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Abstract

Nuclear pore complexes (NPCs) fuse the inner and outer nuclear membranes and mediate
nucleocytoplasmic exchange. They are made of 30 different nucleoporins that form an
intricate cylindrical architecture around an aqueous central channel. This architecture is
highly dynamic in space and time. Variations in NPC diameter were reported, but the
physiological circumstances and the molecular details remain unknown. Here we combined
cryo-electron tomography and subtomogram averaging with integrative structural modeling
to capture a molecular movie of the respective large-scale conformational changes in cellulo.
While actively transporting NPCs adopt a dilated conformation, they strongly constrict upon
cellular energy depletion. Fluorescence recovery after photo bleaching experiments show
that NPC constriction is concomitant with reduced diffusion and active transport across the
nuclear envelope. Our data point to a model where the energy status of cells is linked to the

conformation of NPC architecture.
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Introduction

Nuclear pore complexes (NPCs) bridge the nuclear envelope (NE) and facilitate
nucleocytoplasmic transport. Across the eukaryotic kingdom, about 30 different genes
encode for NPC components, termed nucleoporins (Nups). Although specialized Nups have
been identified in many species, extensive biochemical and structural studies in vitro led to
the consensus that the core scaffold inventory is conserved. It consists of several Nup
subcomplexes that come together in multiple copies to form an assembly of eight asymmetric
units, called spokes, that are arranged in a rotationally symmetric fashion (1). The Y-complex
(also called Nup107 complex) is the major component of the outer rings (the nuclear and
cytoplasmic rings; NR and CR), which are placed distally into the nuclear and cytoplasmic
compartments. The inner ring complex scaffolds the inner ring (IR; also called spoke ring) that
resides at the fusion plane of the nuclear membranes. The Nup159 complex (also called P-
complex) asymmetrically associates with the Y-complex of the cytoplasmic ring and mediates
MRNA export. Despite these common features of quaternary structure, in situ structural
biology studies have revealed that the higher order assembly is variable across the eukaryotic

kingdom (2).

In addition to compositional variability across different species, NPC architecture is
conformationally highly dynamic and variations in NPC diameter have been observed in
various species and using different methods (3-7). It has been shown that dilation is part of
the NPC assembly process (8, 9). However, if NPC dilation and constriction may play a role
during active nuclear transport (10), or are required to open up peripheral channels for the
import of inner nuclear membrane proteins (11-13), remains controversial. It is difficult to
conceive that such large-scale conformational changes can occur on similar time scales as
individual transport events (14, 15), which would be the essence of a physical gate.
Nevertheless, several cues that potentially could affect NPC diameter have been suggested,
such as exposure to mechanical NE stress, mutated forms of Importin B, varying Ca?*
concentrations or hexanediol (7, 16—21). However, these previous studies did neither explore
NPC diameter and its functional consequences within intact cellular environments nor did
they structurally analyze the conformational changes of nuclear pores in molecular detail.
Thus, physiological cause and consequence along with the molecular mechanisms of NPC

dilation and constriction remain enigmatic.

Page 3 of 65


https://doi.org/10.1101/2020.07.30.228585
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228585; this version posted July 31, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Zimmerli, Allegretti et al

74
75  Active nuclear transport of cargo relies on energy supply. Importin or exportin-mediated
76  transport requires the small GTPase RAN that binds either GTP in the nucleus or GDP in the
77  cytoplasm to ensure directionality of transport (22), while mRNA export is directly ATP
78 dependent (23). Cells of various organisms including Schizosaccharomyces pombe show a
79  rapid shut down of active nuclear transport and mRNA export when depleted of ATP (24-26).
80 This points to a well conserved mechanism, likely dependent on a concomitantly reduced
81 availability of free GTP (27). Moreover, energy depletion (ED) leads to a general
82 reorganization of the cytoplasm including solidification of the periplasm, general water loss
83 and reduction of the nuclear and cellular volume, which allows cells to endure under
84  unfavorable conditions (28-31). If the shutdown of active nuclear transport coincides with
85 the alteration in passive diffusion and potentially a conformational adaption of NPC
86  architecture remains unknown.
87
88 Here we demonstrate that in S. pombe NPCs (SpNPCs) constrict under conditions of ED, which
89 isconcomitant with a reduction of both, free diffusion and active nuclear transport across the
90 nuclear envelope. Using in cellulo cryo-electron microscopy (cryo-EM) and integrative
91  structural modeling, we captured a molecular movie of NPC constriction. Our dynamic
92  structural model suggests large scale conformational changes that occur by movements of
93 the spokes with respect to each other but largely preserve the arrangement of individual
94  subcomplexes. Previous structural models obtained from isolated nuclear envelopes (32—-37)
95 thereby represent the most constricted NPC state.
96
97  In cellulo cryo-EM map of the S. pombe NPC
98 Tostudy NPCarchitecture and function in cellulo at the best possible resolution and structural
99 preservation, we explored various genetically tractable model organisms for their
100 compatibility with cryo-focused ion beam (FIB) specimen thinning, cryo-electron tomography
101  and subtomogram averaging (STA). Saccharomyces cerevisiae cells were compatible with high
102  throughput generation of cryo-lamellae and acquisition of tomograms. STA of their NPCs
103 resulted in moderately resolved structures (4). In contrast, a larger set of cryo-tomograms
104  from Chaetomium thermophilum cells did not yield any meaningful averages, possibly

105  because their NPCs displayed a very large structural variability. We therefore chose to work
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106  with S. pombe cells that are small enough for thorough vitrification, offer a superior geometry
107  for FIB-milling compared to C. thermophilum with the advantage of covering multiple cells
108 and, compared to S. cerevisiae, higher number of NEs and NPCs per individual cryo-lamellae
109 and tomogram, leading to high data throughput (Fig. S1).

110

111  To obtain a high quality cryo-EM map of S. pombe NPCs, we prepared cryo-FIB milled lamellae
112  of exponentially growing S. pombe cells and acquired 178 tomograms from which we
113  extracted 726 NPCs. Subsequent STA resulted in an in cellulo NPC average of very high quality
114  in terms of both visible features (Fig. 1A, B and Fig. S2A) and resolution (Fig. S2B). Systematic
115 fitting of the S. pombe IR asymmetric unit model (see Materials and Methods), resulted in a
116  highly significant fit (Fig S3A). The subsequent refinement with integrative modeling led to a
117  structural model that explains the vast majority of the observed electron optical density in
118 the IR (Fig. 1B, Fig. S4, and Video S1). The IR architecture appears reminiscent to NPC
119  structures of other eukaryotes (Fig. S5) further corroborating its evolutionary conservation
120 (2).

121

122  Although the outer rings are known to be more variable, the intra-subcomplex interaction
123 network of the Y-complex (Nup120, Nup85, Nup145C, Sec13, Nup84 and Nup133) has been
124  comprehensively characterized by many studies and considered to be conserved (1) (see
125 Table S1 for nomenclature of Nups across different species). Systematic fitting revealed that
126  the NR of the SpNPC is composed of two concentric Y-complex rings (Fig. 1A, Fig. S3B and
127  Video S1) as in vertebrates and algae but as opposed to the single Y-complex ring observed
128 in S. cerevisiae (Fig. S2A) (4, 35, 38). Integrative modeling of the entire Y-complex ensemble
129  of the NR revealed a rather classical Y-complex architecture with the typical head-to-tail
130 oligomerization (Fig. 2A and Fig. S4). This analysis emphasizes that S. pombe Y-complex Nups
131  dolocalize to the NR, contrasting previous proposals (39). The homology models of SpNup131
132  and SpNup132 fit to the Y-complex tail region equally well, rendering these two proteins
133  indistinguishable by our approach.

134

135 Closer inspection of the cytoplasmic side of cryo-EM map revealed a surprising and
136  unprecedented architectural outline, since it did not form a ring. Instead, eight spatially

137 separated entities were observed (Fig. 1A) suggesting that the integrity of the cylindrical
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138  outline is rather provided by the IR and NR while the cytoplasmic protein entities serve as a
139  mere anchor point for the mRNA export platform, the Nup159 complex (Fig. 2B). Although
140 the dynein-arm that is characteristic for the S. cerevisiae NPC (40) is lacking, the Nup159
141  complex resembles its S. cerevisiae counterpart in shape (Fig. S6A). Systematic fitting and
142  subsequent refinement with integrative modeling revealed that the Y-complex vertex fits into
143  the density observed at the cytoplasmic side (Fig. 2B, Fig. S3C, Fig. S4 and Video S1). The
144  density potentially accounting for Nup107 and SpNup131/SpNup132 was missing (Fig. S3D)
145 and could not be recovered by local refinement (Fig. S6B). Instead, the observed density
146  sharply declined at the edge of SpNup189C consistent with previous work suggesting a split
147  of the SpNup189C-Nup107 interface (Fig. S6C) (39, 41). To independently confirm the identity
148  of the observed vertex-like density, we analyzed nup37A and nup37A-ely5A strains in which
149  non-essential, peripheral Y-complex Nups were deleted. The binding of both, Nup37 and Ely5
150 to Nupl120 has been previously shown in vitro (42, 43), and as expected, density was missing
151 in the respective positions of all Y-complexes (Fig. 2C-D and Fig. S7A-B). Unexpectedly, a
152  density that could accommodate Ely5 homology model was missing also in the cytoplasmic Y-
153  complex, suggesting that Ely5 is present in S. pombe at both, the nuclear and the cytoplasmic
154  side of the NPC (Fig 2D and Video S1) unlike in higher metazoans where its homolog ELYS is
155 known to exclusively bind to the NR (35, 44). Otherwise, the NPC architecture remained
156  mostly unchanged, despite some increased flexibility in the Nup120 arm of the outer nuclear
157  Y-complex (Fig. S7A-B). These results unambiguously identify the density observed at the
158 cytoplasmic side as bona fide Y-complex vertex.

159

160 Energy depletion leads to constriction of NPC scaffold and central channel

161  Previous cryo-EM structures of NPCs obtained from isolated nuclear envelopes (32—-37) or by
162  detergent extraction (45) had a smaller diameter as compared to those obtained from intact
163 cells (3, 4, 38, 46). We therefore hypothesized that NPC diameter may depend on the
164  biochemical energy level that is depleted during preparations of isolated nuclear envelopes
165  or NPCs but may also be reduced within intact cells e.g. during stress conditions. We set out
166  to systematically analyze the NPC architecture under conditions of energy depletion as
167 compared to exponentially growing cells. We structurally analyzed 292 NPCs subsequent to
168 1 hour of ED using non-hydrolysable 2-deoxy-glucose in combination with the respiratory

169  chain inhibitor antimycin A (see Materials and Methods). We measured the diameter based
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170  on centroids of the spokes as obtained by STA (see Materials and Methods) and found a
171  significant constriction of the mean central channel diameter during ED from ~70 nm to ~55
172 nm (Fig. 3A). The variation of diameters was larger within the population of NPCs exposed to
173 ED as compared to the actively transporting conditions, which likely blurred structural
174  features during STA. To generate a conformationally more homogenous ensemble, we split
175  the particles form the ED data set into two classes with central channel diameters of <50 nm
176  and >50 nm (533 and 1012 subunits respectively) (Fig. 3B) and refined them separately to <28
177  Aresolution (Fig. 3C-D and Fig. S8A-B). Both conformations of the ED state showed a smaller
178 NPC diameter compared to the control. The intermediate conformation was ~65 nm wide at
179  the IR while the most constricted conformation showed a diameter of ~49 nm (Fig. 3D) and
180 is thus comparable to the diameter observed in isolated NEs (32—-37). We further calculated
181 the diameters at the level of the cytoplasmic side and NR and found that all three rings
182  constrict significantly during ED. While the diameter of the IR and cytoplasmic side changed
183  their conformation most dramatically, the NR was less affected (Fig. 3E, Videos S4-S6). The
184  estimated volume of the central channel in the most dilated state was almost twice as large
185  (~152’000 nm3) as compared to the most constricted state (~86’000 nm3) (Fig. S8C), which
186 likely translates to ~2-fold change in concentration of the FG-repeats contained therein.

187

188  To better understand how NPCs accommodate such massive conformational changes on the
189  molecular level, we systematically fitted individual subcomplexes (Fig. $9) and built structural
190 models of the three different diameter states based on the cryo-EM maps (Fig. 3C-D) using a
191  multi-state integrative modeling procedure (Fig S4). In the cytoplasmic side and the NR,
192  conformational changes were limited to the curvature of the Y-complexes and inward-
193  bending of the mRNA export platform towards the center of the pore (Videos $S4-6). In
194  contrast, the central channel constriction of the IR is more elaborate and mediated by a lateral
195 displacement of the 8 spokes that move as independent entities to constrict or dilate the IR
196 (Fig. 3D and Videos S4-S6). In the dilated state, around 3-4 nm wide gaps are formed in-
197 between the neighboring spokes, while in the constricted state the spokes form extensive
198 contacts (Fig. S10A-B), equivalent to those in the previously published structures of the
199 human NPC in isolated nuclear envelopes (36). Notably, the spokes do not move entirely as
200 rigid bodies, but some conformational changes occur within the Nup155 and Nsp1 complex

201 regions (Video S7 and S8). Those are however distinct from the previously proposed
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202  conformational sliding (10) and rather consistent with an overall preserved intra-subcomplex
203  arrangement (15, 47).

204

205 Interestingly, under conditions of ED additional density is arching out into the lumen of the
206 NE (Fig S10A and C), contrasting control conditions under which they are less clearly
207  discernible from the membrane. It has been previously proposed that such luminal structures
208 areformed by Pom152 (ScPom152 or HsGP210) (48, 49). In terms of their shape, the observed
209 arches are reminiscent to those observed in isolated Xenopus laevis (34). Our data imply that
210  the luminal ring conformation becomes more prominent upon constriction. If this has any
211  mechanical benefits to keep NPCs separated (34), or might rather limit the maximal dilation,
212 remains to be further investigated.

213

214  NPC constriction is concomitant with reduced diffusion and active nuclear transport

215 We wondered about the transport competence of NPCs in conditions under which they are
216  constricted in comparison to actively transporting, dilated NPCs. To address this, we
217  employed live cell imaging of S. pombe cells expressing a GFP variant tagged with a nuclear
218  localization signal (NLS) on its N- and C-terminus (NLS-GFP) that shows a nuclear localization
219  under control conditions (Fig. 4A). Already after 30 min of ED most of the NLS-GFP localized
220 into the cytoplasm (Fig. 4 B), confirming that active nuclear import is suspended (26). To
221  assess passive diffusion across the nuclear envelope, we performed fluorescence recovery
222  after photobleaching (FRAP) experiments of nuclei in cells expressing freely diffusing GFP at
223  different time points after ED as compared to control conditions (Fig. 4C and Fig. S11A-B) (see
224  Materials and Methods). GFP diffusion rates into the nucleus were significantly decreased
225  upon energy depletion (Fig. 4C), contrasting a minor, negligible effect observed within the
226  cytoplasm (Fig. S11C). Passive diffusion was the slowest after about 1 hour of ED, the time at
227  which we structurally analyzed NPC architecture and is thus concomitant with NPC
228  constriction (Fig. 4C).

229

230 ED was shown to generally reduce cellular and nuclear volumes S. pombe cells (28, 29, 31).
231  Wetherefore hypothesized that changes of diameter of the NPC could be a result of a reduced
232 nuclear size that may reduce mechanical strain imposed onto the NPC scaffold by the nuclear

233  membranes. As a proxy for nuclear size we quantified the median nuclear projection surface

Page 8 of 65


https://doi.org/10.1101/2020.07.30.228585
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228585; this version posted July 31, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Zimmerli, Allegretti et al

234  and indeed found a highly significant reduction from 71 pm? to <60 pm? under conditions of
235  ED (Fig. 4D), while NE staining based on Nup60-mCherry fluorescence indicated NE wrinkling
236  (Fig. 4A). This data therefore points to a general shrinkage of nuclei during ED. For a spherical
237  nucleus, the observed changes in nuclear projection area correspond to a reduction of ~15%
238  in nuclear surface area and ~25% in nuclear volume, which would be sufficient to cause a loss
239  of NE tension (50) and may relax NPC scaffold into the constricted conformation (Fig $12).
240

241  Discussion and Conclusion

242  Here we have investigated the compositional and conformational plasticity of NPC
243  architecture in intact cells. We demonstrate that SpNPC scaffold exhibits an unexpected
244  subcomplex arrangement that is breaking the long-standing dogma of a three ringed
245  architecture. Similar to vertebrates and green algae, two concentric Y-complex rings form the
246  NR. On the cytoplasmic side, eight individual cytoplasmic Y-complex vertices that do not
247  exhibit any head-to-tail connection and thus do not form a ring. Although we cannot entirely
248  exclude that the Y-complex tail is flexible at the cytoplasmic side and was thus not resolved
249  during averaging, several lines of evidence argue against this. Previous biochemical analysis
250  was suggestive of less tightly associated tail and vertex portions of the Y-complex in S. pombe
251  (41). Another investigation suggested a non-isostoichiometric assembly of Y-complex
252  members in vivo (39) and structural analysis of the Y-complex from yet another fungus,
253  namely Myceliophthora thermophila, had demonstrated in vitro that Nup145C forms a stable
254  fold and associates with the vertex in absence of Nup107 (51). Although the Y-complex does
255  contain hinges (32, 51-54) that are likely important to facilitate large scale conformational
256  changes, the Nup189C-Nup107 interface is not known to be flexible. Taken together with the
257  factthat the observed electron optical density sharply declines at the respective site, it is very
258 likely that the interface between SpNup189C (HsNup96) and SpNup107, which was thought
259  to be conserved, is not formed in the cytoplasm but only in the nucleoplasm. A recent study
260 forced SpNupl07 to the cytoplasmic side by expression of a SpNup189C-SpNup107 fusion
261  protein which led to re-localization of SpNup131 to the cytoplasmic side (39), and thus further
262  supports the here observed absence of the cytoplasmic Y-complex tail. How precisely S.
263  pombe cells spatially segregate the two different types of Y-complexes remains uncertain.

264  Our survey of public databases for splice variants, post-translational modifications and
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265 homologous structures did not yield significant clues. In contrast to vertebrates (35, 44), S.
266  pombe Ely5 is a member of both the nuclear and the cytoplasmic Y-complex vertex. It appears
267  plausible that ELYS acquired additional functional domains during evolution of open mitosis
268 in metazoans such as the C-terminal disordered region and AT-hook to tether Y-complexes to
269  NPC seeding sites on chromatin and consequently to the nuclear side of the NE.

270

271  We further show how conformational changes in NPC architecture mediate its constriction
272  and dilation within intact cells in response to a defined physiological cue, namely the energy
273  status of the cell. ED leads to a massive constriction of the central channel that results in a
274  ~2-fold loss in volume and is concomitant with a reduction of passive diffusion across the NE,
275  while active nuclear transport is completely shut down. If the observed reductions of
276  molecular exchange are directly or indirectly related to the NPC constriction remains
277  challenging to address, given the manifold processes occurring in cells entering quiescence in
278 response to ED (28-30, 55, 56). It however appears plausible that a reduction of the nuclear
279  pore central channel volume limits the diffusion rate. In fact it has been suggested that NPCs
280 reduce the diffusion rate of passively translocating molecules in response to their molecular
281  size, rather than showing a strict size exclusion threshold (57). It has been further shown that
282  active nuclear transport does not enhance passive diffusion (58, 59) and several studies have
283  shown that cytoplasmic diffusion of small proteins, such as soluble mCherry, is not
284  significantly affected during ED (28). Finally, a recent study showed that the uptake and
285  partitioning of both passively diffusing and nuclear transport factor (NTF)-like molecules by
286  FG-domain in vitro is directly dependent on the their concentration (60). All of which agrees
287  well with our findings. It therefore is plausible that a constricted central channel volume leads
288  to an increased local FG-domain concentration which in turn limits the passive diffusion of
289  molecules of a constant size, similar to the diffusion limitation observed in response to
290 increasing molecular size under control conditions.

291

292  Peripheral channels are thought to be important for the nuclear import of inner nuclear
293 membrane proteins (11-13). Here we observed around 3-4 nm wide lateral gaps between the
294  individual spokes of actively transporting NPCs. Notably, our data processing workflow yields

295  an average of conformation under the respective conditions and individual spokes are even
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296  more dynamic ((6) and this study). Therefore, it is plausible that the opening and closing of
297  peripheral channels may regulate the translocation of inner nuclear membrane proteins.
298

299 Based on crystal structures of fragments of the Nspl (HsNup62) complex, it had been
300 previously suggested that NPCs undergo dilation cycles that involve refolding and alternative
301 configurations of the coiled-coil domains of the complex (61). The conformational changes
302 observed in this study are very different. They do not necessitate a rearrangement of
303 subcomplex folds but are rather based on large scale movements (Videos S4-S7). Such
304 movements may also be relevant during NPC assembly or turnover, where significant smaller
305 diameters have been observed (4, 8, 9).

306

307 How ED mechanically leads to NPC constriction remains to be further addressed in the future.
308 It appears likely that a reduced nuclear volume relieves NE tension and in turn allows NPCs to
309 constrict (50). At this point, we cannot exclude additional factors such as the previously
310 reported cellular pH-change during ED (28, 29) or the shut-down of active nuclear transport
311 itself to have an effect on NTF occupancy and NPC conformation. However, mechanical
312 tension on the NE and active nuclear transport are certainly diminished during NE or NPC
313  isolation. Therefore, previous structural analysis of such preparations has yielded structures
314  that correspond to the most constricted conformation at the very end of the scale.

315

316 In conclusion we show that NPCs within livings cells populate a much larger conformational
317  space and thereby confirm their importance as regulators of nucleocytoplasmic transport in
318 response to environmental cues in living organisms on a cellular level. Hence our study
319 highlights the power and importance of in cellulo structural analyzes to study such crucial

320 physiological processes at the macromolecular level within the relevant cellular environment.
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Figure 1. In cellulo cryo-EM map of the S. pombe NPC. A) Isosurface rendered views of the S.
pombe NPC as seen from the cytoplasm (left) and the nucleoplasm (right; with membranes in
dark and protein in light grey). While the cytoplasmic view (left) reveals eight disconnected
protein entities instead of a cytoplasmic ring, the nuclear view (right) shows two concentric
nuclear Y-complex rings. B) Same as (A) but shown as cutaway view. While the asymmetric
curvature of the nuclear membranes and the arrangement of the cytoplasmic side is
unprecedented in other species, the inner ring architecture is highly conserved as highlighted
in the inset (see also Fig. S5). Fitting of inner ring nucleoporin homology models explains the

vast majority of the observed electron optical density.
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333
334  Figure 2. Architecture of spNPC outer rings. A) Systematic fitting and integrative modeling of

335 all S. pombe Y-complex nucleoporins reveals a head-to-tail arrangement with two concentric
336 Y-complex rings on the nuclear side of the SpNPC similar to humans. A segment of the NR of
337 the cryo-EM map is shown isosurface rendered in transparent light grey. The adjacent inner
338 Y-complexes are shown in grey and outer Y-complexes are shown in orange. B) Integrative
339 model of the cytoplasmic protein entities. The fit of the Y-complex vertex explains most of
340 the observed density. The mRNA export platform as identified in (4, 62) is segmented in
341  yellow. C, D) Verification of the molecular identity of the observed structure. C) The nup37A
342  cryo-EM map is shown in light grey and overlaid with the difference map (cyan) of the wild
343  type and nup37A maps, both filtered to 27 A. The missing density in the long arm of the Y-
344  vertex coincidences with the position of Nup37 (dark red) of the Y-complex vertex (dark grey,
345 asin A). D) nup37A-ely5A double knockout map (light grey) overlaid with the corresponding
346  difference map (cyan). Differences are apparent at the location of both, Nup37 (dark red) and

347  Ely5 (light red) with respect to the fitted Y-complex model (dark grey).
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349  Figure 3. NPCs constrict upon energy depletion. A) Diameter measurement of control

350 (n=438) and energy depleted (n=271) NPCs based on subunit positions obtained by STA (see
351 Materials and methods) reveals a significant constriction of NPCs upon ED (mean # standard
352  error of mean (SdEM) control: 68.2 nm and mean ED: 55.84 nm, whiskers indicate standard
353  deviation, p-value < 0.0001, two-sided t-test). B) Slices through subtomogram averages

354  corresponding to (A) show the different conformations at the level of the IR. NPCs were

355 divided into two classes with diameters of <50 nm (left) and >50 nm (right; scale bar: 50
356 nm). C) Measurements of individual NPC diameters at the CR, IR and NR in control

357 conditions and during ED reveal significant diameter constriction of all three rings (all p-
358  values <0.0001; ctrl control; ED_m represents the class with diameter of >50nm; ED_s

359 represents the class with diameter of <50 nm. Diameters mean * SAEM measured are: 67.25
360 +0.44,n=341 (ctrl_cytoplasmic_side); 59.29 + 0.6817, n=136 (ED_m_cytoplasmic_side) and
361 43.15+0.6509, n=68 (ED_s_cytoplasmic_side); 71.59 + 0.3459, n=341 (ctrl_IR); 64.73

362 0.626,n=136 (ED_m_IR) and 49 £ 0.3815, n=68 (ED_s_IR); 80.22 + 0.3106, n=341 (ctrl_NR);
363 77.71+0.4006, n=136 (ED_m_NR) and 70.59 + 0.5001, n=68, whiskers indicate standard
364  deviation. D) Cytoplasmic view (top) and nuclear view (bottom) of cryo-EM maps

365 superimposed with the respective integrative models from actively transporting,

366 intermediate and fully constricted NPCs illustrating the overall conformational change

367 leading to a central channel diameter constriction from 72 nm to 49 nm. The cytoplasmic
368 and IR spokes move as individual entities and contribute the most to the central channel
369 diameter change, whereas the NR constricts to a lesser extent. E) Same as (D) but show as
370 cutaway side view. Upon constriction, the mRNA export platform bends towards the center
371  of the NPC. Conformational changes of the NR are less dramatic and include mostly changes
372  inthe curvature of the Y complexes (see also supplementary videos 4-8).

373
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Figure 4 How energy depletion affects transport across the nuclear envelope and nuclear
size. A) Maximum projected confocal stack from life cell imaging of NLS-GFP and Nup60-
mCherry are used to measure active nuclear transport and nuclear size during energy
depletion. Actively imported NLS-GFP loses its nuclear localization during ED indicating a
shutdown of active nuclear transport during ED. The nuclear projection area is reduced during
ED as determined by segmenting the Nup60-mCherry NE signal, indicating a reduced nuclear
volume. Orange (nuclear) and blue (cytoplasmic) circles indicate areas used for quantification
of the GFP signal. Nuclear projection areas were determined in the mCherry-channel using
automated segmentation (see Materials and Methods) (scale bar: 5um). B) Quantification of
nuclear/cytoplasmic signal shows a significant leakage of NLS-GFP into the cytoplasm and thus
indicates a shutdown of active nuclear transport already after 30 min of ED. The observed
mean log2 fold change were: 3.276 (n=623) under control conditions; 0.662 (n=584) after 30
min; 0.3654 (n=722) 60 min and 0.2144 (n=604) >150 min after ED (all adjusted p-values

<0.0001, ordinary one-way ANOVA and Tukey’s multiple comparison test). C) FRAP-recovery
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389  half-life times of nuclear signal from freely diffusing GFP at various time points after ED are
390 significantly longer during ED as compared to control conditions (red dots) (p-value <0.0001,
391 two-sided unpaired t-test) indicating a general down regulation of passive diffusion under
392  these conditions. Passive nuclear diffusion of free GFP reaches a minimum after ~1 hour of
393  ED and subsequently recovers slightly, pointing to cellular adaptation. The blue area shows
394  the timepoint at which cryo-EM grids were prepared for structural analysis of ED NPCs. D)
395  Histogram of quantified nuclear projection areas measured in segmented mCherry-channel
396 of life-cell imaging as shown in (A) reveal a significant shift towards smaller values during ED
397  (blue curves) as compared to control conditions (red curve) indicating a general loss of nuclear
398 volume during ED that also manifest in NE wrinkling as seen in (A) (all adjusted p-values are
399  <0.0001, one-way ordinary ANOVA and Holm-Sidak’s multiple comparison test with n=1056
400 control, n=1168 30min, n=2153 60min and n=1255 >150min after ED).

401

402

403

404 Supplementary Material

405

406  Materials and Methods
407  Supplementary figures 1-12
408 Supplementary tables 1-3
409 Supplementary videos 1-7
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