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Abstract  35 
Alzheimer’s disease (AD) is a complex neurodegenerative disease defined by the presence of 36 
amyloid-b (Ab) plaques and tau neurofibrillary tangles, and driven by dysproteostatis, 37 
inflammation, metabolic dysfunction, and oxidative injury, eventually leading to synapse loss 38 
and cell death. Synapse loss correlates with cognitive impairment and may occur independently 39 
of the extent of AD pathology. To understand how synaptic composition is changed in relation to 40 
AD neuropathology and cognition, highly sensitive multiplexed liquid chromatography mass-41 
spectrometry was used to quantify biochemically enriched synaptic proteins from the parietal 42 
association cortex of 100 subjects with contrasting AD pathology and cognitive performance. 43 
Functional analysis showed preservation of synaptic signaling, ion transport, and mitochondrial 44 
proteins in normal aged and "resilient" (cognitively unimpaired with AD pathology) individuals. 45 
Compared to these individuals, those with cognitive impairment showed significant metabolic 46 
differences and increased immune- and inflammatory-related proteins, establishing the synapse 47 
as a potential integration point for multiple AD pathophysiologies.  48 
 49 
Introduction 50 
 51 
Alzheimer’s disease (AD) is the most common cause of dementia, affecting an estimated 5.7 52 
million Americans in 2018 and about 35 million individuals worldwide (Alzheimers & Dementia, 53 
2018). Abundant amyloid-b (Ab) plaques and paired helical filament tau (PHF-tau) neurofibrillary 54 
tangles in the cerebral cortex define the disease neuropathologically, but there is increasing 55 
recognition that the level of cognitive impairment associated with these pathologies is variable. 56 
Some individuals exhibit no discernable impairments during their lifetime, despite having high 57 
levels of AD pathology. This phenomenon has been described in both autopsy and biomarker 58 
studies of aging and AD and is variously referred to as resilience, reserve, asymptomatic AD, or 59 
preclinical AD (Arnold et al., 2013; Au et al., 2012; D. A. Bennett et al., 2006; Gelber, Launer, & 60 
White, 2012; Iacono et al., 2009; O’Brien et al., 2009; Savva et al., 2009; Schneider, 61 
Arvanitakis, Bang, & Bennett, 2007). On the other hand, some individuals show more severe 62 
impairments than might be expected in the setting of minimal AD pathology, cerebrovascular 63 
disease, or other neurodegenerative diseases in the brain. This cognitive frailty is less well-64 
studied. The relationship between AD pathology and cognitive impairment may weaken yet 65 
further in individuals over 90 years of age (Ewbank & Arnold, 2009; Haroutunian et al., 2008). 66 
Understanding the cellular and molecular basis of brain response to AD and other common 67 
pathologies of aging is of paramount importance for prevention and treatment discovery. 68 
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 69 
Synapse loss has long been considered as a strong correlate of cognitive impairment in AD 70 
(DeKosky & Scheff, 1990; Koffie, Hyman, & Spires-Jones, 2011; Terry et al., 1991). 71 
Clinicopathological studies of individuals enrolled in the Religious Orders Study and Memory 72 
and Aging Project (ROSMAP) (David A Bennett et al., 2018) cohorts highlighted comparable 73 
pre-synaptic and post-synaptic staining levels in normal controls and resilient individuals. 74 
Another study using dendrite tracing in the dorsolateral prefrontal cortex suggested resilient 75 
individuals have a similar density of thin and mushroom spines relative to controls (Boros et al., 76 
2017). A recent proteomic study of post-mortem tissue from the frontal cortex and anterior 77 
cingulate of individuals with AD showed a decrease in the pre-synaptic markers SNAP25, 78 
Syntaxin 1A & B (STX1A & B), and synaptotagmin (SYT1), and the post-synaptic markers 79 
PSD95, disks large MAGUK scaffold protein 3 (DLG3), and Neuroligin 2 (NLGN2) (Ping et al., 80 
2018). A further recent study of cognitive trajectory over time showed that aged individuals with 81 
a worse cognitive trajectory had lower levels of synaptic markers, including PSD95, SYT1, and 82 
STX1A in post-mortem tissues (Wingo et al., 2019). 83 
 84 
The challenge of interpreting whole-tissue data with regards to protein differences in specific 85 
cellular compartments in a cytoarchitecturally complex tissue like the brain is that 86 
measurements may be more sensitive to global differences in organelle density or volume than 87 
organelle composition itself (Becky C. Carlyle et al., 2017). In whole tissue studies of AD, one of 88 
the strongest drivers of differential protein abundance is the general loss of synaptic markers in 89 
Dementia-AD cases compared to controls (Johnson et al., 2018a; Ping et al., 2018; Wingo et 90 
al., 2019). Therefore, to better understand how protein composition at the synapse is affected in 91 
relation to AD pathology and cognition, we analyzed enriched synaptic fractions in brain tissue 92 
from ROSMAP by proteomic tandem mass tag labelled liquid chromatography mass-93 
spectrometry (LC-MS3). Parietal association cortex (angular gyrus) tissue from 100 participants 94 
spanning four groups was analyzed: 1) cognitively unimpaired with low AD or other pathology 95 
("Normal"), 2) dementia with abundant AD pathology ("Dementia-AD"), 3) "Resilient," defined as 96 
cognitively unimpaired despite abundant AD pathology, and 4) "Frail," defined as dementia 97 
without AD or any other attributable pathology.   98 
 99 
We identified functional clusters of proteins that were enriched in cognitively impaired 100 
individuals versus non-impaired and resilient individuals. These upregulated categories included 101 
metabolic, extracellular matrix (ECM) remodeling, and immune and inflammation functions. 102 
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Previous studies have suggested that these differences may arise mostly from non-neuronal cell 103 
types (Johnson et al., 2018a) but in this work we show that the synapse may also act as a 104 
nexus between these processes and cognitive impairment. Cognitively resilient individuals 105 
showed more mitochondrial and synaptic signaling proteins in the absence of a tissue volume 106 
effect. These proteins may act as cognitively relevant biomarkers of synaptic function in AD and 107 
offer novel pathways for therapeutic targeting.     108 
 109 
Results  110 
 111 
Sample demographics of diagnostic groups 112 
The 100 samples were systematically selected from the ROSMAP cohorts to represent 113 
contrasting degrees of disease pathology and cognitive impairment. All had detailed 114 
demographic, clinical, psychometric, and neuropathological data from the ROSMAP studies 115 
(David A Bennett et al., 2018)(TableS1). Samples were classified into four diagnostic groups on 116 
the basis of two variables; the Braak score (1-4, low AD pathology, 5-6, high AD pathology) and 117 
clinical consensus of the presence of significant cognitive impairment at last study visit prior to 118 
death (Figure 1A). Twenty-five samples were allocated to each of four groups; Normal 119 
individuals with low AD pathology and no cognitive impairment, Dementia-AD individuals with  120 
 121 

Table 1: Summary demographics of cases. Data is presented as mean (standard deviation).  122 
See Supplementary Table 1 for individual sample demographic data. * MMSE = Mini Mental 123 
State Examination 124 

 
DEM-AD FRL N RES 

n 25 25 25 25 

Age (yrs) 90.6 (5.5) 87.7 (6.5) 90.5 (5.4) 90.8 (5.1) 

% male 42 48 44 44 

Education (yrs) 16.2 (3.2) 16.7 (3.5) 17.0 (3.7) 16.3 (3.8) 

Post-mortem interval (hrs) 7.0 (4.4) 7.5 (5.6) 7.0 (3.0) 8.3 (4.5) 

MMSE* (maximum score 30) 11.0 (9.5) 17.6 (8.5) 28.0 (1.6) 27.5 (1.8) 

Last valid global cognition (Z-

score across all ROSMAP) -2.2 (1.0) -1.5 (0.7) 0.3 (0.3) -0.1 (0.3) 

Braak score 5.1 (0.3) 2.5 (1.0) 1.9 (0.9) 5.0 (0) 

Global pathology (Z-score) 1.6 (0.6) 0.2 (0.3) 0.3 (0.4) 1.2 (0.5) 
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high AD pathology and cognitive impairment, Resilient individuals with high AD pathology and 125 
no cognitive impairment, and Frail individuals with low AD pathology and cognitive impairment.  126 
Key sample demographics were well matched across the 4 diagnostic categories including age 127 
at death, post-mortem interval (Figure 1B), sex and education (Table 1).   128 

 129 
Figure 1: One hundred subject samples were categorized based on their levels of AD pathology 130 
and cognitive performance. A) Samples were divided into 4 groups by Braak score (Braak > 4 131 
high pathology, Braak < 4 low pathology) and clinical diagnosis of the presence of dementia-132 
level cognitive impairment (n = 25 per group).   B) Age and post-mortem interval were well 133 
balanced across all diagnostic groups.  Global cognition score at last valid visit was significantly 134 
higher in Normal and Resilient subjects compared to Dementia-AD and Frail subjects.  There 135 
was a small but significant difference in global cognition score between Dementia-AD and Frail 136 
subjects.  Global pathology score (a scaled composite score accounting for diffuse and neuritic 137 
plaques and neurofibrillary tangles) was significantly higher in Dementia-AD and Resilient 138 
subjects than Normal and Frail Subjects.  There was a small but significant difference in global 139 
pathology between Dementia-AD and Resilient subjects.  Between group significance was 140 
defined by one-way ANOVA followed by Tukey post-hoc testing, (*adjusted p < 0.05, **p < 0.01, 141 
***p < 0.001) 142 
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 6 

One-way ANOVA with Tukey post-hoc testing showed that the global pathology score was 143 
significantly higher in the Dementia-AD and Resilient groups than the Normal and Frail groups 144 
(Figure 1B), and that the global cognition score at the last valid visit was significantly higher in 145 
the Normal and Resilient groups compared to the Frail and Dementia-AD groups (Figure 1B, 146 
Table S2). There was also a smaller significant difference in global cognition score between the 147 
Frail and Dementia-AD groups.  These subjects were not selected for balanced ApoE status 148 
across groups, and thus this is not used as a variable in the downstream analysis.  ApoE4 risk 149 
allele carrier distributed as expected across the groups;  8% of Normal subjects, 24% of Frail 150 
and Resilient subjects, and 44% of Dementia-AD subjects (Figure S1).  There were zero 151 
carriers of the protective ApoE2 variant in the Dementia-AD group, 28% in the Normal group, 152 
32% in the Frail group, and 8% in the Resilient group. Although this variable was not included in 153 
the modeling, single protein data can be explored relative to ApoE status at https://tmt-154 
synaptosomes.omics.kitchen/. Lewy body pathology was absent in all but four Resilient 155 
subjects, and vascular macroinfarcts were also present only in 9 of the Resilient group. Vascular 156 
microinfarcts were more widely present throughout the groups, being present in 16% of 157 
Dementia-AD subjects, 32% of Frail and Resilient subjects, and 8% of Normal subjects. 158 
Similarly there were no differences in TDP-43 pathology across the four groups, although there 159 
were 16 missing data points for this variable (Figure S2). 160 
 161 
Quantitative assessment of synaptic proteomes 162 
Frozen tissue sections were obtained from the parietal association cortex (Brodmann area 39, 163 
angular gyrus). Synaptic proteins were enriched from approximately 100 mg of each tissue 164 
sample using the Syn-PER Synaptic Protein Extraction Reagent, which uses non-denaturing 165 
cell lysis to release organelles. P2 pellets were Tandem Mass Tag (TMT) labeled and prepared 166 
for analysis by LC-MS3 in 10 batches of 11 samples (Figure S3). In each batch the 11th sample 167 
was a pooled common sample used for batch-to-batch normalization. Prior to LC-MS3 analysis, 168 
each 11-plex was offline fractionated into 12 fractions by basic Reverse Phase Liquid 169 
Chromatography (bRPLC) to ensure deep coverage of the synaptic proteome. Quantitative 170 
profiles for each of the 100 synaptic protein samples were acquired using multiplexed 171 
proteomics by applying TMT technology on an Orbitrap Fusion mass spectrometer using the 172 
SPS-MS3 method (McAlister et al., 2012, 2014; Ting, Rad, Gygi, & Haas, 2011). MS2 level 173 
peptide spectra were assigned to peptides and proteins using the Sequest algorithm (Eng, 174 
McCormack, & Yates, 1994), with two step normalization, protein level quantification, and 175 
upstream filtering performed using an in-house software suite (Huttlin et al., 2010a). 176 
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Downstream analyses were performed in R, and the Gene Set Enrichment Analysis 177 
(Subramanian et al., 2005) software (Figure 2A).  178 

Figure 2: Fractionated LC-MS3 was used to assess synaptic protein enriched fractions 179 
from the angular gyrus. A) Schematic diagram showing experimental workflow. Cortical grey 180 
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 8 

matter samples from the angular gyrus (BA 39) were fractionated to enrich for synaptic proteins 181 
using the SynPER reagent and low speed centrifugation. Synaptic protein fractions were TMT 182 
labelled, pooled, and offline fractionated into twelve fractions. Fractions were analyzed by LC-183 
MS3. Spectra were assigned using SEQUEST and quantified using a custom software pipeline. 184 
Data analysis and figures were prepared in R and using the GSEA java applet. B) 9560 proteins 185 
were detected in at least one sample across the experiment. 4952 of these proteins were 186 
detected in every sample (ie. no missing values on the x-axis), with the stepped structure of this 187 
plot suggesting that protein detection generally followed the experimental batching structure. C) 188 
There were no proteins with a majority of missing values in one diagnostic group that were 189 
consistently detected (>55%) in one of the other diagnostic groups.  The 872 proteins with over 190 
85% of values missing in any one diagnostic group are visualized in a heatmap according to the 191 
proportion of missing values in each diagnostic group. D) Comparison of detected proteins with 192 
consensus lists of unique cellular fraction-associated protein IDs shows strong enrichment of 193 
the appropriate cellular compartments, with substantial depletion of the nuclear fraction. 194 
Maximum possible fold enrichment in this experiment was 4.2 fold (4874 unique GeneIDs 195 
observed from a possible 20,635), with the post-synaptic fraction having a fold enrichment of 196 
3.9. (*Fisher test, Bonferroni adjusted p value < 0.001).  197 
 198 
 199 
Across all non-pooled samples, 9560 unique proteins were detected and quantified in at least 200 
one subject sample. 4952 proteins were detected in every sample and for the remaining 201 
proteins, detection was mostly related to batching structure (Figure 2B). No proteins which were 202 
detected consistently (> 45% of the time) in one or more diagnostic groups but not in other 203 
diagnostic groups (Figure 2C). Due to the restricted nature of the cellular compartment being 204 
evaluated in this experiment, and to avoid difficulties with imputing missing values, the batch 205 
and TMT-label median normalized dataset was filtered to retain only those proteins quantified in 206 
every sample.   Plotting of individual samples showed successful batch by batch median 207 
normalization (Figure S4A) but relatively variable distributions at quantification extremes. Values 208 
were therefore quantile normalized and samples clustered for visual inspection. No clear batch 209 
effects were evident across the samples from this clustering (Figure S4B).  210 
 211 
Enrichment and coverage of the synaptic proteome 212 
The Syn-PER kit was chosen for synaptic fraction enrichment for two reasons; 1) Once tissue is 213 
frozen without cryopreservation methods, membrane disruption prevents the preparation of pure 214 
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 9 

tissue fractions (Dias, Gandra, Brenzikofer, & Macedo, 2020) and 2) the protocol is simple and 215 
rapid compared to density gradient methods, reducing the  potential introduction of variability 216 
from sample preparation methods in a large sample set.  While the Syn-PER kit had been 217 
tested in-house for reproducible enrichment of the appropriate cell fraction by western blotting of 218 
a small number of marker proteins (data not shown), a more global view of appropriate cell 219 
fraction enrichment can be gained from the proteins detected across all samples in this 220 
experiment.  Cell fraction protein consensus lists were prepared from proteins detected in a 221 
specific fraction in at least two published human or mouse tissue proteomic studies (Bayés et 222 
al., 2014, 2011; Christoforou et al., 2016; Distler et al., 2014; Föcking et al., 2016; Foster et al., 223 
2006; Itzhak et al., 2017; Li et al., 2017; Pirooznia et al., 2012; Thul et al., 2017) or gene 224 
ontology cellular compartment protein lists (Ashburner et al., 2000; 225 
The Gene Ontology Consortium, 2019). The list for each fraction was then restricted to proteins 226 
that were unique to one fraction. Bonferroni corrected Fisher tests were performed to assess 227 
enrichment or depletion of organelles.  All fractions tested, except the nucleus, were enriched 228 
(Figure 2D), although golgi and cytoskeleton enrichments were not significant.  The fractions 229 
with the strongest enrichment were post synaptic (3.9-fold), and mitochondrial (2.4-fold, Table 230 
S2).  There are many fewer proteomics studies of the pre-synapse than post-, and thus 231 
incomplete annotation of unique proteins may be part of the reason why this fraction appears 232 
less enriched in this analysis.  All fractions found to be significantly enriched in this preparation 233 
are organelles with established presence in the pre- or post- synapse. As expected, the nucleus 234 
was significantly depleted from this preparation (p.adj = 2.84e-30).  235 
 236 
Biochemical enrichment of synaptic proteins effectively controls for synapse loss between 237 
diagnostic groups 238 
In whole tissue proteomic studies, one of the strongest drivers of changes in the data is a 239 
general loss of synaptic markers in Dementia-AD cases compared to controls (Johnson et al., 240 
2018a; Ping et al., 2018; Wingo et al., 2019). This is likely a reflection of the fact that synapses 241 
will occupy a decreased volume of the grey matter once synapse loss occurs. We removed this 242 
potential confound by biochemically enriching the synaptic fraction, to focus on intrinsic protein 243 
changes within existing synapses. Established pre- and post- synaptic markers were plotted and 244 
assessed for protein abundance differences that may indicate gross synapse loss between 245 
groups. None of the established synaptic markers assessed were significantly different between 246 
groups by one-way ANOVA (Figure 3A, 3B, Table S4). This shows that biochemical enrichment 247 
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of synaptic proteins was effective in avoiding the potential confound of synapse loss, particularly 248 
in the Dementia-AD category.  249 
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Figure 3: In total, 199 unique proteins were differentially expressed between diagnostic 250 
groups, with no clear sign of a volume artefact from synapse loss in Dementia-AD 251 
subjects. A) Abundance of established pre-synaptic markers across the four diagnostic groups 252 
suggested there was no significant volume artefact arising from gross synapse loss between 253 
groups. The pre-synaptic summary plot is a Z-score normalized composite of SYT1, NRZN3, 254 
SNAP25, SYN2, STX1A, STX1B, SLC17A6, SYN1, and SYP. B) Abundance of established 255 
post-synaptic markers across the diagnostic groups suggest there is no volume artifact arising 256 
from gross synapse loss between groups. The post-synaptic summary plot is a Z-score 257 
normalized composite of EPHB1, DLG3, DLG4 (PSD95), HOMER2, NLGN1, NLGN2, and 258 
SHANK1.  C) Heatmap of differentially expressed proteins between Dementia-AD and Normal 259 
cases shows 156 proteins.  Clustering on abundance of these 156 proteins produces almost 260 
perfect separation between Dementia-AD and Normal subjects.  Heatmap of differentially 261 
expressed proteins between D) Dementia-AD and Frail, E) Dementia-AD and Resilient, F) 262 
Normal and Frail, G) Normal and Resilient, and H) Resilient and Frail subjects.  I) Upset plot 263 
shows the intersection of proteins common to multiple comparisons.  Seven proteins were 264 
common to all pathology contrasts, while no proteins were common to all cognitive contrasts.   265 
 266 
 267 
Categorical analysis of diagnosis and synaptic protein abundance 268 
Linear models were constructed with the 4952 proteins present in all samples as outcome 269 
variables, and diagnostic category, age, gender, education and postmortem interval as 270 
explanatory variables. Summary tables were prepared using the R broom package, and p 271 
values were FDR corrected.  FDR corrected p < 0.05 was considered significant.  The group 272 
comparison with the largest number of significantly associated proteins is the highest contrast 273 
diagnostic group comparison, i.e., Dementia-AD versus Normal controls. 58 proteins are 274 
significantly increased in the Dementia-AD group versus Normal, and 98 are significantly 275 
decreased (summary Table 2, Table S5 for all protein data, Table S6 for significant only data, 276 
visualize individual protein plots at https://tmt-synaptosomes.omics.kitchen/). Unique to this 277 
contrast were established Alzheimer’s risk proteins APP and BACE1, and PDE4A, a 278 
phosphodiesterase enzyme previously linked to cognitive dysfunction in aging rodents and non-279 
human primates (Becky C Carlyle et al., 2014).  Clustering the Normal versus Dementia-AD 280 
samples on the basis of these proteins resulted in almost perfect separation of the two 281 
diagnostic groups (Figure 3C). 282 
 283 
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The comparison between the Dementia-AD and Frail groups was also striking, with clustering 284 
on the basis of these proteins providing good separation between the two groups. 35 proteins 285 
were upregulated in the Frail group and 30 were downregulated compared to Dementia-AD 286 
(Figure 3D).  VGF and NPTX2, two of the most well replicated findings in proteomic studies of 287 
AD brain tissue, were found to be dysregulated in both the Frail and Normal versus Dementia 288 
contrasts.  For the remaining comparisons there were fewer significant proteins (Table 2), and 289 
the clustering was less consistent between the two groups (Figure 3E, 3F, 3G, 3H). 290 
 291 
 292 
 293 
 294 
 295 
 296 
 297 
 298 
 299 
 300 
 301 
Table 2: Summary of proteins significantly associated with each explanatory variable.  No 302 
proteins were associated with level of education. 303 
 304 
Seven proteins were significantly associated with all comparisons where AD pathology is a 305 
contrast; CTHRC1, SLIT2, CPSF6, FLT1, SMOC1, MDK, and SNRNP70 (Figure 3I, 4A). All 306 
seven of these proteins were more abundant in the high pathology Dementia-AD and Resilient 307 
groups than the Normal and Frail groups.  There were no proteins associated with all 308 
comparisons where cognitive status was a contrast.  Seven proteins were shared between the 309 
Frail versus Normal and the Dementia-AD versus Normal comparisons; NBAS, MT1E, DGKG, 310 
ATP1B1, PRMT8, MT2A, and CCRN4L (Figure 3I, 4B).  For most of these proteins levels were 311 
intermediate in Resilience, but variable enough that this was not significant. A further seven 312 
were shared between the Dementia-AD versus Resilient and Dementia-AD versus Normal 313 
comparisons; MACROD1, SLC8A3, APC2, CHGA, IGFBP5, SPOCK3, and PTPRR (Figure 3I, 314 
4C).  The lack of overlap in proteins significantly associated with cognition in individuals with or 315 
without AD pathology suggests that there may be two separate mechanisms involved; one in 316 
cognitive frailty in the absence of AD pathology and a second in cognitive resilience in the 317 

Variable Increase Decrease 

Age 9 1 

Dx Dementia-AD vs Normal 58 98 

Dx Frail vs Dementia-AD 35 30 

Dx Frail vs Normal 8 8 

Dx Frail vs Resilient 3 9 

Dx Resilient vs Dementia-AD 3 7 

Dx Resilient vs Normal 11 0 

Sex Male vs Female 15 27 

Post Mortem Interval 16 57 
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presence of AD pathology.  This may explain why a two-way ANOVA (pathology*cognition) on 318 
these data does not show any proteins significantly associated with a main effect of cognition.   319 
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Figure 4: A small number of proteins tracked consistently with pathological contrasts or 321 
a subset of cognitive contrasts. A) Box plots to illustrate the seven proteins that were 322 
increased in every pathological contrast. Adjusted p-values are given to three significant figures.  323 
B) Box plots to illustrate proteins that were significant in both the Normal vs Dementia-AD and 324 
Normal versus Frail contrasts.  C) Box plots to illustrate proteins that were significantly 325 
associated with both the Normal vs Dementia-AD and Dementia-AD versus Resilient contrast. 326 
 327 
 328 
Gene set enrichment analyses of Dementia-AD versus Normal samples 329 
Non-parametric gene set enrichment analysis (GSEA) was used to examine functional 330 
differences between samples in the highest contrast sample set, the Dementia-AD versus 331 
Normal group. Using gene-set permutation, 284 Gene Ontology (GO) terms were significant 332 
(FDR q value less than 0.05, Table S7). For clarity of plotting, GO terms with a common parent 333 
were collapsed using ontological information from the GSA R package. Z-scores were 334 
calculated for each observed protein member of a GO term, and these Z-scores were averaged 335 
to produce a composite Z-score for each subject for each GO term. Clustering the Dementia-AD 336 
and Normal samples on the basis of these GO term Z-scores led to reasonably strong 337 
separation of samples by diagnostic category (Figure 5, non-collapsed version with all individual 338 
terms Figure S5). Terms representing metabolism, particularly NADH and NADP metabolism, 339 
innate and adaptive immune response, vascular endothelial growth factor signaling, and 340 
migration of immune cells were strongly enriched in Dementia-AD samples.  Conversely, terms 341 
representing synaptic signaling, including Glutamate and GABA signaling, and mitochondrial 342 
oxidative phosphorylation were strongly enriched in the Normal samples (Figure 5). 343 
 344 
The 7 proteins involved in all AD pathology contrasts, with the exception of SLIT2, have not 345 
been studied extensively in the central nervous system.  To learn more about their potential 346 
function, proteins were mapped to GO terms they were associated with.  CTHRC1, MDK and 347 
SMOC1 clustered in the Regulation of Ossification and Tissue remodeling GO terms, 348 
suggesting a potential role in extra-cellular matrix (ECM) remodeling.  FLT1, MDK, and SLIT2 349 
are associated with a number of immune/inflammatory categories, particularly those related to 350 
migration of immune cells.  The Frailty contrast (Significant in Normal vs Frail and Normal vs 351 
Dementia-AD) Na/K+ ATPase ATP1B1 was also associated with Regulation of Leukocyte 352 
Migration, in addition to established roles in ion transport.  MT2A was associated with the terms 353 
Cytokine Mediated Signaling Pathway and Activation of Innate Immune Response.  MT1E and  354 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2020. ; https://doi.org/10.1101/2020.07.31.230680doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.230680
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

 355 

−2 −1 0 1 2

0
80

0
Co

un
t

Z-score

AD path.
proteins

CT
HR

C1

SM
OC1

CP
SF

6
FL

T1

SN
RN

P7
0

SL
IT2

MDK

Frailty
proteins

AT
P1

B1
DG

KG

PR
MT8

MT2
A

MT1
E

Resilience
proteins

CH
GA

NO
R v

s F
RL

IG
FB

P5

DE
M-A

D 
vs

 RE
S

MAC
RO

D1

GO terms

REG OF SYNAPTIC PLASTICITY
POSITIVE REG OF NERVOUS SYSTEM PROC.
GLUTAMATE RECEPTOR SIG PATHWAY
REG OF SIG RECEPTOR ACTIVITY
SYNAPTIC TRANSMISSION GLUTAMATERGIC
INTRASPECIES INTERACTION BETWEEN ORGANISMS
CALCIUM ION REGULATED EXOCYTOSIS
NEUROTRANSMITTER TRANSPORT
EXCITATORY SYNAPSE ASSEMBLY
POSTSYNAPTIC SPECIALIZATION ASSEMBLY
GAMMA AMINOBUTYRIC ACID SIG PATHWAY
NEUROTRANSMITTER RECEPTOR INTERNALIZATION
POTASSIUM ION TRANSPORT
CATION TRANSPORT
CARDIAC CONDUCTION
IMPORT ACROSS PLASMA MEMBRANE
DICARBOXYLIC ACID TRANSPORT
PROTEIN TRANSMEMBRANE IMPORT INTO INTRACELLULAR ORGANELLE
MITOCHONDRIAL TRANSMEMBRANE TRANSPORT
NERVE DEVELOPMENT
L AMINO ACID TRANSPORT
RESPONSE TO COLD
HETEROPHILIC CELL CELL ADHESION VIA PLASMA MEMBRANE CELL ADHESION MOLECULES
TRANSLATIONAL ELONGATION
TRANSLATIONAL TERMINATION
MITOCHONDRIAL RNA METABOLIC PROC.
CYTOCHROME COMPLEX ASSEMBLY
MITOCHONDRION ORGANIZATION
NADH DEHYDROGENASE COMPLEX ASSEMBLY
AEROBIC RESPIRATION
OXIDATIVE PHOSPHORYLATION
N TERMINAL PROTEIN AMINO ACID MODIFICATION
FORMATION OF CYTOPLASMIC TRANSLATION INITIATION COMPLEX
TRANSCRIPTION COUPLED NUCLEOTIDE EXCISION REPAIR
NEGATIVE REG OF ACTIN FILAMENT POLYMERIZATION
NEGATIVE REG OF ACTIN FILAMENT DEPOLYMERIZATION
REG OF ESTABLISHMENT OF PROTEIN LOCALIZATION TO MITOCHONDRION
RETROGRADE TRANSPORT ENDOSOME TO GOLGI
RESPONSE TO ISCHEMIA
AMYLOID PRECURSOR PROTEIN METABOLIC PROC.
CORTICAL CYTOSKELETON ORGANIZATION
VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR SIG PATHWAY
MULTI ORGANISM CELLULAR PROC.
RESPONSE TO COPPER ION
MYOFIBRIL ASSEMBLY
CELLULAR RESPONSE TO LIGHT STIMULUS
ICOSANOID METABOLIC PROC.
REG OF PROTEIN MATURATION
REG OF LEUKOCYTE MIGRATION
MONONUCLEAR CELL MIGRATION
POSITIVE REG OF VASCULATURE DEVELOPMENT
MUSCLE CELL MIGRATION
AMMONIUM ION METABOLIC PROC.
ALCOHOL METABOLIC PROC.
RESPONSE TO GROWTH FACTOR
TRANSMEMBRANE RECEPTOR PROTEIN SERINE THREONINE KINASE SIG PATHWAY
NEGATIVE REG OF PEPTIDASE ACTIVITY
REG OF RESPONSE TO BIOTIC STIMULUS
IMMUNE EFFECTOR PROC.
CELL ACTIVATION
CELLULAR MODIFIED AMINO ACID BIOSYNTHETIC PROC.
SULFUR AMINO ACID METABOLIC PROC.
PROTEIN PEPTIDYL PROLYL ISOMERIZATION
PROTEIN REFOLDING
REG OF CYTOPLASMIC TRANSPORT
ANIMAL ORGAN REGENERATION
RESPONSE TO ESTROGEN
DNA GEOMETRIC CHANGE
PROTEIN DNA COMPLEX SUBUNIT ORGANIZATION
RNA DEPENDENT DNA BIOSYNTHETIC PROC.
MUSCLE CELL APOPTOTIC PROC.
TISSUE REMODELING
REG OF OSSIFICATION
CELLULAR RESPONSE TO CADMIUM ION
MRNA EXPORT FROM NUCLEUS
ENDOTHELIAL CELL APOPTOTIC PROC.
POSITIVE REG OF NITRIC OXIDE METABOLIC PROC.
REG OF MITOTIC CELL CYCLE
PROTEIN MODIFICATION BY SMALL PROTEIN REMOVAL
REG OF CELL CYCLE PROC.
ACTIVATION OF INNATE IMMUNE RESPONSE
ACTIVATION OF IMMUNE RESPONSE
POST TRANSLATIONAL PROTEIN MODIFICATION
ENDOTHELIAL CELL DEVELOPMENT
PROTEIN LOCALIZATION TO ENDOSOME
RUFFLE ORGANIZATION
APICAL JUNCTION ASSEMBLY
MESODERM DEVELOPMENT
LEUKOCYTE HOMEOSTASIS
CELL ADHESION MEDIATED BY INTEGRIN
SECONDARY METABOLIC PROC.
PIGMENT BIOSYNTHETIC PROC.
CELLULAR METABOLIC COMPOUND SALVAGE
CELLULAR ALDEHYDE METABOLIC PROC.
NADH METABOLIC PROC.
NADP METABOLIC PROC.
SMALL MOLECULE BIOSYNTHETIC PROC.
CELLULAR IRON ION HOMEOSTASIS
CARBOHYDRATE METABOLIC PROC.
NUCLEOSIDE MONOPHOSPHATE BIOSYNTHETIC PROC.
NUCLEOSIDE METABOLIC PROC.
XENOBIOTIC METABOLIC PROC.
ANTIBIOTIC METABOLIC PROC.
DETOXIFICATION
NIK NF KAPPAB SIG
CYTOKINE MEDIATED SIG PATHWAY
STEM CELL DIFFERENTIATION
HEMATOPOIETIC PROGENITOR CELL DIFFERENTIATION
ANTIGEN PROC.ING AND PRESENTATION OF PEPTIDE ANTIGEN VIA MHC CLASS I
POSITIVE REG OF WNT SIG PATHWAY
MORPHOGENESIS OF A POLARIZED EPITHELIUM
NON CANONICAL WNT SIG PATHWAY
REG OF CELLULAR AMINO ACID METABOLIC PROC.
REG OF DNA TEMPLATED TRANSCRIPTION IN RESPONSE TO STRESS
SCF DEPENDENT PROTEASOMAL UBIQUITIN DEPENDENT PROTEIN CATABOLIC PROC.
ANAPHASE PROMOTING COMPLEX DEPENDENT CATABOLIC PROC.
PROTEASOMAL UBIQUITIN INDEPENDENT PROTEIN CATABOLIC PROC.

SL
C8

A3
SP

OCK
3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2020. ; https://doi.org/10.1101/2020.07.31.230680doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.230680
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

Figure 5: Gene Set Enrichment Analysis shows that synaptic proteins from Dementia-AD 356 
samples are enriched for GO terms involved in metabolism, extracellular matrix 357 
remodeling, and immune regulation. Synaptic proteins from Normal samples are 358 
enriched for synaptic signaling, mitochondrial and ion transport proteins.  A) Heatmap 359 
shows FDR significant (p < 0.05) clustered GO-terms from the Dementia-AD versus Normal 360 
comparison, with related GO terms collapsed to the highest parent (See Figure SX for non-361 
collapsed version). Significant proteins from Figure 4 are shown alongside, with the GO terms 362 
they belong to highlighted.  The final boxes show which GO terms are shared between the other 363 
two cognitive contrasts.  There is a greater overlap with Dementia-AD versus Resilience than 364 
with Normal vs Frail.  Common words in GO terms have been shortened for plotting; Proc. = 365 
Process, Reg. = Regulation, Sig. = Signaling. 366 
 367 
 368 
MT2A are also associated with multiple terms involving response to metal ions.  Resilience 369 
contrast (Significant in Normal vs Resilient and Normal vs Dementia-AD) protein CHGA is also 370 
associated with multiple immune terms, while IGFBP5 appears in multiple ECM related terms 371 
(Figure 5).   372 
 373 
A table was produced to show which GO categories were populated by significantly differentially 374 
expressed proteins by direction of change (Table S8). In the Synaptic Signaling GO term, 375 
eighteen proteins were decreased in Dementia-AD compared to Normal subjects (ADCY1, 376 
ARC, ATP2A2, BRSK1, BSN, DGKI, DGKZ, GSK3B, IL1RAPL1, NF1, NPTX2, PLCL2, RAB3B, 377 
RPH3A, SDCBP, SLC4A10, SLC8A3, SYT12), with only three proteins enriched (known AD 378 
proteins APP and BACE1, plus DAGLB).  Terms such as Cation Transport were also heavily 379 
biased in this direction, containing sixteen proteins that decreased in Dementia-AD (ACTN2, 380 
ARC, ATP1A3, ATP1B1, ATP2A2, IL1RAPL1, KCNAB1, KCNH1, NNT, PLCL2, SLC4A10, 381 
SLC8A3, SPG7), and four that increased (APP, ATP8A1, FHL1, PLCD1).  In the opposite 382 
direction, Immune Effector Process contained eight proteins that were upregulated in Dementia-383 
AD (APCS, APP, ATP8A1, CHGA, HTRA1, LTA4H, MDK, PPIA) versus two that were 384 
downregulated (PLCL2, SDCBP), and Response to Growth Factor contained seven upregulated 385 
proteins (APP, CD109, FLT1, HSPB1, HTRA1, SLIT2, SNX6) versus one down (SDCBP).  386 
 387 
Gene Set Enrichment analysis of Cognitively Contrasted Samples 388 
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To identify GO terms that were specifically related to cognitive impairment, in the presence or 389 
absence of pathology, gene set enrichment analysis was also performed on the two diagnostic 390 
comparisons that were matched for AD pathology, but divergent for cognitive performance: the 391 
Frail versus Normal groups and the Resilient versus Dementia-AD groups. Despite the low or 392 
absent levels of AD pathology in the Frail group, 43 GO terms were significant (FDR q value 393 
less than 0.05, Table S9) in the Frail versus Normal comparison. All significant GO terms were 394 
enriched in the Frail samples compared to the Normal samples (Figure 6B).  The majority of GO 395 
terms (28 terms) were unique to this contrast, while fourteen overlapped with the Dementia-AD 396 
versus Normal contrast and five with the Dementia-AD vs Resilient contrast (Figure 6A).  There 397 
are a small number of immune and inflammatory terms in this contrast, and a more substantial 398 
representation in this contrast of terms associated with DNA and RNA metabolism, chromatin 399 
organization, and splicing, which we hypothesized may reflect closer engagement of dividing 400 
cells such as microglia or astrocytes with the synaptic compartment. However this was not 401 
reflected in the dataset, where astrocytic markers GFAP, ALDH1L1, and GLUL were present in 402 
all samples in this dataset, as was the microglial marker CD11b (ITGAM), but there was no 403 
significant difference between diagnostic categories in these markers (Table S5).  There is not a 404 
substantial overlap of significant differentially abundant proteins with informative GO terms in 405 
this contrast (Figure 6B, Table S10).    406 
 407 
The Dementia-AD versus Resilient comparison more closely reflected that of the Dementia-AD 408 
versus Normal comparison (Table S11, Figure 6A).  94 GO terms were significant in this 409 
contrast, of which 74 were shared with the Dementia-AD versus Normal contrast.  Nineteen 410 
terms were unique to this contrast, including a small cluster of three terms related to dopamine 411 
metabolism, and a cluster of four Humoral Immune response terms.  Both of these terms were 412 
enriched in Dementia-AD samples compared to Resilient.  Terms related to Glutamate signaling 413 
and memory formation were enriched in Resilient samples compared to Dementia-AD, despite 414 
there being no gross reduction in established synapse markers in Dementia-AD.  Terms for 415 
mitochondrial oxidative phosphorylation were also enriched in Resilient.  In the opposite 416 
direction, metabolic processes such as carbohydrate metabolism were enriched in Dementia-417 
AD compared to Resilient samples. Immune categories, mostly related to antigen presentation, 418 
were also enriched in the Dementia-AD samples compared to the Resilient samples. Clustering 419 
of these GO terms did not strongly separate Dementia-AD from Resilient samples, suggesting 420 
that it is more difficult to define these two groups at the level of synaptic proteins (Figure 7).  At   421 
the protein level CHGA and SEMA7A, both more abundant in Dementia-AD, are associated with  422 
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Figure 6: Summary of Gene Set Enrichment Analysis from cognitively contrasted 424 
samples shows only a small overlap between terms related to Frailty and terms related to 425 
Resilience.  A) Upset plot shows the number of GO terms shared between each cognitive 426 
contrast.  The majority of the terms that are significant in the Normal vs Frail contrast are unique 427 
to this contrast. B) Heatmap shows FDR significant (p < 0.05) clustered GO-terms from the Frail 428 
versus Normal comparison. Significant proteins in this contrast are shown alongside the GO 429 
terms they are associated with.  Comparison with the significant terms from other cognitive 430 
contrasts is shown alongside.  Common words in GO terms have been shortened for plotting; 431 
Proc. = Process, Reg. = Regulation, Sig. = Signaling. 432 
 433 
 434 
Immune Activation related GO terms, while SLC8A3, upregulated in Resilience, is associated 435 
with Regulation of Synaptic Plasticity. 436 
 437 
 438 
 439 
 440 
 441 
 442 
 443 
 444 
 445 
 446 
 447 
 448 
 449 
 450 
Figure 7: Summary of Gene Set Enrichment Analysis from Dementia-AD versus Resilient 451 
samples shows substantial overlap with the Dementia-AD versus Normal contrast.  452 
Heatmap shows FDR significant (p < 0.05) clustered GO-terms from the Dementia-AD versus 453 
Resilient comparison. Significant proteins in this contrast are shown alongside the GO terms 454 
they are associated with.  There is substantial overlap between these GO terms and those 455 
significant in the Dementia-AD versus Normal comparison. Common words in GO terms have 456 
been shortened for plotting; Proc. = Process, Reg. = Regulation, Sig. = Signaling 457 
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Discussion 459 
 460 
Although the presence of substantial amyloid-b plaques is required for a diagnosis of AD, 461 
studies of community residing older adults have shown that up to one third of older people with 462 
no cognitive impairment at death harbor neuropathology that would be classified as intermediate 463 
to high likelihood of AD (D. A. Bennett et al., 2006; Schneider et al., 2007).  Amyloid-b plaque 464 
presence is therefore necessary but not sufficient for causing the cognitive manifestations of 465 
AD. General synapse loss has long been suggested as a strong predictor of cognitive decline in 466 
AD (DeKosky & Scheff, 1990; Koffie et al., 2011; Terry et al., 1991), as reflected in whole tissue 467 
studies of AD (Johnson et al., 2018b; Ping et al., 2018; Wingo et al., 2019).  To avoid this 468 
volume effect-confound, mass spectrometry (LC-MS3) was used to provide a more 469 
comprehensive, detailed and unbiased examination of the proteomes of enriched synapses.  470 
This enabled identification of protein changes within synapses that were associated with 471 
cognitive performance. To model the association of synapse proteins with cognitive 472 
performance and AD pathology as independent variables, we chose an experimental structure 473 
with four distinct diagnostic groups which were well matched for key sample demographics. 474 
Alongside the highest contrast comparison of Dementia-AD and Normal cases, we also included 475 
two clinicopathologically discordant groups: Resilient subjects with high AD pathology burden 476 
but cognitive resilience, and Frail subjects with low AD pathology burden but impaired cognitive 477 
performance. AD is a complex disease driven by multiple pathophysiologies, including protein 478 
misfolding (Chiti & Dobson, 2017), inflammation (Heppner, Ransohoff, & Becher, 2015; Salter & 479 
Stevens, 2017), oxidative injury (Kim, Kim, Rhie, & Yoon, 2015), metabolic disturbances (Arnold 480 
et al., 2018; Ribe & Lovestone, 2016), and neurovascular dysfunction. Progressive dementia is 481 
the clinical manifestation of these processes that insidiously evolve over years prior to the 482 
expression of clinical symptoms. While whole tissue proteomic studies regularly highlight 483 
inflammatory and mitochondrial dysregulation as key proteomic changes in AD tissue, with the 484 
former suggested to reflect the activation state of glial cells in whole tissue, it is currently unclear 485 
exactly how these processes interact to affect the synapse, the cellular compartment most 486 
directly related to cognitive dysfunction in AD.  487 
 488 
Gene Set Enrichment Analysis of our study showed that GO terms related to immune function, 489 
NAD and Glucose metabolism, and ECM remodeling were all more prevalent in synaptic 490 
proteins from the Dementia-AD samples compared to Normal samples (Figure 7). This 491 
establishes the synapse as a potential site of metabolic dysfunction in cases of impaired 492 
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cognition, regardless of the presence of significant AD pathology. Changes to the NADH/NAD+ 493 
balance in aging tissue have been implicated in AD pathophysiology, and may differ between 494 
the mitochondria and the cytoplasm (Hou et al., 2018; Stein & Imai, 2012). This balance is the 495 
target of a novel therapeutic for AD, nicotinamide riboside, which has shown preclinical efficacy 496 
in multiple mouse models of AD (Gong et al., 2013; Hou et al., 2018) and a single trial of human 497 
Parkinson’s Disease (Birkmayer, Vrecko, Volc, & Birkmayer, 1993). GK, PDHA1, PDK3, 498 
PPIP5K2, and are all enzymes involved in carbohydrate metabolism which are decreased in 499 
Dementia-AD synaptic samples in our study. Regional glucose utilization is decreased in AD 500 
subjects as evidenced by decreased signals seen with FDG PET, and this especially so in the 501 
angular gyrus (Vlassenko & Raichle, 2015). This dysregulation may add weight to the notion 502 
that the synapse is a critical site for the effects of Type II Diabetes as a risk factor for dementia, 503 
brain insulin resistance and metabolic dysregulation (Arnold et al., 2018). 504 
 505 
Immune and inflammation related terms were also enriched in all Dementia-AD contrasts, in 506 
agreement with previous whole tissue studies (Johnson et al., 2018a; Wingo et al., 2019; Zhang 507 
et al., 2018). Humoral response GO terms were unique to the Dementia-AD versus Resilience 508 
comparison, being elevated in Dementia-AD.  Protein drivers of this category APCS, CHGA, 509 
C1R, IGHA1, and IGLL5 are all enriched in Dementia-AD.  Complement signaling (C1R) has 510 
been shown to be active at the synapse, with the later cascade component C4A known to 511 
localize to the pre- and post- synapse, dendrites, and axons. C4A has been genetically and 512 
mechanistically implicated in synaptic dysfunction in both schizophrenia (Sekar et al., 2016) and 513 
AD (Hong et al., 2016; Zorzetto et al., 2016). The complement system is often shown to be 514 
dysregulated in proteomic studies of plasma in AD (B. Carlyle, Trombetta, & Arnold, 2018)56), 515 
suggesting this system as a potential point of cross talk between peripheral inflammatory risk 516 
factors and AD (Kinney et al., 2018). While synaptic localization for C4A is clear from multiple 517 
studies, other proteins driving enrichment of the immune categories are less well defined, and 518 
may be arising from the incursion of glia, particularly microglia, into the fractionated synaptic 519 
cleft. 520 
 521 
In agreement with previous studies (Johnson et al., 2018a; Wingo et al., 2019), cognitively 522 
Resilient and Normal samples showed strong enrichment for both synaptic signaling and 523 
mitochondrial GO terms. However, the hub proteins driving these categories in whole tissue 524 
studies are more strongly reflective of gross synapse loss in AD samples, including PSD95, 525 
SYT1 and STX1A. In our study, we designed our approach to minimize the effect of bulk loss of 526 
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synapses, and did not see any between group differences in these synaptic marker proteins. 527 
We were therefore able to see changes within synapses beyond this gross synaptic loss. We 528 
highlighted a different group of proteins that were maintained in cognitively normal samples 529 
compared to cognitively impaired, including the immediate early protein ARC, RPH3A which is 530 
involved in calcium dependent exocytic release (Tan et al., 2014) and GluN2A PSD95 531 
interactions (Stanic et al., 2015), the membrane trafficking SYT12, the neuropeptide VGF and 532 
the adenylyl cyclase pathway molecules ADCY1 and PDE4A, and KCN channel components. 533 
Adenylyl cyclase signaling and regulation of membrane potential downstream of PDE4A, is 534 
involved in regulation of cAMP signaling in higher order cortical circuits in primates (B.C. Carlyle 535 
et al., 2014). This carefully balanced signaling pathway is exquisitely sensitive to stress, and 536 
may be interrupted in AD (Becky C Carlyle et al., 2014). Mitochondrial categories were enriched 537 
for mitochondrial respiratory chain components (NDUF proteins). This is likely a reflection of the 538 
number of appropriately sized mitochondria present in the pre- and post-synapse. Mitochondrial 539 
numbers and morphology are regulated by a complicated balance of fusion and fission known to 540 
be disrupted in AD (Flannery & Trushina, 2019). Electron microscopy has shown decreased 541 
pre- and post- synaptic mitochondria in the superior temporal gyrus in human post-mortem 542 
tissue (Pickett et al., 2018).  543 
 544 
While there are a number of proteins that clearly track with the presence of AD neuropathology 545 
in every pathological contrast (CTHRC1, SLIT2, CPSF6, FLT1, SMOC1, MDK, and SNRNP70), 546 
there are no proteins and only four GO terms (Proteasomal Ubiquitin Independent Protein 547 
Catabolic Process, Monosaccharide Catabolic Process, Antibiotic Metabolic Process and 548 
Antigen Processing and Presentation of Peptide Antigen) that unite all cognitive contrasts. This 549 
may simply be a result of variability between individuals – amyloid-b plaque and tau tangle 550 
environments may have a relatively consistent protein signature between individuals, whereas 551 
there are multiple different pathways that may result in neurodegenerative dementia.  Subtle 552 
dysregulations in metabolic, immune, or stress pathways over a lifetime may interact at the 553 
synapse to produce signaling dysfunction that are the initial changes associated with memory 554 
impairment.  This is especially true for the Frail group, where none of the significantly 555 
upregulated proteins have been well studied in the CNS.  The Frail group was not enriched for 556 
any other gross or microscopic neuropathological features (Figure S2), so this is likely not a 557 
reflection of mixed pathology dementia.  It further appears that cognitive resilience in the face of 558 
AD pathology is not simply the opposite of frailty in the absence of gross pathology, but that 559 
resilient subjects maintain key synaptic signaling regulator proteins and mitochondrial proteins 560 
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despite the presence of plaques, tangles and the immune upregulation that associates with 561 
them.   562 
 563 
Though proteomics is still a relatively nascent field, it is clear that studies of post-mortem human 564 
AD brain tissue, in conjunction with a generally open attitude to sharing of data and subject 565 
metadata, are leading to converging findings on a number of proteins that were not previously 566 
thought to be associated with AD pathophysiology. VGF, IGFBP5, NPTX2, SMOC1 and MDK 567 
are clear examples of converging data, appearing in multiple studies despite having received 568 
very little attention in the field prior to the widespread use of proteomics. Sample enrichment, 569 
such as performed here, can uncover new targets such as LHPP, CPSF6, MACROD1, 570 
SEMA7A, and SNRNP70 due to an increased sensitivity to changes in more localized regions, 571 
cellular and subcellular compartments. Through this approach we have highlighted novel 572 
proteins at the synapse that may be involved in the intersecting pathophysiologies that drive AD 573 
progression (Figure 7), and which may represent novel therapeutic targets or biomarkers of 574 
engagement for medications targeting inflammation, mitochondrial function, and synaptic 575 
modulation.   576 

 577 
Figure 8: Schematic overview highlighting key proteins and functional categories. 578 
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Materials and Methods 579 
Human brain tissue 580 
Post-mortem tissue from the parietal association cortex (angular gyrus, Brodmann Area 39) was 581 
obtained from the Rush Alzheimer’s Disease Center. Tissue came from both the Religious 582 
Orders Study (ROS) and the Memory and Aging Project (MAP) (David A Bennett et al., 2018), 583 
similarly designed studies with longitudinal cohorts consisting of individuals who agreed to 584 
annual clinical evaluations and provided informed consent to donate their brains for research at 585 
the time of death. Annual evaluations included a medical history, neurological exam, and 586 
twenty-one cognitive tests assessing multiple cognitive domains that are commonly impaired in 587 
older individuals (Wilson, Bienias, Evans, & Bennett, 2004; Wilson et al., 2002). Cognitive 588 
scores were converted to Z-scores across the entire ROSMAP cohort and combined to 589 
generate a composite global cognition score. Brain autopsies were conducted with standardized 590 
protocols, including the preparation of diagnostic blocks for neuropathological classification 591 
according to NIA-Reagan, Braak, and CERAD staging. Case metadata is provided in 592 
Supplementary Table 1. Tissue was obtained and analyzed under an Exempt Secondary Use 593 
protocol approved by the Massachusetts General Hospital Institutional Review Board 594 
(2016P001074). 595 
 596 
Case selection and categorical grouping 597 
In total, 100 cases that spanned the range of AD pathology and last valid global cognition 598 
scores in the ROSMAP cohorts were selected. These 100 cases were selected from 4 599 
diagnostic bins stratified based on two variables. The first was the Braak Score, a 6 point scale 600 
that describes the brain-region specific pattern of AD pathology from early to late stage disease. 601 
Subjects were divided into low AD pathology (Braak Score of 4 or less) or high AD pathology 602 
(Braak Score of 5 or 6) on the basis of this variable. The second variable was a consensus 603 
clinical impression from longitudinal cohort clinicians as to whether the subject was cognitively 604 
impaired at death. By dividing cases on the basis of these two variables, four groups were 605 
selected with n = 25 per group. Selected cases in categorical groups were well balanced for 606 
other key demographic variables including age, gender, education and post-mortem interval 607 
(Table 1).  608 
 609 
Synaptic protein enrichment 610 
Syn-PER Synaptic Protein Extraction Reagent (Thermo Fisher Scientific, Waltham, MA, USA) 611 
was used to enrich for synaptic proteins from the frozen tissue samples. Complete Protease 612 
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Inhibitor (EDTA Free, Roche, Mannheim, Germany) was added to the Syn-PER reagent (1 613 
tablet per 50 ml). After removal of obvious white matter, approximately 100 mg of each frozen 614 
tissue piece was weighed, before adding 1 ml of Syn-PER per 100 mg of tissue and 615 
homogenization using 15 strokes of a dounce homogenizer driven by a Scilogex (Rocky Hill, 616 
CT, USA) OS-20S drive motor set at 500 rpm. Homogenates were centrifuged at 1,200 x g for 617 
10 min at 4oC. The supernatant (S1) was transferred to a new sample tube and centrifuged at 618 
15,000 x g for 20 min at 4oC. The supernatant (S2) was removed and discarded, and the 619 
resulting P2 pellet was resuspended once in cold PBS to reduce contaminating proteins, before 620 
a second spin at 15,000 x g for 20 min at 4oC. The washed P2 pellet was snap frozen and 621 
stored at -80 oC until it was processed for analysis by TMT-LC-MS3. 622 
 623 
Multiplexed quantitative proteomics 624 
P2 pellets were lysed by passing through a 21-gauge needle twenty times in 75 mM NaCl, 3% 625 
SDS, 1 mM NaF, 1 mM beta-glycerophosphate, 1 mM sodium orthovanadate, 10 mM sodium 626 
pyrophosphate, 1 mM PMSF and 1x Roche Complete Mini EDTA free protease inhibitors in 50 627 
mM HEPES, pH 8.5. Lysates were then sonicated for 5 min in a sonicating water bath before 628 
cellular debris was pelleted by centrifugation at 14000 rpm for 5 min. Proteins were then 629 
reduced with DTT and alkylated with iodoacetamide as previously described (Edwards & Haas, 630 
2016) and purified through methanol-chloroform precipitation (Wessel & Flügge, 1984). 631 
Precipitated proteins were reconstituted in 1 M urea in 50 mM HEPES, pH 8.5, digested with 632 
Lys-C and trypsin, and desalted using C18 solid-phase extraction (SPE) (Sep-Pak, Waters, 633 
Beverly, MA, USA). The concentration of the desalted peptide solutions was measured by BCA 634 
assay, and peptides were aliquoted into 50 µg portions. Peptide samples were randomized and 635 
labeled with TMT11 as described previously (Edwards & Haas, 2016). They were pooled into 636 
sets of ten samples and a bridge sample generated from mixing parts of the digests of all 637 
sample was added to each pool (Lapek et al., 2017). The pooled samples were desalted via 638 
C18 SPE and fractionated using Basic pH Reversed-Phase Liquid Chromatography (bRPLC) 639 
(Edwards & Haas, 2016).  640 
 641 
Twelve fractions were analyzed by LC-MS2-MS3 on an Orbitrap Fusion mass spectrometer 642 
(Thermo Fisher Scientific, Waltham, MA, USA) coupled to an Easy-nLC 1000 autosampler and 643 
HPLC system. Peptides were separated on an in-house pulled, in-house packed microcapillary 644 
column (inner diameter, 100 µm; outer diameter, 360 µm, 30 cm GP-C18, 1.8 µm, 120 Å, Sepax 645 
Technologies, Newark, DE, USA). Peptides were eluted with a linear gradient from 11 to 30% 646 
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ACN in 0.125% formic acid over 165 minutes at a flow rate of 300 nL/minute while the column 647 
was heated to 60 oC. Electrospray ionization was achieved by applying 1500 V through a 648 
stainless-steel T-junction at the inlet of the microcapillary column. 649 
 650 
The Orbitrap Fusion was operated in data-dependent mode using an LC-MS2/SPS-MS3 651 
method. Full MS spectra were generated over an m/z range of 500-1200 at a resolution of 6 x 652 
104 with an AGC setting of 5 x 105 and a maximum ion accumulation time of 100 ms. The most 653 
abundant ions detected in the survey scan were subjected to MS2 and MS3 experiments using 654 
the Top Speed setting that enables a maximum number of spectra to be acquired in a 5 second 655 
experimental cycle before the next cycle is initiated with another survey full-MS scan. Ions for 656 
MS2 spectra were isolated in the quadrupole (0.5 m/z window), Collision Induced Dissociation 657 
(CID)-fragmented, and analyzed at rapid scan rate in the ion trap, where fragment ions were 658 
analyzed (Automatic Gain Control (AGC), 10 x 104; maximum ion accumulation time, 35 ms; 659 
normalized collision energy, 30%). MS3 analysis was performed using synchronous precursor 660 
selection (SPS MS3) upon Higher Energy Collisional (HCD) fragmentation. Up to 10 MS2 661 
precursors were simultaneously isolated and fragmented for MS3 analysis (isolation width, 2.5 662 
m/z; AGC, 1 x 105; maximum ion accumulation time, 100 ms; normalized collision energy, 55%; 663 
resolution, 6 x 104). Fragment ions in the MS2 spectra with an m/z of 40 m/z below and 15 m/z 664 
above the precursor m/z were excluded from being selected for MS3 analysis. 665 
 666 
Data processing 667 
Data were processed using an in-house developed software suite (Huttlin et al., 2010b). RAW 668 
files were converted into the mzXML format using a modified version of ReAdW.exe 669 
(http://www.ionsource.com/functional_reviews/readw/t2x_update_readw.htm). Spectral 670 
assignments of MS2 data were made using the Sequest algorithm (Eng et al., 1994) to search 671 
the Uniprot database (02/04/2014 release) of human protein sequences including known 672 
contaminants such as trypsin. The database included a decoy database consisting of all protein 673 
sequences in reverse order (Elias & Gygi, 2007). Searches were performed with a 50 ppm 674 
precursor mass tolerance. Static modifications included 11-plex TMT tags on lysine residues 675 
and peptide n-termini (+229.162932 Da) and carbamidomethylation of cysteines (+57.02146 676 
Da). Oxidation of methionine (+15.99492 Da) was included as a variable modification. Data 677 
were filtered to a peptide and protein false discovery rate of less than 1% using the target-decoy 678 
search strategy (Elias & Gygi, 2007). This was achieved by first applying a linear discriminator 679 
analysis to filter peptide annotations using a combined score from the following peptide and 680 
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spectral properties (Huttlin et al., 2010a): XCorr, ΔCn, missed tryptic cleavages, peptide mass 681 
accuracy, and peptide length. The probability of a peptide-spectral match to be correct was 682 
calculated using a posterior error histogram and the probabilities of all peptides assigned to one 683 
specific protein were combined through multiplication. The dataset was re-filtered to a protein 684 
assignment FDR of less than 1% for the entire dataset of all proteins identified across all 685 
analyzed samples (Huttlin et al., 2010b). Peptides that matched to more than one protein were 686 
assigned to that protein containing the largest number of matched redundant peptide sequences 687 
following the law of parsimony (Huttlin et al., 2010b). 688 
 689 
For quantitative analysis, TMT reporter ion intensities were extracted from the MS3 spectra by 690 
selecting the most intense ion within a 0.003 m/z window centered at the predicted m/z value for 691 
each reporter ion, and signal-to-noise (S/N) values were extracted from the RAW files. Spectra 692 
were used for quantification if the sum of the S/N values of all reporter ions was ≥ 440 and the 693 
isolation specificity for the precursor ion was ≥ 0.75. Protein intensities were calculated by 694 
summing the TMT reporter ions for all peptides assigned to a protein. Normalization of the 695 
quantitative data followed a multi-step process. Intensities were first normalized using the 696 
intensity measured for the bridge sample (Lapek et al., 2017). Taking account of slightly 697 
different protein amounts analyzed in each TMT channel, we then added an additional 698 
normalization step by normalizing the protein intensities measured for each sample by the 699 
median of the median protein intensities measured in these samples. 700 
 701 
Data analysis 702 
Median normalized protein quantifications were imported into R for all downstream analysis. All 703 
code used from this point forwards is provided in R project format, including non-PDF format 704 
supplementary tables. In building protein fraction consensus lists, protein ID conversion was 705 
performed using downloaded flat files from biomart (Smedley et al., 2015) (Mouse version: 706 
GRCm38.p6, Human version: GRCH38.p12) when necessary. Due to wide variation in outlying 707 
values, data was further normalized by quantile normalization in the PreProcessCore R 708 
package. Linear modelling, ANOVAs, Tukey HSD tests, and correction for multiple comparisons 709 
were performed using base R functions. The ggsignif and scales packages were used in 710 
combination with ggplot for data plots. Files for input to GSEA (Subramanian et al., 2005) were 711 
prepared using a base R script. GSEA analyses were run using the java applet downloaded 712 
from http://software.broadinstitute.org/gsea/index.jsp, with downstream analysis and plotting 713 
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performed in R.  Ontological trees were collapsed using ontological information from the GSA 714 
package. 715 
 716 

 717 
Data availability 718 
 719 
For initial review purposes, supplementary tables may be accessed through this dropbox link: 720 
https://www.dropbox.com/sh/gdsrf1y9yr6xbia/AAA6XwvTio912q_Mcv-xBo1fa?dl=0 721 
 722 
"Mass spectrometry RAW data are accessible through the MassIVE data repository 723 
(massive.ucsd.edu) under the accession number MSV000084959. 724 
  725 
These data will be made public as soon as the paper is accepted. 726 
 727 
For reviewer access please provide the following username and password: 728 
 729 
Username: MSV000084959_reviewer 730 
Password: Carlyle 731 
 732 
 733 
The code used to create all analyses, figures and supplementary tables for this manuscript can 734 
be found at: https://bitbucket.org/omicskitchen/tmtsynaptosomes/src/master/ 735 
 736 
Individual protein abundances across key variables can be explored at https://tmt-737 
synaptosomes.omics.kitchen/ 738 
 739 
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Figure S1: ApoE allele distribution was not matched between the four groups.  Stacked bar plot showing 
ApoE genotype distribution by group. There were the most ApoE4 risk allele carriers in the Dementia-AD 
group.  Interestingly, the Frail group had the largest number of ApoE2 protective allele carriers.  Data was 
unavailable for one Frail subject.   
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Figure S2: Other gross and microscopic pathologies were generally evenly spread across groups.  
Gross & microscopic vascular infarcts and lewy body pathology, detailed as present (1) or absent (0).  TDP43 
pathology is ranked in four stages, with 0 being no TDP43 pathology and 3 being amygdala, limbic and cortical 
involvement.  There were 16 missing values for TDP43 pathology.   
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Figure S3: Diagnostic conditions are well balanced across the 10 TMT 10-plex batches. 
Bar plot shows the number of samples from each diagnostic condition across all ten batches A  
to J. 
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Figure S4: Quality control plots show effective normalization of data. A) Box plots show  
appropriate two-step median normalization across TMT 10-plex batches.  In these blots the box  
indicates the bounds of the 25th and 75th percentile, with the central line representing the  
median.  The whiskers extend to 1.5 times the inter quartile range, and individual proteins  
outside these limits are plotted as single point outliers.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B) Heatmap and hierarchical clustering shows no obvious signs of batch effects arising from TMT 10-plexes 
after quartile normalization.  Row side labels are color coded by batch 
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1e+04

1e+05

1e+06

1e+07

1e+08

A1
A10A2A3A4A5A6A7A8A9B1

B10B2B3B4B5B6B7B8B9C1
C10C2C3C4C5C6C7C8C9D1

D10D2D3D4D5D6D7D8D9E1
E10E2E3E4E5E6E7E8E9 F1

F10 F2 F3 F4 F5 F6 F7 F8 F9G1
G10G2G3G4G5G6G7G8G9H1

H10H2H3H4H5H6H7H8H9 I1I10 I2 I3 I4 I5 I6 I7 I8 I9 J1J1
0 J2 J3 J4 J5 J6 J7 J8 J9

Sample ID
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d 
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ot

ei
n 

qu
an

t.

Batch
A
B
C
D
E
F
G
H
I
J
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Q
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Q
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H
6
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43
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68
6

Q
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AQ
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O
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Q
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Q
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C
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O
43
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Q
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Q
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Q
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O
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O
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Figure S5: 284 GO terms are 
significant by Gene Set 
Enrichment Analysis 
(GSEA) in the Normal 
versus Dementia-AD 
comparison.  This zoomable 
figure shows all 284 terms 
without any collapsing by 
parent term. 
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Figure S6: There are no significant between group differences in Astrocyte (ALDH1L1, GFAP, GLUL) or 
Microglial markers (ITGAM).   
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