outcome throughout the world25. In other cases, comparing individuals across continents 65 

also confound life-style differences such as diet and environmental exposures, such as 66 

the prevalence of specific viruses. To better understand the causes of these differences 67 

in cancer incidence and mortality, many interacting and interrelated factors and concepts 68 

must be considered. 69 

The concept of ancestry is itself closely related the concepts of race and ethnicity. Where 70 

race refers to groups distinguished by physical differences, ethnicity reflects differences 71 

by biological factors in addition to geographical, historical, belief, cultural and other 72 
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factors. Ancestry as used here refers to genetic ancestry, or the line of descent of an 73 

individual’s genetic material. Genetic ancestry is directly imputed based on DNA 74 

sequencing26. Race, ethnicity, and ancestry are each associated with cancer burden. For 75 

instance, germline risk variants detected at different frequencies in different populations 76 

have been associated with differences in cancer risk27. Other population-specific risk 77 

variants have been described for breast28,29, prostate30,31, and lung32,33 cancer, and many 78 

are still of unknown significance. Our work focuses on describing the ancestry-79 

associations of somatic genomic changes in cancer. However, it is important to note that 80 

studies of genetic ancestry cannot generally fully disentangle differences associated with 81 

genetics from differences associated with socioeconomic or other cultural and societal 82 

differences amongst populations. 83 

We sought to understand how a tumour’s molecular profiles reflects the oncogenic 84 

processes and mutagenic exposures experienced by each unique patient. We used 85 

genetically imputed ancestry along with available (but inherently limited) lifestyle and 86 

clinical annotation data to model somatic features and identify features significantly 87 

associated with ancestry. Previous work associating somatic genomic changes with race, 88 

ethnicity or ancestry suggest differences in overall mutation burden34,35 in specific tumour-89 

types like breast36, prostate37 and lung38 cancers, amongst others39. Studies of TCGA 90 

pan-cancer data have estimated genetic ancestry using SNP genotyping and compared 91 

African American-derived with European American-derived somatic alterations40, and 92 

examined the mRNA and methylation differences between ancestries41. 93 

We add to this growing body of analyses examining ancestry-associated differences in 94 

cancer genomics by performing a pan-cancer, genome-wide study of ancestry-associated 95 

molecular differences, leveraging all available ancestry groups including those of 96 

European, East Asian, African, Admixed American and South Asian ancestry. Our 97 

comprehensive pan-cancer analysis leveraged 10,218 tumours of 23 tumour-types from 98 

The Cancer Genome Atlas (TCGA)42 and 2,562 tumours of 30 tumour-types from the 99 

International Cancer Genome Consortium/The Cancer Genome Atlas Pan-cancer 100 

Analysis of Whole Genomes (PCAWG)43 projects. We quantified ancestry associations in 101 

driver mutations, subclonal architecture, mutation timing and mutational signatures in 102 

almost all tumour-types, many linked to clinical phenotypes. 103 

  104 
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Results 105 

Ancestry associations in Mutation Density and Timing 106 

We separately analyzed TCGA and PCAWG data. These studies differ in molecular 107 

profiling technology, available annotation data, and populations sampled. We took the 108 

union of all TCGA tumours for pan-TCGA analyses, and the union of all PCAWG tumours 109 

for pan-PCAWG analyses. In addition to these pan-cancer analyses, we also examined 110 

each tumour-type for tumour-type-specific associations (Table 1). We used TCGA 111 

ancestry as previously imputed by Yuan et al40 and PCAWG ancestry data as previously 112 

reported43. We adapted a statistical approach previously applied to quantify sex-113 

associations in cancer genomes44. Briefly, we first used univariate methods to identify 114 

putative associations within each non-European ancestry group: East Asian (EAN), 115 

African (AFR), American Indian and Alaska Natives (Admixed American; AMR), South 116 

Asian (SAN), and Other Ancestry (OA). European ancestry was used as the reference 117 

group because of its larger sample-size in these cohorts, which maximizes statistical 118 

power. An ancestry group was only studied in a tumour-type if its group sample size in 119 

that tumour-type was at least five (Supplementary Table 1). Putatively associated 120 

genomic features were then further modeled using multivariate regression to adjust for 121 

confounding clinico-epidemiologic factors such as sex, age, stage and tumour-type, and 122 

assessed for significance at a false discovery rate (FDR) threshold of 10% (Methods). 123 

Pan-cancer and tumour-type-specific models and variable specifications are presented in 124 

Supplementary Table 1. 125 

We first asked whether genome-wide phenomena were associated with ancestry. We 126 

started with measure of genome instability, and initially focused on the burden of copy 127 

number alterations (CNAs), approximated by the proportion of the genome with a CNA 128 

(PGA)45. Using Mann-Whitney U-tests followed by linear regression (LNR), we identified 129 

significant associations between EAN ancestry and PGA in TCGA-hepatocellular cancer 130 

(LIHC: Δloc = 5.8%, 95%CI = 2.6 - 8.9%, adjusted LNR p = 6.0x10-3), TCGA-stomach 131 

and esophageal cancer (STES: Δloc = 5.7%, 95%CI = 1.6 - 9.9%, adjusted LNR p = 132 

0.012), and pan-TCGA analyses (Δloc = 1.6%, 95%CI = 0.05 - 3.2%, adjusted LNR p = 133 

0.012); PGA was associated with AFR ancestry in TCGA-head and neck cancer (HNSC: 134 

Δloc = 6.6%, 95%CI = 1.8 - 11% adjusted LNR p = 0.030), TCGA-endometrial cancer 135 

(UCEC: Δloc = 3.2%, 95%CI = 0.020 - 7.0% adjusted LNR p = 7.9x10-3) and pan-PCAWG 136 

analyses (Δloc = 8.8%, 95%CI = 4.3 - 13%, adjusted LNR p = 3.0x10-3; Figure 1A, 137 

Supplementary Figure 1). For all significant associations, PGA was higher in EAN- or 138 

AFR-derived tumours compared with tumours arising in individuals of EUR ancestry 139 

(Figure 1B, Supplementary Figure 1), indicating higher genome instability in the EAN- 140 

and AFR-derived tumours of these tumour-types. 141 
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Single nucleotide variation (SNV) density is an analogous measure to PGA, quantifying 142 

the burden of somatic SNVs in each Mbp of DNA sequenced. Again, we applied Mann-143 

Whitney U-tests and linear regression to identify tumour-types where SNV density was 144 

associated with ancestry. We first assessed coding SNV density, as TCGA SNV data is 145 

based on whole exome sequencing (Figure 1C, Supplementary Figure 1). In TCGA-146 

melanoma, both EAN (SKCM: Δloc = -8.3 SNVs/Mbp, 95%CI = -18 - -3.1 SNVs/Mbp, 147 

adjusted LNR p = 0.010) and AMR (Δloc = -9.0 SNVs/Mbp, 95%CI = -26 - -2.2 SNVs/Mbp, 148 

adjusted LNR p = 1.8x10-3) ancestries were associated with lower SNV density than the 149 

EUR reference. EAN-derived LIHC tumours (Δloc = 3.7 SNVs/Mbp, 95%CI = 0.1 – 0.67 150 

SNVs/Mbp, adjusted LNR p = 1.8x10-3) and AFR-derived TCGA-colorectal (COADREAD: 151 

Δloc = 2.1 SNVs/Mbp, 95%CI = 0.53 - 4.1, adjusted LNR p = 0.068) tumours had higher 152 

SNV density than the EUR references. pan-TCGA, SNV density was lower in AFR-153 

derived tumours (Δloc = -0.17 SNVs/Mbp, 95%CI = -0.30 - -0.067, adjusted LNR p = 154 

0.068; Figure 1D). In contrast, coding SNV density was higher in AFR-derived pan-155 

PCAWG tumours (Δloc = 0.68 SNVs/Mbp, 95%CI = 0.43-0.95, adjusted LNR p = 0.021). 156 

This difference in AFR-associated coding SNV density between pan-TCGA and pan-157 

PCAWG data may highlight differences in included tumour-types and geographic 158 

differences in the populations sampled. Finally, we extended beyond the coding regions 159 

to examine non-coding and overall SNV density in the PCAWG whole genome 160 

sequencing data. These results closely matched those for coding SNV density; pan-161 

PCAWG AFR-derived tumours had consistently lower SNV density regardless of the 162 

coding context (Supplementary Table 2). 163 

We next focused on clonal architecture and mutation timing using data describing the 164 

evolutionary history of PCAWG tumours46. We tested whether monoclonal status might 165 

be ancestry-associated by comparing the proportions of tumours that were monoclonal, 166 

where all tumour cells are homogenous, clonal copies of one ancestral cell vs tumours 167 

that were polyclonal, which have multiple somatically distinct cells derived of different 168 

ancestral lineages. We used proportion tests followed by logistic regression (LGR) to 169 

identify ancestry-associations in monoclonal status. SAN-derived PCAWG-head and 170 

neck tumours were more frequently monoclonal than EUR-derived tumours (Head-SCC: 171 

Δproportion polyclonal = 0.60, 95%CI = 0.30-0.91, adjusted LGR p = 1.9x10-3; Figure 172 

1E). In pan-PCAWG analysis, EAN-derived tumours were also more frequently 173 

monoclonal than EUR-derived tumours (Δproportion polyclonal tumours = 0.17, 95%CI = 174 

0.12-0.22, adjusted LGR p = 0.016). Monoclonal tumours have previously been 175 

associated with better survival in several tumours types47–49, and a higher frequency of 176 

monoclonal tumours in SAN and EAN tumours might underlie some of the improved 177 

survival experienced by these ancestry groups in these tumour types. 178 

Focusing only on polyclonal tumours, we investigated whether the time at which 179 

mutations accumulate during a tumour’s evolution might be associated with the ancestry 180 

of the patient it arises in. We compared how frequently SNVs, indels and structural 181 
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variants (SVs) occurred as clonal mutations in the trunk or as subclonal ones in branches. 182 

In PCAWG-kidney renal clear cell cancer, tumours arising in AFR individuals had a higher 183 

proportion of clonal SNVs relative to those in EUR individuals (Kidney-RCC: Δloc = 0.11, 184 

95%CI = 0.050 – 0.19, LGR p = 0.041; Figure 1F). Kidney cancer tumours arising in AFR 185 

individuals also had a higher proportion of truncal indels (Δloc = 0.11, 95%CI = 0.036 – 186 

0.18, LGR p = 0.035; Supplementary Table 2). In pan-PCAWG tumours, EAN-derived 187 

tumours had a lower proportion of truncal SVs (Δloc = -0.03, 95%CI = -0.054 – -0.074, 188 

LGR p = 0.037; Figure 1F). Ancestry associations in monoclonal status and mutation 189 

timing suggest potential differences in the evolutionary histories of these SAN-, AFR- and 190 

EAN-derived tumours. Future investigations of tumour evolution using larger cohorts and 191 

multi-region sequencing are needed to validate and quantify these ancestry-associations. 192 

Ancestry Associations in Mutational Signatures 193 

Differences in mutation density and timing suggest that the mutagenic processes affecting 194 

a tumour might be correlated with the ancestry of the patient, presumably primarily 195 

through differential environmental exposures associated with race and ethnicity. 196 

Mutational signatures based on the flanking sequence context of mutations can 197 

deconvolve characteristic mutational patterns that arise from specific mutagenic 198 

processes. We analysed three types of mutational signatures generated by the PCAWG 199 

project: 49 single base substitution (SBS), 11 doublet base substitution (DBS) and 17 200 

small insertion and deletion (ID) signatures50. We also investigated SBS signatures for 201 

TCGA tumours. Each signature is thought to reflect a specific mutagenic process, though 202 

many are still of unknown aetiology50,51. For each signature, we examined both the 203 

proportion of signature-positive tumours as well as relative signature activity, quantified 204 

as the proportion of mutations attributed to each signature. 205 

Ancestry-associated mutational signatures were identified in pan-PCAWG and pan-206 

TCGA analyses, as well as in in four PCAWG and thirteen TCGA tumour-types 207 

(Supplementary Table 2). AFR-associations in mutational signatures occurred across 208 

several tumour-types (Figures 2A, 2B). In TCGA-lung adenocarcinoma, AFR-derived 209 

tumours had higher detection rates of SBS4, attributed to tobacco exposure (LUAD: 210 

Δproportion = 0.39, 95%CI = 0.23-0.55, adjusted LNR p = 5.5x10-3; Figure 2A, 211 

Supplementary Figure 2). Higher rates of SBS4 detection in AFR-derived lung 212 

adenocarcinoma despite reportedly comparable smoking rates between Black and White 213 

populations52 may reflect differences in nicotine metabolism53, elevated use of 214 

mentholated cigarettes in Black populations52,54 or simple selection bias in the cohort of 215 

lung adenocarcinomas studied in TCGA. In PCAWG-breast cancer, SBS3 occurred more 216 

frequently in AFR-derived samples (Breast-AdenoCA: Δproportion = 0.33, 95%CI = 0.13-217 

0.54, adjusted LNR p = 0.097). SBS3 is attributed to defective homologous recombination 218 

(HR) repair of double stranded breaks. Higher SBS3 occurrence in AFR breast tumours 219 

may be due to more frequent triple-negative breast cancer, which exhibit high rates of 220 

defective HR repair55. Finally, AFR-derived TCGA-endometrial cancers had higher 221 
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detection rates of SBS2 (UCEC: Δproportion = 0.26, 95%CI = -0.0081-0.54, adjusted LNR 222 

p = 5.2x10-2). and SBS13 (Δproportion = 0.31, 95%CI = 0.030-0.59, adjusted LNR p = 223 

0.011), which are both attributed to the activity of AID/APOBEC cytidine deaminases and 224 

have been previously associated with progression from primary to metastatic disease56. 225 

AFR-associations in relative signature activity were detected in two signatures of 226 

unknown aetiology (Figure 2B). 227 

Of the ancestries analysed, the largest number of significant associations were detected 228 

with EAN ancestry (Figures 2C, 2D). In hepatocellular cancer, signatures were EAN-229 

associated in both proportion positive and relative activity across both PCAWG (Liver-230 

HCC; Figure 2E, top) and TCGA (Figure 2E, bottom) data. EAN-derived Liver-HCC 231 

tumours had higher SBS12 detection frequency (Δproportion = 0.66, 95%CI = 0.57-0.76, 232 

adjusted LNR p = 3.8 x 10-8) and lower relative SBS1 activity (Δloc = 0.0067, 95%CI = 233 

0.0019-0.015, adjusted LNR p = 2.1x10-3) compared with EUR hepatocellular tumours; 234 

SBS12 was not described in TCGA-hepatocellular cancer data, and decreased SBS1 235 

activity in EAN-derived TCGA samples was not statistically significant after multivariable 236 

adjustment. In TCGA-hepatocellular tumours, EAN-derived tumours showed higher rates 237 

of SGS9 signature detection (Δproportion = 0.098, 95%CI = 0.033-0.16, adjusted LNR p 238 

= 0.021), SBS22 (Δproportion = 0.13, 95%CI = 0.054-0.22, adjusted LNR p = 1.7x10-3) 239 

and SBS40 (Δproportion = -0.18, 95%CI = --0.30 - 0.073, adjusted LNR p = 0.026). 240 

Intriguingly, the TCGA EAN-associations in SBS9 and SBS22 were not reflected in 241 

PCAWG data despite sufficient group sample sizes (Figure 2E; Supplementary Table 242 

1). SBS9 is attributed to mutations induced during replication by DNA polymerase η and 243 

SBS22 to aristolochic acid exposure. These contrasting results between PCAWG and 244 

TCGA data may be due to ethnic and geographic differences between the datasets: 245 

PCAWG hepatocellular tumours were primarily from Japanese and French patients, while 246 

TCGA tumours are from US patients. 247 

Other ancestry-associated mutational signatures include higher relative activity of ID2 in 248 

SAN-derived PCAWG-head and neck tumours (Supplementary Figure 2, 249 

Supplementary Table 2). ID2 is attributed to slippage of the template strand during DNA 250 

replication and is thought to be associated with DNA mismatch repair deficiency. SBS5 251 

was detected at lower rates in AMR TCGA-bladder cancer (BLCA: Δproportion = -0.15, 252 

95%CI = -0.41 - 0.10, adjusted LNR p = 0.012; Supplementary Figure 2, 253 

Supplementary Table 2) and SBS16 at higher rates in AMR-derived TCGA-lower grade 254 

glioma (LGG: Δproportion = 0.079, 95%CI = -0.054 - 0.21, adjusted LNR p = 0.029; 255 

Supplementary Figure 2). AMR-derived LGG tumours also had higher relative activity 256 

of AID/APOBEC-attributed SBS13 (Δloc = 0.0068, 95%CI = 0.030-0.012, adjusted LNR 257 

p = 6.0x10-3
, Supplementary Figure 2), suggesting a greater role of these enzymes in 258 

lower grade gliomas of individuals of AMR ancestry. Thus ancestry-associated mutational 259 

signatures were detected across a range of endogenous and exogenous mutational 260 

processes. Most ancestry-associated signatures are of unknown aetiology and 261 
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elucidation of the biological processes underlying these signatures may help determine if 262 

these are true ancestry-associations or confounding from other environmental differences 263 

in the cohorts. 264 

Ancestry-associations in CNA Differences are Associated with Transcriptomic 265 

Changes 266 

After identifying ancestry-associated differences in genome-wide phenomena and 267 

mutational signatures, we focused on chromosome segment and gene-level events. We 268 

compared the proportions of copy number losses and copy number gains for each 269 

ancestry group compared with the EUR reference group using proportion tests, and then 270 

adjusted for confounding factors using multivariate logistic regression. As with prior 271 

analyses, we analysed TCGA and PCAWG concurrently and separately. Ancestry-272 

associated CNAs were identified in 13 TCGA and 3 PCAWG cancer types, as well as in 273 

both pan-TCGA and pan-PCAWG analyses (Figure 3A). Pan-TCGA, 602 genes were in 274 

EAN-associated CNAs and 2,787 genes in AFR-associated CNAs. Some differences in 275 

CNA frequency were as large as 10% (Figure 3B, Supplementary Table 3-4). In pan-276 

PCAWG analysis, 288 genes were in EAN-associated CNAs, 5,589 genes in AFR-277 

associated CNAs, and 437 genes in SAN-associated CNAs, with frequency differences 278 

of up to 20% (Supplementary Figure 3, Supplementary Tables 3-4). 279 

To determine whether cancer drivers were affected by ancestry-associated CNAs, we 280 

focused on a subset of 133 genes altered by driver CNAs57 (Figure 3C). There were eight 281 

pan-TCGA and 20 pan-PCAWG AFR-associated genes, including higher frequency of 282 

CBX8 gain (PCAWG Δproportion = 0.16, 95%CI = 0.068 – 0.26, adjusted LGR p = 0.020; 283 

TCGA Δproportion = 0.043, 95%CI = 0.012 – 0.074, adjusted LGR p = 0.060) and 284 

SMARCA gain (PCAWG Δproportion = 0.12, 95%CI = 0.042 – 0.20, adjusted LGR p = 285 

0.082; TCGA Δproportion = 0.030, 95%CI = 0.0058 – 0.055, adjusted LGR p = 0.013). 286 

One gene, FAT1 was more frequently lost in tumours derived of EAN individuals (PCAWG 287 

Δproportion = 0.15, 95%CI = 0.096 – 0.20, adjusted LGR p = 0.080; TCGA Δproportion 288 

= 0.096, 95%CI = 0.055 – 0.14, adjusted LGR p = 0.14). Similarly, ancestry-associated 289 

driver CNAs were identified in 16 TCGA and 5 PCAWG cancer types (Supplementary 290 

Tables 3-4). 291 

CNAs change the dosage of affected genes and can lead to transcriptome changes58. 292 

We sought to determine whether ancestry-associated CNAs have such downstream 293 

mRNA associations. Using TCGA mRNA abundance data, we analysed the mRNA of 294 

genes contained in ancestry-associated CNAs using models that incorporated the 295 

ancestry group of interest, copy number status, and the interaction between copy number 296 

status and ancestry. These models allowed us to identify mRNA abundance changes 297 

associated with the CNA itself, as well as changes where the effect of the copy number 298 

depended on the ancestry of the patient in which the tumour arose. We also adjusted for 299 

tumour purity as estimated by study pathologists in all mRNA analyses. 300 
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In TCGA-kidney clear cell cancer, 559 genes were present in AFR-associated losses 301 

(Figure 3D). Using the approach described above, we examined mRNA abundance for 302 

each of these genes as a function of AFR ancestry, copy number loss status, and their 303 

interaction. Of the 559 genes, copy number loss was significantly associated with 304 

changes in mRNA abundance for 316 genes (57%; Figure 3E, black points). A further 305 

24 genes (4.3%) had significant interactions between copy number loss status and AFR 306 

ancestry (Figure 3E, red points). For some genes, this significant interaction was due to 307 

differences in the magnitude of mRNA abundance change: for example, loss of the 308 

microtubule-associated gene MAP4 is associated with decreased MAP4 mRNA 309 

abundance in both EUR and AFR tumours, but the decrease in mRNA abundance is 310 

greater in AFR than in EUR tumours (Figure 3F). For other genes, the significant 311 

interaction indicates a difference in direction: loss of the tumour suppressor RASSF1 is 312 

associated with a slight decrease in RASSF1 mRNA abundance for EUR-derived 313 

tumours, but an increase in abundance for AFR-derived tumours (Figure 3G). Thus copy 314 

number loss of RASSF1 is not only less frequent in AFR-derived tumours (Δproportion = 315 

-0.24 95%CI = -0.38 - -0.10, adjusted LNR p = 1.3x10-6), its effect on mRNA abundance 316 

is contrary to what is usually observed in EUR-derived kidney tumours. 317 

Repeating this mRNA analysis for all TCGA tumour-types with ancestry-associated 318 

CNAs, 5-53% of genes affected by EAN- or AFR-associated CNAs were significantly 319 

associated with changes in mRNA abundance (Supplementary Table 5). We also 320 

identified additional mRNA where the changes in abundance were dependent on the 321 

interaction between CNA and ancestry (Supplementary Figure 3, Supplementary 322 

Table 5). Significant CNA-EAN interactions were found in breast cancer (4 genes), kidney 323 

renal clear cell (5 genes) and papillary cell cancers (9 genes), liver cancer (8), lung 324 

squamous cell cancer (LUSC: 2), prostate cancer (PRAD: 13), and stomach and 325 

esophageal cancer (32 genes). There were also significant CNA-AFR interactions for 326 

UCEC (3; Supplementary Figure 3). Thus, CNA frequency is associated with ancestry, 327 

and ancestry-associated CNAs are associated with changes in the transcriptome. 328 

Ancestry-associations in Gene-Level SNVs 329 

Finally, we asked whether specific genes might be mutated by SNVs at different 330 

frequencies between different ancestry groups. In TCGA data, we applied a recurrence 331 

filter and removed genes that had SNVs in <1% of tumours for each tumour-type. In 332 

PCAWG data, we focused on a set of drivers59 that includes both coding and non-coding 333 

elements, as well as SNVs in mitochondrial DNA (mtDNA). Ancestry-associations were 334 

identified in 15 TCGA tumour-types and four PCAWG tumour-types (Figure 4A). Across 335 

pan-TCGA tumours, there were nine genes that were mutated with SNVs more frequently 336 

in EAN-derived samples including FGFR3 (Δproportion = 0.022, 95%CI = 0.054-0.039, 337 

adjusted LGR p = 0.016; Supplementary Table 6). In pan-PCAWG tumours, SNVs in 338 

the coding regions of the tumour suppressors FBXW7 (Δproportion = 0.066, 95%CI = 339 

0.014-0.12, adjusted LGR p = 0.030) and TP53 (Δproportion = 0.18, 95%CI = 0.087-0.28, 340 
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adjusted LGR p = 0.044) occurred more frequently in tumours arising in AFR individuals 341 

(Figure 4B, left). TERT promoter SNVs were more frequent in tumours arising in SAN 342 

individuals (Δproportion = 0.17, 95%CI = 0.012-0.33, adjusted LGR p = 0.024). 343 

We also identified EAN-associated SNVs in PCAWG medulloblastoma and PCAWG non-344 

Hodgkin’s lymphoma (Figure 4B, middle). SNVs in both KBTBD4 (CNS-Medullo: 345 

Δproportion = 0.35,95%CI = -0.050 -0.75, adjusted LGR p = 9.9x10-3) and B2M (Lymph-346 

BNHL: Δproportion = 0.56,95%CI = 0.086-1, adjusted LGR p = 0.043) occurred more 347 

frequently in EAN-derived tumours than EUR. In PCAWG-prostate cancer, SNVs in 348 

FOXA1 were more frequently in tumours derived of AFR individuals (Prost-AdenoCA: 349 

Δproportion = 0.31,95%CI = -0.088-0.72, adjusted LGR p = 0.012). The frequency of 350 

mitochondrial SNVs were also associated with ancestry (Figure 4B, right): pan-PCAWG, 351 

SNVs in MT-TFX occurred more frequently in AMR-derived tumours (Δproportion = 352 

0.098,95%CI = -0.066-0.26, adjusted LGR p = 9.0x10-4), and MT-TA SNVs were more 353 

frequent in SAN-derived pancreas tumours (Δproportion = 0.31,95%CI = -0.15-0.78, 354 

adjusted LGR p = 6.5x10-5). MT-TFX is a mitochondrially encoded transcription factor 355 

binding site, and MT-TA encodes a transfer RNA for alanine. Mutations in mtDNA could 356 

have far-reaching downstream effects. For example, mutations in MT-TA could result in 357 

less efficient protein synthesis, leading to differences in the tumour proteome.  358 

Across all TCGA tumour-types, we identified 159 EAN-associations, 37 AFR-359 

associations, and 23 AMR-associations. These included genes in KIRC such as UBR5 360 

which was mutated by SNVs more frequently in AFR-derived tumours (Δproportion = 361 

0.14,95%CI = -0.038-0.33, adjusted LGR p = 9.8x10-3), and in COADREAD, where 362 

CARD6 (COADREAD: Δproportion = 0.30,95%CI = -0.0075-0.61, adjusted LGR p = 363 

0.062; Figure 4C) and CKAP2 (Δproportion = 0.24,95%CI = -0.049-0.53, adjusted LGR 364 

p = 0.062) SNVs were more frequent in EAN-derived TCGA-colorectal tumours 365 

(Supplementary Table 6). The majority of ancestry-associated SNVs were identified in 366 

COADREAD, which had 118 EAN-associations and two AFR-associations in 367 

COADREAD gene-level SNVs (Figure 4C). 368 

Similar to our CNA analyses, we next investigated mRNA abundance to determine 369 

whether ancestry-associated SNVs might also be associated with changes in the 370 

transcriptome. We used the same approach as previously applied in our CNA-371 

transcriptome analyses, using a model that included SNV status, ancestry, and the 372 

interaction between SNV and ancestry. Despite low statistical power due to small group 373 

sizes, several ancestry-associated SNVs were associated with changes in mRNA 374 

abundance. In COADREAD, six genes that were more frequently mutated with SNVs in 375 

EAN-derived tumours were also associated with decreased mRNA abundance (Figure 376 

4D, Supplementary Table 6), including AXIN1 (Figure 4E). Similarly SNVs in STK36, 377 

which occurred more frequently in AFR-derived COADREAD (Δproportion = 0.21,95%CI 378 

= -0.00058-0.41, adjusted LGR p = 8.8x10-3), was also associated with decreased mRNA 379 
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abundance in tumours derived of both EUR and AFR individuals (Figure 4F). We 380 

identified differential mRNA abundance associated with ancestry-associated SNVs in 381 

TCGA-bladder cancer (BLCA) and UCEC (Supplementary Table 6). Unlike in our CNA 382 

analysis, we did not find mRNA changes that were dependent on the interaction between 383 

SNV and ancestry. 384 

  385 
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Discussion 386 

Our analysis of TCGA and PCAWG data revealed ancestry-associations across all 387 

genomic features studied, from genome-wide phenomena to gene-level events. These 388 

associations occur at both the pan-cancer level and in specific tumour-types. Ancestry is 389 

associated with mutation density, measures of tumour evolution, and with mutational 390 

signatures associated with oncogenic processes. Gene-level CNAs and SNVs not only 391 

occurred at different frequencies in different ancestries, they were also associated with 392 

differential mRNA abundance: in some cases, the effect of a CNA on mRNA abundance 393 

was dependent on the ancestry of the patient in which the tumour arose. Together, these 394 

results suggest that ancestry influences the progression of a tumour and that ancestry-395 

associated genomic events have potential functional significance. 396 

Differences between the TCGA and PCAWG datasets allowed us to investigate them in 397 

parallel and orthogonal ways. We leveraged the deeper clinical annotation and larger 398 

samples sizes of TCGA whole exome sequencing and array-based data to adjust for more 399 

confounding variables using more complex models. In contrast, the whole genome 400 

sequencing data from PCAWG allowed us to investigate a broader range of genomic 401 

features such as clonal architecture and non-coding drivers. TCGA and PCAWG data 402 

also represent different geographic populations: while TCGA tumours were largely 403 

derived of North American patients, PCAWG tumours were from patients at multiple 404 

international sites. As a result, the distributions of ancestry groups differ between TCGA 405 

and PCAWG data (Table 1), and many PCAWG tumour-types were excluded from 406 

tumour-type-specific analysis due to insufficient sample size. Poor agreement between 407 

TCGA and PCAWG results are therefore related to three major factors: vastly different 408 

sample sizes and ancestry group sizes affecting statistical power; geographical 409 

differences in sampling; and differences in molecular profiling technologies. 410 

As with other ancestry- and race-associated differences in cancer burden, the causes of 411 

ancestry-associated genomic events are multifactorial and interacting. For example, our 412 

analysis of mutational signatures revealed the differing impacts of both endogenous and 413 

exogenous mutagens on tumours of different ancestries. One such difference was in the 414 

increased detection rates of defective homologous recombination repair in breast tumours 415 

derived of individuals of African ancestry. However, whether this increase is due to 416 

differences in inherited predisposition60, hormonal differences61, environmental exposure, 417 

or a combination of these and other variables is uncertain. Ancestry-associations in 418 

cancer genomes likely arise from a combination of biological, lifestyle, and environmental 419 

factors. We used imputed ancestry, which best approximates the line of descent for an 420 

individuals’ genetic material. However, without accounting for factors highly correlated 421 

with ancestry, such as race, socioeconomic status and quality of healthcare62,63, we 422 

cannot fully disentangle contributing factors and definitively attribute these differences to 423 

biology. 424 
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Ancestry undoubtedly influences the molecular presentation of a tumour. Despite low 425 

sample sizes, we have identified differences in the density, frequency, and transcriptional 426 

consequence of both copy number and nucleotide changes. The results we present are 427 

likely an underestimation of the full landscape of ancestry-associated somatic changes in 428 

cancer, and this is due in large part to poor representation of non-European ancestries in 429 

TCGA, PCAWG, and other cancer profiling studies64. To fully describe ancestry-430 

associations, future genomic studies must include diverse representation across multiple 431 

ancestry groups and include deep and complete annotation to facilitate the control of 432 

confounding variables. Through identifying differences in the cancer genomes between 433 

individuals of different ancestries, we can better understand how they arise and leverage 434 

them to improve personalized therapy strategies.  435 
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Online Methods 436 

Data acquisition & Processing 437 

Genome-wide somatic copy-number, somatic mutation, and mRNA abundance profiles 438 

for the Cancer Genome Atlas (TCGA) datasets were downloaded from Broad GDAC 439 

Firehose (https://gdac.broadinstitute.org/), release 2016-01-28. For mRNA abundance, 440 

Illumina HiSeq rnaseqv2 level 3 RSEM normalised profiles were used. Genes with >75% 441 

of tumours having zero reads were removed from the respective dataset. GISTIC v2 (13) 442 

level 4 data was used for somatic copy-number analysis. mRNA abundance data were 443 

converted to log2 scale for subsequent analyses. Mutational profiles were based on 444 

TCGA-reported MutSig v2.0 calls. All pre-processing was performed in R statistical 445 

environment (v3.1.3). Genetic ancestry imputed by Yuan et al. was downloaded from The 446 

Cancer Genetic Ancestry Atlas (http://52.25.87.215/TCGAA). 447 

PCAWG WGS data were downloaded from the PCAWG consortium with pre-processing 448 

as performed by the consortium43. Individual datasets are available at Synapse 449 

(https://www.synapse.org/), denoted with synXXXXX accession numbers (i.e. Synapse 450 

IDs). These datasets are mirrored at https://dcc.icgc.org. Tumour histological 451 

classifications were reviewed and assigned by the PCAWG Pathology and Clinical 452 

Correlates Working Group (annotation version 9; syn10389158, syn10389164). Ancestry 453 

imputation was performed using an ADMIXTURE-like algorithm based on germline SNP 454 

profiles determined by whole-genome sequencing of reference sample (syn4877977). 455 

The consensus somatic SNV and indel (syn7357330) file covers 2778 whitelisted 456 

samples from 2583 donors. Driver events were called by the PCAWG Drivers and 457 

Functional Interpretation Group (syn11639581). Consensus CNA calls from the PCAWG 458 

Structural Variation Working Group were downloaded in VCF format (syn8042988). 459 

Subclonal reconstruction was performed by the PCAWG Evolution and Heterogeneity 460 

Working Group (syn8532460). SigProfiler mutation signatures were determined by the 461 

PCAWG Mutation Signatures and Processes Working Group for single base substitution 462 

(syn11738669), doublet base substitution (syn11738667) and indel (syn11738668) 463 

signatures. Signatures data for TCGA, non-PCAWG WGS and non-TCGA WXS samples 464 

were downloaded from Synapse (syn11804040). 465 

We used TCGA data on 10,212 distinct patients with 23 cancer types. PCAWG data was 466 

from 2,562 distinct patients with 29 cancer types. Cancer types with no age information 467 

or insufficient variability in ancestry annotation were excluded from analysis. TCGA 468 

genetic ancestry describes a five-category variable (European American, East Asian 469 

American, African American, Admixed American and Other Ancestry). PCAWG ancestry 470 

describes a five-category variable (European, East Asian, African, South Asian and 471 

Admixed American; Supplementary Table 1). 472 
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General Statistical Framework 473 

For each genomic feature of interest, we used univariate two-sided non-parametric tests 474 

followed by false discovery rate (FDR) adjustment to identify candidate ancestry-475 

associations (q < 0.1). These were followed with multivariate modeling to account for 476 

potential confounders using tumour-type-specific models. We use EUR ancestry as the 477 

reference group for all analyses to maximize statistical power. 478 

Supplementary Table 1 gives the specific variables included for each cancer type. These 479 

were selected based on data availability (<15% missing), variability (at least two levels) 480 

and collinearity (as assessed by variance inflation factor). Discrete data was modeled 481 

using logistic regression (LGR). Continuous data was first transformed using the Box-Cox 482 

family and modeled using linear regression (LNR). The Box-Cox family of transformations 483 

is a formalized method to select a power transformation to better approximate a normal-484 

like distribution and stabilize variance. We used the Yeo-Johnson extension to the Box-485 

Cox transformation that allows for zeros and negative values65. FDR adjustment was 486 

performed for p-values for ancestry variable significance estimates, and a threshold of 487 

10% used to select candidates. A summary of all results is presented in Supplementary 488 

Table 1. We present 95% confidence intervals for all tests. 489 

Mutation Density 490 

Performed for both TCGA and PCAWG data. Overall SNP mutational density per 491 

calculated per patient was calculated as the count of SNVs scaled to SNVs/Mbp. Coding 492 

mutation prevalence only considers the coding regions of the genome, while noncoding 493 

prevalence considers only noncoding regions. TCGA mutation density is coding mutation 494 

prevalence. Mutation density was compared between ancestries using two-sided Mann-495 

Whitney U-tests using European ancestry as the reference group (e.g. EAN vs. EUR, 496 

AFR vs. EUR, etc.). Comparisons with univariate q-values meeting an FDR threshold of 497 

10% were analyzed using linear regression to adjust for tumour subtype-specific 498 

variables. Mutation density analysis was performed separately for each mutation context, 499 

with pan-cancer and tumour subtype p-values adjusted together. Full mutation density 500 

results are in Supplementary Table 2. 501 

Genome instability 502 

Performed for both TCGA and PCAWG data. Genome instability was calculated as the 503 

percentage of the genome affected by copy number alterations. The number of base pairs 504 

for each CNA segment was summed to obtain the total number of base pairs gained and 505 

lost in at least one allele. This total was scaled by the number of bases in the human 506 

genome reference to obtain the proportion of the genome with a CNA (PGA). Genome 507 

instability was compared between ancestries using two-sided Mann-Whitney U-tests for 508 

both pan-cancer and tumour-type specific analysis. Comparisons with univariate q-values 509 

meeting an FDR threshold of 10% were then subject to linear regression to adjust for 510 

tumour subtype-specific variables. Genome instability analysis was performed separately 511 
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for each mutation context, with pan-cancer and tumour subtype p-values adjusted 512 

together. Full mutation density results are in Supplementary Table 2. 513 

Clonal structure and mutation timing analysis 514 

Performed for PCAWG data only. Subclonal structure data was discretized into 515 

monoclonal (one cluster) vs. polyclonal (more than one cluster). The proportion of 516 

polyclonal tumours was calculated for each ancestry. These proportions were compared 517 

with two-sided proportion tests and univariate FDR-adjusted p-values used to identify 518 

putatively sex-associated clonal structure. Candidates from this analysis were then 519 

subject to logistic regression to control for confounders, with a multivariate q-value 520 

threshold of 0.1 used to identify statistically significant ancestry-associations with clonal 521 

structure. 522 

Mutation timing data classified SNVs, indels and SVs into clonal (truncal) or subclonal 523 

groups. The proportion of truncal variants was calculated for each mutation type 524 

(
𝑁𝑢𝑚𝑏𝑒𝑟 𝑡𝑟𝑢𝑛𝑐𝑎𝑙 𝑆𝑁𝑉𝑠

𝑡𝑜𝑡𝑎𝑙 𝑆𝑁𝑉𝑠
, etc.) to obtain proportions of truncal SNVs, indels and SVs for each 525 

tumour. These proportions were compared between ancestries using two-sided Mann-526 

Whitney U-tests. Univariate p-values were FDR adjusted to identify putatively ancestry-527 

associated mutation timing. Linear regression was used to adjust for confounding factors 528 

and a multivariate q-value threshold of 0.1 was used to determine statistically significant 529 

ancestry-associated mutation timing. The mutation timing analysis was performed 530 

separately for SNVs, indels and SVs. All results for clonal structure and mutation timing 531 

analyses are in Supplementary Table 2. 532 

Mutational Signatures analysis 533 

Performed for both TCGA and PCAWG data. For each signature, we compared the 534 

proportion of tumours with any mutations attributed to the signatures (“signature-positive”) 535 

using two-sided proportion tests to identify univariately significant ancestry-associations. 536 

Signatures with putative ancestry-associations were further analysed using multivariable 537 

logistic regression. We also compared relative signature activity by performing Mann-538 

Whitney U-tests to compare the proportions of mutations attributed to each signature. 539 

Following these two-sided tests, candidate sex-associated signatures were subject to 540 

multivariable linear regression after Box-cox adjustment, as outlined above. Signatures 541 

not detected in a tumour subtype were omitted from analysis for that tumour subtype. All 542 

results for clonal structure and mutation timing analyses are in Supplementary Table 2. 543 

Genome-spanning CNA analysis 544 

Performed for both TCGA and PCAWG data. Adjacent genes whose copy number profiles 545 

across patients were highly correlated (Pearson’s r > 95%) were binned. The copy 546 

number call for each patient was taken to be the majority call across all genes in each 547 

bin. Copy number calls were collapsed to ternary (loss, neutral, gain) representation by 548 

combining loss groups (mono-allelic and bi-allelic) and gain groups (low and high). Two-549 
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sided proportion tests were used to identify univariate ancestry-associated CNAs. After 550 

identifying candidate pan-cancer univariately significant genes, multivariate logistic 551 

regression was used to adjust ternary CNA data for tumour-type-specific variables. The 552 

genome-spanning analysis was performed separately for losses and gains for each 553 

tumour subtype. All CNA results are in Supplementary Tables 3-4. 554 

Genome-spanning SNV analysis 555 

Performed for TCGA data. We focused on genes mutated in at least 1% of patients. 556 

Mutation data was binarized to indicate presence or absence of SNV in each gene per 557 

patient. Proportions of mutated genes were compared between ancestry groups using 558 

two-sided proportions tests for univariate analysis. False discovery rate correction was 559 

used to adjust p-values with q < 0.1 as a threshold for multivariate logistic regression. 560 

Driver Event Analysis 561 

Performed for PCAWG data. We focused on driver events described by the PCAWG 562 

consortium59. Driver mutation data was binarized to indicate presence or absence of the 563 

driver event in each patient. Proportions of mutated genes were compared between 564 

ancestries using two-sided proportions tests. A q-value threshold of 0.1 was used to 565 

select genes for further multivariate analysis using binary logistic regression. FDR 566 

correction was again applied and genes with significant pan-cancer ancestry terms were 567 

extracted from the models (q-value < 0.1). Driver event analysis was performed 568 

separately for pan-cancer analysis and for each tumour subtype. All SNV and driver event 569 

analysis results are in Supplementary Table 6. 570 

mRNA abundance analysis 571 

Performed for TCGA data. Genes in CNA bins associated with ancestry after multivariate 572 

adjustment were evaluated for associations with mRNA abundance. Tumour purity was 573 

included in all mRNA models. Tumours with available mRNA abundance data were 574 

matched to those used in CNA analysis. For each gene affected by an ancestry-575 

associated loss, its mRNA abundance was modeled against the ancestry of interest, copy 576 

number loss status, an ancestry-copy number loss interaction term, and tumour purity. 577 

The interaction term captures ancestry-associated mRNA changes. Statistical 578 

significance was assigned at q < 0.1. For genes affected by ancestry-associated gains, 579 

the same procedure was applied using gains. Complete mRNA modeling for CNAs is 580 

given in Supplementary Table 5 and for SNVs in Supplementary Tables 6. 581 

Statistical Analysis & Data Visualization Software 582 

All statistical analyses and data visualization were performed in the R statistical 583 
environment (v3.2.1) using the BPG66 (v5.9.8) package and with Inkscape (v0.92.3). 584 
  585 
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Figure Legends 773 

Figure 1 | Ancestry associations in mutation density and evolutionary architecture. 774 

(A) Summary of associations between ancestry and percent genome altered (PGA) in 775 

TCGA and PCAWG tumours. The dot size and colour show the difference in location 776 

effect size estimate, and background shading indicate multiple-testing adjusted 777 

multivariate p-value. Only tumour-types with significant associations are shown. (B) Pan-778 

TCGA and pan-PCAWG associations between ancestry and PGA, with the top row of 779 

barplots showing adjusted multivariate p-values, the middle row showing differences in 780 

location (mean and 95% confidence interval), and the bottom row of boxplots showing 781 

PGA per tumour. (C) Associations of ancestry with SNV density (SNVs/Mbp sequenced) 782 

in TCGA and PCAWG. Dot size and colour, and background shading have the same 783 

meaning and scale as Figure 1A. (D) pan-TCGA and pan-PCAWG associations between 784 

ancestry and SNV density, with adjusted multivariate p-values, differences in location, 785 

and PGA per tumour shown as in Figure 1B. (E) Differences in proportion of polyclonal 786 

tumours between ancestries with the top row showing adjusted multivariate p-value, 787 

middle row giving difference in proportion (mean and 95% confidence interval) and bottom 788 

row showing proportion of polyclonal tumours by ancestry. (F) Proportion of tumours with 789 

SNVs occurring in the truncal clone compared by ancestry in PCAWG kidney renal clear 790 

cell cancer, and truncal SVs in pan-PCAWG samples, with the same structure of rows as 791 

in Figure 1C. Tukey boxplots are shown with the box indicating quartiles and the whiskers 792 

drawn at the lowest and highest points within 1.5 interquartile range of the lower and 793 

upper quartiles, respectively.  794 

Figure 2 | Ancestry-associations in mutational signatures. 795 

(A) Summary of associations between AFR ancestry and the proportion of signature-796 

positive tumours. Here dot size and colour indicate the differences in proportion between 797 

AFR and EUR tumours, and the background shading gives multiple-testing adjusted 798 

multivariate p-values. PCAWG data is on left and TCGA on right. (B) Similarly, the 799 

summary of associations between AFR ancestry and relative signature activity, with dot 800 

size showing difference in location estimates and background indicating multiple-testing 801 

adjusted linear regression p-values. (C) Summary of associations between EAN ancestry 802 

and signature positive tumours, as for Figure 2A. (D) Summary of associations between 803 

EAN ancestry and relative signature activity, as in (B). (E) Ancestry-associated 804 

differences in hepatocellular cancer, compared between PCAWG and TCGA data. 805 

Barplots show frequency of signature detection in each ancestry group. Tukey boxplots 806 

(as described in Figure 1) show relative signature activity as proportion of mutations 807 

attributed to each signature. 808 

Figure 3 | CNA-Ancestry associations are associated with altered RNA abundance. 809 

(A) Summary of all detected ancestry-associated CNAs with numbers of gains (above x-810 

axis) and losses (below x-axis) identified in each tumour context. Only tumour-types with 811 
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at least one significant event are shown. (B) Pan-cancer ancestry-associations in CNAs 812 

for TCGA data. Each plot shows the logistic regression coefficient estimate (for age 813 

analyses) or difference in proportion (for ancestry analyses) for the indicated variable and 814 

CNA type. Dot colour indicates statistical significance, where red (copy number gain) and 815 

blue (copy number loss) show adjusted p < 0.05 and yellow (gain) and green (loss) show 816 

whether the multiple-testing adjusted p < 0.1 threshold is met. (C) Summary of ancestry-817 

associated pan-cancer CNA drivers. Both TCGA and PCAWG findings are shown, and 818 

dot size indicates the effect-size as a proportion difference. Background shading shows 819 

multiple-testing adjusted multivariate p-values. The covariate to the right shows copy 820 

number gain drivers in red and loss drivers in blue. (D) EAN- and AFR-associations in 821 

TCGA kidney clear cell cancer CNAs are associated with (E) changes in mRNA 822 

abundance. The adjusted p-value is plotted against the coefficient of the CNA-age 823 

interaction for mRNA abundance, with each point representing a gene. Black dots show 824 

significant associations between mRNA and CNA; red dots show significant CNA-825 

ancestry interactions. (F) RASSF1 and (G) MAP4 mRNA abundance changes between 826 

copy number loss (red) or no loss (black) in tumours of EUR and AFR ancestry. Adjusted 827 

CNA-AFR interaction p-value is shown. Tukey boxplots are depicted, as described in 828 

Figure 1. 829 

Figure 4 | Ancestry-associations in gene-level SNV mutation frequency 830 

(A) Summary of all detected ancestry-associated SNVs found in each cancer type. Only 831 

tumour-types with at least one significant event shown. (B) pan-PCAWG and PCAWG 832 

tumour-type-specific ancestry-associations in driver and mitochondrial SNV frequency 833 

with the top showing adjusted multivariate p-values, middle showing difference in 834 

proportion, and bottom showing proportion of tumours with mutated gene per ancestry 835 

group. Covariate bars indicate tumour and element type context of each mutation, where 836 

coding sequence is abbreviated to CDS and mitochondrial DNA is mtDNA. (C) The 20 837 

SNVs most associated with AFR and EAN ancestry in the TCGA colorectal and renal 838 

cancer (COADREAD) dataset. (D) Differential mRNA abundance associated with EAN-839 

associated SNVs in TCGA COADREAD. Each point represents a gene with black dots 840 

showing significant associations between mRNA and SNV. (F) AXIN1 and (G) STK36 841 

mRNA abundance changes between copy number loss (red) or no loss (black) compared 842 

by ancestry. Adjusted SNV term p-value is shown. Tukey boxplots are depicted, as 843 

described in Figure 1. 844 
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