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Abstract

Convergent phenotypic evolution provides some of the strongest evidence for
adaptation. However, the extent to which recurrent phenotypic adaptation has
arisen via parallelism at the molecular level remains unresolved, as does the evo-
lutionary origin of alleles underlying such adaptation. Here, we investigate genetic
mechanisms of convergent highland adaptation in maize landrace populations and
evaluate the genetic sources of recurrently selected alleles. Population branch ex-
cess statistics reveal strong evidence of parallel adaptation at the level of individual
SNPs, genes and pathways in four independent highland maize populations, even
though most SNPs show unique patterns of local adaptation. The majority of se-
lected SNPs originated via migration from a single population, most likely in the
Mesoamerican highlands. Polygenic adaptation analyses of quantitative traits re-
veal that alleles affecting flowering time are significantly associated with elevation,
indicating the flowering time pathway was targeted by highland adaptation. In
addition, repeatedly selected genes were significantly enriched in the flowering time
pathway, indicating their significance in adapting to highland conditions. Overall,
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our study system represents a promising model to study convergent evolution in
plants with potential applications to crop adaptation across environmental gradi-
ents.

Introduction

Convergent adaptation of populations to similar environments provides com-
pelling evidence that natural selection, not neutral processes, shape trait variation.
Similar phenotypes often arise independently in multiple species or populations ex-
posed to the same evolutionary pressure [1, 2]. For example, species from four orders
of insects, spanning 300 million years of divergence, have independently evolved tol-
erance to toxic compounds in milkweed and dogbane plant species [3, 4]. Likewise,
reduction-of-function alleles at the FLC focus have evolved multiple times indepen-
dently in Capsella rubella populations, conferring variation in flowering time [5].
Pool et al.[6] investigated cold adaptation across three pairs of highland and low-
land Drosophila melanogaster populations, finding strong evidence for alleles that
were repeatedly selected during highland colonization.

But while convergent phenotypes have been observed across the tree of life, in
many cases their underlying genetic basis (e.g., molecular parallelism in which the
same nucleotides, genes, or pathways are targeted versus convergence through inde-
pendent molecular means) is unknown [7, 8]. Study of the genetics of convergence
can help shed light on fundamental questions in evolutionary biology, including
whether natural selection is constrained and repeatable or instead characterized by
many molecular paths to similar phenotypes. The answer to these questions may
depend, to a certain extent, on the trait itself. For example, the genetic architec-
ture of a phenotype is a primary determinant of whether trait convergence results
from parallel selection on orthologous loci [9]. Such convergence is more likely for
simple traits where only a few loci contribute or when loci are subject to antagonis-
tic pleiotropy and less likely for highly polygenic traits such as biomass or height
[7, 9, 10].

Convergence through molecular parallelism, when it occurs, can originate in
a number of ways. Genetic variation underlying convergent traits can arise as
independent mutations, be derived from existing standing variation in a shared
ancestral population, or be transferred between populations via migration [11].
Empirical studies have documented each of these modes of parallel adaptation. For
instance, independent evolution of C4 photosynthesis in grasses [12] and sedges [13]
has involved multiple de novo mutations in the phosphoenolpyruvate carboxylase
(PEPC) gene, a key C4 enzyme. In contrast, parallel adaptation in rabbit popula-
tions resistant to the myxoma virus in Australia, France, and the United Kingdom
is achieved through selection on standing variation in immunity-related genes [2].
Finally, convergence in patterns of wing coloration in butterfly species, an example
of Müllerian mimicry, has resulted from gene flow across species [14, 15].

Given its history, maize is an ideal model system to study parallel adaptation.
Maize was first domesticated in the warm lowlands of the Balsas River Valley
approximately 9,000 years ago [16, 17], and subsequently spread to several in-
dependent highland regions, first to the the Mexican Central Plateau, and then
to the highlands of the southwestern United States, Guatemala and the Andes
[18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. While highland regions colonized by
maize are far from identical, commonalities include a shorter growing season, low
temperature, low partial pressure of atmospheric gases, and high ultraviolet radi-
ation [30, 31]. Highland individuals exhibit several traits that are thought to be
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adaptive under these conditions, including highly pigmented and hairy leaf sheaths
[32]. Common garden experiments have also demonstrated that highland maize
flowers substantially earlier than lowland material [33, 34, 35].

The genetic basis of highland phenotypes across these populations is largely
unknown, however. Earlier population genetic analysis of maize in Mexico and the
Andes identified a small percent of SNPs showing evidence of selection in both pop-
ulations, but concluded that maize highland adaptation arose largely independently
in the two populations [36]. One contributor to the differences between these popu-
lations has been gene flow from wild relatives: adaptive introgression from the wild
congener teosinte (Zea mays ssp. mexicana, hereafter mexicana) is thought to have
played an important role during highland adaptation in Mexico [37], but maize has
no wild relatives in South America and simulations suggested that long-distance
gene flow between the populations is unlikely [36]. Nonetheless, this earlier work
was limited to two highland populations and relied on limited genotyping data.
Subsequent investigation using whole genome sequencing, for example, has discov-
ered alleles introgressed from teosinte in both the Guatemalan and southwestern
US highlands outside of the distribution of mexicana [38], suggesting that migration
from the Mexican highlands may not be as implausible as previously thought.

Here, we evaluate evidence for trait convergence through parallel molecular
means using resequencing data from four highland populations of maize (Southwest-
ern US, Mexico, Guatemala and the Andes) and two lowland populations (Mexico
and South America). We assess the prevalence of molecular parallelism at the
SNP, gene, and pathway levels, comparing models of de novo mutation, standing
variation, and gene flow. Finally, our analysis of parallelism in pathways focuses
on the well-characterized flowering time genes in maize and assesses signatures of
polygenic adaptation for this trait.

Results

Description of samples and data

Four independent highland populations (the Southwestern US, Mexico, Guatemala
and the Andes) and two reference lowland populations (Mexico and South Amer-
ica) were sampled to investigate highland adaptation in maize landraces (fig. 1).
SNPs called from high-depth whole genome re-sequencing data were obtained from
our previous study [38]. After filtering (see Materials and Methods), a total of
1,567,351 SNPs across 35 samples were retained for further analyses. We also
characterized how environmental factors varied across our highland and lowland
populations. A principal component analysis of 19 bioclim environmental variables
(http://www.worldclim.org/) revealed that highland and lowland accessions were
differentiated along PC1 (comprising 51.8% of variation); while PC2 (compris-
ing 22.8% of variation) reflected latitudinal differences across highland populations
(supplementary fig. S1, Supplementary Material online). By plotting the loadings
from the 19 bioclim variables, we found PC1 was primarily polarized by tempera-
ture seasonality and PC2 by precipitation (supplementary fig. S1, Supplementary
Material online).

Convergence through parallelism at the SNP level

In order to detect loci targeted by selection in highland populations, we utilized
the Population Branch Excess (PBE) statistic [6], which characterizes changes
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in allele frequencies in a focal population relative to two independent “outgroup”
populations [6]. PBE values were calculated for each SNP site and the top 5%
were considered outliers and potential targets of selection.

To gauge the extent of convergence across our highland populations at the SNP
level, we evaluated whether shared PBE outliers in pairs of populations and larger
groups were more common than expected by chance. Significant overlap was ob-
served in all pairs of highland populations (p ≈ 0, hypergeometric statistic test;
supplementary table S1; supplementary table S2, Supplementary Material online).
The Mexican Highland population showed the most substantial overlap in outlier
SNPs with the Guatemalan Highlands (7.5-fold enrichment) and the Southwestern
US Highlands (6-fold enrichment). While significantly more than expected, shared
outliers between the Andes and all other highland populations were not nearly as
extensive (between 2- and 4-fold enrichment), consistent with reduced parallelism
at the SNP level between these isolated regions. The intersection of outlier SNPs
across all highland populations was also significantly enriched (supplementary fig.
S2, Supplementary Material online). Enrichment of overlapping selected sites was
also confirmed in a more stringent tail of the top 1% of PBE values with qual-
itatively similar results (supplementary fig. S3, Supplementary Material online).
While we did observe significant enrichment for parallelism at the SNP level, it
is important to note that the majority of selected SNPs (from 59.7% to 68.1%)
showed signatures of adaptation in a single highland population.

Our analysis of convergence at the SNP level using PBE revealed some particu-
larly compelling candidate loci. For example, a SNP within PIF3.1 (phytochrome-
interacting factor) exhibited the highest PBE value in the Mexican Highland pop-
ulation and was also detected as a target of selection in all other highland pop-
ulations (fig. 2A). A non-synonymous, derived allele at this locus is fixed across
all highland populations (fig. 2C). In addition, SNPs within GRMZM2G078118,
a gene included in the jasmonic acid biosynthesis pathway, were detected as out-
liers in all Mesoamerican highland populations (SW US, Mexican Central Plateau,
Guatemalan Highlands), but not the Andes (fig. 2BD).

While our PBE analysis reveals that selection targeted many of the same SNPs
for adaptation across highland populations, this test alone does not clarify whether
the same specific alleles were adaptive. We term outlier SNPs with the same al-
lele elevated to high frequency in highland population pairs “co-directional”, and
SNPs with different alleles as “anti-directional”. Predominantly, shared outliers in
highland population pairs show co-directional allele frequency shifts (> 95% in all
population pairs with the exception of the Southwestern US/Andes comparison,
which was 87.6%). These results provide stronger evidence of molecular parallelism
at the SNP level (fig. 3A). In contrast, random samples of SNPs that do not
show evidence of selection exhibit much reduced signals of co-directional change.
While random SNP samples between the Andes and other highland populations
show roughly equal proportions of co- and anti-directionality, substantially more
co-directional SNPs are observed in comparisons of Mesoamerican populations, per-
haps reflecting their more closely shared histories (fig. 3A). However, the strong
excess of co-directional changes in candidate SNPs may also be influenced by an-
cestral frequencies in lowland populations. For example, neutral drift has a greater
likelihood of simultaneously fixing the same allele in multiple highland populations
if the allele is already at high frequency in the lowlands, or, similarly, removing
alleles at low frequency in the lowlands. In order to address this bias, we first
approximated the ancestral allele frequencies of outlier SNPs (based on the two-
dimensional site frequency spectrum of Mexican lowland maize and the wild relative
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Zea mays ssp. parviglumis) in a subset of the neutral SNP set, and recalculated
the number of co-directional and anti-directional SNPs. The same pattern was
revealed (supplementary fig. S4, Supplementary Material online). Second, we sub-
sampled outlier SNPs with a high minor allele frequency (i.e., between 0.3 and 0.5)
and re-calculated the ratio of co-directional versus anti-directional SNPs. We found
anti-directional SNPs were slightly increased in this subset, but co-directional SNPs
were still far more numerous (fig. 3A). Taken together, the excess of co-directional
SNPs in the outlier set was not biased by ancestral allele frequencies and the direc-
tionality of allele frequency changes in shared outlier SNPs provides strong evidence
of molecular parallelism at the SNP level among highland maize populations.

The source of shared adaptation among highland populations

To determine whether shared PBE outlier SNPs had independent origins in
highland populations, we applied DMC, a composite-likelihood-based inference
method that distinguishes among possible mechanisms [11]. We controlled for pos-
sible effects of linkage disequilibrium by subsampling outliers to one SNP per 2-kb
window. First, we examined SNPs selected in all four independent highland popu-
lations. We found the vast majority of these common outliers (408 among 428) had
the highest composite likelihood under models where there was a single origin of the
beneficial allele. Within this subset, 49.1% and 46.3% of outliers had the standing
variant model from a source population and the migration model as best fits, re-
spectively (fig. 3B). The standing variant model from a source population (outlined
in detail in Appendix A.4 of [11]) specifies that a beneficial allele originates in a
single source population where it spreads via gene flow to other adapted popula-
tions where it may segregate for a standing time t prior to the onset of selection.
For the common outliers identified under the migration model, the main migration
sources were the Mexican (43.9% ) and Guatemalan (41.9%) Highland populations.
This result suggests that, for many shared outlier SNPs, gene flow among highland
populations may have been an important source of adaptive variation.

We further explored the source of shared adaptive variation across pairwise
samples of highland populations. As seen in four-wise comparisons, the standing
variant model from a source population (49.4% to 69.9%; mean 56.7%) and the
migration model (12.7% to 47.4%; mean 36.6%) were most commonly supported
(fig. 3B). It is noteworthy that the parallelism level among Mesoamerican highland
populations was much stronger than observed between the Andes and other high-
land populations (fig. 3B). Not only do fewer loci show evidence of selection in pairs
of populations including the Andes, but repeatedly selected loci are more likely to
have arisen independently. The mean value of an independent source was 6.2% in
Andean comparisons, in contrast to a mean of 2.0% within Mesoamerican highland
population comparisons (fig. 3B). Previous studies have suggested that migration
between the Andes and Mesoamerican populations is unlikely [36]. We therefore
further evaluated all repeatedly selected SNPs by calculating the divergence statis-
tic, FST , between pairwise highland populations to assess how this varies based on
the assigned model. Repeatedly selected SNPs consistent with a migration model
exhibited weaker divergence (lower FST ; p ≈ 0; supplementary fig. S5, Supplemen-
tary Material online), an additional indicator of gene flow. Moreover, we calculated
the ˆfdM statistic (Malinsky et al. 2019) in 10-kb non-overlapping windows across the
genome to further assess the signal of gene flow between the Andes and Mesoamer-
ican highland populations. In a (((P1,P2)P3),O) shaped phylogenetic tree, the
ˆfdM statistic gives positive values for introgression between P3 and P2 and nega-
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tive values for introgression between P3 and P1. We found SNPs consistent with
the migration model demonstrated more positive ˆfdM values, providing additional
support for gene flow between the Andes and Mesoamerican highland populations
(supplementary fig. S6, Supplementary Material online). In summary, while the
proportion of dually selected SNPs between the Andes and Mesoamerican highland
populations (from 7.8% to 11.2%) was consistent with previous work (7% - 8%)
[36], the two most supported source models were standing variation and migration,
suggesting a more prominent role for migration than previously hypothesized [36].

Molecular parallelism at the genic level

We next evaluated the extent of molecular parallelism at the gene level. A gene
was classified as an outlier if it contained PBE outlier SNPs within the gene or
10 kb upstream or downstream (supplementary table S3, Supplementary Material
online). 1651 candidate genes were observed in the Mexican Highlands, among
which 360 (21.8%) contained or were nearby outlier SNPs which were shared with
at least one other highland population. The percentage dropped to 18.9% in the
Guatemalan Highlands, 10.0% in the Southwestern US Highlands and 9.4% in the
Andes (supplementary table S4, Supplementary Material online). We utilized the
R package SuperExactTest [39] to evaluate the two- to four-degree intersection of
outlier genes among highland populations. As observed in results at the SNP level,
significant overlap was observed for each comparison (supplementary fig. S7, sup-
plementary fig. S8, Supplementary Material online). In many instances, common
outlier genes involved selection on different SNPs across highland populations. For
example, 349 (21.1%) of the 1651 selected genes in the Mexican Highlands were
in common with other highland populations, but showed evidence of selection on
distinct SNPs. The percentage was 18.8% in Guatemala, 24.7% in the Southwest-
ern US, and 18.5% in the Andes (supplementary table S4, Supplementary Material
online).

Constraint of the adaptation target size leads to molecular paral-
lelism

There are two explanations for the extent of molecular parallelism we have
observed in genes selected in the highlands [9]. First, it is possible that adaptation
is constrained by the number of genes that can affect a trait, effectively placing
physiological limits on the routes adaptation can take. Alternatively, many different
genes may have the potential to affect the trait, but deleterious pleiotropic effects
of variation in many genes may prevent them from playing a role in adaptation.
We will refer to these possibilities as “physiological” and “pleiotropic” constraint.
Consistent with our analysis above, Yeaman [9]’s Cχ2 statistic finds strong evidence
that selection at the same loci is shared among populations more often than can
be explained by chance (C χ2from 19.6 to 40.1 with a mean of 28.05, permutation
p < 0.0001). To evaluate the role of physiological constraint in parallel adaptation,
we tested an alternative null model which assumes the set of genes selected in at
least one population represents all genes that can possibly affect the trait. We
then tested whether there was still evidence of excessive sharing after accounting
for physiological constraint [9]. We found Cχ2 was less than 0 in all highland pairs
except the Mexican and Guatemalan Highlands pair (Cχ2 = 1.9, p = 0.025). These
results indicate that repeated selection of genes among most highland pairs may
simply be due to physiological constraint in the number of loci that can contribute
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to variation in a trait. To explore this possibility further, we assessed the prevalence
of molecular parallelism in the flowering time pathway, a well-characterized gene
network known to be of adaptive importance in highland environments.

Molecular parallelism within the flowering time pathway

Flowering time in maize is known to be a highly quantitative trait and an
example of polygenic adaptation [40, 41, 42, 43]. As such, we may expect that
highland adaptation for flowering is the result of subtle, coordinated allele frequency
shifts across many loci. In evaluating flowering time genes we tested: 1) the strength
of selection on loci associated with flowering time relative to expectations based on
drift, and 2) the intersection of selected genes in the pathway in multiple highland
regions. To first identify whether flowering time was targeted during highland
adaptation, we conducted a genome-wide association study (GWAS) of 29 traits
measured in short-day conditions in Ponce, Puerto Rico and Homestead, Florida
[44] using a maize association mapping panel comprised of tropical and temperate
inbred lines [45]. We then summarized the frequency of multiple alleles affecting a
trait of interest with a polygenic score and tested for associations between polygenic
score and elevation of origin of our landraces, while controlling for variation in
relatedness between samples following Josephs et al. [43]. A significant result
implies that allele frequencies that increase trait value are more common at one
end of the elevation gradient (either high or low) than expected due to drift. Seven
traits showed a significant relationship between their conditional polygenic score
and elevation with a false discovery rate < 0.1. These traits were primarily related
to flowering time: Days to Silk, Growing Degree Days to Silk, and Ear Height from
’06 Puerto Rico, Growing Degree Days to Silk, Growing Degree Days to Tassel, and
Ear Height in ’06 Florida, and Growing Degree Days to Silk in ’07 Florida (fig. 4).

Given this support for selection on flowering time during highland adaptation,
we explored the overlap between our selected genes and known flowering time can-
didates. First, we utilized a list of 904 maize flowering time candidate genes aggre-
gated by Li et al. [46] (supplementary table S5, Supplementary Material online).
Within this list, we found a substantial excess of flowering time genes targeted by
selection among groups of two, three, and four highland populations (p < 2.87e−5,
hypergeometric test; fig. 5A, supplementary table S6, Supplementary Material on-
line). Outlier SNPs within these genes also showed strong co-directional changes
in allele frequency across highland populations (91.8%−100%) (supplementary fig.
S9, Supplementary Material online). As observed in our genome-wide analysis, can-
didate sharing at flowering time loci was stronger among Mesoamerican highland
populations than between comparisons with the Andes (fig. 5). We also applied the
Cχ2 statistic to this list of genes and confirmed enriched sharing of selected genes
among highland populations (mean Cχ2 6.618, permutation p < 0.0001). Our find-
ing of an excess of shared candidates across regions within a large set of known
genes that affect flowering time, suggests physiological constraint alone cannot ex-
plain patterns of convergence, but instead that variation at only a subset of genes
can affect flowering without deleterious pleiotropic consequences.

We then narrowed our focus to a subset of core flowering time genes [47] with
highly characterized functional roles (fig. 5C). Thirty-two of the 39 core flower-
ing time genes were selected in at least one highland population, which indicated
over-representation of flowering time genes among all selected genes (p = 0.005,
hypergeometric test). While common outlier genes between the Andes and other
highland populations were not significantly enriched in this smaller list (p > 0.074,
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hypergeometric test; supplementary table S6, Supplementary Material online), en-
richment was observed among all other two and three highland-population com-
parisons (p < 0.042, hypergeometric test; supplementary table S6, Supplementary
Material online). These results were confirmed through calculation of the Cχ2 statis-
tic (Mesoamerican highland population comparisons, mean Cχ2 2.32, permutation
p < 0.01; comparisons to the Andes, mean Cχ2 1.575, permutation p from 0.015 to
0.054).

The PBE values of outlier SNPs within or in the 10-kb flanking regions of flow-
ering time genes were in the extreme tail of the genome-wide distribution (fig.
5B), with some of the best-characterized flowering time genes in maize clearly
targeted by selection in multiple highland populations (fig. 5C). For example,
ZCN8 (GRMZM2G179264), which is orthologous to FLOWERING LOCUS T (FT)
in Arabidopsis, has been shown to play a significant role in maize adaptation
to high latitudes [48] and was selected in all four highland populations in our
study. Floral transition is regulated by several MADS-box genes, particularly
ZMM4 (GRMZM2G032339), which is under selection in all but the Southwest-
ern US Highlands. VGT1 (GRMZM2G700665; vegetative to generative transition
1) was identified as an outlier in all four highland populations, with the same
non-synonymous SNP (8:131578990, indicating locus 131578990 on chromosome
8) targeted in the Mexican and Guatemalan Highlands (supplementary fig. S10,
Supplementary Material online). In contrast, in the Southwestern US Highlands,
the selected SNP (8:131580179) in VGT1 was located in the 3’ UTR region and,
in the Andes, the selected SNP (8:131579463) was a synonymous mutation near
the 3’ UTR (supplementary fig. S10A,B,C, Supplementary Material online). Two
CONSTANS (CO) genes, CONZ1 and ZmCCT, were selected in both the Mex-
ican and Guatemalan Highland populations. We further found Gigantea2 (GR-
MZM5G844173) was selected in all but the Guatemalan Highlands and FKF2 (GR-
MZM2G106363) in all but the Mexican Highlands. Among circadian clock genes,
LUX (GRMZM2G067702)(supplementary fig. S10D, Supplementary Material on-
line) was selected in all four highland populations and ZmPRR59 was an outlier in
the three Mesoamerican highland populations. In addition, the zmZTLa - F box
protein ZEITLUPE (GRMZM2G113244), RVE2 (GRMZM2G145041) and PRR5
(GRMZM2G179024) were selected in all four highland populations. Finally, the
light transduction gene PHYA1 (GRMZM2G157727) was targeted by selection in
all but the Southwestern US highland populations.

Discussion

The prevalence of parallel evolution is a long-standing question in the field of
evolution. Through a comprehensive evaluation of parallel adaptation among in-
dependent maize highland populations, we found that, while most adaptation is
independent, parallelism is more common than expected. We observed a particu-
larly high level of parallelism among Mesoamerican highland populations relative
to comparisons including Andean maize. The vast majority of parallel adaptive
alleles we discovered have risen in frequency in the highlands from migration and
standing variation, and only a small percentage represent de-novo mutations. How-
ever, the proportion of repeatedly selected SNPs from de-novo mutations is highest
in pairs of populations that include the Andes. Our analyses further reveal that
adaptive routes from genotype to phenotype have been canalized by both physiolog-
ical (i.e., few genes contributing to a trait) and pleiotropic (i.e., a subset of causal
genes can contribute to trait variation without negative pleiotropic consequences)
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processes. For example, we observe that the flowering time pathway is saturated
with selected genes potentially contributing to highland adaptation, with many of
these loci showing evidence of selection in multiple highland regions, particularly
in Mesoamerica.

Approximately one quarter (mean 24.0%) of highland adaptation SNPs showed a
pattern of molecular parallelism in Mesoamerica. A smaller percentage also showed
this pattern in Andean comparisons (mean 10.7%), but this represents a slightly
higher proportion than previously reported (7% - 8% between the Andes and the
Mexican Highlands) [36]. We have also expanded upon previous studies of parallel
highland maize adaptation [36] in a number of ways. Our study has broadened
the geographic scope of sampling for highland maize populations and is the first
such study using high-depth, whole-genome resequencing data, which allowed us
to attain a more complete picture of parallelism. Additionally, our use of the
PBE statistic allowed for detection of selection specifically in the highlands and
reduced the extent of false positives, a limitation of studies that focus solely on
population differentiation outliers. Our polygenic adaptation analyses also helped
to clarify specific phenotypes targeted by selection during adaptation, showing clear
evidence of selection on flowering time. We have also uncovered a pervasive role
of migration in transferring adaptive alleles across highland regions. In fact, our
analyses revealed a moderate proportion of parallel adaptation through migration
even between the Andes and other highland populations, in contrast to previous
studies that appeared to exclude this possibility [36] based on simulations. This
finding is consistent with a recent study which showed that some traits, for example
flowering time, may not demonstrate a GxE effect [42], allowing adaptive alleles to
move between regions through a matrix of habitat (e.g., the lowlands) where they
do not clearly confer an adaptive advantage.

The extensive parallelism in maize highland adaptation has likely been affected
by multiple factors and is consistent with expectations based on population genetic
theory. First, a high level of genetic diversity in the species provides substantial
standing genetic variation and potentially beneficial mutations. Similarly, Zhao et
al. [49] showed that the more genetically diverse species Drosophila hydei contained
more adaptive alleles than D. melanogaster. Second, the recent timing of expansion
and divergence in maize has likely affected the extent of parallelism. The probabil-
ity of parallelism will decrease when populations diverge over a greater period of
time, as less shared standing variation would be expected to be the source of adap-
tation. Increased divergence time would also allow for novel beneficial mutations to
arise, potentially in distinct genes and pathways [50]. For example, Preite et al.[51]
demonstrated a moderate level of molecular parallelism in adaptation to calamine
metalliferous soils within Arabidopsis species, but less parallelism between species.
In addition, a recent study [52] discovered that the degree of molecular parallelism
decreases with increasing divergence between lineages in Arabidopsis alpine species.
Third, population genetic modeling predicts that traits with pleiotropic constraint
are more likely to demonstrate molecular parallelism [53]. Despite the quantitative
nature of flowering time in maize, the Cχ2 statistic still showed evidence of genetic
constraint and convergence even after limiting our null to genes in the known flow-
ering time pathway. The genetic parallelism could also be attributed to the high
effective population size of the species and extensive migration between highland
regions. Similarly, a recent study found molecular parallelism for cold tolerance
between distantly related species (lodgepole pine and interior spruce), indicating
certain key genes playing crucial roles in cold adaptation [54]. Finally, theory pre-
dicts that gene flow may have contrasting impacts on parallel adaptation. Gene
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flow between differentially adapted populations may introduce maladaptive alle-
les, counteracting the effects of local selection [53]. For example, Holliday et al.
[55] found islands of divergence in Populus trichocarpa populations across altitudi-
nal clines and proposed that coadapted genes in strong linkage may buffer against
genetic introgression from maladapted individuals. Our results, consistent with
earlier findings for maize in the highlands of Mexico [36, 37], argue instead for an
important role for adaptive introgression in increasing the likelihood of parallelism.
Similarly, adaptive introgression at the EPAS1 locus has been shown to underlie
convergent highland adaptation in both humans [56] and dogs [57].

In summary, the emerging story of parallel highland adaptation in maize is con-
sistent with existing theory. Gene flow is common across maize populations, but
does not appear to swamp locally adaptive alleles. Rather, highland adaptation
appears to have initially been facilitated in the Central Plateau of Mexico by intro-
gression from the locally adapted wild species, mexicana [37]. Subsequently, gene
flow from the Mexican Highlands appears to have contributed to highland adapta-
tion in other regions of the Americas [38], consistent with our finding of migration as
the major source of molecular parallelism. Novel alleles from mexicana augmented
the extensive standing variation already found within the species [26], providing a
pool of adaptive variants that appear to have independently risen in frequency in
multiple highland regions.

Similar adaptive processes (e.g., gene flow with newly encountered, locally
adapted populations and species, repeated selection on standing variation in in-
dependent but similar habitats) likely occurred as other crops expanded from their
centers of origin [58]. However, crops that were domesticated from wild species with
small effective population sizes, with more pronounced domestication bottlenecks,
or without widespread, locally adapted congeners may have lacked the adaptive
potential necessary to achieve the broad and varied distribution of maize. The
success of invasive species has also been linked to hybridization [59] and high levels
of standing variation [60]. A thorough understanding of adaptive processes dur-
ing rapid expansion across diverse habitats may therefore inform invasive species
mitigation strategies, assisted migration in the face of climate change, and crop
breeding for tolerance of extreme environmental conditions. Highland adaptation
in maize is a clear example in which adaptation has drawn substantially from a
shared pool of variants, with the same alleles, genes, and pathways contributing to
the evolutionary success of the species across continents and millennia.

Materials and Methods

Samples and Data

Samples and SNPs were from our previous publication [38]. SNPs were removed
when located in a known inversion, large introgression regions from mexicana and
centromeric regions, and later filtered to retain only those with sequencing depth
greater than 10X and minor allele frequency greater than 0.05 (supplementary
fig. S11, Supplementary Material online). Nineteen environmental variables were
obtained from the WorldClim data set (http://www.worldclim.org/) and were
utilized to perform a Principal Component Analysis (PCA) with the vegan package
in R [61]. We employed Variant Effect Predictor (VEP) from Ensembl [62] to
further annotate genomic location and functional consequences of SNPs.
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PBS and PBE calculation

Compared to the commonly used statistic to estimate levels of population dif-
ferentiation - FST , PBS calculates allele frequency change specific to one focal
population by adding pairwise FST values involving a third ”outgroup” population
[6].

PBS =
THL1 + THL2 − TL1L2

2
(1)

T = −log(1− FST ) (2)

PBE is a recently described derivative of PBS, which overcomes the limitation
of PBS values being high when all populations have long branches. PBE instead
quantifies the difference of the observed and the expected PBS values [63].

PBE = PBSobs − PBSexp = PBS − [TL1L2 ∗ PBSmed

TL1L2
med

] (3)

Here, TL1L2 quantifies genetic differentiation of the two non-focal populations.
PBE is expected to be strongly positive when selection acts specifically on the focal
population.

We calculated PBE for filtered SNPs among one highland population, its corre-
sponding lowland population (the Mexican Lowland population was paired with the
Mesoamerican Highland populations; the South American Lowland population was
paired with the Andes population) and the parviglumis Palmar Chico population
(supplementary fig. S11, Supplementary Material online).

Pairwise FST values were calculated in vcfTools [64] and custom R scripts were
used to compute PBS and PBE values of the focal highland population. SNPs
with PBE values higher than the 95% quantile of its distribution were regarded
as outliers and qualitative results were confirmed in the 99% quantile. The R
package “SuperExactTest” [39] was utilized to evaluate if the overlap of outlier
SNPs between pairwise highland populations was enriched.

In addition, we also evaluated if the same allele is elevated to high frequency
among outlier SNPs between pairwise highland populations (supplementary fig.
S12, Supplementary Material online). If there is no allele frequency change be-
tween the highland and its lowland counterpart, we categorized the SNPs as “non-
directional”. When a SNP was non-directional in both highland populations being
compared, it was removed from the analyses. When the same allele was at ele-
vated frequency in both highland populations compared to their lowland counter-
parts, the SNP was categorized as “co-directional”. When different alleles were at
high frequency across two highland populations, the SNP was categorized as “anti-
directional”. We then compared the proportion of co-directional SNPs between the
outlier and neutral SNPs.

In order to exclude the bias of genetic drift on the directionality of changes
in allele frequency, we approximated the two-dimensional site frequency spectrum
(2dsfs) of outlier SNPs using a subset of the neutral SNP set. We divided the non-
reference allele frequency in Mexican Lowland maize and parviglumis into ten equal
bins in both the outlier and neutral SNP set. Then we matched neutral SNPs with
the same ancestral 2dsfs (representing the combination of allele frequencies in both
the Mexican Lowland and parviglumis populations) with the outlier SNP set and
sampled the same amount of SNPs in each allele frequency bin. Last, we tabulated
the directionality of the randomly sampled neutral SNPs to check how ancestral
allele frequency influenced the proportion of co-directional SNPs.
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Composite likelihood calculations to distinguish the mode
of parallelism

Following the method developed and applied in [11], we calculated the composite
likelihood under four models for the outlier regions shared among all four highland
populations, after thinning for linkage. The four models tested were as follows: 1)
neutrality (no selection), 2) independent mutations of the beneficial allele in four
highland populations, 3) a single origin of the beneficial allele in one single highland
population and spread via gene flow into the other population during the sweep,
4) standing variation present in the ancestor of the four highland populations and
spread via gene flow into other populations some time t before selection occurred.
The details of these four models can be found in [11]. For each outlier, we obtained
SNPs in the surrounding 20-kb window and calculated the composite likelihood
under each of the four models for this dataset. We compared composite likelihoods
under the models for each outlier and obtained maximum composite-likelihood-
parameter estimates, specifically for the standing time t in the fourth model, to
assess the timing of gene flow. Similarly, we also evaluated the composite likelihood
values under four models for each set of dually selected SNPs in pairs of highland
populations.

Polygenic adaptation for quantitative traits

We followed the methods developed by Berg et al. [65] and Josephs et al. [66]
to detect polygenic adaptation in the highland populations. Briefly, these methods
detect adaptive divergence for a trait by 1) finding loci associated with that trait
in a GWAS, 2) summarizing the allele frequencies and effect sizes at these loci
in the populations of interest using a polygenic score, and 3) testing to see if the
association between these polygenic scores and an environmental character (in this
case, elevation) are greater than could be explained by drift.

To identify loci associated with traits that could be under selection, we con-
ducted genome-wide association studies using a maize panel developed for GWAS,
often referred to as “the 282” or “the Major Goodman panel” [45]. Single nu-
cleotide polymorphisms (SNPs) for 263 individuals in the Major Goodman panel
were called from whole genome sequencing data from Bukowski et al. [67], remov-
ing individuals with genotype calls for <70% of polymorphic sites. Of all the SNPs
called in Bukowski et al.[67], we only used those that were also polymorphic in
the maize landraces and that had a MAF > 0.01 and were missing data for <5
% of individuals, leaving us with approximately 5 million SNPs per test. We used
trait measurements made in three short-day common garden experiments, from
Florida in 2006 and 2007 and Puerto Rico in 2006, from Hung et al. [44] where
there were data available for at least 80% of the 263 individuals, leaving us with
29 trait-environment combinations. We conducted GWAS using GEMMA with de-
fault parameters [68], with a standardized kinship matrix to control for population
structure.

We used the GWAS hits to generate polygenic scores for each individual in the
landrace panel using all loci with a p value < 0.1 that had been pruned down to the
strongest hit per 1 cM window using a linkage map from Ogut et al. [69], leaving
us with an average of 216 SNPs per trait (range = 147-289). If there are M loci
associated with a trait, each with effect size αm, pim is the allele frequency of the
mth allele in line i, which will either be 0, 0.5, or 1, then we can calculate the
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polygenic score for the ith line as Zi where

Zi = 2

M󰁛

m=1

αmpim (4)

Shared population structure between the GWAS panel and the test panel can
lead to false positive signals of selection [66]. To test for shared structure between
the GWAS panel used here and the landraces, we constructed a joint kinship matrix
between all samples in both panels, following the same methods used in Josephs
et al. [66]. Plotting the first two eigenvectors of this joint kinship matrix (the
principal components) show that there is likely shared population structure between
the landraces and the GWAS panel (supplementary fig. S13A, Supplementary
Material online). We constructed a conditional kinship matrix that estimates the
amount of relatedness between landraces conditional on relatedness captured in the
GWAS panel, and found that this new conditional matrix explains less variation
than the original matrix made from landraces alone (supplementary fig. S13B,
Supplementary Material online). This finding is further evidence that there is
shared population structure between the two panels.

In light of this shared structure, we conducted a conditional test, following
Josephs et al. [66]. Let 󰂓Z1 be the vector of Zi for the 31 highland and lowland
landraces discussed in this paper and 󰂓Z2 is the vector of Zi for the individuals used
in the GWAS. We model the combined vector of polygenic scores in both panels as

󰀣
󰂓Z1

󰂓Z2

󰀤
∼ MVN

󰀕󰀕
µ
µ

󰀖
, VA

󰀕
K11 K12

KT
12 K22

󰀖󰀖
. (5)

where, µ is the mean of the combined vector [X1, X2], K11 and K22 are the kinship
matrices of the genotyping and GWAS panels, and K12 is the set of relatedness co-
efficients between lines in the genotyping panel (rows) and GWAS panel (columns).

The conditional multivariate null model for our polygenic scores in the landraces
conditional on the GWAS panel is then

󰂓Z1|󰂓Z2 ∼ MVN(󰂓µ′, 2V AK
′), (6)

where 󰂓µ′ is a vector of conditional means with an entry for each sample in the
genotyping panel:

󰂓µ′ = µ+K12K
−1
22 (󰂓Z2 − µ) (7)

and K ′ is the relatedness matrix for the genotyping panel conditional on the matrix
of the GWAS panel,

K ′ = K11 −K12K
−1
22 KT

12. (8)

To test for selection, we calculate the difference between observed polygenic
scores and conditional means as 󰂓Z ′ = 󰂓Z1− 󰂓µ′. Higher values of 󰂓Z ′ indicate that the
observed polygenic score in a landrace individual is greater than would be expected
based on relatedness between that landrace individual and individuals in the GWAS
panel.

After calculating 󰂓Z ′ for 29 environment-trait combinations, we test for a corre-
lation between 󰂓Z ′ and the elevation of origin of each landrace beyond what would
be expected due to neutral drift using the methods described in [65]. We trans-
formed both 󰂓Z ′ and the mean-centered vector of elevations for each landrace by
the Cholesky decomposition of the kinship matrix (C) using the following equation
(shown here for 󰂓Z ′)

󰂓X =
1√
2VA

C−1(󰂓Z ′) (9)
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We estimate VA using the allele frequencies and effect sizes of the GWAS loci,
using the following formula. If p̄m is the allele frequency of the mth locus across all
individuals and αm is the effect size of that locus,

VA =

M󰁛

m=1

α2
mp̄m(1− p̄m) (10)

We then test for a linear relationship between 󰂓X and the similarly transformed
vector of elevations using the lm function in R [70] and control for the 29 tests done
using Qvalue [71].
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Stéphane D Nicolas, and Maud I Tenaillon. Independent introductions and
admixtures have contributed to adaptation of european maize and its ameri-
can counterparts. PLoS genet., 13(3):e1006666, 2017.

[30] Christian Korner. The use of ’altitude’ in ecological research. Trends Ecol.
Evol., 22(11):569 – 574, 2007.

[31] Barry H. Lomax, Wesley T. Fraser, Guy Harrington, Stephen Blackmore,
Mark A. Sephton, and Nigel B.W. Harris. A novel palaeoaltimetry proxy
based on spore and pollen wall chemistry. Earth Planet. Sci. Lett., 353-354:22
– 28, 2012.

16

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 2, 2020. ; https://doi.org/10.1101/2020.07.31.227629doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.227629
http://creativecommons.org/licenses/by-nc-nd/4.0/


[32] Nick Lauter, Charles Gustus, Anna Westerbergh, and John Doebley. The
inheritance and evolution of leaf pigmentation and pubescence in teosinte.
Genetics, 167(4):1949–1959, 2004.

[33] HA Eagles and JE Lothrop. Highland maize from central mexicoits origin,
characteristics, and use in breeding programs. Crop Sci., 34(1):11–19, 1994.

[34] C Jiang, GO Edmeades, I Armstead, HR Lafitte, MD Hayward, and D Hoising-
ton. Genetic analysis of adaptation differences between highland and lowland
tropical maize using molecular markers. Theor. Appl. Genet., 99(7-8):1106–
1119, 1999.

[35] JG Rodriguez, G Sánchez, BM Baltazar, LL De la Cruz, F Santacruz-
Ruvalcaba, PJ Ron, and JB Schoper. Characterization of floral morphology
and synchrony among zea species in mexico. Maydica, 2006.

[36] Shohei Takuno, Peter Ralph, Kelly Swarts, Rob J Elshire, Jeffrey C Glaubitz,
Edward S Buckler, Matthew B Hufford, and Jeffrey Ross-Ibarra. Indepen-
dent molecular basis of convergent highland adaptation in maize. Genetics,
200(4):1297–1312, 2015.

[37] Matthew B Hufford, Pesach Lubinksy, Tanja Pyhäjärvi, Michael T Deven-
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[45] Sherry A Flint-Garcia, Anne-Céline Thuillet, Jianming Yu, Gael Pressoir, Su-
san M Romero, Sharon E Mitchell, John Doebley, Stephen Kresovich, Major M
Goodman, and Edward S Buckler. Maize association population: a high-
resolution platform for quantitative trait locus dissection. Plant J., 44(6):1054–
1064, 2005.

[46] Yong-xiang Li, Chunhui Li, Peter J Bradbury, Xiaolei Liu, Fei Lu, Cinta M
Romay, Jeffrey C Glaubitz, Xun Wu, Bo Peng, Yunsu Shi, et al. Identification
of genetic variants associated with maize flowering time using an extremely
large multi-genetic background population. Plant J., 86(5):391–402, 2016.

[47] Zhanshan Dong, Olga Danilevskaya, Tabare Abadie, Carlos Messina, Nathan
Coles, and Mark Cooper. A gene regulatory network model for floral transition
of the shoot apex in maize and its dynamic modeling. PLoS One, 7(8):e43450,
2012.

[48] Li Guo, Xuehan Wang, Min Zhao, Cheng Huang, Cong Li, Dan Li, Chin Jian
Yang, Alessandra M York, Wei Xue, Guanghui Xu, et al. Stepwise cis-
regulatory changes in zcn8 contribute to maize flowering-time adaptation.
Curr. Biol., 28(18):3005–3015, 2018.

[49] Li Zhao and David J Begun. Genomics of parallel adaptation at two timescales
in drosophila. PLoS Genet., 13(10):e1007016, 2017.

[50] Gina L Conte, Matthew E Arnegard, Catherine L Peichel, and Dolph Schluter.
The probability of genetic parallelism and convergence in natural populations.
P. Roy. Soc. B. - Biol. Sci., 279(1749):5039–5047, 2012.

[51] Veronica Preite, Christian Sailer, Lara Syllwasschy, Sian Bray, Hassan Ahmadi,
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Figure 1: Sampling locations and expansion route of maize landraces. Domestication and
expansion times for maize populations are from published articles [18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29].
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Figure 2: Patterns of parallel adaptation at two candidate loci. A. Distribution of PBE
values in a 2-Mb region around the gene PIF3.1. The branch length of inset trees was
based on PBE values and indicates the difference between a selected and unselected SNP.
B. Distribution of PBE values in a 0.5 Mb region around the gene GRMZM2G078118
involved in jasmonic acid biosynthesis. C. Barplot of the reference allele frequency of
one SNP located in PIF3.1. D. Barplot of the non-reference allele frequency of one SNP
located in GRMZM2G078118.
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Figure 3: Patterns of parallel adaptation across loci. A. Distribution of co-directional
and anti-directional SNPs in neutral and outlier SNP sets. n: neutral SNPs; s: common
outliers; s1: a subset of common outliers with MAF between 0.3 − 0.5. B. Number of
best fit models for genetic source of repeatedly selected SNPs. ind: independent de-
novo mutation; mig: migration; sv: standing variation. Abbreviations for populations:
AN, Andes; GH, Guatemalan Highlands; MH, Mexican Highlands; US, Southwestern US
Highlands.
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Figure 4: Polygenic adaptation along elevation in the landraces. A. A linear regression
between polygenic score for all 29 trait-environment combinations tested and elevation
of origin. The lines for the seven traits that showed significant signals of polygenic
adaptation are colored and all other traits are shown in gray. B. Polygenic score for days
to silk in Florida (2006) for all landraces is negatively correlated with elevation of origin
.
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Figure 5: Convergent adaptation in the flowering time pathway. A. Intersection of flow-
ering time outlier genes among four highland populations. B. Distribution of mean PBE
values of SNPs located within and in the 10-kb flanking regions of core flowering time
genes [47] (the red line) against genomic background (the black bars). C. Diagram show-
ing selected genes in the flowering time network. Colored dots indicate the population(s)
in which selection was detected.
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Figure S1: Environment of maize populations. A. PCA of 19 bioclim environmental
variables for our samples. B. Projection of the 19 environmental variables on the first
two PCs. Abbreviations for populations: GuaHigh, Guatemalan Highlands; MexHigh,
Mexican Highlands; MexLow, Mexican Lowlands; SA Low, South American Lowlands;
SW US, Southwestern US Highlands.
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Figure S2: Intersection of outlier SNPs among four highland populations.
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Figure S6: Comparison of ˆfdM between pairs of highland populations for repeatedly
selected SNPs assigned to different source models.
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Figure S7: Intersection of outlier genes (based on SNPs with the top 5% PBE values)
among four highland populations.

32

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 2, 2020. ; https://doi.org/10.1101/2020.07.31.227629doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.227629
http://creativecommons.org/licenses/by-nc-nd/4.0/


348
332

296

262
248

212

111

78
65

53
35

0

50

100

150

200

250

300

350

N
um

be
r o

f e
le

m
en

ts

−Log10(P )

0 9648

●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
●

MH 1651
GH 1854
US 1864
AN 2015

Figure S8: Intersection of outlier genes (based on SNPs with the top 1% PBE values)
among four highland populations.
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Figure S9: A barplot showing the dominance of co-directional SNPs in flowering time
metabolism pathways. n: neutral SNPs; o: outlier SNPs; f: outlier SNPs within or
flanking genes in the flowering time pathway.
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Figure S10: SNP frequency change in vgt1 (A, B, C) and LUX (D) among populations.
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Figure S11: The analyses pipeline for PBE calculation.

36

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 2, 2020. ; https://doi.org/10.1101/2020.07.31.227629doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.227629
http://creativecommons.org/licenses/by-nc-nd/4.0/


freqREF(High) = freqREF(Low) 

freqREF(High) > freqREF(Low) 

freqALT(High) > freqALT(Low) 

noDir

elevREF

elevALT

noDir

elevREF

elevALT

noDir

elevREF

elevALT

noDir

elevREF

elevALT

noDir

noDir

noDir

noDir

coDir

antiDir

noDir

antiDir

coDir

HIGH1

HIGH2

Figure S12: The analyses pipeline for determining co-directional and anti-directional
SNPs.
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Figure S13: Evidence for shared population structure between the GWAS panel and the
landraces. A. Individuals in both panels plotted along the first two PCs of the joint
kinship matrix for the GWAS panel and the landraces. B. A comparison of all cells in the
original kinship matrix for the landraces (X axis) and the conditional matrix accounting
for relatedness with the GWAS panel (Y axis). The y=x line is plotted for reference.
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