

1 **Title: Transcriptional Atlas of Ileal-Anal Pouch Immune Cells from Ulcerative Colitis**

2 **Patients**

3 **Authors:** Joseph C. Devlin^{1,2,6,*}, Jordan Axelrad^{3*}, Ashley M. Hine^{1,3*}, Shannon Chang³,

4 Suparna Sarkar⁴, Jian-Da Lin^{1,8}, Kelly V. Ruggless^{5,6}, David Hudesman³, Ken Cadwell^{1,3,8}, P'ng

5 Loke^{1,8}

6 **Affiliations:**

7 ¹Department of Microbiology, New York University Grossman School of Medicine, New York,
8 NY 10016, USA.

9 ²Sackler Institute of Graduate Biomedical Sciences, New York University Grossman School of
10 Medicine, New York, NY 10016, USA.

11 ³Division of Gastroenterology and Hepatology, Department of Medicine, New York University
12 Grossman School of Medicine, New York, NY 10016, USA.

13 ⁴Department of Pathology, New York University Grossman School of Medicine, New York,
14 NY 10016, USA

15 ⁵Division of Translational Medicine, Department of Medicine, New York University Grossman
16 School of Medicine, New York, NY 10016, USA.

17 ⁶Institute of Systems Genetics, New York University Grossman School of Medicine, New
18 York, NY 10016, USA.

19 ⁷Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases,
20 National Institutes of Health, Bethesda, MD 20892, USA.

21 ⁸Skirball Institute of Biomedical Medicine, New York University Grossman School of
22 Medicine, New York, NY 10016, USA.

23 *These authors contributed equally

24 Correspondence to:

25 Png.Loke@nih.gov

26 Ken.Cadwell@med.nyu.edu

27 Jordan.Axelrad@nyulangone.org

28 **ABSTRACT**

29 How the human intestinal immune system is distinctly organized to respond to inflammation is
30 still poorly understood. Here, we used single-cell RNA-sequencing to examine lamina propria
31 CD45+ hematopoietic cells from patients with inflammatory bowel disease that have undergone
32 ileal pouch-anal anastomosis, or the colon mucosa of ulcerative colitis patients. We identified
33 a population of *IL1B*+ antimicrobial macrophages and *FOXP3*+/*BATF*+ T cells that are
34 associated and expanded in inflamed tissues, which we further validated in other scRNA-seq
35 datasets from IBD patients. CD8+ T cells were unexpectedly more abundant in the pouch than
36 colon. Cell type specific markers obtained from single-cell RNA-sequencing was used to infer
37 representation from bulk RNA sequencing datasets, which further implicated antimicrobial
38 macrophages expressing *IL1B* with *S100A8/A9* calprotectin as being associated with
39 inflammation, as well as *Bacteroides* and *Escherichia* bacterial species. Finally, we find that
40 non-responsiveness to anti-integrin biologic therapies in UC patients is associated with the
41 signature of this antimicrobial macrophage population in a subset of patients. This study
42 identified conserved and distinct features of intestinal inflammation between parts of the small
43 and large intestine undergoing similar inflammation conditions.

44

45 **INTRODUCTION**

46 The intestinal immune system is organized distinctly between anatomically defined
47 segments that have different physiological functions. Whereas immune cells in the small
48 intestine protect the epithelium from infection to enable nutrient absorption while maintaining
49 tolerance to dietary antigens, the large intestine must maintain a détente with the large number
50 of commensal bacteria without triggering overt inflammation. This fine balance breaks down
51 in the context of inflammatory bowel diseases (IBD) such as ulcerative colitis (UC) and Crohn's
52 disease (CD), whereby inflammatory damage to the epithelium results in mucosal ulceration
53 causing diarrhea, bleeding, and abdominal pain. Restorative proctocolectomy with ileal pouch-
54 anal anastomosis (IPAA) is a common surgical procedure in UC patients with medically
55 refractory disease¹. The ileal pouch reservoir, or J-pouch, is a novel organ created from small
56 intestine formed into a J-shaped pouch that restores intestinal continuity and replaces the
57 function of the large intestine. Unfortunately, nearly 50% of UC patients who undergo this
58 surgery will develop *de novo* intestinal inflammation in the pouch, or pouchitis². Symptoms of
59 pouchitis mimic IBD, including urgency, diarrhea, bleeding, and abdominal pain. The etiology
60 of pouchitis is not known and there are no FDA approved therapies. Treatment often entails
61 chronic antibiotics and restarting immunosuppressive IBD therapies. A better understanding of
62 the inflammatory response for this condition, as well as the anatomically distinct features of
63 intestinal inflammation in the large intestine compared to the pouch, may provide new insights
64 for the management of this disease.

65 Single-cell RNA sequencing (scRNA-seq) has enabled us to characterize tissue states
66 at a high resolution to better understand human diseases. Surveys of the intestinal tissues have
67 identified unknown subtypes of intestinal epithelial cells and cellular inflammation modules
68 that predict treatment responsiveness³⁻⁵. In the field of IBD, this approach is providing new
69 insights into these complex diseases and may provide opportunities to define new drug targets,
70 therapeutic strategies and more personalized treatment options⁶. In support of region-specific
71 properties of the intestinal epithelium, small intestinal organoids but not colonic organoids
72 derived from individuals homozygous for the Crohn's disease variant of *ATG16L1* are

73 susceptible to TNF- α and respond to drugs targeting JAK/STAT and necroptosis signaling^{7,8}.

74 Although these findings highlight the importance of epithelial-intrinsic factors in determining
75 the anatomical site affected in IBD subtypes, identifying differences in immune cells between
76 the large and small intestine may also be necessary for explaining disease presentations specific
77 to these regions.

78 Detailed analysis of lymphocyte differentiation in mice have shown that peripheral
79 regulatory T cells (pTregs) and Th17 cell numbers are differentially regulated in these two
80 anatomical sites in response to region-specific exposure or sampling of food antigens,
81 metabolites, and microbes⁹⁻¹². Homing signals, structural features inherent to the organ, and
82 compartmentalized draining by lymph nodes can also contribute to the localization and function
83 of immune cell subsets^{13,14}. It is unclear whether the inflamed pouch harbors immune infiltrates
84 similar to the inflamed colon, the organ it functionally replaces, or if it retains immune
85 characteristics of the small intestinal origin for this new organ. A previous study using bulk
86 RNA-Seq showed that, in addition to acquiring markers of the colon, the pouch is enriched for
87 transcripts related to IL-17 signaling and dendritic cell maturation when compared with the
88 small intestine¹⁵. Therefore, a detailed survey of immune cells may provide novel insight into
89 mechanisms of inflammation and reveal unique therapeutic interventions.

90 Here, we utilized scRNA-seq to examine the immune cell types and their activation
91 states from intestinal biopsies collected from the J-pouch as well as the colon of UC patients.
92 Our goal was to identify shared and distinctive features of inflammation in the colon and J-
93 pouch. By focusing on CD45 $+$ leukocytes, we can obtain greater resolution of the immune cell
94 landscape and utilize this data to generate cell type specific transcriptional signatures to
95 deconvolute bulk RNA datasets. This enabled us to implicate an IL-1B signature in
96 macrophages as being associated with inflammation and unresponsiveness to anti-integrin
97 biologic therapies in UC patients.

98

99 RESULTS

100 **Immune cell transcriptional profiling landscape of intestinal biopsies from the J-pouch
101 and colon of ulcerative colitis (UC) patients.**

102 To minimize batch effects and streamline processing, we first established a cryopreservation
103 pipeline (See Methods) to store and analyze leukocytes from intestinal biopsy samples of UC
104 patients (Supplementary Figure 1). Optimization of the freezing medium in particular enabled
105 a robust yield of live immune cells that could be sorted on the flow cytometer for high quality
106 transcriptome analysis (See Methods). Cells from all patient samples were sorted for CD45+
107 surface expression and sequenced by scRNA-seq on the 10X platform. Nearly 56,000 CD45+
108 cells were obtained from scRNA-seq of 26 frozen biopsies from inflamed ulcerative colitis
109 (18,375 cells, $n=11$ samples), inflamed pouchitis (20,678 cells, $n=10$ samples) and uninflamed
110 pouch (16,678 cells, $n=5$ samples). Two samples from inflamed UC patients were removed due
111 to low quality of the sequencing reaction. Single cell transcriptomes from all samples were
112 normalized and merged with Seurat version 3¹⁶ (Supplementary Figure 2A). Over half of the
113 profiled cells, 30,863 cells, were from T cell subsets, 21,324 cells from B cell subsets and the
114 remaining 3,747 cells were myeloid subsets (Fig. 1A). From these 3 lineages we determined 6
115 major populations of cells including T cells, germinal center/follicular cells, plasma cells,
116 cycling B cells, mast cells and monocyte/macrophage cells. These populations were defined by
117 specific immune cell markers such as *CD3D*, *CD8A* and *CD4* for T cells, *BANK1*, *CD19* and
118 *VPREB3* for GC/Follicular cells, *STMN1*, *MKI67* and *HMGB2* for cycling B cells, *MZB1*, *XBPI*
119 and *DERL3* for plasma cells, *IL1B*, *LYZ* and *IL8* for Monocytes/Macrophages and *KIT*, *CPA3*
120 and *CD9* for mast cells (Fig. 1B,D). The relative percentages of these 6 major populations per
121 patient sample did not separate inflamed or uninflamed samples or pouch and UC samples by
122 principle component analysis (PCA) (Supplementary Figure 2B-C), indicating that there are
123 not major differences in the immune cell landscape between UC colon and pouch samples.
124 When we examined inter-individual variation in relative percentages of the 6 major populations,
125 there was a significantly greater ($p<0.01$) proportion of monocyte/macrophages in pouchitis
126 and UC patient samples compared to the uninflamed pouch (Fig. 1C). This indicated that the

127 inflammatory condition was most consistently driven by differences in the myeloid cell
128 compartment, especially in the monocyte/macrophage population.

129

130 **Three monocyte/macrophage populations that are increased in inflamed patient samples**

131 Further analysis of the myeloid cell clusters indicated at least 5 minor clusters of cells including
132 three distinct types of monocyte/macrophages, mast cells and a small population of
133 plasmacytoid dendritic cells (Fig. 2A). Differential analysis identified specific immune cell
134 markers for each of these populations including *SOX4*, *MAFA* and *IERL5* (*SOX4+/MAFA+*),
135 *IL1B*, *LYZ* and *S100A9* (*IL1B+/LYZ+*), *APOE*, *C1QA* and *DNASEIL3* (*APOE+/C1QC+*),
136 *CCDC50*, *IRF4* and *PLAC8* (pDCs) and *KIT*, *CD69* and *CLU* (Mast Cells) (Fig. 2B). These
137 markers led us to refer to the monocyte/macrophage populations as *SOX4+/MAFA+*,
138 *IL1B+/LYZ+* and *APOE+/C1QC+* from here on. *SOX4+/MAFA+* and *IL1B+/LYZ+*
139 Monocyte/macrophage populations were more abundant in patients with both inflamed UC and
140 pouches compared to uninflamed pouches ($p<0.05$) (Fig. 2C). *APOE+/C1QC+*
141 Monocyte/macrophages and Mast cells had no significant differences (Fig. 2C). pDCs were not
142 detected in uninflamed pouches and are small in number (Fig. 2C).

143 Gene expression profiles marking each of the monocyte/macrophage cell clusters
144 indicated enrichment for unique gene pairs that varied within each cluster. In *SOX4+/MAFA+*
145 monocyte/macrophages, *SOX4* and *MAFA* were used as specific markers and used for *in silico*
146 gating to identify cells with enriched expression for both of these genes (Fig. 2D-F). When
147 examined in individual samples, the relative percentage of *SOX4+/MAFA+* cells are
148 significantly increased ($p < 0.01$) in inflamed pouch and UC samples compared to uninflamed
149 pouches. Differential expression between pouch and UC patients in these cells indicated an
150 increase in *IL1RN* and *LTB* in inflamed samples compared to uninflamed pouches (Fig. 2D).
151 Increased relative percentage in inflamed samples was also true for *LYZ+/IL1B+* cells in
152 *IL1B+/LYZ+* monocyte/macrophages and differentially expressed genes between pouch and
153 UC included significant increases in *EREG*, *S100A8*, *CXCL2*, *VEGFA*, *IL8* and *APOC1* in
154 inflamed samples (Fig. 2E). Additionally, *SPP1* an important macrophage marker for colorectal

155 cancer¹⁷, was found to be differentially expressed in inflamed UC samples compared to
156 uninflamed pouches. It was not, however, significant between inflamed and uninflamed
157 pouches. *APOE*+/*CIQC*+ cells (Fig. 2F) were also significantly increased in inflamed samples
158 ($p < 0.01$) and *HIF1A*, *PLAUR*, *APOC1*, *MMP9* and *IL7* all increased in inflamed samples.
159 Interestingly, *CXCL8* and *DNASEIL3* increased specifically in pouchitis compared to UC
160 inflamed samples. To further delineate transcriptional relationships between the
161 monocyte/macrophage clusters we performed a pseudotime analysis restricted to the three
162 monocyte/macrophage cell clusters (Fig. 2G). In contrast to the UMAP representation (Fig. 2A)
163 a diffusion map projection with pseudotime maintains the difference between *SOX4*+/*MAFA*+164 and *IL1B*+/*LYZ*+ monocyte/macrophages but suggests *APOE*+/*CIQC*+ cells as an intermediary
165 population (Fig. 2E, black line). Specifically, *SOX4* is strongly associated with pseudotime as
166 a marker of *SOX4*+/*MAFA*+ cells (Fig. 2H). *CLEC10A* and *VAMP8* are also associated with
167 pseudotime but were not significantly associated with specific macrophage populations (Fig.
168 2H).

169 The *IL1B*+/*LYZ*+ monocyte/macrophages appear similar to butyrate-induced anti-
170 microbial macrophages¹⁸, which also has a signature characterized by the expression of
171 calprotectin *S100A8/A9*. The expression of *APOE* and *CIQC* indicate those
172 monocyte/macrophages could have a more phagocytic/efferocytotic phenotype^{19,20}. In addition
173 to *SOX4* and *MAFA*, *SOX4*+/*MAFA*+ monocyte/macrophages also express *TREM1* and
174 *CXCL10* (IP-10) (Supplementary Figure 3) but otherwise express transcripts that are not
175 associated with known macrophage functions. Hence, we identify here 3 types of related
176 monocyte/macrophage cell states that are all increased in the inflamed samples regardless of
177 large or small intestine origin.

178

179 **Specific T cell subsets differ according to patient inflammation status and disease**

180 Considering T cells comprised the largest cluster of cells in 25 of the 26 samples profiled we
181 performed further clustering and differential expression analysis to characterize T cell subsets
182 (Supplementary Figure 4A). Specifically, 12 clusters of T cells were identified and

183 characterized by expression of *IFNG*, *CD8*, *FOXP3*, *IL2*, *ATF3*, *IL7*, *TNF*, *CCL5*, *GZMB*,
184 *TOX2* (Fig. 3A and Supplementary Figure 4A-B). From these subsets we find a cluster of
185 *FOXP3*⁺ T cells (Tregs) increased in inflamed UC and pouch samples compared to uninflamed
186 pouches (Fig. 3B, Supplementary Figure 4C). Naïve and activated CD8⁺ cells were increased
187 in relative percentage in pouch samples compared to inflamed UC samples while *CD8*⁺
188 *NR4A2*⁺ cells were generally higher in uninflamed pouches compared to inflamed pouch and
189 UC samples (Fig. 3B). For the other T cell subsets that were identified the relative percentages
190 were not significantly different between the patient groups (Supplementary Figure 4D).

191 The marked expansion of *FOXP3*⁺ T cells in inflamed samples was consistent with a
192 previous report whereby *FOXP3*⁺ regulatory T cells also expressed *TNF*₃. Here, we find that
193 expression of *BATF* is also an important feature of these cells (Fig. 3C) and *in silico* gating of
194 *FOXP3*⁺/*BATF*⁺ expression in T cells clearly shows an increase in inflamed pouch and UC
195 samples compared to uninflamed pouches (Fig. 3C). Differential expression analysis of the
196 *FOXP3*⁺/*BATF*⁺ cells indicated a number of transcriptional changes between uninflamed
197 pouches, pouchitis and inflamed UC including an increase in *TRBC1*, *TRBC2*, *RACK1*, *ANXA1*
198 and *CCL5* in pouchitis samples compared to UC. Given the importance of *FOXP3* expression
199 in these cells we confirmed their presence by staining for FOXp53 nuclear expression (see
200 methods) in tissue sections from uninflamed pouch (*n*=5) and pouchitis (*n*=10) patients (Fig.
201 3D). The relative percentage of *FOXP3*⁺ cells in pouchitis patients again was greater than in
202 the uninflamed pouches (*p*=0.17). In contrast, both *CD8*⁺ and naïve *CD8*⁺ T cells were less
203 represented in the colon samples from inflamed UC patients compared to the pouch samples,
204 regardless of inflammation status (Fig. 3B). Within these *CD8*⁺ populations *in silico* gating of
205 *CD8*⁺/*IL2*⁺ expression in T cells identified differences between inflamed UC and pouch
206 patients regardless of inflammation (Fig. 3E). *IL2* expression was identified as a marker for
207 *CD8*⁺ and naïve *CD8*⁺ T cell subsets (Fig. 3A). Additionally, differential expression analysis
208 of the *CD8*⁺/*IL2*⁺ cells indicated *IL2*, *CCL4L2*, *CCL5*, *TRBC2*, *XCL2* and *IGKC* are all
209 increased in both pouchitis and uninflamed pouch compared to inflamed UC (Fig. 3E). One
210 possibility is that this difference between pouch and colon may reflect the increased proportion

211 of CD8+ T cells observed in the ileum compared with colon^{21,22}. Hence, we identified here
212 *FOXP3*+*BATF*+ T cells as being the most increased population in inflamed samples, whereas
213 CD8+ cells in general are more abundant in the pouch than in colon samples regardless of
214 inflammation state.

215

216 **B cell subsets are similar across disease types**

217 Recently, intestinal inflammation in UC was reported to be associated with increased anti-
218 commensal IgG, which could induce IL-1B by engaging Fc γ receptors on macrophages²³
219 indicating a role for B cells in pathogenesis. Despite their high frequency in many of the patient
220 samples profiled, B cell subsets clustered into only 5 clusters across 26 patient samples
221 (Supplementary Figure 5A). These subsets include cycling B cells, follicular cells, germinal
222 center cells and two types of plasma cells which differ in *NFKBIA* expression (Supplementary
223 Figure 5A). Traditional B cell markers and differentially expressed transcripts were used to
224 identify these subtypes including *STMN1*, *MKI67*, *BANK1*, *LMO2*, *LY9*, *MZB1* and *XPB1*
225 (Supplementary Figure 5B). While there is a slight increase in plasma cell percentages in
226 inflamed UC samples compared to inflamed and uninflamed pouches, there were no other
227 significant differences in B cell states between the patient groups (Supplementary Figure 5C).

228

229 **Validation of inflammation associated immune cell populations in public datasets of**
230 **ulcerative colitis and Crohn's disease patient samples.**

231 *FOXP3*+ Tregs may be induced or maintained by intestinal antigen presenting cells such as
232 macrophages and dendritic cells²⁴. To investigate this relationship further, we compared the
233 relative percentage of *FOXP3*+*BATF*+ T cells and each of the specific monocyte/macrophages
234 subsets as defined by their respective markers *SOX4*, *MAFA*, *IL1B*, *LYZ* and *APOE*, *CIQC* by
235 linear regression (Fig. 4A). While, all three populations were significantly associated, the
236 *SOX4*+*MAFA*+ cells were most strongly associated ($R^2=0.388$). *TREM1* is expressed by
237 *SOX4*+*MAFA*+ monocyte/macrophage cells and can be induced by retinoic acid²⁵ which also

238 induces *FOXP3*⁺ Treg differentiation. However, apart from *CXCL10* expression, these cells do
239 not exhibit many other features of immune activation (Supplementary Figure 3A).

240 Recently, studies from Smillie³ et al. and Martin²⁶ et al. have provided additional
241 datasets for single cell analysis of IBD subsets in UC and Crohn's Disease. We compared the
242 22 immune cell populations identified in this study with those public datasets. Based on the
243 expression profiles of T cell subsets, many T cell populations were highly correlated with at
244 least one other labeled T cell subset from Martin²⁶ or Smillie³ et al., $r > 0.6$, with the exception
245 of activated CD4 cells which did not correlate in Martins et al., and CD4⁺ cells in Smillie et al.
246 (Fig. 4B,C). *IL1B*⁺/*LYZ*⁺, *APOE*⁺/*CIQC*⁺ monocyte/macrophages, mast cells and pDCs were
247 also highly correlated with named populations "Inflammatory Monocytes" and "Resident
248 Macrophages" from both public datasets (Fig. 4B, C). However, *SOX4*⁺/*MAFA*⁺
249 monocyte/macrophages were not strongly correlated in either of the two datasets, $r < 0.4$. It is
250 possible that CD45⁺ enrichment of immune cells enabled us to identify this
251 monocyte/macrophage population that was not previously detected. In B cells many of the
252 subsets were correlated with named populations from both Martin²⁶ and Smillie³ et al. including
253 plasma cells, germinal centers, cycling B cells and follicular cells, $r > 0.6$ (Fig. 4B, C).

254 After confirming the identify of *FOXP3*⁺ regulatory T cells and *IL1B*⁺/*LYZ*⁺
255 monocyte/macrophages populations in public datasets, we wanted to validate the relationship
256 of these cell subsets in inflammation. In both CD and UC patient samples, we found that
257 *FOXP3*⁺/*BATF*⁺ regulatory T cells were significantly increased in inflamed/involved
258 compared to non-inflamed and healthy patient samples respectively (Fig. 4D,E). We did not
259 find major differences in the percentage of *IL1B*⁺/*LYZ*⁺ monocyte/macrophage cells in the data
260 from Smillie³ et al., which profiled inflamed UC and paired non-inflamed UC samples ($n=18$)
261 and healthy samples ($n=12$) (Fig. 4D). However, CD patients from Martin²⁶ et al. with active
262 inflammation ($n=11$) did exhibit significant increases in *IL1B*⁺/*LYZ*⁺ cell subsets compared to
263 matched unininvolved tissue (Fig. 4E). No major differences between inflamed and uninflamed
264 samples were found for *APOE*⁺/*CIQC*⁺ monocyte/macrophages (Supplementary Figure 6).
265 We could not detect *MAFA* in either dataset so we used *MAFB* which was also a marker.

266 However, even *SOX4+/MAFB+* cell populations were scarce in either datasets and did not allow
267 us to determine if these cells were associated with inflammation (Supplementary Figure 6).
268 Hence, we find that increased abundance of *FOXP3+/BATF+* T cells is a consistent feature of
269 inflammation in both UC and CD patients, whereas enrichment of specific
270 monocyte/macrophage subsets could be more context-dependent.

271

272 **Prioritizing inflammatory markers in a large cohort of IPAA patients**

273 We extracted 453 non-overlapping signature genes by differential expression and outlier
274 analysis²⁷ (Fig. 5A, Supplementary Table 1) as a signature matrix for the 12 T cell, 5 B cell and
275 5 myeloid cell subsets identified by scRNA-seq. We also extracted gene expression data for
276 genome wide association study (GWAS) risk genes that are associated with IBD₃ from our
277 scRNA-seq signature (Fig. 5A, Supplementary Figure 7). 17 of the GWAS-implicated IBD risk
278 alleles were associated with specific immune cells populations (Fig. 5A). For example, *IFNG*
279 was associated with CD8+ T cells, *CCL20* was associated with Th17 cells and *LY9* was
280 associated with follicular B cells. 45 other IBD-associated genes were also found in the scRNA-
281 seq dataset but were not found to be significant markers of our immune cell signatures
282 (Supplementary Figure 7) indicating that expression of these genes was not specific to a
283 particular immune cell population.

284 After generating an immune cell signature matrix, we examined the expression of these
285 genes in a microarray dataset from a larger study of IPAA patients (n=250) with active pouchitis
286 (PI), uninflamed pouches (NP) and familial adenomatous polyposis (FAP)²⁸. This dataset also
287 included 16S rRNA microbial profiling data from paired biopsies. Based on the 453-gene
288 signature matrix generated by our single cell data, there were no appreciable differences
289 between groups of IPAA patient samples by PCA (Fig. 5B). However, we found greater
290 separation of patient samples in relation to the composite inflammation score (ISCORE)²⁸.
291 Patients with the highest ISCORE contributed most to the separation in PCA space (Fig. 5B).
292 We therefore split the patient samples according to the ISCORE values into a low (ISCORE <
293 2, n=223) and high (ISCORE > 2, n=50) inflammation group and performed differential

294 expression analysis by limma²⁹ version 3.38.3 limited to the 453 gene signature from our single
295 cell dataset. The most differentially expressed transcripts in inflamed patient samples were
296 related to the proinflammatory *IL1B*+/*LYZ*+ monocyte/macrophages, marked by *IL1B*, *S100A8*,
297 *IL1RN* and *CXCL2* (Fig. 5C). We also found that expression of the inflammatory marker *IL1B*
298 was significantly related to ISCORE (Fig. 5D). To determine if there are microbial associations
299 with this set of host-transcripts, we employed sPLS regression to identify microbial taxa most
300 associated with the *IL1B*+/*LYZ*+ monocyte/macrophages signature genes. We find that the
301 expression of these genes is positively correlated with the abundance of *Escherichia*,
302 *Bacteroides*, *Faecalibacterium* and inversely correlated with abundance for the order
303 *Clostridiales* (Fig. 5E). Hence, there may be particular macrophage-microbe interactions that
304 drive this anti-microbial IL-1B signature in inflammatory macrophages specifically during
305 inflammation of the pouch.

306

307 **Evaluating response to clinical therapies and inflammation status in ulcerative colitis**

308 In order to identify cytokine signaling networks and immunoregulatory mechanisms between
309 the 22 immune cell subsets in UC, we next investigated receptor-ligand pair networks between
310 cells³⁰ to construct a cellular interaction network (Fig. 6A). Using a curated database of
311 receptor-ligand interactions from cellPhoneDB³¹, we identified pairs of interacting cell subsets
312 based on our 453 gene signature matrix. Across the 22 immune cell subsets we identified 629
313 significant interactions between receptor-ligand pairs. *IL1B*+/*LYZ*+ and *APOE*+/*C1QC*+

314 monocyte/macrophages had the most interacting pairs and are the largest nodes of this network
315 by number of connections, with many significant interactions between the two cell types.
316 Additionally, Th17 cells are an important interacting node with these macrophage populations
317 (Fig. 6A). The interactions between Th17 cells and *IL1B*+/*LYZ*+ monocyte/macrophages and
318 *APOE*+/*C1QC*+ monocyte/macrophages include activity involving the chemokines *CCL3*,
319 *CCL4*, *CCL5* and *CCL20* with the receptors *CCR1*, *CCR4*, *CCR5*, *CCR6* (Fig. 6B).
320 Costimulatory molecule interactions with their ligands such as *CTLA-4*, *ICOS*, *PD-1* and *CD40*
321 were also significant between Th17 and *FOXP3*+ T cells with the *IL1B*+/*LYZ*+ and

322 *APOE+/CIQC+* monocyte/macrophages populations (Fig. 6B). Some of the other notable
323 interactions relate to cytokines such as *TNF* and *CSF*, which are important in disease
324 pathogenesis³². In summary, this approach enabled us to determine that *IL1B+/LYZ+*
325 monocyte/macrophages interactions with Th17 cells could be an important component of the
326 intestinal immune response during inflammation for these UC patients.

327 Several new therapeutic agents developed for treating UC patients are designed to
328 block immune cell interactions. Etrolizumab and Vedolizumab target the $\alpha 4\beta 7$ integrin, and
329 Golimumab targets $TNF\alpha$, but there is considerable heterogeneity in patient responsiveness
330 that is poorly understood. We next assessed if the cell specific signature of immune cell subsets
331 could distinguish between responders and non-responders for 3 different treatments for UC,
332 Vedolizumab³³ (GSE73661), Etrolizumab³⁴ (GSE72819), and Golimumab³⁵ (GSE92415). We
333 examined differential expression between responders and non-responder in for the 453-gene
334 signature matrix for these treatment studies. Transcripts associated with *IL1B+/LYZ+*
335 monocyte/macrophages were the most significantly different between responders and non-
336 responders for Vedolizumab treatment. The non-responders were most enriched in transcripts
337 for the proinflammatory *IL1B+/LYZ+* monocyte/macrophages subset (Fig. 6C,D), indicating
338 that the presence of these macrophages could be an indicator of resistance to $\alpha 4\beta 7$ integrin
339 blockade. In addition to *IL1B*, calprotectin components *S100A8/A9* were more highly expressed
340 in non-responders. However, there is considerable heterogeneity, in that approximately 50% of
341 non-responders have high expression of *IL1B+/LYZ+* monocyte/macrophages transcripts (Fig.
342 6D). Non-responders to Etrolizumab treatment also exhibited higher expression of
343 proinflammatory genes like *IL1B*, *IL1RN* and *S100A9* compared to responders (Supplementary
344 Figure 8). Golimumab non-responders, while still slightly enriched for expression of these
345 transcripts, are less strikingly associated with *IL1B+/LYZ+* monocyte/macrophages transcripts
346 (Supplementary Figure 8), perhaps reflecting the different mechanism of action. Hence, we find
347 that a proportion of non-responders to $\alpha 4\beta 7$ integrin blockade in UC patients are associated
348 with increased transcripts for an inflammatory monocyte/macrophage population that expresses
349 an anti-microbial signature.

350

351 **DISCUSSION**

352 In this study, we found that inflammation in the ileal-anal J pouch, a novel organ created from
353 ileal tissue has an inflammatory landscape similar to the colon of ulcerative colitis patients.
354 We identified *FOXP3*+/*BATF*+ T cells and 3 different monocyte/macrophage populations
355 (*IL1B*+/*LYZ*+, *SOX4*+/*MAFA*+ and *APOE*+/*CIQ*+) with inflamed tissues in both UC and
356 pouchitis. Of these cells, the *IL1B*+/*LYZ*+ monocyte/macrophages were the most highly
357 connected cell type in the inflammatory network and their signature was associated with the
358 lack of responsiveness to $\alpha 4\beta 7$ integrin blockade and an increased abundance of *Bacteroides*
359 and *Escherichia* bacterial populations. We hypothesize that the increased activation of these
360 *IL1B*+/*LYZ*+ monocyte/macrophages may be representative of a different intestinal
361 inflammation state that is indicative of an immune response that cannot be modulated by $\alpha 4\beta 7$
362 integrin blockade.

363 Our initial goal was to compare immune infiltration for the J-pouch with the colon,
364 as two organs performing a similar function but with the J-pouch originating from the small
365 intestine. This analysis concludes that the inflammatory response for pouchitis and UC is
366 remarkably similar despite the different origin tissues. While the pouch has more CD8+ T
367 cells of different phenotypes, which may reflect the increased proportion of CD8+ T cells
368 observed in the ileum compared with colon^{21,22}, this is not significantly altered by the
369 inflammatory response. This data supports previous studies indicating that pouchitis and UC
370 are driven by similar inflammatory mechanisms¹⁵ and may therefore respond to similar
371 therapeutics³⁶⁻⁴⁰. Notably, we did not characterize the CD45+ immune cells of the pouch for
372 patients with FAP, who develop pouchitis less frequently and may reveal features unique for
373 the UC associated pouch even without the presence of inflammation. Recently, secondary bile
374 acids and associated microbes were found to distinguish UC and FAP pouches, and may
375 result in the pro-inflammatory conditions preceding pouchitis in UC patients⁴¹. Efforts are
376 underway in determining the distinct roles of secondary bile acids and butyrate, both of which
377 are byproducts of similar bacterial taxa that mediate Th17 and Treg polarization, and

378 discerning the action of these metabolites on antigen presenting cells versus T cells remains
379 an important area of research^{11,41-45}. Thus, it is important to identify any association between
380 the *IL1B*⁺/*LYZ*⁺ monocyte/macrophages and other metabolites such as bile acids beyond
381 butyrate¹⁸.

382 The relationship between microbes and antimicrobial macrophages is particularly
383 relevant to the pathogenesis of IBD. scRNA-seq of human monocyte derived macrophages
384 treated with butyrate had previously been shown to induce an antimicrobial signature through
385 *HDAC3* including upregulation of autophagy-related processes¹⁸. Here we provide evidence
386 that macrophages with an overlapping antimicrobial signature can directly be identified from
387 intestinal biopsies of UC patients. This observation may reflect the recruitment of monocytes
388 to the gut where they differentiate into macrophages to counteract a breach in the epithelial
389 barrier, a characteristic of IBD patients who are colonized by pro-inflammatory bacteria
390 related to *Bacteroides* and *Escherichia* species⁴⁶⁻⁴⁸. In contrast to healthy individuals, local
391 cytokine responses and inefficient autophagy may prevent macrophages from resolving the
392 breach in the barrier, leading to a detrimental pro-inflammatory effect of macrophages⁴⁹.
393 Consistent with this possibility, our previous work indicates that antimicrobial monocytes and
394 macrophages recruited to the gut are beneficial when damage to the colon is temporary, even
395 with an inflammatory cytokine signature exacerbated by the absence of autophagy⁵⁰⁻⁵².

396 The most consistent finding between our scRNA-seq data and the meta-analysis of
397 data from public datasets is the expansion of *FOXP3*⁺/*BATF*⁺ Tregs in actively inflamed
398 IBD. Expression of *BATF* in *FOXP3*⁺ Tregs is indicative of tissue residency⁵³. In the visceral
399 adipose tissue, *FOXP3*⁺ Tregs require *BATF* for differentiation downstream of *ST2* and
400 *PPARG* activity⁵⁴. In the intestine, *BATF* regulates expression of *CCR9* and a4b7 and *BATF*
401 deficient mice have reduced effector as well as *FOXP3*⁺ T cells in the intestine⁵⁵. Hence,
402 *BATF* is likely an important transcription factor for the differentiation and recruitment of
403 *FOXP3*⁺ Tregs to the intestinal tissues during inflammation. Notably, a recent report on
404 scRNA-seq analysis of immune cell populations in immune checkpoint inhibitor-induced
405 colitis also reveals the persistence and expansion of Tregs⁵⁶. The increased accumulation of

406 FOXP3+ Tregs in the inflamed colon is likely driven by the need to restrain inflammation, but
407 why these Tregs are not successful in controlling inflammation requires further study. One
408 possibility may be that the presence of inflammatory monocyte/macrophage populations can
409 somehow inhibit the appropriate function of these regulatory cells.

410 We also observe expansion of *APOE*+/*C1QC*+ monocyte/macrophages with a
411 phagocytic signature in both the inflamed pouch and colon, which are reminiscent of the
412 tumor associated macrophage (TAM) populations recently described in colorectal cancer
413 (CRC) patients⁵⁷. In that study, the *C1QC*+ macrophages were found to be closely connected
414 with *IL1B*+ macrophages, which we also find in this study. This indicates that there are some
415 similar characteristics between the myeloid infiltration observed in CRC and UC. However,
416 the role of these macrophages beyond having a phagocytic signature remain unclear and will
417 require further study. Notably, we did not observe the *SPP1*+ macrophage described in CRC
418 patients^{17,57}.

419 We had previously found increase in Th17 cells in inflamed biopsies^{58,59} linked by
420 expression of *SAA1* with *Bacteroides* abundance, but this was by flow cytometry and
421 intracellular cytokine staining. Serum amyloid A (SAA) proteins produced by intestinal
422 epithelial cells can drive differentiation of inflammatory Th17 cells according to the tissue
423 environment⁶⁰, however expression of SAA proteins was not detected in the present study
424 because we selected for immune cells. We also do not observe significantly more Th17 cells
425 by transcriptional signature (Supplementary Figure 4D). Nonetheless, this population of cells
426 is highly connected with the *IL1B*+/*LYZ*+ and *APOE*+/*C1QC*+ populations that are expanded
427 in inflamed samples and hence their activity could be highly dependent on the interaction
428 with these macrophages. Causal relationships between these populations may be discerned in
429 the future through *in vitro* co-culture assays but purifying specific populations of these
430 immune cells will entail surgical specimens rather than the mucosal pinch biopsies utilized in
431 this study.

432 IL-1B release can be triggered by activating *NLRP3* and other inflammasomes in
433 macrophages exposed to invasive microbes. Elegant experiments examining very early onset

434 IBD (VEOIBD) patients and mouse models genetically deficient in IL-10 signaling indicate
435 that inflammasome-triggered IL-1B production by macrophages polarizes CD4+ T cells that
436 mediate colitis^{61,62}. Blocking IL-1B signaling was effective in two IL10R-deficient patients
437 with treatment-refractory disease⁶², suggesting that macrophage-T cell interactions (Fig. 6A-
438 B) drive disease in the absence of IL-10 and other immuno-suppressive Treg effectors. This
439 would be consistent with predictions from the receptor ligand analysis performed in this study
440 (Fig. 6). If the presence of *IL1B*⁺ macrophages are indicative of unresponsiveness to $\alpha 4\beta 7$
441 integrin blockade as suggested by our results, therapies that target *IL1B* itself or JAK/STAT
442 inhibitors that broadly target signaling downstream of IL-1B-induced cytokines⁶³ may be
443 promising alternatives for UC patients with this signature. Detailed analysis of tissue from
444 patients receiving JAK/STAT inhibitors will be highly informative.

445 In conclusion, this work utilizes scRNA-seq to identify unique features of pouchitis
446 and a specific population of *IL1B*⁺ macrophages that could potentially be targeted in a subset
447 of UC patients who are not responding to treatment with $\alpha 4\beta 7$ integrin antagonists. Hence,
448 this study provides an example of how utilizing precision medicine to identify changes in cell
449 proportions, gene expression and cell-cell signaling by scRNA-seq, followed by further
450 analyses of publicly available datasets, could be used to improve our understanding of
451 individual patient responsiveness to IBD therapies and provide a hypothesis for alternative
452 treatment options.

453

454 **METHODS**

455 *Study Participants*

456 Participants were recruited and consented and are part of an institutional
457 review board-approved study (S12-01137; “Mucosal immune profiling in patients with
458 inflammatory bowel disease”) by NYU Langone Health. We identified 15 patients with a J-
459 pouch and 13 patients with UC (Supplementary Table 2). All J-pouch patients had
460 preoperative UC with 14 (93%) and 1 (7%) undergoing an IPAA for medically refractory

461 disease and colitis-associated neoplasia, respectively. Of J-pouch patients, 10 (67%) had
462 endoscopic evidence of inflammation (endoscopic PDAI ≥ 2) referred to as pouchitis and 5
463 (33%) had endoscopically normal appearing pouches referred to as uninflamed pouches
464 (Supplementary Table 2). All UC patients had moderate to severe endoscopic activity
465 (endoscopic Mayo ≥ 2). Patients with UC or a J-pouch at the Inflammatory Bowel
466 Disease Center at NYU Langone Health, New York, were approached for recruitment
467 on presentation for routine endoscopy (pouchoscopy, colonoscopy, or flexible
468 sigmoidoscopy) performed for disease activity assessment. Potential participants were
469 excluded if they were unable to or did not consent to provide tissue. The endoscopic
470 appearance determined the inflammatory activity. UC patients were limited to those
471 with active inflammation denoted by an Mayo endoscopic subscore of ≥ 2 ⁶⁴. J-pouch
472 patients were stratified into an endoscopic pouchitis cohort for those with an pouchitis
473 disease activity index (PDAI) endoscopic subscore ≥ 2 or a normal J-pouch cohort for
474 those with an PDAI endoscopic subscore < 2 ⁶⁵. Further patient details and stratification
475 are described in Supplementary Table 2.

476

477 *Biopsies*

478 Approximately four to ten mucosal pinch biopsies were obtained from each patient. For
479 UC patients, all biopsies were obtained from the rectum. For J-pouch patients, all
480 biopsies were obtained from the pouch body or inlet. If active endoscopic inflammation
481 was present, this area was targeted for biopsy. For each location sampled, one biopsy
482 was collected for standard histopathology assessment and read by two expert
483 pathologists for the PDAI histology subscore and histologic pouch activity score
484 (PAS)^{65,66}.

485

486 *Patient metadata*

487 At endoscopy, clinical data was collected including demographics, initial IBD subtype
488 and phenotype, smoking status, the presence of primary sclerosing cholangitis (PSC),
489 extra-intestinal manifestations, and comorbidities, age and indication for IPAA,
490 previous and current medication exposures, and clinical indices of disease activity
491 including the partial Mayo score⁶⁴ for patients with UC and PDAI clinical subscore for
492 patients with a J-pouch⁶⁵ (Supplementary Table 2).

493

494 *Biopsy specimen processing*

495 All biopsies were collected in ice cold complete RPMI 1640 (10% FBS, 100x
496 penicillin/streptomycin/glutamine, 50uM 2-mercaptoethanol, Sigma) during
497 endoscopy and subsequently cryopreserved in freezing media (90% FBS + 10%
498 DMSO) for long-term storage. Cryopreserved biopsies were gently thawed at 37°C and
499 enzymatically digested in collagenase VIII (Sigma) and DNase (Sigma) for 1h to obtain
500 a single cell suspension. After live/dead cell staining with near-IR stain (Invitrogen),
501 cell surface markers were labeled with the following antibodies: CD45 PE-Cy7, CD3
502 PerCP-Cy5.5, CD19 PE, CD14 FITC, and CD16 Pacific Blue (BioLegend). Sorted
503 CD45+ cellular suspensions were isolated using the Sony SY3200 cell sorter and
504 prepared for single-cell RNA sequencing.

505

506 *Single cell library and sequencing*

507 From pinch biopsies all samples were sorted and CD45+ cellular suspensions were
508 loaded on a 10x Genomics Chromium instrument to generate single-cell gel beads in
509 emulsion (GEMs). Approximately 10,000 cells were loaded per channel. Single-cell
510 RNA-Seq libraries were prepared using the following Single Cell 3' Reagent Kits v2:

511 Chromium™ Single Cell 3' Library & Gel Bead Kit v2, Single Cell 3' Chip Kit v2, and
512 i7 Multiplex Kit (catalog# PN-120237, PN-120236, # PN-120262, 10x Genomics)⁶⁷
513 and following the Single Cell 3' Reagent Kits v2 User Guide (Manual Part # CG00052),
514 Rev A. Libraries were run on an Illumina HiSeq 4000 as 2 × 150 paired-end reads, one
515 full lane per sample, for approximately >90% sequencing saturation.

516

517 *Single cell analysis pipeline*

518 The Cellranger software suite (<https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger>) from 10X was used to
519 demultiplex cellular barcodes, align reads to the human genome (GRCh38 ensemble,
520 http://useast.ensembl.org/Homo_sapiens/Info/Index) and perform UMI counting. From
521 filtered counts Seurat¹⁶ version 3.1.3 was used to process the single cell data including
522 dimension reduction, UMAP representation and differential expression to identify cell
523 type specific markers and differentially expressed genes between pouch and UC
524 conditions by a Wilcox test. All single cell processing steps, code and gene expression
525 tables are described in detail on our github at <https://github.com/ruggleslab/Pouch>. We
526 also used additional single cell analysis software including diffusion map and
527 pseudotime analysis from the R package Slingshot⁶⁸ version 1.0.0.

529

530 *Immunohistochemistry staining for FOXP3+ cells*

531 Image panels were acquired with ×10 lens using an Olympus BX53 microscope
532 equipped with an Olympus DP27 digital color camera (Olympus, Center Valley, PA,
533 USA). FOXP3 nuclear expression, stained with 3,3-Diaminobenzidine (DAB) was
534 digitally quantified by QuPath⁶⁹ using hematoxylin as a background stain. Areas of

535 interest were drawn with the line or polygon drawing tool. *FOXP3* cells and background
536 immune cells were annotated. The images were thresholded using a binary
537 categorization of positive (DAB, brown stain) and negative (blue stain). Default
538 software settings were used for the final analysis with the help of cell analysis, positive
539 cell detection command as previously published⁷⁰. The measurement table was then
540 exported to excel spread sheet for statistical analysis.

541

542 *Generating Receptor-ligand networks*

543 Receptor-ligand networks were generated using the software CellPhoneDB³¹ using the
544 default databases and methods as described in their documentation
545 (<https://github.com/Teichlab/cellphonedb>).

546

547 **DATA AND CODE AVAILABILITY**

548 Raw sequence data are deposited in the NCBI Sequence Read Archive under
549 BioProject accession number XXX and gene expression omnibus (GEO) accession
550 number GSEXXX. All processing was performed in R⁷¹ version 3.5.1 and complete
551 analysis scripts can be found on github at <https://github.com/ruggleslab/Pouch> .

552

553 **Acknowledgements**

554 We wish to thank the NYU School of Medicine Flow Cytometry and Cell Sorting,
555 Microscopy, Genome Technology, and Histology Cores for use of their instruments and
556 technical assistance (supported in part by National Institute of Health (NIH) grant
557 P31CA016087, S10OD01058, and S10OD018338). **Funding:** This research was supported
558 by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases,
559 National Institutes of Health (NIH) and NIH grants DK103788 (K.C. and P.L.), AI121244

560 (K.C.), HL123340 (K.C.), DK093668 (K.C.), AI130945 (P.L. and K.C.), R01 HL125816
561 (K.C.), R01 AI140754 (K.C.), HL084312, AI133977 (P.L.). Pilot award from the NYU
562 CTSA grant UL1TR001445 from the National Center for Advancing Translational Sciences
563 (NCATS) (K.C., P.L.), pilot award from the NYU Cancer Center grant P30CA016087 (K.C.).
564 This work was also supported by the Faculty Scholar grant from the Howard Hughes Medical
565 Institute (K.C.), Crohn's & Colitis Foundation (K.C.), Merieux Institute (K.C.), Kenneth
566 Rainin Foundation (K.C.). K.C. is a Burroughs Wellcome Fund Investigator in the
567 Pathogenesis of Infectious Diseases.

568

569 **Author contributions:** Design of experiments, data analysis, data discussion, and
570 interpretation: J.C.D., J.A., S.C., K.V.R., D.H., K.C. and P.L.; primary responsibility for
571 execution of experiments: A.M.H., J.D.L., Single cell analysis: J.C.D., K.V.R. All authors
572 discussed data and commented on the manuscript.

573

574 **Declaration of interests:** K.C. receives research funding from Pfizer and Abbvie; P.L.
575 receives research funding from Pfizer; J.A. receives research funding from BioFire
576 Diagnostics. K.C. has consulted for or received an honorarium from Puretech Health,
577 Genentech, and Abbvie; P.L. consults for and has equity in Toilabs. K.C. has provisional
578 patents, U.S. Patent Appln. No. 15/625,934 and 62/935,035. P.L. is a federal employee. J.A.
579 has consulted for or received an honorarium from BioFire Diagnostics and Janssen.

580

581 REFERENCES

582 1. Shen, B. Acute and chronic pouchitis—pathogenesis, diagnosis and treatment.
583 *Nature Reviews Gastroenterology & Hepatology* **9**, 323–333 (2012).

584 2. Dalal, R. L., Shen, B. & Schwartz, D. A. Management of Pouchitis and Other
585 Common Complications of the Pouch. *Inflamm Bowel Dis* **24**, 989–996 (2018).

586 3. Smillie, C. S. *et al.* Intra- and Inter-cellular Rewiring of the Human Colon during
587 Ulcerative Colitis. *Cell* **178**, 714-730.e22 (2019).

588 4. Haber, A. L. *et al.* A single-cell survey of the small intestinal epithelium. *Nature*
589 **551**, 333–339 (2017).

590 5. Parikh, K. *et al.* Colonic epithelial cell diversity in health and inflammatory
591 bowel disease. *Nature* **567**, 49–55 (2019).

592 6. Corridoni, D., Chapman, T., Antanaviciute, A., Satsangi, J. & Simmons, A.
593 Inflammatory Bowel Disease Through the Lens of Single-cell RNA-seq
594 Technologies. *Inflamm Bowel Dis* doi:10.1093/ibd/izaa089.

595 7. Matsuzawa-Ishimoto, Y. *et al.* An intestinal organoid-based platform that
596 recreates susceptibility to T-cell-mediated tissue injury. *Blood* **135**, 2388–
597 2401 (2020).

598 8. Matsuzawa-Ishimoto, Y. *et al.* Autophagy protein ATG16L1 prevents
599 necroptosis in the intestinal epithelium. *J Exp Med* **214**, 3687–3705 (2017).

600 9. Xu, M. *et al.* c-MAF-dependent regulatory T cells mediate immunological
601 tolerance to a gut pathobiont. *Nature* **554**, 373–377 (2018).

602 10. Sano, T. *et al.* An IL-23R/IL-22 Circuit Regulates Epithelial Serum Amyloid
603 A to Promote Local Effector Th17 Responses. *Cell* **163**, 381–393 (2015).

604 11. Furusawa, Y. *et al.* Commensal microbe-derived butyrate induces the
605 differentiation of colonic regulatory T cells. *Nature* **504**, 446–450 (2013).

606 12. Kim, K. S. *et al.* Dietary antigens limit mucosal immunity by inducing
607 regulatory T cells in the small intestine. *Science* **351**, 858–863 (2016).

608 13. Esterházy, D. *et al.* Compartmentalized gut lymph node drainage dictates
609 adaptive immune responses. *Nature* **569**, 126–130 (2019).

610 14. Habtezion, A., Nguyen, L. P., Hadeiba, H. & Butcher, E. C. Leukocyte
611 Trafficking to the Small Intestine and Colon. *Gastroenterology* **150**, 340–354
612 (2016).

613 15. Huang, Y. *et al.* Early Transcriptomic Changes in the Ileal Pouch Provide
614 Insight into the Molecular Pathogenesis of Pouchitis and Ulcerative Colitis.
615 *Inflamm Bowel Dis* **23**, 366–378 (2017).

616 16. Stuart, T. *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**,
617 1888-1902.e21 (2019).

618 17. Lee, H.-O. *et al.* Lineage-dependent gene expression programs influence
619 the immune landscape of colorectal cancer. *Nature Genetics* **52**, 594–603
620 (2020).

621 18. Schulthess, J. *et al.* The Short Chain Fatty Acid Butyrate Imprints an
622 Antimicrobial Program in Macrophages. *Immunity* **50**, 432-445.e7 (2019).

623 19. Arnold, L. *et al.* CX3CR1 deficiency promotes muscle repair and
624 regeneration by enhancing macrophage ApoE production. *Nature
625 Communications* **6**, 8972 (2015).

626 20. Grainger, D. J., Reckless, J. & McKilligin, E. Apolipoprotein E Modulates
627 Clearance of Apoptotic Bodies In Vitro and In Vivo, Resulting in a Systemic
628 Proinflammatory State in Apolipoprotein E-Deficient Mice. *The Journal of
629 Immunology* **173**, 6366–6375 (2004).

630 21. Senda, T. *et al.* Microanatomical dissection of human intestinal T-cell
631 immunity reveals site-specific changes in gut-associated lymphoid tissues
632 over life. *Mucosal Immunol* **12**, 378–389 (2019).

633 22. Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal
634 immune system. *Nature Reviews Immunology* **14**, 667–685 (2014).

635 23. Castro-Dopico, T. *et al.* Anti-commensal IgG Drives Intestinal
636 Inflammation and Type 17 Immunity in Ulcerative Colitis. *Immunity* **50**, 1099-
637 1114.e10 (2019).

638 24. Bain, C. C. & Mowat, A. M. Macrophages in intestinal homeostasis and
639 inflammation. *Immunological Reviews* **260**, 102-117 (2014).

640 25. Fontana, R. *et al.* Nuclear receptor ligands induce TREM-1 expression on
641 dendritic cells: analysis of their role in tumors. *OncoImmunology* **8**, 1554967
642 (2019).

643 26. Martin, J. C. *et al.* Single-Cell Analysis of Crohn's Disease Lesions Identifies
644 a Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy.
645 *Cell* **178**, 1493-1508.e20 (2019).

646 27. Mertins, P. *et al.* Proteogenomics connects somatic mutations to signalling
647 in breast cancer. *Nature* **534**, 55-62 (2016).

648 28. Morgan, X. C. *et al.* Associations between host gene expression, the
649 mucosal microbiome, and clinical outcome in the pelvic pouch of patients with
650 inflammatory bowel disease. *Genome Biology* **16**, 67 (2015).

651 29. Ritchie, M. E. *et al.* limma powers differential expression analyses for
652 RNA-sequencing and microarray studies. *Nucleic Acids Res* **43**, e47-e47
653 (2015).

654 30. Ramiłowski, J. A. *et al.* A draft network of ligand-receptor-mediated
655 multicellular signalling in human. *Nature Communications* **6**, 7866 (2015).

656 31. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R.
657 CellPhoneDB: inferring cell-cell communication from combined expression of
658 multi-subunit ligand-receptor complexes. *Nature Protocols* **15**, 1484-1506
659 (2020).

660 32. Friedrich, M., Pohin, M. & Powrie, F. Cytokine Networks in the
661 Pathophysiology of Inflammatory Bowel Disease. *Immunity* **50**, 992–1006
662 (2019).

663 33. Arijs, I. *et al.* Effect of vedolizumab (anti- $\alpha 4\beta 7$ -integrin) therapy on
664 histological healing and mucosal gene expression in patients with UC. *Gut* **67**,
665 43–52 (2018).

666 34. Tew, G. W. *et al.* Association Between Response to Etrolizumab and
667 Expression of Integrin αE and Granzyme A in Colon Biopsies of Patients With
668 Ulcerative Colitis. *Gastroenterology* **150**, 477–487.e9 (2016).

669 35. Telesco, S. E. *et al.* Gene Expression Signature for Prediction of
670 Golimumab Response in a Phase 2a Open-Label Trial of Patients With
671 Ulcerative Colitis. *Gastroenterology* **155**, 1008–1011.e8 (2018).

672 36. Ferrante, M. *et al.* Efficacy of infliximab in refractory pouchitis and
673 Crohn's disease-related complications of the pouch: a Belgian case series.
674 *Inflamm. Bowel Dis.* **16**, 243–249 (2010).

675 37. Barreiro-de Acosta, M. *et al.* Efficacy of infliximab rescue therapy in
676 patients with chronic refractory pouchitis: a multicenter study. *Inflamm.*
677 *Bowel Dis.* **18**, 812–817 (2012).

678 38. Barreiro-de Acosta, M. *et al.* Efficacy of adalimumab rescue therapy in
679 patients with chronic refractory pouchitis previously treated with infliximab:
680 a case series. *Eur J Gastroenterol Hepatol* **24**, 756–758 (2012).

681 39. Bär, F. *et al.* Vedolizumab in the treatment of chronic, antibiotic-
682 dependent or refractory pouchitis. *Aliment. Pharmacol. Ther.* **47**, 581–587
683 (2018).

684 40. Ollech, J. E. *et al.* Ustekinumab Is Effective for the Treatment of Chronic
685 Antibiotic-Refractory Pouchitis. *Dig. Dis. Sci.* **64**, 3596–3601 (2019).

686 41. Sinha, S. R. *et al.* Dysbiosis-Induced Secondary Bile Acid Deficiency
687 Promotes Intestinal Inflammation. *Cell Host & Microbe* **27**, 659-670.e5 (2020).

688 42. Campbell, C. *et al.* Bacterial metabolism of bile acids promotes generation
689 of peripheral regulatory T cells. *Nature* **581**, 475–479 (2020).

690 43. Hang, S. *et al.* Bile acid metabolites control T H 17 and T reg cell
691 differentiation. *Nature* **576**, 143–148 (2019).

692 44. Song, X. *et al.* Microbial bile acid metabolites modulate gut ROR γ +
693 regulatory T cell homeostasis. *Nature* **577**, 410–415 (2020).

694 45. Arpaia, N. *et al.* Metabolites produced by commensal bacteria promote
695 peripheral regulatory T-cell generation. *Nature* **504**, 451–455 (2013).

696 46. Kim, Y.-G. *et al.* The Nod2 Sensor Promotes Intestinal Pathogen
697 Eradication via the Chemokine CCL2-Dependent Recruitment of Inflammatory
698 Monocytes. *Immunity* **34**, 769–780 (2011).

699 47. Ramanan, D., Tang, M. S., Bowcutt, R., Loke, P. & Cadwell, K. Bacterial
700 sensor Nod2 prevents small intestinal inflammation by restricting the
701 expansion of the commensal *Bacteroides vulgatus*. *Immunity* **41**, 311–324
702 (2014).

703 48. Schirmer, M., Garner, A., Vlamakis, H. & Xavier, R. J. Microbial genes and
704 pathways in inflammatory bowel disease. *Nature Reviews Microbiology* **17**,
705 497–511 (2019).

706 49. Matsuzawa-Ishimoto, Y., Hwang, S. & Cadwell, K. Autophagy and
707 Inflammation. *Annual Review of Immunology* **36**, 73–101 (2018).

708 50. Marchiando, A. M. *et al.* A Deficiency in the Autophagy Gene Atg16L1
709 Enhances Resistance to Enteric Bacterial Infection. *Cell Host & Microbe* **14**,
710 216–224 (2013).

711 51. Martin, P. K. *et al.* Autophagy proteins suppress protective type I
712 interferon signalling in response to the murine gut microbiota. *Nature
713 Microbiology* **3**, 1131–1141 (2018).

714 52. Neil, J. A. *et al.* IFN-I and IL-22 mediate protective effects of intestinal viral
715 infection. *Nature Microbiology* **4**, 1737–1749 (2019).

716 53. Hayatsu, N. *et al.* Analyses of a Mutant Foxp3 Allele Reveal BATF as a
717 Critical Transcription Factor in the Differentiation and Accumulation of Tissue
718 Regulatory T Cells. *Immunity* **47**, 268-283.e9 (2017).

719 54. Vasanthakumar, A. *et al.* The transcriptional regulators IRF4, BATF and
720 IL-33 orchestrate development and maintenance of adipose tissue–resident
721 regulatory T cells. *Nature Immunology* **16**, 276–285 (2015).

722 55. Wang, C. *et al.* BATF is required for normal expression of gut-homing
723 receptors by T helper cells in response to retinoic acid. *J Exp Med* **210**, 475–
724 489 (2013).

725 56. Luoma, A. M. *et al.* Molecular Pathways of Colon Inflammation Induced by
726 Cancer Immunotherapy. *Cell* **0**, (2020).

727 57. Zhang, L. *et al.* Single-Cell Analyses Inform Mechanisms of Myeloid-
728 Targeted Therapies in Colon Cancer. *Cell* **181**, 442-459.e29 (2020).

729 58. Leung, J. M. *et al.* IL-22-producing CD4+ cells are depleted in actively
730 inflamed colitis tissue. *Mucosal Immunology* **7**, 124–133 (2014).

731 59. Tang, M. S. *et al.* Integrated Analysis of Biopsies from Inflammatory Bowel
732 Disease Patients Identifies SAA1 as a Link Between Mucosal Microbes with
733 TH17 and TH22 Cells. *Inflamm Bowel Dis* **23**, 1544–1554 (2017).

734 60. Lee, J.-Y. *et al.* Serum Amyloid A Proteins Induce Pathogenic Th17 Cells
735 and Promote Inflammatory Disease. *Cell* **180**, 79-91.e16 (2020).

736 61. Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S. & Medzhitov, R. Anti-
737 inflammatory effect of IL-10 mediated by metabolic reprogramming of
738 macrophages. *Science* **356**, 513–519 (2017).

739 62. Shouval, D. S. *et al.* Interleukin 1 β Mediates Intestinal Inflammation in
740 Mice and Patients With Interleukin 10 Receptor Deficiency. *Gastroenterology*
741 **151**, 1100–1104 (2016).

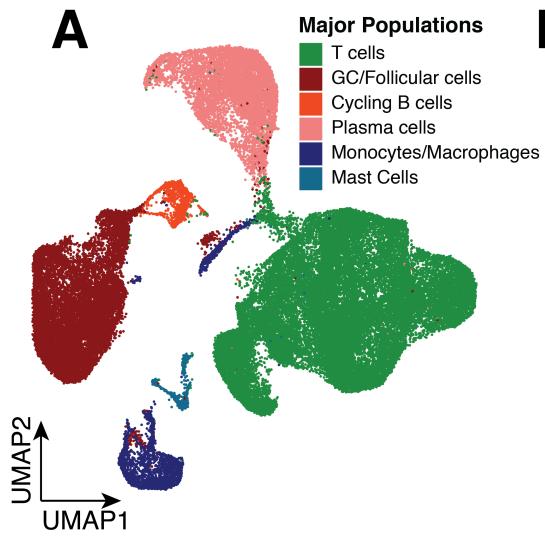
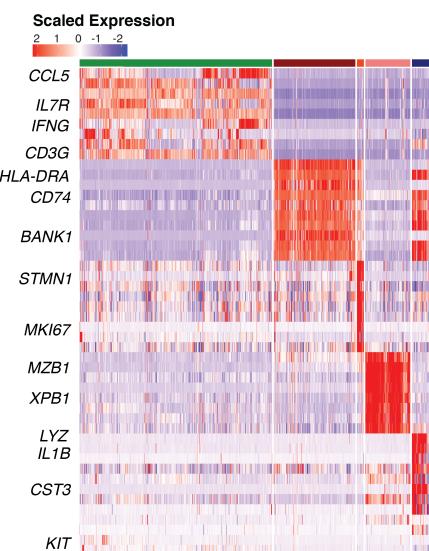
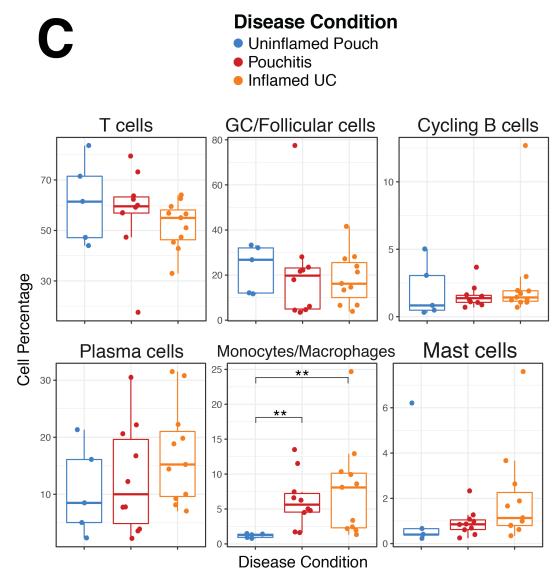
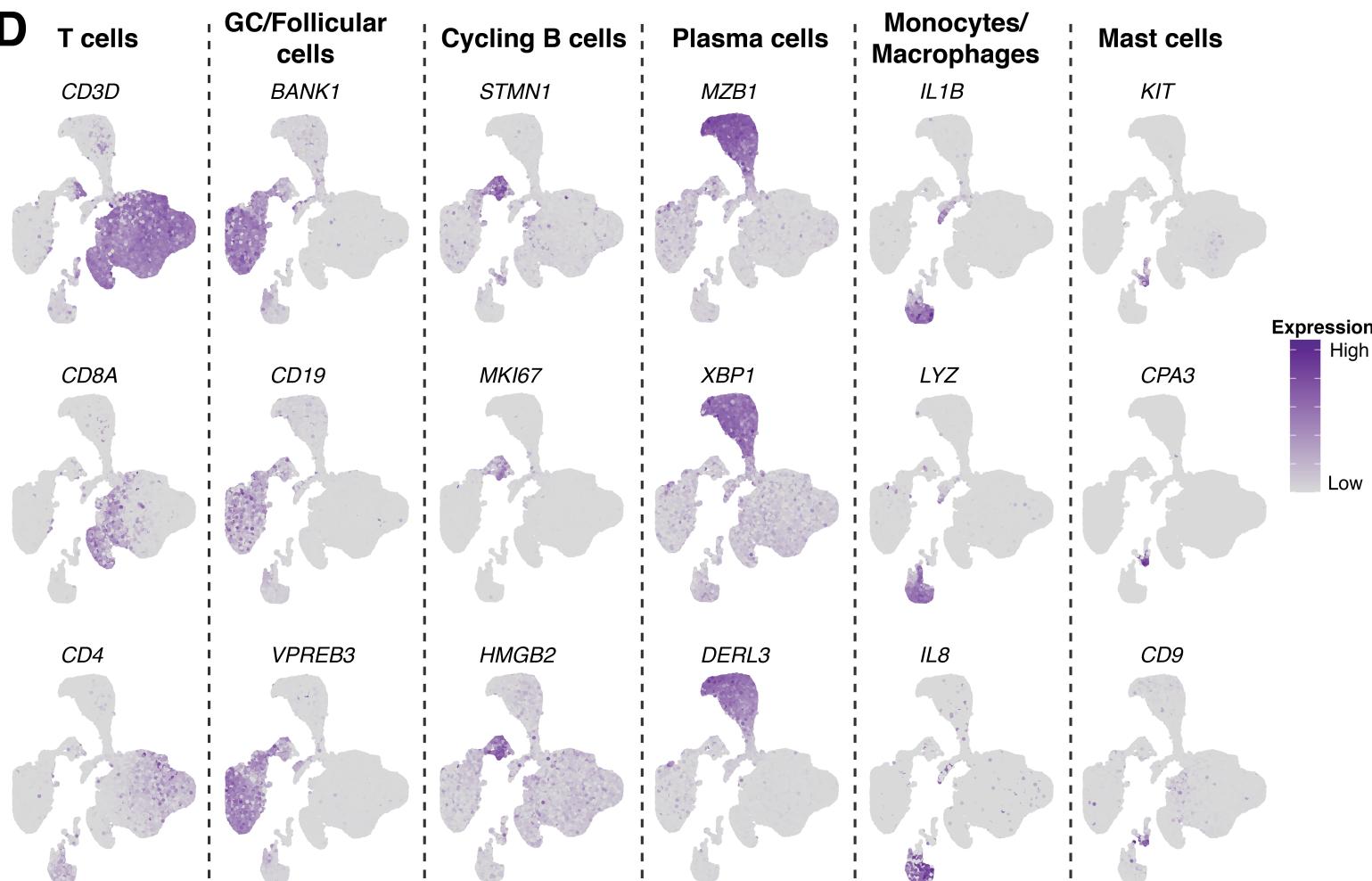
742 63. Salas, A. *et al.* JAK–STAT pathway targeting for the treatment of
743 inflammatory bowel disease. *Nature Reviews Gastroenterology & Hepatology*
744 **17**, 323–337 (2020).

745 64. Schroeder, K. W., Tremaine, W. J. & Ilstrup, D. M. Coated Oral 5-
746 Aminosalicylic Acid Therapy for Mildly to Moderately Active Ulcerative Colitis.
747 *New England Journal of Medicine* **317**, 1625–1629 (1987).

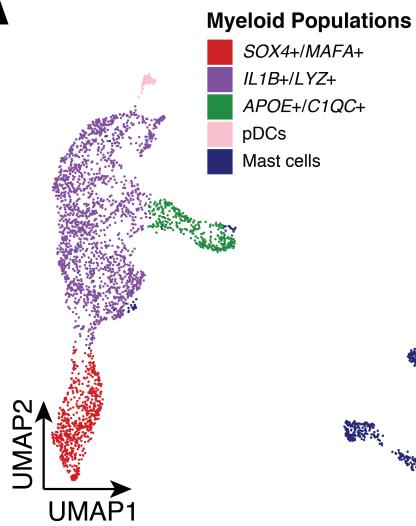
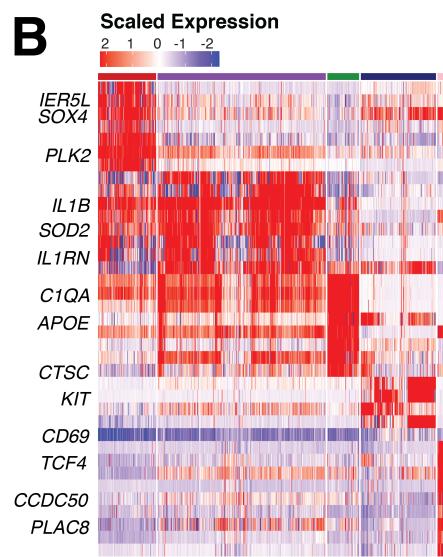
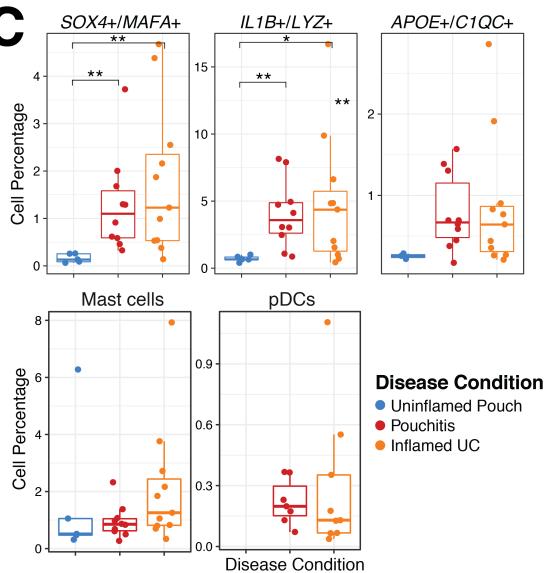
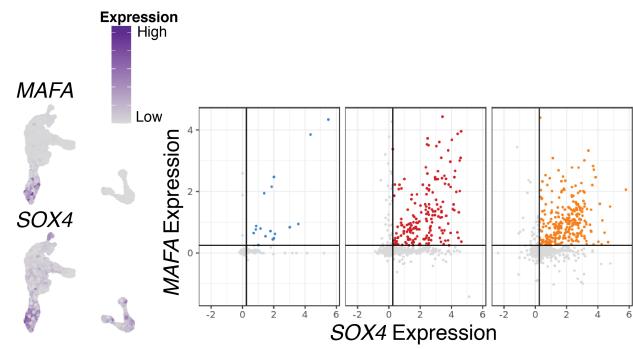
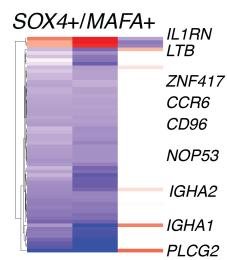
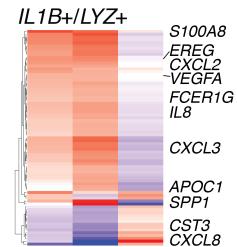
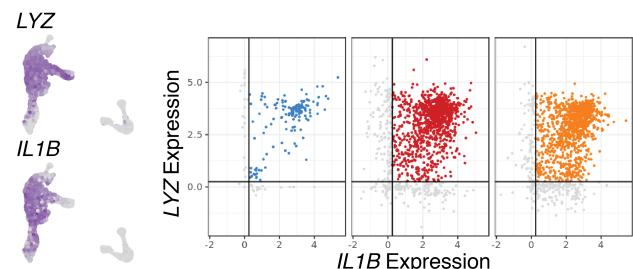
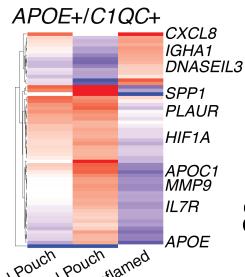
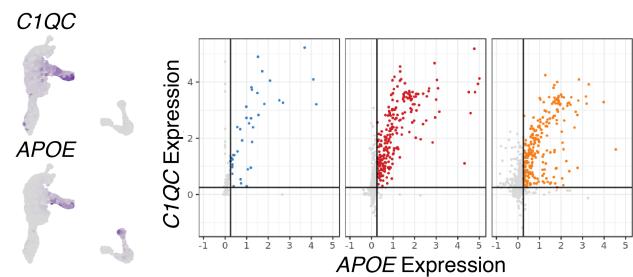
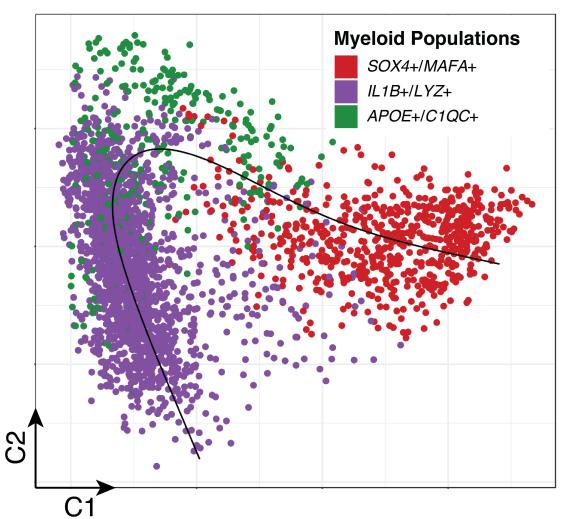
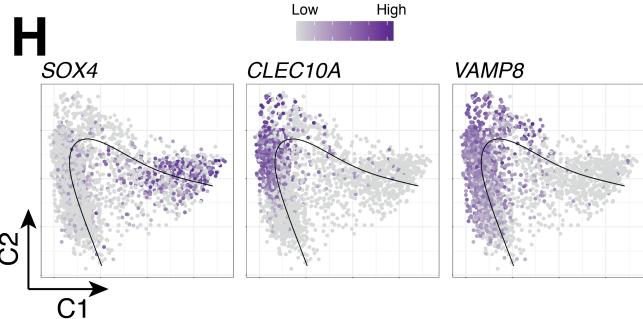
748 65. Sandborn, W. J., Tremaine, W. J., Batts, K. P., Pemberton, J. H. & Phillips, S.
749 F. Pouchitis After Ileal Pouch-Anal Anastomosis: A Pouchitis Disease Activity
750 Index. *Mayo Clinic Proceedings* **69**, 409–415 (1994).

751 66. Heuschen, U. A. *et al.* Diagnosing Pouchitis. *Dis Colon Rectum* **45**, 776–786
752 (2002).

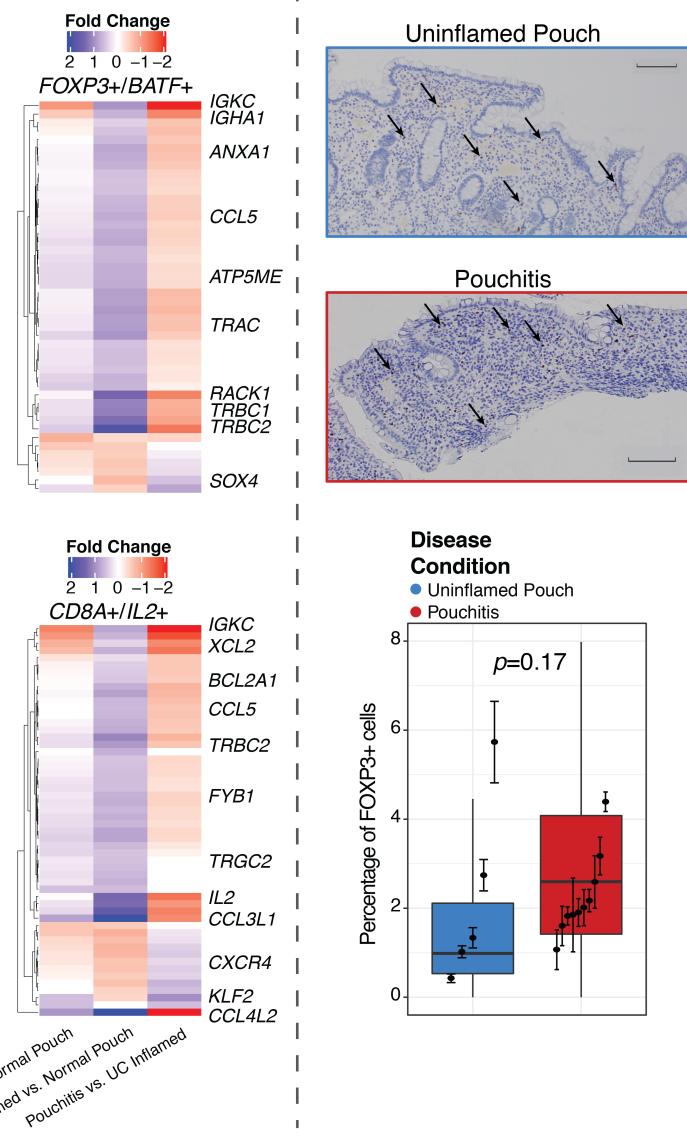
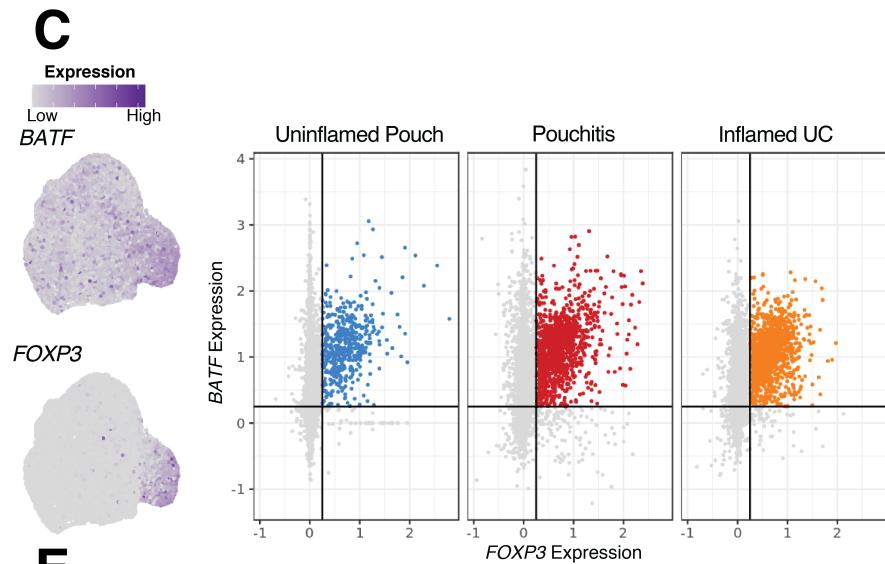
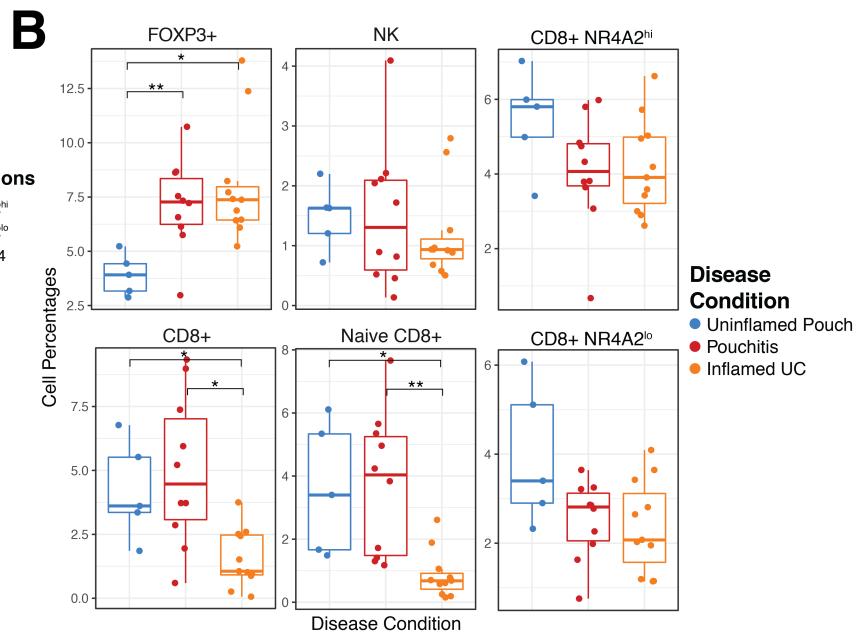
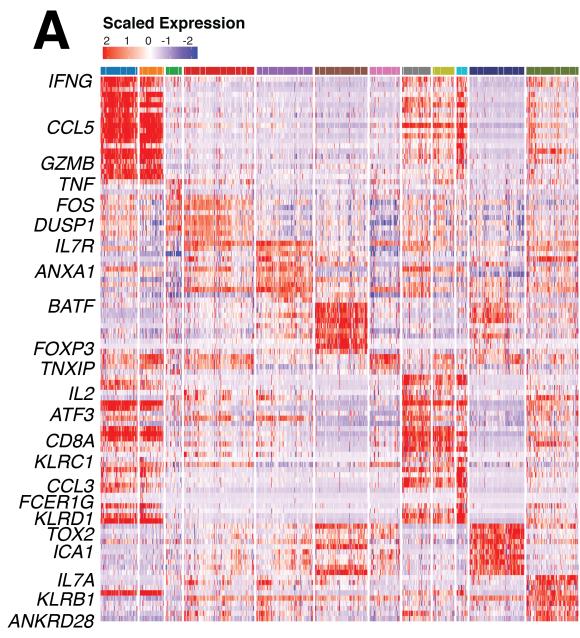
753 67. Zheng, G. X. Y. *et al.* Massively parallel digital transcriptional profiling of
754 single cells. *Nature Communications* **8**, 14049 (2017).





755 68. Street, K. *et al.* Slingshot: cell lineage and pseudotime inference for single-
756 cell transcriptomics. *BMC Genomics* **19**, 477 (2018).

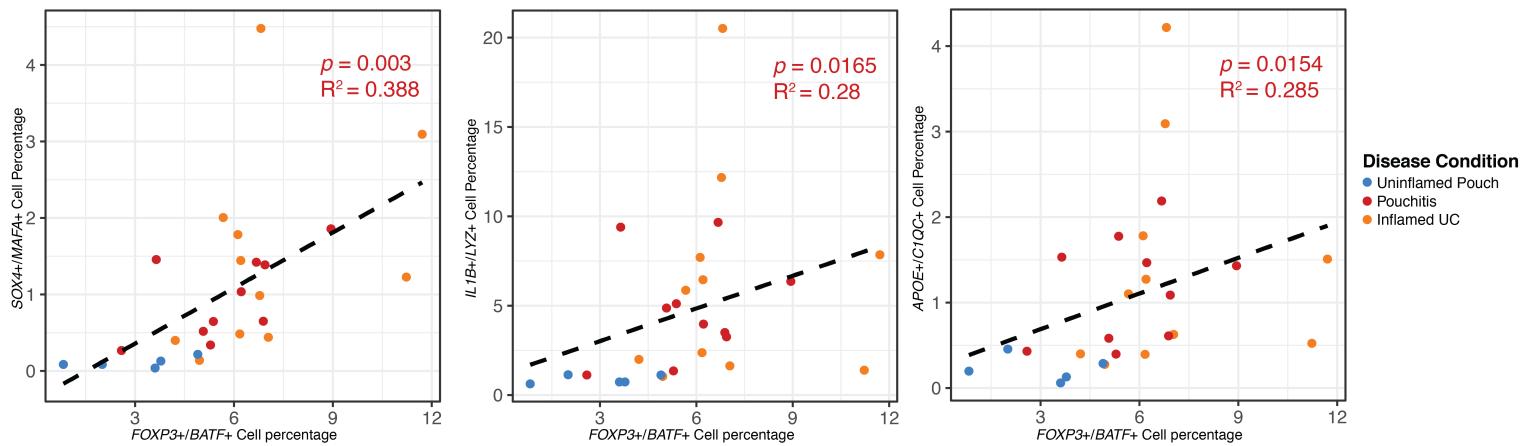
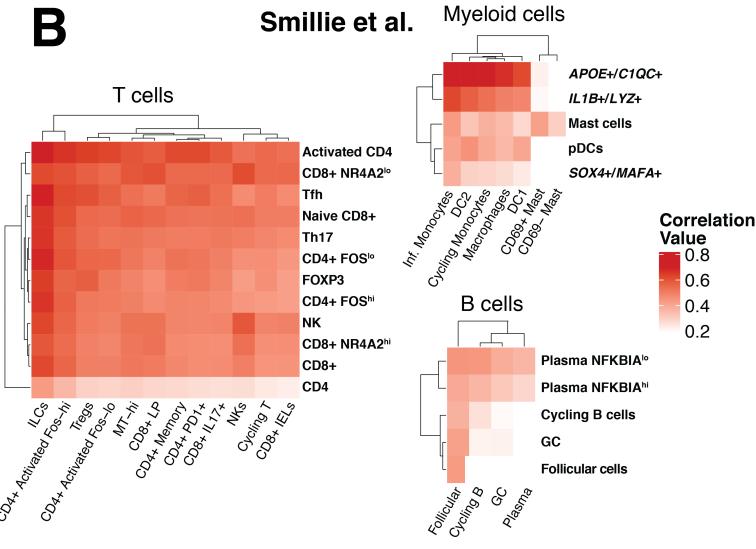
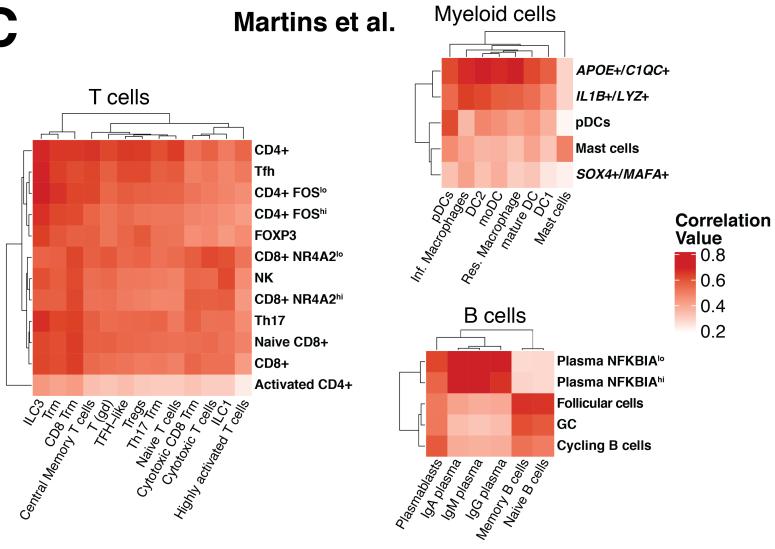
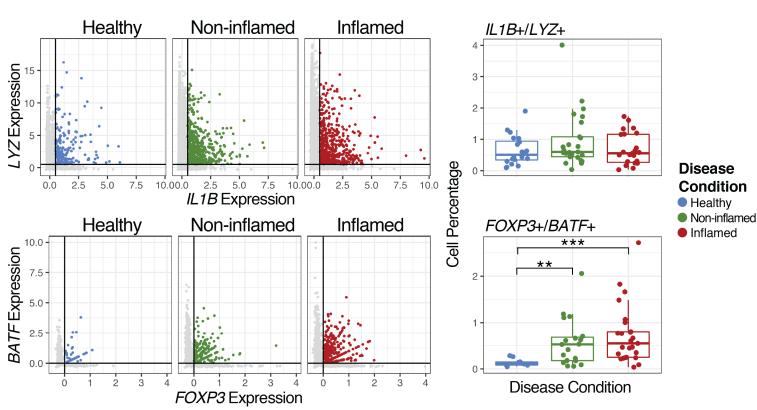
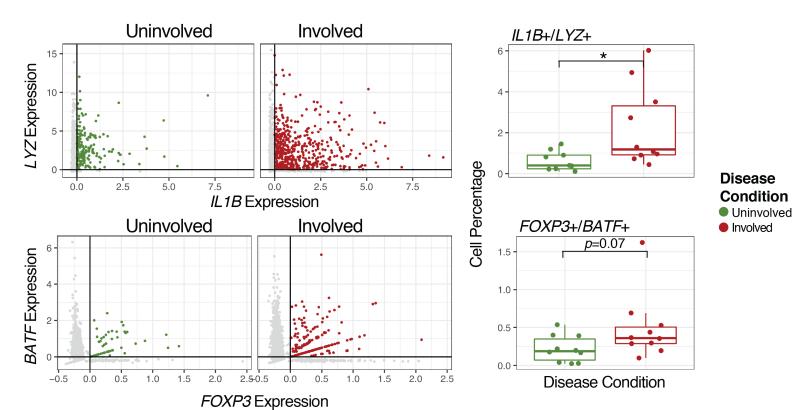
757 69. Bankhead, P. *et al.* QuPath: Open source software for digital pathology
758 image analysis. *Scientific Reports* **7**, 16878 (2017).












759 70. Dowsett, M. *et al.* Assessment of Ki67 in Breast Cancer: Recommendations
760 from the International Ki67 in Breast Cancer Working Group. *J Natl Cancer Inst*
761 **103**, 1656–1664 (2011).

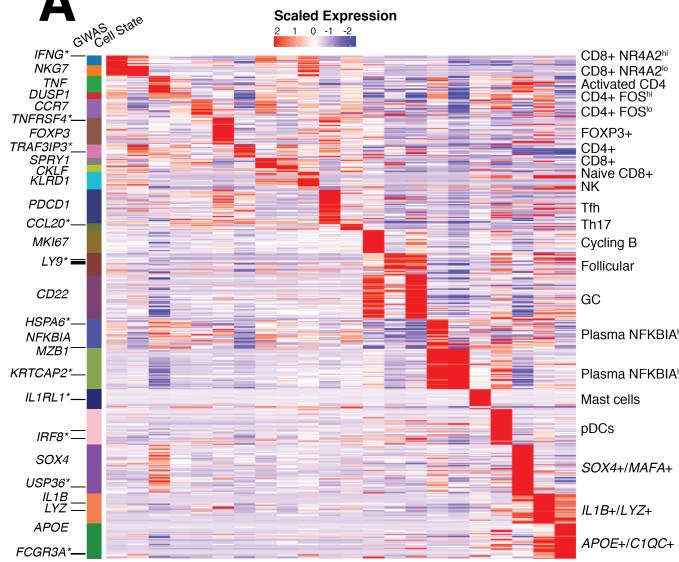
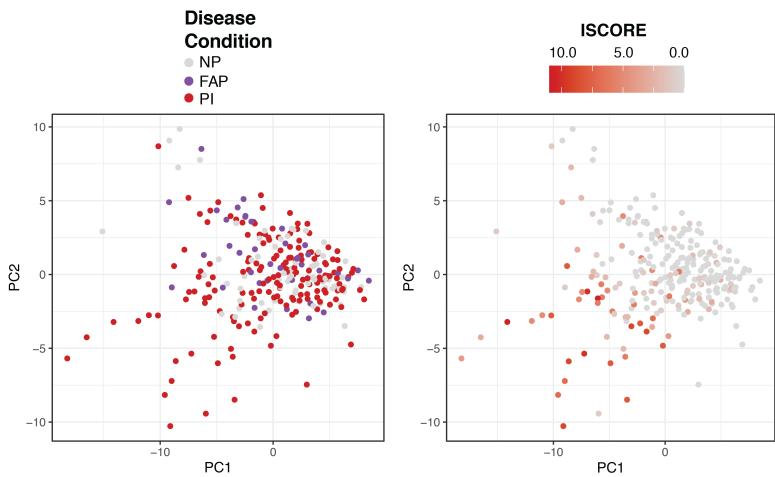
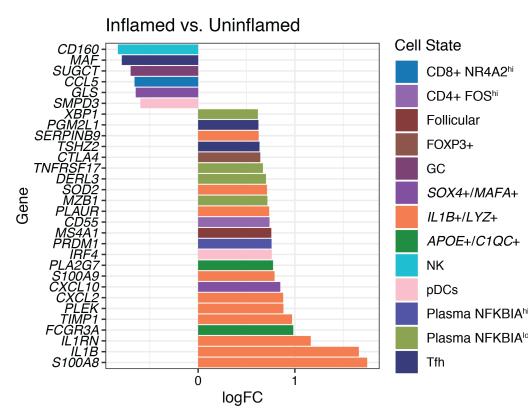
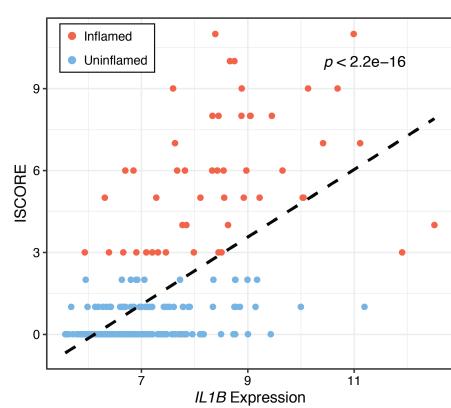
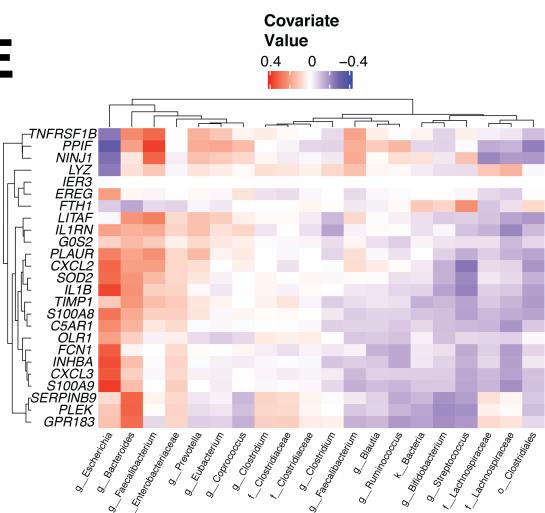
762 71. R Core Team. *R: A language and environment for statistical computing. R
763 Foundation for Statistical Computing.* (2018).

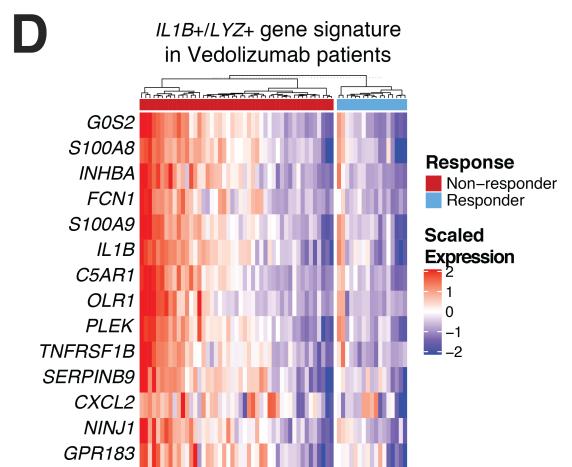
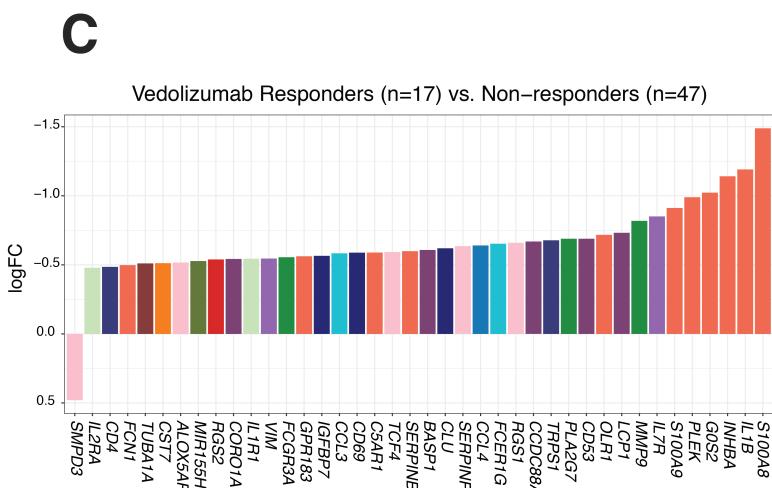
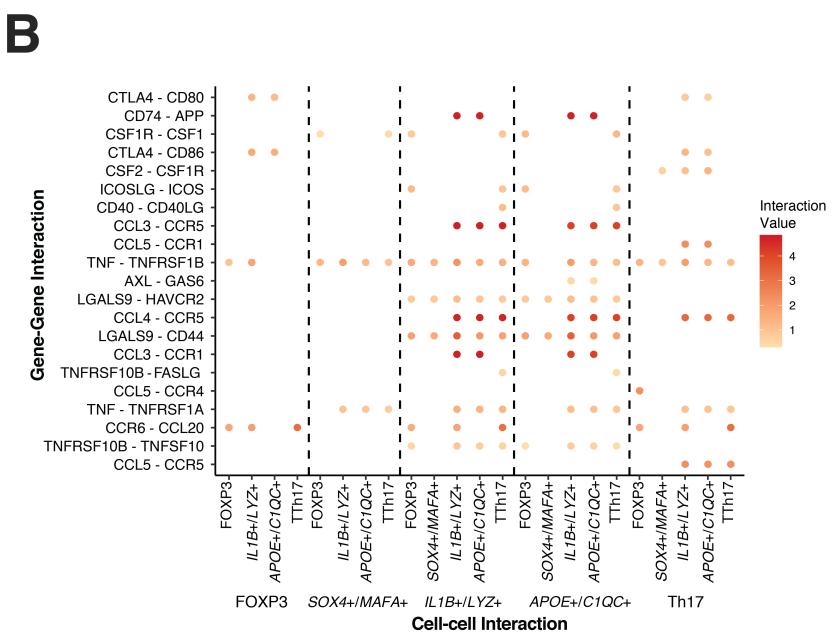
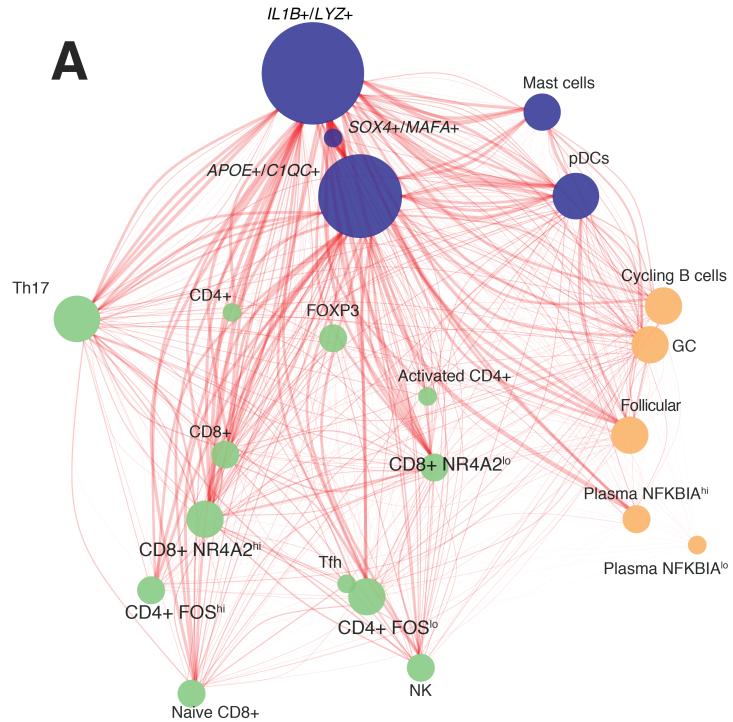




764

A**B****C****D**






Figure 1. Immune cell landscape of frozen biopsy specimens obtained from the ileal-anal pouch and colon of ulcerative colitis patients. (A) Census of the major immune cell clusters and visualization by UMAP. (B) Heatmap of scaled expression profiles of the major immune cell clusters (C) Boxplots showing cell cluster frequency of the major populations as a percentage of total cells of each patient shown as individual datapoints, compared between patient groups. (D) Feature plots showing representative UMAP visualizations of normalized expression for marker genes enriched in the major cell types. Asterisks indicate significance testing for Wilcoxon ranked test, * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$.

A**B****C****D****Fold Change****E****F****G****H**






Figure 2. Increased accumulation of myeloid cell populations in inflamed pouchitis and ulcerative colitis patients. (A) Census of myeloid cell types and visualization by UMAP. (B) Heatmap of scaled expression profiles of myeloid clusters, with selected genes of interests shown on left. (C) Boxplots showing cell cluster frequency of the major populations as a percentage of total cells of each patient shown as individual datapoints, compared between patient groups. (D-F) Feature plots showing representative UMAPs of marker gene pairs (left), gene by gene expression plots (center) and differential expression heatmaps of log2 fold change between Uninflamed Pouch, Pouchitis and UC inflamed samples (right) in *SOX4+/MAFA+* (D), *IL1B+/LYZ+* (E) and *APOE+/CIQC+* Monocyte/Macrophage populations. Significantly expressed genes are determined by Log2 fold change greater than 0.75 and adjusted p-value less than 0.05. (G) Diffusion map of *IL1B+/LYZ+*, *SOX4+/MAFA+* and *APOE+/CIQC+* monocyte/macrophages (top) with a psuedotime projection (black line). (H) *SOX4*, *CLEC10A* and *VAMP8* normalized expression shown on diffusion map as feature plots (bottom). Asterisks indicate significance testing for Wilcoxon ranked test, * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$.





Figure 3. Dysregulation of the T cell compartment in inflamed pouchitis and ulcerative colitis patients. (A) Heatmap of scaled expression profiles of the 12 major T cell clusters, with selected genes of interests shown on left. (B) Boxplots showing cell cluster frequency of selected T cell populations as a percentage of total cells of each patient shown as individual datapoints, compared between patient groups. (C) Feature plots showing representative UMAP visualizations of *FOXP3* and *BATF* expression in T cells (left), *FOXP3* by *BATF* expression plots (center) and differential expression heatmaps of genes with log2 fold change between Uninflamed Pouch, Pouchitis and UC inflamed samples (right) in *FOXP3*+/*BATF*+ T cells. (D) Representative *FOXP3* stained pouch tissue sections (top) and quantification (bottom), where dark brown colored cells indicate *FOXP3* nuclear expression and quantification of percent *FOXP3*+ cells in 5 uninflamed patient samples and 10 pouchitis patient sample. Significance was determined by nested ANOVA correcting for multiple data points per patient. (E) Feature plots showing representative UMAP visualizations of *CD8A* and *IL2* expression in T cells (left), *CD8A* by *IL2* expression plots (center) and differential expression heatmaps of log2 fold change between Uninflamed Pouch, Pouchitis and UC inflamed samples (right) in *CD8A*+/*IL2*+ T cells. Selected genes of interests shown on right. Significantly differentially expressed genes are determined by Log2 fold change greater than 0.5 and adjusted p-value less than 0.05. Asterisks indicate significance testing for Wilcoxon ranked test, * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$. Scale bars indicate 200 μ m imaged at 10X magnification.

A**B****Smillie et al.****C****Martins et al.****D****E**

Figure 4. Defining cell states related in active inflammation in J-pouch, ulcerative colitis and Crohn's disease. (A) Linear model of the associations between the percentage of *FOXP3*+*BATF*+ cells and *SOX4*+*MAFA*+ (left), *IL1B*+*LYZ*+ (middle) and *APOE*+*C1QC*+ cells (right). R^2 and p value was determined by linear regression. Individual samples are shown and color coded based on disease condition. (B, C) Heatmaps of correlated cell types from scRNA-seq datasets of Smillie et al. (B) and Martins et al. (C), comparing T cell (left), myeloid subsets (top) and B cell subsets (bottom). (D) Single cell expression of *IL1B* and *LYZ* (top) and relative percentage of *LYZ*+*IL1B*+ cell populations from healthy, inflamed and non-inflamed ulcerative colitis patient samples from Smillie et al. Single cell expression of *FOXP3* and *BATF* (bottom) and relative percentage of *FOXP3*+*BATF*+ cell populations from healthy, inflamed and non-inflamed ulcerative colitis patients samples from Smillie et al. (E) Single cell expression of *IL1B* and *LYZ* (top) and relative percentage of *LYZ*+*IL1B*+ cell populations from matched involved and unininvolved Crohns disease patient samples from Martins et al. Single cell expression of *FOXP3* and *BATF* (bottom) and relative percentage of *FOXP3*+*BATF*+ cell populations from involved and unininvolved Crohns disease patient samples from Martins et al. Asterisks indicate significance testing for Wilcoxon ranked test, * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$.

A**B****C****D****E**

Figure 5. Identification of immune cell type specific transcripts and analysis of an independent dataset of patients with IPAA. (A) Heatmap illustration of a signature matrix of 453 marker genes for 22 identifiable T, B and Myeloid cell states from scRNA-seq. Asterisks indicate GWAS genes related to inflammatory bowel disease and the expression of these genes in the specific cell types on the right. (B) Principal component analysis of 250 IPAA patient samples with familial adenomatous polyposis (FAP), active pouchitis (PI) or no pouchitis (NP) based on the 453-gene signature and colored by Disease Condition (left) and inflammation score (ISCORE) (right). (C) Expression of *IL-1B*⁺/*LYZ*⁺ monocyte/macrophage cell type specific transcripts from biopsy samples collected from inflamed (ISCORE > 2) versus uninflamed (ISCORE < 2) patient samples. Shown are log fold change values of the most differentially expressed genes from the 453 cell type specific markers colored by the corresponding cell type from scRNA-seq. (D) Linear model of the association between IL1B expression and the numeric inflammation score for 250 patient samples of IPAA. (E) sPLS analysis of a 25-gene signature for *IL-1B*⁺/*LYZ*⁺ monocyte/macrophages compared to microbial taxa measured by 16S rRNA sequencing of the 250 patient samples of IPAA. Directionality of the association between gene expression and bacterial abundance is colored in red or blue as shown in the legend.

Figure 6. Evaluating response to clinical therapies and inflammation status in ulcerative colitis. (A)

Analysis of receptor-ligand network connections between 22 of the major cell populations identified in scRNA-seq. Each node represents a cell population and each edge a significant receptor-ligand association according to curated database, cellPhoneDB. The size of each node is proportional to the number of connected edges and the thickness of the edges is proportional to the significance value of the connection. (B) Visualization of selected ligand–receptor interactions that are specifically enriched between FOXP3+ Tregs, *SOX4+/MAFA+*, *IL1B+/LYZ+*, *APOE+/C1QC+* monocyte/macrophages and Th17 cells. Interaction values are indicated by intensity, scale on right. (C) Expression of *IL-1B+/LYZ+* monocyte/macrophage cell type specific transcripts from biopsy samples collected from ulcerative colitis patient Responders versus Non-responders to treatment with the anti- $\alpha 4\beta 7$ integrin antibody Vedolizumab. Log fold change values of the most differentially expressed genes from a matrix of 453 cell-type specific markers between Responders and Non-responders to treatment are shown. D) Heatmap showing the heterogeneity in the expression of *IL-1B+/LYZ+* monocyte/macrophage cell type specific transcripts among Non-responders to Vedolizumab treatment. Normalized expression values shown for individual patients from Responders (n=17) and Non-responders (n=47).