

1 The distribution of plasmid fitness effects explains plasmid persistence in bacterial 2 communities

3 Aida Alonso-del Valle¹, Ricardo León-Sampedro^{1,2}, Jerónimo Rodríguez-Beltrán^{1,2}, Javier
4 DelaFuente¹, Marta Hernández-García^{1,3}, Patricia Ruiz-Garbazosa^{1,3}, Rafael Cantón^{1,3}, Rafael
5 Peña-Miller^{4,*}, Álvaro San Millán^{1,2,5*}.

6

⁷ *¹ Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de*
⁸ *Investigación Sanitaria. Madrid, Spain.*

2 Centro de Investigación Biológica en Red. Epidemiología y Salud Pública, Instituto de Salud Carlos III. Madrid. Spain.

³ Red Española de Investigación en Patología Infecciosa. Instituto de Salud Carlos III. Madrid. Spain.

⁴ Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.

13 ⁵ Current address: Centro Nacional de Biotecnología-CSIC, Madrid, Spain.

¹⁴ * Correspondence: Álvaro San Millán, alvsanmillan@gmail.com ORCID: 0000-0001-8544-0387 and

15 Rafael Peña-Miller, rafael.penamiller@gmail.com ORCID: 0000-0002-2767-0640

16

17 Introductory paragraph

18 Plasmid persistence in bacterial populations is strongly influenced by the fitness effects associated with
19 plasmid carriage. However, plasmid fitness effects in wild-type bacterial hosts remain largely
20 unexplored. In this study, we determined the distribution of fitness effects (DFE) for the major antibiotic
21 resistance plasmid pOXA-48 in wild-type, ecologically compatible enterobacterial isolates from the
22 human gut microbiota. Our results show that although pOXA-48 produced an overall reduction in
23 bacterial fitness, the DFE was dominated by quasi-neutral effects, and beneficial effects were observed
24 in several isolates. Incorporating these data into a simple population dynamics model revealed a new
25 set of conditions for plasmid stability in bacterial communities, with plasmid persistence increasing with
26 bacterial diversity and becoming less dependent on conjugation. Moreover, genomic results showed a
27 link between plasmid fitness effects and bacterial phylogeny, helping to explain pOXA-48 epidemiology.
28 Our results provide a simple and general explanation for plasmid persistence in natural bacterial
29 communities.

30 **Introduction**

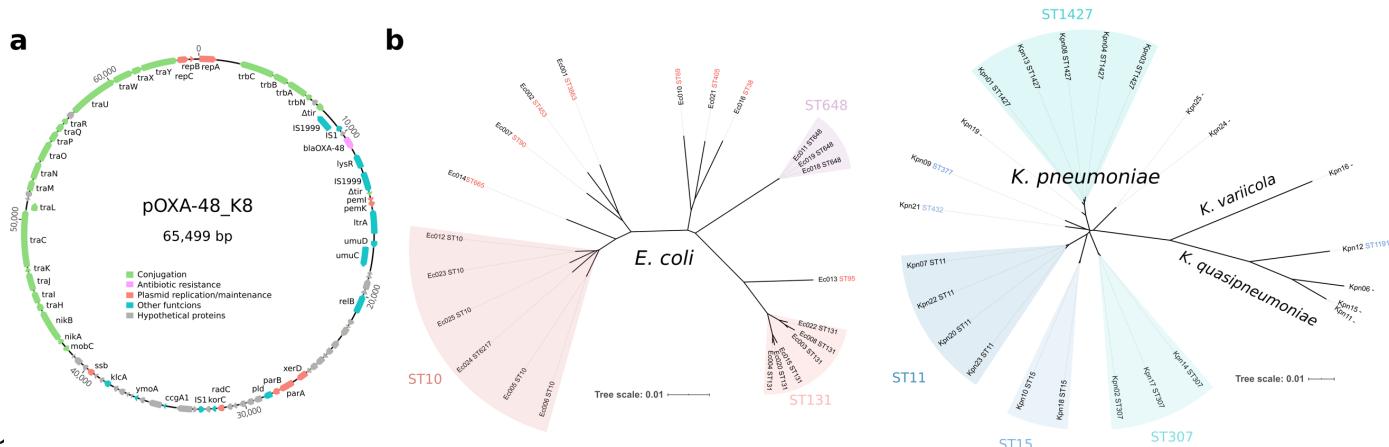
31 Plasmids are extra-chromosomal mobile genetic elements able to transfer between bacteria through
32 conjugation¹. Plasmids carry accessory genes that help their hosts to adapt to a myriad of
33 environments and thus play a key role in bacterial ecology and evolution². A key example of the
34 importance of plasmids in bacterial evolution is their central role in the spread of antibiotic resistance
35 mechanisms among clinical pathogens over recent decades^{3,4}. Some of the most clinically relevant
36 resistance genes, such those encoding carbapenemases (β -lactamase enzymes able to degrade
37 carbapenem antibiotics), are carried on conjugative plasmids that spread across high-risk bacterial
38 clones^{5,6}.

39 Despite the abundance of plasmids in bacterial populations and the potential advantages associated
40 with their acquisition, these genetic elements generally produce physiological alterations in their
41 bacterial hosts that lead to a reduction in fitness^{7–9}. These fitness costs make it difficult to explain how
42 plasmids are maintained in bacterial populations over the long-term in the absence of selection for
43 plasmid-encoded traits, a puzzle known as “the plasmid-paradox”¹⁰. Different solutions to this paradox
44 have been proposed. For example, compensatory evolution contributes to plasmid persistence by
45 alleviating the costs associated with plasmid-carriage, and a high conjugation rate can promote the
46 survival of plasmids as genetic parasites^{11–18}.

47 Over the past decades, many studies have investigated the existence conditions for plasmids in
48 bacterial populations^{14,18–23}. However, understanding of plasmid population biology is held in check by
49 limitations of the model systems used for its study. First, most experimental reports of fitness costs
50 have studied arbitrary associations between plasmids and laboratory bacterial strains^{7,24}. These
51 examples do not necessarily replicate plasmid fitness effects in natural bacterial hosts, which remain
52 largely unexplored. Second, studies tend to analyse the fitness effects of a single plasmid in a single
53 bacterium. However, plasmid fitness effects can differ between bacteria^{25–28}, and this variability may
54 impact plasmid persistence in bacterial communities (for a relevant example see²⁹). Third, most
55 mathematical models of plasmid population biology study clonal or near-clonal populations. However,
56 bacteria usually live in complex communities in which conjugative plasmids can spread between
57 different bacterial hosts^{30–32}. To fully understand plasmid persistence in natural bacterial populations, it
58 will be necessary to address these limitations.

59 In this study, we provide the first description of the distribution of fitness effects (DFE) of a plasmid in
60 wild-type bacterial hosts. We used the clinically relevant carbapenem-resistance conjugative plasmid
61 pOXA-48 and 50 enterobacteria strains isolated from the gut microbiota of patients admitted to a large
62 tertiary hospital in Madrid. Incorporation of the experimentally determined DFE into a population biology
63 model provides new key insights into the existence conditions of plasmids in bacterial communities.

64 **Results**


65 *Construction of a pOXA-48 transconjugant collection*

66 We studied the DFE of the plasmid pOXA-48 in a collection of ecologically compatible bacterial hosts.
67 pOXA-48 is an enterobacterial, broad-host-range, conjugative plasmid that is mainly associated with *K.*
68 *pneumoniae* and *Escherichia coli*^{33–35}. pOXA-48 encodes the carbapenemase OXA-48 and is
69 distributed worldwide, making it one of the most clinically important carbapenemase-producing
70 plasmids^{6,34}. The gut microbiota of hospitalised patients is a frequent source of enterobacteria clones
71 carrying pOXA-48⁶. In recent studies, we described the in-hospital epidemiology of pOXA-48 in a large
72 collection of extended-spectrum β -lactamase (ESBL)- and carbapenemase-producing enterobacteria
73 isolated from more than 9,000 patients in our hospital over a period of two years (R-GNOSIS collection,
74 see methods)^{31,36–38}. pOXA-48-carrying enterobacteria were the most frequent carbapenemase-
75 producing enterobacteria in the hospital, with 171 positive isolates, and they colonised 1.13% of the
76 patients during the study period (105/9,275 patients). In this study we focused on plasmid pOXA-
77 48_K8, which is a recently described pOXA-48-like plasmid isolated from a *K. pneumoniae* in our
78 hospital³¹ (Figure 1a, for simplicity we will refer to pOXA-48_K8 and pOXA-48-like plasmids as pOXA-
79 48 throughout the text).

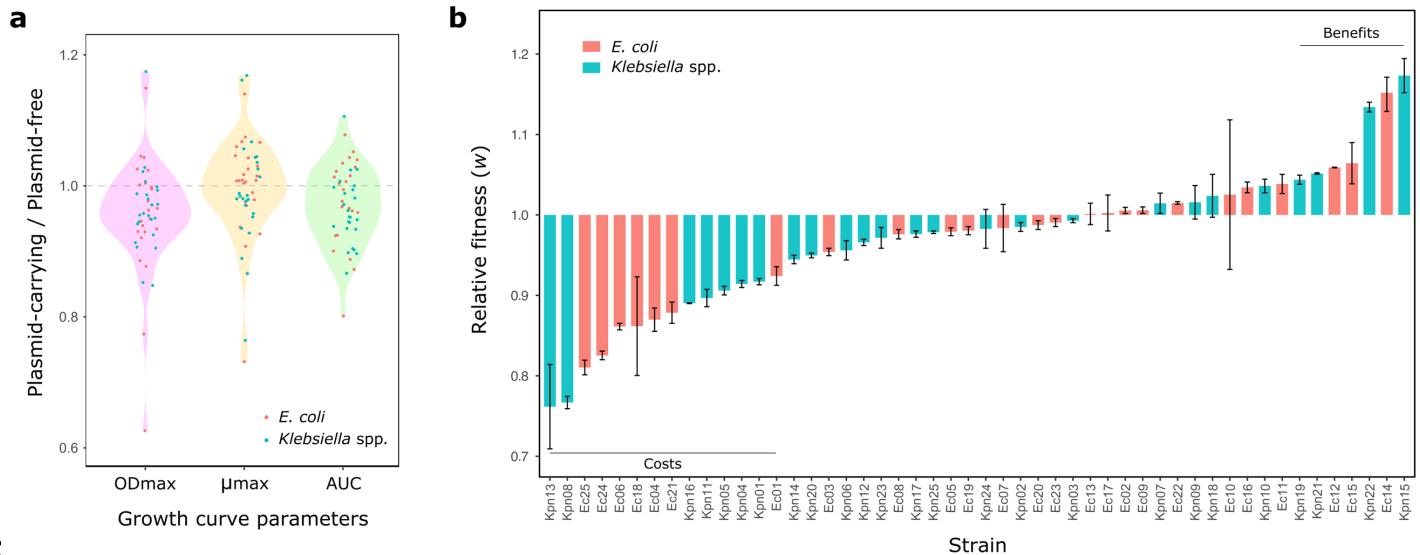
80 To study the DFE of pOXA-48, we selected 50 isolates from the R-GNOSIS collection as bacterial
81 hosts. Our criteria were to select (i) pOXA-48-free isolates, to avoid selecting clones in which
82 compensatory evolution had already reduced plasmid-associated costs; (ii) isolates from the most
83 frequent pOXA-48-carrying species, *K. pneumoniae* and *Escherichia coli*; and (iii) strains isolated from
84 patients located in wards in which pOXA-48-carrying enterobacteria were commonly reported³¹. The
85 underlying rationale was to select clones which were naïve to pOXA-48 but ecologically compatible with
86 it (i.e. isolated from patients coinciding on wards with others who were colonised with pOXA-48-carrying
87 clones). We selected 25 *K. pneumoniae* and 25 *E. coli* isolates that are representative of the R-

88 GNOSIS study and cover the *K. pneumoniae* and *E. coli* phylogenetic diversity in the collection (see
89 methods, Figure 1b and Supplementary Table 1). It is important to note that, because of the nature of
90 the R-GNOSIS collection, the isolates used in this study produce ESBLs. However, ESBL-producing
91 enterobacteria are widespread not only in hospitals but also in the community³⁹, and most pOXA-48-
92 carrying enterobacteria isolated in our hospital also produce ESBLs³⁶.

93 pOXA-48 was introduced into the collection of recipient strains by conjugation (see Methods), and the
94 presence of the plasmid was confirmed by PCR and antibiotic susceptibility testing (Supplementary
95 Table 2). The presence of the entire pOXA-48 plasmid was confirmed by sequencing the complete
96 genomes of the 50 transconjugant clones, which also revealed the genetic relatedness of the isolates
97 (Figure 1b). In line with previous studies^{31,40}, the sequencing results revealed that a subset of isolates
98 initially identified as *K. pneumoniae* in fact belonged to the species *Klebsiella quasipneumoniae* (n= 4)
99 and *Klebsiella variicola* (n= 1). These species are also pOXA-48 hosts in our hospital³¹ and so were
100 maintained in the study (Figure 1b).

101
102 Figure 1. Experimental model system. Representation of pOXA-48 plasmid and the enterobacteria
103 strains used in this study. (a) pOXA-48_K8 (accession number MT441554). Reading frames are shown
104 as arrows, indicating the direction of transcription. Colours indicate gene function classification (see
105 legend). The *bla*_{OXA-48} gene is shown in pink. (b) Unrooted phylogeny of whole-genome assemblies
106 from *E. coli* clones (left) and *Klebsiella* spp. clones (right). Branch length gives the inter-assembly mash
107 distance (a measure of k-mer similarity). The grouping of multi-locus sequence types (ST) is also
108 indicated (*E. coli* ST6217 belongs to the ST10 group). Note that the sequencing results revealed that a

109 subset of isolates initially identified as *K. pneumoniae* were in fact *Klebsiella quasipneumoniae* (n= 4)
110 and *Klebsiella variicola* (n= 1).



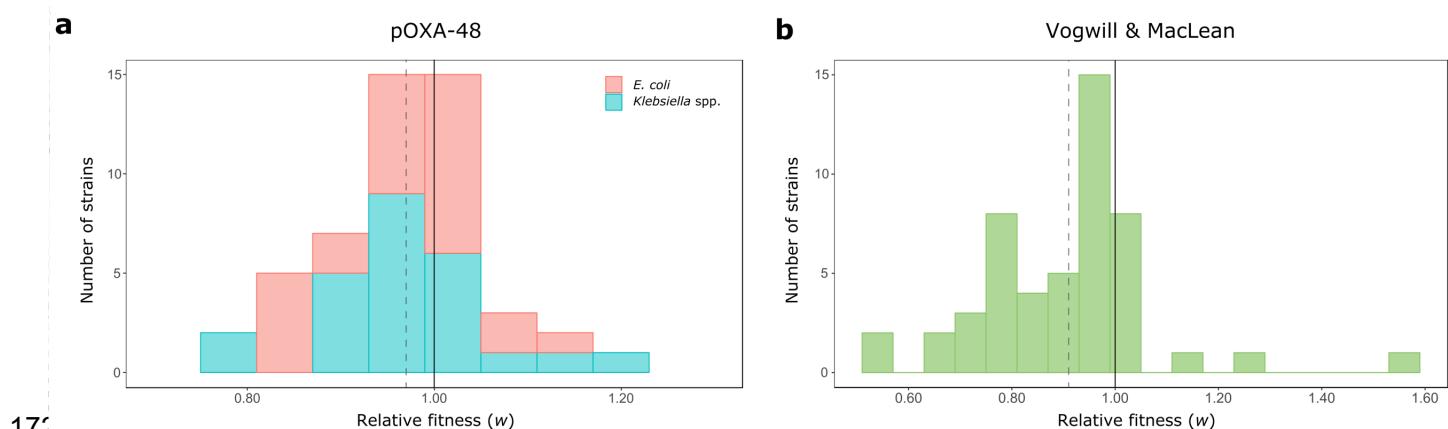
111 *Measuring pOXA-48 fitness effects*

112 To measure pOXA-48 fitness effects, we performed growth curves and competition assays for all the
113 plasmid-carrying and plasmid-free clones in the collection. We first performed growth curves in pure
114 cultures to calculate maximum growth rate (μ_{\max}) and maximum optical density (OD_{max}), which can be
115 used to estimate the intrinsic population growth rate (r) and carrying capacity (K), respectively
116 (Supplementary Figure 1). We also measured the area under the growth curve (AUC), which integrates
117 information about r and K . To estimate plasmid-associated fitness effects, we compared these
118 parameters between each plasmid-carrying and plasmid-free pair of isogenic isolates (Figure 2a). The
119 results showed that, as expected, pOXA-48 produced an overall decrease in the parameters extracted
120 from the growth curves. However, in a substantial subset of clones, plasmid acquisition was not
121 associated with a reduction in these parameters (Figure 2a).

122 Competition assays allow measurement of the relative fitness (w) of two bacteria competing for
123 resources in the same culture⁴¹. Competition between otherwise isogenic plasmid-carrying and
124 plasmid-free clones thus provides a quantitative assessment of the fitness costs associated with
125 plasmid carriage. For the competition assays, we used flow cytometry; strains were labelled using an
126 in-house developed small, non-conjugative plasmid vector, called pBGC, that encodes an inducible
127 green fluorescent protein (GFP) (Supplementary Figure 2). pBGC was introduced into the wild-type
128 isolate collection by electroporation, and all pOXA-48-carrying and pOXA-48-free clones were
129 competed against their pBGC-carrying parental strain. We were unable to introduce pBGC into eight of
130 the isolates; in those cases, for the competitor, we used *E. coli* strain J53 carrying the pBGC vector
131 (see Methods for details). Data from the competition assays were used to calculate the competitive
132 fitness of pOXA-48-carrying clones relative to their plasmid-free counterparts (Figure 2b). There were
133 no significant differences between the fitness effects of pOXA-48 in *Klebsiella* spp. and *E. coli* isolates
134 (ANOVA effect of Species x Plasmid interaction; F=0.088, df=1, P=0.767).

135 To validate our results, we compared the values obtained from growth curves and competition assays.
136 This analysis revealed a significant correlation between relative fitness values and the parameters
137 extracted from the growth curves (Supplementary Figure 3).

1:


139 Figure 2. pOXA-48 fitness effects in a set of ecologically compatible wild-type enterobacteria. (a)
140 Relative values of growth-curve parameters (plasmid-carrying/plasmid-free isogenic clones): maximum
141 optical density (OD_{max} , pink), maximum growth rate (μ_{max} , yellow), and area under the curve (AUC,
142 green). Dots represent each relative value (red, *E. coli*; blue, *Klebsiella* spp.). Values below 1 indicate a
143 reduction in these parameters associated with plasmid-acquisition. Five biological replicates were
144 performed for each growth curve. (b) Relative fitness (w) of plasmid-carrying clones compared with
145 plasmid-free clones obtained by competition assays (red, *E. coli*; blue, *Klebsiella* spp.). Values below 1
146 indicate a reduction in w due to plasmid acquisition; values above 1 indicate an increase in w . Bars
147 represent the mean of five independent experiments, and error bars represent the standard error of the
148 mean. Two horizontal lines indicate those clones showing significant costs or benefits associated with
149 carrying pOXA-48 plasmid.

150 *The distribution of pOXA-48 fitness effects*

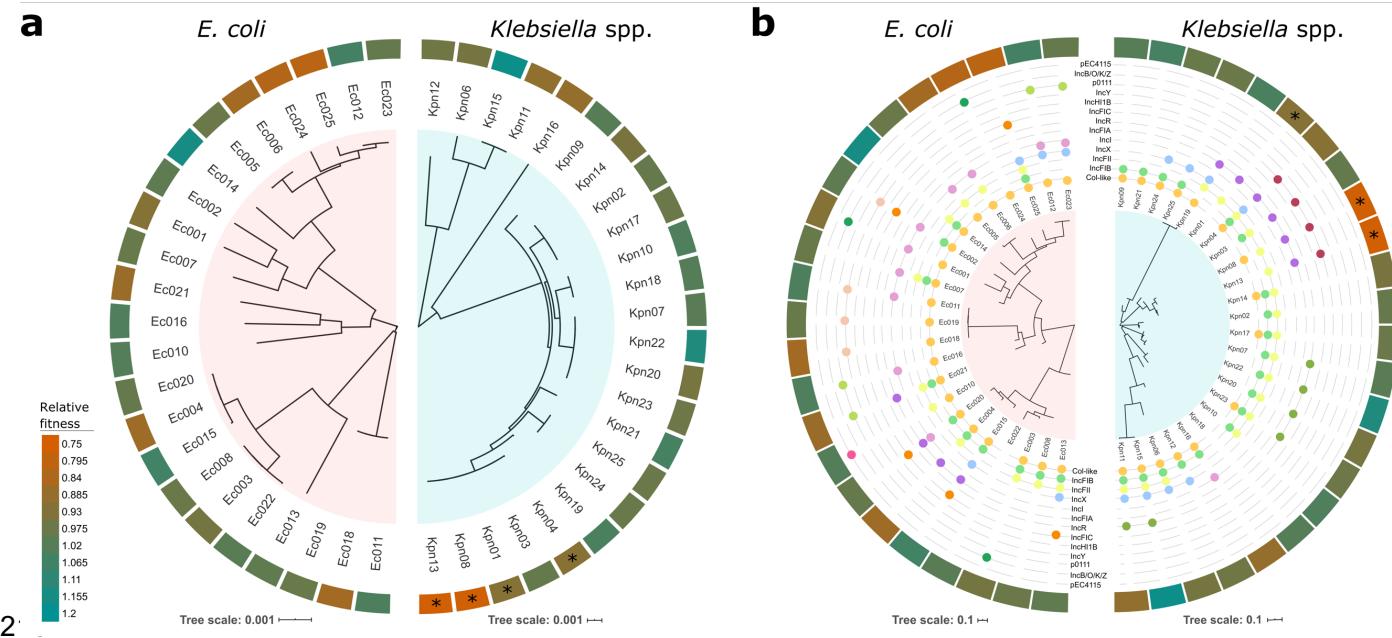
151 Results from the competition assays showed that the overall effect of pOXA-48 was a small but
152 significant reduction in relative fitness (mean $w= 0.971$, ANOVA effect of plasmid; $F=70.04$, $df=1$,
153 $P=1.02 \times 10^{-15}$). However, plasmid fitness effects varied greatly between the isolates in the collection,
154 producing a normal distribution ranging from a >20% reduction to almost a 20% increase in relative
155 fitness (Figure 2b and 3a; Shapiro-Wilk normality test, $P= 0.14$). Indeed, plasmid acquisition was
156 associated with a significant fitness decrease in only 14 strains, and 7 isolates showed a significant
157 increase in fitness (Bonferroni corrected two sample t-test, $P< 0.05$). These results revealed a highly

158 dynamic scenario in which a plasmid produces a wide distribution of fitness effects in different bacterial
159 hosts, ranging from costs to benefits.

160 To place our results in context with previous reports, we compared the DFE for pOXA-48 with the
161 results from a recent meta-analysis of plasmid fitness effects by Vogwill and MacLean²⁴ (Figure 3).
162 These authors recovered data for 50 plasmid-bacterium pairs from 16 studies. The DFE constructed
163 from those reports showed a higher mean plasmid cost (mean $w= 0.91$) and differed significantly from
164 the DFE we report here for pOXA-48 in wild-type enterobacteria (Wilcoxon signed rank test, $V= 922$, $P=$
165 0.006). The discrepancy between these distributions may, at least in part, reflect the different nature of
166 plasmid-bacterium associations considered in the different studies. Although the plasmids studied in
167 earlier reports were isolated from natural sources, they were introduced into laboratory bacterial strains,
168 and the detected fitness effects may not be fully representative of wild-type plasmid-bacterium
169 associations. Our study, on the other hand, analysed the fitness effects of pOXA-48 in ecologically
170 compatible bacterial hosts. Taken together, the data suggest that the distribution of plasmid fitness
171 effects is likely influenced by the ecological compatibility between plasmids and their bacterial hosts.

173 Figure 3. Distribution of plasmid fitness effects. Comparison between the DFE obtained in this study
174 and the DFE from previous studies. (a) DFE for pOXA-48 in the ecologically compatible collection of
175 enterobacteria isolates. Bars indicate the number of *E. coli* (red) and *Klebsiella* spp. (blue) strains in
176 each relative fitness category. The grey dotted line indicates the mean relative fitness of the population.
177 Note that relative fitness values are normally distributed ($w= 0.971$, $\text{var}= 0.0072$). (b) DFE for plasmids
178 in bacterial hosts obtained in a previous meta-analysis²⁴. Most of the included studies were based on
179 arbitrary associations between plasmids and laboratory strains. Bars indicate the number of plasmid-
180 bacterium associations in each relative fitness category. The grey dotted line indicates the mean

181 relative fitness across studies. Relative fitness values are not normally-distributed ($w= 0.91$, $var= 0.029$;
182 Shapiro-Wilk normality test, $P= 0.0006$).



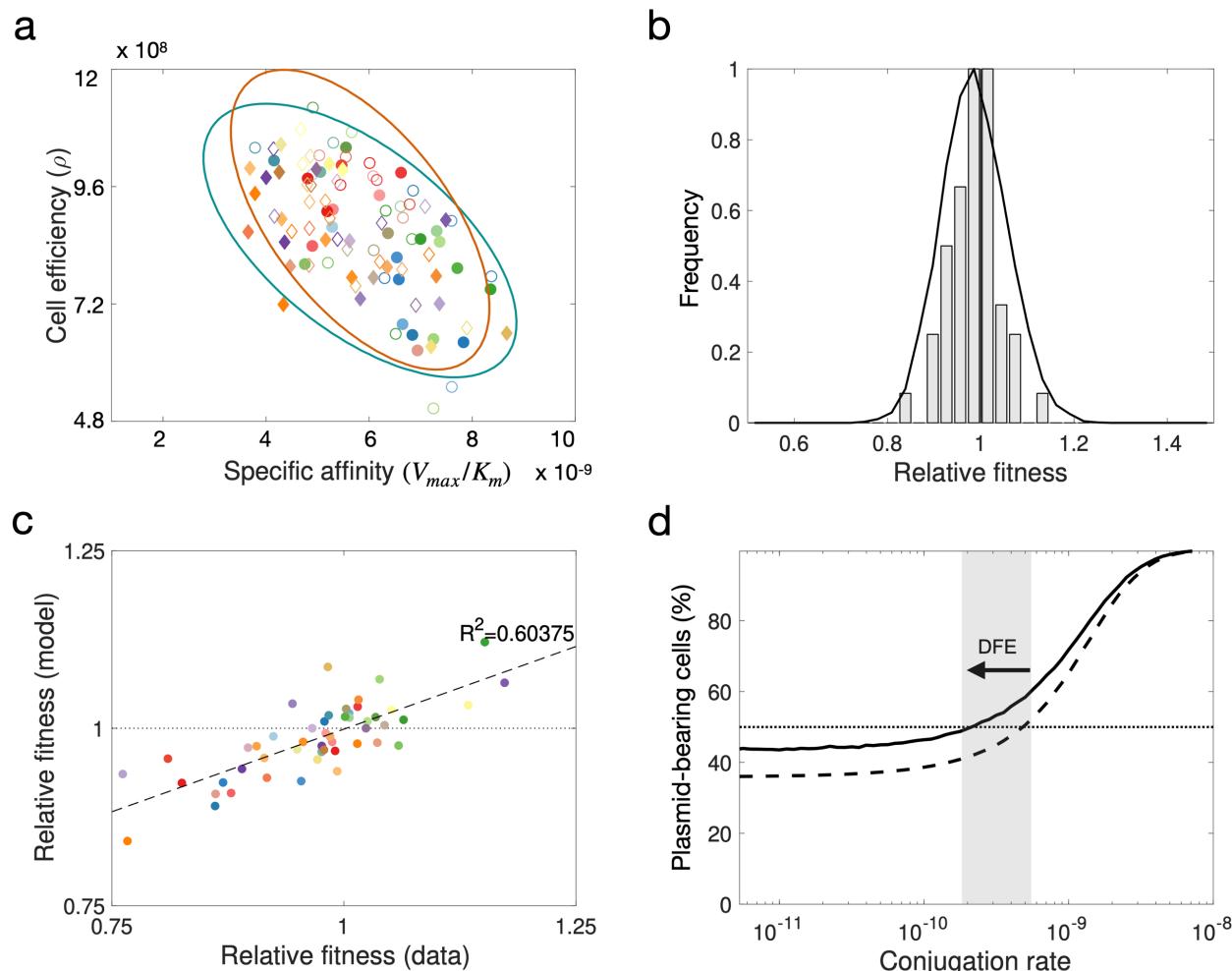
183 *pOXA-48 fitness effects across bacterial phylogeny*

184 A key limit to the prediction of plasmid-mediated evolution is the inability to anticipate plasmid fitness
185 effects in new bacterial hosts. This is particularly relevant to the evolution of antibiotic resistance
186 because some of the most concerning multi-resistant clinical pathogens arise from very specific
187 associations between resistance plasmids and high-risk bacterial clones^{4,6,42}. Interestingly, a recent
188 study in an important pathogenic *E. coli* lineage (ST131) showed that the acquisition and maintenance
189 of resistance plasmids is associated with specific genetic signatures⁴³. Pursuing this idea, we analysed
190 the DFE for pOXA-48 across the whole-genome phylogeny of our isolates, with the aim of determining if
191 genetic content could help to predict plasmid fitness effects (Figure 4). We calculated the genetic
192 relatedness of *Klebsiella* spp. and *E. coli* isolates by reconstructing their core genome phylogeny
193 (Figure 4a). Plasmid fitness effects can also be strongly influenced by the accessory genome. For
194 example, the presence of further mobile genetic elements can deeply impact the costs of plasmids^{44,45}.
195 Therefore, we also constructed trees from the distance matrix of the accessory gene network⁴⁶, which
196 includes plasmid content (Figure 4b).

197 For each group of isolates, we scanned the fitness effects of pOXA-48 across the core and accessory
198 genome using the local indicator of phylogenetic association index^{47,48} (LIPA, see Supplementary
199 Figure 4, Supplementary Table 3, and methods for the complete analysis). For the *E. coli* isolates, the
200 results showed no association of pOXA-48 fitness effects with the core or accessory phylogenies (LIPA,
201 $P > 0.1$). In contrast, for *Klebsiella* spp., LIPA indices revealed a significant phylogenetic signal in four
202 clones in which pOXA-48 produced a high fitness cost, all of them belonging to ST1427 (Kpn01, Kpn04,
203 Kpn08, and Kpn13, accounting for 4 of the 5 ST1427 clones analysed in this study; LIPA, $P < 0.05$).
204 Three of these ST1427 clones also produced a significant signal in the analysis of fitness effects across
205 the accessory genome (Kpn01, Kpn08, and Kpn13; LIPA, $P < 0.05$). The results thus reveal that pOXA-
206 48 tended to produce a high cost in *K. pneumoniae* clones belonging to ST1427. Interestingly, although
207 *K. pneumoniae* ST1427 is relatively common in our hospital (4.8% of ESBL-producing *K.*
208 *pneumoniae*³⁸), none of the 103 pOXA-48-carrying *K. pneumoniae* isolates recovered in the R-GNOSIS
209 collection belong to this ST³¹ (Fisher's exact test for count data, 8/166 vs 0/103, $P= 0.025$). These

210 results suggest that the high cost associated with plasmid acquisition in this clade may limit in-hospital
211 spread of pOXA-48-carrying *K. pneumoniae* ST1427. Conversely, pOXA-48 is commonly associated
212 with *K. pneumoniae* ST11 in our hospital^{31,36}, and in the four ST11 clones tested in this study, pOXA-48
213 produced neutral (Kpn07, Kpn20, Kpn23) or even beneficial fitness effects (Kpn22, Figure 4A) (pOXA-
214 48 fitness effects in ST1427 [n=5] vs. in ST11 [n=4], Welch's unequal variances two-tailed t-test, $t = -$
215 2.39, $df = 7$, $P = 0.048$).

217 Figure 4. Fitness effects of pOXA-48 across bacterial genome content. An association was found
218 between pOXA-48 fitness effects and bacterial host genomic content for four *K. pneumoniae* ST1427
219 isolates. (a) Core genome relationships among *E. coli* (left) and *Klebsiella* spp. (right). Tree construction
220 is based on polymorphisms in the core genome. The outer circle indicates the relative fitness of pOXA-
221 48-carrying bacterial hosts (see legend for colour code; red indicates fitness costs and green indicates
222 fitness benefits associated with pOXA-48 carriage). Asterisks denote clones with a phylogenetic signal
223 associated with plasmid fitness effects (LIPA, $P < 0.05$). (b) Accessory genome relationships among *E.*
224 *coli* (left) and *Klebsiella* spp. (right). Tree construction is based on the distance matrix of the accessory
225 gene network of each group. The outermost circle indicates relative fitness as in (a). The intermediate
226 circles indicate presence/absence of plasmids belonging to the different plasmid families named in the
227 figure. Asterisks denote clones with a significant phylogenetic signal associating accessory genome
228 composition with pOXA-48 fitness effects (LIPA, $P < 0.05$).


229 Modelling the role of DFE in plasmid stability

230 In general, mathematical models of plasmid population biology consider a clonal population in which the
231 plasmid produces a constant reduction in growth rate^{14,18–23}. These models usually include the rate of
232 plasmid loss through segregation^{49,50} and the rate of horizontal plasmid transfer by conjugation^{19,20,51},
233 and some of them also incorporate a rate of compensatory mutations that alleviate plasmid fitness
234 costs over time^{14,23}. Our results show that plasmids produce a wide DFE in naturally compatible
235 bacterial hosts, and this distribution could strongly influence plasmid stability in polyclonal bacterial
236 communities. To assess the effect of the DFE on plasmid stability in bacterial communities, we
237 developed a simple mathematical model based on Stewart and Levin's pioneering work on plasmid
238 existence conditions¹⁹.

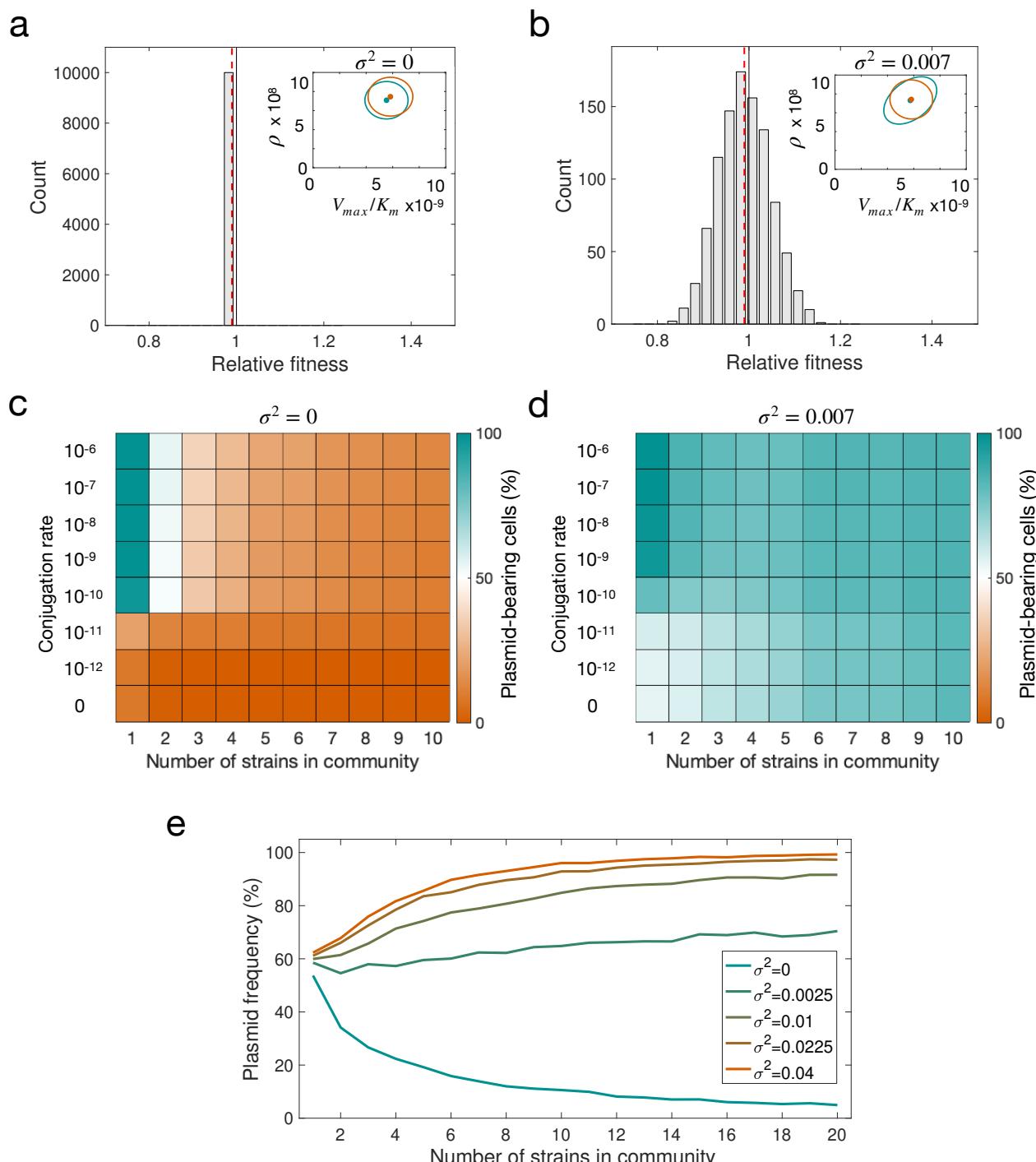
239 The model describes the population dynamics of multiple subpopulations competing for a single
240 exhaustible resource in well-mixed environmental conditions, assuming that transition between plasmid-
241 bearing and plasmid-free cells is driven by segregation events. The growth rate of each subpopulation
242 is determined by a substrate-dependent Monod term that depends on the extracellular resource
243 concentration, and therefore each strain can be described by two structurally identifiable parameters⁴⁹:
244 the resource conversion rate (ρ) and the specific affinity for the resource (V_{max}/K_m). These parameters
245 were estimated from the optical densities of each strain growing in monoculture (with and without
246 plasmids) using a Markov chain Monte Carlo (MCMC) method with a Metropolis-Hastings sampler (See
247 Methods, Figure 5a and Supplementary Figure 5).

248 By solving the system of differential equations (described in Methods), we were able to evaluate the
249 final frequency of plasmid-bearing cells in an experiment of duration T time units and quantify the
250 fitness effect of the plasmid on the strain. Figure 5b shows the DFE obtained after performing *in silico*
251 pair-wise competition experiments between plasmid-bearing and plasmid-free subpopulations (with
252 parameter values shown in Supplementary Table 5, Supplementary Figure 6), resulting in a theoretical
253 DFE ($w= 0.985$, $var= 0.0070$) that is consistent with the experimentally measured DFE presented in
254 Figure 3 ($w= 0.971$, $var= 0.0072$). Moreover, comparison of model predictions with relative fitness
255 values obtained by flow cytometry are consistent ($R^2= 0.603$; Figure 5c), showing that the population
256 dynamics model can accurately predict the outcome of a competition experiment from the individual
257 growth dynamics.

258 Previous studies showed that the probability of plasmid fixation is correlated with the rate of horizontal
259 transmission^{19,20,49}. As previous models, we consider horizontal transmission of plasmids as a function
260 of the densities of donor and recipient cells, with conjugation events occurring at a constant rate.
261 Competition experiments for a range conjugation rates are illustrated in Figure 5d; while at low
262 horizontal transmission rates plasmid-free cells outcompete plasmid-bearing cells, at higher conjugative
263 rates, plasmid-bearing cells increase in frequency.

264
265 Figure 5. Modelling the DFE for pOXA-48. (a) Distribution of parameter values obtained using Bayesian
266 inference to estimate growth kinetic parameters from OD measurements obtained for each strain in
267 isolation. Diamonds represent *Klebsiella* spp. strains and circles *E. coli* clones; filled symbols denote
268 plasmid-bearing strains and empty symbols plasmid-free cells. The ellipses represent standard
269 deviations of best-fit Normal distributions (green for plasmid-bearing strains and orange for plasmid-free
270 cells). (b) Bars represent a DFE obtained from *in silico* competition experiments with parameter values
271 determined from experimental growth curves. The solid curve represents the computationally estimated

272 DFE obtained by randomly sampling wild-type and transconjugant parameter distributions obtained
273 using the MCMC algorithm and numerically solving the model to evaluate the relative fitness associated
274 with plasmid carriage. (c) Comparison of relative fitness values obtained experimentally and using the
275 population dynamics model ($R^2= 0.603$). (d) Fraction of plasmid-bearing cells as a function of the rate of
276 horizontal transfer for random plasmid-host associations sampled from the MCMC parameter
277 distribution. The dotted line illustrates the mean of 10^4 pair-wise competition experiments under the
278 assumption plasmid-bearing is associated with a constant reduction in fitness in different clones ($w=$
279 0.985 , $\text{var}= 0$), while the solid line is obtained by considering a wide DFE ($w= 0.985$, $\text{var}= 0.0070$). The
280 arrow denotes the difference in the conjugation threshold that positively selects for plasmids in the
281 population, supporting the tenet that the DFE maintains plasmids in the population at lower conjugation
282 rates.


283 *Community complexity promotes plasmid persistence*

284 To explore how plasmid stability is affected by increasing community complexity and rates of horizontal
285 transmission, we randomly sampled $N= 10^4$ plasmid-free cells from the distribution of growth
286 parameters estimated using the MCMC algorithm. These random communities were used to study the
287 population dynamics of plasmids transmitting vertically and horizontally in multi-strain communities. The
288 fitness cost (or benefit) of bearing plasmids was modelled as a random variable that modifies the wild-
289 type (plasmid-free) growth rate by a factor σ , such that if $\sigma= 0$, the DFE has zero variance (Figure 6a),
290 but if $\sigma> 0$, the resulting DFE is a symmetrical heavy-tailed distribution with a right-hand tail expanding
291 towards positive fitness effects (Figure 6b), indicating the existence of plasmid-host associations in
292 which plasmid carriage produces a fitness benefit.

293 To assess how DFE influences plasmid persistence in polymicrobial communities, we extended the
294 model to consider populations composed of subsets of $1, 2, 3, 4, \dots, M \leq N$ cell types sampled randomly
295 from the wild-type parameter distribution (see Methods and Supplementary Figure 7 and 8). This
296 enabled us to estimate the relative frequency of plasmid-bearing cells at the end of a long-term
297 experiment and evaluate the stability of the plasmid in multi-strain communities with different population
298 structures. Initial bacterial densities were determined by first running the system forward (with all strains
299 initially present at equal densities and carrying pOXA-48) for $T= 24$ time units, and then clearing all
300 plasmid-free cells from the population. This assumption is akin to patients receiving an antibiotic

301 therapy that clears all plasmid-free cells from the bacterial community. The results obtained after 5,000
302 computer simulations over a range of conjugation rates and numbers of cell types in the community are
303 shown in Figure 6. The simulations either assumed an identical fitness cost for all strains ($w= 0.985$,
304 $\text{var}= 0$; Figure 6a,c) or allowed plasmid fitness effects to vary according to the experimentally
305 determined DFE ($w= 0.985$, $\text{var}= 0.0070$; Figure 6b,d).

306 Although the mean fitness cost was the same in both conditions, the results of the computational
307 experiments suggest that allowing fitness effects to vary between members of the population markedly
308 increases the chances of plasmid persistence, especially at low conjugation rates. More importantly, in
309 the numerical simulations, plasmid frequency decreased as a function of the number strains in the
310 community when plasmid acquisition was associated with a constant fitness cost, but increased with
311 community complexity for DFEs with larger variance (Figure 6c,d,e). The explanation for this effect is
312 that if plasmid fitness cost is identical for all community members, diversity simply means extra
313 competition for plasmid-carrying cells, and plasmid persistence becomes more dependent on a high
314 conjugation rate. In contrast, if the fitness effects vary, a larger number of available bacterial hosts in
315 the population increases the probability of the plasmid arriving to a host in which it produces a neutral
316 or beneficial fitness effect. This is an important result because it implies that increasing bacterial
317 community complexity could increase the probability of plasmid persistence in natural environments.
318 Given that most natural microbiota are complex and plasmids can usually conjugate and replicate in
319 different clones, this may explain the high prevalence of plasmids in nature. Our results also indicate
320 that the threshold conjugation rate for plasmid persistence may be lower than previously thought. In
321 fact, once plasmids are present in multiple members of a community, they may be able to persist even
322 in the absence of conjugation (Figure 6d).

323

324 Figure 6. Modelling plasmid persistence in polymicrobial communities, assuming fixed (a,c) or variable
 325 (b,d) plasmid fitness effects. (a-b) Relative fitness histogram obtained by randomly sampling 10^4
 326 parameter values from the parameter distribution shown in the inset plot (points illustrate the expected
 327 values of each distribution and ellipses their standard deviation; green, plasmid-bearing bacteria;
 328 orange, plasmid-free bacteria). The green ellipse in b is larger as a consequence of considering that the
 329 cost of plasmid-bearing is normally-distributed with variance 0.007. As a result, the DFE also has higher
 330 variance, with a considerable fraction of plasmid-host associations producing a benefit to the host.

331 Dotted red lines indicate mean relative fitness of plasmid carrying cells. (c-d) Colour gradient represents
332 the percentage of cells carrying plasmids at the end of 5,000 stochastic simulations; orange indicates a
333 population without plasmids and green a community composed of plasmid-carrying cells. If plasmid-
334 bearing is associated with a fixed fitness cost for all members of the community, plasmid maintenance
335 requires a high conjugation rate. The increased proportion of plasmid-bearing cells in d indicates that a
336 DFE with high variance reduces the critical conjugation rate needed to maintain plasmids in the
337 population, enabling plasmids to persist at low conjugation rates. (e) Mean fraction of plasmid-bearing
338 cells as a function of the number of strains in the community with a conjugation rate $\gamma = 1.5 \times 10^{-11}$. If
339 the plasmid always produces a reduction in host fitness (mean $w < 1$ and low variance), plasmid
340 frequency decreases as the number of strains in the community increases (green line). In contrast, for
341 higher variance at the same mean w , the fraction of plasmid-bearing cells increases with community
342 complexity (orange line).

343 **Discussion**

344 The DFE for new mutations is a central concept in genetics and evolutionary biology, with implications
345 ranging from population adaptation rates to complex human diseases⁵². The fitness effects of new
346 spontaneous mutations in bacteria follow a heavy-tailed distribution dominated by quasi-neutral
347 mutations with infrequent strongly deleterious mutations^{53,54}. Horizontally acquired genes also produce
348 a distribution of fitness effects in new bacterial hosts^{55,56}. However, horizontal gene transfer in bacteria
349 is frequently mediated by entire mobile genetic elements, such as plasmids, that carry multiple genes.
350 Numerous studies have measured the fitness effects of individual plasmids in a bacterial host²⁴, but the
351 DFE of a plasmid in multiple, ecologically compatible bacterial hosts had not been reported before.
352 Here, we determined the DFE of a carbapenem resistance plasmid in wild-type enterobacteria
353 recovered from the human gut microbiota. Unsurprisingly, the DFE of pOXA-48 differed from the DFE of
354 spontaneous mutations. As with spontaneous mutations, the pOXA-48 DFE was also dominated by
355 quasi-neutral effects and was slightly shifted towards fitness costs; however, instead of a single heavy
356 tail of deleterious effects, it had a symmetrical shape, with tails expanding both towards negative and
357 positive fitness effects (Figure 3a).

358 Two key implications of the experimentally determined DFE in this study are that, according to our
359 simple mathematical model, the probability of plasmid persistence becomes less dependent on a high

360 conjugation rate and increases with the number of bacterial strains in the population. The complex and
361 multi-clonal nature of most natural bacterial communities attests the likely relevance of our findings to
362 the extremely high prevalence of plasmids in bacterial populations⁵⁷. The human gut microbiota, for
363 example, includes a great variety of bacteria from hundreds of species⁵⁸, including several strains from
364 the *Enterobacterales* order alone⁵⁹. Our experimental system is in fact inspired by the dynamics of
365 pOXA-48 in the gut microbiota of hospitalised patients. In a recent study, we observed that once
366 patients are colonised by a pOXA-48-carrying clone, the plasmid spreads through conjugation to other
367 resident enterobacteria present in the gut microbiota³¹. Crucially, pOXA-48 usually persists in the gut of
368 patients throughout the hospital stay and can be detected in subsequent hospital admissions months or
369 years later, and not necessarily in the original colonizing strain³¹. Our results indicate that the pOXA-48
370 DFE could explain the long-term persistence of this and other plasmids in the human gut microbiota.

371 Another interesting result of this study is that pOXA-48 produced a particularly elevated cost in *K.*
372 *pneumoniae* isolates belonging to ST1427 (Figure 4A). ST1427 is under-represented among the pOXA-
373 48-carrying *K. pneumoniae* isolates in our hospital, which are dominated by ST11^{31,36}. Remarkably, in
374 the four *K. pneumoniae* ST11 clones tested in this study, pOXA-48 produced neutral (Kpn07, Kpn20,
375 Kpn23) or even beneficial fitness effects (Kpn22, Figure 4A). Therefore, despite the small number of *K.*
376 *pneumoniae* clones analysed, our results suggest that phylogeny might influence fitness compatibility
377 between plasmids and bacteria at the clonal level, dictating the epidemiology of plasmid-bacterium
378 associations in clinical settings. Further analysis of a larger sample of *K. pneumoniae* isolates from the
379 different STs will be needed to elucidate the genetic basis underlying these specific interactions
380 between bacterial phylogeny and pOXA-48 fitness effects.

381 The main experimental limitation of our study is that plasmid fitness effects were determined *in vitro*,
382 using planktonic cultures in LB medium. This is the standard practise in the field, and previous studies
383 have shown that plasmid fitness effects measured in laboratory conditions correlate with those
384 measured in animal models²⁴; however, our results may not be fully representative of pOXA-48 fitness
385 effects in the human gut. Future studies will need to explore more complex *in vitro* systems⁶⁰, as well as
386 *in vivo* animal models⁶¹. Another important limitation of our study is that we modelled bacterial
387 communities with a simple resource competition model that does not consider spatial structure⁶²,
388 complex ecological interactions between community members⁶³, plasmid-host co-evolution⁶⁴, or

389 differential rates of horizontal transmission²⁸. Although more complex models⁶⁵ will be needed to
390 integrate bacterial community complexity and plasmid fitness effects, consideration of diverse
391 polymicrobial populations with complex spatiotemporal interactions would likely only increase DFE
392 variance, therefore promoting plasmid stability.

393 **Methods**

394 *Strains, pOXA-48 plasmid, and culture conditions*

395 We selected 50 representative ESBL-producing clones from the R-GNOSIS collection (Supplementary
396 Table 1). This collection was constructed in our hospital as part of an active surveillance-screening
397 program for detecting patients colonised by ESBL/carbapenemase-producing enterobacteria, from
398 March 4th, 2014, to March 31st, 2016 (R-GNOSIS-FP7-HEALTH-F3-2011-282512, www.r-gnosis.eu/,
399 approved by the Ramón y Cajal University Hospital Ethics Committee, Reference 251/13)^{36,38}. The
400 screening included a total of 28,089 samples from 9,275 patients admitted at 4 different wards
401 (gastroenterology, neurosurgery, pneumology and urology) in the Ramon y Cajal University Hospital
402 (Madrid, Spain). The characterisation of samples was performed during the R-GNOSIS study
403 period^{36,66}; rectal swabs were plated on Chromo ID-ESBL and Chrom-CARB/OXA-48 selective agar
404 media (BioMérieux, France) and bacterial colonies able to grow on these media were identified by
405 MALDI-TOF MS (Bruker Daltonics, Germany) and further characterized by pulsed-field gel
406 electrophoresis (PFGE). For the present study, we selected 25 *E. coli* and 25 *K. pneumoniae* ESBL-
407 producing isolates from the R-GNOSIS collection. The strains were representative of *E. coli* and *K.*
408 *pneumoniae* diversity in the R-GNOSIS collection (randomly chosen from the most common pulsed-
409 field gel electrophoresis profiles³⁸), they did not carry any carbapenemase gene and they were
410 recovered from patients not colonised by other pOXA-48-carrying clones. To construct the
411 transconjugants, we used the most common pOXA-48 plasmid variant from the R-GNOSIS collection in
412 our hospital, according to plasmid genetic sequence (pOXA-48_K8, accession number MT441554)³⁰.
413 Bacterial strains were cultured in lysogeny broth (LB) at 37°C in 96-well plates with continuous shaking
414 (250 rpm) and on LB agar plates at 37°C.

415 *Construction of transconjugants collection*

416 We performed an initial conjugation round to introduce pOXA-48_K8 plasmid from wild type *E. coli*
417 C609 strain³¹, into *E. coli* β 3914⁶⁷, a diaminopimelic acid (DAP) auxotrophic laboratory mutant of *E. coli*
418 K-12 (kanamycin, erythromycin and tetracycline resistant, Supplementary Table 1), which was used as
419 the common counter-selectable donor. The pOXA-48-carrying wild type *E. coli* C609 and *E. coli* β 3914
420 were streaked from freezer stocks onto solid LB agar medium with ertapenem 0.5 μ g/ml and DAP 0.3
421 mM, respectively, and incubated overnight at 37°C. Donor and recipient colonies were independently
422 inoculated in 2 ml of LB in 15-ml culture tubes and incubated overnight. After growth, donor and
423 recipient cultures were collected by centrifugation (15 min, 1,500 g) and cells were re-suspended in
424 each tube with 300 μ l of sterile NaCl 0.9%. Then, the suspensions were mixed in a 1:1 proportion,
425 spotted onto solid LB medium with DAP 0.3 mM and incubated at 37°C overnight. Transconjugants
426 were selected by streaking the conjugation mix on LB with ertapenem (0.5 μ g/ml), DAP 0.3 mM,
427 tetracycline (15 μ g/ml), and kanamycin (30 μ g/ml). The presence of pOXA-48 was checked by PCR,
428 using primers for *bla*_{OXA-48} gene and for the replication initiation protein gene *repC* (Supplementary
429 Table 4).

430 We used the counter-selectable *E. coli* β 3914/pOXA-48_K8 donor to conjugate plasmid pOXA-48 in the
431 50 wild type strains. We used the same protocol described above, but the final conjugation mix was
432 plated on LB with no DAP (to counter-select the donor) and with amoxicillin-clavulanic acid (to select for
433 transconjugants). The optimal concentration of amoxicillin-clavulanic acid was experimentally
434 determined for each isolate in the collection and ranged from 64 μ g/ml to 384 μ g/ml. The presence of
435 pOXA-48 in the transconjugants was checked by PCR, as described above, and by antibiotic
436 susceptibility testing and whole genome sequencing (see below). To test the stability of plasmid pOXA-
437 48 in the transconjugants we propagated cultures in LB with no antibiotic selection (two consecutive
438 days, 1:10,000 dilution) and plated cultures on LB agar. After ON incubation at 37°C, 100 independent
439 colonies of each transconjugant were replicated both on LB agar and LB agar with amoxicillin-
440 clavulanic acid to identify pOXA-48-carrying colonies (including negative controls of plasmid-free wild
441 type clones). Results showed that the plasmid was overall stable in the transconjugants; 100% stable in
442 43 isolates, and \geq 90% stable in the 7 remaining isolates.

443 *Antibiotic susceptibility testing*

444 Antibiotic susceptibility profiles were determined for every wild-type and transconjugant strain by the
445 disc diffusion method following the EUCAST guidelines (www.eucast.org) (Supplementary Table 2). We
446 used the following antimicrobials agents: imipenem (10 µg), ertapenem (10 µg), amoxicillin-clavulanic
447 acid (20/10 µg), rifampicin (30 µg), streptomycin (300 µg), chloramphenicol (30 µg) and amikacin (30
448 µg) (Bio-Rad, CA, USA). pOXA-48-carrying and pOXA-48-free strains were pre-cultured in Müller-
449 Hinton (MH) broth at 37 °C in 15 ml test tubes with continuous shaking (250 rpm), and disc diffusion
450 antibiograms were performed on MH agar plates (BBL, Becton Dickinson, MD, USA).

451 *Growth curves*

452 Pre-cultures of plasmid-free and plasmid-carrying strains (5 replicates of each) were prepared by
453 inoculating single independent colonies into LB broth and overnight incubation at 37 °C with continuous
454 shaking (250 rpm). Overnight cultures were diluted 1:1,000 into fresh LB in 96-well plates, which were
455 incubated during 22 h at 37 °C with shaking (250 rpm) in a plate reader (Synergy HTX Multi-Mode
456 Reader, BioTek Instruments, Inc, VT, USA). Optical densities (OD) were measured every 15 minutes
457 during the incubation. The maximum growth rate (μ_{\max}), maximum optical density (OD_{\max}), and area
458 under the growth curve (AUC) were determined using Gen5™ Microplate Reader and Imager Software
459 and the *growthrates* package in R. We calculated the relative OD_{\max} , μ_{\max} , and AUC, by dividing the
460 average value of each parameter for the pOXA-48-carrying isolate between that of the pOXA-48-free
461 isolate using the follow formula:

$$462 \text{Relative}_{ODmax,Vmax,AUC} = \frac{\text{Plasmid - carrying } OD_{max,Vmax,AUC}}{\text{Plasmid - free } OD_{max,Vmax,AUC}}$$

463 *Construction of pBGC, a GFP-expressing non-mobilizable plasmid.*

464 To fluorescently label the wild type isolates for competition assays using flow cytometry, we constructed
465 the pBGC plasmid, a non-mobilizable version of the *gfp*-carrying small plasmid pBGT⁶⁸ (Supplementary
466 Figure 2, accession number MT702881). The pBGT backbone was amplified, except for the region
467 including the *oriT* and *bla_{TEM}1* gene, using the pBGC Fw/Rv primers. The *gfp* terminator region was
468 independently amplified using the GFP-Term Fw/Rv primers (Supplementary Table 4). PCR
469 amplifications were made with Phusion Hot Start II DNA Polymerase at 2 U/µL (ThermoFisher
470 Scientific, MA, USA), and PCR products were digested with DpnI to eliminate plasmid template before
471 setting up the assembly reaction (New England BioLabs, MA, USA). Finally, pBGC was constructed by

472 joining the amplified pBGT backbone and the *gfp* terminator region using the Gibson Assembly Cloning
473 Kit (New England BioLabs, MA, USA). Resulting reaction was transformed by heat shock into NEB 5-
474 alpha Competent *E. coli* (New England BioLabs, MA, USA), following manufacturer's instructions.
475 Transformation product was plated on LB agar with arabinose 0.1% and chloramphenicol 30 µg/ml, and
476 incubated overnight at 37 °C. Plasmid-bearing colonies were selected by green fluorescence. The *gfp*
477 gene in pBGC is under the control of the *P_{BAD}* promoter, so GFP production is generally repressed and
478 induced by the presence of arabinose. pBGC was completely sequenced using primers described in
479 Supplementary Table 4. We confirmed that neither pOXA-48, nor helper plasmid pTA-Mob⁶⁹, could
480 mobilized pBGC by conjugation using the conjugation protocol described above, confirming that pBGC
481 plasmid is not mobilizable. Finally, pBGC plasmid was introduced into our isolate collection by
482 electroporation (Gene Pulser Xcell Electroporator, BioRad, CA, USA). Of note, we were not able to
483 obtain pBGC-carrying transformants in eight of the isolates due to a pre-existing high chloramphenicol
484 resistance phenotype.

485 *Competition assays using flow cytometer*

486 We performed competition assays⁴¹, using flow cytometry, to obtain the relative fitness of pOXA-48-
487 carrying isolates compared to their pOXA-48-free parental counterparts. We used the collection of
488 pBGC transformed wild type isolates as competitors against their isogenic pOXA-48-carrying and
489 pOXA-48-free isolates. Specifically, two sets of competitions were performed for each isolate: pOXA-
490 48-free vs. pBGC-carrying, and pOXA-48-carrying vs. pBGC-carrying. Five biological replicates of each
491 competition were performed. Pre-cultures were incubated overnight in LB in 96-well plates at 225 rpm
492 an 37°C, then mixed 1:1 and diluted 10,000-fold in 200 µl of fresh LB in 96-well plates. Mixtures were
493 competed for 24 h in LB at 37°C and 250 rpm (the low initial cell density and the strong shaking hinders
494 pOXA-48 conjugation, see control experiment below). To determine the initial proportions, initial 1:1
495 mixes were diluted 2,000-fold in 200 µl of NaCl 0.9 % with L-arabinose 0.1 %, and incubated at 37 °C at
496 250 rpm during 1.5 h to induce *gfp* expression. The measurements were performed via flow cytometry
497 using a CytoFLEX Platform (Beckman Coulter Life Sciences, IN, US) with the following parameters: 50
498 µl min⁻¹ flow rate, 22 µm core size, and 10,000 events recorded per sample (Supplementary Figure 9).
499 After 24 hours of incubation, final proportions were determined as described above, after 2,000-fold

500 dilution of the cultures. The fitness of each strain relative to its pBGC-carrying parental isolate was
501 determined using the formula:

502
$$w = \frac{\ln(N_f / N_i)}{\ln(N_{f,pBGC+} / N_{i,pBGC+})}$$

503 where w is the relative fitness of the pOXA-48-carrying ($w_{pOXA-48+}$) or pOXA-48-free ($w_{pOXA-48-}$) isolates
504 compared to the pBGC-bearing parental clone, N_i and N_f are the number of cells of the pBGC-free
505 clone at the beginning and end of the competition, and $N_{i,pBGC}$ and $N_{f,pBGC}$ are the number of cells of the
506 pBGC-carrying clone at the beginning and end of the competition, respectively. The fitness of the
507 pOXA-48-carrying isolates relative to the pOXA-48-free parental isolates were calculated with the
508 formula, $w_{pOXA-48+} / w_{pOXA-48-}$ to correct for the fitness effects of pBCG (see Supplementary Figure 10 for
509 pBGC fitness effects), and the error propagation method was used to calculate the standard error of the
510 resulting value. Note that the fitness effects of pBGC did not correlate with those from pOXA-48
511 (Pearson's correlation, $R= 0.11$, $t= 0.66$, $df= 39$, $P= 0.51$). For the 8 strains where pBGC plasmid could
512 not be introduced (Ec13, Kpn10, Kpn11, Kpn19-Kpn23), pOXA-48-carrying and pOXA-48-free isolates
513 were competed against a pBGC-carrying *E. coli* J53⁷⁰ (a sodium azide resistant laboratory mutant of *E.*
514 *coli* K-12), following the same protocol described above. In general, we prefer to perform competitions
515 assays between isogenic bacteria to avoid interactions between clones that may affect the outcome of
516 the competition for reasons beyond the presence of the plasmid under study (such as bacteriocin
517 production). However, we did not observe any evidence of growth inhibition between the 8 wild type
518 isolates and *E. coli* J53 in the flow cytometry data, and the relative fitness results obtained with these
519 competitions were comparable to those obtained in the isogenic competitions (two-tailed t-test, $t= 1.64$,
520 $df= 11.2$, $P= 0.13$). To confirm that the isogenic competitions and those against *E. coli* J53/pBGC
521 produced similar results, we selected 10 random isolates from the 42 isolates with fitness data
522 calculated from isogenic competitions, and repeated their competitions against *E. coli* J53/pBGC
523 (Supplementary Figure 11). Results showed that relative fitness values calculated with isogenic
524 competitions and those using *E. coli* J53/pBGC presented a good correlation (Pearson's correlation, $R=$
525 0.81 , $t= 3.96$, $df= 8$, $P= 0.004$, Supplementary Figure 11). Finally, we performed controls to test for the
526 potential conjugative transfer of pOXA-48 during head-to-head competitions by plating the final time
527 points of the competition assays on amoxicillin-clavulanic acid (with the adequate concentration for
528 each isolate), and chloramphenicol (30 µg/ml). No transconjugants were detected in these controls,

529 showing that the low initial inoculum size we used in the competitions (10,000-fold dilution), and the
530 vigorous shaking of the liquid cultures prevented pOXA-48 conjugation.

531 *DNA extraction and genome sequencing*

532 Genomic DNA of all the pOXA-48 bearing strains was isolated using the Wizard genomic DNA
533 purification kit (Promega, WI, USA), and quantified using the QuantiFluor dsDNA system (Promega, WI,
534 USA), following manufacturers' instructions. Whole genome sequencing was conducted at the
535 Wellcome Trust Centre for Human Genetics (Oxford, UK), using the Illumina HiSeq4000 platform with
536 125 base pair (bp) paired-end reads and at MicrobesNG (Birmingham, UK), using Illumina platforms
537 (MiSeq or HiSeq2500) with 250 bp paired-end reads.

538 *Bioinformatic analyses*

539 The Illumina sequence reads were trimmed using the Trimmomatic v0.33 tool⁷¹. SPAdes v3.9.0⁷² was
540 used to generate *de novo* assemblies from the trimmed sequence reads with the –cov-cutoff flag set to
541 'auto'. QUAST v4.6.0⁷³ was used to generate assembly statistics. Three genomes were dropped from
542 the analysis because of the poor quality of the sequences (2 *E. coli* [Ec09, Ec17] and 1 *K. pneumoniae*
543 [Kpn05]). All the *de novo* assemblies used reached enough quality including total size of 5–7 Mb, and
544 the total number of contigs over 1 kb was lower than 200. Prokka v1.5⁷⁴ was used to annotate the *de*
545 *novo* assemblies with predicted genes. The seven-gene ST of all the isolates was determined using the
546 multilocus sequence typing (MLST) tool (<https://github.com/tseemann/mlst>). The plasmid content of
547 each genome was characterised using PlasmidFinder 2.1⁷⁵, and the antibiotic resistance gene content
548 was characterised with ResFinder 3.2⁷⁶ (Supplementary Table 1).

549 In order to confirm the presence of the entire pOXA-48_K8 plasmid, the sequences belonging to pOXA-
550 48 plasmid in the transconjugants were mapped using as reference the complete sequence of plasmid
551 from the donor strain, which had been previously sequenced by PacBio³¹ (from *K. pneumoniae* k8 –
552 GenBank Accession Number MT441554). Snippy v3.1 (<https://github.com/tseemann/snippy>) was used
553 to check that no SNPs or indels accumulated in pOXA-48_K8 during strain construction . Coding
554 sequences in pOXA-48 were predicted and annotated using Prokka 1.14.6 software⁷⁴. Plasmid
555 annotation was complemented with the National Center for Biotechnology Information (NCBI)
556 Prokaryotic Genome Annotation Pipeline⁷⁷.

557 To determine distances between genomes we used Mash v2.0⁷⁸ with the raw sequence reads, and a
558 phylogeny was constructed with mashtree v0.33⁷⁹. For the analysis of the core genome we calculated
559 the genetic relatedness of isolates belonging to *Klebsiella* spp. and to *E. coli* by reconstructing their
560 core genome phylogeny with an alignment of the SNPs obtained with Snippy v3.1
561 (<https://github.com/tseemann/snippy>). A maximum-likelihood tree was generated using IQ-TREE with
562 automated detection of the best evolutionary model⁸⁰. The tree was represented with midpoint root
563 using the phylotools package in R (<https://github.com/helixcn/phylotools>) and visualised using the iTOL
564 tool⁸¹. We also constructed a distance matrix of the accessory gene network to analyse the accessory
565 genome. To this end, we used AccNET, a tool that allows to infer the accessory genome from the
566 proteomes and cluster them based on protein similarity⁴⁶. The set of representative proteins was used
567 to build a binary matrix (presence/absence of proteins in the accessory genome) in the R-environment
568 and a cladogram to classify the strains according to the accessory genomes. The Euclidean distance
569 was calculated by the 'dist' function and a hierarchical clustering was performed with UPGMA using the
570 'hclust' function in the R environment. This cladogram was represented with midpoint root using the
571 phylotools package in R (<https://github.com/helixcn/phylotools>) and visualised using the iTOL tool⁸¹.

572 *Analysis of plasmid fitness effects across bacterial phylogeny*

573 We tested for the presence of phylogenetic signal in core and accessory genomes of *E. coli* and *K.*
574 *pneumoniae* using several statistical tests available in the *phylosignal* R package⁴⁷. In essence, these
575 analyses are designed to identify statistical dependence between a given continuous trait (relative
576 fitness) and the phylogenetic tree of the taxa from which the trait is measured. Therefore, a positive
577 phylogenetic signal indicates that there is a tendency for related taxa to resemble each other⁸². Several
578 indices have been proposed to identify phylogenetic signal, but the choice among them is not
579 straightforward⁸³. We first assayed the methods implemented in the *phyloSignal* function, which
580 produce global measures of phylogenetic signal (i.e. across the whole phylogeny). The methods
581 employed were Abouheif's C_{mean} , Moran's I index, Bloomberg's K and K*, and Pagel's λ ⁴⁷. All methods
582 except Pagel's λ detected a marginally significant phylogenetic signal in the *K. pneumoniae* core genome
583 (Supplementary table 3 [first tab]; 0.11>P>0.02). Abouheif's C_{mean} and Moran's I (but not Bloomberg's K
584 and K*, and Pagel's λ) also detected a marginally significant signal in the *K. pneumoniae* accessory
585 genome tree (Supplementary table 3 [first tab]; P<0.056 for both cases). Intrigued by these results, we

586 used the Local Indicator of Phylogenetic Association (LIPA) based on local Moran's I, which is meant to
587 detect local hotspots of phylogenetic signal^{47,48}. LIPA, implemented in the *lipaMoran* function, computes
588 local Moran's I indexes for each tip of the phylogeny and a non-parametric test to ascertain statistical
589 significance (Supplementary Figure 4 and Supplementary table 3 [second tab]).

590 *Plasmid population dynamics model*

591 We used a simple mathematical model of microbial growth under resource limitation to study the role of
592 the DFE in the ecological dynamics of a plasmid spreading in a bacterial population¹⁴. Bacterial growth
593 rate was modelled as a saturating function of the environmental resource concentration, R ,

594
$$G(R) = \rho \cdot \frac{V_{max}R}{K_m + R} = \rho \cdot u(R),$$

595 where ρ denotes the cell's efficiency to convert resource molecules into biomass and $u(R)$ a resource
596 uptake function that depends on the maximum uptake rate (V_{max}) and a half-saturation constant (K_m).
597 If we denote with B_p the density of plasmid-bearing cells and with B_0 the density of plasmid-free cells
598 (each with its own growth kinetic parameters and growth functions denoted $G_p(R)$ and $G_0(R)$,
599 respectively), then the density of each subpopulation can be described by a system of ordinary
600 differential equations:

601
$$\frac{dR}{dt} = -u_p(R) - u_0(R) - dR,$$

602
$$\frac{dB_p}{dt} = (1 - \lambda) G_p(R)B_p + \gamma B_0 B_p - dB_p,$$

603
$$\frac{dB_0}{dt} = G_0(R)B_0 + \lambda G_p(R)B_p - \gamma B_0 B_p - dB_0.$$

604 where λ represents the rate of segregational loss rate and d a dilution parameter. Moreover, we
605 represent with γ the rate of conjugative transfer, and therefore we model plasmid conjugation as a
606 function of the densities of donor and recipient cells. By numerically solving the system of equations
607 (using standard differential equations solvers in Matlab), we obtain the final density of each bacterial
608 type in an experiment of $T = 24$ units of time with $d = 0$ (to replicate the batch culture conditions used
609 to estimate the DFE experimentally).

610 Growth kinetic parameters were determined with a Markov chain Monte Carlo method (MCMC; scripts
611 coded in R and available at <http://www.github.com/esb-lab/pNUK73/>) applied to growth curves of each

612 strain growing in isolation, with and without plasmids. This data fitting algorithm implements a
613 Metropolis-Hastings sampler with a burn-in parameter of 0.2 and executed for 5×10^6 iterations, or until
614 achieving convergence of the Markov chains (see Supplementary Figure 5 for an example and
615 Supplementary Table 5 for parameters values estimated for each strain).

616 *Stochastic simulations of polymicrobial communities*

617 Numerical experiments were performed by randomly sampling $N = 1 \times 10^4$ cells from the parameter
618 distribution obtained after applying the MCMC algorithm to all 50 strains and fitting a bivariate Normal
619 distribution. We then assembled 5,000 synthetic communities composed of a random subset of $M < N$
620 different strains sampled from this distribution, and solved a multi-strain extension of the population
621 dynamics model. For each numerical experiment, the total density of strain i would be $B^i(t) = B_p^i(t) +$
622 $B_0^i(t)$, where B_p^i and B_0^i denote, respectively, the densities of plasmid-bearing and plasmid-free cells of
623 type $1 \leq i \leq M$. To model the fitness effects of bearing plasmids, we introduced a parameter, σ , such
624 that when $\sigma = 0$, the fitness difference between B_p^i and B_0^i corresponds to a fixed reduction in growth
625 rate (corresponding to a DFE with variance 0 and mean $w = 0.985$). Conversely, if $\sigma > 0$, then growth
626 kinetic parameters for each plasmid-bearing strain in the community were determined by sampling s_i
627 from a Normal distribution, $N(0, \sigma^2)$, and multiplying both V_{max}^i and ρ^i by a factor of $(1 + s_i)$.

628 As with the single-strain model, we consider segregational loss as a transition from B_p^i to B_0^i occurring
629 at a rate λ , but now we also consider that plasmid-free cells can acquire plasmids via conjugation from
630 any plasmid-bearing strain in the community, at a constant rate γ , and with equal probability of
631 transferring between different bacterial hosts. Therefore, we obtain a system of $2M + 1$ differential
632 equations that can be written, for each strain i , as follows:

$$633 \frac{dB_p^i}{dt} = (1 - \lambda) G_p^i(R) B_p^i + \gamma \sum_{j=1}^M B_p^j B_0^i - dB_p^i,$$

$$634 \frac{dB_0^i}{dt} = G_0^i(R) B_0^i + \lambda G_p^i(R) B_p^i - \gamma \sum_{j=1}^M B_p^j B_0^i - dB_0^i.$$

635 Furthermore, if \hat{R} represents the input of resource into the system, then

$$636 \frac{dR}{dt} = - \sum_{i=1}^M (u_p^i(R) + u_0^i(R)) - d(R - \hat{R}).$$

637 Initial bacterial densities were determined by first running the system forward (with all strains initially
638 present at equal densities) for $T = 24$ time units, and then clearing all plasmid-free cells from the
639 population. This assumption is consistent with patients receiving antimicrobial therapy that clears all
640 susceptible (plasmid-free) cells from the microbiota or, in an experimental microcosm, to a round of
641 growth in selective media after an overnight culture. As we are interested in the long-term population
642 dynamics, we ran each simulation starting from the aforementioned initial condition until the plasmid
643 fraction was below a threshold $\epsilon > 0$ (i.e. plasmid extinction), the plasmid fraction was near 100% and
644 the total plasmid-free density was below ϵ (i.e. plasmid fixation), or wild-type and transconjugant sub-
645 populations appeared to co-exist indefinitely in the population (either in equilibrium or exhibiting
646 oscillatory behaviour, as illustrated in Supplementary Figures 7 and 8).

647 *Statistical analyses*

648 The statistical tests used are indicated in the text. Analyses were performed using R (v. 3.5.0).

649 **References**

- 650 1. LEDERBERG, J. Cell genetics and hereditary symbiosis. *Physiol. Rev.* **32**, 403–430 (1952).
- 651 2. Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Mobile genetic elements: The agents of
652 open source evolution. *Nature Reviews Microbiology* vol. 3 722–732 (2005).
- 653 3. Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with
654 antimicrobial resistance. *Clinical Microbiology Reviews* vol. 31 (2018).
- 655 4. San Millan, A. Evolution of Plasmid-Mediated Antibiotic Resistance in the Clinical Context. *Trends in
656 Microbiology* (2018) doi:10.1016/j.tim.2018.06.007.
- 657 5. Bonomo, R. A. *et al.* Carbapenemase-Producing Organisms: A Global Scourge. *Clinical Infectious
658 Diseases* vol. 66 1290–1297 (2018).
- 659 6. David, S. *et al.* Epidemic of carbapenem-resistant *Klebsiella pneumoniae* in Europe is driven by
660 nosocomial spread. *Nat. Microbiol.* **4**, 1919–1929 (2019).
- 661 7. San Millan, A. & MacLean, R. C. Fitness Costs of Plasmids: a Limit to Plasmid Transmission.
662 *Microbiol. Spectr.* (2017) doi:10.1128/microbiolspec.MTBP-0016-2017.
- 663 8. Baltrus, D. A. Exploring the costs of horizontal gene transfer. *Trends in Ecology and Evolution* vol. 28
664 489–495 (2013).
- 665 9. San Millan, A. *et al.* Integrative analysis of fitness and metabolic effects of plasmids in *Pseudomonas*
666 *aeruginosa* PAO1. *ISME J.* **12**, 3014–3024 (2018).
- 667 10. Harrison, E. & Brockhurst, M. A. Plasmid-mediated horizontal gene transfer is a coevolutionary
668 process. *Trends in Microbiology* (2012) doi:10.1016/j.tim.2012.04.003.
- 669 11. Bouma, J. E. & Lenski, R. E. Evolution of a bacteria/plasmid association. *Nature* **335**, 351–352
670 (1988).
- 671 12. Dahlberg, C. & Chao, L. Amelioration of the Cost of Conjugative Plasmid Carriage in *Escherichia coli*

672 13. K12. *Genetics* **165**, 1641–1649 (2003).

673 14. Dionisio, F., Conceiçā, I. C., Marques, A. C. R., Fernandes, L. & Gordo, I. The evolution of a
674 conjugative plasmid and its ability to increase bacterial fitness. *Biol. Lett* **1**, 250–252 (2005).

675 15. San Millan, A. *et al.* Positive selection and compensatory adaptation interact to stabilize non-
676 transmissible plasmids. *Nat. Commun.* **5**, 5208 (2014).

677 16. Harrison, E., Guymer, D., Spiers, A. J., Paterson, S. & Brockhurst, M. A. Parallel Compensatory
678 Evolution Stabilizes Plasmids across the Parasitism-Mutualism Continuum. *Curr. Biol.* **25**, 2034–2039
679 (2015).

680 17. Loftie-Eaton, W. *et al.* Compensatory mutations improve general permissiveness to antibiotic
681 resistance plasmids. *Nat. Ecol. Evol.* (2017) doi:10.1038/s41559-017-0243-2.

682 18. Wein, T., Hütter, N. F., Mizrahi, I. & Dagan, T. Emergence of plasmid stability under non-selective
683 conditions maintains antibiotic resistance. *Nat. Commun.* **10**, 1–13 (2019).

684 19. Lopatkin, A. J. *et al.* Persistence and reversal of plasmid-mediated antibiotic resistance. *Nat.*
685 *Commun.* **8**, 1689 (2017).

686 20. Stewart, F. M. & Levin, B. R. The Population Biology of Bacterial Plasmids: A PRIORI Conditions for
687 the Existence of Conjugationally Transmitted Factors. *Genetics* **87**, 209–28 (1977).

688 21. Bergstrom, C. T., Lipsitch, M. & Levin, B. R. Natural selection, infectious transfer and the existence
689 conditions for bacterial plasmids. *Genetics* **155**, 1505–1519 (2000).

690 22. Zwanzig, M. *et al.* Mobile Compensatory Mutations Promote Plasmid Survival. *mSystems* **4**, (2019).

691 23. Lili, L. N., Britton, N. F. & Feil, E. J. The persistence of parasitic plasmids. *Genetics* **177**, 399–405
692 (2007).

693 24. Ponciano, J. M., De Gelder, L., Top, E. M. & Joyce, P. The population biology of bacterial plasmids: A
694 hidden Markov model approach. *Genetics* **176**, 957–968 (2007).

695 25. Vogwill, T. & Maclean, R. C. The genetic basis of the fitness costs of antimicrobial resistance: A
696 meta-analysis approach. *Evol. Appl.* **8**, 284–295 (2015).

697 26. De Gelder, L., Ponciano, J. M., Joyce, P. & Top, E. M. Stability of a promiscuous plasmid in different
698 hosts: no guarantee for a long-term relationship. *Microbiology* **153**, 452–463 (2007).

699 27. Humphrey, B. *et al.* Fitness of *Escherichia coli* strains carrying expressed and partially silent IncN and
700 IncP1 plasmids. *BMC Microbiol* **12**, 53 (2012).

701 28. Di Luca, M. C. *et al.* Low biological cost of carbapenemase-encoding plasmids following transfer from
702 *Klebsiella pneumoniae* to *Escherichia coli*. *J. Antimicrob. Chemother.* **72**, 85–89 (2017).

703 29. Gama, J. A., Kloos, J., Johnsen, P. J. & Samuelsen, Ø. Host dependent maintenance of a bla NDM-
704 1-encoding plasmid in clinical *Escherichia coli* isolates. *Sci. Rep.* **10**, 1–7 (2020).

705 30. Li, L. *et al.* Plasmids persist in a microbial community by providing fitness benefit to multiple
706 phylotypes. *ISME J.* **14**, 1170–1181 (2020).

707 31. Klümper, U. *et al.* Broad host range plasmids can invade an unexpectedly diverse fraction of a soil
708 bacterial community. *ISME J.* **9**, 934–945 (2015).

709 32. Leon-Sampedro, R. *et al.* Dissemination routes of the carbapenem resistance plasmid pOXA-48 in a
710 hospital setting. *bioRxiv* 2020.04.20.050476 (2020) doi:10.1101/2020.04.20.050476.

711 33. Dahlberg, C. *et al.* Interspecies bacterial conjugation by plasmids from marine environments
712 visualized by gfp expression. *Mol. Biol. Evol.* **15**, 385–390 (1998).

713 34. Poirel, L., Héritier, C., Tolün, V. & Nordmann, P. Emergence of Oxacillinase-Mediated Resistance to

714 Imipenem in *Klebsiella pneumoniae*. *Antimicrob. Agents Chemother.* **48**, 15–22 (2004).

715 34. Pitout, J. D. D., Peirano, G., Kock, M. M., Strydom, K.-A. & Matsumura, Y. The Global Ascendency of
716 OXA-48-Type Carbapenemases. *Clin. Microbiol. Rev.* **33**, (2020).

717 35. Ledda, A. *et al.* Hospital outbreak of carbapenem-resistant Enterobacteriales associated with an
718 OXA-48 plasmid carried mostly by *Escherichia coli* ST399. *bioRxiv* 2020.06.15.148189 (2020)
719 doi:10.1101/2020.06.15.148189.

720 36. Hernández-García, M. *et al.* Characterization of carbapenemase-producing Enterobacteriaceae from
721 colonized patients in a university hospital in Madrid, Spain, during the R-GNOSIS project depicts
722 increased clonal diversity over time with maintenance of high-risk clones. *J. Antimicrob. Chemother.*
723 **73**, 3039–3043 (2018).

724 37. Diaz-Agero, C. *et al.* Local prevalence of extended-spectrum beta-lactamase (ESBL) producing
725 Enterobacteriaceae intestinal carriers at admission and co-expression of ESBL and OXA-48
726 carbapenemase in *Klebsiella pneumoniae*: A prevalence survey in a Spanish University Hospital.
727 *BMJ Open* **9**, (2019).

728 38. Maechler, F. *et al.* Contact isolation versus standard precautions to decrease acquisition of extended-
729 spectrum β-lactamase-producing Enterobacteriales in non-critical care wards: a cluster-randomised
730 crossover trial. *Lancet Infect. Dis.* **20**, 575–584 (2020).

731 39. Karanika, S., Karantanos, T., Arvanitis, M., Grigoras, C. & Mylonakis, E. Fecal Colonization with
732 Extended-spectrum Beta-lactamase-Producing Enterobacteriaceae and Risk Factors among Healthy
733 Individuals: A Systematic Review and Metaanalysis. *Clin. Infect. Dis.* **63**, 310–318 (2016).

734 40. Holt, K. E. *et al.* Genomic analysis of diversity, population structure, virulence, and antimicrobial
735 resistance in *Klebsiella pneumoniae*, an urgent threat to public health. *Proc. Natl. Acad. Sci. U. S. A.*
736 **112**, E3574–E3581 (2015).

737 41. Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. *Long-Term Experimental Evolution in*
738 *Escherichia coli. I. Adaptation and Divergence During 2,000 Generations. Source: The American*
739 *Naturalist* vol. 138 (1991).

740 42. Stoesser, N. *et al.* Evolutionary history of the global emergence of the *Escherichia coli* epidemic clone
741 ST131. *MBio* **7**, (2016).

742 43. McNally, A. *et al.* Combined Analysis of Variation in Core, Accessory and Regulatory Genome
743 Regions Provides a Super-Resolution View into the Evolution of Bacterial Populations. *PLOS Genet.*
744 **12**, e1006280 (2016).

745 44. San Millan, A., Heilbron, K. & MacLean, R. C. Positive epistasis between co-infecting plasmids
746 promotes plasmid survival in bacterial populations. *ISME J.* **8**, 601–612 (2014).

747 45. San Millan, A., Toll-Riera, M., Qi, Q. & MacLean, R. C. Interactions between horizontally acquired
748 genes create a fitness cost in *Pseudomonas aeruginosa*. *Nat. Commun.* **6**, (2015).

749 46. Lanza, V. F., Baquero, F., De La Cruz, F. & Coque, T. M. AcCNET (Accessory Genome C
750 onstellation Net work): Comparative genomics software for accessory genome analysis using
751 bipartite networks. *Bioinformatics* **33**, 283–285 (2017).

752 47. Keck, F., Rimet, F., Bouchez, A. & Franc, A. Phylosignal: An R package to measure, test, and
753 explore the phylogenetic signal. *Ecol. Evol.* **6**, 2774–2780 (2016).

754 48. Anselin, L. Local Indicators of Spatial Association-LISA. *Geogr. Anal.* **27**, 93–115 (2010).

755 49. Cooper, N. S., Brown, M. E. & Caulcott, C. A. A mathematical method for analysing plasmid stability

756 in micro-organisms. *J. Gen. Microbiol.* **133**, 1871–1880 (1987).

757 50. Paulsson, J. & Ehrenberg, M. Noise in a minimal regulatory network: Plasmid copy number control.
758 *Quarterly Reviews of Biophysics* vol. 34 1–59 (2001).

759 51. Simonsen, L., Gordon, D. M., Stewart, F. M. & Levin, B. R. Estimating the rate of plasmid transfer: An
760 end-point method. *J. Gen. Microbiol.* **136**, 2319–2325 (1990).

761 52. Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. *Nat. Rev.* **8**,
762 608–618 (2007).

763 53. Bataillon, T. & Bailey, S. F. Effects of new mutations on fitness: insights from models and data. *Ann.*
764 *N. Y. Acad. Sci.* **1320**, 76–92 (2014).

765 54. Robert, L. *et al.* Mutation dynamics and fitness effects followed in single cells. *Science (80-)* **359**,
766 1283–1286 (2018).

767 55. Vos, M., Hesselman, M. C., te Beek, T. A., van Passel, M. W. J. & Eyre-Walker, A. Rates of Lateral
768 Gene Transfer in Prokaryotes: High but Why? *Trends in Microbiology* vol. 23 598–605 (2015).

769 56. Sorek, R. *et al.* Genome-wide experimental determination of barriers to horizontal gene transfer.
770 *Science (80-)* **318**, 1449–1452 (2007).

771 57. Acman, M., van Dorp, L., Santini, J. M. & Balloux, F. Large-scale network analysis captures biological
772 features of bacterial plasmids. *Nat. Commun.* **11**, 2452 (2020).

773 58. Almeida, A. *et al.* A new genomic blueprint of the human gut microbiota. *Nature* **568**, 499–504 (2019).

774 59. Martinson, J. N. V. *et al.* Rethinking gut microbiome residency and the Enterobacteriaceae in healthy
775 human adults. *ISME J.* **13**, 2306–2318 (2019).

776 60. Stalder, T. *et al.* Evolving Populations in Biofilms Contain More Persistent Plasmids. *Mol. Biol. Evol.*
777 (2020) doi:10.1093/molbev/msaa024.

778 61. Gumpert, H. *et al.* Transfer and persistence of a multi-drug resistance plasmid in situ of the infant gut
779 microbiota in the absence of antibiotic treatment. *Front. Microbiol.* **8**, (2017).

780 62. Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms.
781 *Nature Reviews Microbiology* vol. 14 589–600 (2016).

782 63. Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: Networks, competition, and
783 stability. *Science (80-)* **350**, 663–666 (2015).

784 64. Jordt, H. *et al.* Coevolution of host–plasmid pairs facilitates the emergence of novel multidrug
785 resistance. *Nat. Ecol. Evol.* **4**, (2020).

786 65. Lopatkin, A. J. & Collins, J. J. Predictive biology: modelling, understanding and harnessing microbial
787 complexity. *Nature Reviews Microbiology* (2020) doi:10.1038/s41579-020-0372-5.

788 66. Hernández-García, M. *et al.* Intestinal co-colonization with different carbapenemase-producing
789 Enterobacterales isolates is not a rare event in an OXA-48 endemic area. *EClinicalMedicine* **15**, 72–
790 79 (2019).

791 67. Le Roux, F., Binesse, J., Saulnier, D. & Mazel, D. Construction of a *Vibrio splendidus* mutant lacking
792 the metalloprotease gene vsm by use of a novel counterselectable suicide vector. *Appl. Environ.*
793 *Microbiol.* **73**, 777–784 (2007).

794 68. San Millan, A., Escudero, J. A., Gifford, D. R., Mazel, D. & MacLean, R. C. Multicopy plasmids
795 potentiate the evolution of antibiotic resistance in bacteria. *Nat. Ecol. Evol.* (2016)
796 doi:10.1038/s41559-016-0010.

797 69. Strand, T. A., Lale, R., Degnes, K. F., Lando, M. & Valla, S. A New and Improved Host-Independent

798 Plasmid System for RK2-Based Conjugal Transfer. *PLoS One* **9**, e90372 (2014).

799 70. Matsumura, Y., Peirano, G. & Pitout, J. D. D. Complete genome sequence of *Escherichia coli* J53, an
800 azide-resistant laboratory strain used for conjugation experiments. *Genome Announc.* **6**, (2018).

801 71. Bolger, M. A., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data |
802 Bioinformatics | Oxford Academic. *Bioinformatics (Oxford, England)* vol. 30 2114–2120
803 <https://academic.oup.com/bioinformatics/article/30/15/2114/2390096> (2014).

804 72. Bankevich, A. *et al.* SPAdes: A new genome assembly algorithm and its applications to single-cell
805 sequencing. *J. Comput. Biol.* **19**, 455–477 (2012).

806 73. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome
807 assemblies. *Bioinformatics* **29**, 1072–1075 (2013).

808 74. Seeman, T. Prokka: rapid prokaryotic genome annotation | Bioinformatics | Oxford Academic.
809 *Bioinformatics* **30**, 2068–2069 (2014).

810 75. Carattoli, A. *et al.* In Silico detection and typing of plasmids using plasmidfinder and plasmid
811 multilocus sequence typing. *Antimicrob. Agents Chemother.* **58**, 3895–3903 (2014).

812 76. Zankari, E. *et al.* Identification of acquired antimicrobial resistance genes. *J. Antimicrob. Chemother.*
813 **67**, 2640–2644 (2012).

814 77. Haft, D. H. *et al.* RefSeq: An update on prokaryotic genome annotation and curation. *Nucleic Acids
815 Res.* **46**, D851–D860 (2018).

816 78. Ondov, B. D. *et al.* Mash: fast genome and metagenome distance estimation using MinHash.
817 *Genome Biol.* **17**, 132 (2016).

818 79. Katz, L. S. *et al.* Mashtree: a rapid comparison of whole genome sequence files. (2019)
819 doi:10.21105/joss.01762.

820 80. Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective
821 stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol. Evol.* **32**, 268–274
822 (2015).

823 81. Letunic, I. & Bork, P. Interactive Tree of Life v2: Online annotation and display of phylogenetic trees
824 made easy. *Nucleic Acids Res.* **39**, (2011).

825 82. Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data:
826 Behavioral traits are more labile. *Evolution (N. Y.)*. **57**, 717–745 (2003).

827 83. Münkemüller, T. *et al.* How to measure and test phylogenetic signal. *Methods Ecol. Evol.* **3**, 743–756
828 (2012).

829

830 Acknowledgements

831 This work was supported by the European Research Council under the European Union's Horizon 2020
832 research and innovation programme (ERC grant agreement no. 757440-PLASREVOLUTION) and by
833 the *Instituto de Salud Carlos III* (co-funded by European Development Regional Fund "a way to achieve
834 Europe") grant PI16-00860. RC acknowledges financial support from European Commission (grant R-
835 GNOSIS-FP7-HEALTH-F3-2011-282512) and *Plan Nacional de I+D+i* 2013–2016 and *Instituto de Salud
836 Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de*

837 *Economía, Industria y Competitividad*, Spanish Network for Research in Infectious Diseases (REIPIR
838 D16/0016/0011) co-financed by European Development Regional Fund “A way to achieve Europe”
839 (ERDF), Operative program Intelligent Growth 2014–2020. ASM is supported by a Miguel Servet
840 Fellowship (MS15-00012). JRB is a recipient of a Juan de la Cierva-Incorporación Fellowship (IJC2018-
841 035146-I) co-funded by *Agencia Estatal de Investigación del Ministerio de Ciencia e Innovación*. MH-G
842 was supported with a contract from *Instituto de Salud Carlos III*, Spain (iP-FIS program, ref.
843 IFI14/00022). RPM was supported by PAPIIT-UNAM (IN209419) and CONACYT (Ciencia Básica grant
844 A1-S-32164). We thank the Oxford Genomics Centre at the Wellcome Centre for Human Genetics
845 (funded by Wellcome Trust grant reference 203141/Z/16/Z) for the generation and initial processing of
846 the sequencing data.

847 **Author Contributions**

848 ASM, AAdV and RPM conceived the study. RC designed and supervised sampling and collection
849 of R-GNOSIS bacterial isolates. MHG, PRG collected the bacterial isolates and performed
850 bacterial characterization. AAdV performed the experimental work with help from JRB and JdLF.
851 AAdV, JRB and JdLF analysed experimental results. RLS and JRB performed the
852 bioinformatic/phylogenetic analyses. RPM developed the mathematical model and computer
853 simulations. ASM supervised the study. ASM, AAdV and RPM wrote the initial draft of the
854 manuscript and all the authors contributed to the final version of the manuscript and approved it.

855 **Competing Interests statement**

856 Authors declare no competing interests.

857 **Data availability**

858 The sequences generated and analysed during the current study are available in the Sequence Read
859 Archive (SRA), BioProject ID: PRJNA641166, <https://www.ncbi.nlm.nih.gov/sra/PRJNA641166>.

860 **Code availability**

861 The code generated during the current study is available in GitHub, [http://www.github.com/esb-lab/
862 pOXA48/](http://www.github.com/esb-lab/pOXA48/)

1 **Supplementary Information**

2

3 **The distribution of plasmid fitness effects explains plasmid persistence in bacterial
4 communities**

5 Aida Alonso-del Valle¹, Ricardo León-Sampedro^{1,2}, Jerónimo Rodríguez-Beltrán^{1,2}, Javier
6 DelaFuente¹, Marta Hernández-García^{1,3}, Patricia Ruiz-Garbajosa^{1,3}, Rafael Cantón^{1,3}, Rafael
7 Peña-Miller^{4,*}, Álvaro San Millán^{1,2,5*}.

8

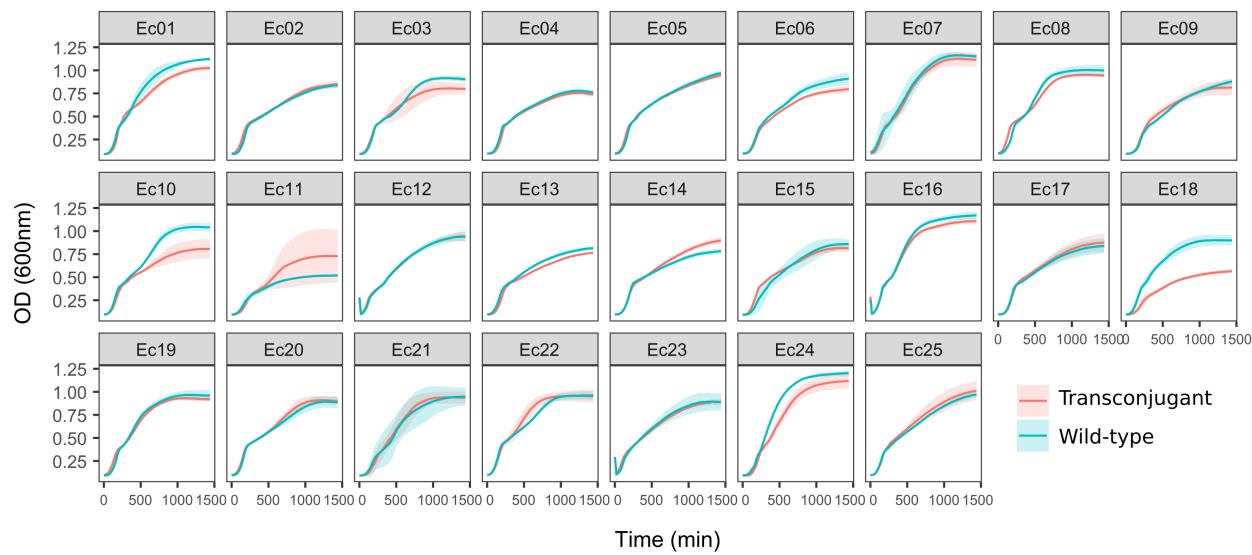
9 ¹ *Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de
10 Investigación Sanitaria. Madrid, Spain.*

11 ² *Centro de Investigación Biológica en Red. Epidemiología y Salud Pública, Instituto de Salud Carlos
12 III. Madrid. Spain.*

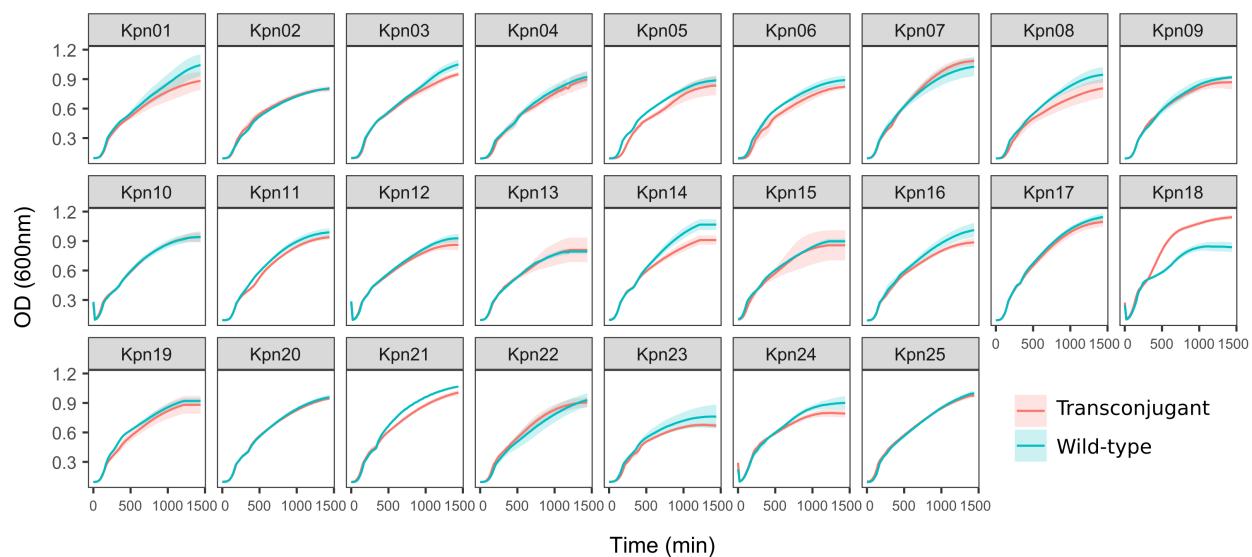
13 ³ *Red Española de Investigación en Patología Infecciosa. Instituto de Salud Carlos III. Madrid. Spain.*

14 ⁴ *Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.*

15 ⁵ *Current address: Centro Nacional de Biotecnología–CSIC, Madrid, Spain.*

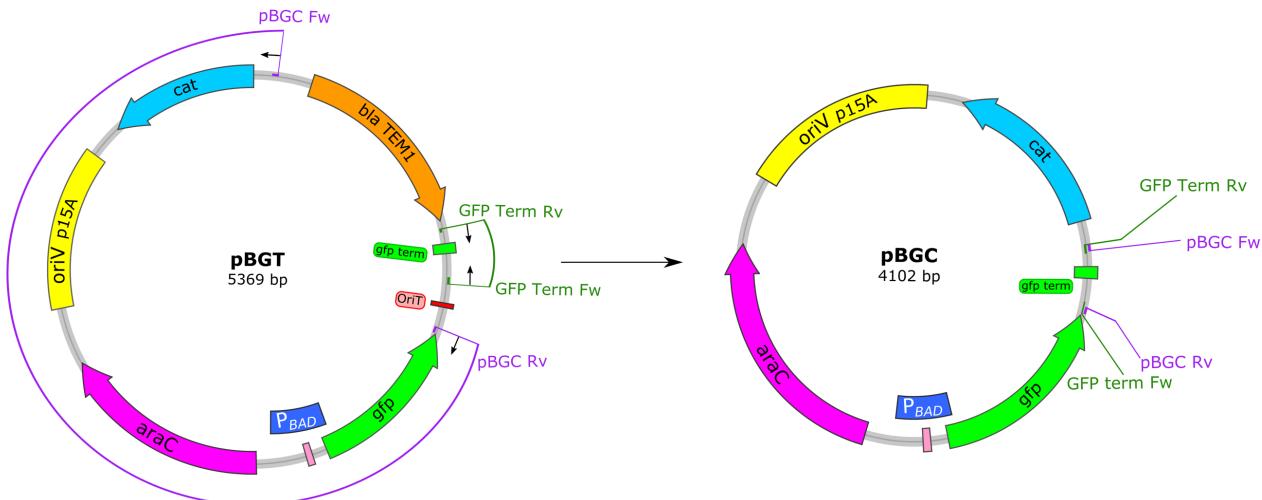

16 * Correspondence: Álvaro San Millán, alvsanmillan@gmail.com ORCID: 0000-0001-8544-0387 and
17 Rafael Peña-Miller, rafael.penamiller@gmail.com ORCID: 0000-0002-2767-0640

18


19

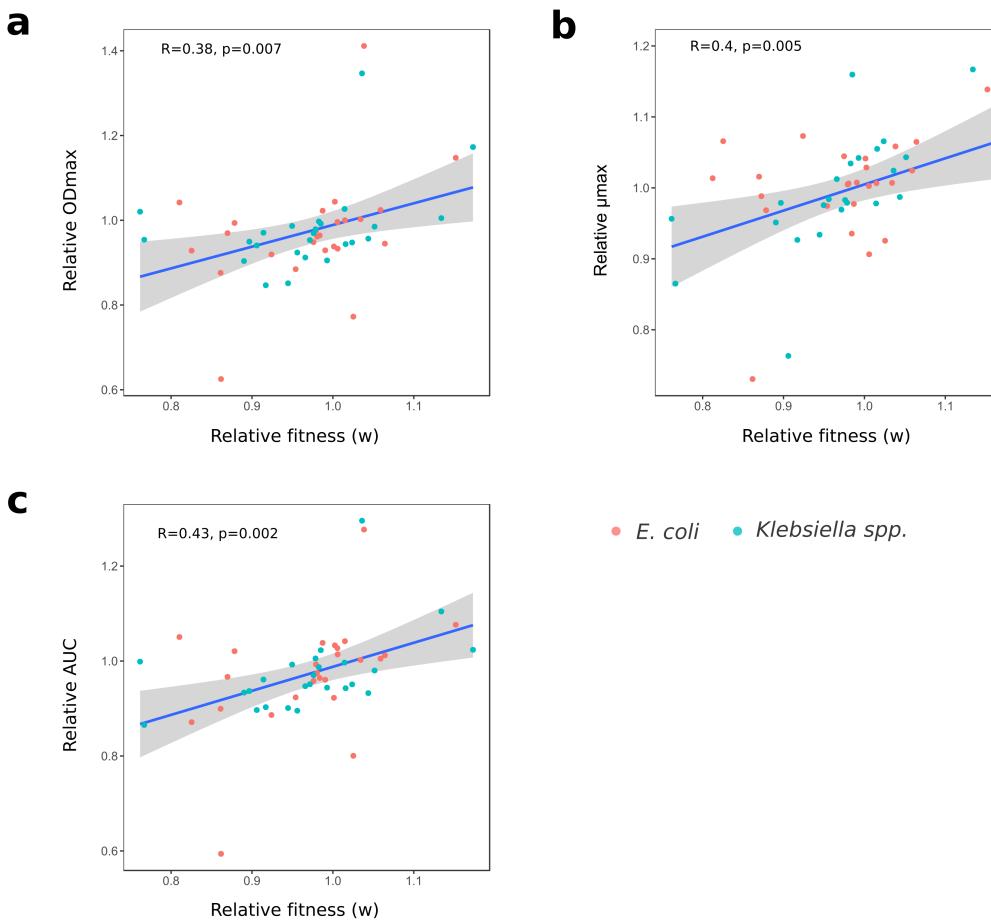
20 Supplementary Figure 1. Growth curves of wild-type isolates and pOXA-48-carrying transconjugants.

a


b

21
22

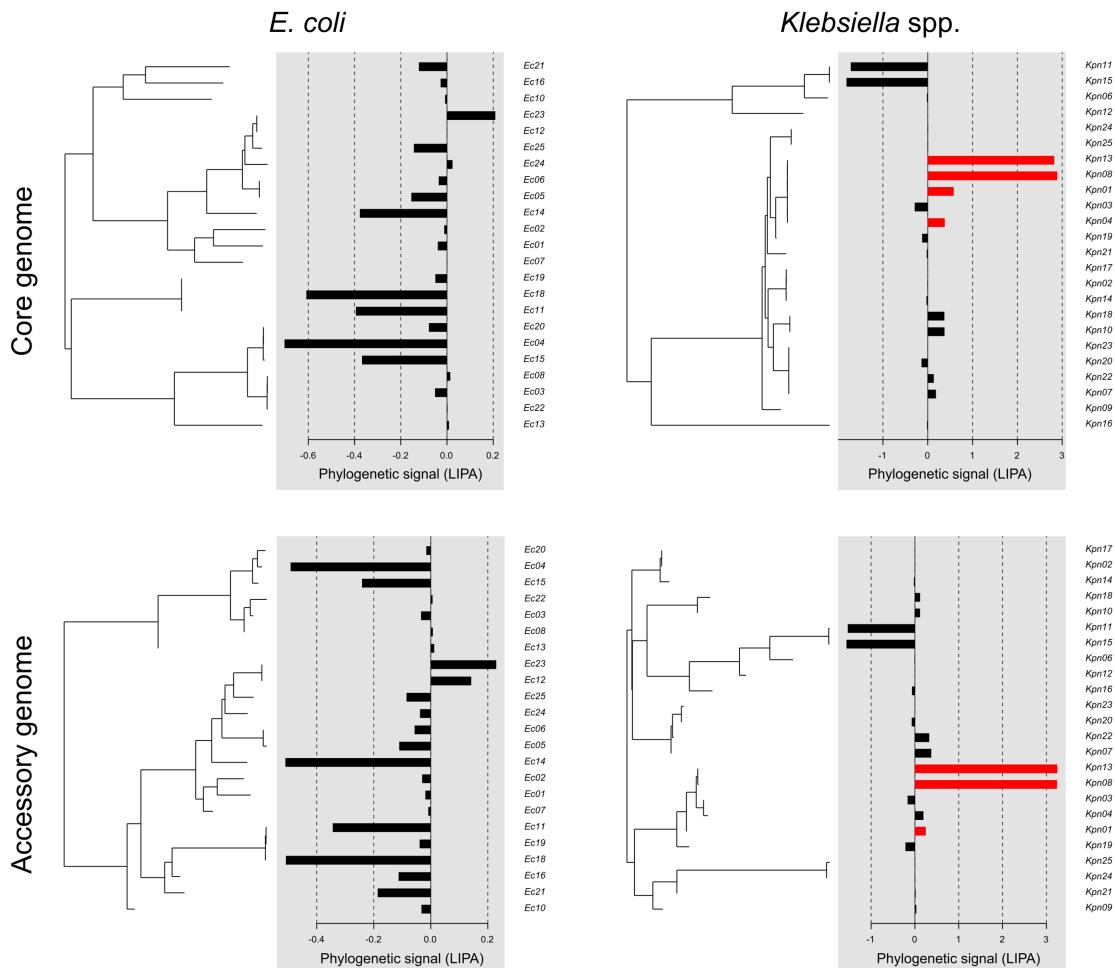
23 Growth curves of pOXA48-free (wild-type, blue) and pOXA-48-carrying (transconjugant, red) for
24 every (a) *E. coli* and (b) *Klebsiella* spp. analysed in this study. The lines represent the average of
25 five biological replicates and the shaded area indicates 95% confidence intervals.


26 Supplementary Figure 2. Construction of plasmid pBGC.

27

28 Schematic representation of the construction of plasmid pBGC (accession number MT702881) from
29 plasmid pBGT⁶⁸. Two segments of pBGT were amplified using primers with added cohesive ends
30 (pBGC Fw/Rv and GFP Term Fw/Rv, Supplementary Table 4). pBGC plasmid resulted from the Gibson
31 assembly of the amplified fragments. The reading frames for genes are shown as arrows, with the
32 direction of transcription indicated by the arrowhead. The origin of replication (*oriV*), origin of transfer
33 (*oriT*), and *P_{BAD}* promoter are also indicated.

34 Supplementary Figure 3. Correlation between relative growth curve parameters and relative fitness.
35



36

37 Correlation between relative growth curve parameters (a) maximum optical density (OD_{max}), (b)
38 maximum growth rate (μ_{max}), and (c) area under the growth curve (AUC), and relative fitness values
39 obtained from competition assays for each strain. The blue line represents the linear regression model
40 and the grey shading represents 95% confidence intervals. Points represent each relative value (red, *E.*
41 *coli* and blue, *Klebsiella* spp.). Pearson's correlation (R) and p-value are indicated. As expected,
42 maximum optical density, maximum growth rate and area under the growth curve are positively
43 correlated with relative fitness.

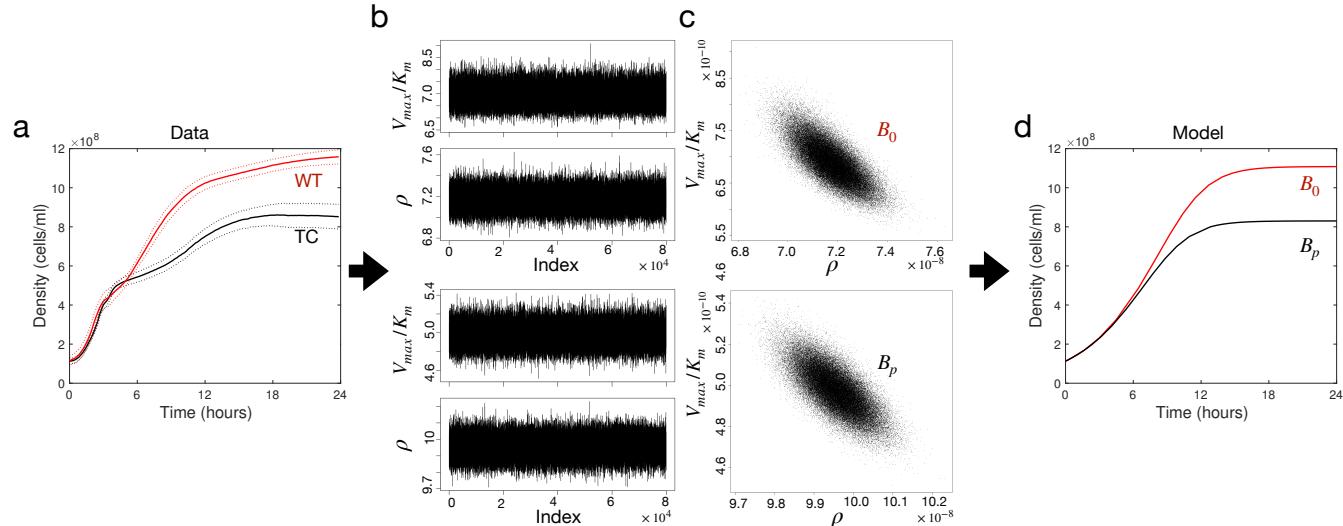
44 Supplementary Figure 4. Local Indicator of Phylogenetic Association (LIPA) analyses.

45

46

47

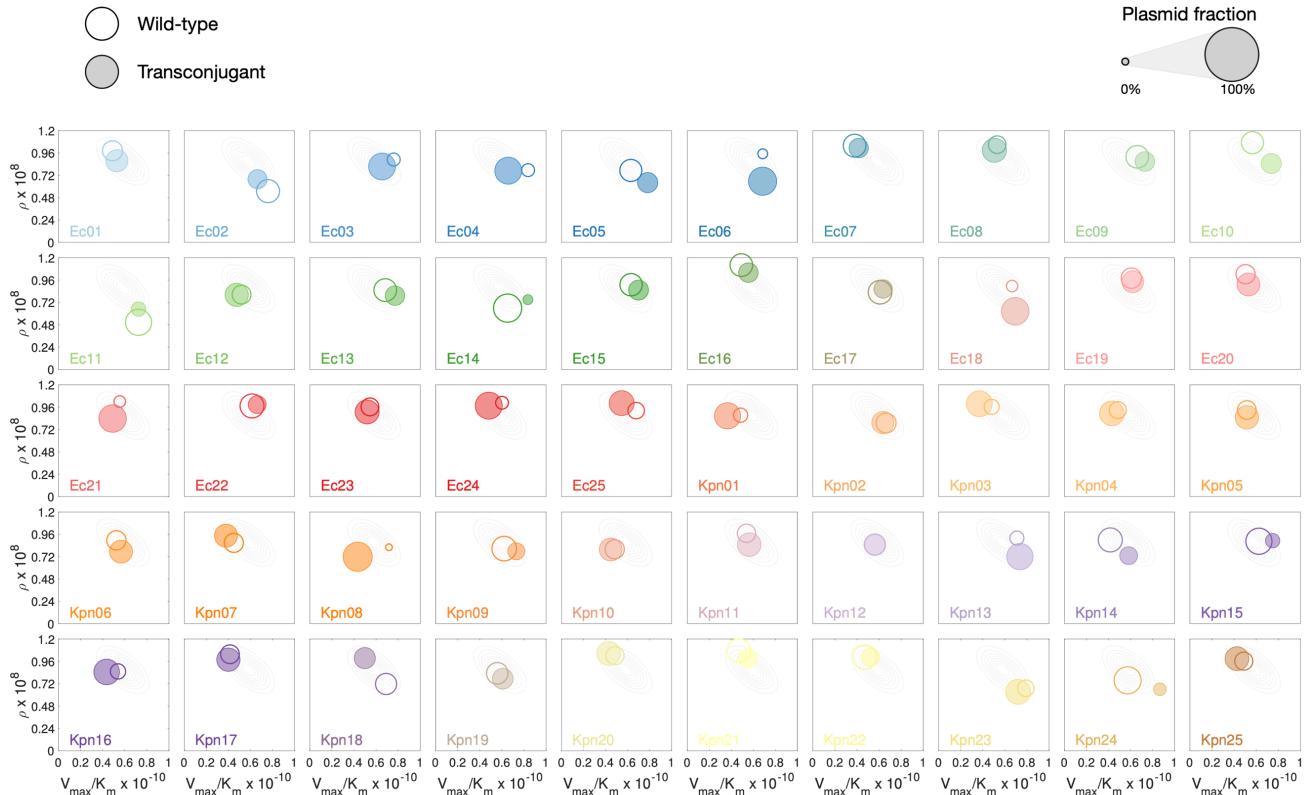
48 Phylogenetic trees for core (upper panels) and accessory (lower panels) genomes obtained for *E. coli*


49 (left) and *Klebsiella* spp. (right). Bar plots show the LIPA score associated with each tip of the

50 phylogeny, with higher values representing a stronger phylogenetic signal. Red colour indicates

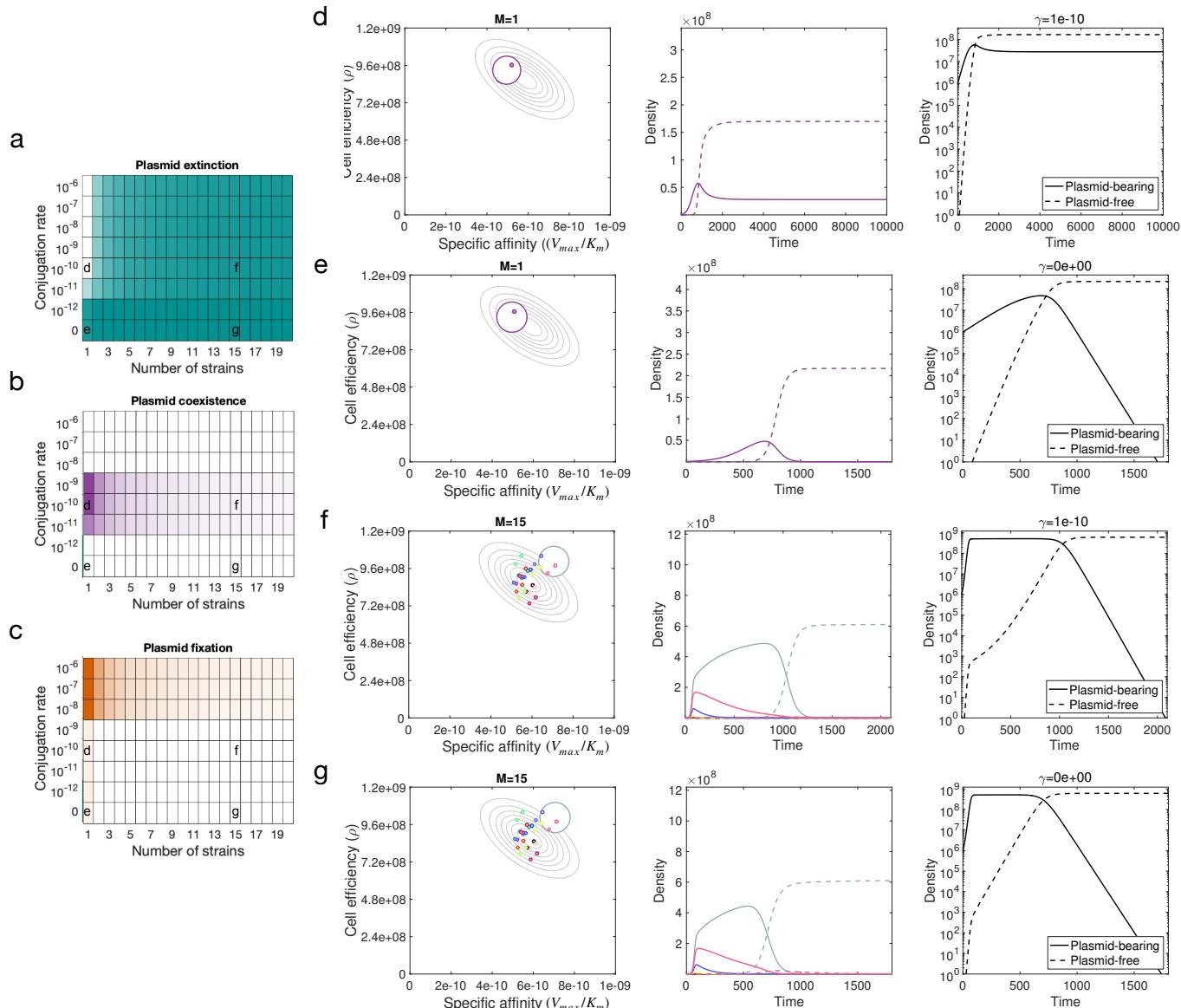
51 statistically significant LIPA scores (*i.e.* phylogenetic signal, Supplementary Table 3).

52 Supplementary Figure 5. Model parametrization.


53

54

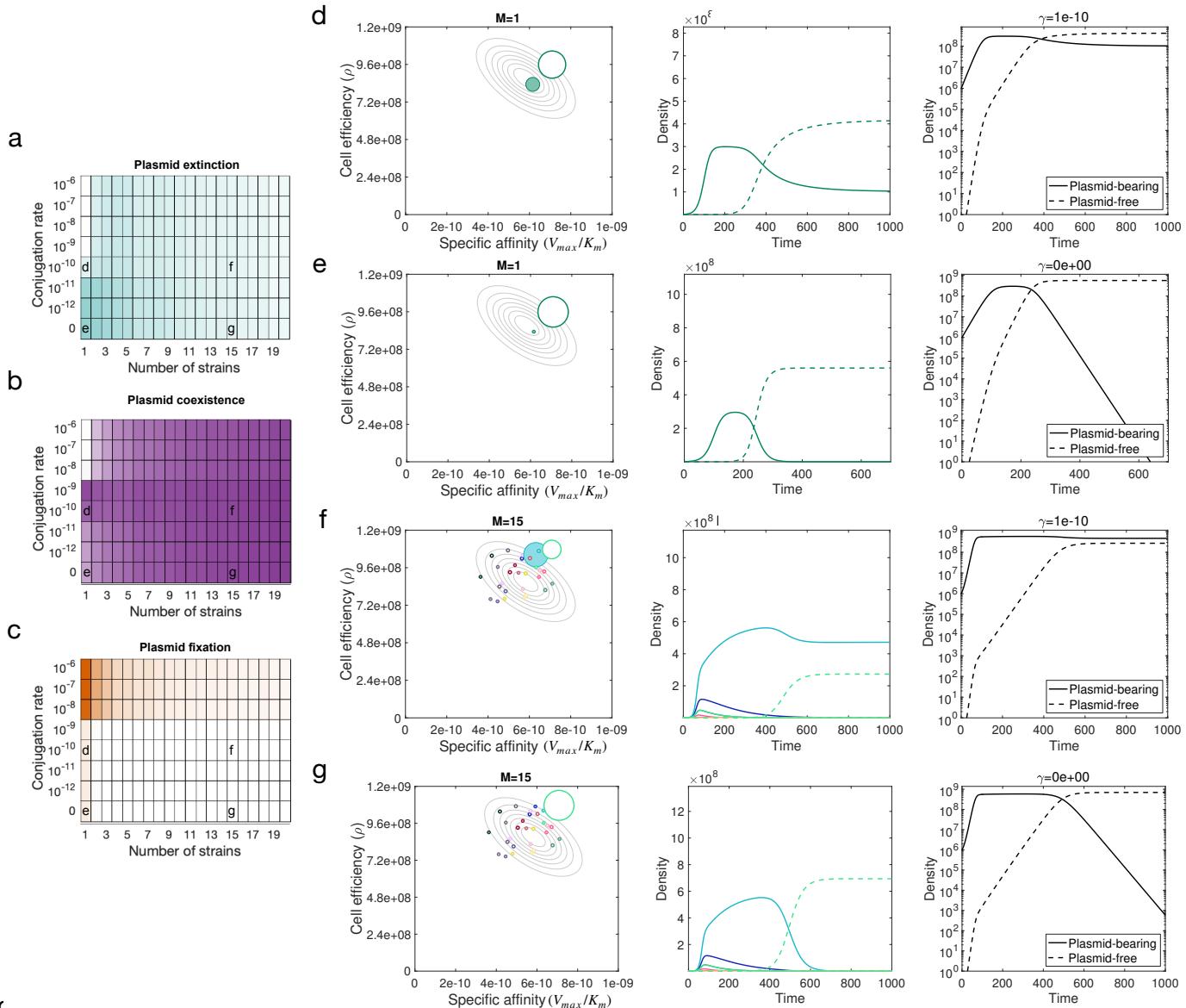
55 (a) Bacterial density of strain Kpn18 as a function of time obtained from the optical density of wild-type
56 (red) and transconjugant (black) strains growing in isolation. (b) Traces of chains for parameters
57 V_{max}/K_m (above) and ρ (below) obtained by fitting a simple Monod model to growth curve data using a
58 Metropolis-Hastings Markov chain Monte Carlo method (MCMC). (c) 2-dimensional posterior
59 distributions obtained for each strain (top: B_0 , bottom: B_p). (d) Numerical solutions of the model using
60 parameters selected randomly from the posterior distribution and with initial conditions determined from
61 the experimental growth curves.


62 Supplementary Figure 6. *In silico* competition experiments.

63

64 Each box represents a theoretical pair-wise competition experiment between plasmid-free (open
 65 circles) and plasmid-bearing cells (filled circles). The diameter of each circle is proportional to the
 66 relative fraction of the population, a value estimated by numerically solving the model for $T = 24$ with
 67 parameter values obtained from the posterior distribution of each strain. Horizontal axis represents the
 68 specific affinity (V_{max}/K_m) and the vertical axis the cell's resource conversion rate (ρ).

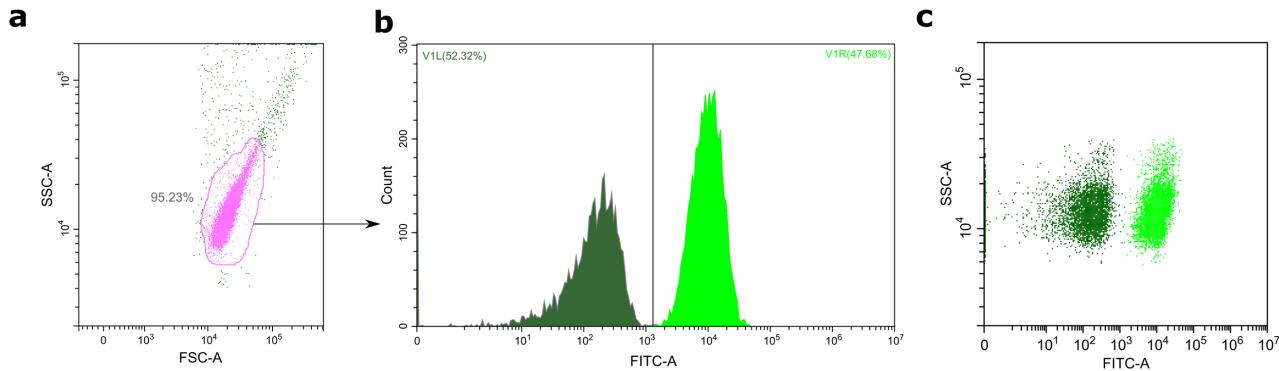
69 Supplementary Figure 7. Effect of conjugation and community complexity in plasmid population
 70 dynamics in the absence of a DFE.



71

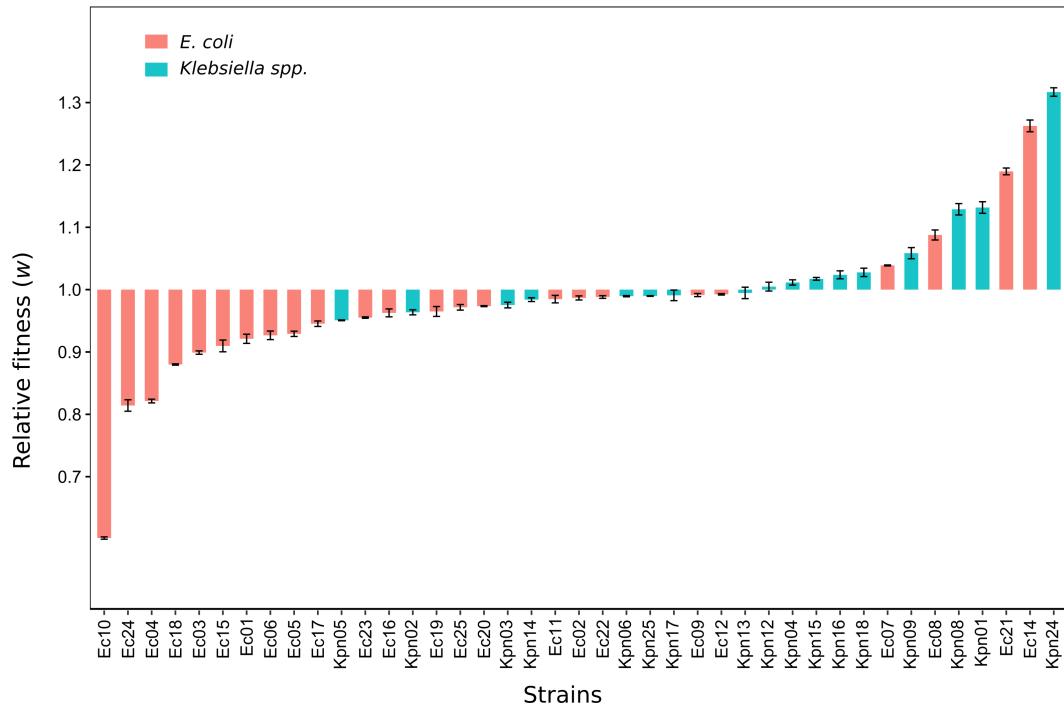
72 Numerical simulations of the population dynamics model performed over a range of conjugation rates
 73 and number of strains in the community. In this case, all strains exhibit a reduction of fitness when
 74 carrying the plasmid (a DFE with mean $w= 0.985$ and variance 0). The colour of each box in the grid
 75 corresponds to the percentage of 5,000 random communities that exhibited: a) plasmid extinction (total
 76 plasmid frequency was below a threshold), b) plasmid-bearing and plasmid-free cells co-exist in the
 77 population, and c) every cell in the population carries the plasmid at the end of the experiment. (d-g)
 78 Example of relative abundances over time for a range of conjugation rates in a community composed of
 79 1 (d,e) and 15 (f,g) strains, with segregation rate $\lambda = 1 \times 10^{-8}$ and conjugation rate $\gamma = 10^{-10}$ (d,f) or
 80 $\gamma = 0$ (e,g). The left-hand column illustrates the growth kinetic parameters for each strain (empty

81 circles denote plasmid-free cells and filled circles plasmid-bearing cells, with diameters proportional to
82 their final relative abundances). Middle column shows the density of each subpopulation as a function
83 of time (dotted lines denote plasmid-free strains and solid lines subpopulations carrying the
84 plasmid). Right-hand column shows semilog plots with the total fraction of cells with and without
85 plasmids (solid and dotted lines, respectively). As plasmid-bearing is associated with a fitness cost,
86 then the plasmid is only maintained in the population at high conjugation rates.


87 Supplementary Figure 8. Effect of conjugation and community complexity in plasmid population
88 dynamics in the presence of a DFE.

89
90 Numerical simulations of the population dynamics model performed over a range of conjugation rates
91 and number of strains in the community. This case corresponds to a wide DFE (mean $w = 0.985$ and
92 variance 0.007). The colour of each box in the grid corresponds to the percentage of 5,000 random
93 communities that exhibited: a) plasmid extinction (total plasmid frequency was below a threshold), b)
94 plasmid-bearing and plasmid-free cells co-exist in the population, and c) every cell in the population
95 carries the plasmid at the end of the experiment. d-g) Example of relative abundances over time for a
96 range of conjugation rates in a community composed of 1 (d,e) and 15 (f,g) strains, with segregation
97 rate $\lambda = 1 \times 10^{-8}$ and conjugation rate $\gamma = 10^{-10}$ (d,f) or $\gamma = 0$ (e,g). The left-hand column illustrates
98 the growth kinetic parameters for each strain (empty circles denote plasmid-free cells and filled circles

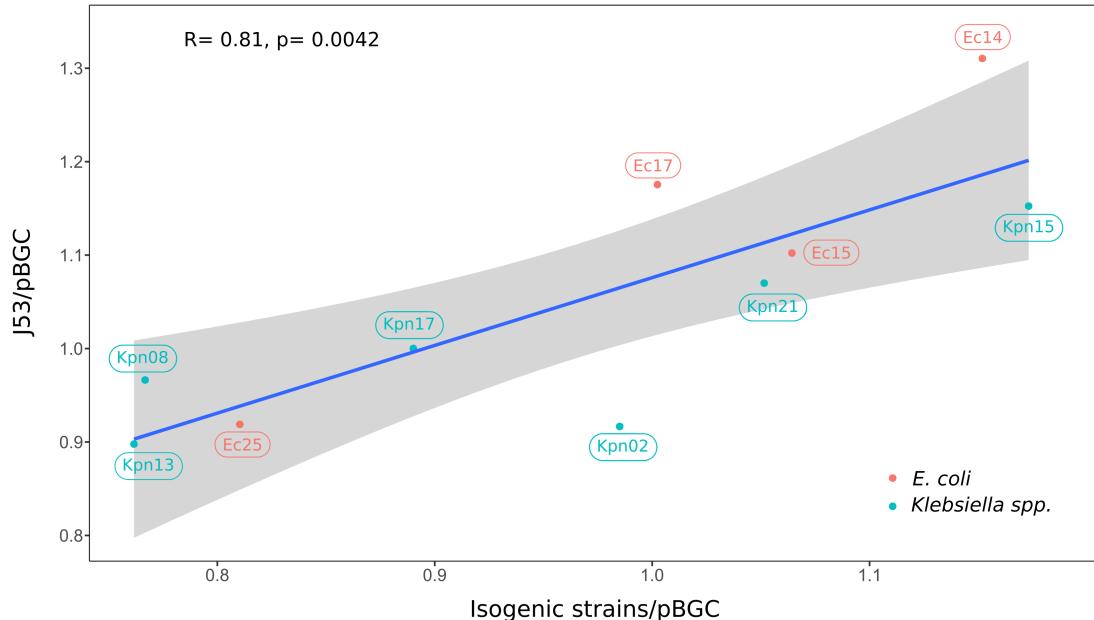
99 plasmid-bearing cells, with diameters proportional to their final relative abundances). Middle column
100 shows the density of each subpopulation as a function of time (dotted lines denote plasmid-free strains
101 and solid lines subpopulations carrying the plasmid). Right-hand column shows semilog plots with the
102 total fraction of cells with and without plasmids (solid and dotted lines, respectively). Note how a wide
103 DFE allows plasmids to persist, even at very low conjugation rates.


104 Supplementary Figure 9. Determination of different cells types in competition assays using flow
105 cytometry.

107 We used flow cytometry to differentiate between GFP-producing and -non-producing cells. (a) we used
108 forward versus side scatter (FSC vs SSC) gating to identify bacterial cells in the sample. (b-c) GFP-
109 producing (bright green) and -non-producing (dark green) cells were differentiated using the FITC-A
110 (fluorescein isothiocyanate) channel, allowing us to measure the proportion of each competitor in the
111 mix.

112 Supplementary Figure 10. Distribution of pBGC fitness effects.

113


114

115

116 Relative fitness (w) of pBGC-carrying clones compared to plasmid-free clones, obtained from
117 competition assays (red, *E. coli* and blue, *Klebsiella* spp.). Values below 1 indicate a reduction in w and
118 values above 1 indicate an increase in w due to pBGC acquisition. Bars represent the average of five
119 independent experiments and error bars represent the standard error of the mean. Note that the fitness
120 effects of pBGC did not correlate with those from pOXA-48 (Pearson's correlation, $R= 0.11$, $t= 0.66$, $df=$
121 39 , $P= 0.51$).

122 Supplementary Figure 11. Correlation between relative fitness values calculated in competitions vs. *E.*
123 *coli* J53/pBGC or isogenic clones with pBGC.

124

125

126

127 Correlation between relative fitness values obtained from competitions assays using pBGC-carrying
128 isogenic isolates and pBGC-carrying *E. coli* J53 for ten different isolates. The blue line represents the
129 linear regression model and the grey shading represents 95% confidence intervals. Blue points
130 correspond to *Klebsiella* spp. isolates and red points to *E. coli* isolates. Labels indicate isolates names.
131 Pearson's correlation (R) and p-value are indicated.

132 Supplementary Table 4. Primers used in this study.

Primers		
Name	Sequence 5'->3'	Use
Oxa-48 Fw	TTGGTGGCATCGATTATCGG	Amplification of <i>bla_{TEM}</i> gene
Oxa-48 Rv	GAGCACTTCTTTGTGATGGC	
IncL Fw	CGGAACCGACATGTGCCTACT	Amplification of <i>repC</i> gene
IncL Rv	GAACCTCCGGCGAAAGACCTTC	
pBGC Fw	CGTTGATCGGCACGTAAG	Amplification of pBGC backbone for Gibson cloning (see Supplementary Figure 2)
pBGC Rv	GCTGTCTAGACTATTGTATAGTTCATCCATGC	
GFP-Term Fw	atacaaatagtctagacagcGGGAATCCTGCTCTGCGAG ¹	
GFP-Term Rv	ctcttacgtgcgtacaaacggGGGTTATTGTCTCATGAGCGG ¹	
pBGC_Seq1_Fw	AGTTAAAAGGTATTGATTTAA	pBGC sequencing (3503-3524) ²
pBGC_Seq1_Rv	GCCACATCTTGCAGATA	pBGC sequencing (464-480) ²
pBGC_Seq2_Fw	ATAAGATCACTACCGGGC	pBGC sequencing (44-61) ²
pBGC_Seq2_Rv	ACCCGACAGGACTATAAAGATA	pBGC sequencing (1285-1306) ²
pBGC_Seq3_Fw	GAGGTAACTGGCTTGGAGG	pBGC sequencing (931-949) ²
pBGC_Seq3_Rv	GTCGCGTCTGTCACATCT	pBGC sequencing (2124-2141) ²
pBGC_Seq4_Fw	GTTTCCGACTGGAAAGC	pBGC sequencing (1703-1720) ²
pBGC_Seq4_Rv	CTTTGGTCCCGCTTGTAC	pBGC sequencing (2894-2913) ²
pBGC_Seq5_Fw	GTCGGTCGATAAAAAATCGAG	pBGC sequencing (2650-2671) ²
pBGC_Seq5_Rv	ATGTGGTCTCTCTTCGTTGG	pBGC sequencing (3764-2671) ²

133

134 1. Lower case nucleotides correspond with the added cohesive ends.

135 2. Numbers correspond with primers binding sites in pBGC (according to sequence available with

136 GenBank Accession Number MT702881).

137 Supplementary Table 5. Growth kinetic parameters of each strain obtained using the MCMC algorithm.

Strain	Wild-type		Transconjugant	
	V_{max}/K	ρ	V_{max}/K	ρ
Ec01	4.895×10^{-10}	9.844×10^8	5.283×10^{-10}	8.776×10^8
Ec02	7.603×10^{-10}	5.504×10^8	6.648×10^{-10}	6.786×10^8
Ec03	7.597×10^{-10}	8.900×10^8	6.538×10^{-10}	8.151×10^8
Ec04	8.373×10^{-10}	7.764×10^8	6.576×10^{-10}	7.702×10^8
Ec05	6.299×10^{-10}	7.727×10^8	7.831×10^{-10}	6.416×10^8
Ec06	6.852×10^{-10}	9.518×10^8	6.839×10^{-10}	6.567×10^8
Ec07	3.786×10^{-10}	1.040×10^9	4.154×10^{-10}	1.013×10^9
Ec08	5.304×10^{-10}	1.050×10^9	5.053×10^{-10}	9.900×10^8
Ec09	6.610×10^{-10}	9.195×10^8	7.311×10^{-10}	8.694×10^8
Ec10	5.660×10^{-10}	1.071×10^9	7.368×10^{-10}	8.472×10^8
Ec11	7.248×10^{-10}	5.064×10^8	7.248×10^{-10}	6.483×10^8
Ec12	5.200×10^{-10}	8.042×10^8	4.752×10^{-10}	8.016×10^8
Ec13	6.831×10^{-10}	8.528×10^8	7.711×10^{-10}	7.932×10^8
Ec14	6.515×10^{-10}	6.589×10^8	8.356×10^{-10}	7.500×10^8
Ec15	6.322×10^{-10}	9.106×10^8	6.998×10^{-10}	8.528×10^8
Ec16	4.908×10^{-10}	1.122×10^9	5.550×10^{-10}	1.040×10^9
Ec17	6.089×10^{-10}	8.298×10^8	6.366×10^{-10}	8.647×10^8
Ec18	6.655×10^{-10}	8.963×10^8	6.939×10^{-10}	6.250×10^8
Ec19	6.080×10^{-10}	9.812×10^8	6.200×10^{-10}	9.424×10^8
Ec20	5.033×10^{-10}	1.024×10^9	5.296×10^{-10}	9.133×10^8
Ec21	5.546×10^{-10}	1.021×10^9	4.897×10^{-10}	8.386×10^8
Ec22	6.148×10^{-10}	9.736×10^8	6.619×10^{-10}	9.886×10^8
Ec23	5.443×10^{-10}	9.635×10^8	5.186×10^{-10}	9.094×10^8
Ec24	6.010×10^{-10}	1.008×10^9	4.808×10^{-10}	9.768×10^8
Ec25	6.784×10^{-10}	9.237×10^8	5.465×10^{-10}	1.004×10^9
Kpn01	4.841×10^{-10}	8.746×10^8	3.652×10^{-10}	8.673×10^8
Kpn02	6.638×10^{-10}	7.905×10^8	6.352×10^{-10}	7.952×10^8
Kpn03	4.802×10^{-10}	9.639×10^8	3.686×10^{-10}	9.975×10^8
Kpn04	4.844×10^{-10}	9.288×10^8	4.303×10^{-10}	8.936×10^8
Kpn05	5.151×10^{-10}	9.303×10^8	5.155×10^{-10}	8.513×10^8
Kpn06	5.240×10^{-10}	8.952×10^8	5.664×10^{-10}	7.742×10^8
Kpn07	4.498×10^{-10}	8.682×10^8	3.785×10^{-10}	9.458×10^8
Kpn08	7.163×10^{-10}	8.211×10^8	4.334×10^{-10}	7.188×10^8
Kpn09	6.207×10^{-10}	8.064×10^8	7.302×10^{-10}	7.772×10^8
Kpn10	4.833×10^{-10}	7.990×10^8	4.467×10^{-10}	7.967×10^8
Kpn11	5.380×10^{-10}	9.710×10^8	5.620×10^{-10}	8.490×10^8
Kpn12	5.620×10^{-10}	8.490×10^8	5.620×10^{-10}	8.490×10^8

Kpn13	7.086×10^{-10}	9.195×10^8	7.364×10^{-10}	7.206×10^8
Kpn14	4.162×10^{-10}	8.994×10^8	5.828×10^{-10}	7.306×10^8
Kpn15	6.243×10^{-10}	8.854×10^8	7.489×10^{-10}	8.917×10^8
Kpn16	5.386×10^{-10}	8.523×10^8	4.359×10^{-10}	8.465×10^8
Kpn17	4.144×10^{-10}	1.037×10^9	4.002×10^{-10}	9.786×10^8
Kpn18	6.906×10^{-10}	7.173×10^8	4.977×10^{-10}	9.954×10^8
Kpn19	5.578×10^{-10}	8.319×10^8	6.083×10^{-10}	7.739×10^8
Kpn20	4.857×10^{-10}	1.022×10^9	4.287×10^{-10}	1.046×10^9
Kpn21	4.674×10^{-10}	1.077×10^9	5.487×10^{-10}	9.948×10^8
Kpn22	4.708×10^{-10}	1.006×10^9	5.224×10^{-10}	1.006×10^9
Kpn23	7.897×10^{-10}	6.709×10^8	7.201×10^{-10}	6.328×10^8
Kpn24	5.736×10^{-10}	7.568×10^8	8.670×10^{-10}	6.601×10^8
Kpn25	4.873×10^{-10}	9.630×10^8	4.255×10^{-10}	9.896×10^8