

1 Ancestry Influences on the Molecular 2 Presentation of Tumours

3 Constance H. Li^{1,2,3,4,5,6}, Syed Haider⁷, Paul C. Boutros^{1,2,3,4,5,8,9}

4

5 ¹ Department of Medical Biophysics, University of Toronto; Toronto, Ontario, Canada

6 ² Department of Human Genetics, University of California, Los Angeles, CA, USA

7 ³ Department of Urology, University of California, Los Angeles, CA, USA

8 ⁴ Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA

9 ⁵ Institute for Precision Health, University of California, Los Angeles, CA, USA

10 ⁶ Ontario Institute for Cancer Research, Toronto, Ontario, Canada

11 ⁷ The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer
12 Research; London, United Kingdom

13 ⁸ Department of Pharmacology & Toxicology, University of Toronto; Toronto, Ontario,
14 Canada

15 ⁹ Vector Institute for Artificial Intelligence, Toronto, Canada

16

17 Correspondence should be addressed to P.C.B. (PBoutros@mednet.ucla.edu)

18 12-109 CHS

19 10833 Le Conte Avenue

20 Los Angeles, CA, 90095

21 Phone: 310-794-7160

22

23 Abstract

24 Epidemiological studies have identified innumerable ways in which cancer presentation
25 and behaviour is associated with patient ancestry. The molecular bases for these
26 relationships remain largely unknown. We analyzed ancestry associations in the somatic
27 mutational landscape of 12,774 tumours across 33 tumour-types, including 2,562 with
28 whole-genome sequencing. Ancestry influences both the number of mutations in a tumour
29 and the evolutionary timing of when they occur. Specific mutational signatures are
30 associated with ancestry, reflecting potential differences in exogenous and endogenous
31 oncogenic processes. A subset of known cancer driver genes was mutated in ancestry-
32 associated patterns, with transcriptomic consequences. Cancer genome sequencing data
33 is not well-balanced in epidemiologic factors; these data suggest ancestry strongly
34 shapes the somatic mutational landscape of cancer, with potential functional implications.

35 Introduction

36 Racial differences in cancer are pervasive across myriad measures of cancer burden.
37 Epidemiological studies have reported race-associated differences in incidence^{1–4},
38 survival^{3,5,6}, and mortality^{1,2,7,8} rates, amongst others. These persist despite
39 advancements in cancer detection and treatment⁹. Across all cancer types, incidence
40 rates in Black and White populations are comparable, but Black mortality rates are ~13%
41 higher¹. In contrast, all cancer incidence and mortality rates are lower in US Asian, Native
42 Hawaiian and Pacific Islanders in the US⁴, and in UK East Asians and South Asians³
43 when compared with Whites. North American indigenous populations such as American
44 Indians and Canadian First Nations have a risk of cancer death significantly higher than
45 that for Whites, despite regional variation^{1,10,11}.

46 There are more striking differences in the rates of diagnosis and mortality for specific
47 tumour-types. Black men are twice as likely to be diagnosed with prostate cancer than
48 White men, and twice as likely to die of their disease^{1,2,12}. While breast cancer incidence
49 rates in Black and White women have converged and are now comparable^{1,2}, Black
50 women still experience higher breast cancer mortality due in part to higher rates of
51 aggressive triple negative disease and late stage at diagnosis^{13–15}. In East Asians, the
52 incidence rate of liver cancers is over twice that in Whites, and nasopharyngeal cancer
53 incidence is six times greater: East Asians also have higher mortality for liver,
54 nasopharyngeal, and stomach cancers^{4,16–18}.

55 The causes of racial difference in cancer are multifactorial. Some differences in cancer
56 survival are associated with differences in treatment effectiveness. For example, US
57 studies have found that liver cancer survival in Black populations is lower after surgical
58 interventions including hepatectomies and liver transplantation^{19,20}. Black American men
59 have been found to have poorer recurrence-free survival after radical prostatectomy^{21,22},
60 but these differences in treatment response are at least in part, and perhaps mostly,
61 attributable to differences in clinical and pathological characteristics at diagnosis and to
62 socioeconomic factors^{23,24}. Indeed, socioeconomic factors play an important role in
63 cancer rates and outcomes: socioeconomic status directly affects critical variables such
64 as living conditions and access to healthcare, and is strongly associated with health
65 outcome throughout the world²⁵. In other cases, comparing individuals across continents
66 also confound life-style differences such as diet and environmental exposures, such as
67 the prevalence of specific viruses. To better understand the causes of these differences
68 in cancer incidence and mortality, many interacting and interrelated factors and concepts
69 must be considered.

70 The concept of *ancestry* is itself closely related the concepts of *race* and *ethnicity*. Where
71 *race* refers to groups distinguished by physical differences, *ethnicity* reflects differences
72 by biological factors in addition to geographical, historical, belief, cultural and other

73 factors. *Ancestry* as used here refers to genetic ancestry, or the line of descent of an
74 individual's genetic material. Genetic ancestry is directly imputed based on DNA
75 sequencing²⁶. Race, ethnicity, and ancestry are each associated with cancer burden. For
76 instance, germline risk variants detected at different frequencies in different populations
77 have been associated with differences in cancer risk²⁷. Other population-specific risk
78 variants have been described for breast^{28,29}, prostate^{30,31}, and lung^{32,33} cancer, and many
79 are still of unknown significance. Our work focuses on describing the ancestry-
80 associations of somatic genomic changes in cancer. However, it is important to note that
81 studies of genetic ancestry cannot generally fully disentangle differences associated with
82 genetics from differences associated with socioeconomic or other cultural and societal
83 differences amongst populations.

84 We sought to understand how a tumour's molecular profiles reflects the oncogenic
85 processes and mutagenic exposures experienced by each unique patient. We used
86 genetically imputed ancestry along with available (but inherently limited) lifestyle and
87 clinical annotation data to model somatic features and identify features significantly
88 associated with ancestry. Previous work associating somatic genomic changes with race,
89 ethnicity or ancestry suggest differences in overall mutation burden^{34,35} in specific tumour-
90 types like breast³⁶, prostate³⁷ and lung³⁸ cancers, amongst others³⁹. Studies of TCGA
91 pan-cancer data have estimated genetic ancestry using SNP genotyping and compared
92 African American-derived with European American-derived somatic alterations⁴⁰, and
93 examined the mRNA and methylation differences between ancestries⁴¹.

94 We add to this growing body of analyses examining ancestry-associated differences in
95 cancer genomics by performing a pan-cancer, genome-wide study of ancestry-associated
96 molecular differences, leveraging all available ancestry groups including those of
97 European, East Asian, African, Admixed American and South Asian ancestry. Our
98 comprehensive pan-cancer analysis leveraged 10,218 tumours of 23 tumour-types from
99 The Cancer Genome Atlas (TCGA)⁴² and 2,562 tumours of 30 tumour-types from the
100 International Cancer Genome Consortium/The Cancer Genome Atlas Pan-cancer
101 Analysis of Whole Genomes (PCAWG)⁴³ projects. We quantified ancestry associations in
102 driver mutations, subclonal architecture, mutation timing and mutational signatures in
103 almost all tumour-types, many linked to clinical phenotypes.

104

105 Results

106 Ancestry associations in Mutation Density and Timing

107 We separately analyzed TCGA and PCAWG data. These studies differ in molecular
108 profiling technology, available annotation data, and populations sampled. We took the
109 union of all TCGA tumours for pan-TCGA analyses, and the union of all PCAWG tumours
110 for pan-PCAWG analyses. In addition to these pan-cancer analyses, we also examined
111 each tumour-type for tumour-type-specific associations (**Table 1**). We used TCGA
112 ancestry as previously imputed by Yuan *et al*⁴⁰ and PCAWG ancestry data as previously
113 reported⁴³. We adapted a statistical approach previously applied to quantify sex-
114 associations in cancer genomes⁴⁴. Briefly, we first used univariate methods to identify
115 putative associations within each non-European ancestry group: East Asian (EAN),
116 African (AFR), American Indian and Alaska Natives (Admixed American; AMR), South
117 Asian (SAN), and Other Ancestry (OA). European ancestry was used as the reference
118 group because of its larger sample-size in these cohorts, which maximizes statistical
119 power. An ancestry group was only studied in a tumour-type if its group sample size in
120 that tumour-type was at least five (**Supplementary Table 1**). Putatively associated
121 genomic features were then further modeled using multivariate regression to adjust for
122 confounding clinico-epidemiologic factors such as sex, age, stage and tumour-type, and
123 assessed for significance at a false discovery rate (FDR) threshold of 10% (**Methods**).
124 Pan-cancer and tumour-type-specific models and variable specifications are presented in
125 **Supplementary Table 1**.

126 We first asked whether genome-wide phenomena were associated with ancestry. We
127 started with measure of genome instability, and initially focused on the burden of copy
128 number alterations (CNAs), approximated by the proportion of the genome with a CNA
129 (PGA)⁴⁵. Using Mann-Whitney U-tests followed by linear regression (LNR), we identified
130 significant associations between EAN ancestry and PGA in TCGA-hepatocellular cancer
131 (LIHC: $\Delta\text{loc} = 5.8\%$, 95%CI = 2.6 - 8.9%, adjusted LNR $p = 6.0 \times 10^{-3}$), TCGA-stomach
132 and esophageal cancer (STES: $\Delta\text{loc} = 5.7\%$, 95%CI = 1.6 - 9.9%, adjusted LNR $p =$
133 0.012), and pan-TCGA analyses ($\Delta\text{loc} = 1.6\%$, 95%CI = 0.05 - 3.2%, adjusted LNR $p =$
134 0.012); PGA was associated with AFR ancestry in TCGA-head and neck cancer (HNSC:
135 $\Delta\text{loc} = 6.6\%$, 95%CI = 1.8 - 11% adjusted LNR $p = 0.030$), TCGA-endometrial cancer
136 (UCEC: $\Delta\text{loc} = 3.2\%$, 95%CI = 0.020 - 7.0% adjusted LNR $p = 7.9 \times 10^{-3}$) and pan-PCAWG
137 analyses ($\Delta\text{loc} = 8.8\%$, 95%CI = 4.3 - 13%, adjusted LNR $p = 3.0 \times 10^{-3}$; **Figure 1A**,
138 **Supplementary Figure 1**). For all significant associations, PGA was higher in EAN- or
139 AFR-derived tumours compared with tumours arising in individuals of EUR ancestry
140 (**Figure 1B, Supplementary Figure 1**), indicating higher genome instability in the EAN-
141 and AFR-derived tumours of these tumour-types.

142 Single nucleotide variation (SNV) density is an analogous measure to PGA, quantifying
143 the burden of somatic SNVs in each Mbp of DNA sequenced. Again, we applied Mann-
144 Whitney U-tests and linear regression to identify tumour-types where SNV density was
145 associated with ancestry. We first assessed coding SNV density, as TCGA SNV data is
146 based on whole exome sequencing (**Figure 1C, Supplementary Figure 1**). In TCGA-
147 melanoma, both EAN (SKCM: $\Delta\text{loc} = -8.3$ SNVs/Mbp, 95%CI = -18 - -3.1 SNVs/Mbp,
148 adjusted LNR p = 0.010) and AMR ($\Delta\text{loc} = -9.0$ SNVs/Mbp, 95%CI = -26 - -2.2 SNVs/Mbp,
149 adjusted LNR p = 1.8×10^{-3}) ancestries were associated with lower SNV density than the
150 EUR reference. EAN-derived LIHC tumours ($\Delta\text{loc} = 3.7$ SNVs/Mbp, 95%CI = 0.1 – 0.67
151 SNVs/Mbp, adjusted LNR p = 1.8×10^{-3}) and AFR-derived TCGA-colorectal (COADREAD:
152 $\Delta\text{loc} = 2.1$ SNVs/Mbp, 95%CI = 0.53 - 4.1, adjusted LNR p = 0.068) tumours had higher
153 SNV density than the EUR references. pan-TCGA, SNV density was lower in AFR-
154 derived tumours ($\Delta\text{loc} = -0.17$ SNVs/Mbp, 95%CI = -0.30 - -0.067, adjusted LNR p =
155 0.068; **Figure 1D**). In contrast, coding SNV density was higher in AFR-derived pan-
156 PCAWG tumours ($\Delta\text{loc} = 0.68$ SNVs/Mbp, 95%CI = 0.43-0.95, adjusted LNR p = 0.021).
157 This difference in AFR-associated coding SNV density between pan-TCGA and pan-
158 PCAWG data may highlight differences in included tumour-types and geographic
159 differences in the populations sampled. Finally, we extended beyond the coding regions
160 to examine non-coding and overall SNV density in the PCAWG whole genome
161 sequencing data. These results closely matched those for coding SNV density; pan-
162 PCAWG AFR-derived tumours had consistently lower SNV density regardless of the
163 coding context (**Supplementary Table 2**).

164 We next focused on clonal architecture and mutation timing using data describing the
165 evolutionary history of PCAWG tumours⁴⁶. We tested whether monoclonal status might
166 be ancestry-associated by comparing the proportions of tumours that were monoclonal,
167 where all tumour cells are homogenous, clonal copies of one ancestral cell vs tumours
168 that were polyclonal, which have multiple somatically distinct cells derived of different
169 ancestral lineages. We used proportion tests followed by logistic regression (LGR) to
170 identify ancestry-associations in monoclonal status. SAN-derived PCAWG-head and
171 neck tumours were more frequently monoclonal than EUR-derived tumours (Head-SCC:
172 $\Delta\text{proportion polyclonal} = 0.60$, 95%CI = 0.30-0.91, adjusted LGR p = 1.9×10^{-3} ; **Figure**
173 **1E**). In pan-PCAWG analysis, EAN-derived tumours were also more frequently
174 monoclonal than EUR-derived tumours ($\Delta\text{proportion polyclonal tumours} = 0.17$, 95%CI =
175 0.12-0.22, adjusted LGR p = 0.016). Monoclonal tumours have previously been
176 associated with better survival in several tumour types⁴⁷⁻⁴⁹, and a higher frequency of
177 monoclonal tumours in SAN and EAN tumours might underlie some of the improved
178 survival experienced by these ancestry groups in these tumour types.

179 Focusing only on polyclonal tumours, we investigated whether the time at which
180 mutations accumulate during a tumour's evolution might be associated with the ancestry
181 of the patient it arises in. We compared how frequently SNVs, indels and structural

182 variants (SVs) occurred as clonal mutations in the trunk or as subclonal ones in branches.
183 In PCAWG-kidney renal clear cell cancer, tumours arising in AFR individuals had a higher
184 proportion of clonal SNVs relative to those in EUR individuals (Kidney-RCC: $\Delta\text{loc} = 0.11$,
185 95%CI = 0.050 – 0.19, LGR p = 0.041; **Figure 1F**). Kidney cancer tumours arising in AFR
186 individuals also had a higher proportion of truncal indels ($\Delta\text{loc} = 0.11$, 95%CI = 0.036 –
187 0.18, LGR p = 0.035; **Supplementary Table 2**). In pan-PCAWG tumours, EAN-derived
188 tumours had a lower proportion of truncal SVs ($\Delta\text{loc} = -0.03$, 95%CI = -0.054 – -0.074,
189 LGR p = 0.037; **Figure 1F**). Ancestry associations in monoclonal status and mutation
190 timing suggest potential differences in the evolutionary histories of these SAN-, AFR- and
191 EAN-derived tumours. Future investigations of tumour evolution using larger cohorts and
192 multi-region sequencing are needed to validate and quantify these ancestry-associations.

193 **Ancestry Associations in Mutational Signatures**

194 Differences in mutation density and timing suggest that the mutagenic processes affecting
195 a tumour might be correlated with the ancestry of the patient, presumably primarily
196 through differential environmental exposures associated with race and ethnicity.
197 Mutational signatures based on the flanking sequence context of mutations can
198 deconvolve characteristic mutational patterns that arise from specific mutagenic
199 processes. We analysed three types of mutational signatures generated by the PCAWG
200 project: 49 single base substitution (SBS), 11 doublet base substitution (DBS) and 17
201 small insertion and deletion (ID) signatures⁵⁰. We also investigated SBS signatures for
202 TCGA tumours. Each signature is thought to reflect a specific mutagenic process, though
203 many are still of unknown aetiology^{50,51}. For each signature, we examined both the
204 proportion of signature-positive tumours as well as relative signature activity, quantified
205 as the proportion of mutations attributed to each signature.

206 Ancestry-associated mutational signatures were identified in pan-PCAWG and pan-
207 TCGA analyses, as well as in four PCAWG and thirteen TCGA tumour-types
(**Supplementary Table 2**). AFR-associations in mutational signatures occurred across
209 several tumour-types (**Figures 2A, 2B**). In TCGA-lung adenocarcinoma, AFR-derived
210 tumours had higher detection rates of SBS4, attributed to tobacco exposure (LUAD:
211 $\Delta\text{proportion} = 0.39$, 95%CI = 0.23-0.55, adjusted LNR p = 5.5x10⁻³; **Figure 2A**,
212 **Supplementary Figure 2**). Higher rates of SBS4 detection in AFR-derived lung
213 adenocarcinoma despite reportedly comparable smoking rates between Black and White
214 populations⁵² may reflect differences in nicotine metabolism⁵³, elevated use of
215 mentholated cigarettes in Black populations^{52,54} or simple selection bias in the cohort of
216 lung adenocarcinomas studied in TCGA. In PCAWG-breast cancer, SBS3 occurred more
217 frequently in AFR-derived samples (Breast-AdenoCA: $\Delta\text{proportion} = 0.33$, 95%CI = 0.13-
218 0.54, adjusted LNR p = 0.097). SBS3 is attributed to defective homologous recombination
219 (HR) repair of double stranded breaks. Higher SBS3 occurrence in AFR breast tumours
220 may be due to more frequent triple-negative breast cancer, which exhibit high rates of
221 defective HR repair⁵⁵. Finally, AFR-derived TCGA-endometrial cancers had higher

222 detection rates of SBS2 (UCEC: Δ proportion = 0.26, 95%CI = -0.0081-0.54, adjusted LNR
223 $p = 5.2 \times 10^{-2}$). and SBS13 (Δ proportion = 0.31, 95%CI = 0.030-0.59, adjusted LNR $p =$
224 0.011), which are both attributed to the activity of AID/APOBEC cytidine deaminases and
225 have been previously associated with progression from primary to metastatic disease⁵⁶.
226 AFR-associations in relative signature activity were detected in two signatures of
227 unknown aetiology (**Figure 2B**).

228 Of the ancestries analysed, the largest number of significant associations were detected
229 with EAN ancestry (**Figures 2C, 2D**). In hepatocellular cancer, signatures were EAN-
230 associated in both proportion positive and relative activity across both PCAWG (Liver-
231 HCC; **Figure 2E, top**) and TCGA (**Figure 2E, bottom**) data. EAN-derived Liver-HCC
232 tumours had higher SBS12 detection frequency (Δ proportion = 0.66, 95%CI = 0.57-0.76,
233 adjusted LNR $p = 3.8 \times 10^{-8}$) and lower relative SBS1 activity (Δ loc = 0.0067, 95%CI =
234 0.0019-0.015, adjusted LNR $p = 2.1 \times 10^{-3}$) compared with EUR hepatocellular tumours;
235 SBS12 was not described in TCGA-hepatocellular cancer data, and decreased SBS1
236 activity in EAN-derived TCGA samples was not statistically significant after multivariable
237 adjustment. In TCGA-hepatocellular tumours, EAN-derived tumours showed higher rates
238 of SGS9 signature detection (Δ proportion = 0.098, 95%CI = 0.033-0.16, adjusted LNR p
239 = 0.021), SBS22 (Δ proportion = 0.13, 95%CI = 0.054-0.22, adjusted LNR $p = 1.7 \times 10^{-3}$)
240 and SBS40 (Δ proportion = -0.18, 95%CI = -0.30 - 0.073, adjusted LNR $p = 0.026$).
241 Intriguingly, the TCGA EAN-associations in SBS9 and SBS22 were not reflected in
242 PCAWG data despite sufficient group sample sizes (**Figure 2E; Supplementary Table**
243 **1**). SBS9 is attributed to mutations induced during replication by DNA polymerase η and
244 SBS22 to aristolochic acid exposure. These contrasting results between PCAWG and
245 TCGA data may be due to ethnic and geographic differences between the datasets:
246 PCAWG hepatocellular tumours were primarily from Japanese and French patients, while
247 TCGA tumours are from US patients.

248 Other ancestry-associated mutational signatures include higher relative activity of ID2 in
249 SAN-derived PCAWG-head and neck tumours (**Supplementary Figure 2**,
250 **Supplementary Table 2**). ID2 is attributed to slippage of the template strand during DNA
251 replication and is thought to be associated with DNA mismatch repair deficiency. SBS5
252 was detected at lower rates in AMR TCGA-bladder cancer (BLCA: Δ proportion = -0.15,
253 95%CI = -0.41 - 0.10, adjusted LNR $p = 0.012$; **Supplementary Figure 2**,
254 **Supplementary Table 2**) and SBS16 at higher rates in AMR-derived TCGA-lower grade
255 glioma (LGG: Δ proportion = 0.079, 95%CI = -0.054 - 0.21, adjusted LNR $p = 0.029$;
256 **Supplementary Figure 2**). AMR-derived LGG tumours also had higher relative activity
257 of AID/APOBEC-attributed SBS13 (Δ loc = 0.0068, 95%CI = 0.030-0.012, adjusted LNR
258 $p = 6.0 \times 10^{-3}$, **Supplementary Figure 2**), suggesting a greater role of these enzymes in
259 lower grade gliomas of individuals of AMR ancestry. Thus ancestry-associated mutational
260 signatures were detected across a range of endogenous and exogenous mutational
261 processes. Most ancestry-associated signatures are of unknown aetiology and

262 elucidation of the biological processes underlying these signatures may help determine if
263 these are true ancestry-associations or confounding from other environmental differences
264 in the cohorts.

265 **Ancestry-associations in CNA Differences are Associated with Transcriptomic
266 Changes**

267 After identifying ancestry-associated differences in genome-wide phenomena and
268 mutational signatures, we focused on chromosome segment and gene-level events. We
269 compared the proportions of copy number losses and copy number gains for each
270 ancestry group compared with the EUR reference group using proportion tests, and then
271 adjusted for confounding factors using multivariate logistic regression. As with prior
272 analyses, we analysed TCGA and PCAWG concurrently and separately. Ancestry-
273 associated CNAs were identified in 13 TCGA and 3 PCAWG cancer types, as well as in
274 both pan-TCGA and pan-PCAWG analyses (**Figure 3A**). Pan-TCGA, 602 genes were in
275 EAN-associated CNAs and 2,787 genes in AFR-associated CNAs. Some differences in
276 CNA frequency were as large as 10% (**Figure 3B, Supplementary Table 3-4**). In pan-
277 PCAWG analysis, 288 genes were in EAN-associated CNAs, 5,589 genes in AFR-
278 associated CNAs, and 437 genes in SAN-associated CNAs, with frequency differences
279 of up to 20% (**Supplementary Figure 3, Supplementary Tables 3-4**).

280 To determine whether cancer drivers were affected by ancestry-associated CNAs, we
281 focused on a subset of 133 genes altered by driver CNAs⁵⁷ (**Figure 3C**). There were eight
282 pan-TCGA and 20 pan-PCAWG AFR-associated genes, including higher frequency of
283 CBX8 gain (PCAWG Δproportion = 0.16, 95%CI = 0.068 – 0.26, adjusted LGR p = 0.020;
284 TCGA Δproportion = 0.043, 95%CI = 0.012 – 0.074, adjusted LGR p = 0.060) and
285 SMARCA gain (PCAWG Δproportion = 0.12, 95%CI = 0.042 – 0.20, adjusted LGR p =
286 0.082; TCGA Δproportion = 0.030, 95%CI = 0.0058 – 0.055, adjusted LGR p = 0.013).
287 One gene, *FAT1* was more frequently lost in tumours derived of EAN individuals (PCAWG
288 Δproportion = 0.15, 95%CI = 0.096 – 0.20, adjusted LGR p = 0.080; TCGA Δproportion
289 = 0.096, 95%CI = 0.055 – 0.14, adjusted LGR p = 0.14). Similarly, ancestry-associated
290 driver CNAs were identified in 16 TCGA and 5 PCAWG cancer types (**Supplementary
291 Tables 3-4**).

292 CNAs change the dosage of affected genes and can lead to transcriptome changes⁵⁸.
293 We sought to determine whether ancestry-associated CNAs have such downstream
294 mRNA associations. Using TCGA mRNA abundance data, we analysed the mRNA of
295 genes contained in ancestry-associated CNAs using models that incorporated the
296 ancestry group of interest, copy number status, and the interaction between copy number
297 status and ancestry. These models allowed us to identify mRNA abundance changes
298 associated with the CNA itself, as well as changes where the effect of the copy number
299 depended on the ancestry of the patient in which the tumour arose. We also adjusted for
300 tumour purity as estimated by study pathologists in all mRNA analyses.

301 In TCGA-kidney clear cell cancer, 559 genes were present in AFR-associated losses
302 (**Figure 3D**). Using the approach described above, we examined mRNA abundance for
303 each of these genes as a function of AFR ancestry, copy number loss status, and their
304 interaction. Of the 559 genes, copy number loss was significantly associated with
305 changes in mRNA abundance for 316 genes (57%; **Figure 3E, black points**). A further
306 24 genes (4.3%) had significant interactions between copy number loss status and AFR
307 ancestry (**Figure 3E, red points**). For some genes, this significant interaction was due to
308 differences in the magnitude of mRNA abundance change: for example, loss of the
309 microtubule-associated gene *MAP4* is associated with decreased *MAP4* mRNA
310 abundance in both EUR and AFR tumours, but the decrease in mRNA abundance is
311 greater in AFR than in EUR tumours (**Figure 3F**). For other genes, the significant
312 interaction indicates a difference in direction: loss of the tumour suppressor *RASSF1* is
313 associated with a slight decrease in *RASSF1* mRNA abundance for EUR-derived
314 tumours, but an increase in abundance for AFR-derived tumours (**Figure 3G**). Thus copy
315 number loss of *RASSF1* is not only less frequent in AFR-derived tumours (Δ proportion =
316 -0.24 95%CI = -0.38 - -0.10, adjusted LNR $p = 1.3 \times 10^{-6}$), its effect on mRNA abundance
317 is contrary to what is usually observed in EUR-derived kidney tumours.

318 Repeating this mRNA analysis for all TCGA tumour-types with ancestry-associated
319 CNAs, 5-53% of genes affected by EAN- or AFR-associated CNAs were significantly
320 associated with changes in mRNA abundance (**Supplementary Table 5**). We also
321 identified additional mRNA where the changes in abundance were dependent on the
322 interaction between CNA and ancestry (**Supplementary Figure 3, Supplementary**
323 **Table 5**). Significant CNA-EAN interactions were found in breast cancer (4 genes), kidney
324 renal clear cell (5 genes) and papillary cell cancers (9 genes), liver cancer (8), lung
325 squamous cell cancer (LUSC: 2), prostate cancer (PRAD: 13), and stomach and
326 esophageal cancer (32 genes). There were also significant CNA-AFR interactions for
327 UCEC (3; **Supplementary Figure 3**). Thus, CNA frequency is associated with ancestry,
328 and ancestry-associated CNAs are associated with changes in the transcriptome.

329 **Ancestry-associations in Gene-Level SNVs**

330 Finally, we asked whether specific genes might be mutated by SNVs at different
331 frequencies between different ancestry groups. In TCGA data, we applied a recurrence
332 filter and removed genes that had SNVs in <1% of tumours for each tumour-type. In
333 PCAWG data, we focused on a set of drivers⁵⁹ that includes both coding and non-coding
334 elements, as well as SNVs in mitochondrial DNA (mtDNA). Ancestry-associations were
335 identified in 15 TCGA tumour-types and four PCAWG tumour-types (**Figure 4A**). Across
336 pan-TCGA tumours, there were nine genes that were mutated with SNVs more frequently
337 in EAN-derived samples including *FGFR3* (Δ proportion = 0.022, 95%CI = 0.054-0.039,
338 adjusted LGR $p = 0.016$; **Supplementary Table 6**). In pan-PCAWG tumours, SNVs in
339 the coding regions of the tumour suppressors *FBXW7* (Δ proportion = 0.066, 95%CI =
340 0.014-0.12, adjusted LGR $p = 0.030$) and *TP53* (Δ proportion = 0.18, 95%CI = 0.087-0.28,

341 adjusted LGR $p = 0.044$) occurred more frequently in tumours arising in AFR individuals
342 (**Figure 4B, left**). *TERT* promoter SNVs were more frequent in tumours arising in SAN
343 individuals (Δ proportion = 0.17, 95%CI = 0.012-0.33, adjusted LGR $p = 0.024$).

344 We also identified EAN-associated SNVs in PCAWG medulloblastoma and PCAWG non-
345 Hodgkin's lymphoma (**Figure 4B, middle**). SNVs in both *KBTBD4* (CNS-Medullo:
346 Δ proportion = 0.35, 95%CI = -0.050 -0.75, adjusted LGR $p = 9.9 \times 10^{-3}$) and *B2M* (Lymph-
347 BNHL: Δ proportion = 0.56, 95%CI = 0.086-1, adjusted LGR $p = 0.043$) occurred more
348 frequently in EAN-derived tumours than EUR. In PCAWG-prostate cancer, SNVs in
349 *FOXA1* were more frequently in tumours derived of AFR individuals (Prost-AdenoCA:
350 Δ proportion = 0.31, 95%CI = -0.088-0.72, adjusted LGR $p = 0.012$). The frequency of
351 mitochondrial SNVs were also associated with ancestry (**Figure 4B, right**): pan-PCAWG,
352 SNVs in *MT-TFX* occurred more frequently in AMR-derived tumours (Δ proportion =
353 0.098, 95%CI = -0.066-0.26, adjusted LGR $p = 9.0 \times 10^{-4}$), and *MT-TA* SNVs were more
354 frequent in SAN-derived pancreas tumours (Δ proportion = 0.31, 95%CI = -0.15-0.78,
355 adjusted LGR $p = 6.5 \times 10^{-5}$). *MT-TFX* is a mitochondrially encoded transcription factor
356 binding site, and *MT-TA* encodes a transfer RNA for alanine. Mutations in mtDNA could
357 have far-reaching downstream effects. For example, mutations in *MT-TA* could result in
358 less efficient protein synthesis, leading to differences in the tumour proteome.

359 Across all TCGA tumour-types, we identified 159 EAN-associations, 37 AFR-
360 associations, and 23 AMR-associations. These included genes in KIRC such as *UBR5*
361 which was mutated by SNVs more frequently in AFR-derived tumours (Δ proportion =
362 0.14, 95%CI = -0.038-0.33, adjusted LGR $p = 9.8 \times 10^{-3}$), and in COADREAD, where
363 *CARD6* (COADREAD: Δ proportion = 0.30, 95%CI = -0.0075-0.61, adjusted LGR $p =$
364 0.062; **Figure 4C**) and *CKAP2* (Δ proportion = 0.24, 95%CI = -0.049-0.53, adjusted LGR
365 $p = 0.062$) SNVs were more frequent in EAN-derived TCGA-colorectal tumours
366 (**Supplementary Table 6**). The majority of ancestry-associated SNVs were identified in
367 COADREAD, which had 118 EAN-associations and two AFR-associations in
368 COADREAD gene-level SNVs (**Figure 4C**).

369 Similar to our CNA analyses, we next investigated mRNA abundance to determine
370 whether ancestry-associated SNVs might also be associated with changes in the
371 transcriptome. We used the same approach as previously applied in our CNA-
372 transcriptome analyses, using a model that included SNV status, ancestry, and the
373 interaction between SNV and ancestry. Despite low statistical power due to small group
374 sizes, several ancestry-associated SNVs were associated with changes in mRNA
375 abundance. In COADREAD, six genes that were more frequently mutated with SNVs in
376 EAN-derived tumours were also associated with decreased mRNA abundance (**Figure**
377 **4D, Supplementary Table 6**), including *AXIN1* (**Figure 4E**). Similarly SNVs in *STK36*,
378 which occurred more frequently in AFR-derived COADREAD (Δ proportion = 0.21, 95%CI
379 = -0.00058-0.41, adjusted LGR $p = 8.8 \times 10^{-3}$), was also associated with decreased mRNA

380 abundance in tumours derived of both EUR and AFR individuals (**Figure 4F**). We
381 identified differential mRNA abundance associated with ancestry-associated SNVs in
382 TCGA-bladder cancer (BLCA) and UCEC (**Supplementary Table 6**). Unlike in our CNA
383 analysis, we did not find mRNA changes that were dependent on the interaction between
384 SNV and ancestry.

385

386 Discussion

387 Our analysis of TCGA and PCAWG data revealed ancestry-associations across all
388 genomic features studied, from genome-wide phenomena to gene-level events. These
389 associations occur at both the pan-cancer level and in specific tumour-types. Ancestry is
390 associated with mutation density, measures of tumour evolution, and with mutational
391 signatures associated with oncogenic processes. Gene-level CNAs and SNVs not only
392 occurred at different frequencies in different ancestries, they were also associated with
393 differential mRNA abundance: in some cases, the effect of a CNA on mRNA abundance
394 was dependent on the ancestry of the patient in which the tumour arose. Together, these
395 results suggest that ancestry influences the progression of a tumour and that ancestry-
396 associated genomic events have potential functional significance.

397 Differences between the TCGA and PCAWG datasets allowed us to investigate them in
398 parallel and orthogonal ways. We leveraged the deeper clinical annotation and larger
399 samples sizes of TCGA whole exome sequencing and array-based data to adjust for more
400 confounding variables using more complex models. In contrast, the whole genome
401 sequencing data from PCAWG allowed us to investigate a broader range of genomic
402 features such as clonal architecture and non-coding drivers. TCGA and PCAWG data
403 also represent different geographic populations: while TCGA tumours were largely
404 derived of North American patients, PCAWG tumours were from patients at multiple
405 international sites. As a result, the distributions of ancestry groups differ between TCGA
406 and PCAWG data (**Table 1**), and many PCAWG tumour-types were excluded from
407 tumour-type-specific analysis due to insufficient sample size. Poor agreement between
408 TCGA and PCAWG results are therefore related to three major factors: vastly different
409 sample sizes and ancestry group sizes affecting statistical power; geographical
410 differences in sampling; and differences in molecular profiling technologies.

411 As with other ancestry- and race-associated differences in cancer burden, the causes of
412 ancestry-associated genomic events are multifactorial and interacting. For example, our
413 analysis of mutational signatures revealed the differing impacts of both endogenous and
414 exogenous mutagens on tumours of different ancestries. One such difference was in the
415 increased detection rates of defective homologous recombination repair in breast tumours
416 derived of individuals of African ancestry. However, whether this increase is due to
417 differences in inherited predisposition⁶⁰, hormonal differences⁶¹, environmental exposure,
418 or a combination of these and other variables is uncertain. Ancestry-associations in
419 cancer genomes likely arise from a combination of biological, lifestyle, and environmental
420 factors. We used imputed ancestry, which best approximates the line of descent for an
421 individuals' genetic material. However, without accounting for factors highly correlated
422 with ancestry, such as race, socioeconomic status and quality of healthcare^{62,63}, we
423 cannot fully disentangle contributing factors and definitively attribute these differences to
424 biology.

425 Ancestry undoubtedly influences the molecular presentation of a tumour. Despite low
426 sample sizes, we have identified differences in the density, frequency, and transcriptional
427 consequence of both copy number and nucleotide changes. The results we present are
428 likely an underestimation of the full landscape of ancestry-associated somatic changes in
429 cancer, and this is due in large part to poor representation of non-European ancestries in
430 TCGA, PCAWG, and other cancer profiling studies⁶⁴. To fully describe ancestry-
431 associations, future genomic studies must include diverse representation across multiple
432 ancestry groups and include deep and complete annotation to facilitate the control of
433 confounding variables. Through identifying differences in the cancer genomes between
434 individuals of different ancestries, we can better understand how they arise and leverage
435 them to improve personalized therapy strategies.

436 Online Methods

437 Data acquisition & Processing

438 Genome-wide somatic copy-number, somatic mutation, and mRNA abundance profiles
439 for the Cancer Genome Atlas (TCGA) datasets were downloaded from Broad GDAC
440 Firehose (<https://gdac.broadinstitute.org/>), release 2016-01-28. For mRNA abundance,
441 Illumina HiSeq rnaseqv2 level 3 RSEM normalised profiles were used. Genes with >75%
442 of tumours having zero reads were removed from the respective dataset. GISTIC v2 (13)
443 level 4 data was used for somatic copy-number analysis. mRNA abundance data were
444 converted to \log_2 scale for subsequent analyses. Mutational profiles were based on
445 TCGA-reported MutSig v2.0 calls. All pre-processing was performed in R statistical
446 environment (v3.1.3). Genetic ancestry imputed by Yuan *et al.* was downloaded from The
447 Cancer Genetic Ancestry Atlas (<http://52.25.87.215/TCGAA>).

448 PCAWG WGS data were downloaded from the PCAWG consortium with pre-processing
449 as performed by the consortium⁴³. Individual datasets are available at Synapse
450 (<https://www.synapse.org/>), denoted with synXXXXX accession numbers (*i.e.* Synapse
451 IDs). These datasets are mirrored at <https://dcc.icgc.org>. Tumour histological
452 classifications were reviewed and assigned by the PCAWG Pathology and Clinical
453 Correlates Working Group (annotation version 9; [syn10389158](#), [syn10389164](#)). Ancestry
454 imputation was performed using an ADMIXTURE-like algorithm based on germline SNP
455 profiles determined by whole-genome sequencing of reference sample ([syn4877977](#)).
456 The consensus somatic SNV and indel ([syn7357330](#)) file covers 2778 whitelisted
457 samples from 2583 donors. Driver events were called by the PCAWG Drivers and
458 Functional Interpretation Group ([syn11639581](#)). Consensus CNA calls from the PCAWG
459 Structural Variation Working Group were downloaded in VCF format ([syn8042988](#)).
460 Subclonal reconstruction was performed by the PCAWG Evolution and Heterogeneity
461 Working Group ([syn8532460](#)). SigProfiler mutation signatures were determined by the
462 PCAWG Mutation Signatures and Processes Working Group for single base substitution
463 ([syn11738669](#)), doublet base substitution ([syn11738667](#)) and indel ([syn11738668](#))
464 signatures. Signatures data for TCGA, non-PCAWG WGS and non-TCGA WXS samples
465 were downloaded from Synapse ([syn11804040](#)).

466 We used TCGA data on 10,212 distinct patients with 23 cancer types. PCAWG data was
467 from 2,562 distinct patients with 29 cancer types. Cancer types with no age information
468 or insufficient variability in ancestry annotation were excluded from analysis. TCGA
469 genetic ancestry describes a five-category variable (European American, East Asian
470 American, African American, Admixed American and Other Ancestry). PCAWG ancestry
471 describes a five-category variable (European, East Asian, African, South Asian and
472 Admixed American; **Supplementary Table 1**).

473 **General Statistical Framework**

474 For each genomic feature of interest, we used univariate two-sided non-parametric tests
475 followed by false discovery rate (FDR) adjustment to identify candidate ancestry-
476 associations ($q < 0.1$). These were followed with multivariate modeling to account for
477 potential confounders using tumour-type-specific models. We use EUR ancestry as the
478 reference group for all analyses to maximize statistical power.

479 **Supplementary Table 1** gives the specific variables included for each cancer type. These
480 were selected based on data availability (<15% missing), variability (at least two levels)
481 and collinearity (as assessed by variance inflation factor). Discrete data was modeled
482 using logistic regression (LGR). Continuous data was first transformed using the Box-Cox
483 family and modeled using linear regression (LNR). The Box-Cox family of transformations
484 is a formalized method to select a power transformation to better approximate a normal-
485 like distribution and stabilize variance. We used the Yeo-Johnson extension to the Box-
486 Cox transformation that allows for zeros and negative values⁶⁵. FDR adjustment was
487 performed for p-values for ancestry variable significance estimates, and a threshold of
488 10% used to select candidates. A summary of all results is presented in **Supplementary**
489 **Table 1**. We present 95% confidence intervals for all tests.

490 **Mutation Density**

491 Performed for both TCGA and PCAWG data. Overall SNP mutational density per
492 calculated per patient was calculated as the count of SNVs scaled to SNVs/Mbp. Coding
493 mutation prevalence only considers the coding regions of the genome, while noncoding
494 prevalence considers only noncoding regions. TCGA mutation density is coding mutation
495 prevalence. Mutation density was compared between ancestries using two-sided Mann-
496 Whitney U-tests using European ancestry as the reference group (e.g. EAN vs. EUR,
497 AFR vs. EUR, etc.). Comparisons with univariate q-values meeting an FDR threshold of
498 10% were analyzed using linear regression to adjust for tumour subtype-specific
499 variables. Mutation density analysis was performed separately for each mutation context,
500 with pan-cancer and tumour subtype p-values adjusted together. Full mutation density
501 results are in **Supplementary Table 2**.

502 **Genome instability**

503 Performed for both TCGA and PCAWG data. Genome instability was calculated as the
504 percentage of the genome affected by copy number alterations. The number of base pairs
505 for each CNA segment was summed to obtain the total number of base pairs gained and
506 lost in at least one allele. This total was scaled by the number of bases in the human
507 genome reference to obtain the proportion of the genome with a CNA (PGA). Genome
508 instability was compared between ancestries using two-sided Mann-Whitney U-tests for
509 both pan-cancer and tumour-type specific analysis. Comparisons with univariate q-values
510 meeting an FDR threshold of 10% were then subject to linear regression to adjust for
511 tumour subtype-specific variables. Genome instability analysis was performed separately

512 for each mutation context, with pan-cancer and tumour subtype p-values adjusted
513 together. Full mutation density results are in **Supplementary Table 2**.

514 **Clonal structure and mutation timing analysis**

515 Performed for PCAWG data only. Subclonal structure data was discretized into
516 monoclonal (one cluster) vs. polyclonal (more than one cluster). The proportion of
517 polyclonal tumours was calculated for each ancestry. These proportions were compared
518 with two-sided proportion tests and univariate FDR-adjusted p-values used to identify
519 putatively sex-associated clonal structure. Candidates from this analysis were then
520 subject to logistic regression to control for confounders, with a multivariate q-value
521 threshold of 0.1 used to identify statistically significant ancestry-associations with clonal
522 structure.

523 Mutation timing data classified SNVs, indels and SVs into clonal (truncal) or subclonal
524 groups. The proportion of truncal variants was calculated for each mutation type
525 ($\frac{\text{Number truncal SNVs}}{\text{total SNVs}}$, etc.) to obtain proportions of truncal SNVs, indels and SVs for each
526 tumour. These proportions were compared between ancestries using two-sided Mann-
527 Whitney U-tests. Univariate p-values were FDR adjusted to identify putatively ancestry-
528 associated mutation timing. Linear regression was used to adjust for confounding factors
529 and a multivariate q-value threshold of 0.1 was used to determine statistically significant
530 ancestry-associated mutation timing. The mutation timing analysis was performed
531 separately for SNVs, indels and SVs. All results for clonal structure and mutation timing
532 analyses are in **Supplementary Table 2**.

533 **Mutational Signatures analysis**

534 Performed for both TCGA and PCAWG data. For each signature, we compared the
535 proportion of tumours with any mutations attributed to the signatures (“signature-positive”)
536 using two-sided proportion tests to identify univariately significant ancestry-associations.
537 Signatures with putative ancestry-associations were further analysed using multivariable
538 logistic regression. We also compared relative signature activity by performing Mann-
539 Whitney U-tests to compare the proportions of mutations attributed to each signature.
540 Following these two-sided tests, candidate sex-associated signatures were subject to
541 multivariable linear regression after Box-cox adjustment, as outlined above. Signatures
542 not detected in a tumour subtype were omitted from analysis for that tumour subtype. All
543 results for clonal structure and mutation timing analyses are in **Supplementary Table 2**.

544 **Genome-spanning CNA analysis**

545 Performed for both TCGA and PCAWG data. Adjacent genes whose copy number profiles
546 across patients were highly correlated (Pearson’s $r > 95\%$) were binned. The copy
547 number call for each patient was taken to be the majority call across all genes in each
548 bin. Copy number calls were collapsed to ternary (loss, neutral, gain) representation by
549 combining loss groups (mono-allelic and bi-allelic) and gain groups (low and high). Two-

550 sided proportion tests were used to identify univariate ancestry-associated CNAs. After
551 identifying candidate pan-cancer univariately significant genes, multivariate logistic
552 regression was used to adjust ternary CNA data for tumour-type-specific variables. The
553 genome-spanning analysis was performed separately for losses and gains for each
554 tumour subtype. All CNA results are in **Supplementary Tables 3-4**.

555 **Genome-spanning SNV analysis**

556 Performed for TCGA data. We focused on genes mutated in at least 1% of patients.
557 Mutation data was binarized to indicate presence or absence of SNV in each gene per
558 patient. Proportions of mutated genes were compared between ancestry groups using
559 two-sided proportions tests for univariate analysis. False discovery rate correction was
560 used to adjust p-values with $q < 0.1$ as a threshold for multivariate logistic regression.

561 **Driver Event Analysis**

562 Performed for PCAWG data. We focused on driver events described by the PCAWG
563 consortium⁵⁹. Driver mutation data was binarized to indicate presence or absence of the
564 driver event in each patient. Proportions of mutated genes were compared between
565 ancestries using two-sided proportions tests. A q-value threshold of 0.1 was used to
566 select genes for further multivariate analysis using binary logistic regression. FDR
567 correction was again applied and genes with significant pan-cancer ancestry terms were
568 extracted from the models ($q\text{-value} < 0.1$). Driver event analysis was performed
569 separately for pan-cancer analysis and for each tumour subtype. All SNV and driver event
570 analysis results are in **Supplementary Table 6**.

571 **mRNA abundance analysis**

572 Performed for TCGA data. Genes in CNA bins associated with ancestry after multivariate
573 adjustment were evaluated for associations with mRNA abundance. Tumour purity was
574 included in all mRNA models. Tumours with available mRNA abundance data were
575 matched to those used in CNA analysis. For each gene affected by an ancestry-
576 associated loss, its mRNA abundance was modeled against the ancestry of interest, copy
577 number loss status, an ancestry-copy number loss interaction term, and tumour purity.
578 The interaction term captures ancestry-associated mRNA changes. Statistical
579 significance was assigned at $q < 0.1$. For genes affected by ancestry-associated gains,
580 the same procedure was applied using gains. Complete mRNA modeling for CNAs is
581 given in **Supplementary Table 5** and for SNVs in **Supplementary Tables 6**.

582 **Statistical Analysis & Data Visualization Software**

583 All statistical analyses and data visualization were performed in the R statistical
584 environment (v3.2.1) using the BPG⁶⁶ (v5.9.8) package and with Inkscape (v0.92.3).
585

586 References

- 587 1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. *CA. Cancer J. Clin.* **70**,
588 7–30 (2020).
- 589 2. DeSantis, C. E., Miller, K. D., Goding Sauer, A., Jemal, A. & Siegel, R. L. Cancer
590 statistics for African Americans, 2019. *CA. Cancer J. Clin.* **69**, 211–233 (2019).
- 591 3. London: National Cancer Intelligence Network. Cancer incidence and survival by
592 major ethnic group, England, 2002–2006. (2009).
- 593 4. Torre, L. A. *et al.* Cancer statistics for Asian Americans, Native Hawaiians, and Pacific
594 Islanders, 2016: Converging incidence in males and females: Cancer Statistics for
595 Asian Americans, Native Hawaiians, and Pacific Islanders, 2016. *CA. Cancer J. Clin.*
596 **66**, 182–202 (2016).
- 597 5. Ellis, L. *et al.* Racial and Ethnic Disparities in Cancer Survival: The Contribution of
598 Tumor, Sociodemographic, Institutional, and Neighborhood Characteristics. *J. Clin.*
599 *Oncol.* **36**, 25–33 (2018).
- 600 6. Maringe, C., Li, R., Mangtani, P., Coleman, M. P. & Rachet, B. Cancer survival
601 differences between South Asians and non-South Asians of England in 1986–2004,
602 accounting for age at diagnosis and deprivation. *Br. J. Cancer* **113**, 173–181 (2015).
- 603 7. O'Keefe, E. B., Meltzer, J. P. & Bethea, T. N. Health Disparities and Cancer: Racial
604 Disparities in Cancer Mortality in the United States, 2000–2010. *Front. Public Health*
605 **3**, (2015).
- 606 8. Trinh, Q.-D. *et al.* Cancer-Specific Mortality of Asian Americans Diagnosed With
607 Cancer: A Nationwide Population-Based Assessment. *JNCI J. Natl. Cancer Inst.* **107**,
608 djv054–djv054 (2015).

609 9. Tehranifar, P. *et al.* Medical Advances and Racial/Ethnic Disparities in Cancer
610 Survival. *Cancer Epidemiol. Biomarkers Prev.* 1055-9965.EPI-09-0305 (2009)
611 doi:10.1158/1055-9965.EPI-09-0305.

612 10. White, M. C. *et al.* Disparities in Cancer Mortality and Incidence Among American
613 Indians and Alaska Natives in the United States. *Am. J. Public Health* **104**, S377–
614 S387 (2014).

615 11. Withrow, D. R., Pole, J. D., Nishri, E. D., Tjepkema, M. & Marrett, L. D. Cancer Survival
616 Disparities Between First Nation and Non-Aboriginal Adults in Canada: Follow-up of
617 the 1991 Census Mortality Cohort. *Cancer Epidemiol. Biomarkers Prev.* **26**, 145–151
618 (2017).

619 12. Taksler, G. B., Keating, N. L. & Cutler, D. M. Explaining racial differences in prostate
620 cancer mortality: Prostate Cancer Mortality Differences. *Cancer* **118**, 4280–4289
621 (2012).

622 13. Doepker, M. P., Holt, S. D., Durkin, M. W., Chu, C. H. & Nottingham, J. M. Triple-
623 Negative Breast Cancer: A Comparison of Race and Survival. *Am. Surg.* **84**, 881–888
624 (2018).

625 14. DeSantis, C. E. *et al.* Breast cancer statistics, 2015: Convergence of incidence rates
626 between black and white women: Breast Cancer Statistics, 2015. *CA. Cancer J. Clin.*
627 **66**, 31–42 (2016).

628 15. Newman, L. A. & Kaljee, L. M. Health Disparities and Triple-Negative Breast Cancer
629 in African American Women: A Review. *JAMA Surg.* **152**, 485 (2017).

630 16. Thompson, C. A. *et al.* The Burden of Cancer in Asian Americans: A Report of
631 National Mortality Trends by Asian Ethnicity. *Cancer Epidemiol. Biomark. Prev. Publ.*
632 *Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol.* **25**, 1371–1382 (2016).

633 17. Ashktorab, H., Kupfer, S. S., Brim, H. & Carethers, J. M. Racial Disparity in
634 Gastrointestinal Cancer Risk. *Gastroenterology* **153**, 910–923 (2017).

635 18. Pham, C., Fong, T.-L., Zhang, J. & Liu, L. Striking Racial/Ethnic Disparities in Liver
636 Cancer Incidence Rates and Temporal Trends in California, 1988–2012. *JNCI J. Natl.*
637 *Cancer Inst.* (2018) doi:10.1093/jnci/djy051.

638 19. Artinyan, A. *et al.* Race, ethnicity, and socioeconomic status influence the survival of
639 patients with hepatocellular carcinoma in the United States. *Cancer* **116**, 1367–1377
640 (2010).

641 20. Nathan, H., Frederick, W., Choti, M. A., Schulick, R. D. & Pawlik, T. M. Racial disparity
642 in surgical mortality after major hepatectomy. *J. Am. Coll. Surg.* **207**, 312–319 (2008).

643 21. Yamoah, K. *et al.* African American men with low-grade prostate cancer have
644 increased disease recurrence after prostatectomy compared with Caucasian men.
645 *Urol. Oncol. Semin. Orig. Investig.* **33**, 70.e15-70.e22 (2015).

646 22. Schroek, F. R. *et al.* Race and prostate weight as independent predictors for
647 biochemical recurrence after radical prostatectomy. *Prostate Cancer Prostatic Dis.*
648 **11**, 371–376 (2008).

649 23. Moses, K. A., Chen, L. Y., Sjoberg, D. D., Bernstein, M. & Touijer, K. A. Black and
650 White men younger than 50 years of age demonstrate similar outcomes after radical
651 prostatectomy. *BMC Urol.* **14**, 98 (2014).

652 24. Freedland, S. J. *et al.* Race and risk of metastases and survival after radical
653 prostatectomy: Results from the SEARCH database: Race and Long-Term Outcomes
654 After RP. *Cancer* **123**, 4199–4206 (2017).

655 25. Williams, D. R., Priest, N. & Anderson, N. B. Understanding associations among race,
656 socioeconomic status, and health: Patterns and prospects. *Health Psychol.* **35**, 407–
657 411 (2016).

658 26. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry
659 in unrelated individuals. *Genome Res.* **19**, 1655–1664 (2009).

660 27. TCGA Analysis Network *et al.* Ancestry-specific predisposing germline variants in
661 cancer. *Genome Med.* **12**, 51 (2020).

662 28. Zhang, J. *et al.* Comprehensive analysis of BRCA1 and BRCA2 germline mutations
663 in a large cohort of 5931 Chinese women with breast cancer. *Breast Cancer Res.*
664 *Treat.* **158**, 455–462 (2016).

665 29. Francies, F. Z. *et al.* BRCA1, BRCA2 and PALB2 mutations and CHEK2 c.1100delC
666 in different South African ethnic groups diagnosed with premenopausal and/or triple
667 negative breast cancer. *BMC Cancer* **15**, 912 (2015).

668 30. Wang, M. *et al.* Large-scale association analysis in Asians identifies new susceptibility
669 loci for prostate cancer. *Nat. Commun.* **6**, 8469 (2015).

670 31. Chang, B.-L. *et al.* Validation of Genome-Wide Prostate Cancer Associations in Men
671 of African Descent. *Cancer Epidemiol. Biomarkers Prev.* **20**, 23–32 (2011).

672 32. Jin, G. *et al.* Low-Frequency Coding Variants at 6p21.33 and 20q11.21 Are
673 Associated with Lung Cancer Risk in Chinese Populations. *Am. J. Hum. Genet.* **96**,
674 832–840 (2015).

675 33. Yoon, K.-A. *et al.* A genome-wide association study reveals susceptibility variants for
676 non-small cell lung cancer in the Korean population. *Hum. Mol. Genet.* **19**, 4948–4954
677 (2010).

678 34. Zhang, W., Edwards, A., Flemington, E. K. & Zhang, K. Racial disparities in patient
679 survival and tumor mutation burden, and the association between tumor mutation
680 burden and cancer incidence rate. *Sci. Rep.* **7**, 13639 (2017).

681 35. Milholland, B., Auton, A., Suh, Y. & Vijg, J. Age-related somatic mutations in the
682 cancer genome. *Oncotarget* **6**, 24627–24635 (2015).

683 36. Keenan, T. *et al.* Comparison of the Genomic Landscape Between Primary Breast
684 Cancer in African American Versus White Women and the Association of Racial
685 Differences With Tumor Recurrence. *J. Clin. Oncol.* **33**, 3621–3627 (2015).

686 37. Powell, I. J., Bock, C. H., Ruterbusch, J. J. & Sakr, W. Evidence Supports a Faster
687 Growth Rate and/or Earlier Transformation to Clinically Significant Prostate Cancer in
688 Black Than in White American Men, and Influences Racial Progression and Mortality
689 Disparity. *J. Urol.* **183**, 1792–1797 (2010).

690 38. Steuer, C. E. *et al.* Role of race in oncogenic driver prevalence and outcomes in lung
691 adenocarcinoma: Results from the Lung Cancer Mutation Consortium: Race and
692 Genomics in Lung Cancer. *Cancer* **122**, 766–772 (2016).

693 39. Wahl, D. R. *et al.* Pan-Cancer Analysis of Genomic Sequencing Among the Elderly.
694 *Int. J. Radiat. Oncol.* **98**, 726–732 (2017).

695 40. Yuan, J. *et al.* Integrated Analysis of Genetic Ancestry and Genomic Alterations
696 across Cancers. *Cancer Cell* **34**, 549-560.e9 (2018).

697 41. Carrot-Zhang, J. *et al.* Comprehensive Analysis of Genetic Ancestry and Its Molecular
698 Correlates in Cancer. *Cancer Cell* **37**, 639–654.e6 (2020).

699 42. The Cancer Genome Atlas Research Network *et al.* The Cancer Genome Atlas Pan-
700 Cancer analysis project. *Nat. Genet.* **45**, 1113–1120 (2013).

701 43. The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer
702 analysis of whole genomes. *Nature* **578**, 82–93 (2020).

703 44. Li, C. H., Haider, S., Shiah, Y.-J., Thai, K. & Boutros, P. C. Sex Differences in Cancer
704 Driver Genes and Biomarkers. *Cancer Res.* **78**, 5527 (2018).

705 45. Lalonde, E. *et al.* Tumour genomic and microenvironmental heterogeneity for
706 integrated prediction of 5-year biochemical recurrence of prostate cancer: a
707 retrospective cohort study. *Lancet Oncol.* **15**, 1521–1532 (2014).

708 46. PCAWG Evolution & Heterogeneity Working Group *et al.* The evolutionary history of
709 2,658 cancers. *Nature* **578**, 122–128 (2020).

710 47. Espiritu, S. M. G. *et al.* The Evolutionary Landscape of Localized Prostate Cancers
711 Drives Clinical Aggression. *Cell* **173**, 1003–1013.e15 (2018).

712 48. Landau, D. A. *et al.* Evolution and Impact of Subclonal Mutations in Chronic
713 Lymphocytic Leukemia. *Cell* **152**, 714–726 (2013).

714 49. Shah, S. P. *et al.* The clonal and mutational evolution spectrum of primary triple-
715 negative breast cancers. *Nature* **486**, 395–399 (2012).

716 50. PCAWG Mutational Signatures Working Group *et al.* The repertoire of mutational
717 signatures in human cancer. *Nature* **578**, 94–101 (2020).

718 51. Alexandrov, L. B. *et al.* Signatures of mutational processes in human cancer. *Nature*
719 **500**, 415–421 (2013).

720 52. Coughlin, S. S., Matthews-Juarez, P., Juarez, P. D., Melton, C. E. & King, M.

721 Opportunities to address lung cancer disparities among African Americans. *Cancer*

722 *Med.* **3**, 1467–1476 (2014).

723 53. Piliguian, M. *et al.* Novel CYP2A6 variants identified in African Americans are

724 associated with slow nicotine metabolism in vitro and in vivo: *Pharmacogenet.*

725 *Genomics* **24**, 118–128 (2014).

726 54. Ryan, B. M. Lung cancer health disparities. *Carcinogenesis* **39**, 741–751 (2018).

727 55. Chopra, N. *et al.* Homologous recombination DNA repair deficiency and PARP

728 inhibition activity in primary triple negative breast cancer. *Nat. Commun.* **11**, 2662

729 (2020).

730 56. Ashley, C. W. *et al.* Analysis of mutational signatures in primary and metastatic

731 endometrial cancer reveals distinct patterns of DNA repair defects and shifts during

732 tumor progression. *Gynecol. Oncol.* **152**, 11–19 (2019).

733 57. Zack, T. I. *et al.* Pan-cancer patterns of somatic copy number alteration. *Nat. Genet.*

734 **45**, 1134–1140 (2013).

735 58. Shao, X. *et al.* Copy number variation is highly correlated with differential gene

736 expression: a pan-cancer study. *BMC Med. Genet.* **20**, 175 (2019).

737 59. PCAWG Drivers and Functional Interpretation Working Group *et al.* Analyses of non-

738 coding somatic drivers in 2,658 cancer whole genomes. *Nature* **578**, 102–111 (2020).

739 60. Prakash, R., Zhang, Y., Feng, W. & Jasin, M. Homologous Recombination and

740 Human Health: The Roles of BRCA1, BRCA2, and Associated Proteins. *Cold Spring*

741 *Harb. Perspect. Biol.* **7**, a016600 (2015).

742 61. Schiewer, M. J. & Knudsen, K. E. Linking DNA Damage and Hormone Signaling
743 Pathways in Cancer. *Trends Endocrinol. Metab.* **27**, 216–225 (2016).

744 62. Campbell, J. L., Ramsay, J. & Green, J. Age, gender, socioeconomic, and ethnic
745 differences in patients' assessments of primary health care. *Qual. Health Care* **10**, 90
746 (2001).

747 63. Boulware, L. E., Cooper, L. A., Ratner, L. E., LaVeist, T. A. & Powe, N. R. Race and
748 trust in the health care system. *Public Health Rep.* **118**, 358–365 (2003).

749 64. Spratt, D. E. *et al.* Racial/Ethnic Disparities in Genomic Sequencing. *JAMA Oncol.* **2**,
750 1070–1074 (2016).

751 65. Yeo, I.-K. & Johnson, R. A. A New Family of Power Transformations to Improve
752 Normality or Symmetry. *Biometrika* **87**, 954–959 (2000).

753 66. P'ng, C. *et al.* BPG: Seamless, automated and interactive visualization of scientific
754 data. *BMC Bioinformatics* **20**, (2019).

755

756 Acknowledgments

757 The authors thank all the members of the Boutros lab for insightful discussions. This work
758 was supported by the Discovery Frontiers: Advancing Big Data Science in Genomics
759 Research program, which is jointly funded by the Natural Sciences and Engineering
760 Research Council (NSERC) of Canada, the Canadian Institutes of Health Research
761 (CIHR), Genome Canada and the Canada Foundation for Innovation (CFI). P.C.B. was
762 supported by a Terry Fox Research Institute New Investigator Award and a CIHR New
763 Investigator Award. This work was supported by an NSERC Discovery grant and by
764 Canadian Institutes of Health Research, grant #SVB-145586, to PCB. The results
765 described here are in part based upon data generated by the TCGA Research Network:
766 <http://cancergenome.nih.gov/>. This work was supported by the NIH/NCI under award
767 number P30CA016042 and by an operating grant from the National Cancer Institute Early
768 Detection Research Network (1U01CA214194-01).

769 Author Contributions

770 CHL and PCB initiated the project. CHL, and SH analyzed data. PCB supervised
771 research. CHL and PCB wrote the first draft of the manuscript, which all authors edited
772 and approved.

773 Figure Legends

774 **Figure 1 | Ancestry associations in mutation density and evolutionary architecture.**

775 **(A)** Summary of associations between ancestry and percent genome altered (PGA) in
776 TCGA and PCAWG tumours. The dot size and colour show the difference in location
777 effect size estimate, and background shading indicate multiple-testing adjusted
778 multivariate p-value. Only tumour-types with significant associations are shown. **(B)** Pan-
779 TCGA and pan-PCAWG associations between ancestry and PGA, with the top row of
780 barplots showing adjusted multivariate p-values, the middle row showing differences in
781 location (mean and 95% confidence interval), and the bottom row of boxplots showing
782 PGA per tumour. **(C)** Associations of ancestry with SNV density (SNVs/Mbp sequenced)
783 in TCGA and PCAWG. Dot size and colour, and background shading have the same
784 meaning and scale as **Figure 1A**. **(D)** pan-TCGA and pan-PCAWG associations between
785 ancestry and SNV density, with adjusted multivariate p-values, differences in location,
786 and PGA per tumour shown as in **Figure 1B**. **(E)** Differences in proportion of polyclonal
787 tumours between ancestries with the top row showing adjusted multivariate p-value,
788 middle row giving difference in proportion (mean and 95% confidence interval) and bottom
789 row showing proportion of polyclonal tumours by ancestry. **(F)** Proportion of tumours with
790 SNVs occurring in the truncal clone compared by ancestry in PCAWG kidney renal clear
791 cell cancer, and truncal SVs in pan-PCAWG samples, with the same structure of rows as
792 in **Figure 1C**. Tukey boxplots are shown with the box indicating quartiles and the whiskers
793 drawn at the lowest and highest points within 1.5 interquartile range of the lower and
794 upper quartiles, respectively.

795 **Figure 2 | Ancestry-associations in mutational signatures.**

796 **(A)** Summary of associations between AFR ancestry and the proportion of signature-
797 positive tumours. Here dot size and colour indicate the differences in proportion between
798 AFR and EUR tumours, and the background shading gives multiple-testing adjusted
799 multivariate p-values. PCAWG data is on left and TCGA on right. **(B)** Similarly, the
800 summary of associations between AFR ancestry and relative signature activity, with dot
801 size showing difference in location estimates and background indicating multiple-testing
802 adjusted linear regression p-values. **(C)** Summary of associations between EAN ancestry
803 and signature positive tumours, as for **Figure 2A**. **(D)** Summary of associations between
804 EAN ancestry and relative signature activity, as in **(B)**. **(E)** Ancestry-associated
805 differences in hepatocellular cancer, compared between PCAWG and TCGA data.
806 Barplots show frequency of signature detection in each ancestry group. Tukey boxplots
807 (as described in **Figure 1**) show relative signature activity as proportion of mutations
808 attributed to each signature.

809 **Figure 3 | CNA-Ancestry associations are associated with altered RNA abundance.**

810 **(A)** Summary of all detected ancestry-associated CNAs with numbers of gains (above x-
811 axis) and losses (below x-axis) identified in each tumour context. Only tumour-types with

812 at least one significant event are shown. **(B)** Pan-cancer ancestry-associations in CNAs
813 for TCGA data. Each plot shows the logistic regression coefficient estimate (for age
814 analyses) or difference in proportion (for ancestry analyses) for the indicated variable and
815 CNA type. Dot colour indicates statistical significance, where red (copy number gain) and
816 blue (copy number loss) show adjusted $p < 0.05$ and yellow (gain) and green (loss) show
817 whether the multiple-testing adjusted $p < 0.1$ threshold is met. **(C)** Summary of ancestry-
818 associated pan-cancer CNA drivers. Both TCGA and PCAWG findings are shown, and
819 dot size indicates the effect-size as a proportion difference. Background shading shows
820 multiple-testing adjusted multivariate p -values. The covariate to the right shows copy
821 number gain drivers in red and loss drivers in blue. **(D)** EAN- and AFR-associations in
822 TCGA kidney clear cell cancer CNAs are associated with **(E)** changes in mRNA
823 abundance. The adjusted p -value is plotted against the coefficient of the CNA-age
824 interaction for mRNA abundance, with each point representing a gene. Black dots show
825 significant associations between mRNA and CNA; red dots show significant CNA-
826 ancestry interactions. **(F)** RASSF1 and **(G)** MAP4 mRNA abundance changes between
827 copy number loss (red) or no loss (black) in tumours of EUR and AFR ancestry. Adjusted
828 CNA-AFR interaction p -value is shown. Tukey boxplots are depicted, as described in
829 **Figure 1**.

830 **Figure 4 | Ancestry-associations in gene-level SNV mutation frequency**

831 **(A)** Summary of all detected ancestry-associations SNVs found in each cancer type. Only
832 tumour-types with at least one significant event shown. **(B)** pan-PCAWG and PCAWG
833 tumour-type-specific ancestry-associations in driver and mitochondrial SNV frequency
834 with the top showing adjusted multivariate p -values, middle showing difference in
835 proportion, and bottom showing proportion of tumours with mutated gene per ancestry
836 group. Covariate bars indicate tumour and element type context of each mutation, where
837 coding sequence is abbreviated to CDS and mitochondrial DNA is mtDNA. **(C)** The 20
838 SNVs most associated with AFR and EAN ancestry in the TCGA colorectal and renal
839 cancer (COADREAD) dataset. **(D)** Differential mRNA abundance associated with EAN-
840 associated SNVs in TCGA COADREAD. Each point represents a gene with black dots
841 showing significant associations between mRNA and SNV. **(F)** AXIN1 and **(G)** STK36
842 mRNA abundance changes between copy number loss (red) or no loss (black) compared
843 by ancestry. Adjusted SNV term p -value is shown. Tukey boxplots are depicted, as
844 described in **Figure 1**.

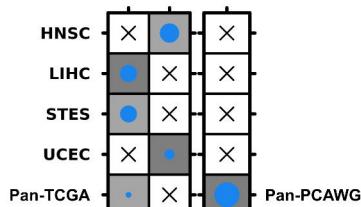
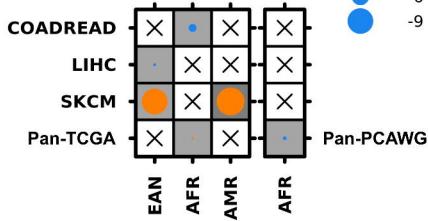
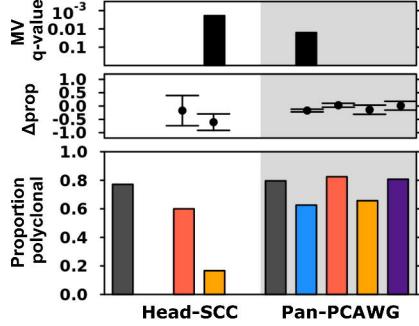
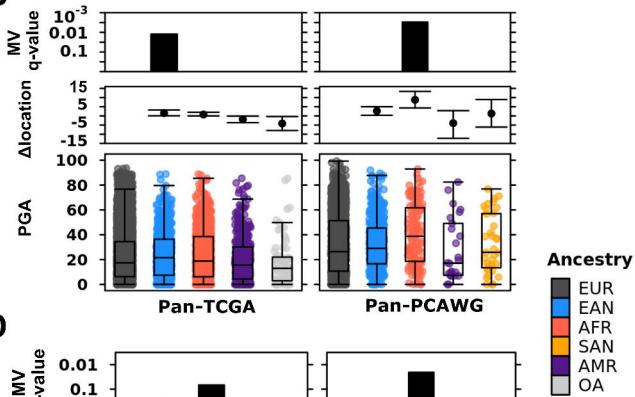
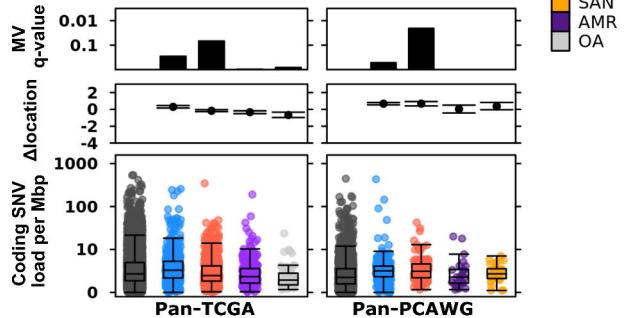
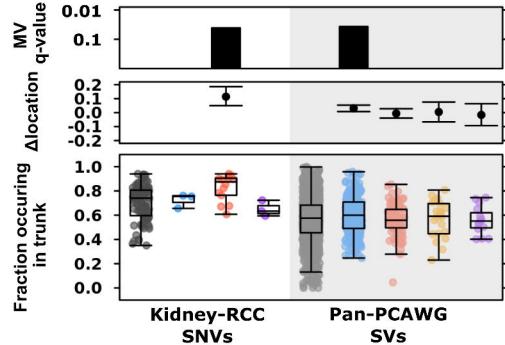
Figure 1**A****C****E****B****D****F**

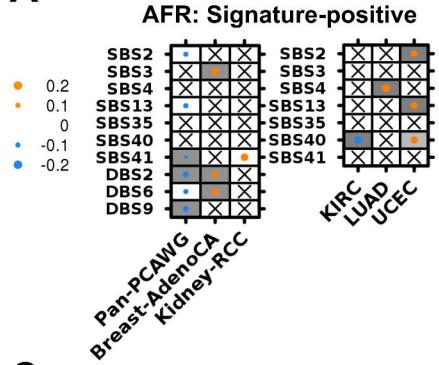
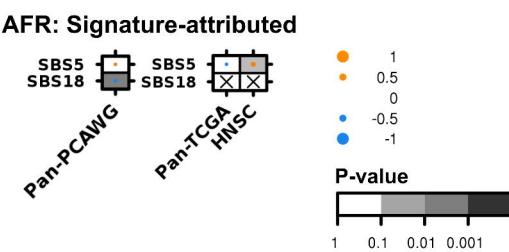
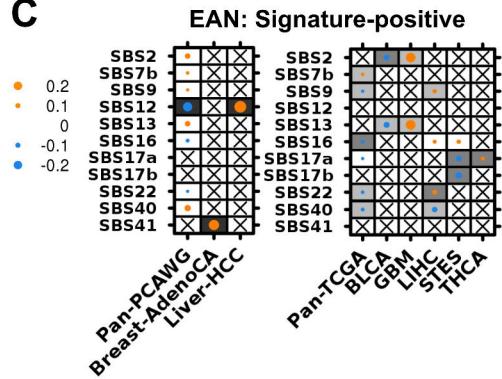
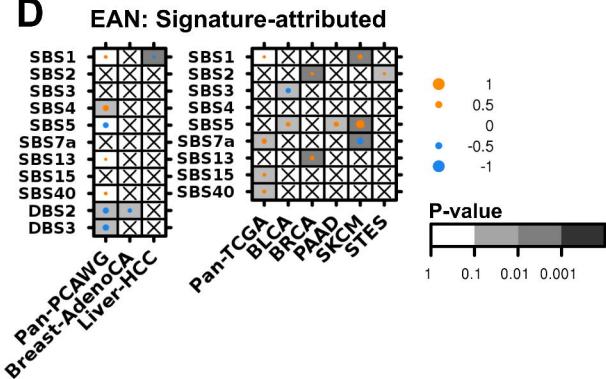
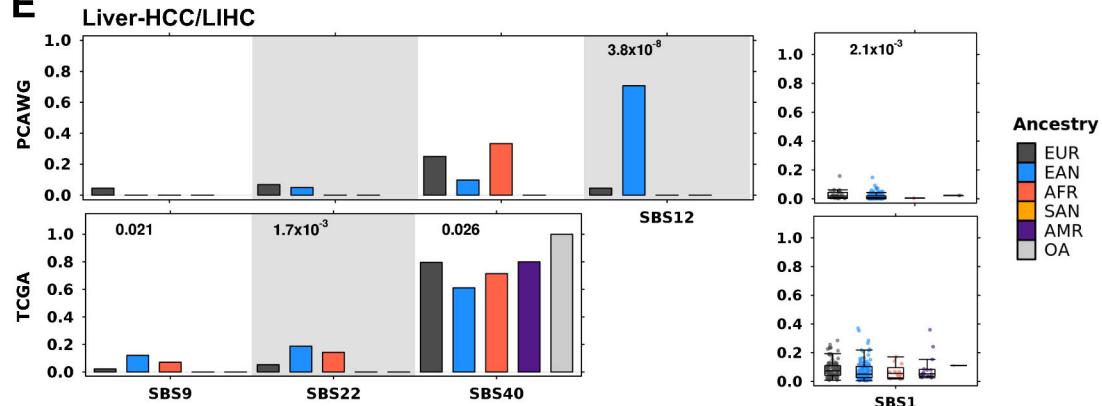
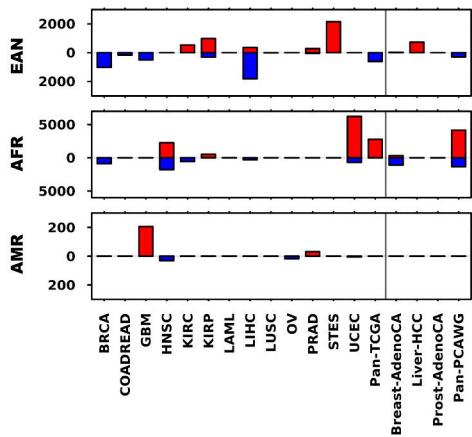
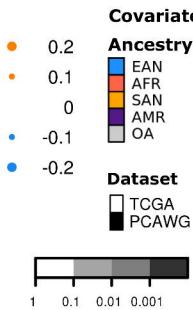
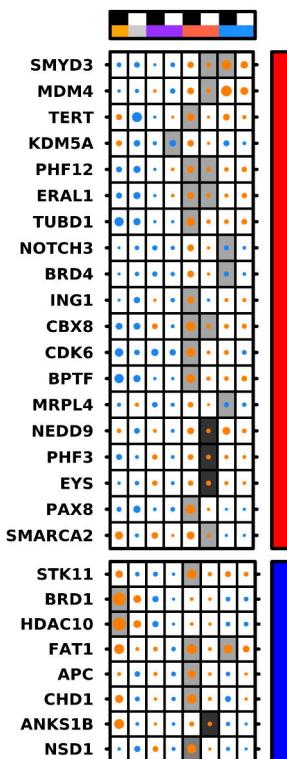
Figure 2**A****B****C****D****E**

Figure 3

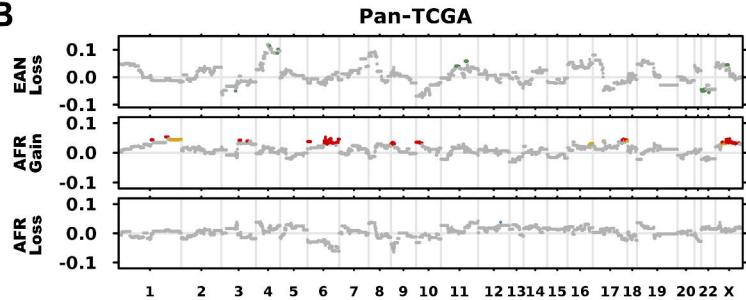
A



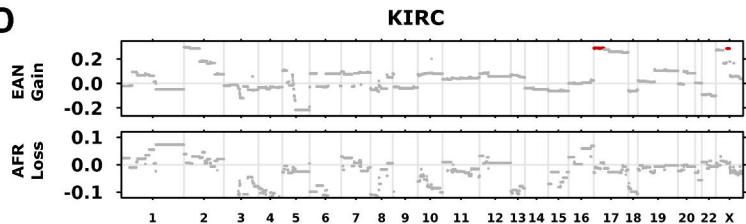
C



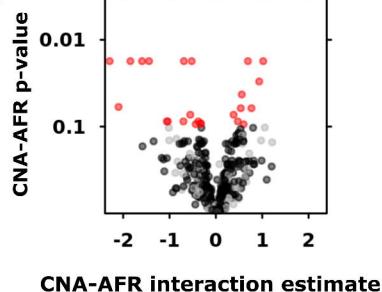
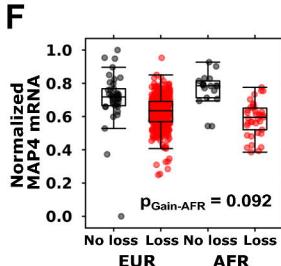
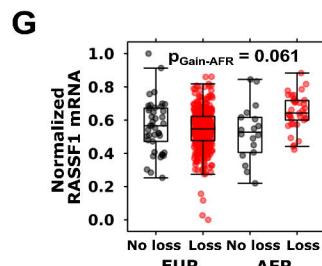
B



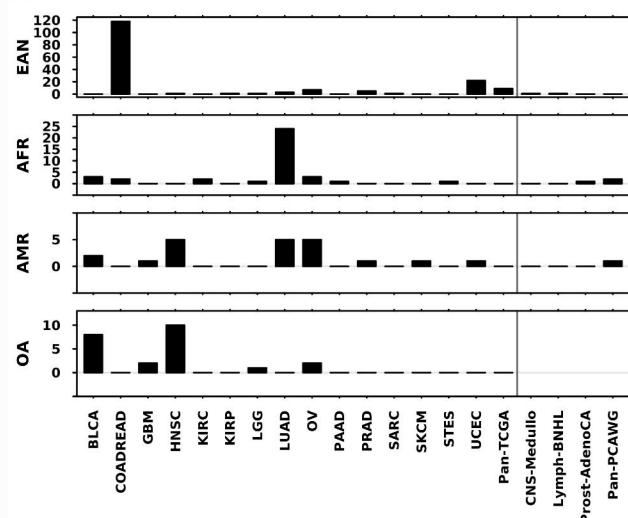
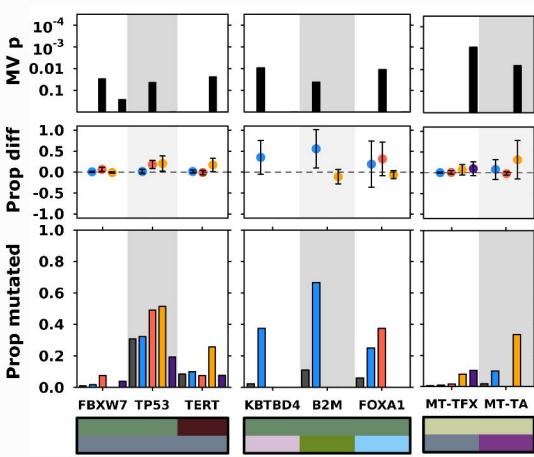
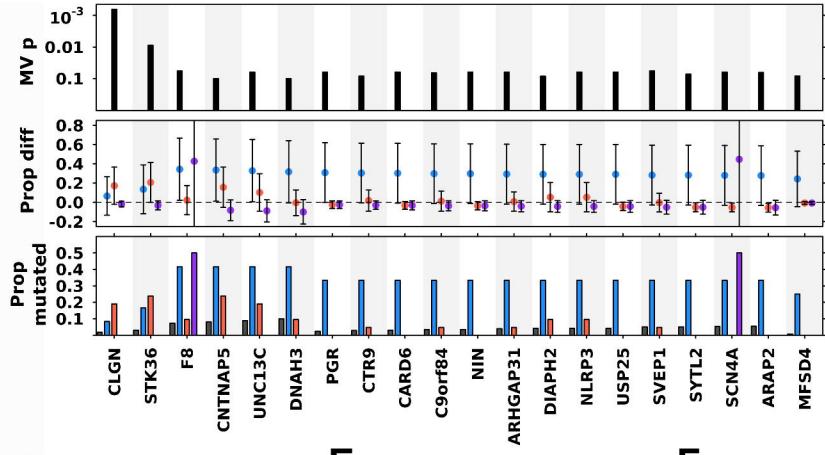
D



E



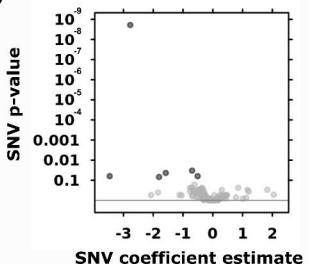
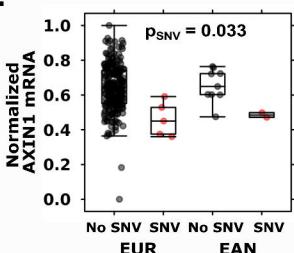
CNA-AFR interaction estimate

Figure 4**A****B****C**

Tumour Subtype
 PCAWG-Pancancer
 CNS-Medullo
 Lymph-BNHL
 Prost-AdenoCA
 Panc-AdenoCA

Element Type
 CDS
 Promoter
 mtDNA

Ancestry
 EUR
 EAN
 AFR
 AMR
 OA

D**E****F**