

1 **Genetically-encoded fluorescent biosensor for rapid detection of protein
2 expression**

3

4 **Matthew G. Eason,¹ Antonia T. Pandelieva,¹ Marc M. Mayer,¹ Safwat T. Khan,¹ Hernan G.
5 Garcia²⁻⁵ & Roberto A. Chica^{1,*}**

6

7 ¹ Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie,
8 Ottawa, Ontario, K1N 6N5, Canada

9 ² Biophysics Graduate Group, University of California, Berkeley, California 94720, United States

10 ³ Department of Physics, University of California, Berkeley, California 94720, United States

11 ⁴ Department of Molecular and Cell Biology, University of California, Berkeley, California 94720,
12 United States

13 ⁵ Institute for Quantitative Biosciences-QB3, University of California, Berkeley, California 94720,
14 United States

15

16 * To whom correspondence should be addressed:

17 Roberto A. Chica, Email: rchica@uottawa.ca

18

19 **Keywords:** Protein engineering, green fluorescent protein, protein-peptide interaction,
20 fluorescence imaging

21

22 **Abstract**

23 Fluorescent proteins are widely used as fusion tags to detect protein expression *in vivo*. To become
24 fluorescent, these proteins must undergo chromophore maturation, a slow process with a half-time
25 of 5 to >30 min that causes delays in real-time detection of protein expression. Here, we engineer
26 a genetically-encoded fluorescent biosensor to enable detection of protein expression within
27 seconds in live cells. This sensor for transiently-expressed proteins (STEP) is based on a fully
28 matured but dim green fluorescent protein in which pre-existing fluorescence increases 11-fold *in*
29 *vivo* following the specific and rapid binding of a protein tag (K_d 120 nM, k_{on} $1.7 \times 10^5 \text{ M}^{-1}\text{s}^{-1}$). In
30 live *E. coli* cells, our STEP biosensor enables detection of protein expression twice as fast as the
31 use of standard fluorescent protein fusions. Our biosensor opens the door to the real-time study of
32 short-timescale processes in research model animals with high spatiotemporal resolution.

33

34 **Main Text**

35 *Aequorea victoria* green fluorescent protein (GFP) and its variants are widely used as
36 quantitative reporters of gene expression to uncover the underpinnings of endogenous and
37 synthetic circuits in contexts ranging from single cells in culture to whole animals.¹⁻³ To become
38 fluorescent, these proteins undergo chromophore maturation, an autogenic process that begins
39 immediately following folding and involves successive steps of protein backbone cyclization,
40 dehydration, and oxidation.⁴ The rate of chromophore maturation is highly dependent on
41 temperature, pH, and oxygen concentration, which leads to large variations in half-times
42 depending on experimental conditions.⁵ Under optimal conditions, maturation half-times for GFPs
43 can be as low as 5 minutes in *E. coli*,⁵ but can increase to >30 min inside developmental model
44 organisms such as frogs, zebrafish, and flies.⁶⁻⁸ These maturation half-times are too slow for
45 quantitative detection of fast biological processes occurring within a few minutes, such as those
46 involving transiently-expressed or fast-degrading proteins with half-lives of less than 5 minutes.⁹⁻
47 ¹¹ As a result, accurate quantification of these proteins at a given point in time often requires *post*
48 *hoc* mathematical transformations to correct delays in detection of protein expression caused by
49 chromophore maturation.¹²⁻¹⁴

50 To minimize the delay between translation and detection of a protein of interest, biosensors
51 that translocate a pre-expressed and fully-matured fluorescent protein from the cytosol to the
52 nucleus following expression of a protein of interest have been developed.^{15, 16} However, the need
53 for translocation prevents these biosensors from directly detecting proteins in the cytoplasm. Other
54 biosensors use a repeating peptide fusion tag on the protein of interest to recruit multiple copies of
55 a pre-expressed and fully matured cytosolic GFP, leading to the formation of large fluorescent
56 aggregates that can be detected by fluorescence microscopy.¹⁷⁻¹⁹ While these biosensors enable

57 real-time imaging of protein expression in individual cells, their large size (>1 MDa) can interfere
58 with the physical properties of the protein of interest. Therefore, an ideal biosensor for the rapid
59 detection of protein expression *in vivo* would not only minimize the delay between translation and
60 detection of the protein of interest, but would also not require translocation of the fluorescent
61 protein into a different subcellular compartment, or formation of large aggregates that may affect
62 protein function.

63 Here, we create a genetically-encoded fluorescent biosensor to address these issues and
64 enable the rapid detection of protein expression within live cells. We call our sensor STEP, for
65 sensor for transiently-expressed proteins (Figure 1a). Inspired by the GCaMP family of biosensors
66 that enable fast detection of Ca^{2+} dynamics,²⁰ the STEP is based on a circularly permuted GFP
67 (cpGFP) that can fold and mature independently of the protein of interest. In this cpGFP, the N-
68 and C-termini are located in the middle of strand β 7 of the β -barrel (Figure 1b), which creates a
69 pore on the protein surface directly next to the chromophore phenolate moiety (Figure 1c). This
70 pore exposes the chromophore to the solvent, resulting in quenched fluorescence (Figure 1a, OFF
71 state).²¹ A peptide from the BH3 domain of the Bcl-2 family protein Bim²² is genetically fused to
72 the N-terminus of cpGFP, creating a green fluorescent STEP (gSTEP). This Bim peptide enables
73 specific binding of a protein tag (STEPtag) derived from another Bcl-2 family protein, Bcl-xL.²³
74 Formation of the gSTEP/STEPtag complex causes a change to the electrostatic environment of the
75 chromophore, restoring bright fluorescence (Figure 1a, ON state). By expressing gSTEP and
76 allowing its chromophore to mature before expression of the STEPtagged protein of interest is
77 initiated, the biosensor is ready to detect its target as it is expressed and folded, helping to eliminate
78 delays in detection of protein expression caused by maturation.

79 To create the first prototype of the sensor, gSTEP0, we fused the helical mouse Bim peptide
80 (26 amino acids) to the cpGFP from the genetically-encoded calcium indicator GCaMP3,²¹ and
81 retained the N- and C-terminal linkers on either side of the barrel pore (Leu-Glu and Thr-Arg,
82 respectively), which have been shown to be important to the fluorescence response of these
83 calcium sensors (Figure 1d, Supplementary Table 1).²⁰ The STEPtag (15.5 kDa) was created by
84 truncating the N- and C-termini of human Bcl-XL (Figure 1d, Supplementary Table 1) to remove
85 structural elements that are not essential for binding to Bim but can cause formation of a domain-
86 swapped dimer,^{24, 25} and a hydrophobic membrane-anchor domain, respectively.^{26, 27} Addition of
87 a saturating concentration of purified STEPtag to gSTEP0 resulted in an intensiometric
88 fluorescence increase ($\Delta F/F_0$, calculated as $(F_{\max} - F_{\min})/ F_{\min}$) of 1.4 ± 0.1 , with a dissociation
89 constant (K_d) of 250 ± 40 nM (Supplementary Figure 1, Table 1). Furthermore, control experiments
90 confirmed that the fluorescence response of the biosensor was dependent on specific binding of
91 the Bim peptide to the STEPtag (Supplementary Figure 1b,c).

92 Having established that gSTEP0 could be used to detect the presence of STEPtag *in vitro*,
93 we next sought to improve the properties of our sensor. We began by truncating the C-terminus of
94 gSTEP0 by removing the Thr-Arg linker (Figure 1d) as well as an additional 1 to 4 amino acids
95 from cpGFP in order to increase the size of the pore on the barrel surface, which we hypothesized
96 would improve $\Delta F/F_0$ by reducing background fluorescence through increased quenching in the
97 unbound state. The best truncated mutant, gSTEP0-T1, had both the Thr-Arg linker and a single
98 additional amino acid from cpGFP removed (Supplementary Table 1), and we found that it bound
99 specifically to STEPtag with a K_d of 210 ± 80 nM and a $\Delta F/F_0$ of 2.1 ± 0.4 (Supplementary Figure
100 2, Supplementary Table 2). Control experiments with this improved variant confirmed that fusion

101 of STEPtag using a 10-amino acid linker to either the N- or C-terminus of a protein of interest does
102 not substantially affect biosensor response or binding affinity (Supplementary Figure 3).

103 Next, we replaced the mouse Bim peptide of gSTEP0-T1 with the human homolog or a
104 range of synthetic variants displaying tight binding to Bcl-xL,²⁸ which we hypothesized would
105 enhance binding affinity to the STEPtag. Of these, the human Bim peptide performed the best (K_d
106 = 170 ± 40 nM, $\Delta F/F_0 = 3.3 \pm 0.6$, Supplementary Table 2). In parallel, we tested various linker
107 lengths (1 to 5 amino acids) between the original mouse Bim peptide and cpGFP in gSTEP0-T1
108 to allow alternate binding poses of the STEPtag on the gSTEP surface upon formation of the
109 complex. We hypothesized that changing the relative orientation of the binding partners could
110 enhance binding affinity or $\Delta F/F_0$ by allowing more favourable non-covalent interactions between
111 these molecules or causing a larger change to the electrostatic environment of the chromophore
112 upon binding, respectively. We found that addition of a four-amino acid linker (gSTEP0-T1-L4)
113 improved the binding affinity but not $\Delta F/F_0$ relative to gSTEP0-T1 (Supplementary Table 2).
114 Interestingly, replacement of the mouse Bim peptide in gSTEP0-T1-L4 by its human homolog
115 yielded a worse K_d and $\Delta F/F_0$ even though human Bim performed better than mouse Bim in
116 gSTEP0-T1. Therefore, as a final step, we performed combinatorial saturation mutagenesis of the
117 four-amino acid linker introduced between human Bim and cpGFP in gSTEP0-T1-L4, and
118 screened the resulting library for improved brightness and $\Delta F/F_0$ using fluorescence-activated cell
119 sorting and microplate-based binding assays, respectively (Methods). This yielded our final
120 improved variant, gSTEP1 (Figure 1d, Table 1, Supplementary Table 1), which displays a $\Delta F/F_0$
121 of 3.4 ± 0.4 , equivalent to that of the original GCaMP ($\Delta F/F_0 = 3.5$),²⁰ and is as bright as the
122 enhanced GFP (EGFP) from *Aequorea victoria*²⁹ when fully bound to STEPtag (Figure 2a).
123 gSTEP1 binds specifically (Figure 2b) and rapidly (Figure 2c) to STEPtag, with a K_d of 120 ± 20

124 nM and a binding rate constant ($k_{on} = 1.7 \pm 0.2 \times 10^5 \text{ M}^{-1}\text{s}^{-1}$) that is comparable to that of peptide
125 antigen binding by antibodies.³⁰

126 Next, we evaluated whether gSTEP1 could be used to detect STEPtag expression in live *E.*
127 *coli* cells, which we selected as a case study given the fast GFP maturation rate in this organism.⁵
128 To do so, we prepared an *E. coli* strain that constitutively expresses a low basal concentration of
129 gSTEP1 and in which STEPtag expression can be induced by the addition of arabinose (Methods).
130 In flow cytometry experiments, we observed that cells constitutively expressing gSTEP1 and
131 overexpressing STEPtag were considerably brighter than those that do not express the binding
132 partner (Figure 3a), with little overlap between the fluorescence distributions of the two cell
133 populations. Under these conditions, the mean fluorescence of the cellular population in the ON
134 state was an order of magnitude higher than that of the cellular population in the OFF state,
135 resulting in a $\Delta F/F_0$ of 11 ± 4 (Table 1). Taken together, these results demonstrate that the
136 fluorescence difference of gSTEP1 in the ON and OFF states is sufficient to distinguish individual
137 bacterial cells that express STEPtag from those that do not.

138 Having demonstrated that gSTEP1 could be used to detect the STEPtag in live *E. coli* cells
139 at the steady-state, we evaluated the ability of the biosensor to report on STEPtag concentration
140 dynamics. To do so, we cultured the cells constitutively expressing gSTEP1 until they reached the
141 exponential growth phase, and then induced expression of STEPtag by adding arabinose. We
142 observed an immediate fluorescence increase (Figure 3b), and the signal continued to increase
143 linearly for 20 min. To determine how long it takes for protein expression to be detected by our
144 biosensor, we measured the baseline fluorescence of these cells prior to induction of STEPtag
145 expression (Supplementary Figure 4), and used the noise in this baseline data to set detection
146 thresholds above the signal at time of induction ($t = 0$ min). The standard deviation was used to

147 quantify the noise, such that the thresholds of 1, 2 and 3 standard deviations above the signal at
148 $t = 0$ min represent increasing levels of confidence that the increase in fluorescence is due to the
149 fluorescent reporter (Table 2). For cells expressing both gSTEP1 and STEPtag, the threshold of 3
150 standard deviations of the baseline above the signal at 0 min was reached in 1.6 ± 0.2 min. By
151 contrast, when we induced expression of EGFP (maturation half-time = 25 min²⁹) using the same
152 promoter in cells containing only the EGFP expression vector, it took 4 ± 1 min for it to reach the
153 same threshold, over twice as long as for gSTEP1. Of note, the rate of fluorescence increase for
154 EGFP accelerated with time, reaching a steady state after approximately 10 minutes under these
155 conditions. Presence of this lag phase is consistent with slower oxidation than
156 folding/cyclization/dehydration during GFP chromophore maturation.³¹ In the first 5 minutes
157 following induction of protein expression, gSTEP1 provided 6- to 10-fold higher fluorescence
158 signal than EGFP, and this signal remained higher for approximately 30 minutes (Supplementary
159 Figure 4). We also tested Superfolder GFP (sfGFP), which folds and matures faster than EGFP
160 (maturation half-time = 13.6 min³²). Expression of sfGFP using the same promoter also resulted
161 in a lag phase, albeit shorter than the one observed for EGFP (approximately 5 minutes to reach
162 steady-state), and yielded a fluorescence intensity increase of 3 standard deviations above the
163 initial signal in 2.9 ± 0.4 minutes (Table 2). These results demonstrate that gSTEP1 enables faster
164 detection of protein expression in live *E. coli* cells than the use of traditional GFP reporters, which
165 should increase the temporal resolution of experiments aiming to detect transiently-expressed
166 proteins or other fast biological processes.

167 Compared with other genetically-encoded fluorescent biosensors used to track protein
168 expression in real-time, gSTEP1 has the benefits of not requiring the use of protein translocation¹⁵,
169¹⁶ or formation of large protein aggregates,¹⁸ which should cause minimal perturbation to the

170 subcellular localization and physical properties of the protein of interest. In the course of this work,
171 a protein biosensor operating on a similar principle to the STEP was published.³³ This sensor,
172 called Flashbody, is based on a cpGFP that is inserted between heavy and light chain fragments
173 from the variable region of an antibody, which together bind specifically to a 7-amino acid peptide
174 tag fused to a protein of interest. Like gSTEP1, the Flashbody has the benefits of not requiring
175 translocation or formation of large aggregates, and the response of the two biosensors to their
176 respective binding partner is similar ($\Delta F/F_0 \approx 3$). However, gSTEP1 displays tighter binding (K_d
177 of 120 nM for gSTEP1 vs. 423 nM for the Flashbody), which could allow detection of proteins
178 present at lower concentrations than the Flashbody limit of detection, and binds to its partner with
179 a rate constant two orders of magnitude higher than that of the Flashbody (k_{on} of $1.7 \times 10^5 \text{ M}^{-1}\text{s}^{-1}$
180 for gSTEP1 vs. $3.38 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$ for Flashbody).³³ Taken together, these advantages of gSTEP1
181 make it a useful alternative to other biosensors for the rapid detection of protein expression *in vivo*
182 and in real time.

183 In conclusion, we have developed a genetically-encoded fluorescent biosensor to rapidly
184 detect protein expression within live cells. Because it is based on a circularly permuted GFP, our
185 sensor should be applicable for use in research model animals. However, for some applications, it
186 may be necessary to further improve the biosensor's dynamic range and sensitivity. This could be
187 achieved by replacing the Bim/STEPtag pair by alternate binding partners, and optimizing the
188 fluorescence response by random mutagenesis followed by rounds of fluorescence-activated cell
189 sorting using the pZA-gSTEP1/pBAD-STEPtag strain developed here to allow modulation of the
190 STEPtag concentration. Alternate colors should also be possible via the use of circularly permuted
191 yellow³⁴ or red³⁵ fluorescent proteins. We expect that the engineering of a color palette of
192 orthogonal STEP biosensors will enable multiplexing for more complex imaging experiments,

193 opening the door to the *in vivo* visualization of protein concentration dynamics in real time and at
194 unprecedented spatiotemporal resolution.

195

196 **Acknowledgements**

197 R.A.C. acknowledges grants from the Canada Foundation for Innovation (26503) and the Human
198 Frontier Science Program (RGP0041). H.G.G. was supported by the Burroughs Wellcome Fund
199 Career Award at the Scientific Interface, the Sloan Research Foundation, the Human Frontiers
200 Science Program (RGP0041), the Searle Scholars Program, the Shurl & Kay Curci Foundation,
201 the Hellman Foundation, the NIH Director's New Innovator Award (DP2 OD024541-01), and an
202 NSF CAREER Award (1652236). M.G.E. and M.M.M. are the recipients of Ontario Graduate
203 Scholarships and postgraduate scholarships from the Natural Sciences and Engineering Research
204 Council of Canada. The authors thank Shahrokh Ghobadloo for assistance with the fluorescence-
205 activated cell sorting and flow cytometry experiments, Jeffrey W. Keillor for use of the rapid-
206 mixing stopped-flow spectrophotometer, James A. Davey for providing the EGFP gene, and
207 Stephen L. Mayo for providing the *Thermoascus aurantiacus* xylanase 10A expression vector.

208

209 **Author contributions**

210 R.A.C. and H.G.G. conceived the project. M.G.E and S.T.K. created the gene sequences. M.G.E.
211 and A.T.P. engineered proteins and characterized their properties. M.G.E. and M.M.M. performed
212 flow cytometry and *in vivo* binding assays. All authors analyzed data. M.G.E. and R.A.C. wrote
213 the manuscript. H.G.G. edited the manuscript.

214

215 **Competing interests**

216 All authors declare no competing interests.

217

218 **Methods**

219 *Chemicals and enzymes.* All reagents used were of the highest available purity. Synthetic
220 oligonucleotides were purchased from Eurofins MWG Operon. Restriction enzymes and DNA-
221 modifying enzymes were purchased from New England Biolabs. All aqueous solutions were
222 prepared using water purified with a Barnstead Nanopure Diamond system.

223

224 *Mutagenesis and cloning.* Codon-optimized (*E. coli*) and his-tagged (N-terminus) sequences for
225 gSTEP0 and STEPtag (Supplementary Table 1) were purchased from ATUM. Truncation mutants
226 of gSTEP0 (T1–T4) were obtained by polymerase chain reaction amplification of the appropriate
227 region of the gene, while mutants with added linkers (L1–L5) or alternate Bim peptides (hBim,
228 XXA1, XXA4, G2gE, Y4eK) were generated using splicing by overlap extension (SOE)
229 mutagenesis.³⁶ The combinatorial linker saturation library was generated by SOE mutagenesis of
230 gSTEP0-T1-L4 using oligonucleotides containing four consecutive NNS degenerate codons, one
231 for every position of the linker sequence. All sequences were subcloned into pET11a vectors
232 (Novagen) via the *Nde*I/*Bam*HI restriction sites. Gene constructs for live-cell experiments (i.e.,
233 flow cytometry and *in vivo* binding assays) were subcloned via *Nco*I/*Eco*RI or *Hind*III/*Bam*HI into
234 either the pBAD/His A (Invitrogen) or pZA23MCS (EXPRESSYS) vectors for inducible or
235 constitutive expression, respectively. *Aequorea victoria* EGFP [Genbank AAB02572] was cloned
236 into pBAD/His A using *Xho*I/*Eco*RI, which added the pBAD His tag/XpressTM Epitope/EK site to
237 the N-terminus. His-tagged (C-terminus) *Thermoascus aurantiacus* xylanase 10A (TAX,
238 UniProtKB: P23360) in which the two catalytic residues were mutated to alanine (E157A/E263A)

239 cloned into a pET11a vector via *Nde*I/*Bam*HI was a gift from Stephen L. Mayo.³⁷ TAX-L10-
240 STEPtag and STEPtag-L10-TAX constructs were generated using SOE mutagenesis and cloned
241 into pET11a vectors as described above. His-tagged (N-terminus) sfGFP cloned into a pBAD
242 vector (pBAD- sfGFP)³² was a gift from Michael Davidson & Geoffrey Waldo (Addgene plasmid
243 #54519; <http://n2t.net/addgene:54519>; RRID: Addgene_54519). All constructs were verified by
244 sequencing the entire open reading frame (see Supplementary Table 1 for amino-acid sequences),
245 and transformed into either BL21-Gold(DE3) (Agilent) or TOP10 (Thermo Fisher) chemically-
246 competent *E. coli* cells for pET11a, or pBAD and pZA vectors, respectively.

247

248 *Protein expression and purification.* Transformed *E. coli* cells harboring expression vectors were
249 grown in 500 mL lysogeny broth (LB) supplemented with 100 μ g mL⁻¹ ampicillin at 37°C with
250 shaking. When an OD600 of 0.6–0.8 was reached, protein expression was induced by addition of
251 1 mM isopropyl β -D-1-thiogalactopyranoside (pET11a vectors) or 0.2% arabinose (pBAD
252 vectors). Following overnight incubation at 16°C with shaking, cells were harvested by
253 centrifugation and lysed with an EmulsiFlex-B15 cell disruptor (Avestin). Following removal of
254 cellular debris by centrifugation, proteins were extracted and purified by immobilized metal
255 affinity chromatography using Profinity IMAC resin (Bio-Rad) in a gravity flow column according
256 to the manufacturer's protocol. Eluted proteins were exchanged into 20 mM sodium phosphate
257 buffer containing 50 mM NaCl (pH 7.4) and concentrated using Amicon Ultra-15 centrifugal
258 filters with a molecular weight cut-off of 3 kDa (Millipore) for STEPtag, or Microsep Advance
259 centrifugal filters with a molecular weight cut-off of 10 kDa (Pall) for all other proteins. Purified
260 proteins were quantified by measuring absorbance at 280 nm in a 1-cm quartz cuvette with a
261 SpectraMax Plus384 microplate spectrophotometer (Molecular Devices), and applying Beer-

262 Lambert's law using extinction coefficients calculated with the ProtParam tool
263 (<https://web.expasy.org/protparam/>).

264
265 *In vitro binding assays.* All fluorescence measurements were performed in triplicate wells of
266 Fluotrac 96-well plates (Greiner Bio-One) on a Tecan Infinite M1000 plate reader using 75 nM of
267 each gSTEP variant in 20 mM sodium phosphate buffer containing 50 mM NaCl (pH 7.4). To
268 calculate K_d and $\Delta F/F_0$ values, gSTEP fluorescence intensity ($\lambda_{ex} = 485$ nm, $\lambda_{em} = 515$ nm) as a
269 function of STEPttag, TAX-L10-STEPtag, STEPttag-L10-TAX, or control protein concentration
270 (e.g., bovine serum albumin [Bio-Rad] or an inactive mutant of *Thermoascus aurantiacus* xylanase
271 10A purified as described above³⁷) was fit to the Hill equation, accounting for ligand depletion³⁸:

$$272 \frac{[AB_{eq}]}{[A_0]} = \frac{(K_d + [A_0] + [B_0]) - \sqrt{(K_d + [A_0] + [B_0])^2 - 4[A_0][B_0]}}{2[A_0]}$$

273 where A (gSTEP variants) and B (STEPtag, TAX-L10-STEPtag, or STEPttag-L10-TAX) are the
274 two binding proteins, and $[A_0]$ and $[B_0]$ are the initial concentrations of each protein. $[AB_{eq}]$ is the
275 equilibrium concentration of the bound complex.

276
277 *Fluorescence-activated cell sorting.* To improve the signal-to-noise ratio in live cells, we aimed to
278 isolate gSTEP0-T1-L4 variants that gave the brightest fluorescence from the linker saturation
279 library. To do so, we transformed the gSTEP0-T1-L4 mutant library into E. cloni® Elite
280 electrocompetent *E. coli* cells (Lucigen), which were plated on LB agar supplemented with 100
281 $\mu\text{g mL}^{-1}$ ampicillin. Following overnight incubation at 37°C, a total of 10^5 colonies from multiple
282 agar plates were collected, pooled together, and cultured overnight in 10 mL LB supplemented
283 with ampicillin. Following extraction of plasmid DNA from this culture, the library was
284 transformed into BL21-Gold(DE3) electrocompetent *E. coli* cells, and plated on LB agar

285 supplemented with ampicillin. From these plates, 10^5 colonies were collected, pooled together,
286 and cultured overnight in 10 mL LB supplemented with ampicillin. This bacterial culture was
287 diluted 100-fold into fresh LB supplemented with ampicillin and grown to an OD₆₀₀ of 0.5–0.9.
288 Because the leaky expression of the T7 RNA polymerase in BL21-Gold(DE3) provided sufficient
289 quantities of protein to screen, the cells were not further induced with isopropyl β -D-1-
290 thiogalactopyranoside to limit their metabolic burden. After growth, cells were centrifuged and
291 pellets were washed twice with filter-sterilized 20 mM sodium phosphate buffer containing 50
292 mM NaCl (pH 7.4). Resuspended cells were diluted in this buffer to a concentration of
293 approximately 5×10^7 colony forming units per mL.³⁹ The cells were then filtered twice using a
294 40- μ m Falcon Cell Strainer (Fisher) to remove large particulates. Fluorescence-activated cell
295 sorting was performed on a MoFlo AstriosEQ Cell Sorter (Beckman Coulter) using a 488 nm laser
296 for excitation and a 513/26 nm filter for detecting fluorescence emission. Data analysis was
297 performed with the FlowJo software package (BD). This process was repeated twice in succession,
298 collecting 20000 of the brightest cells each time.

299 The collected cells were used to inoculate 50 mL of fresh LB supplemented with ampicillin,
300 and grown overnight at 37°C with shaking. This culture was used to streak an LB agar plate
301 supplemented with ampicillin. From this plate, 96 colonies were picked into individual wells of a
302 Nunc V96 MicroWell polypropylene plate containing 200 μ L of LB with 100 μ g mL⁻¹ ampicillin
303 supplemented with 10% glycerol. The plate was covered with a sterile gas permeable rayon film
304 (VWR) and incubated overnight at 37°C with shaking. After incubation, the mother plate was used
305 to inoculate duplicate Nunc V96 MicroWell polypropylene plates (daughter plates) containing 250
306 μ L of LB with 100 μ g mL⁻¹ ampicillin per well. Daughter plates were sealed with rayon film and
307 incubated overnight (37°C, 250 rpm shaking). After incubation, the cells were harvested by

308 centrifugation and the pellets were washed twice with phosphate buffered saline. These pellets
309 were resuspended and lysed in 100 μ L of Bugbuster protein extraction reagent (Millipore)
310 containing 5 U mL^{-1} Benzonase nuclease (Millipore) and 1 mg mL^{-1} hen egg white lysozyme
311 (Omnipure). Following centrifugation to remove cellular debris, the clarified lysate (30 μ L) was
312 transferred to a Fluotrac 96-well plate (Greiner Bio-One) for screening. To each 30- μ L lysate
313 containing a different gSTEP0-T1-L4 variant, 150 μ L of 20 mM sodium phosphate buffer
314 containing 50 mM NaCl (pH 7.4) and 0 or 9 μ M purified STEPtag was added. Fluorescence was
315 measured with a Tecan Infinite M1000 plate reader. Emission spectra ($\lambda_{\text{ex}} = 485$ nm) were
316 measured from 500 nm to 560 nm. From these spectra, $\Delta F/F_0$ was calculated for each protein
317 variant, and the one with the best response (gSTEP1) was analyzed further.

318

319 *Rapid-mixing stopped-flow kinetics.* Measurements were performed using an RSM 1000 UV/Vis
320 rapid-scanning spectrophotometer (Olis) equipped with a 1.24-mm-slit fixed disk for single
321 wavelength measurements, and plane gratings with 400 lines mm^{-1} and a 500 nm blaze
322 wavelength. All other fixed slits were set to 3.16 mm to maximize signal. Purified gSTEP1 (1 μ M)
323 and STEPtag (5 μ M) were loaded into the spectrophotometer, which was kept at 37°C using a
324 temperature control unit (Julabo). 300 μ L of each sample was pumped into the mixing chamber,
325 and the fluorescence was measured ($\lambda_{\text{ex}} = 485$ nm, $\lambda_{\text{em}} = 515$ nm). For each combination of
326 samples, the dead volume was cleared prior to data collection. Control experiments were
327 performed to confirm that fluorescence increase was due to binding of gSTEP1 to STEPtag
328 (Supplementary Figure 5). The data was fit to the integrated rate equation, accounting for ligand
329 depletion³⁸,

330

$$[AB] = \frac{x * y (e^{(x-y)k_{\text{on}}t} - 1)}{(x e^{(x-y)k_{\text{on}}t} - y)}$$

331 where A and B are the two binding proteins (gSTEP1 and STEPtag), $x = [AB_{eq}]$, $y = [A_0] [B_0] /$
332 $[AB_{eq}]$, and t is the time.

333

334 *Flow cytometry.* TOP10 *E. coli* cells (Invitrogen) transformed with pZA-gSTEP1 and/or pBAD-
335 STEPtag vectors were cultured in 50 mL LB supplemented with 100 $\mu\text{g mL}^{-1}$ ampicillin (for cells
336 containing pBAD) and/or 50 $\mu\text{g mL}^{-1}$ kanamycin (for cells containing pZA). Cells were grown
337 with shaking at 37°C to an OD600 of 0.4–0.8, then the culture containing both pBAD-STEPTag
338 and pZA-gSTEP1 was split equally into two flasks, one to be induced and the other to be left
339 uninduced. Following induction of cells containing pBAD vectors with 0.2% arabinose, cultures
340 were incubated for an additional 60 minutes at 37°C with shaking. Cells were then harvested by
341 centrifugation, and prepared for flow cytometry as described in the cell sorting protocol above.
342 Two biological replicates of flow cytometry measurements were performed using a Gallios flow
343 cytometer (Beckman Coulter), set to detect either 10000 or 100000 events per run. Fluorescence
344 was detected with a 525/40 filter ($\lambda_{\text{ex}} = 488 \text{ nm}$), and data analysis was performed using the Kaluza
345 software package (Beckman Coulter).

346

347 *In vivo binding assays.* TOP10 *E. coli* cells transformed with the appropriate vectors were cultured
348 as described for the flow cytometry experiments above. Cells were grown with shaking at 37°C to
349 an OD600 of 0.6–1.1, after which 200 μL of each culture was transferred to a Fluotrac 96-well
350 plate (Greiner Bio-One) in triplicate wells. Fluorescence measurements were recorded on an
351 Infinite M1000 microplate reader equipped with an injector module (Tecan), preheated to 37°C
352 ($\lambda_{\text{ex}} = 488 \text{ nm}$, $\lambda_{\text{em}} = 514 \text{ nm}$). Measurements were taken every 2 minutes for 10 minutes, shaking
353 the plate before each measurement, then protein expression was induced by injecting 12 μL of 8%

354 arabinose into the wells (final concentration of 0.45%), followed by 3 seconds of shaking and 2
355 seconds of settle time. Fluorescence was measured every 2–6 seconds for an additional 20 or 40
356 minutes (Supplementary Figure 4).

357

358 **Abbreviations**

359 GFP, green fluorescent protein; STEP, sensor for transiently-expressed proteins; cpGFP, circularly
360 permuted green fluorescent protein; gSTEP, green fluorescent sensor for transiently expressed
361 proteins; EGFP, enhanced green fluorescent protein; sfGFP, superfolder green fluorescent protein;
362 SOE, splicing by overlap extension; LB, lysogeny broth.

363

364 **References**

365 [1] Nielsen, A. A. K., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski, E. A., Ross, D.,
366 Densmore, D., and Voigt, C. A. (2016) Genetic circuit design automation, *Science* 352, aac7341.
367 [2] Matsumoto, Y., Ito, Y., Tsuru, S., Ying, B.-W., and Yomo, T. (2011) Bacterial cells carrying synthetic
368 dual-function operon survived starvation, *J. Biomed. Biotechnol.* 2011, 489265-489265.
369 [3] Soroldoni, D., Jörg, D. J., Morelli, L. G., Richmond, D. L., Schindelin, J., Jülicher, F., and Oates, A. C.
370 (2014) Genetic oscillations. A Doppler effect in embryonic pattern formation, *Science* 345, 222-
371 225.
372 [4] Tsien, R. Y. (1998) The green fluorescent protein, *Annu. Rev. Biochem.* 67, 509-544.
373 [5] Balleza, E., Kim, J. M., and Cluzel, P. (2018) Systematic characterization of maturation time of
374 fluorescent proteins in living cells, *Nat. Methods* 15, 47-51.
375 [6] Wacker, S. A., Oswald, F., Wiedenmann, J., and Knöchel, W. (2007) A green to red photoconvertible
376 protein as an analyzing tool for early vertebrate development, *Dev. Dynam.* 236, 473-480.
377 [7] Langenau, D. M., Traver, D., Ferrando, A. A., Kutok, J. L., Aster, J. C., Kanki, J. P., Lin, S., Prochownik,
378 E., Trede, N. S., Zon, L. I., and Look, A. T. (2003) Myc-induced T cell leukemia in transgenic
379 zebrafish, *Science* 299, 887-890.
380 [8] Hazelrigg, T., Liu, N., Hong, Y., and Wang, S. (1998) GFP expression in Drosophila tissues: time
381 requirements for formation of a fluorescent product, *Dev Biol* 199, 245-249.
382 [9] Griffith, K. L., Shah, I. M., and E. Wolf Jr, R. (2004) Proteolytic degradation of Escherichia coli
383 transcription activators SoxS and MarA as the mechanism for reversing the induction of the
384 superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons, *Mol. Microbiol.* 51, 1801-
385 1816.
386 [10] Tilly, K., Spence, J., and Georgopoulos, C. (1989) Modulation of stability of the Escherichia coli heat
387 shock regulatory factor sigma, *J. Bacteriol.* 171, 1585-1589.

388 [11] Ay, A., Knierer, S., Sperlea, A., Holland, J., and Özbudak, E. M. (2013) Short-lived Her proteins drive
389 robust synchronized oscillations in the zebrafish segmentation clock, *Development* 140, 3244-
390 3253.

391 [12] Gedeon, T., and Bokes, P. (2012) Delayed protein synthesis reduces the correlation between mRNA
392 and protein fluctuations, *Biophys. J.* 103, 377-385.

393 [13] Wang, X., Errede, B., and Elston, T. C. (2008) Mathematical analysis and quantification of
394 fluorescent proteins as transcriptional reporters, *Biophys. J.* 94, 2017-2026.

395 [14] Berezhkovskii, A. M., and Shvartsman, S. Y. (2014) On the GFP-based analysis of dynamic
396 concentration profiles, *Biophys. J.* 106, L13-15.

397 [15] Aymoz, D., Wosika, V., Durandau, E., and Pelet, S. (2016) Real-time quantification of protein
398 expression at the single-cell level via dynamic protein synthesis translocation reporters, *Nat. Commun.* 7, 11304.

400 [16] Bothma, J. P., Norstad, M. R., Alamos, S., and Garcia, H. G. (2018) LlamaTags: A Versatile Tool to
401 Image Transcription Factor Dynamics in Live Embryos, *Cell* 173, 1810-1822 e1816.

402 [17] Zhao, N., Kamijo, K., Fox, P. D., Oda, H., Morisaki, T., Sato, Y., Kimura, H., and Stasevich, T. J. (2019)
403 A genetically encoded probe for imaging nascent and mature HA-tagged proteins in vivo, *Nat. Commun.* 10, 2947.

405 [18] Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S., and Vale, R. D. (2014) A protein-tagging
406 system for signal amplification in gene expression and fluorescence imaging, *Cell* 159, 635-646.

407 [19] Boersma, S., Khuperkar, D., Verhagen, B. M. P., Sonneveld, S., Grimm, J. B., Lavis, L. D., and
408 Tanenbaum, M. E. (2019) Multi-Color Single-Molecule Imaging Uncovers Extensive
409 Heterogeneity in mRNA Decoding, *Cell* 178, 458-472.

410 [20] Nakai, J., Ohkura, M., and Imoto, K. (2001) A high signal-to-noise Ca(2+) probe composed of a single
411 green fluorescent protein, *Nat. Biotechnol.* 19, 137-141.

412 [21] Tian, L., Hires, S. A., Mao, T., Huber, D., Chiappe, M. E., Chalasani, S. H., Petreanu, L., Akerboom, J.,
413 McKinney, S. A., Schreiter, E. R., Bargmann, C. I., Jayaraman, V., Svoboda, K., and Looger, L. L.
414 (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium
415 indicators, *Nat. Methods* 6, 875-881.

416 [22] O'Connor, L., Strasser, A., O'Reilly, L. A., Hausmann, G., Adams, J. M., Cory, S., and Huang, D. C.
417 (1998) Bim: a novel member of the Bcl-2 family that promotes apoptosis, *EMBO J.* 17, 384-395.

418 [23] Muchmore, S. W., Sattler, M., Liang, H., Meadows, R. P., Harlan, J. E., Yoon, H. S., Nettesheim, D.,
419 Chang, B. S., Thompson, C. B., Wong, S. L., Ng, S. L., and Fesik, S. W. (1996) X-ray and NMR
420 structure of human Bcl-xL, an inhibitor of programmed cell death, *Nature* 381, 335-341.

421 [24] Oberstein, A., Jeffrey, P. D., and Shi, Y. (2007) Crystal structure of the Bcl-XL-Beclin 1 peptide
422 complex: Beclin 1 is a novel BH3-only protein, *J. Biol. Chem.* 282, 13123-13132.

423 [25] Kvansakul, M., Yang, H., Fairlie, W. D., Czabotar, P. E., Fischer, S. F., Perugini, M. A., Huang, D. C.,
424 and Colman, P. M. (2008) Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped
425 dimer that binds a highly selective subset of BH3-containing death ligands, *Cell Death Differ.* 15,
426 1564-1571.

427 [26] Chen-Levy, Z., and Cleary, M. L. (1990) Membrane topology of the Bcl-2 proto-oncogenic protein
428 demonstrated in vitro, *J. Biol. Chem.* 265, 4929-4933.

429 [27] Nguyen, M., Millar, D. G., Yong, V. W., Korsmeyer, S. J., and Shore, G. C. (1993) Targeting of Bcl-2 to
430 the mitochondrial outer membrane by a COOH-terminal signal anchor sequence, *J. Biol. Chem.*
431 268, 25265-25268.

432 [28] Dutta, S., Ryan, J., Chen, T. S., Kougantakis, C., Letai, A., and Keating, A. E. (2015) Potent and specific
433 peptide inhibitors of human pro-survival protein Bcl-xL, *J. Mol. Biol.* 427, 1241-1253.

434 [29] Cormack, B. P., Valdivia, R. H., and Falkow, S. (1996) FACS-optimized mutants of the green
435 fluorescent protein (GFP), *Gene* 173, 33-38.

436 [30] Landry, J. P., Ke, Y., Yu, G. L., and Zhu, X. D. (2015) Measuring affinity constants of 1450 monoclonal
437 antibodies to peptide targets with a microarray-based label-free assay platform, *J. Immunol. Methods* 417, 86-96.
438
439 [31] Reid, B. G., and Flynn, G. C. (1997) Chromophore Formation in Green Fluorescent Protein,
440 *Biochemistry* 36, 6786-6791.
441 [32] Pedelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., and Waldo, G. S. (2006) Engineering and
442 characterization of a superfolder green fluorescent protein, *Nat. Biotechnol.* 24, 79-88.
443 [33] Wongso, D., Dong, J., Ueda, H., and Kitaguchi, T. (2017) Flashbody: A Next Generation Fluobody
444 with Fluorescence Intensity Enhanced by Antigen Binding, *Anal. Chem.* 89, 6719-6725.
445 [34] Baird, G. S., Zacharias, D. A., and Tsien, R. Y. (1999) Circular permutation and receptor insertion
446 within green fluorescent proteins, *Proc. Natl. Acad. Sci. U. S. A.* 96, 11241-11246.
447 [35] Carlson, H. J., Cotton, D. W., and Campbell, R. E. (2010) Circularly permuted monomeric red
448 fluorescent proteins with new termini in the beta-sheet, *Protein Sci.* 19, 1490-1499.
449 [36] Horton, R. M., Ho, S. N., Pullen, J. K., Hunt, H. D., Cai, Z., and Pease, L. R. (1993) Gene splicing by
450 overlap extension, *Methods Enzymol.* 217, 270-279.
451 [37] Privett, H. K., Kiss, G., Lee, T. M., Blomberg, R., Chica, R. A., Thomas, L. M., Hilvert, D., Houk, K. N.,
452 and Mayo, S. L. (2012) Iterative approach to computational enzyme design, *Proc. Natl. Acad. Sci.*
453 *U. S. A.* 109, 3790-3795.
454 [38] Hulme, E. C., and Trevethick, M. A. (2010) Ligand binding assays at equilibrium: validation and
455 interpretation, *Br. J. Pharmacol.* 161, 1219-1237.
456 [39] Myers, J. A., Curtis, B. S., and Curtis, W. R. (2013) Improving accuracy of cell and chromophore
457 concentration measurements using optical density, *BMC Biophys.* 6, 4.
458 [40] Chen, Y., Song, X., Ye, S., Miao, L., Zhu, Y., Zhang, R. G., and Ji, G. (2013) Structural insight into
459 enhanced calcium indicator GCaMP3 and GCaMPJ to promote further improvement, *Protein Cell*
460 4, 299-309.

461

462 **Table 1. Properties of STEP variants**

463

Sensor	λ_{ex} (nm) ^a	λ_{em} (nm) ^a	K_d ^b (nM)	<i>In vitro</i> $\Delta F/F_0$ ^b	<i>In vivo</i> $\Delta F/F_0$ ^c	k_{on} ($\times 10^5$ M ⁻¹ s ⁻¹) ^d	k_{off} (s ⁻¹) ^e
gSTEP0	496 \pm 1	513 \pm 1	250 \pm 40	1.4 \pm 0.1	N.D.	N.D.	N.D.
gSTEP1	504 \pm 1	515 \pm 1	120 \pm 20	3.4 \pm 0.4	11 \pm 4	1.7 \pm 0.2	0.020 \pm 0.007

464 N.D. indicates not determined.

465 ^a n = 3, mean \pm s.d. For comparison, excitation and emission wavelengths of EGFP are 488 and 507 nm,
466 respectively.

467 ^b Measured in solution using purified gSTEP (75 nM) and STEPtag (up to 10 μ M). For gSTEP0, n = 2 biological
468 replicates, fit value \pm 95% confidence interval. For gSTEP1, n = 6 biological replicates, fit value \pm 95% confidence
469 interval.

470 ^c Calculated from the average fluorescence of individual cells expressing both gSTEP1 and STEPtag, or expressing
471 only gSTEP1 (see Figure 3a). Value represents the average of two biological replicates, and error is the standard
472 deviation (n = 2, mean \pm s.d.).

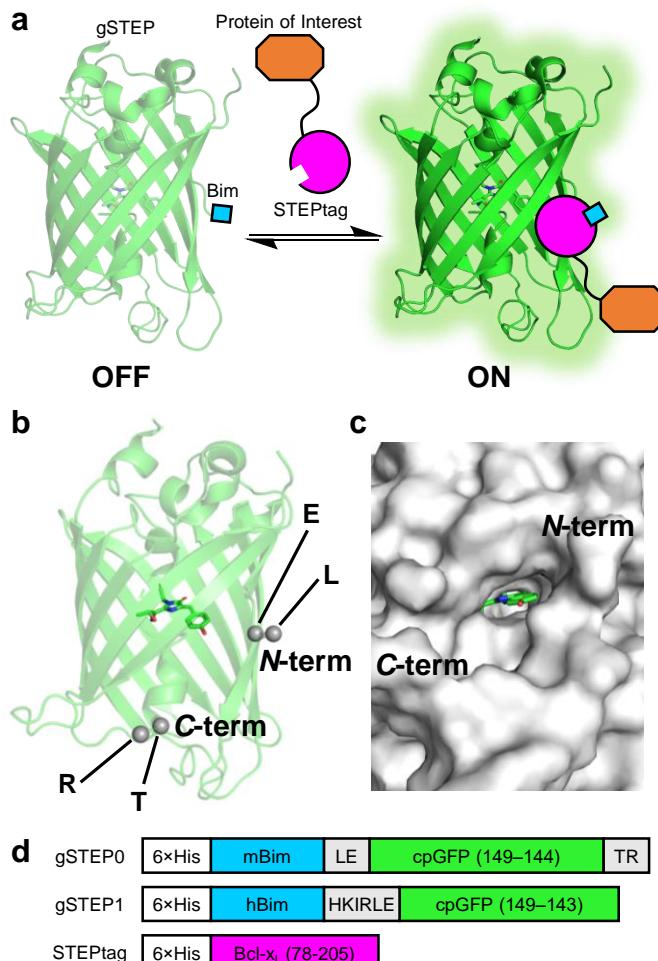
473 ^d Measured in solution using purified gSTEP1 (1 μ M) and STEPtag (5 μ M) (n = 3, fit value \pm 95% confidence
474 interval).

475 ^e Calculated from the K_d and k_{on} . Error represents the propagated 95% confidence interval.

476

477 **Table 2. Time required to reach a specified level of fluorescence following induction of protein**
478 **expression in live *E. coli* cells**
479

Fluorescent Reporter ^a	Time to reach X standard deviations above initial fluorescence intensity (min) ^b		
	X = 1	X = 2	X = 3
gSTEP1	0.63 ± 0.03	1.09 ± 0.06	1.6 ± 0.2
EGFP	1.21 ± 0.09	3 ± 2	4 ± 1
sfGFP	1.1 ± 0.4	2.1 ± 0.6	2.9 ± 0.4

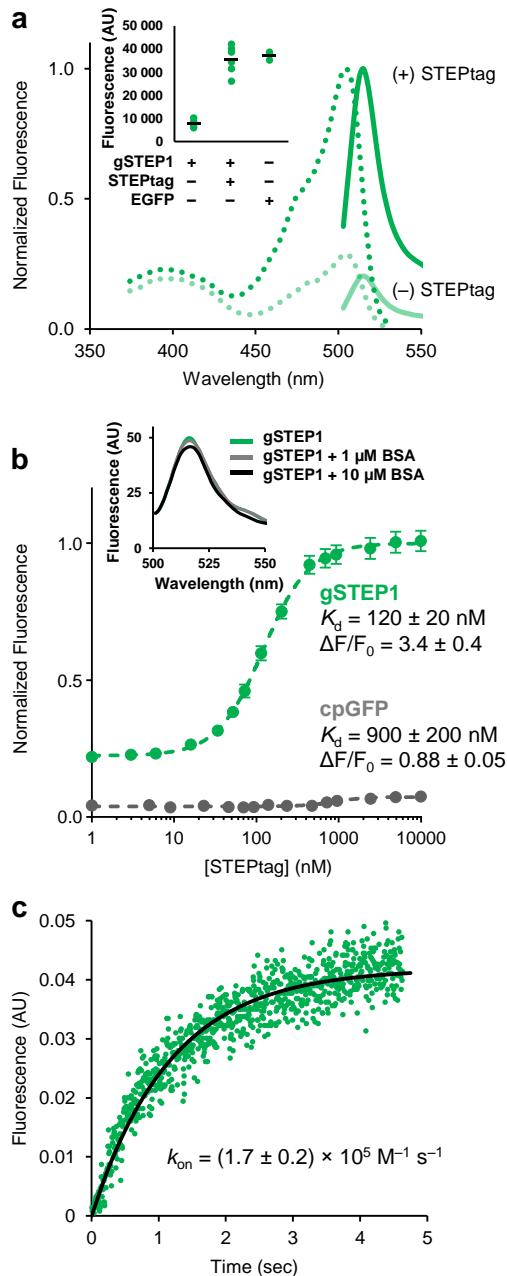

480 ^agSTEP1 refers to cells expressing both gSTEP1 and STEPttag. EGFP and sfGFP refer to cells expressing only
481 STEPttag, EGFP, and sfGFP expression is under control of the araBAD promoter, and can be
482 induced using arabinose. gSTEP1 is constitutively expressed.

483 ^bFluorescence of the bacterial cell population was measured for 10 minutes before induction of STEPttag, EGFP, or
484 sfGFP expression using 0.45% arabinose, and this baseline signal was used to calculate the standard deviation
485 serving as detection threshold (n = 2 biological replicates, mean ± s.d.).

486

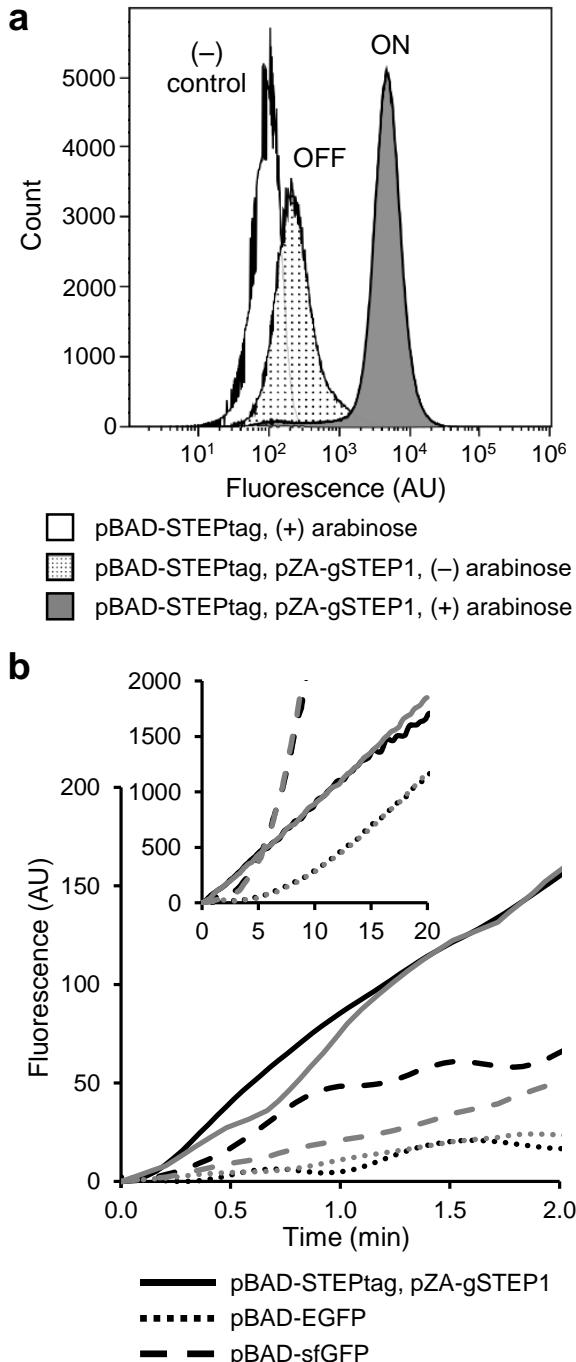
487 **Figures**

488



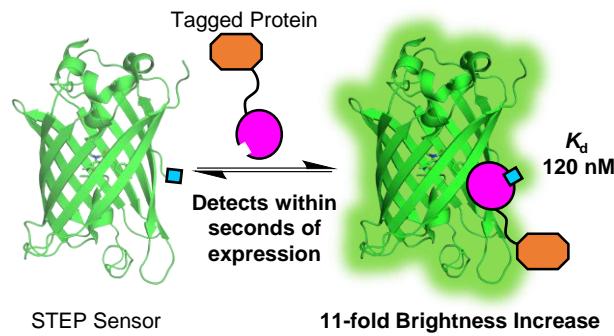
489

490


491 **Figure 1. Sensor for transiently-expressed proteins (STEP).** **a**, Cartoon representation of the STEP. A green
492 fluorescent STEP (gSTEP) is expressed and allowed to mature before expression of a STEPtaged protein of interest
493 (Not to scale). Prior to STEPtaged binding to the Bim peptide, gSTEP is dimly fluorescent (OFF), while the bound
494 gSTEP emits a strong fluorescence signal (ON). **b**, Crystal structure of the circularly-permuted GFP from the GCaMP3
495 genetically-encoded calcium indicator (PDB ID: 4IK8).⁴⁰ The chromophore is shown as sticks, and residues forming
496 the N- and C-terminal amino acid linkers are shown as grey spheres and identified by their one-letter code. **c**, Surface
497 of the circularly-permuted GFP shows a pore on the barrel surface next to the chromophore phenolate moiety (green
498 sticks). **d**, Schematic representation of gSTEP0, gSTEP1, and STEPtaged. Linker sequences are shown in grey.
499 Circularly-permuted GFP (cpGFP) is shown in green, and residues are numbered according to the sequence of
500 *Aequorea victoria* GFP. Bcl-x_L is shown in magenta, and residues are numbered according to the UniProt sequence
501 (Q07817). 6xHis, mBim, and hBim indicate the histidine tag, mouse Bim, and human Bim peptides, respectively.

502

503
504
505
506
507
508
509
510
511
512
513
514
515
516


Figure 2. In vitro characterization of gSTEP1. All assays were performed in 20 mM sodium phosphate buffer containing 50 mM NaCl (pH 7.4). **a**, Normalized excitation ($\lambda_{em} = 550 \text{ nm}$, dashed line) and emission ($\lambda_{ex} = 485 \text{ nm}$, full line) spectra of gSTEP1 (75 nM) in the presence or absence of saturating STEPtag (10 μ M). Inset shows the fluorescence intensity at 515 nm ($\lambda_{ex} = 485 \text{ nm}$) of six biological replicates of gSTEP1, in the presence or absence of saturating STEPtag, compared to three technical replicates of 75 nM EGFP. Mean values are shown as black lines. **b**, Binding curves of 75 nM gSTEP1 (green) or cpGFP (grey) with STEPtag. Fluorescence is normalized to the maximum intensity observed for gSTEP1. Dashed lines represent fits of the Hill equation to the data (Hill coefficients of 1.5 or 2.2 for gSTEP1 or cpGFP, respectively). For the gSTEP1 binding curve, data points represent mean \pm SEM of six biological replicates. For cpGFP, data points represent mean of three technical replicates. K_d and $\Delta F/F_0$ values were obtained from the fit and indicated with the 95% confidence interval around the fit values. Inset shows emission spectra ($\lambda_{ex} = 485 \text{ nm}$) of 75 nM gSTEP1 in the presence of 0, 1, or 10 μ M bovine serum albumin (BSA). **c**, Rapid-mixing stopped-flow binding kinetics of gSTEP1 mixed with saturating STEPtag. The black line represents a fit of the integrated rate equation to the data (Methods).

517
518 **Figure 3. gSTEP1 enables rapid detection of protein expression in live bacterial cells. a,** Flow cytometry
519 histograms of gSTEP1 fluorescence in live *E. coli* cells expressing only STEPtag (negative control), gSTEP1 (OFF
520 state), or both (ON state). The pZA vector constitutively expresses gSTEP1, while STEPtag expression from the
521 pBAD vector is induced using 0.2% arabinose. **b,** Time course of protein expression in live *E. coli*. Cells were grown
522 to the end of the exponential growth phase ($OD_{600} = 1.1$), then fluorescence was measured immediately after pBAD
523 vectors containing either STEPtag (for cells constitutively expressing gSTEP1), EGFP, or sfGFP were induced with
524 0.45% arabinose. Two biological replicates (black and grey) are shown, each blanked by the fluorescence signal at 0
525 min, and smoothed by three passes through a seven-point moving average filter. Inset shows the 20-min time course.
526 No fluorescence increase was observed by addition of arabinose to cells containing pZA-gSTEP1 and empty pBAD
527 (Supplementary Figure 4).
528

529 **Graphical abstract**

530

531