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. Abstract

2 Gene expression links genotypes to phenotypes, so identifying genes whose expression is shaped by selection will be
s important for understanding the traits and processes underlying local adaptation. However, detecting local adaptation
+ for gene expression will require distinguishing between divergence due to selection and divergence due to genetic

s drift. Here, we adapt a Qs7—Fsr framework to detect local adaptation for transcriptome-wide gene expression levels
¢ in a population of diverse maize genotypes. We compare the number and types of selected genes across a wide range
7 of maize populations and tissues, as well as selection on cold-response genes, drought-response genes, and coexpres-
s sion clusters. We identify a number of genes whose expression levels are consistent with local adaptation and show

o that genes involved in stress-response show enrichment for selection. Due to its history of intense selective breeding
1o and domestication, maize evolution has long been of interest to researchers, and our study provides insight into the

»  genes and processes important for in local adaptation of maize.

» Introduction

1 Local adaptation occurs when different optimal trait values across environments lead to phenotypic differentiation
1« among populations (Kawecki & Ebert, 2004). Identifying locally adapted traits is important for animal and crop

s production (Howden et al., 2007; Takeda & Matsuoka, 2008), predicting response to climate change (Aitken et al.,
16 2008; Bay et al., 2017; Franks & Hoffmann, 2012), and conservation genetics (Funk et al., 2012). One commonly-
w» used approach to identify local adaptation is Qsr—Fsr, which tests for trait divergence (Qgr) that exceeds neutral

s expectations based on sequence divergence (Fsr) (Spitze, 1993; Prout & Barker, 1993; Whitlock, 2008). However,
19~ while previous work has used Qs7—Fsr and related approaches to identify specific traits showing evidence of selec-

20 tion, we lack broad-scale systematic investigations into the number and types of traits that are locally adapted.

a1 Gene expression is a useful model trait for systematically investigating the evolutionary forces shaping phenotypic

22 variation: expression is quantitative, can be heritable, and variation in gene expression can contribute to phenotypic
2 variation and adaptation (Gibson & Weir, 2005; Roelofs et al., 2006; Gilad et al., 2006; Oleksiak et al., 2002; White-
2 head & Crawford, 2006; Gibson & Weir, 2005; Rockman & Kruglyak, 2006; Groen et al., 2020). Qsr—Fsr has pre-
»s  viously identified local adaptation for gene expression in D. melanogaster and salmon (Roberge et al., 2007; Kohn

s et al,2008) and a study has identified genes that showed relatively high or low Qs in Populus tremula (Mihler

2z etal.,2017). Other studies have used an extension of Qsr—Fsr developed by Ovaskainen et al. (2011) to identify

22 genes showing evidence of local adaptation in expression (Leder et al., 2015; Ravindran et al., 2019). In this study,

2 Wwe leverage next generation sequencing data for expression and genetic variation to test for selection on expression
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« of the entire transcriptome. In addition, we take advantage of a recent extension of Qsr—Fsr that detects adaptation

s of continuous traits in large diversity panels that do not have clear subpopulations (Josephs et al., 2019).

=2 In this study, we investigate the role of local adaptation in shaping gene expression in the crop species Zea mays. Se-
s lection on gene expression has previously been shown to be important for maize evolution. For example, expression
a of the locus b1 (Doebley et al., 1997; Wang et al., 1999) is responsible for the evolution of apical dominance dur-
s ing domestication. Expression divergence is also prevalent between domesticated maize and its wild relative teosinte
s (Lemmon ef al., 2014) and expression variation in domesticated maize is often associated with phenotype (Kremling
a etal,2019). However deleterious mutations are important contributors to expression variation in maize (Kremling

s etal,2018), implying that not all expression variation in maize is adaptive.

s Here we aim to understand the extent to which variation in gene expression in domesticated maize is driven by di-
« vergent selection caused by local adaptation and identify which genes show evidence of selection on their expres-

a1 sion levels. We tested for selection using a published data set of 302 diverse maize lines each with RNAseq data

« from approximately 37,000 genes. We investigated enrichments of selective signals in genes that were differentially
« expressed in response to cold stress and drought, and selection on gene expression modules identified with coex-

« pression network analyses taken from tissue-specific expression data. We detected selection on the expression of 60
s unique genes across seven different tissue types and found an enrichment of drought-response genes among genes
s with the strongest signal of selection. Overall, these results show that local adaptation has shaped the expression of
« some genes and that this method has potential to identify specific genes and processes that are important for local

s adaptation.

» Methods

» Testing for selection on gene expression

s Divergence between populations for a quantitative trait can be predicted by divergence at neutral genetic markers and
= additive genetic variation (V4), assuming the trait evolves neutrally and the trait value is made up of an additive com-
s bination of allelic effects (Henderson, 1950, 1953; Thompson, 2008). If a sample does not have discrete populations,
s the genetic principal components (PCs) that explain most of the genetic variation can be used as a measure of diver-
s gence between populations and the other PCs can be used to estimate V4. We briefly explain a test for selection using
s« gene expression divergence measured across genetic PCs. More details on the test (Qpc) are available in Josephs

s etal (2019).
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ss  Gene expression for a specific gene in M individuals is described by 7= [Z1,2,,...Zn—pm). If the gene expression

s levels described by 7 evolve neutrally, we can describe the distribution of 7 as follows:
Z ~MVN(u,V4K), €))

« where y is the mean expression value across individuals, V4 is the additive genetic variation for expression, and K is
o the kinship matrix of the individuals. The kinship matrix K can be decomposed so that, K = UAUT where U is an
e nXxnmatrix where the columns are eigenvectors of K and A is a diagonal matrix of corresponding eigenvalues. The
= eigenvectors of K are the genetic principal components (PCs) of the population. We define U,, as the m'" eigenvec-
o tor and A, as the m'" eigenvalue. The amount of trait variation explained by the m'" PC, standardized by how much

es neutral genetic variation is explained by that PC, is

Z—uwU,
sz(\/}’%). )

e Under neutrality, C,, ~ N(0,Vy4). If selection contributes to trait divergence along the m'" PC, C,, may fall outside
¢ the neutral distribution. For this study we tested the first five PCs for selection and the remaining PCs were used to

e estimate Vy. To test for selection, we use a test statistic (Qpc¢).

e For afocal PC i,
_ var(Cy)
Opc = var(Cp)

~Fy 3)
7 Intuitively, these ratios of variances are similar to a standard measure of Qgr in that the numerator describes between
7 population expression level variance and the denominator describes within population expression level variance.

72 Genes with a high value of Qp¢ will have expression levels are the most divergent at the between population level

72 compared to the neutral expectation.

» Maize genomic and transcriptomic data

s Expression and genotype data came from from a subset of a maize diversity panel generated by Flint-Garcia et al.

7 (2005). These lines represent the diversity present in public-sector maize-breeding programs worldwide, includ-

77 ing both temperate and tropical lines, as well as popcorn and sweet corn lines. Whole genome sequence (Bukowski
7 etal.,2017) and RNAseq data for 7 tissues (Kremling et al., 2018) from plants grown in a common garden are avail-
7o able for these lines. Subsequent analysis only included genes that were expressed in all individuals for a given tissue

s type; which meant that we had between 8,435 and 11,555 genes per tissue type (Sample sizes listed in Table S1).
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a1 We used 78,342 randomly chosen SNPs to create a kinship matrix for each tissue type, reflecting the slightly differ-
= 1ing set of lines present for each tissue. We arranged and standardized each kinship matrix so that each cell, K;; of the
% N XN matrix is the genotypic covariance between the " and j*" lines following the procedure described in Josephs
a etal (2019). After testing for selection as described above, FDR adjusted p-values were calculated to correct for

s multiple testing with the p.adjust function in R (Benjamini & Hochberg, 1995; R Core Team, 2020).

& Cluster Enrichment

&7 We tested for local adaptation in the expression of gene coexpression modules. Walley et al. (2016) used weighted

s gene coexpression network analysis (WGCNA) to group genes that were similarly expressed in at least 4 tissues in

s one maize inbred line. This approach allowed them to group 31,447 mRNAs, 13,175 proteins, and 4,267 phospho-

% proteins into coexpression modules (clusters) and assign each cluster to the tissue(s) in which the cluster eigengene
o1 was most highly expressed. Their analysis resulted in 66 co-expression networks containing anywhere from 4 to

e 9574 genes. We calculated the median expression value for the genes in the 51 clusters that had more than 100 genes
s and used the same method outlined above on the median expression of each cluster to identify clusters that could be

« locally adapted.

« Environmental response genes

s We tested for enrichment of signals of selection in genes that show expression changes in response to cold and drought.
o Cold-response genes were identified by Avila et al. (2018), who estimated the transcript abundance in leaves of

s 22,000 genes in two Zea mays inbred lines (CG60 and CG102) during and after cold temperature exposure and iden-

% tified 10,549 genes differentially expressed in response to cold exposure. Drought-response genes were identified by

w0 Forestan et al. (2020), who measured transcript abundance in young leaves of the inbred line B73 and calculated dif-

w1 ferential expression between well-watered and drought stressed (10 days) treatments. Forestan et al. (2020) identified

w02 3,181 differentially expressed genes (FDR < 0.01) and 28,983 non-differentially expressed genes.

w3 Drought-response genes had higher daytime expression level in leaves than genes that didn’t show drought response
e (Figure S1). To ensure that overlaps between drought response genes and selected genes were not due to both sets of
105 genes being biased towards high expression genes, we chose a subsample of 3500 of the non drought response genes
16 with high expression to use as a comparison set (Figure S1). There was not a significant difference in daytime leaf
w7 expression level between cold response and non cold response genes, so we did not adjust the test for gene expres-

we  sion level.
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10 With both datasets, we used a Fisher’s exact test to compare the proportion of genes that show evidence of selec-
1o tion (un-adjusted p value less than 0.05) in environmental-response genes compared with other genes (see Tables
11 52, 83, and S4 for sample sizes). We used the un-adjusted p value so that we had enough genes in each category to
12 use Fisher’s exact test. We only tested for enrichment in tissue-PC combinations that had evidence of at least one

ns  selected gene at FDR < 0.1. P values were then adjusted for multiple testing using a Bonferroni correction (n=15).

GO Enrichment Analysis

15 We tested subsets of genes identified as having signals of selection on gene expression for enrichment of GO biologi-
1 cal process terms using the GO Enrichment Analysis tool on geneontology.org. (Ashburner et al., 2000; Consortium,
w7 2019; Mi et al., 2019) We used the genes that went into our selection analysis for a given tissue as the reference list
ns  and the genes whose expression was under selection along a specific PC in that same tissue as the analyzed list. We
1o used Fisher’s exact test and FDR as calculated by the Benjamini-Hochberg procedure for multiple testing correction

120 as the settings for the enrichment analysis.

= Results

2 Detecting selection on expression of individual genes

123 We tested for selection on gene expression of 8,435 to 11,555 genes in seven tissues for 109 to 239 genotypes (see

12« Table S1 for sample sizes), along the first five PCs within each tissue type. Note that because there were different

125 genotypes sampled in each tissue type, the genetic PCs do not always correspond across tissues (Figures S3, S4, S5).
126 Across all tissues, PC 1 separated out tropical from temperate genotypes and lower PCs separated stiff stalk from non
27 stiff stalk genotypes, popcorns from other genotypes, or separated out genotypes within the stiff stalk and/or non stiff

12s  stalk subpopulations (Figures S3, S4, S5).
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Figure 1: Signals of selection on gene expression in domesticated maize A) The number of genes where FDR <
0.1 in each of the 7 tissues for the first 5 PCs. B) PC 1 plotted against the mean-centered expression level of the gene
GRMZM?2G152686 as expressed in adult leaves during the day. Each point represents one maize genotype and is
colored by subpopulation. The solid line shows the linear regression and the dashed lines show 95% confidence in-

tervals of the neutral expectation. C) Similar to plot (B) except PC 5 plotted against mean centered expression of the

gene GRMZM2G069762

Sixty unique genes show evidence of expression divergence consistent with local adaptation along one of the first
5 PCs (FDR < 0.1, Figure 1A). We plot an example of the signal of selection on two genes to demonstrate what
expression values look like when selection is inferred along a specific PC (Figure 1B,C). There were 5 genes that

had evidence for selection on expression in multiple tissues and/or multiple PCs. The PC-tissue combination with the
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133 most genes under selection was PC 5 in adult leaf expression measured during the day. Genes with divergence along
13 PC 5 in adult leaf tissue are enriched for GO biological process terms cellulose catabolic process (FDR = 0.0323),

135 plant-type cell wall biogenesis (FDR = 0.00853), and glucan biosynthetic process (FDR = 0.0287).

1w Selection on expression of coexpression clusters

17 Gene expression is often correlated across genes, so summarizing expression across coexpression clusters could im-
s prove power to detect selection (Kliebenstein, 2020). With this in mind, we summarized expression across previously
130 identified coexpression modules (Walley et al., 2016) and tested for selection on median gene expression for each

10 module. However, none of the clusters showed evidence of selection (FDR > 0.1). The test with the strongest ev-

11 idence of selection was the "Root Meristem’ cluster, which showed evidence of selection along PC 5 in leaf adult

w2 tissue measured during the day (p = 2.4x10~#, FDR = 0.43). While the "Root Meristem’ cluster had the highest ex-
143 pression in root meristems in Walley et al. (2016), many of these genes were still expressed in adult leaves in their

e study. Overall, these results suggest that coexpression clusters, as identified by correlations in expression within one

s genotype, are not broad targets of selection.

s Selection on expression of environmental response genes

17 The spread of maize into North America required adaptation to different climatic factors (Swarts et al., 2017), so we
s investigated selection specifically on genes that were differentially expressed in response to cold (Avila et al., 2018)

1o and in response to drought (Forestan et al., 2020).

150 10 test for evidence of selection on genes that were differentially expressed in response to cold, we compared selec-
151 tion signals in 12,239 genes that showed differential expression (FDR < 0.1) after either one or four days of cold

12 treatment to 11,379 genes that did not show evidence of differential expression using data from Avila et al. (2018).
155 We only investigated the 15 tissue-PC combinations where at least one gene showed significant evidence of selec-

14 tion at FDR < 0.01. The strongest signal for enrichment was for daytime expression in adult leaf tissue along PC 5,
155 where genes whose expression changed in response to cold were more likely to have evidence of local adaptation for

15 expression (p Bonferonni p = 0.06, Table S2, Figure S2).

17 We found a significant enrichment of selection signals in 560 genes that showed decreased expression in response
s to drought in the B73 line compared to 3,500 genes with similar leaf expression levels but that were not differen-

150 tially expressed in drought (Table S3). Specifically, expression in adult leaf tissue in both day and night showed evi-
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w0 dence of enrichment for signals of selection along PC 5. 14% of genes down-regulated in drought showed evidence
w1 of selection on leaf expression during day and night, while 8.1% of genes without drought response had evidence of
12 selection for leaf expression during the day and 6.9% had evidence for selection on leaf expression at night ( Bonfer-
s roni p = 0.00363 for day Bonferroni p = 1.635x10for night) (Figure 2). The 328 genes that had increased expres-

14 sion in drought did not show any enrichment for selection (Figure 2, Table S4).

Day
= Night

0.15

0.05

0.00 - | . .

Down Up No change

Proportion under selection
o
>
|

Figure 2: (A) Enrichment for signals of selection in genes down-regulated in drought. The percentage of genes that
show evidence of selection along PC 5 (p < 0.05) in adult leaf expression during the day (orange) and night (blue)

for genes that are down-regulated in drought, up-regulated in drought, and show no change in response to drought.

« Discussion

e Systematically identifying genes important for local adaptation is crucial for understanding how local adaptation

w7 shapes trait variation. Here, we used an extension of Qs7—Fgr to identify genes with expression divergence consis-
es  tent with local adaptation in domesticated maize. Out of a dataset of expression of ~10,000 genes measured across
1o seven tissue types, we identified 60 genes with expression divergence consistent with local adaptation in at least one
wo  tissue type. Additionally, we found evidence that genes involved in drought response and cold response are enriched

i for signals of selection.

w72 Our results contribute to a growing body of evidence that genetic variation for gene expression is shaped by selec-

s tion. Previous studies in maize and other species have shown that rare variants affecting gene expression are often
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w7 under negative selection (Kremling ef al., 2018; Josephs et al., 2015; Glassberg et al., 2019) and that there is weak

s stabilizing selection on gene expression levels in the field (Groen et al., 2020). Alongside evidence for negative se-
e lection, Qsr—Fsr and related analyses have demonstrated that local adaptation shapes between-population divergence
w7 in expression for some genes (Whitehead & Crawford, 2006; Kohn ef al., 2008; Roberge et al., 2007; Ravindran

ws et al., 2019; Jueterbock et al., 2016). This is the first study to use Qpc, a Qsr—Fsr -based method that detects selec-
e tion on expression in the absence of clear subpopulations. With increasing availability of large transcriptomic studies
10 conducted on diversity panels, methods for detecting selection on expression in the absence of clear subpopulations

e will be useful for understanding how selection shapes expression variation.

12 The enrichment of signals of adaptive divergence in genes involved in environmental response provides evidence for
183 types of environmental factors that could contribute to adaptive divergence in expression. A number of pieces of ev-
e 1dence suggest that genes important for drought response had expression values shaped by local adaptation. There

1es 1S an enrichment for signals of selection along PC 5 in genes that have decreased expression in response to experi-

s mental drought. One gene that shows adaptive expression divergence along PC 5 in leaf tissue (FDR = 0.02 for day
17 and FDR = 0.01 for night) codes for the protein ZmRD22B, a putative maize RD22-like protein (Phillips & Ludidi,
s 2017). RD22 proteins are thought to play a role in drought response through the ABA (abscisic acid) signalling path-
189 way (Xu et al., 2010) and ZmRD22B itself is predicted to localize to the cell wall and is upregulated in response to
10 drought and exogenous ABA (Phillips & Ludidi, 2017). Additionally, the group of genes we detected as having sig-
191 nificant expression divergence along PC 5 in leaf tissue, including ZmRD22B, are enriched for GO biological pro-
192 cesses cellulose catabolic process, plant-type cell wall biogenesis, and glucan biosynthetic process. In leaf tissue, PC
193 5 separated out individuals in the non-stiff-stalk heterotic group of maize, suggesting that further investigations into

14 gene expression and drought response in this subpopulation may be a promising future direction.

155 However, the link between genes important for stress response and evidence of local adaptation for gene expression
s in well-watered conditions is complex. The environmental response genes used in this study were identified from

w7 studies of differential expression in a few temperate maize genotypes. Stress-induced changes in gene expression

18 could be beneficial responses that help the individual cope with stress or deleterious responses caused by the indi-

199 vidual’s inability to maintain function in stressful conditions (Ghalambor ef al., 2007). If stress responses tend to be
20 adaptive and improve function in the stressful condition, then local adaptation for expression in non-stressful condi-
201 tions could reflect constitutive changes in expression in genotypes more likely to experience the stress. In contrast, if
22 Stress responses tend to be maladaptive in the stress environment, then local adaptation for expression in non-stressed
23 environment could reflect further selection for reduced response even in non-stressful environments. For both cases,
24 clearly understanding selection on the expression of environment-response genes will require additional experiments

25 that measure expression changes in different environments across a diverse panel of genotypes.

2s  While our method was successful in identifying genes whose expression is consistent with local adaptation, we only
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27 detected selection on 60 genes. Maize domestication and improvement has involved genome-wide selection (Wright
28 et al., 2005; Hufford et al., 2012; Wang et al., 2020; Swarts et al., 2017), so we may expect to see evidence of se-

20 lection on the expression on many more than 60 genes. There are a few potential explanations for why evidence of
210 selection on gene expression may be limited. First, transcriptomes are a snapshot in a specific developmental time

21 and environment and this study may have missed tissues, developmental time points, or environments in which ex-
212 pression has been under strong selection. Second, Qpc loses power when there is high environmental variation (Vi)
213 for a trait. Vg increases trait variance explained by later (’within population’) PCs and, since these later PCs are used
214 to generate a neutral expectation of divergence along focal PCs, high Vg will increase the amount of expression vari-
215 ation expected under neutrality (Figure S6). Overall, this means that high V¢ will reduce power to detect selection
216 (Josephs et al., 2019). This reduction in power due to Vg may be especially strong in expression data, which tends to

27 be noisy and measured in few or no replicates.

21s  An additional limitation of this study and the Qpc approach is that we were only able to investigate genes that were
219 expressed in all individuals for a given tissue type. Qpc models phenotypes as additive combinations of allelic effects
20 (Josephs et al., 2019), and so the model is not robust to phenotypic distributions where a large number of individu-

2z als have a phenotype of 0. However, many of the expression changes that are important for phenotypic change may
222 involve genes being turned on and off, not quantitative expression changes (Zhou et al., 2020). In addition, maize

22 has many presence-absence variants and the expression of these genes will appear to be 0 in individuals with the ab-
22¢  sent allele (Zhou et al., 2019; Hirsch er al., 2014). Methods to detect adaptive divergence in traits with non-normal

225 distributions will be useful for future progress and may be able to detect more instances of adaptation.

26 Altogether, our work demonstrates that Qpc can be used to systematically detect genes whose expression is shaped
22z by local adaptation and has shown its effectiveness in a large dataset from domesticated maize. We not only were

228 able to detect selection on specific genes, but on combinations of genes based on environmental response patterns.

220 Overall, our work shows that this method has potential for use in a number of large diversity panels while suggesting

20 ways forward for better detecting selection on gene expression.
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Figure S1: Expression level of genes in different categories
Tissue Gene Number Individual Number
Kernel 9,814 207
Germinating shoot 10,195 239
Germinating root 10,500 232
Adult leaf night 8,435 110
Adult leaf day 8,879 109
37 Jeaf tip 8,489 237
3" Jeaf base 11,555 236
Table S1: Number of genes and individuals used to test for selection in each tissue
Tissue PC1 PC2 PC3 PC4 PC5 NumberofGenes Cold-Response Genes
Kernel NA 0.776 0362 1.000 NA 9426 4741
Germinating shoot NA 0.882 NA NA NA 9889 5011
Germinating root ~ NA NA NA NA NA 10147 5215
Adult leaf night 0.699 NA 0.031 NA 0.083 8329 4251
Adult leaf day 0.778 0.756 1.00 NA 0.004 8787 4500
3" Jeaf tip NA 0.771 NA 0.807 NA 8403 4279
37 Jeaf base NA 0.785 0.817 NA NA 11377 5830

Table S2: Uncorrected p-values and sample sizes for chi-squared test for enrichment of signals of selection in cold-
response genes. P-values only shown for PC/tissue combinations with at least 1 significantly selected gene (FDR <

0.1).
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Figure S2: Enrichment for signals of selection in genes with differential response to cold treatment. The percentage
of genes that show evidence of selection along PC 5 (p < 0.05) in adult leaf expression during the day for genes that
have expression change in cold and no change in response to cold. While there is a slight enrichment of signals of
selection in cold-response genes, this enrichment is not significant after a Bonferroni correction for multiple testing

(p = 0.09)
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Figure S3: The first two genetic PCs of genotypes in each tissue expression dataset. Each point represents one geno-
type, colored by subpopulation. The x axis is PC 1 and the Y axis is PC 2, labeled by the percentage of variation that

each PC explains.
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Figure S4: The third and fourth genetic PCs of genotypes in each tissue expression dataset. Each point represents

one genotype, colored by subpopulation. The x axis is PC 3 and the Y axis is PC 4, labeled by the percentage of vari-

ation that each PC explains.
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Figure S5: The first and fifth genetic PCs of genotypes in each tissue expression dataset. Each point represents one

genotype, colored by subpopulation. The x axis is PC 5 and the Y axis is PC 1, labeled by the percentage of variation
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Figure S6: (A) Variance in C,, values for neutral simulations with different levels of environmental variance using
the kinship matrix generated from the 207 Kernel lines. (B) Variance in C,, values for actual expression values for 3

different tissue types. The yellow box highlights the five 5 PCs along which expression divergence was tested.

Tissue PC1 PC2 PC3 PC4 PCS5 Number of Genes Down-Regulated Drought-Response Gene
Kernel NA 0.391 0.878 0.023 NA 3031 352
Germinating shoot NA 0.696 NA NA NA 3450 463
Germinating root ~ NA NA NA NA NA 3045 366
Adult leaf night 0.083 NA 0.344 NA 0.0000109 3605 464
Adult leaf day 0.198 0.033 0.639 NA 0.000242 4065 566
3" Jeaf tip NA 0.720 NA 0451 NA 3735 476
3" Jeaf base NA 0.034 05723 NA NA 3687 511

Table S3: Uncorrected p-values for chi-squared test for enrichment of signals of selection in down-regulated
drought-response genes. P-values only shown for PC/tissue combinations with at least 1 significantly selected gene

(FDR < 0.1).
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Tissue PC1 PC2 PC3 PC4 PCS5 NumberofGenes Up-Regulated Drought-Response Genes
Kernel NA 0.689 0.051 0.124 NA 2844 165
Germinating shoot NA 0.181 NA NA NA 3142 155
Germinating root ~ NA NA NA NA NA 2679 161
Adult leaf night 0.379 NA 1.000 NA 0.077 3394 253
Adult leaf day 0.337 0915 0.104 NA 0.319 3827 328
3" Jeaf tip NA 0.434 NA 0305 NA 3513 254
3" Jeaf base NA 0.485 1.000 NA NA 3337 161

Table S4: Uncorrected p-values and sample sizes for chi-squared test for enrichment of signals of selection in up-
regulated drought-response genes. P-values only shown for PC/tissue combinations with at least 1 significantly se-

lected gene (FDR < 0.1).
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