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Abstract

Age-associated DNA methylation reflects aspects of biological aging - therefore epigenetic clocks for mice can
help to elucidate the impact of treatments or genetic background on the aging process in this model organism.
Initially, age-predictors for mice were trained on genome-wide DNA methylation profiles, whereas we have
recently described a targeted assay based on pyrosequencing of DNA methylation at only three CG
dinucleotides (CpGs). Here, we have re-evaluated pyrosequencing approaches in comparison to droplet digital
PCR (ddPCR) and barcoded bisulfite amplicon sequencing (BBA-seq). At individual CpGs the correlation of
DNA methylation with chronological age was slightly higher for pyrosequencing and ddPCR as compared to
BBA-seq. On the other hand, BBA-seq revealed that neighboring CpGs tend to be stochastically modified in
murine age-associated regions. Furthermore, the binary sequel of methylated and non-methylated CpGs in
individual reads can be used for single-read predictions, which may reflect heterogeneity in epigenetic aging. In
comparison to C57BL/6 mice the epigenetic age-predictions using BBA-seq were also accelerated in the shorter-
lived DBA/2 mice, and in C57BL/6 mice with a lifespan quantitative trait locus of DBA/2 mice. Taken together,

we describe further optimized and alternative targeted methods to determine epigenetic clocks in mice.
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Introduction

Aging evokes dynamic changes in DNA methylation (DNAm) at specific CG dinucleotides (CpG) (Dor & Cedar,
2018). These epigenetic modifications provide a biomarker for the aging process, which is often referred to as
‘epigenetic clock’ (Horvath & Raj, 2018). They were initially described for humans based on data from Illumina
BeadChips (Bocklandt et al., 2011; Koch & Wagner, 2011), and in the advent of a fast growing number of such
datasets the models were further refined - with signatures of many age-associated CpGs - to provide a very high
correlation of predicted and chronological age. Notably, epigenetic clocks for blood seem to reflect aspects of
biological age, since the deviation of predicted and chronological age (delta-age) correlates with all-cause
mortality (Belsky et al., 2020; Marioni et al., 2015) and it is increased in various diseases, such as obesity
(Horvath et al., 2014), Down syndrome (Horvath et al., 2015), Werner Syndrome (Maierhofer et al., 2017), and
HIV infection (Gross et al., 2016). Thus, tracking of epigenetic age may also elucidate the impact of drugs or
other relevant parameters for the aging process, albeit it is challenging to perform such controlled and long-term
aging intervention studies in humans (Fahy et al., 2019).

Mice are one of the most popular mammalian models for aging research. Inbreeding, defined growth conditions,
and the shorter life span of about two years facilitate aging interventions studies with mice that cannot be easily
performed in humans. Epigenetic clocks for mice were initially based on whole genome bisulfite sequencing
(WGBS) or reduced representation bisulfite sequencing (RRBS) (Wagner, 2017). They were trained for liver,
whole blood, or even multi-tissue specimens from mice using hundreds of CpG sites, and they clearly
demonstrated that epigenetic clocks in mice are affected by genetic, dietary, or pharmacological interventions
(Petkovich et al., 2017; Stubbs et al., 2017; Wang et al., 2017). However, WGBS and RRBS are relatively labor
and cost-intensive and the methods do not always provide enough coverage for all the relevant CpGs, which
hampers application of these age-predictors.

To overcome these problems, alternative methods for site-specific analysis of DNAm at few selected age-
associated CpGs may be advantageous (Maegawa et al., 2017; Wagner, 2017). We have recently described an
epigenetic clock that is based on pyrosequencing of DNAm at only three age-associated CpGs to facilitate a
high accuracy with chronological age in C57BL/6 mice (Han et al., 2018). Notably, epigenetic aging was
significantly accelerated in the shorter-lived DBA/2 mice (Han et al., 2018), and in congenic C57BL/6 mice
harboring regions of chromosome 11 from DBA/2 mice that is likely linked to the regulation of lifespan (referred
to as Line A mice) (Brown et al., 2019). The epigenetic age was also decelerated by systemic administration of
a drug that extended murine lifespan (Florian et al., Accepted for publication), implying that the three CpGs
might also serve as biomarkers of aging at least on an C57BL/6 background. While the pyrosequencing based
epigenetic clock has proven to be robust and reliable, it is well conceivable that precision, accuracy and
applicability can be increased by alternative methods.

Droplet Digital PCR (ddPCR) is a relatively novel targeted approach for DNAmM measurement that was reported

to provide precise results with less PCR bias (Han et al., 2020; Zemmour et al., 2018). Furthermore, barcoded
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bisulfite amplicon sequencing (BBA-seq), which is based on massive-parallel-sequencing, facilitates DNAmM
analysis of longer amplicons with more neighboring CpGs and provides insight into the DNAm pattern on
individual DNA strands (Franzen et al., 2017). We have recently demonstrated in BBA-seq data of human blood
that the correlation of age with DNAm levels at neighboring CpGs follows a bell-shaped curved (Han et al.,
2020). Interestingly, the DNAm pattern of neighboring CpGs was not coherently modified on individual strands,
as might be anticipated upon binding of an epigenetic writer, but rather seemed to be evoked by stochastic
modifications (Han et al., 2020). Based on this, we developed an epigenetic age-predictor for BBA-seq data of
human blood, which was based on the binary sequel of methylated and non-methylated sites in individual reads
(Han et al., 2020). This approach might reflect heterogeneity of epigenetic aging within a sample. In this study,
we now established and compared such targeted epigenetic clocks also for mice, which are based on

pyrosequencing, ddPCR, BBA-seq, or single read predictions.

Results

Alternative epigenetic clocks based on pyrosequencing

In our previous work, we selected nine age-associated genomic regions, which were initially identified for age-
predictors based on genome-wide deep-sequencing of DNAm profiles (Petkovich et al., 2017; Stubbs et al.,
2017). Based on this, we established a 3 CpG model for pyrosequencing measurements in the genes proline
rich membrane anchor 1 (Primal), heat shock transcription factor 4 (Hsf4) and potassium voltage-gated channel
modifier subfamily S member 1 (Kcnsl) (Han et al., 2018). Age-predictions correlated very well with the
chronological age of C57BL/6 mice in a training set (n = 24; R? = 0.96; Median error = 3.6 weeks) and in two
independent validation sets (n = 21 and 19; R?2 = 0.95 and 0.91; Median error = 5.0 and 5.9 weeks, respectively).
We initially also described a 15 CpG model, which considered two additional amplicons of the pseudogene
Gm9312 and myoblast fusion factor (Gm7325) (Han et al., 2018). This 15 CpGs model was identified by machine
learning and although it provided higher accuracy in the training set (R2 = 0.99; Median error = 2.4 weeks), this
model was not further validated as we anticipated that the very good correlation might rather be due to overfitting
(Han et al., 2018). In present study we further explored this 15 CpG model by pyrosequencing for the two
independent validation sets of C57BL/6 mice (n = 21 and n = 19). In fact, 15 CpG clock gave slightly better
correlation with chronological age and lower prediction error (R>=0.97 and R?=0.95; median error = 4.9 weeks
and 5.4 weeks, respectively) than the 3 CpG signature (Figure 1). Thus, the 15 CpG murine epigenetic aging
clock seems to be advantageous, while the need of two additional PCR amplicons and pyrosequencing

measurements provides a tradeoff between accuracy and costs.
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Figure 1. Epigenetic age predictions for pyrosequencing data (15 CpG lasso regression model).

(a) Multivariable machine learning (Lasso regression) age-predictor based on DNAm levels at 15 CpGs in the
genes Primal, Hsf4, Kcnsl, Gm9312, Gm7325. Pyrosequencing was performed for 24 C57BL/6 mice (training
set) as described before (Han et al., 2018). (b) Age predictions with the same model in two independent
validation sets: 21 C57BL/6 mice from the University of Uim and 19 C57BL/6 mice from the University of
Groningen (validation sets 1 and 2, respectively). Coefficients of determination (R?) of DNAm versus
chronological age and median errors (weeks) are indicated.

Age-prediction with droplet digital PCR

Droplet digital PCR (ddPCR) is based on parallel PCR reactions in thousands of micro-droplets and therefore
DNAm analysis with this technology may reduce PCR bias for methylated/non-methylated strands that may
occur in pyrosequencing (Figure Sla) (Han et al., 2020). Therefore, we have designed ddPCR assay for the
same three amplicons for Primal, Hsf4, and Kcnsl. However, the targeted CpG within the Hsf4 amplicon was
different to the pyrosequencing based 3 CpG predictor, as this was better suitable for the ddPCR probe. DNAmM
measurements with ddPCR at all three CpGs revealed high correlation with chronological age in 23 C57BL/6
mice of the training set (Figure 2a-c), and correlated with the DNAmM measurements by pyrosequencing (Figure
S1b). Based on the ddPCR measurements we determined a multivariable linear regression model that provided
reliable age-predictions in the validation sets (R? = 0.97 and 0.88; median error 5.1 and 7.1 weeks). These
results were slightly less accurate than for the 3 CpG clock by pyrosequencing (Figure 2d), which might be due
to lower age-association in the neighbouring CpGs of Hsf4. Either way, the results demonstrate that DNAmM

measurements with ddPCR are also well suited for epigenetic clocks in mice.
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Figure 2. Three CpG epigenetic clock for mice based on droplet digital PCR.

Age-associated DNAmM was measured with ddPCR at 3 CpGs in the genes Primal (a), Hsf4 (b) and Kcnsl (c)
in the training set (n = 23) and two independent validation sets (n = 21 and 19) of C57BL/6 mice. (d) The
measurements of the training set were used for a multivariable model for epigenetic age predictions. Coefficients
of determination (R2) of DNAm versus chronological age and median errors (weeks) are demonstrated.

Barcoded bisulfite amplicon sequencing of age-associated regions

Subsequently, we used barcoded bisulfite amplicon sequencing (BBA-seq) to investigate age-associated DNAmM
in amplicons of Primal, Hsf4 and Kcns1, which covered 4, 12, and 21 neighboring CpGs, respectively. Overall,
DNAmM measurements correlated in BBA-seq versus pyrosequencing (Figure S2), albeit slightly less than ddPCR
versus pyrosequencing (Figure S1b). Furthermore, the correlation at individual CpGs with chronological age
was slightly lower in BBA-seq as compared to pyrosequencing or ddPCR (Table 1). Either way, the three relevant
or neighboring CpGs of the pyrosequencing clock also provided a high correlation with chronological age (Figure
3a-c). The BBA-seq measurements of these three CpGs were then used to train a multivariable linear model
and the age-predictions correlated well in the validation sets 1 and 2 (n = 21 and 19; R2=0.95 and 0.91; median
error = 6.6 and 10 weeks; Figure 3d). Alternatively, we considered all CpGs of the three amplicons to generate
a Lasso regression model with 10-fold cross-validation that considered 7 CpG sites of the three amplicons. The
accuracy of age-predictions with this machine learning based model were slightly better for the validation sets
(n =21 and 19; R2 = 0.91 and 0.90; median error = 6.1 and 5.9; Figure 3e). Taken together, BBA-seq provided

similar accuracy in epigenetic age-predictions as pyrosequencing and ddPCR.

Subsequently, we analyzed how DNAm at neighboring CpGs correlates with chronological age. For each CpG
within the BBA-seq amplicons of Primal, Hsf4 and Kcns1 we determined the correlation with chronological age
in the training and validation sets (Figure 3f-h). This analysis revealed that not only the individual CpGs of our
age predictor are age-associated, but also the CpGs in the direct vicinity, which is in line with our recent analysis

in humans (Han et al., 2020).
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Figure 3. Epigenetic age-prediction by BBA-seq.

DNAm levels (%) of three highly age-associated CpGs within three amplicons Primal (a), Hsf4 (b) and Kcnsl
(c) were determined by barcoded bisulfite amplicon sequencing (BBA-seq). (d) Age predictions based on the
multivariable linear regression model of three CpGs in the C57BL/6 mice. (e) Age predictions with a lasso
regression model (7 CpGs in the three age-associated regions), which was trained on the training set of C57BL/6
mice. Coefficients of determination (R2) of DNAm versus chronological age and median errors (weeks) are
indicated. (f-h) Pearson’s correlations of age with DNAm levels of CpGs within the amplicons of Primal, Hsf4,
and Kcnsl are plotted for the blood samples of the training set (n = 23) and two independent validation sets (n
=21 and 19). The x-axis represents the position of CpGs within the amplicons.

Table 1. Correlation of DNAm and chronological age in different targeted approaches

Primal Hsf4! Kcns1!? Mean R2
Training (n = 24) 0.71 0.96 0.84 0.84
Pyrosequencing Validation1 (n = 19) 0.79 0.96 0.81 0.85
Validation2 (n = 21) 0.69 0.89 0.86 0.81
Training (n = 23) 0.8 0.9 0.81 0.84
ddPCR Validationl1 (n = 19) 0.81 0.94 0.89 0.88
Validation2 (n = 21) 0.66 0.83 0.87 0.79
Training (n = 23) 0.78 0.87 0.85 0.83
BBA-seq Validationl (n = 19) 0.78 0.91 0.78 0.82
Validation2 (n = 21) 0.64 0.75 0.85 0.75

1CpGs from the amplicons were always selected by the highest Pearson correlation with chronological
age, therefore they are not identical in the different sequencing approaches.
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Epigenetic age predictions for mice based on individual BBA sequencing reads

In contrast to pyrosequencing or ddPCR, BBA-seq provides individual reads with a binary sequel of either
methylated or non-methylated CpGs. Heatmaps of DNAm within individual reads indicated that the methylation
at neighboring CpGs occurs rather independent of each other (Figure 4a and S3a). In fact, Pearson’s correlation
of DNAmM levels between neighboring CpG sites within the three amplicons revealed only moderate correlation
in epigenetic modifications (Figure 4b and S3b), albeit it was slightly higher than previously observed for BBA-
seq data in three human age-associated regions (Han et al., 2020).

For human BBA-seq data we have recently demonstrated that it is possible to estimate the epigenetic age for
individual reads, under the assumption that the age-associated modification of DNAm occurs independently at
neighboring CpGs. The mean of all individual read-predictions within a sample correlated with the chronological
age (Han et al. 2020). Here, we have analyzed if this was also applicable for murine BBA-seq data. For each
BBA-seq read of the three amplicons (Primal, Hsf4 and Kcnsl) we estimated the epigenetic age based on the
binary sequel of methylated and non-methylated CpGs, using the age-associated correlations at individual CpGs
of the training set. Individual reads were predicted between 0 and 200 weeks (Figure 4c and S3c), which might
resemble heterogeneity in epigenetic aging within a given sample. Overall the ‘young’ reads were more frequent
in young donors, whereas ‘old’ reads were more frequent in old mice. Notably, the mean of single-read
predictions within a sample correlated for all three amplicons with the chronological age of the mice (Figure 4d).
Particularly for the amplicons of Hsf4 and Kcns1, which harbor more neighboring CpGs, the mean of single read-
predictions correlated good or even better than the DNAm levels at the individual age-associated CpGs (Table
1). Thus, it is possible to estimate the epigenetic age by the binary sequel of methylated and non-methylated
CpGs on individual DNA strands, which might also be used as a surrogate for the heterogeneity of epigenetic

age within a sample.
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Figure 4. Analysis of age-associated DNAm patterns within individual BBA-seq reads in C57BL/6 mice.
(@) Frequencies of DNAm patterns in BBA-seq reads (red: methylated; blue: non-methylated) within the
amplicons of Primal (4 neighboring CpGs), Hsf4 (12 neighboring CpGs) and Kcnsl (21 neighboring CpGs).
Samples of one young (11 weeks) and one old C57BL/6 mouse (117 weeks) from the training set are exemplarily
depicted. (b) Pearson correlation of DNAmM among neighboring CpGs within each of the three amplicons in BBA-
seq data of the training set. (c) Epigenetic ages were estimated for each individual read of the BBA-seq data
the training set (n = 23). These single-read predictions were performed for each amplicon based on the binary
sequel of methylated and non-methylated CpGs. The heatmaps depict the relative frequency of reads
(normalized by the read counts per sample; log scale) that are classified to a specific age category (between 0
and 200 weeks) for each donor in the training set. (d) The mean age-predictions based on individual BBA-seq
reads of three amplicons were determined for each sample and then plotted against the chronological age of
the training (n = 23) and two validation sets (n = 21 and n = 19) of C57BL/6 mice.

(log scale)


https://doi.org/10.1101/2020.07.30.228122
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228122; this version posted July 30, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Genetic background impacts on epigenetic age-predictions of mice

We have previously demonstrated, that epigenetic age-predictions with our 3 CpG pyrosequencing age-
predictor are accelerated in DBA/2 mice, as compared to C57BL/6 mice, which may reflect the different life
expectancy of these mouse strains (Han et al., 2018). Furthermore, we demonstrated that age-predictions with
this predictor were also accelerated in C57BL/6 mice with quantitative trait locus insertion from DBA/2 into the
congenic C57BL/6 chromosome 11, which was expected to be associated with the shorter lifespan of DBA/2
(referred to as Line A mice) (Brown et al., 2019). We now determined, within the same samples, whether the
epigenetic age-acceleration can also be observed in DBA/2 mice (n = 33) and Line A mice (n = 15) using the
BBA-seq approach. In fact, the predictions with either the 3 CpG BBA-seq, or the 7 CpG BBA-seq Lasso-
regression model, provided very similar results as previously observed for the 3 CpG pyrosequencing clock
(Figure 5a and b).
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Figure 5. Age-predictions with BBA-seq in mice from different genetic background.

DNAm levels were analyzed with BBA-seq in blood samples of 40 C57BL/6 mice of the validation sets, 33 DBA/2
mice, and 15 transgenic C57BL/6 mice with an age-associated region from DBA/2 mice (Line A) (Brown et al.,
2019). For epigenetic age predictions we either used (a) the 3 CpG multivariable model, or (b) the lasso
regression model based on 7 CpGs of the same three amplicons (Primal, Hsf4, Kcns1). As previously described
for pyrosequencing, epigenetic age-predictions were logarithmically accelerated in DBA/2 mice (Han et al.,
2018), and also accelerated in Line A mice (Brown et al., 2019).

Subsequently, we analyzed the single read patterns of BBA-seq data in DBA/2 and Line A mice. We observed
the same random gain or loss of DNAm at neighboring CpGs (Figure 6a) and a moderate correlation in DNAmM
at neighboring CpGs (Figure 6b), as previously observed for C57BL/6 mice. Furthermore, single read predictions
within the three amplicons for Primal, Hsf4 and Kcnsl (based on the training set of C57BL/6 mice) provided
similar heterogeneity and acceleration of age-estimations (Figure 6c and d). These results indicate that
epigenetic aging is generally accelerated within the three age-associated regions in DBA/2 and Line A mice, as
compared to C57BL/6 mice.
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Figure 6. Analysis of age-associated DNAm patterns within individual BBA-seq reads in mice from
different genetic background.

(a) The plots exemplarily display the frequency of DNAm patterns in two DBA/2 mice: one young (7 weeks) and
one old DBA/2 mouse(109 weeks). The frequencies of patterns within the amplicons of Primal, Hsf4 and Kcnsl
were compared, in analogy to Figure 4a. (b) Pearson correlation of DNAmM among neighboring CpGs within
three amplicons from DBA/2 mice (n = 33). (c) Heatmaps of epigenetic age-predictions for individual BBA-seq
reads of DBA/2 mice (n = 33). Epigenetic ages were estimated based on the binary sequel of methylated and
non-methylated CpGs for three amplicons (read counts were normalized by the readcounts per sample and are
depicted in log scale). In analogy to Figure 4c, each read was classified to predicted ages between 0 and 200
weeks. (d) The mean of the single read predictions of BBA-seq data was determined for each sample and then
plotted against the chronological age of the DBA/2 (n = 33) and line A (n = 15) mice in comparison with validation
sets of C57BL/6 mice (n = 40). The linear coefficients of determination (R?) of DNAm versus chronological age
are indicated.
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Discussion

Epigenetic clocks are used as a surrogate marker for the process of biological aging. They are therefore valuable
tools to gain insight into effects of aging or rejuvenating interventions (Bell et al., 2019). To this end, the murine
model system enables much better standardization over the life-time than what is achievable in humans (Field
et al., 2018). The targeted assays for epigenetic clocks are easier applicable than epigenetic clocks that are
based on genome wide RRBS or WGBS profiles. A bottleneck for the latter is often a low coverage of reads for
specific CpG sites. Particularly pyrosequencing and ddPCR seem to provide more precise measures for DNAmM
levels at individual CpGs (Blueprint-consortium, 2016). Furthermore, targeted analysis of DNAm only at specific
CpGs is faster, facilitates better standardization of procedures, and it is more cost-effective than genome-wide
approaches (Wagner, 2017). Thus, the targeted assays may be particularly advantageous for larger intervention
studies. On the other hand, the number of CpGs to be implemented into epigenetic clocks provides a tradeoff
between accuracy, which is generally increased with more age-associated CpGs, versus applicability and costs.

In this regard, larger signatures that are based on genome wide DNAm profiles may be advantageous.

It is not trivial to directly compare the performance of our targeted epigenetic clocks with the other published
predictors for WGBS or RRBS data, since the tissues, age-ranges, and methods vary considerably in these
studies (Meer, Podolskiy, Tyshkovskiy, & Gladyshev, 2018; Petkovich et al., 2017; Stubbs et al., 2017; Wang et
al., 2017). The previously published RRBS and WGBS clocks revealed high precision in the training sets, which
markedly decreased when tested on independent samples. For murine blood samples, the blood clock by
Petkovich et al. showed the best performance with MAE (mean absolute error) of 8.6 weeks (Meer et al., 2018).
Our targeted approaches provided similar or sometimes even slightly better accuracy, with an MAE ranging from

4.6 to 12 weeks (or Median error 4.9 to 10 weeks).

In our previous work, we demonstrated that robust and reliable epigenetic age-predictions can be achieved by
pyrosequencing at three CpGs (Han et al., 2018). We anticipated that the very high correlation of a 15 CpG
lasso regression model, which was suggested during the review process, might be due to overfitting with the
relatively small training set (Han et al., 2018). In the current study, we revisited this model to demonstrate that
it indeed provides higher accuracy and precision than the 3 CpG predictor - however, it also necessitates
pyrosequencing of two additional amplicons. It therefore depends on the experimental design and resources

which of the pyrosequencing clocks is better suited.

Upon bisulfite conversion, there is a difference in the sequence of methylated and non-methylated DNA and this
can entail a PCR bias (Warnecke et al., 1997). Such DNAm sensitive PCR bias might be reduced by ddPCR,
since it relies on detection of either methylated or non-methylated DNA in individual droplets, rather than the
amplification efficiency (Weisenberger et al., 2008). So far, ddPCR is particularly applied for detection and
quantification of genetic aberrations. Several studies demonstrated that it also enables precise measurements

of DNAm levels (Hindson et al., 2013; Yu, Heinzerling, & Grady, 2018; Zemmour et al., 2018), while only few
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recent studies reported ddPCR assays for epigenetic clocks in humans (Han et al., 2020; Shi et al., 2018). A
major challenge for the establishment of such assays is the design of reliable and specific primers and probes
for the bisulfited converted DNA sequences. In this study, we describe a 3 CpG ddPCR assay, that facilitates

similar accuracy in age-predictions as the previously described 3 CpG pyrosequencing assay.

Next generation sequencing platforms enable targeted DNAm analysis in a barcoded manner for multiple
samples in parallel (Han et al., 2020; Naue et al., 2018). In this study, we describe that BBA-seq of only three
age-associated regions facilitates also reliable epigenetic age-predictions for murine blood samples.
Advantages of this approach are the very high coverage and the relatively long target regions (up to 500 base
pairs), which may cover more neighboring CpGs than pyrosequencing or ddPCR (Franzen et al., 2017). Our
results confirmed that the correlation of chronological age with DNAm levels follows a bell-shaped curve at
neighboring CpGs within about 200 to 400 bases of BBA-seq amplicons (Han et al., 2020) — this was particularly
observed in amplicons of Hsf4 and Kcnsl that comprised more neighboring CpGs. On the other hand, within
individual BBA-seq reads there was only a moderate correlation of DNAm at neighboring CpGs. This is further
substantiated by the mean single read predictions which clearly correlate with chronological age. Thus, our
results support the notion that age-associated genomic regions favor a stochastic accumulation of DNAmM
changes, which may be attributed to other epigenetic modifications or higher chromatin order. If age-associated
DNAm was directly medicated by epigenetic writers, such as DNMTs or TETSs, it might be anticipated that
neighboring CpGs are rather coherently modified. The functional relevance of these age-associated DNAmM
changes remains unclear. Altered promoter methylation with aging was found to be generally unrelated to altered
gene expression, also in mice (Hadad, Masser, Blanco-Berdugo, Stanford, & Freeman, 2019). There is evidence,
that the epigenetic drift by stochastic DNAmM changes in promoters results in degradation of coherent
transcriptional networks during aging (Hernando-Herraez et al., 2019). In the future, it will be important to better
understand and validate how heterogeneity in single BBA-seq read predictions reflects heterogeneity of
epigenetic aging within a sample. To this end, it will be interesting to further investigate single-cell DNAm profiles,
longer reads that cover multiple age-associated domains (e.g. by nanopore sequencing), or analysis of single-

cell derived clones.

Various epigenetic clocks for mice were demonstrated to reflect aspects of biological aging, rather than only
chronological aging (Meer et al., 2018). It is still not unequivocally proven if specific epigenetic clocks capture
such aspects of biological aging better, or if they may rather be influenced by the cellular composition or by
direct association of DNAm at individual CpGs with specific diseases. We have recently demonstrated that
inhibition of Cdc42 activity extends lifespan in C57BL/6 mice, and this is also reflected by younger age-
predictions with our 3 CpG pyrosequencing signature (Florian et al., Accepted for publication). In this study, we
validated that the shorter-lived DBA/2 mice and the Line A mice have also accelerated epigenetic aging in BBA-
seq data — in the conventional epigenetic predictors based on DNAm levels as well as in the single-read BBA-

seq predictions for all three amplicons. Thus, our 3 CpG signature clearly captures aspects of biological aging
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in mice. Furthermore, the accelerated epigenetic aging in DBA/2 and Line A mice cannot be attribute to

deviations at individual CpGs, but rather affects the entire age-associated region.

Taken together, we further developed and compared targeted epigenetic clocks for mice with pyrosequencing,
ddPCR, or BBA-seq. All three methods provided reliable age-predictions with similar accuracy as previously
described for RRBS and WGBS clocks. For DNAm levels at individual CpGs the measurements with
pyrosequencing and ddPCR seemed to correlate slightly better with chronological age than BBA-seq results.
On the other hand, the longer reads of BBA-seq gave better insight into neighboring CpGs and facilitate even
single-read predictions that may reveal heterogeneity in epigenetic aging within a sample — depending on the
availability of instruments and the experimental design all of these methods may now be considered for targeted

epigenetic clocks in mice.

Materials and Methods

Mouse strains and blood collection

Blood specimens of C57BL/6J mice of the training set (n = 24) and of the validation set 1 (n = 21), DBA/2J mice
(n = 33), and Line A mice (n = 15) were obtained by submandibular bleeding (100-200 pl) of living mice or
postmortem from the vena cava at the University of Ulm. One sample from the training set was excluded in the
subsequent ddPCR and BBA-seq analysis due to the lack of bisulfite converted DNA. C57BL/6J samples of the
validation set 2 (n = 19) were collected at the University of Groningen from the cheek. All mice were fed by ad
libitum, and housed under pathogen-free conditions. Experiments were performed in compliance with the
Institutional Animal Care of the Ulm University as well as by Regierungsprasidium Tulbingen and with the

Institutional Animal Care and Use Committee of the University of Groningen (IACUC-RUG), respectively.

Genomic DNA isolation and bisulfite conversion

Genomic DNA from 50 ul murine blood was isolated by the QlAamp DNA Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. Then, DNA was quantified by Nanodrop 2000 Spectrophotometers
(Thermo Scientific, Wilmington, USA). 200 ng of extracted genomic DNA was subsequently bisulfite-converted
with the EZ DNA Methylation Kit (Zymo Research, Irvine, USA).

Pyrosequencing

Bisulfite converted DNA was initially subjected to PCR amplification. Primers were purchased at Metabion and
the sequences are provided in Table S1, as described before (Han et al., 2018). 20 pul PCR products were
subsequently immobilized to 5 pl Streptavidin Sepharose High Performance Bead (GE Healthcare, Piscataway,
NJ, USA), and then were finally annealed to 1 ul sequencing primer (5 yM) for 2 minutes at 80°C. Amplicons
were sequenced using PyroMark Gold Q96 Reagents (Qiagen) on PyroMark Q96 ID System (Qiagen, Hilden,

Germany) and analyzed with PyroMark Q CpG software (Qiagen). The relevant sequences are depicted for the
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five relevant genomic regions in Figure S4. The 15 CpG model for pyrosequencing data, which was trained by
lasso regression with the lambda parameter chosen by cross-fold validation, has been described before (Han
et al., 2018) and is provided in Table S2.

Droplet digital PCR (ddPCR)

DNA methylation analysis by ddPCR was performed with a QX200TM Droplet Digital™ PCR System (Bio-Rad,
CA, USA). We used dual-labeled TagMan hydrolysis probes which recognize either the methylated or non-
methylated target CpG site. All the primers and probes were designed by Primer3Plus software (Table S3).
Each 20 pl reaction mixture consisted of 10 pl of 2X ddPCR Supermix (No dUTP; Bio-Rad), 1 uM of the forward
and reverse primers, 250 nM of the dual probes, and 25 ng of bisulfite converted DNA. The mixture and 70 pl of
droplet generation oil was then subjected into QX200 Droplet Generator (Bio-Rad). 40 pl of the generated
droplets were transferred to the ddPCR 96 well plate (Bio-Rad). The plate was heat sealed with the PX1 PCR
Plate Sealer (Bio-Rad) and subsequently placed in the C1000 Touch Thermal Cycler (Bio-Rad) for PCR runs as
follows: 95°C for 10 min, 40 cycles of 94°C for 30 s and 1 min (2.5°C/s ramp rate) at 55°C (Primal, Kcnsl) or
58°C (Hsf4), followed by 10 min enzyme deactivation step at 98°C and a final hold at 4°C. The PCR plate was
read on the QX200 droplet reader (Bio-Rad) and data were analyzed by QuantaSoft 1.7.4 software (Bio-Rad).
The percentage methylation of each reaction was determined by Poisson statistics according to the fraction of
positive droplets for methylated and non-methylated probes. The multivariable regression model for ddPCR is
provided in Table S4.

Barcoded bisulfite amplicon sequencing (BBA-seq)

Target sequences (Figure S5) for Primal, Hsf4 and Kcns1 were amplified by PyroMark PCR kit (Qiagen) using
forward and reverse primers containing handle sequences for the subsequent barcoding step (Table S5). PCR
was run under the following conditions: 95°C for 15 min; 40 cycles of 94°C for 30 s, 60°C for 30 s, 72°C for 30
s; and final elongation 72°C for 10 min. The three amplicons of each donor were pooled at equal concentrations
under the quantification of Qubit (Invitrogen), and cleaned up with paramagnetic beads from Agencourt AMPure
XP PCR Purification system (Beckman Coulter). 4 yl of pooled products were subsequently added to 21 pl
PyroMark Master Mix (Qiagen) containing 10 pmol of barcoded primers (adapted from NEXTflexTM 16S V1-V3
Amplicon Seq Kit, Bioo Scientific, Austin, USA) for a second amplification (95°C for 15 min; 16 cycles of 95°C
for 30 s, 60°C for 30s, 72°C for 30s; final elongation 72°C for 10min). PCR products were again quantified by
Qubit (Invitrogen), equimolarly pooled, and cleaned up by Select-a-Size DNA Clean & Concentrator Kit (Zymo
Research, USA). 10 pM DNA library was prepared under Denature and Dilute Libraries Guide of lllumine MiSeq
System with 15% PhiX spike-in control (lllumina, CA, USA) and eventually subjected to 250 bp pair-end
sequencing on a MiSeq lane (lllumina, CA, USA) using Miseq reagent V2 Nano kit (lllumina). We utilized the
Bismark tool (Krueger & Andrews, 2011) to determine the DNAm levels for each CpG based on BBA-seq data.
Multivariable regression models for epigenetic age predictions were generated based on three CpGs that
revealed highest correlation with chronological age per amplicon (Table S6). Alternatively, we used a penalized

regression model from the R package glmnet on the training dataset to establish a predictor with machine
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learning (Table S7). The alpha parameter of gimnet was set to 1 (lasso regression) and the lambda parameter

was chosen by cross-fold validation of the training dataset (10-fold cross validation).

Epigenetic age predictions for individual BBA-seq reads

As previously described, we developed an algorithm to estimate epigenetic age based on the binary sequel of
methylated and non-methylated CpGs within individual reads of BBA-seq data (Han et al., 2020). In brief,
according the age-associated correlations at individual CpG of the BBA-seq training set, each DNAm pattern
with binary sequel of methylation and unmethylation was assigned to their most representative corresponding
age (0 to 200 weeks). For each donor, we calculated the mean of strand-specific age-predictions weighted by
read counts as final epigenetic age predictions. Further details on the rational and derivation of the mathematical
model are provided in our previous work (Han et al., 2020).
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