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Abstract 

Age-associated DNA methylation reflects aspects of biological aging - therefore epigenetic clocks for mice can 

help to elucidate the impact of treatments or genetic background on the aging process in this model organism. 

Initially, age-predictors for mice were trained on genome-wide DNA methylation profiles, whereas we have 

recently described a targeted assay based on pyrosequencing of DNA methylation at only three CG 

dinucleotides (CpGs). Here, we have re-evaluated pyrosequencing approaches in comparison to droplet digital 

PCR (ddPCR) and barcoded bisulfite amplicon sequencing (BBA-seq). At individual CpGs the correlation of 

DNA methylation with chronological age was slightly higher for pyrosequencing and ddPCR as compared to 

BBA-seq. On the other hand, BBA-seq revealed that neighboring CpGs tend to be stochastically modified in 

murine age-associated regions. Furthermore, the binary sequel of methylated and non-methylated CpGs in 

individual reads can be used for single-read predictions, which may reflect heterogeneity in epigenetic aging. In 

comparison to C57BL/6 mice the epigenetic age-predictions using BBA-seq were also accelerated in the shorter-

lived DBA/2 mice, and in C57BL/6 mice with a lifespan quantitative trait locus of DBA/2 mice. Taken together, 

we describe further optimized and alternative targeted methods to determine epigenetic clocks in mice.  
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Introduction 

Aging evokes dynamic changes in DNA methylation (DNAm) at specific CG dinucleotides (CpG) (Dor & Cedar, 

2018). These epigenetic modifications provide a biomarker for the aging process, which is often referred to as 

‘epigenetic clock’ (Horvath & Raj, 2018). They were initially described for humans based on data from Illumina 

BeadChips (Bocklandt et al., 2011; Koch & Wagner, 2011), and in the advent of a fast growing number of such 

datasets the models were further refined - with signatures of many age-associated CpGs - to provide a very high 

correlation of predicted and chronological age. Notably, epigenetic clocks for blood seem to reflect aspects of 

biological age, since the deviation of predicted and chronological age (delta-age) correlates with all-cause 

mortality (Belsky et al., 2020; Marioni et al., 2015) and it is increased in various diseases, such as obesity 

(Horvath et al., 2014), Down syndrome (Horvath et al., 2015), Werner Syndrome (Maierhofer et al., 2017), and 

HIV infection (Gross et al., 2016). Thus, tracking of epigenetic age may also elucidate the impact of drugs or 

other relevant parameters for the aging process, albeit it is challenging to perform such controlled and long-term 

aging intervention studies in humans (Fahy et al., 2019). 

Mice are one of the most popular mammalian models for aging research. Inbreeding, defined growth conditions, 

and the shorter life span of about two years facilitate aging interventions studies with mice that cannot be easily 

performed in humans. Epigenetic clocks for mice were initially based on whole genome bisulfite sequencing 

(WGBS) or reduced representation bisulfite sequencing (RRBS) (Wagner, 2017). They were trained for liver, 

whole blood, or even multi-tissue specimens from mice using hundreds of CpG sites, and they clearly 

demonstrated that epigenetic clocks in mice are affected by genetic, dietary, or pharmacological interventions 

(Petkovich et al., 2017; Stubbs et al., 2017; Wang et al., 2017). However, WGBS and RRBS are relatively labor 

and cost-intensive and the methods do not always provide enough coverage for all the relevant CpGs, which 

hampers application of these age-predictors. 

To overcome these problems, alternative methods for site-specific analysis of DNAm at few selected age-

associated CpGs may be advantageous (Maegawa et al., 2017; Wagner, 2017). We have recently described an 

epigenetic clock that is based on pyrosequencing of DNAm at only three age-associated CpGs to facilitate a 

high accuracy with chronological age in C57BL/6 mice (Han et al., 2018). Notably, epigenetic aging was 

significantly accelerated in the shorter-lived DBA/2 mice (Han et al., 2018), and in congenic C57BL/6 mice 

harboring regions of chromosome 11 from DBA/2 mice that is likely linked to the regulation of lifespan (referred 

to as Line A mice) (Brown et al., 2019). The epigenetic age was also  decelerated by systemic administration of 

a drug that extended murine lifespan (Florian et al., Accepted for publication), implying that the three CpGs 

might also serve as biomarkers of aging at least on an C57BL/6 background. While the pyrosequencing based 

epigenetic clock has proven to be robust and reliable, it is well conceivable that precision, accuracy and 

applicability can be increased by alternative methods. 

Droplet Digital PCR (ddPCR) is a relatively novel targeted approach for DNAm measurement that was reported 

to provide precise results with less PCR bias (Han et al., 2020; Zemmour et al., 2018). Furthermore, barcoded 
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bisulfite amplicon sequencing (BBA-seq), which is based on massive-parallel-sequencing, facilitates DNAm 

analysis of longer amplicons with more neighboring CpGs and provides insight into the DNAm pattern on 

individual DNA strands (Franzen et al., 2017). We have recently demonstrated in BBA-seq data of human blood 

that the correlation of age with DNAm levels at neighboring CpGs follows a bell-shaped curved (Han et al., 

2020). Interestingly, the DNAm pattern of neighboring CpGs was not coherently modified on individual strands, 

as might be anticipated upon binding of an epigenetic writer, but rather seemed to be evoked by stochastic 

modifications (Han et al., 2020). Based on this, we developed an epigenetic age-predictor for BBA-seq data of 

human blood, which was based on the binary sequel of methylated and non-methylated sites in individual reads 

(Han et al., 2020). This approach might reflect heterogeneity of epigenetic aging within a sample. In this study, 

we now established and compared such targeted epigenetic clocks also for mice, which are based on 

pyrosequencing, ddPCR, BBA-seq, or single read predictions. 

Results 

Alternative epigenetic clocks based on pyrosequencing 

In our previous work, we selected nine age-associated genomic regions, which were initially identified for age-

predictors based on genome-wide deep-sequencing of DNAm profiles (Petkovich et al., 2017; Stubbs et al., 

2017). Based on this, we established a 3 CpG model for pyrosequencing measurements in the genes proline 

rich membrane anchor 1 (Prima1), heat shock transcription factor 4 (Hsf4) and potassium voltage-gated channel 

modifier subfamily S member 1 (Kcns1) (Han et al., 2018). Age-predictions correlated very well with the 

chronological age of C57BL/6 mice in a training set (n = 24; R2 = 0.96; Median error = 3.6 weeks) and in two 

independent validation sets (n = 21 and 19; R2 = 0.95 and 0.91; Median error = 5.0 and 5.9 weeks, respectively). 

We initially also described a 15 CpG model, which considered two additional amplicons of the pseudogene 

Gm9312 and myoblast fusion factor (Gm7325) (Han et al., 2018). This 15 CpGs model was identified by machine 

learning and although it provided higher accuracy in the training set (R2 = 0.99; Median error = 2.4 weeks), this 

model was not further validated as we anticipated that the very good correlation might rather be due to overfitting 

(Han et al., 2018). In present study we further explored this 15 CpG model by pyrosequencing for the two 

independent validation sets of C57BL/6 mice (n = 21 and n = 19). In fact, 15 CpG clock gave slightly better 

correlation with chronological age and lower prediction error (R2=0.97 and R2=0.95; median error = 4.9 weeks 

and 5.4 weeks, respectively) than the 3 CpG signature (Figure 1). Thus, the 15 CpG murine epigenetic aging 

clock seems to be advantageous, while the need of two additional PCR amplicons and pyrosequencing 

measurements provides a tradeoff between accuracy and costs.  
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Figure 1. Epigenetic age predictions for pyrosequencing data (15 CpG lasso regression model). 
(a) Multivariable machine learning (Lasso regression) age-predictor based on DNAm levels at 15 CpGs in the 
genes Prima1, Hsf4, Kcns1, Gm9312, Gm7325. Pyrosequencing was performed for 24 C57BL/6 mice (training 
set) as described before (Han et al., 2018). (b) Age predictions with the same model in two independent 
validation sets: 21 C57BL/6 mice from the University of Ulm and 19 C57BL/6 mice from the University of 
Groningen (validation sets 1 and 2, respectively). Coefficients of determination (R2) of DNAm versus 
chronological age and median errors (weeks) are indicated.  
 

Age-prediction with droplet digital PCR 

Droplet digital PCR (ddPCR) is based on parallel PCR reactions in thousands of micro-droplets and therefore 

DNAm analysis with this technology may reduce PCR bias for methylated/non-methylated strands that may 

occur in pyrosequencing (Figure S1a) (Han et al., 2020). Therefore, we have designed ddPCR assay for the 

same three amplicons for Prima1, Hsf4, and Kcns1. However, the targeted CpG within the Hsf4 amplicon was 

different to the pyrosequencing based 3 CpG predictor, as this was better suitable for the ddPCR probe. DNAm 

measurements with ddPCR at all three CpGs revealed high correlation with chronological age in 23 C57BL/6 

mice of the training set (Figure 2a-c), and correlated with the DNAm measurements by pyrosequencing (Figure 

S1b). Based on the ddPCR measurements we determined a multivariable linear regression model that provided 

reliable age-predictions in the validation sets (R2 = 0.97 and 0.88; median error 5.1 and 7.1 weeks). These 

results were slightly less accurate than for the 3 CpG clock by pyrosequencing (Figure 2d), which might be due 

to lower age-association in the neighbouring CpGs of Hsf4. Either way, the results demonstrate that DNAm 

measurements with ddPCR are also well suited for epigenetic clocks in mice. 
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Figure 2. Three CpG epigenetic clock for mice based on droplet digital PCR. 
Age-associated DNAm was measured with ddPCR at 3 CpGs in the genes Prima1 (a), Hsf4 (b) and Kcns1 (c) 
in the training set (n = 23) and two independent validation sets (n = 21 and 19) of C57BL/6 mice. (d) The 
measurements of the training set were used for a multivariable model for epigenetic age predictions. Coefficients 
of determination (R2) of DNAm versus chronological age and median errors (weeks) are demonstrated. 
 

Barcoded bisulfite amplicon sequencing of age-associated regions 

Subsequently, we used barcoded bisulfite amplicon sequencing (BBA-seq) to investigate age-associated DNAm 

in amplicons of Prima1, Hsf4 and Kcns1, which covered 4, 12, and 21 neighboring CpGs, respectively. Overall, 

DNAm measurements correlated in BBA-seq versus pyrosequencing (Figure S2), albeit slightly less than ddPCR 

versus pyrosequencing (Figure S1b). Furthermore, the correlation at individual CpGs with chronological age 

was slightly lower in BBA-seq as compared to pyrosequencing or ddPCR (Table 1). Either way, the three relevant 

or neighboring CpGs of the pyrosequencing clock also provided a high correlation with chronological age (Figure 

3a-c). The BBA-seq measurements of these three CpGs were then used to train a multivariable linear model 

and the age-predictions correlated well in the validation sets 1 and 2 (n = 21 and 19; R2 = 0.95 and 0.91; median 

error = 6.6 and 10 weeks; Figure 3d). Alternatively, we considered all CpGs of the three amplicons to generate 

a Lasso regression model with 10-fold cross-validation that considered 7 CpG sites of the three amplicons. The 

accuracy of age-predictions with this machine learning based model were slightly better for the validation sets 

(n = 21 and 19; R2 = 0.91 and 0.90; median error = 6.1 and 5.9; Figure 3e). Taken together, BBA-seq provided 

similar accuracy in epigenetic age-predictions as pyrosequencing and ddPCR. 

 

Subsequently, we analyzed how DNAm at neighboring CpGs correlates with chronological age. For each CpG 

within the BBA-seq amplicons of Prima1, Hsf4 and Kcns1 we determined the correlation with chronological age 

in the training and validation sets (Figure 3f-h). This analysis revealed that not only the individual CpGs of our 

age predictor are age-associated, but also the CpGs in the direct vicinity, which is in line with our recent analysis 

in humans (Han et al., 2020). 
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Figure 3. Epigenetic age-prediction by BBA-seq. 
DNAm levels (%) of three highly age-associated CpGs within three amplicons Prima1 (a), Hsf4 (b) and Kcns1 
(c) were determined by barcoded bisulfite amplicon sequencing (BBA-seq). (d) Age predictions based on the 
multivariable linear regression model of three CpGs in the C57BL/6 mice. (e) Age predictions with a lasso 
regression model (7 CpGs in the three age-associated regions), which was trained on the training set of C57BL/6 
mice. Coefficients of determination (R2) of DNAm versus chronological age and median errors (weeks) are 
indicated. (f-h) Pearson’s correlations of age with DNAm levels of CpGs within the amplicons of Prima1, Hsf4, 
and Kcns1 are plotted for the blood samples of the training set (n = 23) and two independent validation sets (n 
= 21 and 19). The x-axis represents the position of CpGs within the amplicons. 
 

Table 1. Correlation of DNAm and chronological age in different targeted approaches 

    Prima1 Hsf41 Kcns11 Mean R2 

Pyrosequencing 

Training (n = 24) 0.71 0.96 0.84 0.84 

Validation1 (n = 19) 0.79 0.96 0.81 0.85 

Validation2 (n = 21) 0.69 0.89 0.86 0.81 

ddPCR 

Training (n = 23) 0.8 0.9 0.81 0.84 

Validation1 (n = 19) 0.81 0.94 0.89 0.88 

Validation2 (n = 21) 0.66 0.83 0.87 0.79 

BBA-seq 

Training (n = 23) 0.78 0.87 0.85 0.83 

Validation1 (n = 19) 0.78 0.91 0.78 0.82 

Validation2 (n = 21) 0.64 0.75 0.85 0.75 

1CpGs from the amplicons were always selected by the highest Pearson correlation with chronological 
age, therefore they are not identical in the different sequencing approaches. 
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Epigenetic age predictions for mice based on individual BBA sequencing reads 

In contrast to pyrosequencing or ddPCR, BBA-seq provides individual reads with a binary sequel of either 

methylated or non-methylated CpGs. Heatmaps of DNAm within individual reads indicated that the methylation 

at neighboring CpGs occurs rather independent of each other (Figure 4a and S3a). In fact, Pearson´s correlation 

of DNAm levels between neighboring CpG sites within the three amplicons revealed only moderate correlation 

in epigenetic modifications (Figure 4b and S3b), albeit it was slightly higher than previously observed for BBA-

seq data in three human age-associated regions (Han et al., 2020). 

 

For human BBA-seq data we have recently demonstrated that it is possible to estimate the epigenetic age for 

individual reads, under the assumption that the age-associated modification of DNAm occurs independently at 

neighboring CpGs. The mean of all individual read-predictions within a sample correlated with the chronological 

age (Han et al. 2020). Here, we have analyzed if this was also applicable for murine BBA-seq data. For each 

BBA-seq read of the three amplicons (Prima1, Hsf4 and Kcns1) we estimated the epigenetic age based on the 

binary sequel of methylated and non-methylated CpGs, using the age-associated correlations at individual CpGs 

of the training set. Individual reads were predicted between 0 and 200 weeks (Figure 4c and S3c), which might 

resemble heterogeneity in epigenetic aging within a given sample. Overall the ‘young’ reads were more frequent 

in young donors, whereas ‘old’ reads were more frequent in old mice. Notably, the mean of single-read 

predictions within a sample correlated for all three amplicons with the chronological age of the mice (Figure 4d). 

Particularly for the amplicons of Hsf4 and Kcns1, which harbor more neighboring CpGs, the mean of single read-

predictions correlated good or even better than the DNAm levels at the individual age-associated CpGs (Table 

1). Thus, it is possible to estimate the epigenetic age by the binary sequel of methylated and non-methylated 

CpGs on individual DNA strands, which might also be used as a surrogate for the heterogeneity of epigenetic 

age within a sample. 
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Figure 4. Analysis of age-associated DNAm patterns within individual BBA-seq reads in C57BL/6 mice. 
(a) Frequencies of DNAm patterns in BBA-seq reads (red: methylated; blue: non-methylated) within the 
amplicons of Prima1 (4 neighboring CpGs), Hsf4 (12 neighboring CpGs) and Kcns1 (21 neighboring CpGs). 
Samples of one young (11 weeks) and one old C57BL/6 mouse (117 weeks) from the training set are exemplarily 
depicted. (b) Pearson correlation of DNAm among neighboring CpGs within each of the three amplicons in BBA-
seq data of the training set. (c) Epigenetic ages were estimated for each individual read of the BBA-seq data 
the training set (n = 23). These single-read predictions were performed for each amplicon based on the binary 
sequel of methylated and non-methylated CpGs. The heatmaps depict the relative frequency of reads 
(normalized by the read counts per sample; log scale) that are classified to a specific age category (between 0 
and 200 weeks) for each donor in the training set. (d) The mean age-predictions based on individual BBA-seq 
reads of three amplicons were determined for each sample and then plotted against the chronological age of 
the training (n = 23) and two validation sets (n = 21 and n = 19) of C57BL/6 mice. 
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Genetic background impacts on epigenetic age-predictions of mice 

We have previously demonstrated, that epigenetic age-predictions with our 3 CpG pyrosequencing age-

predictor are accelerated in DBA/2 mice, as compared to C57BL/6 mice, which may reflect the different life 

expectancy of these mouse strains (Han et al., 2018). Furthermore, we demonstrated that age-predictions with 

this predictor were also accelerated in C57BL/6 mice with quantitative trait locus insertion from DBA/2 into the 

congenic C57BL/6 chromosome 11, which was expected to be associated with the shorter lifespan of DBA/2 

(referred to as Line A mice) (Brown et al., 2019). We now determined, within the same samples, whether the 

epigenetic age-acceleration can also be observed in DBA/2 mice (n = 33) and Line A mice (n = 15) using the 

BBA-seq approach. In fact, the predictions with either the 3 CpG BBA-seq, or the 7 CpG BBA-seq Lasso-

regression model, provided very similar results as previously observed for the 3 CpG pyrosequencing clock 

(Figure 5a and b). 

 

 

 

 

 

 

 

 

 

 

Figure 5. Age-predictions with BBA-seq in mice from different genetic background. 
DNAm levels were analyzed with BBA-seq in blood samples of 40 C57BL/6 mice of the validation sets, 33 DBA/2 
mice, and 15 transgenic C57BL/6 mice with an age-associated region from DBA/2 mice (Line A) (Brown et al., 
2019). For epigenetic age predictions we either used (a) the 3 CpG multivariable model, or (b) the lasso 
regression model based on 7 CpGs of the same three amplicons (Prima1, Hsf4, Kcns1). As previously described 
for pyrosequencing, epigenetic age-predictions were logarithmically accelerated in DBA/2 mice (Han et al., 
2018), and also accelerated in Line A mice (Brown et al., 2019).  
 

 

Subsequently, we analyzed the single read patterns of BBA-seq data in DBA/2 and Line A mice. We observed 

the same random gain or loss of DNAm at neighboring CpGs (Figure 6a) and a moderate correlation in DNAm 

at neighboring CpGs (Figure 6b), as previously observed for C57BL/6 mice. Furthermore, single read predictions 

within the three amplicons for Prima1, Hsf4 and Kcns1 (based on the training set of C57BL/6 mice) provided 

similar heterogeneity and acceleration of age-estimations (Figure 6c and d). These results indicate that 

epigenetic aging is generally accelerated within the three age-associated regions in DBA/2 and Line A mice, as 

compared to C57BL/6 mice. 
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Figure 6. Analysis of age-associated DNAm patterns within individual BBA-seq reads in mice from 
different genetic background. 
(a) The plots exemplarily display the frequency of DNAm patterns in two DBA/2 mice: one young (7 weeks) and 
one old DBA/2 mouse(109 weeks). The frequencies of patterns within the amplicons of Prima1, Hsf4 and Kcns1 
were compared, in analogy to Figure 4a. (b) Pearson correlation of DNAm among neighboring CpGs within 
three amplicons from DBA/2 mice (n = 33). (c) Heatmaps of epigenetic age-predictions for individual BBA-seq 
reads of DBA/2 mice (n = 33). Epigenetic ages were estimated based on the binary sequel of methylated and 
non-methylated CpGs for three amplicons (read counts were normalized by the readcounts per sample and are 
depicted in log scale). In analogy to Figure 4c, each read was classified to predicted ages between 0 and 200 
weeks. (d) The mean of the single read predictions of BBA-seq data was determined for each sample and then 
plotted against the chronological age of the DBA/2 (n = 33) and line A (n = 15) mice in comparison with validation 
sets of C57BL/6 mice (n = 40). The linear coefficients of determination (R2) of DNAm versus chronological age 
are indicated. 
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Discussion 

Epigenetic clocks are used as a surrogate marker for the process of biological aging. They are therefore valuable 

tools to gain insight into effects of aging or rejuvenating interventions (Bell et al., 2019). To this end, the murine 

model system enables much better standardization over the life-time than what is achievable in humans (Field 

et al., 2018). The targeted assays for epigenetic clocks are easier applicable than epigenetic clocks that are 

based on genome wide RRBS or WGBS profiles. A bottleneck for the latter is often a low coverage of reads for 

specific CpG sites. Particularly pyrosequencing and ddPCR seem to provide more precise measures for DNAm 

levels at individual CpGs (Blueprint-consortium, 2016). Furthermore, targeted analysis of DNAm only at specific 

CpGs is faster, facilitates better standardization of procedures, and it is more cost-effective than genome-wide 

approaches (Wagner, 2017). Thus, the targeted assays may be particularly advantageous for larger intervention 

studies. On the other hand, the number of CpGs to be implemented into epigenetic clocks provides a tradeoff 

between accuracy, which is generally increased with more age-associated CpGs, versus applicability and costs. 

In this regard, larger signatures that are based on genome wide DNAm profiles may be advantageous.  

 

It is not trivial to directly compare the performance of our targeted epigenetic clocks with the other published 

predictors for WGBS or RRBS data, since the tissues, age-ranges, and methods vary considerably in these 

studies (Meer, Podolskiy, Tyshkovskiy, & Gladyshev, 2018; Petkovich et al., 2017; Stubbs et al., 2017; Wang et 

al., 2017). The previously published RRBS and WGBS clocks revealed high precision in the training sets, which 

markedly decreased when tested on independent samples. For murine blood samples, the blood clock by 

Petkovich et al. showed the best performance with MAE (mean absolute error) of 8.6 weeks (Meer et al., 2018). 

Our targeted approaches provided similar or sometimes even slightly better accuracy, with an MAE ranging from 

4.6 to 12 weeks (or Median error 4.9 to 10 weeks).  

 

In our previous work, we demonstrated that robust and reliable epigenetic age-predictions can be achieved by 

pyrosequencing at three CpGs (Han et al., 2018). We anticipated that the very high correlation of a 15 CpG 

lasso regression model, which was suggested during the review process, might be due to overfitting with the 

relatively small training set (Han et al., 2018). In the current study, we revisited this model to demonstrate that 

it indeed provides higher accuracy and precision than the 3 CpG predictor - however, it also necessitates 

pyrosequencing of two additional amplicons. It therefore depends on the experimental design and resources 

which of the pyrosequencing clocks is better suited. 

 

Upon bisulfite conversion, there is a difference in the sequence of methylated and non-methylated DNA and this 

can entail a PCR bias (Warnecke et al., 1997). Such DNAm sensitive PCR bias might be reduced by ddPCR, 

since it relies on detection of either methylated or non-methylated DNA in individual droplets, rather than the 

amplification efficiency (Weisenberger et al., 2008). So far, ddPCR is particularly applied for detection and 

quantification of genetic aberrations. Several studies demonstrated that it also enables precise measurements 

of DNAm levels (Hindson et al., 2013; Yu, Heinzerling, & Grady, 2018; Zemmour et al., 2018), while only few 
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recent studies reported ddPCR assays for epigenetic clocks in humans (Han et al., 2020; Shi et al., 2018). A 

major challenge for the establishment of such assays is the design of reliable and specific primers and probes 

for the bisulfited converted DNA sequences. In this study, we describe a 3 CpG ddPCR assay, that facilitates 

similar accuracy in age-predictions as the previously described 3 CpG pyrosequencing assay. 

 

Next generation sequencing platforms enable targeted DNAm analysis in a barcoded manner for multiple 

samples in parallel (Han et al., 2020; Naue et al., 2018). In this study, we describe that BBA-seq of only three 

age-associated regions facilitates also reliable epigenetic age-predictions for murine blood samples. 

Advantages of this approach are the very high coverage and the relatively long target regions (up to 500 base 

pairs), which may cover more neighboring CpGs than pyrosequencing or ddPCR (Franzen et al., 2017). Our 

results confirmed that the correlation of chronological age with DNAm levels follows a bell-shaped curve at 

neighboring CpGs within about 200 to 400 bases of BBA-seq amplicons (Han et al., 2020) – this was particularly 

observed in amplicons of Hsf4 and Kcns1 that comprised more neighboring CpGs. On the other hand, within 

individual BBA-seq reads there was only a moderate correlation of DNAm at neighboring CpGs. This is further 

substantiated by the mean single read predictions which clearly correlate with chronological age. Thus, our 

results support the notion that age-associated genomic regions favor a stochastic accumulation of DNAm 

changes, which may be attributed to other epigenetic modifications or higher chromatin order. If age-associated 

DNAm was directly medicated by epigenetic writers, such as DNMTs or TETs, it might be anticipated that 

neighboring CpGs are rather coherently modified. The functional relevance of these age-associated DNAm 

changes remains unclear. Altered promoter methylation with aging was found to be generally unrelated to altered 

gene expression, also in mice (Hadad, Masser, Blanco-Berdugo, Stanford, & Freeman, 2019). There is evidence, 

that the epigenetic drift by stochastic DNAm changes in promoters results in degradation of coherent 

transcriptional networks during aging (Hernando-Herraez et al., 2019). In the future, it will be important to better 

understand and validate how heterogeneity in single BBA-seq read predictions reflects heterogeneity of 

epigenetic aging within a sample. To this end, it will be interesting to further investigate single-cell DNAm profiles, 

longer reads that cover multiple age-associated domains (e.g. by nanopore sequencing), or analysis of single-

cell derived clones. 

 

Various epigenetic clocks for mice were demonstrated to reflect aspects of biological aging, rather than only 

chronological aging (Meer et al., 2018). It is still not unequivocally proven if specific epigenetic clocks capture 

such aspects of biological aging better, or if they may rather be influenced by the cellular composition or by 

direct association of DNAm at individual CpGs with specific diseases. We have recently demonstrated that 

inhibition of Cdc42 activity extends lifespan in C57BL/6 mice, and this is also reflected by younger age-

predictions with our 3 CpG pyrosequencing signature (Florian et al., Accepted for publication). In this study, we 

validated that the shorter-lived DBA/2 mice and the Line A mice have also accelerated epigenetic aging in BBA-

seq data – in the conventional epigenetic predictors based on DNAm levels as well as in the single-read BBA-

seq predictions for all three amplicons. Thus, our 3 CpG signature clearly captures aspects of biological aging 
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in mice. Furthermore, the accelerated epigenetic aging in DBA/2 and Line A mice cannot be attribute to 

deviations at individual CpGs, but rather affects the entire age-associated region. 

 

Taken together, we further developed and compared targeted epigenetic clocks for mice with pyrosequencing, 

ddPCR, or BBA-seq. All three methods provided reliable age-predictions with similar accuracy as previously 

described for RRBS and WGBS clocks. For DNAm levels at individual CpGs the measurements with 

pyrosequencing and ddPCR seemed to correlate slightly better with chronological age than BBA-seq results. 

On the other hand, the longer reads of BBA-seq gave better insight into neighboring CpGs and facilitate even 

single-read predictions that may reveal heterogeneity in epigenetic aging within a sample – depending on the 

availability of instruments and the experimental design all of these methods may now be considered for targeted 

epigenetic clocks in mice. 

Materials and Methods 

Mouse strains and blood collection 

Blood specimens of C57BL/6J mice of the training set (n = 24) and of the validation set 1 (n = 21), DBA/2J mice 

(n = 33), and Line A mice (n = 15) were obtained by submandibular bleeding (100-200 μl) of living mice or 

postmortem from the vena cava at the University of Ulm. One sample from the training set was excluded in the 

subsequent ddPCR and BBA-seq analysis due to the lack of bisulfite converted DNA. C57BL/6J samples of the 

validation set 2 (n = 19) were collected at the University of Groningen from the cheek. All mice were fed by ad 

libitum, and housed under pathogen-free conditions. Experiments were performed in compliance with the 

Institutional Animal Care of the Ulm University as well as by Regierungspräsidium Tübingen and with the 

Institutional Animal Care and Use Committee of the University of Groningen (IACUC-RUG), respectively. 

Genomic DNA isolation and bisulfite conversion 

Genomic DNA from 50 µl murine blood was isolated by the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) 

according to the manufacturer’s instructions. Then, DNA was quantified by Nanodrop 2000 Spectrophotometers 

(Thermo Scientific, Wilmington, USA). 200 ng of extracted genomic DNA was subsequently bisulfite-converted 

with the EZ DNA Methylation Kit (Zymo Research, Irvine, USA). 

Pyrosequencing 

Bisulfite converted DNA was initially subjected to PCR amplification. Primers were purchased at Metabion and 

the sequences are provided in Table S1, as described before (Han et al., 2018). 20 µl PCR products were 

subsequently immobilized to 5 µl Streptavidin Sepharose High Performance Bead (GE Healthcare, Piscataway, 

NJ, USA), and then were finally annealed to 1 µl sequencing primer (5 μM) for 2 minutes at 80°C. Amplicons 

were sequenced using PyroMark Gold Q96 Reagents (Qiagen) on PyroMark Q96 ID System (Qiagen, Hilden, 

Germany) and analyzed with PyroMark Q CpG software (Qiagen). The relevant sequences are depicted for the 
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five relevant genomic regions in Figure S4. The 15 CpG model for pyrosequencing data, which was trained by 

lasso regression with the lambda parameter chosen by cross-fold validation, has been described before (Han 

et al., 2018) and is provided in Table S2. 

Droplet digital PCR (ddPCR) 

DNA methylation analysis by ddPCR was performed with a QX200TM Droplet DigitalTM PCR System (Bio-Rad, 

CA, USA). We used dual-labeled TaqMan hydrolysis probes which recognize either the methylated or non-

methylated target CpG site.  All the primers and probes were designed by Primer3Plus software (Table S3). 

Each 20 μl reaction mixture consisted of 10 μl of 2X ddPCR Supermix (No dUTP; Bio-Rad), 1 μM of the forward 

and reverse primers, 250 nM of the dual probes, and 25 ng of bisulfite converted DNA. The mixture and 70 μl of 

droplet generation oil was then subjected into QX200 Droplet Generator (Bio-Rad). 40 μl of the generated 

droplets were transferred to the ddPCR 96 well plate (Bio-Rad). The plate was heat sealed with the PX1 PCR 

Plate Sealer (Bio-Rad) and subsequently placed in the C1000 Touch Thermal Cycler (Bio-Rad) for PCR runs as 

follows:  95°C for 10 min, 40 cycles of 94°C for 30 s and 1 min (2.5°C/s ramp rate) at 55°C (Prima1, Kcns1) or 

58°C (Hsf4), followed by 10 min enzyme deactivation step at 98°C and a final hold at 4°C. The PCR plate was 

read on the QX200 droplet reader (Bio-Rad) and data were analyzed by QuantaSoft 1.7.4 software (Bio-Rad). 

The percentage methylation of each reaction was determined by Poisson statistics according to the fraction of 

positive droplets for methylated and non-methylated probes. The multivariable regression model for ddPCR is 

provided in Table S4. 

Barcoded bisulfite amplicon sequencing (BBA-seq) 

Target sequences (Figure S5) for Prima1, Hsf4 and Kcns1 were amplified by PyroMark PCR kit (Qiagen) using 

forward and reverse primers containing handle sequences for the subsequent barcoding step (Table S5). PCR 

was run under the following conditions: 95°C for 15 min; 40 cycles of 94°C for 30 s, 60°C for 30 s, 72°C for 30 

s; and final elongation 72°C for 10 min. The three amplicons of each donor were pooled at equal concentrations 

under the quantification of Qubit (Invitrogen), and cleaned up with paramagnetic beads from Agencourt AMPure 

XP PCR Purification system (Beckman Coulter). 4 μl of pooled products were subsequently added to 21 μl 

PyroMark Master Mix (Qiagen) containing 10 pmol of barcoded primers (adapted from NEXTflexTM 16S V1-V3 

Amplicon Seq Kit, Bioo Scientific, Austin, USA) for a second amplification (95°C for 15 min; 16 cycles of 95°C 

for 30 s, 60°C for 30s, 72°C for 30s; final elongation 72°C for 10min). PCR products were again quantified by 

Qubit (Invitrogen), equimolarly pooled, and cleaned up by Select-a-Size DNA Clean & Concentrator Kit (Zymo 

Research, USA). 10 pM DNA library was prepared under Denature and Dilute Libraries Guide of Illumine MiSeq 

System with 15% PhiX spike-in control (Illumina, CA, USA) and eventually subjected to 250 bp pair-end 

sequencing on a MiSeq lane (Illumina, CA, USA) using Miseq reagent V2 Nano kit (Illumina). We utilized the 

Bismark tool (Krueger & Andrews, 2011) to determine the DNAm levels for each CpG based on BBA-seq data. 

Multivariable regression models for epigenetic age predictions were generated based on three CpGs that 

revealed highest correlation with chronological age per amplicon (Table S6). Alternatively, we used a penalized 

regression model from the R package glmnet on the training dataset to establish a predictor with machine 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.30.228122doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.228122
http://creativecommons.org/licenses/by-nd/4.0/


15 
 

learning (Table S7). The alpha parameter of glmnet was set to 1 (lasso regression) and the lambda parameter 

was chosen by cross-fold validation of the training dataset (10-fold cross validation). 

Epigenetic age predictions for individual BBA-seq reads 

As previously described, we developed an algorithm to estimate epigenetic age based on the binary sequel of 

methylated and non-methylated CpGs within individual reads of BBA-seq data (Han et al., 2020). In brief, 

according the age-associated correlations at individual CpG of the BBA-seq training set, each DNAm pattern 

with binary sequel of methylation and unmethylation was assigned to their most representative corresponding 

age (0 to 200 weeks). For each donor, we calculated the mean of strand-specific age-predictions weighted by 

read counts as final epigenetic age predictions. Further details on the rational and derivation of the mathematical 

model are provided in our previous work (Han et al., 2020). 
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