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Abstract

Epidemiological studies have identified innumerable ways in which cancer presentation
and behaviour is associated with patient ancestry. The molecular bases for these
relationships remain largely unknown. We analyzed ancestry associations in the somatic
mutational landscape of 12,774 tumours across 33 tumour-types, including 2,562 with
whole-genome sequencing. Ancestry influences both the number of mutations in a tumour
and the evolutionary timing of when they occur. Specific mutational signatures are
associated with ancestry, reflecting potential differences in exogenous and endogenous
oncogenic processes. A subset of known cancer driver genes was mutated in ancestry-
associated patterns, with transcriptomic consequences. Cancer genome sequencing data
is not well-balanced in epidemiologic factors; these data suggest ancestry strongly
shapes the somatic mutational landscape of cancer, with potential functional implications.
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Introduction

Racial differences in cancer are pervasive across myriad measures of cancer burden.
Epidemiological studies have reported race-associated differences in incidencel,
survival®>®, and mortality’>78 rates, amongst others. These persist despite
advancements in cancer detection and treatment®. Across all cancer types, incidence
rates in Black and White populations are comparable, but Black mortality rates are ~13%
higher. In contrast, all cancer incidence and mortality rates are lower in US Asian, Native
Hawaiian and Pacific Islanders in the US4, and in UK East Asians and South Asians?
when compared with Whites. North American indigenous populations such as American
Indians and Canadian First Nations have a risk of cancer death significantly higher than
that for Whites, despite regional variation®10:11,

There are more striking differences in the rates of diagnosis and mortality for specific
tumour-types. Black men are twice as likely to be diagnosed with prostate cancer than
White men, and twice as likely to die of their disease®?12. While breast cancer incidence
rates in Black and White women have converged and are now comparable®?, Black
women still experience higher breast cancer mortality due in part to higher rates of
aggressive triple negative disease and late stage at diagnosis®1°. In East Asians, the
incidence rate of liver cancers is over twice that in Whites, and nasopharyngeal cancer
incidence is six times greater: East Asians also have higher mortality for liver,
nasopharyngeal, and stomach cancers*16-18,

The causes of racial difference in cancer are multifactorial. Some differences in cancer
survival are associated with differences in treatment effectiveness. For example, US
studies have found that liver cancer survival in Black populations is lower after surgical
interventions including hepatectomies and liver transplantation'®2°, Black American men
have been found to have poorer recurrence-free survival after radical prostatectomy?122,
but these differences in treatment response are at least in part, and perhaps mostly,
attributable to differences in clinical and pathological characteristics at diagnosis and to
socioeconomic factors?32?4, Indeed, socioeconomic factors play an important role in
cancer rates and outcomes: socioeconomic status directly affects critical variables such
as living conditions and access to healthcare, and is strongly associated with health
outcome throughout the world?®. In other cases, comparing individuals across continents
also confound life-style differences such as diet and environmental exposures, such as
the prevalence of specific viruses. To better understand the causes of these differences
in cancer incidence and mortality, many interacting and interrelated factors and concepts
must be considered.

The concept of ancestry is itself closely related the concepts of race and ethnicity. Where
race refers to groups distinguished by physical differences, ethnicity reflects differences
by biological factors in addition to geographical, historical, belief, cultural and other
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73  factors. Ancestry as used here refers to genetic ancestry, or the line of descent of an
74  individual’'s genetic material. Genetic ancestry is directly imputed based on DNA
75  sequencing?®. Race, ethnicity, and ancestry are each associated with cancer burden. For
76 instance, germline risk variants detected at different frequencies in different populations
77 have been associated with differences in cancer risk?’. Other population-specific risk
78 variants have been described for breast?®2°, prostate3%3!, and lung®?32 cancer, and many
79 are still of unknown significance. Our work focuses on describing the ancestry-
80 associations of somatic genomic changes in cancer. However, it is important to note that
81 studies of genetic ancestry cannot generally fully disentangle differences associated with
82 genetics from differences associated with socioeconomic or other cultural and societal
83 differences amongst populations.

84 We sought to understand how a tumour’s molecular profiles reflects the oncogenic
85 processes and mutagenic exposures experienced by each unique patient. We used
86 genetically imputed ancestry along with available (but inherently limited) lifestyle and
87 clinical annotation data to model somatic features and identify features significantly
88 associated with ancestry. Previous work associating somatic genomic changes with race,
89 ethnicity or ancestry suggest differences in overall mutation burden343% in specific tumour-
90 types like breast®, prostate®’ and lung®® cancers, amongst others®®. Studies of TCGA
91 pan-cancer data have estimated genetic ancestry using SNP genotyping and compared
92  African American-derived with European American-derived somatic alterations*°, and
93 examined the mMRNA and methylation differences between ancestries*..

94 We add to this growing body of analyses examining ancestry-associated differences in

95 cancer genomics by performing a pan-cancer, genome-wide study of ancestry-associated

96 molecular differences, leveraging all available ancestry groups including those of

97 European, East Asian, African, Admixed American and South Asian ancestry. Our

98 comprehensive pan-cancer analysis leveraged 10,218 tumours of 23 tumour-types from

99 The Cancer Genome Atlas (TCGA)*? and 2,562 tumours of 30 tumour-types from the
100 International Cancer Genome Consortium/The Cancer Genome Atlas Pan-cancer
101  Analysis of Whole Genomes (PCAWG)* projects. We quantified ancestry associations in
102 driver mutations, subclonal architecture, mutation timing and mutational signatures in
103 almost all tumour-types, many linked to clinical phenotypes.

104
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105 Results

106  Ancestry associations in Mutation Density and Timing
107 We separately analyzed TCGA and PCAWG data. These studies differ in molecular

108 profiling technology, available annotation data, and populations sampled. We took the
109  union of all TCGA tumours for pan-TCGA analyses, and the union of all PCAWG tumours
110 for pan-PCAWG analyses. In addition to these pan-cancer analyses, we also examined
111 each tumour-type for tumour-type-specific associations (Table 1). We used TCGA
112  ancestry as previously imputed by Yuan et al*® and PCAWG ancestry data as previously
113 reported*®. We adapted a statistical approach previously applied to quantify sex-
114  associations in cancer genomes**. Briefly, we first used univariate methods to identify
115 putative associations within each non-European ancestry group: East Asian (EAN),
116  African (AFR), American Indian and Alaska Natives (Admixed American; AMR), South
117  Asian (SAN), and Other Ancestry (OA). European ancestry was used as the reference
118 group because of its larger sample-size in these cohorts, which maximizes statistical
119 power. An ancestry group was only studied in a tumour-type if its group sample size in
120 that tumour-type was at least five (Supplementary Table 1). Putatively associated
121 genomic features were then further modeled using multivariate regression to adjust for
122  confounding clinico-epidemiologic factors such as sex, age, stage and tumour-type, and
123 assessed for significance at a false discovery rate (FDR) threshold of 10% (Methods).
124  Pan-cancer and tumour-type-specific models and variable specifications are presented in
125 Supplementary Table 1.

126  We first asked whether genome-wide phenomena were associated with ancestry. We
127 started with measure of genome instability, and initially focused on the burden of copy
128 number alterations (CNASs), approximated by the proportion of the genome with a CNA
129 (PGA)*. Using Mann-Whitney U-tests followed by linear regression (LNR), we identified
130 significant associations between EAN ancestry and PGA in TCGA-hepatocellular cancer
131  (LIHC: Aloc = 5.8%, 95%CI = 2.6 - 8.9%, adjusted LNR p = 6.0x10®), TCGA-stomach
132 and esophageal cancer (STES: Aloc = 5.7%, 95%CIl = 1.6 - 9.9%, adjusted LNR p =
133 0.012), and pan-TCGA analyses (Aloc = 1.6%, 95%CI = 0.05 - 3.2%, adjusted LNR p =
134 0.012); PGA was associated with AFR ancestry in TCGA-head and neck cancer (HNSC:
135 Aloc = 6.6%, 95%CI = 1.8 - 11% adjusted LNR p = 0.030), TCGA-endometrial cancer
136 (UCEC: Aloc = 3.2%, 95%CI = 0.020 - 7.0% adjusted LNR p = 7.9x10-3) and pan-PCAWG
137 analyses (Aloc = 8.8%, 95%CIl = 4.3 - 13%, adjusted LNR p = 3.0x10%; Figure 1A,
138 Supplementary Figure 1). For all significant associations, PGA was higher in EAN- or
139 AFR-derived tumours compared with tumours arising in individuals of EUR ancestry
140 (Figure 1B, Supplementary Figure 1), indicating higher genome instability in the EAN-
141 and AFR-derived tumours of these tumour-types.

Page 4 of 28


https://doi.org/10.1101/2020.08.02.233528
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.02.233528; this version posted August 4, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

142  Single nucleotide variation (SNV) density is an analogous measure to PGA, quantifying
143  the burden of somatic SNVs in each Mbp of DNA sequenced. Again, we applied Mann-
144  Whitney U-tests and linear regression to identify tumour-types where SNV density was
145 associated with ancestry. We first assessed coding SNV density, as TCGA SNV data is
146  based on whole exome sequencing (Figure 1C, Supplementary Figure 1). In TCGA-
147  melanoma, both EAN (SKCM: Aloc = -8.3 SNVs/Mbp, 95%CI = -18 - -3.1 SNVs/Mbp,
148 adjusted LNR p=0.010) and AMR (Aloc =-9.0 SNVs/Mbp, 95%CI =-26 - -2.2 SNVs/Mbp,
149 adjusted LNR p = 1.8x10%) ancestries were associated with lower SNV density than the
150 EUR reference. EAN-derived LIHC tumours (Aloc = 3.7 SNVs/Mbp, 95%CI = 0.1 — 0.67
151  SNVs/Mbp, adjusted LNR p = 1.8x10-%) and AFR-derived TCGA-colorectal (COADREAD:
152  Aloc = 2.1 SNVs/Mbp, 95%CI = 0.53 - 4.1, adjusted LNR p = 0.068) tumours had higher
153 SNV density than the EUR references. pan-TCGA, SNV density was lower in AFR-
154  derived tumours (Aloc = -0.17 SNVs/Mbp, 95%CIl = -0.30 - -0.067, adjusted LNR p =
155 0.068; Figure 1D). In contrast, coding SNV density was higher in AFR-derived pan-
156 PCAWSG tumours (Aloc = 0.68 SNVs/Mbp, 95%CI = 0.43-0.95, adjusted LNR p = 0.021).
157 This difference in AFR-associated coding SNV density between pan-TCGA and pan-
158 PCAWG data may highlight differences in included tumour-types and geographic
159 differences in the populations sampled. Finally, we extended beyond the coding regions
160 to examine non-coding and overall SNV density in the PCAWG whole genome
161 sequencing data. These results closely matched those for coding SNV density; pan-
162 PCAWG AFR-derived tumours had consistently lower SNV density regardless of the
163 coding context (Supplementary Table 2).

164 We next focused on clonal architecture and mutation timing using data describing the
165 evolutionary history of PCAWG tumours*6. We tested whether monoclonal status might
166 be ancestry-associated by comparing the proportions of tumours that were monoclonal,
167 where all tumour cells are homogenous, clonal copies of one ancestral cell vs tumours
168 that were polyclonal, which have multiple somatically distinct cells derived of different
169 ancestral lineages. We used proportion tests followed by logistic regression (LGR) to
170 identify ancestry-associations in monoclonal status. SAN-derived PCAWG-head and
171  neck tumours were more frequently monoclonal than EUR-derived tumours (Head-SCC:
172  Aproportion polyclonal = 0.60, 95%CI = 0.30-0.91, adjusted LGR p = 1.9x103; Figure
173 1E). In pan-PCAWG analysis, EAN-derived tumours were also more frequently
174  monoclonal than EUR-derived tumours (Aproportion polyclonal tumours = 0.17, 95%CI =
175 0.12-0.22, adjusted LGR p = 0.016). Monoclonal tumours have previously been
176  associated with better survival in several tumours types*’—°, and a higher frequency of
177  monoclonal tumours in SAN and EAN tumours might underlie some of the improved
178 survival experienced by these ancestry groups in these tumour types.

179 Focusing only on polyclonal tumours, we investigated whether the time at which
180 mutations accumulate during a tumour’s evolution might be associated with the ancestry
181 of the patient it arises in. We compared how frequently SNVs, indels and structural
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182  variants (SVs) occurred as clonal mutations in the trunk or as subclonal ones in branches.
183 In PCAWG-kidney renal clear cell cancer, tumours arising in AFR individuals had a higher
184  proportion of clonal SNVs relative to those in EUR individuals (Kidney-RCC: Aloc =0.11,
185 95%CI=0.050-0.19, LGR p =0.041; Figure 1F). Kidney cancer tumours arising in AFR
186 individuals also had a higher proportion of truncal indels (Aloc = 0.11, 95%CI = 0.036 —
187 0.18, LGR p = 0.035; Supplementary Table 2). In pan-PCAWG tumours, EAN-derived
188 tumours had a lower proportion of truncal SVs (Aloc = -0.03, 95%CI = -0.054 — -0.074,
189 LGR p = 0.037; Figure 1F). Ancestry associations in monoclonal status and mutation
190 timing suggest potential differences in the evolutionary histories of these SAN-, AFR- and
191 EAN-derived tumours. Future investigations of tumour evolution using larger cohorts and
192 multi-region sequencing are needed to validate and quantify these ancestry-associations.

193 Ancestry Associations in Mutational Signatures
194  Differences in mutation density and timing suggest that the mutagenic processes affecting

195 a tumour might be correlated with the ancestry of the patient, presumably primarily
196 through differential environmental exposures associated with race and ethnicity.
197 Mutational signatures based on the flanking sequence context of mutations can
198 deconvolve characteristic mutational patterns that arise from specific mutagenic
199 processes. We analysed three types of mutational signatures generated by the PCAWG
200 project: 49 single base substitution (SBS), 11 doublet base substitution (DBS) and 17
201 small insertion and deletion (ID) signatures®®. We also investigated SBS signatures for
202 TCGA tumours. Each signature is thought to reflect a specific mutagenic process, though
203 many are still of unknown aetiology®®5!. For each signature, we examined both the
204  proportion of signature-positive tumours as well as relative signature activity, quantified
205 as the proportion of mutations attributed to each signature.

206  Ancestry-associated mutational signatures were identified in pan-PCAWG and pan-
207 TCGA analyses, as well as in in four PCAWG and thirteen TCGA tumour-types
208 (Supplementary Table 2). AFR-associations in mutational signatures occurred across
209 several tumour-types (Figures 2A, 2B). In TCGA-lung adenocarcinoma, AFR-derived
210 tumours had higher detection rates of SBS4, attributed to tobacco exposure (LUAD:
211  Aproportion = 0.39, 95%CIl = 0.23-0.55, adjusted LNR p = 5.5x10°3; Figure 2A,
212 Supplementary Figure 2). Higher rates of SBS4 detection in AFR-derived lung
213 adenocarcinoma despite reportedly comparable smoking rates between Black and White
214  populations®> may reflect differences in nicotine metabolism®3, elevated use of
215 mentholated cigarettes in Black populations®2%4 or simple selection bias in the cohort of
216 lung adenocarcinomas studied in TCGA. In PCAWG-breast cancer, SBS3 occurred more
217  frequently in AFR-derived samples (Breast-AdenoCA: Aproportion = 0.33, 95%CIl = 0.13-
218 0.54, adjusted LNR p =0.097). SBS3 is attributed to defective homologous recombination
219 (HR) repair of double stranded breaks. Higher SBS3 occurrence in AFR breast tumours
220 may be due to more frequent triple-negative breast cancer, which exhibit high rates of
221 defective HR repair®®. Finally, AFR-derived TCGA-endometrial cancers had higher
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222  detection rates of SBS2 (UCEC: Aproportion = 0.26, 95%CI =-0.0081-0.54, adjusted LNR
223 p =5.2x10?). and SBS13 (Aproportion = 0.31, 95%CI = 0.030-0.59, adjusted LNR p =
224  0.011), which are both attributed to the activity of AID/APOBEC cytidine deaminases and
225 have been previously associated with progression from primary to metastatic disease®®.
226  AFR-associations in relative signature activity were detected in two signatures of
227 unknown aetiology (Figure 2B).

228 Of the ancestries analysed, the largest number of significant associations were detected
229 with EAN ancestry (Figures 2C, 2D). In hepatocellular cancer, signatures were EAN-
230 associated in both proportion positive and relative activity across both PCAWG (Liver-
231 HCC; Figure 2E, top) and TCGA (Figure 2E, bottom) data. EAN-derived Liver-HCC
232 tumours had higher SBS12 detection frequency (Aproportion = 0.66, 95%CI = 0.57-0.76,
233 adjusted LNR p = 3.8 x 10®) and lower relative SBS1 activity (Aloc = 0.0067, 95%CI =
234  0.0019-0.015, adjusted LNR p = 2.1x10%) compared with EUR hepatocellular tumours;
235 SBS12 was not described in TCGA-hepatocellular cancer data, and decreased SBS1
236 activity in EAN-derived TCGA samples was not statistically significant after multivariable
237  adjustment. In TCGA-hepatocellular tumours, EAN-derived tumours showed higher rates
238 of SGS9 signature detection (Aproportion = 0.098, 95%CI = 0.033-0.16, adjusted LNR p
239 =0.021), SBS22 (Aproportion = 0.13, 95%CI = 0.054-0.22, adjusted LNR p = 1.7x103)
240 and SBS40 (Aproportion = -0.18, 95%CIl = --0.30 - 0.073, adjusted LNR p = 0.026).
241 Intriguingly, the TCGA EAN-associations in SBS9 and SBS22 were not reflected in
242 PCAWG data despite sufficient group sample sizes (Figure 2E; Supplementary Table
243 1). SBS9 is attributed to mutations induced during replication by DNA polymerase n and
244  SBS22 to aristolochic acid exposure. These contrasting results between PCAWG and
245 TCGA data may be due to ethnic and geographic differences between the datasets:
246  PCAWG hepatocellular tumours were primarily from Japanese and French patients, while
247  TCGA tumours are from US patients.

248  Other ancestry-associated mutational signatures include higher relative activity of ID2 in
249 SAN-derived PCAWG-head and neck tumours (Supplementary Figure 2,
250 Supplementary Table 2). ID2 is attributed to slippage of the template strand during DNA
251 replication and is thought to be associated with DNA mismatch repair deficiency. SBS5
252  was detected at lower rates in AMR TCGA-bladder cancer (BLCA: Aproportion = -0.15,
253 95%Cl = -0.41 - 0.10, adjusted LNR p = 0.012; Supplementary Figure 2,
254  Supplementary Table 2) and SBS16 at higher rates in AMR-derived TCGA-lower grade
255 glioma (LGG: Aproportion = 0.079, 95%CIl = -0.054 - 0.21, adjusted LNR p = 0.029;
256  Supplementary Figure 2). AMR-derived LGG tumours also had higher relative activity
257  of AID/APOBEC-attributed SBS13 (Aloc = 0.0068, 95%CI = 0.030-0.012, adjusted LNR
258 p =6.0x10° Supplementary Figure 2), suggesting a greater role of these enzymes in
259 lower grade gliomas of individuals of AMR ancestry. Thus ancestry-associated mutational
260 signatures were detected across a range of endogenous and exogenous mutational
261 processes. Most ancestry-associated signatures are of unknown aetiology and
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262 elucidation of the biological processes underlying these signatures may help determine if
263 these are true ancestry-associations or confounding from other environmental differences
264  in the cohorts.

265 Ancestry-associations in CNA Differences are Associated with Transcriptomic
266 Changes
267  After identifying ancestry-associated differences in genome-wide phenomena and

268 mutational signatures, we focused on chromosome segment and gene-level events. We
269 compared the proportions of copy number losses and copy number gains for each
270 ancestry group compared with the EUR reference group using proportion tests, and then
271 adjusted for confounding factors using multivariate logistic regression. As with prior
272 analyses, we analysed TCGA and PCAWG concurrently and separately. Ancestry-
273 associated CNAs were identified in 13 TCGA and 3 PCAWG cancer types, as well as in
274  both pan-TCGA and pan-PCAWG analyses (Figure 3A). Pan-TCGA, 602 genes were in
275 EAN-associated CNAs and 2,787 genes in AFR-associated CNAs. Some differences in
276 CNA frequency were as large as 10% (Figure 3B, Supplementary Table 3-4). In pan-
277 PCAWG analysis, 288 genes were in EAN-associated CNAs, 5,589 genes in AFR-
278 associated CNAs, and 437 genes in SAN-associated CNAs, with frequency differences
279  of up to 20% (Supplementary Figure 3, Supplementary Tables 3-4).

280 To determine whether cancer drivers were affected by ancestry-associated CNAs, we
281 focused on a subset of 133 genes altered by driver CNAs®’ (Figure 3C). There were eight
282 pan-TCGA and 20 pan-PCAWG AFR-associated genes, including higher frequency of
283 CBX8 gain (PCAWG Aproportion = 0.16, 95%CI = 0.068 — 0.26, adjusted LGR p = 0.020;
284  TCGA Aproportion = 0.043, 95%CI = 0.012 — 0.074, adjusted LGR p = 0.060) and
285 SMARCA gain (PCAWG Aproportion = 0.12, 95%CI = 0.042 — 0.20, adjusted LGR p =
286 0.082; TCGA Aproportion = 0.030, 95%CI = 0.0058 — 0.055, adjusted LGR p = 0.013).
287 Onegene, FAT1 was more frequently lost in tumours derived of EAN individuals (PCAWG
288  Aproportion = 0.15, 95%CI = 0.096 — 0.20, adjusted LGR p = 0.080; TCGA Aproportion
289 =0.096, 95%CI = 0.055 — 0.14, adjusted LGR p = 0.14). Similarly, ancestry-associated
290 driver CNAs were identified in 16 TCGA and 5 PCAWG cancer types (Supplementary
291 Tables 3-4).

292 CNAs change the dosage of affected genes and can lead to transcriptome changes®®.
293 We sought to determine whether ancestry-associated CNAs have such downstream
294 mRNA associations. Using TCGA mRNA abundance data, we analysed the mRNA of
295 genes contained in ancestry-associated CNAs using models that incorporated the
296  ancestry group of interest, copy number status, and the interaction between copy number
297 status and ancestry. These models allowed us to identify mRNA abundance changes
298 associated with the CNA itself, as well as changes where the effect of the copy number
299 depended on the ancestry of the patient in which the tumour arose. We also adjusted for
300 tumour purity as estimated by study pathologists in all MRNA analyses.
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301 In TCGA-kidney clear cell cancer, 559 genes were present in AFR-associated losses
302 (Figure 3D). Using the approach described above, we examined mRNA abundance for
303 each of these genes as a function of AFR ancestry, copy number loss status, and their
304 interaction. Of the 559 genes, copy number loss was significantly associated with
305 changes in mRNA abundance for 316 genes (57%; Figure 3E, black points). A further
306 24 genes (4.3%) had significant interactions between copy number loss status and AFR
307 ancestry (Figure 3E, red points). For some genes, this significant interaction was due to
308 differences in the magnitude of mRNA abundance change: for example, loss of the
309 microtubule-associated gene MAP4 is associated with decreased MAP4 mRNA
310 abundance in both EUR and AFR tumours, but the decrease in mRNA abundance is
311 greater in AFR than in EUR tumours (Figure 3F). For other genes, the significant
312 interaction indicates a difference in direction: loss of the tumour suppressor RASSF1 is
313 associated with a slight decrease in RASSF1 mRNA abundance for EUR-derived
314 tumours, but an increase in abundance for AFR-derived tumours (Figure 3G). Thus copy
315 number loss of RASSF1 is not only less frequent in AFR-derived tumours (Aproportion =
316 -0.24 95%CIl = -0.38 - -0.10, adjusted LNR p = 1.3x10), its effect on mMRNA abundance
317 s contrary to what is usually observed in EUR-derived kidney tumours.

318 Repeating this mRNA analysis for all TCGA tumour-types with ancestry-associated
319 CNAs, 5-53% of genes affected by EAN- or AFR-associated CNAs were significantly
320 associated with changes in mRNA abundance (Supplementary Table 5). We also
321 identified additional MRNA where the changes in abundance were dependent on the
322 interaction between CNA and ancestry (Supplementary Figure 3, Supplementary
323 Table5). Significant CNA-EAN interactions were found in breast cancer (4 genes), kidney
324 renal clear cell (5 genes) and papillary cell cancers (9 genes), liver cancer (8), lung
325 squamous cell cancer (LUSC: 2), prostate cancer (PRAD: 13), and stomach and
326 esophageal cancer (32 genes). There were also significant CNA-AFR interactions for
327 UCEC (3; Supplementary Figure 3). Thus, CNA frequency is associated with ancestry,
328 and ancestry-associated CNAs are associated with changes in the transcriptome.

329 Ancestry-associations in Gene-Level SNVs
330 Finally, we asked whether specific genes might be mutated by SNVs at different

331 frequencies between different ancestry groups. In TCGA data, we applied a recurrence
332 filter and removed genes that had SNVs in <1% of tumours for each tumour-type. In
333 PCAWG data, we focused on a set of drivers®® that includes both coding and non-coding
334 elements, as well as SNVs in mitochondrial DNA (mtDNA). Ancestry-associations were
335 identified in 15 TCGA tumour-types and four PCAWG tumour-types (Figure 4A). Across
336 pan-TCGA tumours, there were nine genes that were mutated with SNVs more frequently
337 in EAN-derived samples including FGFR3 (Aproportion = 0.022, 95%CIl = 0.054-0.039,
338 adjusted LGR p = 0.016; Supplementary Table 6). In pan-PCAWG tumours, SNVs in
339 the coding regions of the tumour suppressors FBXW?7 (Aproportion = 0.066, 95%CI =
340 0.014-0.12, adjusted LGR p = 0.030) and TP53 (Aproportion = 0.18, 95%CI = 0.087-0.28,
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341 adjusted LGR p = 0.044) occurred more frequently in tumours arising in AFR individuals
342  (Figure 4B, left). TERT promoter SNVs were more frequent in tumours arising in SAN
343 individuals (Aproportion = 0.17, 95%CI = 0.012-0.33, adjusted LGR p = 0.024).

344  We also identified EAN-associated SNVs in PCAWG medulloblastoma and PCAWG non-
345 Hodgkin’s lymphoma (Figure 4B, middle). SNVs in both KBTBD4 (CNS-Medullo:
346  Aproportion = 0.35,95%CI = -0.050 -0.75, adjusted LGR p = 9.9x10-3) and B2M (Lymph-
347 BNHL: Aproportion = 0.56,95%CI = 0.086-1, adjusted LGR p = 0.043) occurred more
348 frequently in EAN-derived tumours than EUR. In PCAWG-prostate cancer, SNVs in
349 FOXA1l were more frequently in tumours derived of AFR individuals (Prost-AdenoCA:
350 Aproportion = 0.31,95%CI = -0.088-0.72, adjusted LGR p = 0.012). The frequency of
351 mitochondrial SNVs were also associated with ancestry (Figure 4B, right): pan-PCAWG,
352 SNVs in MT-TFX occurred more frequently in AMR-derived tumours (Aproportion =
353 0.098,95%CI = -0.066-0.26, adjusted LGR p = 9.0x10%), and MT-TA SNVs were more
354 frequent in SAN-derived pancreas tumours (Aproportion = 0.31,95%CI = -0.15-0.78,
355 adjusted LGR p = 6.5x10°). MT-TFX is a mitochondrially encoded transcription factor
356 binding site, and MT-TA encodes a transfer RNA for alanine. Mutations in mtDNA could
357 have far-reaching downstream effects. For example, mutations in MT-TA could result in
358 less efficient protein synthesis, leading to differences in the tumour proteome.

359 Across all TCGA tumour-types, we identified 159 EAN-associations, 37 AFR-
360 associations, and 23 AMR-associations. These included genes in KIRC such as UBR5
361 which was mutated by SNVs more frequently in AFR-derived tumours (Aproportion =
362 0.14,95%Cl = -0.038-0.33, adjusted LGR p = 9.8x103), and in COADREAD, where
363 CARD6 (COADREAD: Aproportion = 0.30,95%CIl = -0.0075-0.61, adjusted LGR p =
364 0.062; Figure 4C) and CKAP2 (Aproportion = 0.24,95%CI = -0.049-0.53, adjusted LGR
365 p = 0.062) SNVs were more frequent in EAN-derived TCGA-colorectal tumours
366 (Supplementary Table 6). The majority of ancestry-associated SNVs were identified in
367 COADREAD, which had 118 EAN-associations and two AFR-associations in
368 COADREAD gene-level SNVs (Figure 4C).

369 Similar to our CNA analyses, we next investigated mMRNA abundance to determine
370 whether ancestry-associated SNVs might also be associated with changes in the
371 transcriptome. We used the same approach as previously applied in our CNA-
372 transcriptome analyses, using a model that included SNV status, ancestry, and the
373 interaction between SNV and ancestry. Despite low statistical power due to small group
374  sizes, several ancestry-associated SNVs were associated with changes in mRNA
375 abundance. In COADREAD, six genes that were more frequently mutated with SNVs in
376 EAN-derived tumours were also associated with decreased mRNA abundance (Figure
377 4D, Supplementary Table 6), including AXIN1 (Figure 4E). Similarly SNVs in STK36,
378  which occurred more frequently in AFR-derived COADREAD (Aproportion = 0.21,95%CI
379 =-0.00058-0.41, adjusted LGR p = 8.8x10%), was also associated with decreased mRNA
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abundance in tumours derived of both EUR and AFR individuals (Figure 4F). We
identified differential mMRNA abundance associated with ancestry-associated SNVs in
TCGA-bladder cancer (BLCA) and UCEC (Supplementary Table 6). Unlike in our CNA
analysis, we did not find mMRNA changes that were dependent on the interaction between
SNV and ancestry.
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386 DISCUSSION

387 Our analysis of TCGA and PCAWG data revealed ancestry-associations across all
388 genomic features studied, from genome-wide phenomena to gene-level events. These
389 associations occur at both the pan-cancer level and in specific tumour-types. Ancestry is
390 associated with mutation density, measures of tumour evolution, and with mutational
391 signatures associated with oncogenic processes. Gene-level CNAs and SNVs not only
392 occurred at different frequencies in different ancestries, they were also associated with
393 differential MRNA abundance: in some cases, the effect of a CNA on mRNA abundance
394 was dependent on the ancestry of the patient in which the tumour arose. Together, these
395 results suggest that ancestry influences the progression of a tumour and that ancestry-
396 associated genomic events have potential functional significance.

397 Differences between the TCGA and PCAWG datasets allowed us to investigate them in
398 parallel and orthogonal ways. We leveraged the deeper clinical annotation and larger
399 samples sizes of TCGA whole exome sequencing and array-based data to adjust for more
400 confounding variables using more complex models. In contrast, the whole genome
401 sequencing data from PCAWG allowed us to investigate a broader range of genomic
402 features such as clonal architecture and non-coding drivers. TCGA and PCAWG data
403 also represent different geographic populations: while TCGA tumours were largely
404  derived of North American patients, PCAWG tumours were from patients at multiple
405 international sites. As a result, the distributions of ancestry groups differ between TCGA
406 and PCAWG data (Table 1), and many PCAWG tumour-types were excluded from
407  tumour-type-specific analysis due to insufficient sample size. Poor agreement between
408 TCGA and PCAWG results are therefore related to three major factors: vastly different
409 sample sizes and ancestry group sizes affecting statistical power; geographical
410 differences in sampling; and differences in molecular profiling technologies.

411  As with other ancestry- and race-associated differences in cancer burden, the causes of
412  ancestry-associated genomic events are multifactorial and interacting. For example, our
413 analysis of mutational signatures revealed the differing impacts of both endogenous and
414  exogenous mutagens on tumours of different ancestries. One such difference was in the
415 increased detection rates of defective homologous recombination repair in breast tumours
416 derived of individuals of African ancestry. However, whether this increase is due to
417  differences in inherited predisposition®®, hormonal differences®!, environmental exposure,
418 or a combination of these and other variables is uncertain. Ancestry-associations in
419 cancer genomes likely arise from a combination of biological, lifestyle, and environmental
420 factors. We used imputed ancestry, which best approximates the line of descent for an
421 individuals’ genetic material. However, without accounting for factors highly correlated
422  with ancestry, such as race, socioeconomic status and quality of healthcare®263, we
423  cannot fully disentangle contributing factors and definitively attribute these differences to
424  biology.
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Ancestry undoubtedly influences the molecular presentation of a tumour. Despite low
sample sizes, we have identified differences in the density, frequency, and transcriptional
consequence of both copy number and nucleotide changes. The results we present are
likely an underestimation of the full landscape of ancestry-associated somatic changes in
cancer, and this is due in large part to poor representation of non-European ancestries in
TCGA, PCAWG, and other cancer profiling studies®. To fully describe ancestry-
associations, future genomic studies must include diverse representation across multiple
ancestry groups and include deep and complete annotation to facilitate the control of
confounding variables. Through identifying differences in the cancer genomes between
individuals of different ancestries, we can better understand how they arise and leverage
them to improve personalized therapy strategies.
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a3 Online Methods

437 Data acquisition & Processing

438 Genome-wide somatic copy-number, somatic mutation, and mRNA abundance profiles
439 for the Cancer Genome Atlas (TCGA) datasets were downloaded from Broad GDAC
440 Firehose (https://gdac.broadinstitute.org/), release 2016-01-28. For mRNA abundance,
441  lllumina HiSeq rnaseqv?2 level 3 RSEM normalised profiles were used. Genes with >75%
442  of tumours having zero reads were removed from the respective dataset. GISTIC v2 (13)
443 level 4 data was used for somatic copy-number analysis. mRNA abundance data were
444  converted to log2 scale for subsequent analyses. Mutational profiles were based on
445 TCGA-reported MutSig v2.0 calls. All pre-processing was performed in R statistical
446  environment (v3.1.3). Genetic ancestry imputed by Yuan et al. was downloaded from The
447  Cancer Genetic Ancestry Atlas (http://52.25.87.215/TCGAA).

448 PCAWG WGS data were downloaded from the PCAWG consortium with pre-processing
449 as performed by the consortium*3. Individual datasets are available at Synapse
450  (https://www.synapse.org/), denoted with synXXXXX accession numbers (i.e. Synapse
451 IDs). These datasets are mirrored at https://dcc.icgc.org. Tumour histological
452  classifications were reviewed and assigned by the PCAWG Pathology and Clinical
453  Correlates Working Group (annotation version 9; syn10389158, syn10389164). Ancestry
454  imputation was performed using an ADMIXTURE-like algorithm based on germline SNP
455  profiles determined by whole-genome sequencing of reference sample (syn4877977).
456 The consensus somatic SNV and indel (syn7357330) file covers 2778 whitelisted
457 samples from 2583 donors. Driver events were called by the PCAWG Drivers and
458  Functional Interpretation Group (syn11639581). Consensus CNA calls from the PCAWG
459  Structural Variation Working Group were downloaded in VCF format (syn8042988).
460  Subclonal reconstruction was performed by the PCAWG Evolution and Heterogeneity
461 Working Group (syn8532460). SigProfiler mutation signatures were determined by the
462 PCAWG Mutation Signatures and Processes Working Group for single base substitution
463 (synl11738669), doublet base substitution (syn11738667) and indel (synl11738668)
464  signatures. Signatures data for TCGA, nhon-PCAWG WGS and non-TCGA WXS samples
465 were downloaded from Synapse (syn11804040).

466 We used TCGA data on 10,212 distinct patients with 23 cancer types. PCAWG data was
467 from 2,562 distinct patients with 29 cancer types. Cancer types with no age information
468 or insufficient variability in ancestry annotation were excluded from analysis. TCGA
469 genetic ancestry describes a five-category variable (European American, East Asian
470  American, African American, Admixed American and Other Ancestry). PCAWG ancestry
471 describes a five-category variable (European, East Asian, African, South Asian and
472  Admixed American; Supplementary Table 1).
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473  General Statistical Framework

474  For each genomic feature of interest, we used univariate two-sided non-parametric tests
475 followed by false discovery rate (FDR) adjustment to identify candidate ancestry-
476  associations (q < 0.1). These were followed with multivariate modeling to account for
477  potential confounders using tumour-type-specific models. We use EUR ancestry as the
478 reference group for all analyses to maximize statistical power.

479 Supplementary Table 1 gives the specific variables included for each cancer type. These
480 were selected based on data availability (<15% missing), variability (at least two levels)
481 and collinearity (as assessed by variance inflation factor). Discrete data was modeled
482  using logistic regression (LGR). Continuous data was first transformed using the Box-Cox
483 family and modeled using linear regression (LNR). The Box-Cox family of transformations
484 is a formalized method to select a power transformation to better approximate a normal-
485 like distribution and stabilize variance. We used the Yeo-Johnson extension to the Box-
486  Cox transformation that allows for zeros and negative values®. FDR adjustment was
487 performed for p-values for ancestry variable significance estimates, and a threshold of
488 10% used to select candidates. A summary of all results is presented in Supplementary
489 Table 1. We present 95% confidence intervals for all tests.

490 Mutation Density

491 Performed for both TCGA and PCAWG data. Overall SNP mutational density per
492  calculated per patient was calculated as the count of SNVs scaled to SNVs/Mbp. Coding
493 mutation prevalence only considers the coding regions of the genome, while noncoding
494  prevalence considers only noncoding regions. TCGA mutation density is coding mutation
495 prevalence. Mutation density was compared between ancestries using two-sided Mann-
496 Whitney U-tests using European ancestry as the reference group (e.g. EAN vs. EUR,
497 AFR vs. EUR, etc.). Comparisons with univariate g-values meeting an FDR threshold of
498 10% were analyzed using linear regression to adjust for tumour subtype-specific
499 variables. Mutation density analysis was performed separately for each mutation context,
500 with pan-cancer and tumour subtype p-values adjusted together. Full mutation density
501 results are in Supplementary Table 2.

502 Genome instability

503 Performed for both TCGA and PCAWG data. Genome instability was calculated as the
504 percentage of the genome affected by copy number alterations. The number of base pairs
505 for each CNA segment was summed to obtain the total number of base pairs gained and
506 lost in at least one allele. This total was scaled by the number of bases in the human
507 genome reference to obtain the proportion of the genome with a CNA (PGA). Genome
508 instability was compared between ancestries using two-sided Mann-Whitney U-tests for
509 both pan-cancer and tumour-type specific analysis. Comparisons with univariate g-values
510 meeting an FDR threshold of 10% were then subject to linear regression to adjust for
511 tumour subtype-specific variables. Genome instability analysis was performed separately
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512 for each mutation context, with pan-cancer and tumour subtype p-values adjusted
513 together. Full mutation density results are in Supplementary Table 2.

514  Clonal structure and mutation timing analysis

515 Performed for PCAWG data only. Subclonal structure data was discretized into
516 monoclonal (one cluster) vs. polyclonal (more than one cluster). The proportion of
517 polyclonal tumours was calculated for each ancestry. These proportions were compared
518 with two-sided proportion tests and univariate FDR-adjusted p-values used to identify
519 putatively sex-associated clonal structure. Candidates from this analysis were then
520 subject to logistic regression to control for confounders, with a multivariate g-value
521 threshold of 0.1 used to identify statistically significant ancestry-associations with clonal
522  structure.

523  Mutation timing data classified SNVs, indels and SVs into clonal (truncal) or subclonal

524 groups. The proportion of truncal variants was calculated for each mutation type
Number truncal SNVs
525 (
total SNVs

526 tumour. These proportions were compared between ancestries using two-sided Mann-
527  Whitney U-tests. Univariate p-values were FDR adjusted to identify putatively ancestry-
528 associated mutation timing. Linear regression was used to adjust for confounding factors
529 and a multivariate g-value threshold of 0.1 was used to determine statistically significant
530 ancestry-associated mutation timing. The mutation timing analysis was performed
531 separately for SNVs, indels and SVs. All results for clonal structure and mutation timing
532 analyses are in Supplementary Table 2.

, etc.) to obtain proportions of truncal SNVs, indels and SVs for each

533  Mutational Signatures analysis

534  Performed for both TCGA and PCAWG data. For each signature, we compared the
535  proportion of tumours with any mutations attributed to the signatures (“signature-positive”)
536 using two-sided proportion tests to identify univariately significant ancestry-associations.
537  Signatures with putative ancestry-associations were further analysed using multivariable
538 logistic regression. We also compared relative signature activity by performing Mann-
539 Whitney U-tests to compare the proportions of mutations attributed to each signature.
540 Following these two-sided tests, candidate sex-associated signatures were subject to
541  multivariable linear regression after Box-cox adjustment, as outlined above. Signatures
542  not detected in a tumour subtype were omitted from analysis for that tumour subtype. All
543  results for clonal structure and mutation timing analyses are in Supplementary Table 2.

544  Genome-spanning CNA analysis

545 Performed for both TCGA and PCAWG data. Adjacent genes whose copy number profiles
546 across patients were highly correlated (Pearson’s r > 95%) were binned. The copy
547 number call for each patient was taken to be the majority call across all genes in each
548 bin. Copy number calls were collapsed to ternary (loss, neutral, gain) representation by
549  combining loss groups (mono-allelic and bi-allelic) and gain groups (low and high). Two-
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550 sided proportion tests were used to identify univariate ancestry-associated CNAs. After
551 identifying candidate pan-cancer univariately significant genes, multivariate logistic
552  regression was used to adjust ternary CNA data for tumour-type-specific variables. The
553 genome-spanning analysis was performed separately for losses and gains for each
554  tumour subtype. All CNA results are in Supplementary Tables 3-4.

555 Genome-spanning SNV analysis

556 Performed for TCGA data. We focused on genes mutated in at least 1% of patients.
557  Mutation data was binarized to indicate presence or absence of SNV in each gene per
558 patient. Proportions of mutated genes were compared between ancestry groups using
559 two-sided proportions tests for univariate analysis. False discovery rate correction was
560 used to adjust p-values with q < 0.1 as a threshold for multivariate logistic regression.

561 Driver Event Analysis

562 Performed for PCAWG data. We focused on driver events described by the PCAWG
563 consortium®°. Driver mutation data was binarized to indicate presence or absence of the
564 driver event in each patient. Proportions of mutated genes were compared between
565 ancestries using two-sided proportions tests. A g-value threshold of 0.1 was used to
566 select genes for further multivariate analysis using binary logistic regression. FDR
567 correction was again applied and genes with significant pan-cancer ancestry terms were
568 extracted from the models (g-value < 0.1). Driver event analysis was performed
569 separately for pan-cancer analysis and for each tumour subtype. All SNV and driver event
570 analysis results are in Supplementary Table 6.

571 mRNA abundance analysis

572 Performed for TCGA data. Genes in CNA bins associated with ancestry after multivariate
573 adjustment were evaluated for associations with mRNA abundance. Tumour purity was
574 included in all MRNA models. Tumours with available mRNA abundance data were
575 matched to those used in CNA analysis. For each gene affected by an ancestry-
576 associated loss, its MRNA abundance was modeled against the ancestry of interest, copy
577 number loss status, an ancestry-copy number loss interaction term, and tumour purity.
578 The interaction term captures ancestry-associated MRNA changes. Statistical
579 significance was assigned at q < 0.1. For genes affected by ancestry-associated gains,
580 the same procedure was applied using gains. Complete mRNA modeling for CNAs is
581 given in Supplementary Table 5 and for SNVs in Supplementary Tables 6.

582  Statistical Analysis & Data Visualization Software

583 All statistical analyses and data visualization were performed in the R statistical
584  environment (v3.2.1) using the BPG®% (v5.9.8) package and with Inkscape (v0.92.3).
585
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773 Figure Legends

774  Figure 1| Ancestry associations in mutation density and evolutionary architecture.
775 (A) Summary of associations between ancestry and percent genome altered (PGA) in
776 TCGA and PCAWG tumours. The dot size and colour show the difference in location
777 effect size estimate, and background shading indicate multiple-testing adjusted
778  multivariate p-value. Only tumour-types with significant associations are shown. (B) Pan-
779 TCGA and pan-PCAWG associations between ancestry and PGA, with the top row of
780 barplots showing adjusted multivariate p-values, the middle row showing differences in
781 location (mean and 95% confidence interval), and the bottom row of boxplots showing
782  PGA per tumour. (C) Associations of ancestry with SNV density (SNVs/Mbp sequenced)
783 in TCGA and PCAWG. Dot size and colour, and background shading have the same
784 meaning and scale as Figure 1A. (D) pan-TCGA and pan-PCAWG associations between
785 ancestry and SNV density, with adjusted multivariate p-values, differences in location,
786 and PGA per tumour shown as in Figure 1B. (E) Differences in proportion of polyclonal
787 tumours between ancestries with the top row showing adjusted multivariate p-value,
788 middle row giving difference in proportion (mean and 95% confidence interval) and bottom
789  row showing proportion of polyclonal tumours by ancestry. (F) Proportion of tumours with
790  SNVs occurring in the truncal clone compared by ancestry in PCAWG kidney renal clear
791 cell cancer, and truncal SVs in pan-PCAWG samples, with the same structure of rows as
792 inFigure 1C. Tukey boxplots are shown with the box indicating quartiles and the whiskers
793 drawn at the lowest and highest points within 1.5 interquartile range of the lower and
794  upper quartiles, respectively.

795 Figure 2 | Ancestry-associations in mutational signatures.

796 (A) Summary of associations between AFR ancestry and the proportion of signature-
797  positive tumours. Here dot size and colour indicate the differences in proportion between
798 AFR and EUR tumours, and the background shading gives multiple-testing adjusted
799 multivariate p-values. PCAWG data is on left and TCGA on right. (B) Similarly, the
800 summary of associations between AFR ancestry and relative signature activity, with dot
801 size showing difference in location estimates and background indicating multiple-testing
802 adjusted linear regression p-values. (C) Summary of associations between EAN ancestry
803 and signature positive tumours, as for Figure 2A. (D) Summary of associations between
804 EAN ancestry and relative signature activity, as in (B). (E) Ancestry-associated
805 differences in hepatocellular cancer, compared between PCAWG and TCGA data.
806 Barplots show frequency of signature detection in each ancestry group. Tukey boxplots
807 (as described in Figure 1) show relative signature activity as proportion of mutations
808 attributed to each signature.

809 Figure 3| CNA-Ancestry associations are associated with altered RNA abundance.
810 (A) Summary of all detected ancestry-associated CNAs with numbers of gains (above x-
811 axis) and losses (below x-axis) identified in each tumour context. Only tumour-types with
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812 at least one significant event are shown. (B) Pan-cancer ancestry-associations in CNAs
813 for TCGA data. Each plot shows the logistic regression coefficient estimate (for age
814 analyses) or difference in proportion (for ancestry analyses) for the indicated variable and
815 CNA type. Dot colour indicates statistical significance, where red (copy number gain) and
816  blue (copy number loss) show adjusted p < 0.05 and yellow (gain) and green (loss) show
817  whether the multiple-testing adjusted p < 0.1 threshold is met. (C) Summary of ancestry-
818 associated pan-cancer CNA drivers. Both TCGA and PCAWG findings are shown, and
819 dot size indicates the effect-size as a proportion difference. Background shading shows
820 multiple-testing adjusted multivariate p-values. The covariate to the right shows copy
821 number gain drivers in red and loss drivers in blue. (D) EAN- and AFR-associations in
822 TCGA kidney clear cell cancer CNAs are associated with (E) changes in mRNA
823 abundance. The adjusted p-value is plotted against the coefficient of the CNA-age
824 interaction for mMRNA abundance, with each point representing a gene. Black dots show
825 significant associations between mMRNA and CNA; red dots show significant CNA-
826 ancestry interactions. (F) RASSF1 and (G) MAP4 mRNA abundance changes between
827  copy number loss (red) or no loss (black) in tumours of EUR and AFR ancestry. Adjusted
828 CNA-AFR interaction p-value is shown. Tukey boxplots are depicted, as described in
829 Figure 1.

830 Figure 4| Ancestry-associations in gene-level SNV mutation frequency

831 (A) Summary of all detected ancestry-associated SNVs found in each cancer type. Only
832 tumour-types with at least one significant event shown. (B) pan-PCAWG and PCAWG
833 tumour-type-specific ancestry-associations in driver and mitochondrial SNV frequency
834 with the top showing adjusted multivariate p-values, middle showing difference in
835 proportion, and bottom showing proportion of tumours with mutated gene per ancestry
836  group. Covariate bars indicate tumour and element type context of each mutation, where
837 coding sequence is abbreviated to CDS and mitochondrial DNA is mtDNA. (C) The 20
838 SNVs most associated with AFR and EAN ancestry in the TCGA colorectal and renal
839 cancer (COADREAD) dataset. (D) Differential mMRNA abundance associated with EAN-
840 associated SNVs in TCGA COADREAD. Each point represents a gene with black dots
841 showing significant associations between mMRNA and SNV. (F) AXIN1 and (G) STK36
842 mRNA abundance changes between copy humber loss (red) or no loss (black) compared
843 Dby ancestry. Adjusted SNV term p-value is shown. Tukey boxplots are depicted, as
844  described in Figure 1.
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