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Introductory paragraph

Plasmid persistence in bacterial populations is strongly influenced by the fitness effects associated with
plasmid carriage. However, plasmid fithess effects in wild-type bacterial hosts remain largely
unexplored. In this study, we determined the distribution of fitness effects (DFE) for the major antibiotic
resistance plasmid pOXA-48 in wild-type, ecologically compatible enterobacterial isolates from the
human gut microbiota. Our results show that although pOXA-48 produced an overall reduction in
bacterial fitness, the DFE was dominated by quasi-neutral effects, and beneficial effects were observed
in several isolates. Incorporating these data into a simple population dynamics model revealed a new
set of conditions for plasmid stability in bacterial communities, with plasmid persistence increasing with
bacterial diversity and becoming less dependent on conjugation. Moreover, genomic results showed a
link between plasmid fitness effects and bacterial phylogeny, helping to explain pOXA-48 epidemiology.
Our results provide a simple and general explanation for plasmid persistence in natural bacterial

communities.
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Introduction

Plasmids are extra-chromosomal mobile genetic elements able to transfer between bacteria through
conjugation®. Plasmids carry accessory genes that help their hosts to adapt to a myriad of
environments and thus play a key role in bacterial ecology and evolution?. A key example of the
importance of plasmids in bacterial evolution is their central role in the spread of antibiotic resistance
mechanisms among clinical pathogens over recent decades®*. Some of the most clinically relevant
resistance genes, such those encoding carbapenemases ([3-lactamase enzymes able to degrade
carbapenem antibiotics), are carried on conjugative plasmids that spread across high-risk bacterial

clones®®.

Despite the abundance of plasmids in bacterial populations and the potential advantages associated
with their acquisition, these genetic elements generally produce physiological alterations in their
bacterial hosts that lead to a reduction in fitness’°. These fitness costs make it difficult to explain how
plasmids are maintained in bacterial populations over the long-term in the absence of selection for
plasmid-encoded traits, a puzzle known as “the plasmid-paradox”'°. Different solutions to this paradox
have been proposed. For example, compensatory evolution contributes to plasmid persistence by
alleviating the costs associated with plasmid-carriage, and a high conjugation rate can promote the

survival of plasmids as genetic parasites''~"8.

Over the past decades, many studies have investigated the existence conditions for plasmids in
bacterial populations' 823, However, understanding of plasmid population biology is held in check by
limitations of the model systems used for its study. First, most experimental reports of fitness costs
have studied arbitrary associations between plasmids and laboratory bacterial strains”?*. These
examples do not necessarily replicate plasmid fitness effects in natural bacterial hosts, which remain
largely unexplored. Second, studies tend to analyse the fitness effects of a single plasmid in a single

bacterium. However, plasmid fitness effects can differ between bacteria?®-28

, and this variability may
impact plasmid persistence in bacterial communities (for a relevant example see?®). Third, most
mathematical models of plasmid population biology study clonal or near-clonal populations. However,
bacteria usually live in complex communities in which conjugative plasmids can spread between

different bacterial hosts®*-32. To fully understand plasmid persistence in natural bacterial populations, it

will be necessary to address these limitations.
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In this study, we provide the first description of the distribution of fitness effects (DFE) of a plasmid in
wild-type bacterial hosts. We used the clinically relevant carbapenem-resistance conjugative plasmid
pOXA-48 and 50 enterobacteria strains isolated from the gut microbiota of patients admitted to a large
tertiary hospital in Madrid. Incorporation of the experimentally determined DFE into a population biology

model provides new key insights into the existence conditions of plasmids in bacterial communities.
Results
Construction of a pOXA-48 transconjugant collection

We studied the DFE of the plasmid pOXA-48 in a collection of ecologically compatible bacterial hosts.
pOXA-48 is an enterobacterial, broad-host-range, conjugative plasmid that is mainly associated with K.

pneumoniae and Escherichia col*>3%

. pPOXA-48 encodes the carbapenemase OXA-48 and is
distributed worldwide, making it one of the most clinically important carbapenemase-producing
plasmids®3*. The gut microbiota of hospitalised patients is a frequent source of enterobacteria clones
carrying pOXA-48°. In recent studies, we described the in-hospital epidemiology of pOXA-48 in a large
collection of extended-spectrum R-lactamase (ESBL)- and carbapenemase-producing enterobacteria
isolated from more than 9,000 patients in our hospital over a period of two years (R-GNOSIS collection,
see methods)®'36-%8 pOXA-48-carrying enterobacteria were the most frequent carbapenemase-
producing enterobacteria in the hospital, with 171 positive isolates, and they colonised 1.13% of the
patients during the study period (105/9,275 patients). In this study we focused on plasmid pOXA-

48 K8, which is a recently described pOXA-48-like plasmid isolated from a K. pneumoniae in our

hospital®! (Figure 1a, for simplicity we will refer to pOXA-48_K8 and pOXA-48-like plasmids as pOXA-

48 throughout the text).

To study the DFE of pOXA-48, we selected 50 isolates from the R-GNOSIS collection as bacterial
hosts. Our criteria were to select (i) pOXA-48-free isolates, to avoid selecting clones in which
compensatory evolution had already reduced plasmid-associated costs; (ii) isolates from the most
frequent pOXA-48-carrying species, K. pneumoniae and Escherichia coli; and (iii) strains isolated from
patients located in wards in which pOXA-48-carrying enterobacteria were commonly reported®’. The
underlying rationale was to select clones which were naive to pOXA-48 but ecologically compatible with
it (i.e. isolated from patients coinciding on wards with others who were colonised with pOXA-48-carrying

clones). We selected 25 K. pneumoniae and 25 E. coli isolates that are representative of the R-
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88  GNOSIS study and cover the K. pneumoniae and E. coli phylogenetic diversity in the collection (see
89  methods, Figure 1b and Supplementary Table 1). It is important to note that, because of the nature of
90 the R-GNOSIS collection, the isolates used in this study produce ESBLs. However, ESBL-producing
91 enterobacteria are widespread not only in hospitals but also in the community®®, and most pOXA-48-

92  carrying enterobacteria isolated in our hospital also produce ESBLs®.

93 pOXA-48 was introduced into the collection of recipient strains by conjugation (see Methods), and the
94  presence of the plasmid was confirmed by PCR and antibiotic susceptibility testing (Supplementary
95  Table 2). The presence of the entire pOXA-48 plasmid was confirmed by sequencing the complete

96 genomes of the 50 transconjugant clones, which also revealed the genetic relatedness of the isolates
97  (Figure 1b). In line with previous studies®'*°, the sequencing results revealed that a subset of isolates
98 initially identified as K. pneumoniae in fact belonged to the species Klebsiella quasipneumoniae (n= 4)
99  and Klebsiella variicola (n= 1). These species are also pOXA-48 hosts in our hospital®' and so were

100  maintained in the study (Figure 1b).

%
3
3
R
@l
g
7
>

aw trop
oA

trau troN

o B\ &
trar 2 & %,
¢ 1519999 % 2 %, 2

ra "% %, %o,
blaOXA48 |
ysh

v \

»
s
23

v pOXA-48_K8 gk
e 65,499 bp . carzsro

part
radc  pld gz & 2 3 3,

o para 8 5 — s 8 9

oML s1are et P & Tree scale: 0.01 & A 3

00

102  Figure 1. Experimental model system. Representation of pOXA-48 plasmid and the enterobacteria

103  strains used in this study. (a) pOXA-48_K8 (accession number MT441554). Reading frames are shown
104  as arrows, indicating the direction of transcription. Colours indicate gene function classification (see
105 legend). The blaoxa-as gene is shown in pink. (b) Unrooted phylogeny of whole-genome assemblies

106  from E. coli clones (left) and Klebsiella spp. clones (right). Branch length gives the inter-assembly mash
107  distance (a measure of k-mer similarity). The grouping of multi-locus sequence types (ST) is also

108 indicated (E. coli ST6217 belongs to the ST10 group). Note that the sequencing results revealed that a
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subset of isolates initially identified as K. pneumoniae were in fact Klebsiella quasipneumoniae (n= 4)

and Kilebsiella variicola (n=1).

Measuring pOXA-48 fitness effects

To measure pOXA-48 fitness effects, we performed growth curves and competition assays for all the
plasmid-carrying and plasmid-free clones in the collection. We first performed growth curves in pure
cultures to calculate maximum growth rate (umax) and maximum optical density (ODmax), which can be
used to estimate the intrinsic population growth rate (r) and carrying capacity (K), respectively
(Supplementary Figure 1). We also measured the area under the growth curve (AUC), which integrates
information about r and K. To estimate plasmid-associated fitness effects, we compared these
parameters between each plasmid-carrying and plasmid-free pair of isogenic isolates (Figure 2a). The
results showed that, as expected, pOXA-48 produced an overall decrease in the parameters extracted
from the growth curves. However, in a substantial subset of clones, plasmid acquisition was not

associated with a reduction in these parameters (Figure 2a).

Competition assays allow measurement of the relative fithess (w) of two bacteria competing for
resources in the same culture*'. Competition between otherwise isogenic plasmid-carrying and
plasmid-free clones thus provides a quantitative assessment of the fitness costs associated with
plasmid carriage. For the competition assays, we used flow cytometry; strains were labelled using an
in-house developed small, non-conjugative plasmid vector, called pBGC, that encodes an inducible
green fluorescent protein (GFP) (Supplementary Figure 2). pPBGC was introduced into the wild-type
isolate collection by electroporation, and all pOXA-48-carrying and pOXA-48-free clones were
competed against their pPBGC-carrying parental strain. We were unable to introduce pBGC into eight of
the isolates; in those cases, for the competitor, we used E. coli strain J53 carrying the pBGC vector
(see Methods for details). Data from the competition assays were used to calculate the competitive
fithess of pOXA-48-carrying clones relative to their plasmid-free counterparts (Figure 2b). There were
no significant differences between the fitness effects of pOXA-48 in Klebsiella spp. and E. coli isolates

(ANOVA effect of Species x Plasmid interaction; F=0.088, df=1, P=0.767).

To validate our results, we compared the values obtained from growth curves and competition assays.
This analysis revealed a significant correlation between relative fitness values and the parameters

extracted from the growth curves (Supplementary Figure 3).
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Growth curve parameters

Figure 2. pOXA-48 fitness effects in a set of ecologically compatible wild-type enterobacteria. (a)
Relative values of growth-curve parameters (plasmid-carrying/plasmid-free isogenic clones): maximum
optical density (ODmax, pink), maximum growth rate (umax, yellow), and area under the curve (AUC,
green). Dots represent each relative value (red, E. coli; blue, Klebsiella spp.). Values below 1 indicate a
reduction in these parameters associated with plasmid-acquisition. Five biological replicates were
performed for each growth curve. (b) Relative fithess (w) of plasmid-carrying clones compared with
plasmid-free clones obtained by competition assays (red, E. coli; blue, Klebsiella spp.). Values below 1
indicate a reduction in w due to plasmid acquisition; values above 1 indicate an increase in w. Bars
represent the mean of five independent experiments, and error bars represent the standard error of the
mean. Two horizontal lines indicate those clones showing significant costs or benefits associated with

carrying pOXA-48 plasmid.

The distribution of pOXA-48 fitness effects

Results from the competition assays showed that the overall effect of pOXA-48 was a small but
significant reduction in relative fitness (mean w= 0.971, ANOVA effect of plasmid; F=70.04, df=1,
P=1.02x10""%). However, plasmid fitness effects varied greatly between the isolates in the collection,
producing a normal distribution ranging from a >20% reduction to almost a 20% increase in relative
fitness (Figure 2b and 3a; Shapiro-Wilk normality test, P= 0.14). Indeed, plasmid acquisition was
associated with a significant fitness decrease in only 14 strains, and 7 isolates showed a significant

increase in fitness (Bonferroni corrected two sample t-test, P< 0.05). These results revealed a highly
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dynamic scenario in which a plasmid produces a wide distribution of fitness effects in different bacterial

hosts, ranging from costs to benefits.

To place our results in context with previous reports, we compared the DFE for pOXA-48 with the
results from a recent meta-analysis of plasmid fitness effects by Vogwill and MacLean?* (Figure 3).
These authors recovered data for 50 plasmid-bacterium pairs from 16 studies. The DFE constructed
from those reports showed a higher mean plasmid cost (mean w= 0.91) and differed significantly from
the DFE we report here for pOXA-48 in wild-type enterobacteria (Wilcoxon signed rank test, V=922, P=
0.006). The discrepancy between these distributions may, at least in part, reflect the different nature of
plasmid-bacterium associations considered in the different studies. Although the plasmids studied in
earlier reports were isolated from natural sources, they were introduced into laboratory bacterial strains,
and the detected fitness effects may not be fully representative of wild-type plasmid-bacterium
associations. Our study, on the other hand, analysed the fitness effects of pOXA-48 in ecologically
compatible bacterial hosts. Taken together, the data suggest that the distribution of plasmid fitness

effects is likely influenced by the ecological compatibility between plasmids and their bacterial hosts.
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Figure 3. Distribution of plasmid fitness effects. Comparison between the DFE obtained in this study
and the DFE from previous studies. (a) DFE for pOXA-48 in the ecologically compatible collection of
enterobacteria isolates. Bars indicate the number of E. coli (red) and Klebsiella spp. (blue) strains in
each relative fitness category. The grey dotted line indicates the mean relative fitness of the population.
Note that relative fitness values are normally distributed (w= 0.971, var= 0.0072). (b) DFE for plasmids
in bacterial hosts obtained in a previous meta-analysis?*. Most of the included studies were based on
arbitrary associations between plasmids and laboratory strains. Bars indicate the number of plasmid-

bacterium associations in each relative fitness category. The grey dotted line indicates the mean
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relative fithess across studies. Relative fitness values are not normally-distributed (w= 0.91, var= 0.029;

Shapiro-Wilk normality test, P= 0.0006).

pOXA-48 fitness effects across bacterial phylogeny

A key limit to the prediction of plasmid-mediated evolution is the inability to anticipate plasmid fitness
effects in new bacterial hosts. This is particularly relevant to the evolution of antibiotic resistance
because some of the most concerning multi-resistant clinical pathogens arise from very specific
associations between resistance plasmids and high-risk bacterial clones*®42. Interestingly, a recent
study in an important pathogenic E. coli lineage (ST131) showed that the acquisition and maintenance
of resistance plasmids is associated with specific genetic signatures*. Pursuing this idea, we analysed
the DFE for pOXA-48 across the whole-genome phylogeny of our isolates, with the aim of determining if
genetic content could help to predict plasmid fitness effects (Figure 4). We calculated the genetic
relatedness of Klebsiella spp. and E. coli isolates by reconstructing their core genome phylogeny
(Figure 4a). Plasmid fitness effects can also be strongly influenced by the accessory genome. For
example, the presence of further mobile genetic elements can deeply impact the costs of plasmids**#°.

Therefore, we also constructed trees from the distance matrix of the accessory gene network*8, which

includes plasmid content (Figure 4b).

For each group of isolates, we scanned the fitness effects of pOXA-48 across the core and accessory
genome using the local indicator of phylogenetic association index*"8 (LIPA, see Supplementary
Figure 4, Supplementary Table 3, and methods for the complete analysis). For the E. coli isolates, the
results showed no association of pOXA-48 fithess effects with the core or accessory phylogenies (LIPA,
P> 0.1). In contrast, for Klebsiella spp., LIPA indices revealed a significant phylogenetic signal in four
clones in which pOXA-48 produced a high fitness cost, all of them belonging to ST1427 (Kpn01, Kpn04,
Kpn08, and Kpn13, accounting for 4 of the 5 ST1427 clones analysed in this study; LIPA, P< 0.05).
Three of these ST1427 clones also produced a significant signal in the analysis of fithess effects across
the accessory genome (Kpn01, Kpn08, and Kpn13; LIPA, P< 0.05). The results thus reveal that pOXA-
48 tended to produce a high cost in K. pneumoniae clones belonging to ST1427. Interestingly, although
K. pneumoniae ST1427 is relatively common in our hospital (4.8% of ESBL-producing K.
pneumoniae®), none of the 103 pOXA-48-carrying K. pneumoniae isolates recovered in the R-GNOSIS

collection belong to this ST*! (Fisher’s exact test for count data, 8/166 vs 0/103, P= 0.025). These
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results suggest that the high cost associated with plasmid acquisition in this clade may limit in-hospital
spread of pOXA-48-carrying K. pneumoniae ST1427. Conversely, pOXA-48 is commonly associated
with K. pneumoniae ST11 in our hospital®'*¢, and in the four ST11 clones tested in this study, pOXA-48
produced neutral (Kpn07, Kpn20, Kpn23) or even beneficial fitness effects (Kpn22, Figure 4A) (pOXA-
48 fitness effects in ST1427 [n=5] vs. in ST11 [n=4], Welch's unequal variances two-tailed t-test, t= -
2.39, df= 7, P=0.048).

Klebsiella spp.

Kpn12
Kpnog
Kony, 5

~
s
5

KKKKK

0.75
0.795
0.84
0.885
0.93
0.975
1.02
1.065
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s am ms

Tree scale: 0.001 —— Tree scale: 0.001 — Tree scale: 0.1~ Tree scale: 0.1 —

Figure 4. Fitness effects of pOXA-48 across bacterial genome content. An association was found
between pOXA-48 fitness effects and bacterial host genomic content for four K. pneumoniae ST1427
isolates. (a) Core genome relationships among E. coli (left) and Klebsiella spp. (right). Tree construction
is based on polymorphisms in the core genome. The outer circle indicates the relative fitness of pOXA-
48-carrying bacterial hosts (see legend for colour code; red indicates fitness costs and green indicates
fithess benefits associated with pOXA-48 carriage). Asterisks denote clones with a phylogenetic signal
associated with plasmid fitness effects (LIPA, P< 0.05). (b) Accessory genome relationships among E.
coli (left) and Klebsiella spp. (right). Tree construction is based on the distance matrix of the accessory
gene network of each group. The outermost circle indicates relative fitness as in (a). The intermediate
circles indicate presence/absence of plasmids belonging to the different plasmid families named in the
figure. Asterisks denote clones with a significant phylogenetic signal associating accessory genome

composition with pOXA-48 fitness effects (LIPA, P< 0.05).
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Modelling the role of DFE in plasmid stability

In general, mathematical models of plasmid population biology consider a clonal population in which the
plasmid produces a constant reduction in growth rate' 1823, These models usually include the rate of
plasmid loss through segregation*®®° and the rate of horizontal plasmid transfer by conjugation®20°1,
and some of them also incorporate a rate of compensatory mutations that alleviate plasmid fitness
costs over time'*23, Our results show that plasmids produce a wide DFE in naturally compatible
bacterial hosts, and this distribution could strongly influence plasmid stability in polyclonal bacterial
communities. To assess the effect of the DFE on plasmid stability in bacterial communities, we

developed a simple mathematical model based on Stewart and Levin’s pioneering work on plasmid

existence conditions'®.

The model describes the population dynamics of multiple subpopulations competing for a single
exhaustible resource in well-mixed environmental conditions, assuming that transition between plasmid-
bearing and plasmid-free cells is driven by segregation events. The growth rate of each subpopulation
is determined by a substrate-dependent Monod term that depends on the extracellular resource
concentration, and therefore each strain can be described by two structurally identifiable parameters*®:
the resource conversion rate (p) and the specific affinity for the resource (Vmax/Kn). These parameters
were estimated from the optical densities of each strain growing in monoculture (with and without
plasmids) using a Markov chain Monte Carlo (MCMC) method with a Metropolis-Hastings sampler (See

Methods, Figure 5a and Supplementary Figure 5).

By solving the system of differential equations (described in Methods), we were able to evaluate the
final frequency of plasmid-bearing cells in an experiment of duration T time units and quantify the
fithess effect of the plasmid on the strain. Figure 5b shows the DFE obtained after performing in silico
pair-wise competition experiments between plasmid-bearing and plasmid-free subpopulations (with
parameter values shown in Supplementary Table 5, Supplementary Figure 6), resulting in a theoretical
DFE (w= 0.985, var= 0.0070) that is consistent with the experimentally measured DFE presented in
Figure 3 (w= 0.971, var= 0.0072). Moreover, comparison of model predictions with relative fitness
values obtained by flow cytometry are consistent (R?= 0.603; Figure 5c¢), showing that the population
dynamics model can accurately predict the outcome of a competition experiment from the individual

growth dynamics.

10
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Previous studies showed that the probability of plasmid fixation is correlated with the rate of horizontal
transmission'9204%_ As previous models, we consider horizontal transmission of plasmids as a function
of the densities of donor and recipient cells, with conjugation events occurring at a constant rate.
Competition experiments for a range conjugation rates are illustrated in Figure 5d; while at low
horizontal transmission rates plasmid-free cells outcompete plasmid-bearing cells, at higher conjugative

rates, plasmid-bearing cells increase in frequency.
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Figure 5. Modelling the DFE for pOXA-48. (a) Distribution of parameter values obtained using Bayesian
inference to estimate growth kinetic parameters from OD measurements obtained for each strain in
isolation. Diamonds represent Klebsiella spp. strains and circles E. coli clones; filled symbols denote
plasmid-bearing strains and empty symbols plasmid-free cells. The ellipses represent standard
deviations of best-fit Normal distributions (green for plasmid-bearing strains and orange for plasmid-free
cells). (b) Bars represent a DFE obtained from in silico competition experiments with parameter values

determined from experimental growth curves. The solid curve represents the computationally estimated
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DFE obtained by randomly sampling wild-type and transconjugant parameter distributions obtained
using the MCMC algorithm and numerically solving the model to evaluate the relative fithess associated
with plasmid carriage. (c) Comparison of relative fitness values obtained experimentally and using the
population dynamics model (R?= 0.603). (d) Fraction of plasmid-bearing cells as a function of the rate of
horizontal transfer for random plasmid-host associations sampled from the MCMC parameter
distribution. The dotted line illustrates the mean of 10* pair-wise competition experiments under the
assumption plasmid-bearing is associated with a constant reduction in fitness in different clones (w=
0.985, var= 0), while the solid line is obtained by considering a wide DFE (w= 0.985, var= 0.0070). The
arrow denotes the difference in the conjugation threshold that positively selects for plasmids in the
population, supporting the tenet that the DFE maintains plasmids in the population at lower conjugation

rates.

Community complexity promotes plasmid persistence

To explore how plasmid stability is affected by increasing community complexity and rates of horizontal
transmission, we randomly sampled N= 10* plasmid-free cells from the distribution of growth
parameters estimated using the MCMC algorithm. These random communities were used to study the
population dynamics of plasmids transmitting vertically and horizontally in multi-strain communities. The
fitness cost (or benefit) of bearing plasmids was modelled as a random variable that modifies the wild-
type (plasmid-free) growth rate by a factor o, such that if o= 0, the DFE has zero variance (Figure 6a),
but if 0> 0, the resulting DFE is a symmetrical heavy-tailed distribution with a right-hand tail expanding
towards positive fitness effects (Figure 6b), indicating the existence of plasmid-host associations in

which plasmid carriage produces a fithess benefit.

To assess how DFE influences plasmid persistence in polymicrobial communities, we extended the
model to consider populations composed of subsets of 1, 2, 3, 4, ..., M < N cell types sampled randomly
from the wild-type parameter distribution (see Methods and Supplementary Figure 7 and 8). This
enabled us to estimate the relative frequency of plasmid-bearing cells at the end of a long-term
experiment and evaluate the stability of the plasmid in multi-strain communities with different population
structures. Initial bacterial densities were determined by first running the system forward (with all strains
initially present at equal densities and carrying pOXA-48) for T= 24 time units, and then clearing all

plasmid-free cells from the population. This assumption is akin to patients receiving an antibiotic
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therapy that clears all plasmid-free cells from the bacterial community. The results obtained after 5,000
computer simulations over a range of conjugation rates and numbers of cell types in the community are
shown in Figure 6. The simulations either assumed an identical fitness cost for all strains (w= 0.985,
var= 0; Figure 6a,c) or allowed plasmid fitness effects to vary according to the experimentally

determined DFE (w= 0.985, var= 0.0070; Figure 6b,d).

Although the mean fithess cost was the same in both conditions, the results of the computational
experiments suggest that allowing fitness effects to vary between members of the population markedly
increases the chances of plasmid persistence, especially at low conjugation rates. More importantly, in
the numerical simulations, plasmid frequency decreased as a function of the number strains in the
community when plasmid acquisition was associated with a constant fithess cost, but increased with
community complexity for DFEs with larger variance (Figure 6c,d,e). The explanation for this effect is
that if plasmid fitness cost is identical for all community members, diversity simply means extra
competition for plasmid-carrying cells, and plasmid persistence becomes more dependent on a high
conjugation rate. In contrast, if the fithess effects vary, a larger number of available bacterial hosts in
the population increases the probability of the plasmid arriving to a host in which it produces a neutral
or beneficial fitness effect. This is an important result because it implies that increasing bacterial
community complexity could increase the probability of plasmid persistence in natural environments.
Given that most natural microbiota are complex and plasmids can usually conjugate and replicate in
different clones, this may explain the high prevalence of plasmids in nature. Our results also indicate
that the threshold conjugation rate for plasmid persistence may be lower than previously thought. In
fact, once plasmids are present in multiple members of a community, they may be able to persist even

in the absence of conjugation (Figure 6d).
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324  Figure 6. Modelling plasmid persistence in polymicrobial communities, assuming fixed (a,c) or variable
325 (b,d) plasmid fitness effects. (a-b) Relative fitness histogram obtained by randomly sampling 10*

326  parameter values from the parameter distribution shown in the inset plot (points illustrate the expected
327  values of each distribution and ellipses their standard deviation; green, plasmid-bearing bacteria;

328  orange, plasmid-free bacteria). The green ellipse in b is larger as a consequence of considering that the
329  cost of plasmid-bearing is normally-distributed with variance 0.007. As a result, the DFE also has higher

330 variance, with a considerable fraction of plasmid-host associations producing a benefit to the host.
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Dotted red lines indicate mean relative fitness of plasmid carrying cells. (c-d) Colour gradient represents
the percentage of cells carrying plasmids at the end of 5,000 stochastic simulations; orange indicates a
population without plasmids and green a community composed of plasmid-carrying cells. If plasmid-
bearing is associated with a fixed fitness cost for all members of the community, plasmid maintenance
requires a high conjugation rate. The increased proportion of plasmid-bearing cells in d indicates that a
DFE with high variance reduces the critical conjugation rate needed to maintain plasmids in the
population, enabling plasmids to persist at low conjugation rates. (e) Mean fraction of plasmid-bearing
cells as a function of the number of strains in the community with a conjugation rate y= 1.5 x 10", If
the plasmid always produces a reduction in host fitness (mean w <1 and low variance), plasmid
frequency decreases as the number of strains in the community increases (green line). In contrast, for
higher variance at the same mean w, the fraction of plasmid-bearing cells increases with community

complexity (orange line).

Discussion

The DFE for new mutations is a central concept in genetics and evolutionary biology, with implications
ranging from population adaptation rates to complex human diseases®. The fitness effects of new
spontaneous mutations in bacteria follow a heavy-tailed distribution dominated by quasi-neutral
mutations with infrequent strongly deleterious mutations®54. Horizontally acquired genes also produce
a distribution of fitness effects in new bacterial hosts®®°¢. However, horizontal gene transfer in bacteria
is frequently mediated by entire mobile genetic elements, such as plasmids, that carry multiple genes.
Numerous studies have measured the fitness effects of individual plasmids in a bacterial host?*, but the
DFE of a plasmid in multiple, ecologically compatible bacterial hosts had not been reported before.
Here, we determined the DFE of a carbapenem resistance plasmid in wild-type enterobacteria
recovered from the human gut microbiota. Unsurprisingly, the DFE of pOXA-48 differed from the DFE of
spontaneous mutations. As with spontaneous mutations, the pOXA-48 DFE was also dominated by
quasi-neutral effects and was slightly shifted towards fitness costs; however, instead of a single heavy
tail of deleterious effects, it had a symmetrical shape, with tails expanding both towards negative and

positive fitness effects (Figure 3a).

Two key implications of the experimentally determined DFE in this study are that, according to our

simple mathematical model, the probability of plasmid persistence becomes less dependent on a high
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conjugation rate and increases with the number of bacterial strains in the population. The complex and
multi-clonal nature of most natural bacterial communities attests the likely relevance of our findings to
the extremely high prevalence of plasmids in bacterial populations®”. The human gut microbiota, for
example, includes a great variety of bacteria from hundreds of species®®, including several strains from
the Enterobacterales order alone®. Our experimental system is in fact inspired by the dynamics of
pOXA-48 in the gut microbiota of hospitalised patients. In a recent study, we observed that once
patients are colonised by a pOXA-48-carrying clone, the plasmid spreads through conjugation to other
resident enterobacteria present in the gut microbiota®'. Crucially, pOXA-48 usually persists in the gut of
patients throughout the hospital stay and can be detected in subsequent hospital admissions months or
years later, and not necessarily in the original colonizing strain®'. Our results indicate that the pOXA-48

DFE could explain the long-term persistence of this and other plasmids in the human gut microbiota.

Another interesting result of this study is that pOXA-48 produced a particularly elevated cost in K.
pneumoniae isolates belonging to ST1427 (Figure 4A). ST1427 is under-represented among the pOXA-
48-carrying K. pneumoniae isolates in our hospital, which are dominated by ST113"3¢. Remarkably, in
the four K. pneumoniae ST11 clones tested in this study, pOXA-48 produced neutral (Kpn07, Kpn20,
Kpn23) or even beneficial fithess effects (Kpn22, Figure 4A). Therefore, despite the small number of K.
pneumoniae clones analysed, our results suggest that phylogeny might influence fithess compatibility
between plasmids and bacteria at the clonal level, dictating the epidemiology of plasmid-bacterium
associations in clinical settings. Further analysis of a larger sample of K. pneumoniae isolates from the
different STs will be needed to elucidate the genetic basis underlying these specific interactions

between bacterial phylogeny and pOXA-48 fitness effects.

The main experimental limitation of our study is that plasmid fitness effects were determined in vitro,
using planktonic cultures in LB medium. This is the standard practise in the field, and previous studies
have shown that plasmid fitness effects measured in laboratory conditions correlate with those
measured in animal models?*; however, our results may not be fully representative of pOXA-48 fitness
effects in the human gut. Future studies will need to explore more complex in vitro systems®, as well as
in vivo animal models®'. Another important limitation of our study is that we modelled bacterial
communities with a simple resource competition model that does not consider spatial structure®,

complex ecological interactions between community members®, plasmid-host co-evolution®*, or
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differential rates of horizontal transmission?®. Although more complex models® will be needed to
integrate bacterial community complexity and plasmid fitness effects, consideration of diverse
polymicrobial populations with complex spatiotemporal interactions would likely only increase DFE

variance, therefore promoting plasmid stability.
Methods
Strains, pOXA-48 plasmid, and culture conditions

We selected 50 representative ESBL-producing clones form the R-GNOSIS collection (Supplementary
Table 1). This collection was constructed in our hospital as part of an active surveillance-screening
program for detecting patients colonised by ESBL/carbapenemase-producing enterobacteria, from

March 4th, 2014, to March 315!, 2016 (R-GNOSIS-FP7-HEALTH-F3-2011-282512, www.r-gnosis.eu/,

approved by the Ramon y Cajal University Hospital Ethics Committee, Reference 251/13)%¢%, The
screening included a total of 28,089 samples from 9,275 patients admitted at 4 different wards
(gastroenterology, neurosurgery, pneumology and urology) in the Ramon y Cajal University Hospital
(Madrid, Spain). The characterisation of samples was performed during the R-GNOSIS study
period3®%8; rectal swabs were plated on Chromo ID-ESBL and Chrom-CARB/OXA-48 selective agar
media (BioMérieux, France) and bacterial colonies able to grow on these media were identified by
MALDI-TOF MS (Bruker Daltonics, Germany) and further characterized by pulsed-field gel
electrophoresis (PFGE). For the present study, we selected 25 E. coli and 25 K. pneumoniae ESBL-
producing isolates from the R-GNOSIS collection. The strains were representative of E. coli and K.
pneumoniae diversity in the R-GNOSIS collection (randomly chosen form the most common pulsed-
field gel electrophoresis profiles®), they did not carry any carbapenemase gene and they were
recovered from patients not colonised by other pOXA-48-carrying clones. To construct the
transconjugants, we used the most common pOXA-48 plasmid variant from the R-GNOSIS collection in
our hospital, according to plasmid genetic sequence (pOXA-48_ K8, accession number MT441554)%,
Bacterial strains were cultured in lysogeny broth (LB) at 37°C in 96-well plates with continuous shaking

(250 rpm) and on LB agar plates at 37°C.

Construction of transconjugants collection
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We performed an initial conjugation round to introduce pOXA-48_ K8 plasmid from wild type E. coli
C609 strain®', into E. coli B3914%", a diaminopimelic acid (DAP) auxotrophic laboratory mutant of E. coli
K-12 (kanamycin, erythromycin and tetracycline resistant, Supplementary Table 1), which was used as
the common counter-selectable donor. The pOXA-48-carrying wild type E. coli C609 and E. coli 3914
were streaked from freezer stocks onto solid LB agar medium with ertapenem 0.5 pg/ml and DAP 0.3
mM, respectively, and incubated overnight at 37°C. Donor and recipient colonies were independently
inoculated in 2 ml of LB in 15-ml culture tubes and incubated overnight. After growth, donor and
recipient cultures were collected by centrifugation (15 min, 1,500 g) and cells were re-suspended in
each tube with 300 pl of sterile NaCl 0.9%. Then, the suspensions were mixed in a 1:1 proportion,
spotted onto solid LB medium with DAP 0.3 mM and incubated at 37°C overnight. Transconjugants
were selected by streaking the conjugation mix on LB with ertapenem (0.5 pyg/ml), DAP 0.3 mM,
tetracycline (15 ug/ml), and kanamycin (30 ug/ml). The presence of pOXA-48 was checked by PCR,
using primers for blaoxa-4s gene and for the replication initiation protein gene repC (Supplementary

Table 4).

We used the counter-selectable E. coli B3914/pOXA-48_K8 donor to conjugate plasmid pOXA-48 in the
50 wild type strains. We used the same protocol described above, but the final conjugation mix was
plated on LB with no DAP (to counter-select the donor) and with amoxicillin-clavulanic acid (to select for
transconjugants). The optimal concentration of amoxicillin-clavulanic acid was experimentally
determined for each isolate in the collection and ranged from 64 ug/ml to 384 ug/ml. The presence of
pOXA-48 in the transconjugants was checked by PCR, as described above, and by antibiotic
susceptibility testing and whole genome sequencing (see below). To test the stability of plasmid pOXA-
48 in the transconjugants we propagated cultures in LB with no antibiotic selection (two consecutive
days, 1:10,000 dilution) and plated cultures on LB agar. After ON incubation at 37°C, 100 independent
colonies of each transconjugant were replicated both on LB agar and LB agar with amoxicillin-
clavulanic acid to identify pOXA-48-carrying colonies (including negative controls of plasmid-free wild
type clones). Results showed that the plasmid was overall stable in the transconjugants; 100% stable in

43 isolates, and > 90% stable in the 7 remaining isolates.

Antibiotic susceptibility testing
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Antibiotic susceptibility profiles were determined for every wild-type and transconjugant strain by the

disc diffusion method following the EUCAST guidelines (www.eucast.org) (Supplementary Table 2). We

used the following antimicrobials agents: imipenem (10 pg), ertapenem (10 pg), amoxicillin-clavulanic
acid (20/10 ug), rifampicin (30 ug), streptomycin (300 pg), chloramphenicol (30 pg) and amikacin (30
Mg) (Bio-Rad, CA, USA). pOXA-48-carrying and pOXA-48-free strains were pre-cultured in Miller-
Hinton (MH) broth at 37 °C in 15 ml test tubes with continuous shaking (250 rpm), and disc diffusion

antibiograms were performed on MH agar plates (BBL, Becton Dickinson, MD, USA).

Growth curves

Pre-cultures of plasmid-free and plasmid-carrying strains (5 replicates of each) were prepared by
inoculating single independent colonies into LB broth and overnight incubation at 37 °C with continuous
shaking (250 rpm). Overnight cultures were diluted 1:1,000 into fresh LB in 96-well plates, which were
incubated during 22 h at 37 °C with shaking (250 rpm) in a plate reader (Synergy HTX Multi-Mode
Reader, BioTek Instruments, Inc, VT, USA). Optical densities (OD) were measured every 15 minutes
during the incubation. The maximum growth rate (Umax), maximum optical density (ODmax), and area
under the growth curve (AUC) were determined using Gen5™ Microplate Reader and Imager Software
and the growthrates package in R. We calculated the relative ODmax, Mmax, and AUC, by dividing the
average value of each parameter for the pOXA-48-carrying isolate between that of the pOXA-48-free
isolate using the follow formula:

Plasmid — carrying ODmax,Vmax,AUC

Plasmid — free ODmax,Vmax,AUC

Relativeppmax,vmax.avc =

Construction of pBGC, a GFP-expressing non-mobilizable plasmid.

To fluorescently label the wild type isolates for competition assays using flow cytometry, we constructed
the pBGC plasmid, a non-mobilizable version of the gfp-carrying small plasmid pBGT®® (Supplementary
Figure 2, accession number MT702881). The pBGT backbone was amplified, except for the region
including the oriT and blatem1 gene, using the pBGC Fw/Rv primers. The gfp terminator region was
independently amplified using the GFP-Term Fw/Rv primers (Supplementary Table 4). PCR
amplifications were made with Phusion Hot Start 1| DNA Polymerase at 2 U/uL (ThermoFisher
Scientific, MA, USA), and PCR products were digested with Dpnl to eliminate plasmid template before

setting up the assembly reaction (New England BioLabs, MA, USA). Finally, pBGC was constructed by
19


https://doi.org/10.1101/2020.08.01.230672
http://creativecommons.org/licenses/by-nc-nd/4.0/

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.01.230672; this version posted August 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

joining the amplified pBGT backbone and the gfp terminator region using the Gibson Assembly Cloning
Kit (New England BioLabs, MA, USA). Resulting reaction was transformed by heat shock into NEB 5-
alpha Competent E. coli (New England BioLabs, MA, USA), following manufacturer’s instructions.
Transformation product was plated on LB agar with arabinose 0.1% and chloramphenicol 30 yg/ml, and
incubated overnight at 37 °C. Plasmid-bearing colonies were selected by green fluorescence. The gfp
gene in pBGC is under the control of the Psap promoter, so GFP production is generally repressed and
induced by the presence of arabinose. pPBGC was completely sequenced using primers described in
Supplementary Table 4. We confirmed that neither pOXA-48, nor helper plasmid pTA-Mob®®, could
mobilized pBGC by conjugation using the conjugation protocol described above, confirming that pBGC
plasmid is not mobilizable. Finally, pPBGC plasmid was introduced into our isolate collection by
electroporation (Gene Pulser Xcell Electroporator, BioRad, CA, USA). Of note, we were not able to
obtain pBGC-carrying transformants in eight of the isolates due to a pre-existing high chloramphenicol

resistance phenotype.
Competition assays using flow cytometer

We performed competition assays*', using flow cytometry, to obtain the relative fitness of pOXA-48-
carrying isolates compared to their pOXA-48-free parental counterparts. We used the collection of
pBGC transformed wild type isolates as competitors against their isogenic pOXA-48-carrying and
pOXA-48-free isolates. Specifically, two sets of competitions were performed for each isolate: pOXA-
48-free vs. pBGC-carrying, and pOXA-48-carrying vs. pBGC-carrying. Five biological replicates of each
competition were performed. Pre-cultures were incubated overnight in LB in 96-well plates at 225 rpm
an 37°C, then mixed 1:1 and diluted 10,000-fold in 200 pl of fresh LB in in 96-well plates. Mixtures were
competed for 24 h in LB at 37°C and 250 rpm (the low initial cell density and the strong shaking hinders
pOXA-48 conjugation, see control experiment below). To determine the initial proportions, initial 1:1
mixes were diluted 2,000-fold in 200 pl of NaCl 0.9 % with L-arabinose 0.1 %, and incubated at 37 °C at
250 rpm during 1.5 h to induce gfp expression. The measurements were performed via flow cytometry
using a CytoFLEX Platform (Beckman Coulter Life Sciences, IN, US) with the following parameters: 50
ul min~" flow rate, 22 ym core size, and 10,000 events recorded per sample (Supplementary Figure 9).

After 24 hours of incubation, final proportions were determined as described above, after 2,000-fold
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dilution of the cultures. The fitness of each strain relative to its pBGC-carrying parental isolate was
determined using the formula:

= In(Ns /N;)
In (Nf,pBGc+ /Ni,pBGC+)

where w is the relative fitness of the pOXA-48-carrying (Wpoxa-4s+) or pOXA-48-free (Wpoxa-4s-) isolates
compared to the pBGC-bearing parental clone, N; and Nrare the number of cells of the pBGC-free
clone at the beginning and end of the competition, and N; pscc and Nr pscc are the number of cells of the
pBGC-carrying clone at the beginning and end of the competition, respectively. The fitness of the
pOXA-48-carrying isolates relative to the pOXA-48-free parental isolates were calculated with the
formula, wpoxa-4s+ / Wpoxa-as- to correct for the fitness effects of pPBCG (see Supplementary Figure 10 for
pBGC fitness effects), and the error propagation method was used to calculate the standard error of the
resulting value. Note that the fitness effects of pBGC did not correlate with those form pOXA-48
(Pearson's correlation, R=0.11, t= 0.66, df= 39, P= 0.51). For the 8 strains where pBGC plasmid could
not be introduced (Ec13, Kpn10, Kpn11, Kpn19-Kpn23), pOXA-48-carrying and pOXA-48-free isolates
were competed against a pBGC-carrying E. coli J53"° (a sodium azide resistant laboratory mutant of E.
coli K-12), following the same protocol described above. In general, we prefer to perform competitions
assays between isogenic bacteria to avoid interactions between clones that may affect the outcome of
the competition for reasons beyond the presence of the plasmid under study (such as bacteriocin
production). However, we did not observe any evidence of growth inhibition between the 8 wild type
isolates and E. coli J53 in the flow cytometry data, and the relative fithess results obtained with these
competitions were comparable to those obtained in the isogenic competitions (two-tailed t-test, t= 1.64,
df=11.2, P=0.13). To confirm that the isogenic competitions and those against E. coli J53/pBGC
produced similar results, we selected 10 random isolates from the 42 isolates with fithess data
calculated from isogenic competitions, and repeated their competitions against E. coli J53/pBGC
(Supplementary Figure 11). Results showed that relative fitness values calculated with isogenic
competitions and those using E. coli J53/pBGC presented a good correlation (Pearson's correlation, R=
0.81, t= 3.96, df= 8, P= 0.004, Supplementary Figure 11). Finally, we performed controls to test for the
potential conjugative transfer of pOXA-48 during head-to-head competitions by plating the final time
points of the competition assays on amoxicillin-clavulanic acid (with the adequate concentration for
each isolate), and chloramphenicol (30 ug/ml). No transconjugants were detected in these controls,
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showing that the low initial inoculum size we used in the competitions (10,000-fold dilution), and the

vigorous shaking of the liquid cultures prevented pOXA-48 conjugation.
DNA extraction and genome sequencing

Genomic DNA of all the pOXA-48 bearing strains was isolated using the Wizard genomic DNA
purification kit (Promega, WI, USA), and quantified using the QuantiFluor dsDNA system (Promega, WI,
USA), following manufacturers’ instructions. Whole genome sequencing was conducted at the
Wellcome Trust Centre for Human Genetics (Oxford, UK), using the lllumina HiSeq4000 platform with
125 base pair (bp) paired-end reads and at MicrobesNG (Birmingham, UK), using lllumina platforms

(MiSeq or HiSeq2500) with 250 bp paired-end reads.
Bioinformatic analyses

The lllumina sequence reads were trimmed using the Trimmomatic v0.33 tool”!. SPAdes v3.9.072 was
used to generate de novo assemblies from the trimmed sequence reads with the —cov-cutoff flag set to
‘auto’. QUAST v4.6.0”® was used to generate assembly statistics. Three genomes were dropped from
the analysis because of the poor quality of the sequences (2 E. coli [Ec09, Ec17] and 1 K. pneumoniae
[Kpn05]). All the de novo assemblies used reached enough quality including total size of 5-7 Mb, and
the total number of contigs over 1 kb was lower than 200. Prokka v1.5"* was used to annotate the de
novo assemblies with predicted genes. The seven-gene ST of all the isolates was determined using the

multilocus sequence typing (MLST) tool (https://github.com/tseemann/mist). The plasmid content of

each genome was characterised using PlasmidFinder 2.17°, and the antibiotic resistance gene content

was characterised with ResFinder 3.27° (Supplementary Table 1).

In order to confirm the presence of the entire pOXA-48_K8 plasmid, the sequences belonging to pOXA-
48 plasmid in the transconjugants were mapped using as reference the complete sequence of plasmid
from the donor strain, which had been previously sequenced by PacBio®' (from K. pneumoniae k8 —

GenBank Accession Number MT441554). Snippy v3.1 (https://github.com/tseemann/snippy) was used

to check that no SNPs or indels accumulated in pOXA-48 K8 during strain construction . Coding
sequences in pOXA-48 were predicted and annotated using Prokka 1.14.6 software’*. Plasmid
annotation was complemented with the National Center for Biotechnology Information (NCBI)

Prokaryotic Genome Annotation Pipeline’’.
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To determine distances between genomes we used Mash v2.07® with the raw sequence reads, and a
phylogeny was constructed with mashtree v0.337°. For the analysis of the core genome we calculated
the genetic relatedness of isolates belonging to Klebsiella spp. and to E. coli by reconstructing their
core genome phylogeny with an alignment of the SNPs obtained with Snippy v3.1

(https://qgithub.com/tseemann/snippy). A maximume-likelihood tree was generated using IQ-TREE with

automated detection of the best evolutionary model®®. The tree was represented with midpoint root

using the phylotools package in R (https://github.com/helixcn/phylotools) and visualised using the iTOL

tool®'. We also constructed a distance matrix of the accessory gene network to analyse the accessory
genome. To this end, we used AccNET, a tool that allows to infer the accessory genome from the
proteomes and cluster them based on protein similarity*®. The set of representative proteins was used
to build a binary matrix (presence/absence of proteins in the accessory genome) in the R-environment
and a cladogram to classify the strains according to the accessory genomes. The Euclidean distance
was calculated by the ‘dist’ function and a hierarchical clustering was performed with UPGMA using the
‘helust’ function in the R environment. This cladogram was represented with midpoint root using the

phylotools package in R (https:/github.com/helixcn/phylotools) and visualised using the iTOL tool®”.

Analysis of plasmid fitness effects across bacterial phylogeny

We tested for the presence of phylogenetic signal in core and accessory genomes of E. coli and K.
pneumoniae using several statistical tests available in the phylosignal R package*’. In essence, these
analyses are designed to identify statistical dependence between a given continuous trait (relative
fithess) and the phylogenetic tree of the taxa from which the trait is measured. Therefore, a positive
phylogenetic signal indicates that there is a tendency for related taxa to resemble each other®2. Several
indices have been proposed to identify phylogenetic signal, but the choice among them is not
straightforward®. We first assayed the methods implemented in the phyloSignal function, which
produce global measures of phylogenetic signal (i.e. across the whole phylogeny). The methods
employed were Abouheif's Cmean, Moran's | index, Bloomberg's K and K*, and Pagel's A*’. All methods
except Pagel's A detected a marginally significant phylogentic signal in the K. pneumoniae core genome
(Supplementary table 3 [first tab]; 0.11>P>0.02). Abouheif's Cmean and Moran's | (but not Bloomberg’s K
and K*, and Pagel's A) also detected a marginally significant signal in the K. pneumoniae accessory

genome tree (Supplementary table 3 [first tab]; P<0.056 for both cases). Intrigued by these results, we
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used the Local Indicator of Phylogenetic Association (LIPA) based on local Moran’s |, which is meant to
detect local hotspots of phylogenetic signal*’#8. LIPA, implemented in the lipaMoran function, computes
local Moran’s | indexes for each tip of the phylogeny and a non-parametric test to ascertain statistical

significance (Supplementary Figure 4 and Supplementary table 3 [second tab]).

Plasmid population dynamics model

We used a simple mathematical model of microbial growth under resource limitation to study the role of
the DFE in the ecological dynamics of a plasmid spreading in a bacterial population'. Bacterial growth

rate was modelled as a saturating function of the environmental resource concentration, R,

VmaxR
GR)=p "% =p uR),

where p denotes the cell’s efficiency to convert resource molecules into biomass and u(R) a resource
uptake function that depends on the maximum uptake rate (1},,,) and a half-saturation constant (K,,).
If we denote with B, the density of plasmid-bearing cells and with B, the density of plasmid-free cells
(each with its own growth kinetic parameters and growth functions denoted G, (R) and G, (R),
respectively), then the density of each subpopulation can be described by a system of ordinary

differential equations:

dR

P —up(R) —ug(R) — dR,

dB,
—2 =1 =D G,(R)B, +YBsB, — dB,

dB
d_to == GO(R)BO + A Gp(R)Bp - yBon - dBO

where 1 represents the rate of segregational loss rate and d a dilution parameter. Moreover, we
represent with y the rate of conjugative transfer, and therefore we model plasmid conjugation as a
function of the densities of donor and recipient cells. By numerically solving the system of equations
(using standard differential equations solvers in Matlab), we obtain the final density of each bacterial
type in an experiment of T = 24 units of time with d = 0 (to replicate the batch culture conditions used

to estimate the DFE experimentally).

Growth kinetic parameters were determined with a Markov chain Monte Carlo method (MCMC; scripts

coded in R and available at http://www.github.com/esb-lab/pNUK73/) applied to growth curves of each
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strain growing in isolation, with and without plasmids. This data fitting algorithm implements a
Metropolis-Hastings sampler with a burn-in parameter of 0.2 and executed for 5 x 10° iterations, or until
achieving convergence of the Markov chains (see Supplementary Figure 5 for an example and

Supplementary Table 5 for parameters values estimated for each strain).
Stochastic simulations of polymicrobial communities

Numerical experiments were performed by randomly sampling N = 1 x 10* cells from the parameter
distribution obtained after applying the MCMC algorithm to all 50 strains and fitting a bivariate Normal
distribution. We then assembled 5,000 synthetic communities composed of a random subset of M < N
different strains sampled from this distribution, and solved a multi-strain extension of the population
dynamics model. For each numerical experiment, the total density of strain i would be B(t) = B},(t) +
Bi(t), where B} and Bj denote, respectively, the densities of plasmid-bearing and plasmid-free cells of
type 1 < i < M. To model the fitness effects of bearing plasmids, we introduced a parameter, g, such
that when o = 0, the fitness difference between B;', and B}, corresponds to a fixed reduction in growth
rate (corresponding to a DFE with variance 0 and mean w = 0.985). Conversely, if ¢ > 0, then growth
kinetic parameters for each plasmid-bearing strain in the community were determined by sampling s;

from a Normal distribution, N (0, %), and multiplying both V. ... and p* by a factor of (1 + s;).

As with the single-strain model, we consider segregational loss as a transition from B;', to B} occurring
at a rate 4, but now we also consider that plasmid-free cells can acquire plasmids via conjugation from
any plasmid-bearing strain in the community, at a constant rate y, and with equal probability of
transferring between different bacterial hosts. Therefore, we obtain a system of 2M + 1 differential

equations that can be written, for each strain i, as follows:

i

dBp i i N jpi i
2= (1= Gy(RY By +v ) BJBi — dB},

Jj=1

M

dBo — (i i i i ipi _ i
FTa Go(R) By + AGy(R) By —v B, B, dBy.

j=1

Furthermore, if R represents the input of resource into the system, then

M
dR . . A
== —z(u;,(R) +ub(R)) —d(R - R).
i=1
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Initial bacterial densities were determined by first running the system forward (with all strains initially
present at equal densities) for T = 24 time units, and then clearing all plasmid-free cells from the
population. This assumption is consistent with patients receiving antimicrobial therapy that clears all
susceptible (plasmid-free) cells from the microbiota or, in an experimental microcosm, to a round of
growth in selective media after an overnight culture. As we are interested in the long-term population
dynamics, we ran each simulation starting from the aforementioned initial condition until the plasmid
fraction was below a threshold ¢ > 0 (i.e. plasmid extinction), the plasmid fraction was near 100% and
the total plasmid-free density was below ¢ (i.e. plasmid fixation), or wild-type and transconjugant sub-
populations appeared to co-exist indefinitely in the population (either in equilibrium or exhibiting

oscillatory behaviour, as illustrated in Supplementary Figures 7 and 8).

Statistical analyses

The statistical tests used are indicated in the text. Analyses were performed using R (v. 3.5.0).
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Supplementary Figure 1. Growth curves of wild-type isolates and pOXA-48-carrying transconjugants.
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Growth curves of pOXA48-free (wild-type, blue) and pOXA-48-carrying (transconjugant, red) for

every (a) E. coli and (b) Klebsiella spp. analysed in this study. The lines represent the average of

five biological replicates and the shaded area indicates 95% confidence intervals.
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Supplementary Figure 2. Construction of plasmid pBGC.
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Schematic representation of the construction of plasmid pBGC (accession number MT702881) form
plasmid pBGT®. Two segments of pBGT were amplified using primers with added cohesive ends
(pBGC Fw/Rv and GFP Term Fw/Rv, Supplementary Table 4). pBGC plasmid resulted from the Gibson
assembly of the amplified fragments. The reading frames for genes are shown as arrows, with the
direction of transcription indicated by the arrowhead. The origin of replication (oriV), origin of transfer

(oriT), and Psap promoter are also indicated.
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Supplementary Figure 3. Correlation between relative growth curve parameters and relative fitness.
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Correlation between relative growth curve parameters (a) maximum optical density (ODmax), (b)

maximum growth rate (umax), and (c) area under the growth curve (AUC), and relative fithess values

obtained from competition assays for each strain. The blue line represents the linear regression model

and the grey shading represents 95% confidence intervals. Points represent each relative value (red, E.

coli and blue, Klebsiella spp.). Pearson's correlation (R) and p-value are indicated. As expected,

maximum optical density, maximum growth rate and area under the growth curve are positively

correlated with relative fitness.
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44  Supplementary Figure 4. Local Indicator of Phylogenetic Association (LIPA) analyses.
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47

48  Phylogenetic trees for core (upper panels) and accessory (lower panels) genomes obtained for E. coli
49  (left) and Klebsiella spp. (right). Bar plots show the LIPA score associated with each tip of the
50  phylogeny, with higher values representing a stronger phylogenetic signal. Red colour indicates

51 statistically significant LIPA scores (i.e. phylogenetic signal, Supplementary Table 3).
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Supplementary Figure 5. Model parametrization.
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(a) Bacterial density of strain Kpn18 as a function of time obtained from the optical density of wild-type
(red) and transconjugant (black) strains growing in isolation. (b) Traces of chains for parameters
Vax/Km (@above) and p (below) obtained by fitting a simple Monod model to growth curve data using a
Metropolis-Hastings Markov chain Monte Carlo method (MCMC). (c) 2-dimensional posterior
distributions obtained for each strain (top: B,, bottom: B,,). (d) Numerical solutions of the model using
parameters selected randomly from the posterior distribution and with initial conditions determined from

the experimental growth curves.
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Supplementary Figure 6. In silico competition experiments.

(O wid-type

O Transconjugant

1.2
0.96
©
o072
% 048
<
024

0t

12
0.96
©
2072
x
2048
0.24

0
12

0.96
©
2072
B3
2048
0.24

Ec03

Ec13

S

Ec04

Ec05

Ec15

Co

Ec16

o

0%

Ec07

Plasmid fraction

100%

Ec21
0

1.2
0.96

©
9_ 0.72
:0A8
0.24
0

127

0.96
©
o072

B3
2,048

®

4
Kpn16 | | |
0 02040608 10 02040608 10 02040608 10 02040608 10 02040608 10 02040608 10 02040608 10 02040608 10 02040608 10 02040608 1

m;

K_x10"0 v
ax m

max m

Ec22 Ec23

@

Kpn17 Kpn18

/K_x1071°

e

Ec24

V_ /K x10" v K x10" v
max m max m

Ec25

/K_x107T

max m

@

/K_x107°

max 'm

VK x10"0 v K x10"0 v
max m max m

M
/.

Kpn14

max'm

/K_x107°

»
Kpn15

©

Kpn25

/K_x107°

max m

Each box represents a theoretical pair-wise competition experiment between plasmid-free (open

circles) and plasmid-bearing cells (filled circles). The diameter of each circle is proportional to the

relative fraction of the population, a value estimated by numerically solving the model for T = 24 with

parameter values obtained from the posterior distribution of each strain. Horizontal axis represents the

specific affinity (V,,,../K:m) and the vertical axis the cell’s resource conversion rate (p).
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Supplementary Figure 7. Effect of conjugation and community complexity in plasmid population

dynamics in the absence of a DFE.
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Numerical simulations of the population dynamics model performed over a range of conjugation rates

and number of strains in the community. In this case, all strains exhibit a reduction of fitness when

carrying the plasmid (a DFE with mean w= 0.985 and variance 0). The colour of each box in the grid

corresponds to the percentage of 5,000 random communities that exhibited: a) plasmid extinction (total

plasmid frequency was below a threshold), b) plasmid-bearing and plasmid-free cells co-exist in the

population, and c) every cell in the population carries the plasmid at the end of the experiment. (d-g)

Example of relative abundances over time for a range of conjugation rates in a community composed of

1 (d,e) and 15 (f,g) strains, with segregation rate 2 = 1 x 108 and conjugation rate y = 1071° (d,f) or

y =0 (e,g). The left-hand column illustrates the growth kinetic parameters for each strain (empty
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circles denote plasmid-free cells and filled circles plasmid-bearing cells, with diameters proportional to
their final relative abundances). Middle column shows the density of each subpopulation as a function
of time (dotted lines denote plasmid-free strains and solid lines subpopulations carrying the

plasmid). Right-hand column shows semilog plots with the total fraction of cells with and without
plasmids (solid and dotted lines, respectively). As plasmid-bearing is associated with a fitness cost,

then the plasmid is only maintained in the population at high conjugation rates.
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87  Supplementary Figure 8. Effect of conjugation and community complexity in plasmid population

88  dynamics in the presence of a DFE.
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90  Numerical simulations of the population dynamics model performed over a range of conjugation rates
91 and number of strains in the community. This case corresponds to a wide DFE (mean w = 0.985 and
92  variance 0.007). The colour of each box in the grid corresponds to the percentage of 5,000 random
93 communities that exhibited: a) plasmid extinction (total plasmid frequency was below a threshold), b)
94  plasmid-bearing and plasmid-free cells co-exist in the population, and c) every cell in the population
95 carries the plasmid at the end of the experiment. d-g) Example of relative abundances over time for a
96 range of conjugation rates in a community composed of 1 (d,e) and 15 (f,g) strains, with segregation
97 rate 1 =1 x 1078 and conjugation rate y = 1071° (d,f) or y =0 (e,g). The left-hand column illustrates

98  the growth kinetic parameters for each strain (empty circles denote plasmid-free cells and filled circles
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plasmid-bearing cells, with diameters proportional to their final relative abundances). Middle column
shows the density of each subpopulation as a function of time (dotted lines denote plasmid-free strains
and solid lines subpopulations carrying the plasmid). Right-hand column shows semilog plots with the
total fraction of cells with and without plasmids (solid and dotted lines, respectively). Note how a wide

DFE allows plasmids to persist, even at very low conjugation rates.
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Supplementary Figure 9. Determination of different cells types in competition assays using flow

cytometry.
a b C
8
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We used flow cytometry to differentiate between GFP-producing and -non-producing cells. (a) we used
forward versus side scatter (FSC vs SSC) gating to identify bacterial cells in the sample. (b-c) GFP-
producing (bright green) and -non-producing (dark green) cells were differentiated using the FITC-A

(fluorescein isothiocyanate) channel, allowing us to measure the proportion of each competitor in the

mix.
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112 Supplementary Figure 10. Distribution of pBGC fitness effects.
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116  Relative fitness (w) of pPBGC-carrying clones compared to plasmid-free clones, obtained from

117  competition assays (red, E. coli and blue, Klebsiella spp.). Values below 1 indicate a reduction in w and
118  values above 1 indicate an increase in w due to pBGC acquisition. Bars represent the average of five
119  independent experiments and error bars represent the standard error of the mean. Note that the fithess
120  effects of pPBGC did not correlate with those form pOXA-48 (Pearson's correlation, R= 0.11, t= 0.66, df=

121 39, P=0.51).
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Supplementary Figure 11. Correlation between relative fitness values calculated in competitions vs. E.

coli J53/pBGC or isogenic clones with pBGC.

R= 0.81, p= 0.0042
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Correlation between relative fithess values obtained from competitions assays using pBGC-carrying
isogenic isolates and pBGC-carrying E. coli J53 for ten different isolates. The blue line represents the
linear regression model and the grey shading represents 95% confidence intervals. Blue points
correspond to Klebsiella spp. isolates and red points to E. coli isolates. Labels indicate isolates names.

Pearson's correlation (R) and p-value are indicated.
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Supplementary Table 4. Primers used in this study.

Primers
Name Sequence 5'->3’ Use
Oxa-48 Fw TTGGTGGCATCGATTATCGG
Amplification of blarems gene
Oxa-48 Rv GAGCACTTCTTTTGTGATGGC
IncL Fw CGGAACCGACATGTGCCTACT o
Amplification of repC gene
IncL Rv GAACTCCGGCGAAAGACCTTC
pBGC Fw CGTTGATCGGCACGTAAG _—
Amplification of pBGC
GFP-Term Fw atacaaatagtctagacagcGGGAATCCTGCTCTGCGAG! (2399 Supplementary Figure
GFP-Term Rv ctettacgtgccgatcaacgGGGTTATTGTCTCATGAGCGG'! )

pBGC sequencing (3503-

pBGC_Seq1_Fw AGTTAAAAGGTATTGATTTTAA 524y
pBGC_Seq1_Rv GCCACATCTTGCGAATA 2255)20 sequencing (464-
pBGC_Seq2_Fw ATAAGATCACTACCGGGC pBGC sequencing (44-61)2

pBGC_Seq2_Rv

ACCCGACAGGACTATAAAGATA

pBGC sequencing (1285-
1306)?

pBGC sequencing (931-

pBGC_Seq3_Fw GAGGTAACTGGCTTGGAGG s
pBGC_Seq3_Rv GTCGCGTCTGTCACATCT g?ﬁ?zsequencmg (2124-
pBGC_Seqd_Fw GTTTCCCGACTGGAAAGC ﬁ’?%?zsequencmg (1703-
pPBGC_Seq4_Rv CTTTGGTCCCGCTTTGTTAC PBGC sequencing (2894-

2913)?

pBGC_Seq5_Fw

GTCGGTCGATAAAAAAATCGAG

pBGC sequencing (2650-
2671)?

pBGC_Seqg5_Rv

ATGTGGTCTCTCTTTTCGTTGG

pBGC sequencing (3764-
2671)?

1. Lower case nucleotides correspond with the added cohesive ends.
2. Numbers correspond with primers binding sites in pBGC (according to sequence available with

GenBank Accession Number MT702881).
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Supplementary Table 5. Growth kinetic parameters of each strain obtained using the MCMC algorithm.

Wild-type Transconjugant

Strain Vinax/ K p Vinax/K p

Ec01 4.895 x 10710 9.844 x 108 5.283 x 10710 8.776 x 108
Ec02 7.603 x 10710 5.504 x 108 6.648 x 10710 6.786 x 108
Ec03 7.597 x 10710 8.900 x 108 6.538 x 10710 8.151 x 108
Ec04 8.373 x 10710 7.764 x 108 6.576 x 10710 7.702 x 108
Ec05 6.299 x 10710 7.727 x 108 7.831 x 10710 6.416 x 108
Ec06 6.852 x 10710 9.518 x 108 6.839 x 10710 6.567 x 108
Ec07 3.786 x 10710 1.040 x 10° 4.154 x 10710 1.013 x 10°
Ec08 5.304 x 10710 1.050 x 10° 5.053 x 10710 9.900 x 108
Ec09 6.610 x 10710 9.195 x 108 7.311 x 10710 8.694 x 108
Ec10 5.660 x 10710 1.071 x 10° 7.368 x 10710 8.472 x 108
Ec11 7.248 x 10710 5.064 x 108 7.248 x 10710 6.483 x 108
Ec12 5.200 x 10710 8.042 x 108 4.752 x 10710 8.016 x 108
Ec13 6.831x 10710 8.528 x 108 7.711 x 10710 7.932 x 108
Ec14 6.515 x 10710 6.589 x 108 8.356 x 10710 7.500 x 108
Ec15 6.322 x 10710 9.106 x 108 6.998 x 10710 8.528 x 108
Ec16 4.908 x 10710 1.122 x 10° 5.550 x 10710 1.040 x 10°
Ec17 6.089 x 10710 8.298 x 108 6.366 x 10710 8.647 x 108
Ec18 6.655 x 10710 8.963 x 108 6.939 x 10710 6.250 x 108
Ec19 6.080 x 10710 9.812 x 108 6.200 x 10710 9.424 x 108
Ec20 5.033 x 10710 1.024 x 10° 5.296 x 10710 9.133 x 108
Ec21 5.546 x 10710 1.021 x 10° 4.897 x 10710 8.386 x 108
Ec22 6.148 x 10710 9.736 x 108 6.619 x 10710 9.886 x 108
Ec23 5.443 x 10710 9.635 x 108 5.186 x 10710 9.094 x 108
Ec24 6.010 x 10710 1.008 x 10° 4.808 x 10710 9.768 x 108
Ec25 6.784 x 10710 9.237 x 108 5.465 x 10710 1.004 x 10°
Kpn01 4.841 x 10710 8.746 x 108 3.652 x 10710 8.673 x 108
Kpn02 6.638 x 10710 7.905 x 108 6.352 x 10710 7.952 x 108
Kpn03 4.802 x 10710 9.639 x 108 3.686 x 10710 9.975 x 108
Kpn04 4.844 x 10710 9.288 x 108 4.303 x 10710 8.936 x 108
Kpn05 5.151 x 10710 9.303 x 108 5.155 x 10710 8.513 x 108
Kpn06 5.240 x 10710 8.952 x 108 5.664 x 10710 7.742 x 108
Kpn07 4.498 x 10710 8.682 x 108 3.785 x 10710 9.458 x 108
Kpn08 7.163 x 10710 8.211 x 108 4.334 x 10710 7.188 x 108
Kpn09 6.207 x 10710 8.064 x 108 7.302 x 10710 7.772 x 108
Kpn10 4.833 x 10710 7.990 x 108 4.467 x 10710 7.967 x 108
Kpn11 5.380 x 10710 9.710 x 108 5.620 x 10710 8.490 x 108
Kpn12 5.620 x 10710 8.490 x 108 5.620 x 10710 8.490 x 108
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Kpn13 7.086 x 10710 9.195 x 108 7.364 x 10710 7.206 x 108
Kpn14 4.162 x 10710 8.994 x 108 5.828 x 10710 7.306 x 108
Kpn15 6.243 x 10710 8.854 x 108 7.489 x 10710 8.917 x 108
Kpn16 5.386 x 10710 8.523 x 108 4.359 x 10710 8.465 x 108
Kpn17 4.144 x 10710 1.037 x 10° 4.002 x 10710 9.786 x 108
Kpn18 6.906 x 10710 7.173 x 108 4.977 x 10710 9.954 x 108
Kpn19 5.578 x 10710 8.319 x 108 6.083 x 10710 7.739 x 108
Kpn20 4.857 x 10710 1.022 x 10° 4.287 x 10710 1.046 x 10°
Kpn21 4.674 x 10710 1.077 x 10° 5.487 x 10710 9.948 x 108
Kpn22 4.708 x 10710 1.006 x 10° 5224 x 10710 1.006 x 10°
Kpn23 7.897 x 10710 6.709 x 108 7.201 x 10710 6.328 x 108
Kpn24 5.736 x 10710 7.568 x 108 8.670 x 10710 6.601 x 108
Kpn25 4.873 x 10710 9.630 x 108 4.255 x 10710 9.896 x 108
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