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The nuclear envelope (NE) contains a specialized set of inte-
gral membrane proteins that maintain nuclear shape and in-
tegrity and influence chromatin organization and gene expres-
sion. Advances in proteomics techniques and studies in model
organisms have identified hundreds of proteins that localize to
the NE. However, the function of many of these proteins at the
NE remains unclear, in part due to a lack of understanding
of the interactions that these proteins participate in at the NE
membrane. To assist in the characterization of NE transmem-
brane protein interactions we developed an arrayed library of
integral and peripheral membrane proteins in the fission yeast
Schizosaccharomyces pombe for high-throughput screening us-
ing the split-ubiquitin based membrane yeast two hybrid sys-
tem. We used this approach to characterize protein interac-
tions for three conserved proteins that localize to the inner nu-
clear membrane: Cut11/Ndc1, Lem2, and Ima1/Samp1/NET5.
Additionally, we determined how the interaction network for
Cut11 is altered in canonical temperature-sensitive cut11 mu-
tants. This library and screening approach is readily applicable
to characterizing the interactomes of integral membrane pro-
teins localizing to various subcellular compartments.
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Introduction

The nuclear envelope (NE) is a double lipid bilayer that sep-
arates the nucleoplasm from the cytoplasm to allow for the
compartmentalization of biological processes such as tran-
scription and translation. Both the outer nuclear membrane
(ONM) and inner nuclear membrane (INM) are enriched for
specific nuclear envelope transmembrane proteins (NETs)
that serve a wide variety of functions, including chromatin or-
ganization and regulation of gene expression, nuclear shape
and dynamics, mechanosensation and signal transduction
across the NE (1–3). NETs and their interacting partners at
the nuclear periphery have been implicated in numerous hu-
man diseases collectively referred to as nuclear envelopathies
and laminopathies (4–9). Studies of disease-associated NETs
in humans have also identified striking patterns of cell and

tissue specificity in NET expression and splicing as well as
complex tissue-specific disease pathologies in NET mutants
(10, 11). One proposed mechanism to explain these patterns
of disease manifestation is that it is the result of disruption of
interactions between NETs and their binding partners, which
are also expressed in tissue-specific manner (10, 12). Ac-
cordingly, determining the mechanisms behind nuclear en-
velopathies requires an understanding of both the composi-
tion of the NE proteome, as well as the NET interactome.
Despite their clear clinical importance, the identification and
functional characterization of NETs and their interacting pro-
teins remains challenging. First, for decades, the list of
NETs was small, restricted to a handful of abundant INM
proteins. Advances in proteomics in the last two decades
has expanded the list of candidate NETs to several hundred
(13–17). However, determining which NETs are enriched at
the INM and therefore have the potential to directly inter-
act with the genome and participate in biological processes
occurring in the nucleoplasm has traditionally required de-
tailed studies of each NET using electron microscopy (EM).
This low-throughput method has been essential to resolve the
INM from the ONM, which are only separated by only 30-50
nm in most cells. Although super-resolution methods offer
an alternative to EM, they too are low throughput. Smoyer et
al. developed a high-throughput assay based on split-GFP to
screen all known and predicted integral membrane proteins
in Saccharomyces cerevisiae for access to the INM (18). The
list of putative INM components included over 400 proteins,
many of which also localize to other subcellular regions. Re-
cent work also suggests that proteins are targeted to the INM
for protein degradation through INM-specific quality control
pathways (19). This adds yet another layer of complexity to
the NET interactome. Additionally, the hydrophobic nature
of many NETs makes their isolation and interactome charac-
terization particularly difficult (20).
Significant insights into the function of many NETs has
emerged from studies in model organisms including the bud-
ding yeast S. cerevisiae and the fission yeasts Schizosaccha-
romyces pombe and Schizosaccharomyces japonicus. For ex-
ample, genetic and cell biological studies using these systems
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has identified conserved mechanisms for NETs in NE repair
and quality control (21–24), regulation of nuclear size and
shape (25–28) and active lipid metabolism at the INM (29).
The founding member of the Sad1-Unc84 (SUN) domain-
containing proteins, which play roles in chromosome orga-
nization, centrosome function and nuclear migration and po-
sitioning in many eukaryotes, was originally identified in a
screen for yeast mutants defective in spindle formation (30).
Sad1 is a component of the S. pombe spindle pole body
(SPB), the yeast centrosome-equivalent organelle. Sad1 as-
sists in the insertion of SPBs into the NE to facilitate the nu-
cleation of the mitotic spindle microtubules (31, 32). In addi-
tion, Sad1 also facilitates centromere and telomere tethering
in both mitosis and meiosis (33–36).
Like Sad1, Cut11 is also a component of the SPB involved
in SPB insertion (32, 37); however, as the fission yeast or-
tholog of the conserved integral membrane protein Ndc1 it
is perhaps best known for its conserved role in the NE teth-
ering of nuclear pore complexes (NPCs) (38, 39). Ima1
is the S. pombe ortholog of the mammalian INM protein
Samp1/NET5 that has conserved functions in nuclear orga-
nization (40, 41). It transiently localizes to the SPB early in
mitosis in S. pombe, similar to its localization to the spin-
dle in mammals (42). Lem2 is one of the two fission yeast
Lap2-Emerin-Man1(LEM) domain-containing proteins (the
second being Man1). Unlike Ima1 and Cut11, which tran-
siently localize to the SPB during mitosis, Lem2 is found at
the SPB throughout interphase and it is present at the INM
during the entire yeast cell cycle (37, 41). Lem2 and Man1
play at least two roles at the INM: heterochromatin tethering
(40, 43–46), and regulation of NE composition, integrity and
structure (21, 41, 47–50). How these diverse functions are
controlled is poorly understood in part because we lack suf-
ficient knowledge of the interactome for these NETs, even in
model systems such as yeast.
The membrane yeast two-hybrid (MTYH) technology allows
for the identification of interactions between full-length inte-
gral membrane proteins heterologously expressed in S. cere-
visiae (51). Previously, we adapted this technology to study
the interactome of Ndc1 in S. cerevisiae (52). Not only did
we identify novel Ndc1 interacting proteins, but the MYTH
approach enabled us to test ndc1 mutant alleles for defects in
binding to various substrates and better understand the phe-
notypic differences we observed for these alleles. Here, we
have expanded this approach to study fission yeast NE mem-
brane proteins using a newly developed library of 1037 S.
pombe MYTH prey constructs. Using this library, we per-
formed high-throughput screening to identify interactions for
three highly conserved INM proteins of diverse structure and
function: Cut11, Lem2 and Ima1. Additionally, we deter-
mined how canonical alleles of cut11 alter the Cut11 inter-
actome to better understand its role at the SPB and NPC in
fission yeast. This library is a new resource for the S. pombe
community to assist in the characterization of integral mem-
brane protein interactions.

Results

Generation of an arrayed S. pombe MYTH prey library.
MYTH was first described by Stagljar et al in 1998 (53)
and has been used to identify interactions between integral
membrane proteins from multiple species (54–58). In our
system, membrane bait proteins of interest were fused to a
C-terminal fragment of ubiquitin (Cub) and a transcription
factor (TF) moiety containing both the E. coli LexA DNA-
binding domain and the herpes simplex virus VP16 activation
domain ( Figure1A). Interaction of the bait-Cub fusion pro-
tein with prey proteins fused to the N-terminus of ubiquitin
(Nub) reconstitutes a pseudoubiquitin molecule at the mem-
brane, which is recognized and processed by deubiquitinating
proteases, releasing the TF reporter to activate the expression
of HIS3 and ADE2 reporter genes.
To facilitate high-throughput screening and analysis of inte-
gral membrane bait proteins in fission yeast, we generated an
arrayed library of S. pombe prey proteins fused to Nub (Fig-
ure 1A-C) (Table S1). We initially targeted approximately
1300 proteins including all proteins with one or more known
or predicted transmembrane domain. A total of 1037 unique
prey constructs were successfully generated, including 81%
(773/946) of all putative integral membrane proteins. The re-
maining 264 prey include soluble and peripheral membrane
proteins with annotated functions at a variety of subcellu-
lar locations including the NE, the endoplasmic reticulum
(ER) and the mitochondrion (Figure 1B). The arrayed prey
library approach allows us to rapidly assess pairwise inter-
actions with hundreds of individual prey proteins in a single
assay. Since the position of each prey protein is known, quan-
tification of colony growth and downstream data analysis is
streamlined as compared to alternative approaches that re-
quire recovery of plasmid DNA and sequencing to identify
positive interactions (51).

Bait selection, validation and library screening. To
demonstrate the utility of the MYTH prey library we next
sought to characterize the interactions for a collection of inte-
gral membrane proteins known to localize to the INM. Based
on their conserved roles at the INM throughout eukaryotes,
we focused on the SUN-domain protein Sad1, the nucle-
oporin (Nup) Cut11, the LEM-domain proteins Lem2 and
Man1, and the Samp1/NET5 ortholog Ima1.
Strains expressing the INM baits were tested to confirm that
the bait-Cub fusion proteins were expressed and that the
growth of these strains on selective media was dependent
upon prey interaction. Strains co-expressing individual baits
with the empty prey plasmid (pPR3-N) fail to grow on se-
lective media, while co-expression with a positive-control
prey containing the Nub fragment that retains its affinity for
Cub (Ost1-NubI) reconstitutes the pseudoubiquitin molecule
and drives expression of the HIS3 and ADE2 reporter genes.
Cut11, Ima1 and Lem2 C-terminal bait constructs (pBT3-
STE) all passed these initial quality control assays (Figure
1D). Strains expressing Sad1 or Man1 baits were either not
expressed or autoactivated (N-Sad1) (Figure S1). We there-
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Fig. 1. Generation of S. pombe MYTH prey library A) Schematic of the split-ubiquitin MYTH approach. Full-length integral membrane bait proteins are fused to the
C-terminus of ubiquitin (Cub) and a LexA-VP16 transcription factor reporter (TF). Upon interaction with a prey protein fused to N-terminus of ubiquitin (Nub), the ubiquitin
molecule is reconstituted and cleaved by proteases to release TF for expression of HIS3 and ADE2 reporter genes. B) Diagram of S. pombe MYTH prey library composition
by protein feature, conservation status and GO Compartment ID. C) Schematic of prey and bait construction approach. See Materials and Methods for detailed description.
D) Validation of INM bait proteins for MYTH. Expression of both bait and prey plasmids is confirmed by growth on media lacking leucine (L) and tryptophan (T) (SD-LT). Cell
growth on selective media further lacking both adenine (A) and histidine (H) (SD-LTAH) is only observed when each bait is co-expressed with a positive control Ost1-NubI
prey protein.
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Fig. 2. Screening for INM protein interactions using MYTH library A) Overview of MYTH library screening. Strains expressing the MYTH bait and prey are grown on
PlusPlates, mated and diploids are selected by growth on SD-LT media in 96-spot format. Positive bait-prey interactions are identified by monitoring colony growth on selective
media (SD-LTAH) supplemented with 3-AT. Colony densities are extracted and prey identity is assigned based on known prey libray plate layout in an automated fashion. B)
Venn diagram illustrating the number of shared or unique interacting prey proteins identified for each bait. C) Comparison of colony densities identified in independent Cut11
bait screen, showing high reproducibility in strength and identity of interactions identified by MYTH. Proteins known to interact with Ndc1 in S. cerevisiae are highlighted and
labeled. D) Known genetic and physical interactors for each bait were examined to determine whether they were present in our prey library, and if they were identified as a
positive hit in our screens.

4 | bioRχiv Varberg et al. | Nuclear envelope protein interactions in fission yeast

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.29.227819doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.29.227819
http://creativecommons.org/licenses/by/4.0/


fore proceeded with screening Cut11, Ima1 and Lem2 against
the prey library. As each localize to distinct subregions of the
INM and do not contain similar functional domains, compar-
ison of hits across baits would enable us to identify specific
and non-specific interactions. All three baits were screened
against the MYTH prey library simultaneously to avoid vari-
ability in media composition and screening conditions, al-
lowing for direct comparison of colony size across baits.
To screen the three baits of interest against the MYTH library,
strains expressing each bait were crossed with the MYTH
prey library in a high-throughput fashion (Figure 2A). Posi-
tive interactions between bait-prey pairs were determined in
a semi-automated fashion using a manually defined colony
density threshold (see Materials and Methods), with larger
densities representing stronger interactions between bait and
prey pairs (Figure S2A). This approach allowed for the ex-
amination of thousands of pair-wise interactions in approx-
imately two weeks from initiation of cultures to completion
of analysis.
Of the 1037 unique prey in the library, a total of 343 were
identified as hits for at least one of the three INM baits that
were screened (Figure 2B) (Table S2). We first examined
whether our screen identified known physical interactions for
each of our baits. Three of the five known Lem2 interact-
ing proteins were identified as Lem2 hits in our screen (Bqt4,
Sad1, Nur1, Figure 2D). Although no physical interactions
have been reported for Cut11 in S. pombe, our MYTH screen
identified 75% (9/12) of the prey that are orthologs of pro-
teins reported to physically interact with Ndc1 in S. cere-
visiae and were in our prey library (Figure 2C). In contrast,
our screen failed to detect any of the five reported physical in-
teractors for Ima1 that were present in our library. We noted
that Man1 was not functional as a bait or prey, as the prey
was not found to interact with Lem2 or Ima1, despite previ-
ously being identified as an interactor for both (41). We were
unable to generate a functional Sad1 bait, however, the Sad1
prey construct was functional and recapitulated the known
interaction with Lem2 (41, 59). Comparison of two indepen-
dent screens using the same bait (Cut11) showed a high level
of reproducibility in both the identity and strength of the prey
interactions (Figure 2C). Together, these results demonstrate
that our MYTH screen identified many known interactions
with a high level of reproducibility; however, some proteins
are incompatible with the MYTH system. This is likely due
to defects in protein stability or folding, localization, or mem-
brane topology introduced by expression as a bait or prey fu-
sion protein.

Comparison of interactions identified for each bait. We
next performed pairwise comparisons between each bait to
identify interactions that were common and those that were
unique or enriched for specific baits. The strong positive
correlation observed between replicates was not observed in
comparisons between baits, and only 55 prey (16% of all hits)
displayed interactions with all three baits (Figure 2B; Figure
3). A subset of these common interactors were among the
strongest interactions identified for all three baits and likely

represent non-specific interactions resulting in false positives.
However, this group also included prey that displayed signif-
icant preferences for certain baits. For example, the trans-
membrane Nup Pom34, which forms a complex with Ndc1 in
S. cerevisiae (60), interacted with all three baits yet showed a
5-7-times stronger interaction with Cut11 compared to Lem2
and Ima1 (Figure 3D). GO term enrichment analysis of the
hits that were uniquely enriched (> 2-fold increased over
other baits) for each bait failed to identify any functional en-
richment for the interacting prey. We therefore focused our
analysis on prey that shared localization or predicted function
with each bait, as well as those interactions that were unique
or significantly enriched. Interactions of interest for each bait
are discussed below.

Lem2 MYTH Interactors. Lem2 is a conserved integral
membrane protein that serves multiple functions at the INM.
A total of 82 prey interacted with Lem2, of which only four
were unique interactions (Bqt4, Sec13, Tvp15, Rbx1). Three
of these unique interactions were very weak; however, we
observed a strong unique interaction with the INM protein
Bqt4, which anchors telomeres to the NE and binds directly
to Lem2 to retain it at the NE (61, 62). Although not unique
for Lem2, the Lem2-interacting protein Nur1 (43, 63, 64)
was identified as the second strongest Lem2 interactor and
was enriched 2-3-fold relative to Cut11 and Ima1. Identifi-
cation of Bqt4 and Nur1 is consistent with the role of Lem2,
Bqt4 and Nur1 in silencing and retention of centromeres and
telomeres at the nuclear periphery (43, 47). Lem2 interacts
directly with Bqt4 and Nur1 through its N-terminal LEM do-
main (44), providing evidence that MYTH is able to identify
bona fide binding proteins for NETs.
We further examined Lem2 hits in an attempt to gain in-
sight into proteins that may assist in its functions in hete-
rochromatic gene silencing, telomere positioning and cen-
tromere tethering at the SPB. Unfortunately, many of the
heterochromatin-associated factors that showed genetic inter-
actions with Lem2 (44) were absent from our prey library,
and none of the 14 heterochromatin factors present in our li-
brary interacted with Lem2 (Ago1, Stc1, Raf2, Pcu4, Chp1,
Swi6, Clr4, Lem2, Man1, Nup85, Mmi1, Red1, Shf1, Brl1).
Of the factors associated with telomere localization present in
our library, Sad1, Bqt3 and Bqt4 were found to interact with
Lem2 (Figure S2C). The only strong interaction we observed
with known SPB-localized proteins was with Sad1, which
has previously been shown to interact with Lem2 (41, 59).
Thus, despite confirming known interactions with Sad1, Bqt4
and Nur1, interactions that physically connect Lem2 with
components of the heterochromatin machinery still remain
elusive (65).
Lastly, we examined the Lem2 interacting prey for factors
potentially associated with NPC quality control at the NE. In
S. pombe, Lem2 is required for maintaining NE morphology
and regulating membrane flow from the ER into the NE to
control nuclear size (47–49). However, a direct role for Lem2
in NPC quality control has not been shown in S. pombe, and
Lem2 is not known to interact directly with any components
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Fig. 3. Comparison of INM bait interactomes A-C) Scatter plots showing pairwise comparisons of average colony density values for prey identified as positive interactors
for at least one bait protein in our screen. Prey that have a similar strength of interaction with both baits align on the diagonal dashed line. Prey of interest for each bait
are annotated in blue, while four prey that were among the top interactions for all three baits are annotated in black. Pearson correlation coefficients are listed for each
comparison. D) Heat map representation of select prey of interest that are discussed in text. Prey that showed no interaction with each bait are shown as white boxes.

of the NPC or the ESCRT (endosomal sorting complexes re-
quired for transport) machinery that facilitate NE/NPC qual-
ity control in other organisms. In budding yeast, the Lem2
ortholog Heh1/Src1 binds with luminal domains of the trans-
membrane Nup Pom152 and displays genetic interactions
with Nups in multiple subcomplexes (66). This interaction
with the NPC is thought to allow Heh1/Lem2 to recruit the
ESCRT component Chm7 to regions of the NE that contain
defects in NPC assembly to ensure NE compartmentalization
is maintained (22, 23). Although we were unable to gener-
ate a functional S. pombe Pom152 MTYH prey, Lem2 inter-
acted with the transmembrane Nup Pom34 (Figure 4D). We
also observed an interaction between Lem2 and the inner ring
component Nup37, which was recently found to associate
with Lem2 in mammalian cells (67). Our results, in combina-
tion with the conserved interaction between Lem2 and Chm7

in S. pombe (21), their physical interaction in S. japonicus
(46) and genetic interactions between Nups and the ESCRT
machinery (68) suggests that a similar mechanism could be
conserved.

Ima1 MYTH Interactors. Ima1 is the fission yeast ortholog
of the mammalian INM protein Samp1/NET5 (14, 42), for
which there is no apparent ortholog in S. cerevisiae. Samp1
influences the distribution of other INM proteins, including
the Sad1 ortholog Sun1, is required for centrosome position-
ing and tethering to the NE during interphase, and localizes to
transmembrane actin-associated nuclear (TAN) lines where
it stabilizes SUN-domain containing linker of nucleoskele-
ton and cytoskeleton (LINC) complexes to promote nuclear
movement (42, 69, 70). In S. pombe, Ima1 localizes to dis-
tinct sub-regions of the NE where it interacts with specific
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heterochromatic regions of the genome (40). Despite en-
richment of Ima1 near the central core regions of the cen-
tromeres, Ima1 is not required for centromere tethering at the
SPB (41, 71). The function of Ima1 in S. pombe is unclear,
though it appears to share a redundant role in nuclear mem-
brane morphology and structure with the LEM-domain pro-
teins Lem2 and Man1 (41). Therefore, identification of Ima1
interactors, particularly novel binding partners, would shed
light on its function and guide future functional studies.
Ima1 has eight reported physical interactions, five of which
are present in the MYTH prey library (Ima1, Lem2, Man1,
Pep12, Sad1). Unfortunately, none of these interactors were
identified as Ima1 hits in our screen. While this could be
due to expression or functionality of either the bait or prey
constructs, the fact that we identified the Ima1 and Sad1 prey
as hits in our Cut11 and/or Lem2 screen makes this unlikely.
It is possible that Ima1 interactions with these proteins may
be regulated in a manner not recapitulated in the heterologous
system.
In both fission yeast and mammals, Ima1/Samp1 displays cell
cycle dependent changes in its localization from the INM to
the SPB/centrosome-associated membrane. Given this con-
served, transient recruitment of Samp1/Ima1 to the centro-
some during mitosis, we next examined the list of Ima1 in-
teractors for factors known to localize to the SPB. Although
we did not observe any interactions between the Ima1 bait
and SPB-localized prey, we noted that Ima1 prey showed a
specific and strong interaction with the Cut11 bait (Figure
4D). Ima1 localizes to the SPB specifically during the early
stages of mitosis, temporally overlapping with the kinetics of
Cut11 recruitment to the SPB during SPB insertion (Figure
4C) (37, 41). It is thus possible that Ima1 localization to the
SPB is facilitated by its interaction with Cut11, although its
interaction with Sad1 may also contribute.
We next examined the twelve interactors that were uniquely
identified for Ima1. The strongest of these interactions
was with Sur2, a conserved sphingolipid metabolic enzyme
with bi-functionality as a sphingosine hydroxylase and ∆4-
desaturase (72–75). While a functional role for Sur2 at the
INM remains to be explored in fission yeast, Sur2 was found
to have access to the INM in S. cerevisiae (18), and the mam-
malian sphingolipid hydroxylase Smpd4 is enriched at the
NE and physically interacts with components of the NPC
(76, 77). Further, Sur2 substrates, including the long-chain
base dihydrosphingosine, are enriched at the nuclear mem-
brane where they play a key role in maintaining nuclear mor-
phology in both yeast and mammalian cells (78). This sug-
gests that an interaction with Ima1 may retain a pool of Sur2
at the INM in S. pombe where it could influence properties of
the NE membrane by controlling local sphingolipid content.
Ima1-enriched prey included other factors implicated in lipid
biogenesis and membrane organization. For example, Ima1
had a strong interaction with the seipin ortholog Sei1, which
has a conserved role in lipid droplet biogenesis at the ER and
stabilizes lipid droplet-ER contact sites (79). Recently, Sei1
was found to localize to the INM in budding yeast where it

is required for the formation of membrane bridges between
the INM and nuclear lipid droplets (29). We also observed an
interaction with Nvj2, a lipid-binding protein that localizes to
membrane contact sites between the nucleus and vacuole and
forms membrane bridges between the ER and Golgi network
to alleviate high levels of ceramides through nonvesicular
transport (80, 81). Although this function in ceramide trans-
port was not attributable to the perinuclear ER pool of Nvj2,
it is possible that similar mechanisms exist to transport ce-
ramides out of the NE, and its interaction with Ima1 presents
additional evidence linking Ima1 with factors that may influ-
ence membrane composition at the INM. Other Ima1 interac-
tors implicated in lipid metabolism include the rhomboid pro-
tease Rbd2, which cleaves and activates the sterol regulatory
element-binding protein (SREBP) transcription factor Sre1
and is present at the INM in S. cerevisiae (18, 82, 83) and
the phosphatidylcholine synthesis protein Cho1 (84). The re-
mainder of the Ima1-enriched interacting prey are largely un-
characterized proteins with a variety of predicted functions
including ER-associated protein modifications and vesicu-
lar transport, three of which (Yea4, Bem46, SPAP14D8.05c)
physically interact with the INM protein Man1 (59). As many
of these factors are conserved in humans, further characteri-
zation of Ima1 and its interacting proteins in fission yeast will
provide insight into their potential conserved functions at the
nuclear envelope.

Cut11 MYTH Interactors. Cut11/Ndc1 is a transmembrane
Nup conserved between yeast and vertebrates and is required
for NPC assembly (39, 85, 86). In budding yeast Ndc1 has
genetic and physical interactions with the transmembrane
Nups Pom34 and Pom152 (52, 60). These interactions are
required for NPC assembly and influence the distribution of
Ndc1 in the NE by competing with the SUN-domain pro-
tein Mps3 for a shared binding site on Ndc1 (52). We pre-
viously used the MYTH system to show that deletion of
Pom152 rescues ndc1 temperature sensitive (ts) alleles by in-
creasing Ndc1-Mps3 interactions to promote Ndc1 localiza-
tion at the SPB (52). Although we were unable to generate
a functional S. pombe Pom152 prey construct, we observed
a strong interaction between Cut11 and Pom34 from our
MYTH screen (Figure 4A). Further, deletion of either Pom34
or Pom152 rescued growth of each of the three causative mu-
tations identified in cut11-ts strains (L521F (cut11.1), C525R
(cut11.2/3/4) and T498I (cut11.5/6), Figure 4B) (87). The
conservation of physical and genetic interactions between
Ndc1/Cut11 and the Poms suggests that similar mechanisms
controlling Cut11 localization and function in the NE may be
conserved in fission yeast.
In addition to the Poms, Ndc1 also interacts with the struc-
tural nucleoporins Nup53 and Nup59 and the ER membrane-
bending proteins Rtn1 and Yop1 to induce and stabilize mem-
brane curvature that occurs during NPC assembly (60, 88–
90). Similar interactions between Ndc1 and Nup53 occur in
Xenopus (91) and vertebrate systems (86). Many of these
factors were present in our prey library and were identified
as strong, often unique, interactors for Cut11, including the
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Fig. 4. Interactions identified with NPC and SPB components A) Cartoon representation of NPC structure (left) with subcomplexes colored to match groupings shown in
heat map (right). B) Dilution assays assessing growth of cut11 wild-type or temperature-sensitive alleles at permissive (25°C) and restrictive (36°C) temperatures. Deletion of
either Pom34 or Pom152 rescues the temperature sensitivity of all cut11-ts alleles. C) Cut11, Lem2 and Ima1 each show enrichment at the SPB but at different stages of the
cell cycle. Lem2 localizes to the SPB throughout interphase but is absent during early stages of mitosis. In contrast, both Cut11 and Ima1 localize to the SPB during mitotic
entry during the period where Lem2 is absent. All three proteins also localize throughout the INM during the entire cell cycle. D) Heat map of interactions with prey proteins
that are components of the SPB (GO:0005816).

S. pombe Nup53/59 ortholog Nup40, Rtn1, and Yop1 (Fig-
ure 3,4A). Additionally, both Yop1 interacting proteins, Yip1
(SPCC61.04c) and Sey1, which work together to form highly
curved ER membrane tubules (92–94), facilitate lipid transfer
between membranes and organelles (95), and influence NPC
organization (90) interacted with Cut11 (Figure 3). Cut11 in-
teracted with a specific subset of NPC components, as many
Nups in our prey library showed no interaction with Cut11,
including the structural Nups Ely5 and Nup85, and the FG-
Nups Nsp1, Nup44 and Nup45 (Figure 4A). We did observe
an interaction between Cut11 and Nup37, a structural Nup
that is conserved in vertebrates but missing in S. cerevisiae.
This suggests that a direct interaction between Cut11 and
Nup37 may help to anchor the Nup107-160 subcomplex to
the pore membrane in S. pombe. This interaction may also
promote recruitment of the Nup107-160 complex to sites of
NPC assembly, similar to the POM121-mediated recruitment

reported in metazoans (96). Our screen also revealed an
interaction between Cut11 and Tts1, a conserved reticulon-
binding protein that has functions in membrane-shaping at
the ER and NE (87, 97, 98). This was particularly excit-
ing, as Tts1 displays genetic interactions with Cut11 in S.
pombe, is implicated in NE remodeling during SPB insertion
and in controlling NPC distribution during mitotic NE expan-
sion (87) and co-purifies with fission yeast NPCs (64).
In addition to its function at the NPC, Cut11 is also required
for SPB insertion and tethering within the NE during mitosis
(32, 37). In budding yeast, the SUN-domain protein Mps3
controls the distribution of the Cut11 ortholog Ndc1 in the
NE and facilitates its recruitment to the SPB, where it forms a
membrane ring structure alongside other members of the SPB
Insertion Network (SPIN) (99–101). We have recently shown
that Cut11 forms similar ring-like structures during SPB du-
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plication and insertion in S. pombe (unpublished data); how-
ever, the mechanisms that regulate Cut11 distribution and lo-
calization at the SPB remain unknown. To identify potential
Cut11 interactors at the SPB, we examined interactions with
known SPB-associated proteins (Figure 4D). We observed a
strong interaction with the Mps3 ortholog Sad1, providing
the first evidence for a direct interaction between these two
proteins in S. pombe and suggesting that Sad1 may similarly
promote Cut11’s localization at the SPB.
Cut11 also interacted with Csi2, which localizes to the SPB
and is implicated in bipolar spindle formation, microtubule
dynamics and chromosome segregation (102). Also identi-
fied was Ckb1, the beta-subunit of casein kinase CK2, which
phosphorylates the HP1 protein Swi6 to promote heterochro-
matic silencing at centromeres (103, 104). Interestingly, we
also identified SPB components with meiosis-specific func-
tions. For example, Cut11 interacted strongly with Dms1,
which localizes to the SPB specifically during meiosis II and
recruits Spo15 for meiotic SPB remodeling to ensure proper
SPB number and function (105–107). Cut11 also interacted
with the dynein light-chain proteins Dlc1 and Dlc2. Dlc1
localizes to the SPB throughout mitosis and meiosis and
was shown to interact with the meiosis-specific SPB com-
ponent Kms1 by traditional yeast two-hybrid screen (108).
Dynein motors are required for the “horse-tail” movements
of telomere-associated SPBs during meiosis (109–112) and
promote chromosome segregation during mitosis (113) and
meiosis (114, 115). Together, these findings identify multiple
putative new interacting proteins for Cut11, including com-
ponents of the NPC and SPB, and demonstrate that the use
of a heterologous system for the MYTH screening allows for
the identification of interactions that may occur throughout
the life cycle.

Application of MYTH to determine how mutations alter
interaction networks. We previously used the MYTH sys-
tem to identify proteins that interact with Ndc1 at the SPB
and NPC and to characterize how these interactions are mod-
ulated in ndc1 mutants (52). As we observed conservation
of physical and genetic interactions with Cut11 and the or-
thologous NPC and SPB components in fission yeast (Figure
4), we next examined the effects of canonical cut11-ts alleles
on Cut11 localization and interactions. The original cut11.1
mutant allele, leucine 521 to phenylalanine (L521F), is de-
fective in SPB insertion and bipolar spindle formation, but
has not been associated with defects in NPC assembly (37).
Interestingly, this allele was not suppressed by increased lev-
els of Tts1, while all other known alleles were, including
cut11.2/3/4, which all contain a mutation of cysteine 525
to arginine (C525R), and cut11.5/6 that contain a mutation
of threonine 498 to isoleucine (T498I). All three residues
map to the C-terminal tail of Cut11 that faces the nucleo-
plasm/cytoplasm, with L521F being highly conserved (Fig-
ure 5A-B). Visualization of each of the mutant proteins C-
terminally tagged with GFP showed that all were expressed
at similar levels and localized to punctate structures through-
out the NE in interphase and to two bright foci in dividing

cells (Figure 5C). This suggests that although these mutants
show decreased protein levels relative to wild-type even at
the permissive temperature (25°C), they properly localize to
both NPCs and SPBs similarly to wild-type Cut11.
To begin to understand the phenotypic differences reported
for the cut11-ts mutants, we introduced the corresponding
L521F, C525R or T498I mutations into the Cut11 MYTH
bait. Expression of the mutant baits was confirmed (Figure
S2D), and all three were screened against the MYTH prey li-
brary simultaneously with wild-type Cut11 to examine how
these mutations altered protein interactions. Interestingly,
the interactome of cut11.1 (L521F) was similar to that of
wild-type Cut11, with strong interactions with NPC compo-
nents (Nup37, Pom34, Nup40, Cut11) and SPB components
(Sad1, Ima1, Csi2) (Figure 5D-F). In contrast, both C525R
and T498I mutants showed global alterations to their inter-
actomes including reduced affinity for both NPC and SPB
components. Inspection of the interaction with Tts1 showed
an increase in binding for L521F compared to wild-type and
a complete loss of binding for both C525R and T498I. Thus,
genetic suppression by Tts1 overexpression can be linked to
differences in the ability of different mutants to interact with
Tts1. These results demonstrate that MYTH is a simple alter-
native tool to study the effect of mutations on protein interac-
tions to provide additional insight into phenotypes observed
in S. pombe.

Discussion

Proteins that localize to the NE play critical roles in nuclear
and chromatin organization, regulation of gene expression,
lipid biosynthesis and membrane organization. To assist in
the functional characterization of integral membrane proteins
that localize to the NE, we developed an arrayed membrane
yeast two-hybrid prey library. Screening of three known INM
proteins against this library confirmed many previously re-
ported interactions and identified novel interactions that are
intriguing candidates for further mechanistic studies. This li-
brary and screening approach is immediately applicable to
survey interactions that occur at other membranes and or-
ganelles in either a high-throughput or targeted approach.
The MYTH system is also a valuable tool for determining
how mutations of integral membrane proteins affect their pro-
tein interactions. By combining MYTH with genetic ap-
proaches available in S. cerevisiae and S. pombe, we have
identified conserved interactions between Ndc1/Cut11 and
components of the NPC and SPB that control its distribu-
tion in the NE. Characterization of the interaction profiles
for canonical cut11 alleles identified changes in interactions
with putative Cut11 binding partners at the SPB and NPC.
These studies also revealed a direct physical interaction be-
tween Cut11 and the conserved membrane protein Tts1.
The observation that cut11 alleles differentially alter interac-
tions with Tts1 provides valuable new insight into the mech-
anisms by which Tts1 and Cut11 work together at the NE. In
addition to its role in controlling NPC distribution during NE
expansion, Tts1 deletion also exacerbated the spindle defects
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Fig. 5. Effect of Cut11 mutations on the Cut11 interactome A) Schematic of Cut11 topology in the NE, with mutations identified in cut11-ts alleles highlighted. All three
mutations cluster in a similar region of the C-terminal portion of Cut11 that faces the nucleoplasm/cytoplasm (Image generated using Protter (http://wlab.ethz.ch/
protter/start/)). B) C-terminal regions of Ndc1/Cut11 from multiple species aligned using ClustalOmega in SnapGene (v 5.1.4.1), with coloring based on amino acid
properties and conservation. Causative mutations of each cut11-ts allele is annotated below alignment. C) (left) Representative images of Cut11 wild-type or mutant GFP
fusion proteins, scale bar is 3 microns. (center ) Images of individual mitotic nuclei showing recruitment of Cut11-GFP to the two SPBs (images show a 7.5x7.5 micron field
of view). (right) Quantification of mean Cut11-GFP intensity values for individual nuclei in wild-type or mutant Cut11 strains. D-E) Heat maps of interactions between Cut11
baits and NPC (D) or SPB (E) components. The subcomplex color scheme in (D) is the same as used in Figure 4A. F) Venn diagram illustrating the overlap in interacting
preys for each Cut11 bait protein.
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A Media preparation and yeast culture

observed in cut11-ts mutants. The mechanism by which Tts1
exerts its function at the SPB remained unclear, as Tts1 does
not localize to the SPB and is not required for localization of
Cut11 to the SPB (87). It was therefore proposed that Tts1
likely promotes NE remodeling during SPB insertion by reg-
ulating membrane lipid composition or dynamics. Our data
showing that mutants that do not bind to Tts1 (C525R and
T498I) still localize to the SPB (Figure 5C) provides addi-
tional evidence that binding to Tts1 is not required for re-
cruitment of Cut11 to the SPB or for SPB insertion.
Our results also allow us to address the curious observation
that Tts1 overexpression rescues all cut11-ts alleles except for
cut11.1 (87). Our MYTH data show that the cut11.1 L521F
mutation increases binding between Cut11 and Tts1, while
both C525R and T498I mutations prevent binding to Tts1.
As Tts1 localizes to the INM and NPC but not the SPB (87),
increased levels of Tts1 could act as a sink to retain Cut11 at
these locations at the NE, potentially reducing the amount of
Cut11 able to localize to the SPB to facilitate insertion. This
impact of Tts1 overexpression is dependent upon its ability
to bind to Cut11, and therefore is not observed in C525R
or T498I mutants. This model also suggests that while Tts1
overexpression may promote changes to the membrane that
are favorable for SPB insertion, this process requires Cut11
localization and function at the SPB.
A mechanism by which Tts1 overexpression competes
with SPB components for Cut11 binding is similar to our
data from budding yeast and fission yeast showing that
ndc1/cut11-ts alleles can be rescued by reducing affinity for
the NPC by disrupting interactions with the Pom nucleo-
porins (52) (Figure 4B). In budding yeast, distribution of
Ndc1 between the NPC and SPB is facilitated by the SUN
protein Mps3. Although we observe a conserved interaction
with the S. pombe SUN protein Sad1, it is unclear whether
Sad1 serves a similar function given that its localization at
the INM is restrained to the regions near the SPB. It is likely
that Sad1 serves a more passive role in S. pombe, acting as an
anchor to retain Cut11 at the SPB but not actively shuttling
Cut11 in the NE. In this scenario, recruitment of Cut11 to the
SPB during mitosis may be controlled by altering the affin-
ity for Cut11’s binding partners at the NPC or NE. Our data
shows that changes within the C-terminus of Cut11 influence
its protein interactions. Multiple residues in this region are
phosphorylated in a cell-cycle dependent manner (116, 117)
and could drive similar alterations to the Cut11 interactome
to promote its recruitment to the SPB.
It also remains unclear how the C525R and T498I mutant
proteins localize to the SPB, as many of the SPB interactions
including Sad1 are significantly reduced or completely lost
in these mutants. Both C525R and T498I are able to bind to
Ima1, which localizes to the mitotic SPB with similar kinet-
ics as Cut11 (Figure 4C). However, a direct role for Ima1 in
Cut11 recruitment has not yet been reported. It is also likely
that other SPB components that are not in our MYTH prey li-
brary, such as the KASH-protein Kms2 and the mitotic regu-
lator Cut12, remain capable of binding and recruiting C525R
and T498I mutant Cut11 proteins. The interactome data for

the cut11 alleles presented in this study will help guide fu-
ture mechanistic studies exploring Cut11 function. MYTH
may also be a helpful tool to identify mutations that will al-
low for separation of SPB and NPC function, which would
be useful for studies characterizing the role of this conserved
nucleoporin in NPC assembly and insertion into the NE.

Methods

A. Media preparation and yeast culture. Standard meth-
ods were used for both S. cerevisiae (118) and S. pombe (119)
transformation and colony selection. Synthetic drop-out (SD)
media lacking the indicated amino acids was prepared by
mixing 6.7 g yeast nitrogen base without amino acids with
ammonium sulfate, 20 g dextrose (Sigma), 20 g Bacto Agar
(VWR) and 0.5-1 g amino acid drop-out powder (Sunrise
Scientific) in 1 L of water. Yeast extract with supplements
(YES) media was prepared by mixing 5 g yeast extract, 30
g dextrose, 0.2 g each adenine, uracil, histidine, leucine and
lysine, in 1 L of water. MYTH screens were performed in 96-
or 384-well format on PlusPlates (Singer Instruments), at the
temperatures indicated in the section below. Dilution assays
to assess growth for MYTH bait quality control experiments
were done using a serial 10-fold dilution series spotted onto
control (SD-leu-trp) or selection media (SD-leu-trp-ade-his).
Growth assays for cut11-ts rescue by Pom deletion were done
using a 5-fold serial dilution series spotted onto YES agar
plates incubated at permissive (25°C) or restrictive (36°C)
temperatures.

B. Generation of MYTH prey library. The coding se-
quence of each prey of interest was amplified from an S.
pombe cDNA library (AS One International, Inc.) using
KOD Hot Start DNA polymerase (Millipore Sigma), and re-
actions were cleaned up using the MagSi-DNA Clean para-
magnetic beads (Amsbio). The amplicons were cloned into
PCR-linearized pPR3-N prey plasmid (Dualsystems Biotech)
at the SfiI sites using the NEBuilder HiFi DNA Assembly Kit
(New England Biolabs), and were transformed into DH5α
competent cells and plated onto 48-well Bioassay Qtrays
(Molecular Devices). Automated colony picking was per-
formed using a QPix 420 robotic colony picker (Molecular
Devices), followed by high-throughput plasmid prep using a
BioMek FXP liquid handling workstation (Beckman Coul-
ter) and Sanger sequencing for insert validation. After se-
quencing validation, the prey plasmids were transformed into
the MYTH prey reporter strain SLJ6830 (NMY61, Dualsys-
tems Biotech) using traditional LiOAc protocol on a Free-
dom EVO automation platform (Tecan). Transformants were
selected on SD-trp media, then picked and arrayed into a fi-
nal format spanning thirteen 96-well plates using the Tecan
EVO. In a similar fashion, MYTH bait coding sequences
were gene synthesized (GenScript) and cloned into either the
C-terminal (pBT3-STE) or N-terminal (pBT3-N) bait plas-
mids (pSJ1283 and pSJ1281). The bait plasmids were trans-
formed into SLJ5572 (NMY51; Dualsystems Biotech) and
transformants were selected on SD-leu plates.
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C. MYTH Screening. Liquid cultures for each bait were
spotted onto SD-leu PlusPlates in 96-well format and 10 µl
volumes, and incubated for 2 days at 30°C. Similarly, the
arrayed prey library was spotted in 96-well format on SD-
trp PlusPlates. The bait and prey colonies were mated on
YPD plates using a RoToR HDA-Robot (Singer Instruments
Co. Ltd) and incubated overnight at 30°C. Diploids were se-
lected by transferring the resulting colonies to SD-leu-trp me-
dia. Following diploid selection, each bait-prey combination
was spotted in technical quadruplicate in 384-well format
on SD-leu-trp-ade-his plates supplemented with 25 mM 3-
aminotriazole (3-AT) to prevent leaky expression of the HIS3
reporter gene (51, 120, 121).

D. MYTH Analysis. : Colony growth was monitored vi-
sually, and plates were imaged every 24 hours for 4
days. Colony densities were extracted using a custom
FIJI/ImageJ plugin, and downstream analysis was con-
ducted using RStudio (122). The code used for den-
sity extraction, data analysis and visualization are made
available at http://www.stowers.org/research/
publications/libpb-1540. Colony growth values
obtained using this approach were nearly identical to mea-
surements obtained using other tools designed for analysis of
array-based high-throughput screens (123, 124) (Figure S2).
To determine a density cutoff for assigning positive interac-
tions, we manually assigned at least one hundred individual
colonies to one of four categories based on strength of inter-
action: negative, weak, medium or strong. A density cutoff
value equal to the 25th percentile of the “weak” interaction
densities was chosen, and this threshold was applied to the
entire screen. Interactions were considered “positive” if at
least one-half of a prey’s spots on the test plate had a density
value greater than the cutoff value. Values shown for posi-
tive interactors in Table S2 correspond to the averaged den-
sity values for each prey. GO term enrichment analysis was
performed for prey that showed a 2-fold or greater enrich-
ment for a specific bait, using LAGO (125) (https://go.
princeton.edu/cgi-bin/LAGO), with the PomBase
GOA annotations for biological processes, a p-value cutoff
of 0.01 with Bonferroni correction, and the MYTH prey li-
brary as background.

E. Microscopy and image analysis. Wild-type or cut11-
ts strains were tagged at their endogenous locus with a C-
terminal GFP tag. Cells were cultured in YES media at
25°C, and exponentially growing cells were collected and
fixed for 20 minutes with 4% paraformaldehyde as previously
described (32). Cells were resuspended in 1x PBS and im-
aged on a Nikon Ti2 wide-field microscope equipped with an
Andor EM-CCD camera and an α Plan Apochromat 100x,
1.46 NA oil immersion objective. GFP fluorescence was ex-
cited with a 488nm (70mw) diode laser and collected with an
ET535/30m emission filter. Data were acquired using Nikon
Elements software (Nikon) with z-spacing of 300 nm cov-
ering a total volume of 6.3 µm. All strains were imaged
on the same day using constant exposure times, laser power

and camera gain settings. Images were processed using
FIJI/ImageJ (126) (National Institutes of Health, Bethesda,
MD). To quantify Cut11-GFP levels at the NE, nuclear masks
were created by automated thresholding of the Cut11-GFP
signal. First, image stacks were maximum projected, back-
ground subtracted using a rolling ball radius of 20 pixels
and blurred with a Gaussian blur filter. Thresholding was
performed using the default algorithm in ImageJ, and nuclei
were defined as particles with a size between 4 and 12 µm2

and a circularity value of 0.3 or greater. The nuclear mask
was then applied to a sum projection of the original image
stack to extract mean intensity values for each nucleus. These
values were plotted using the GraphPad Prism software pack-
age (v 8.4.3).
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Fig. S1. Quality control of MYTH baits and functional composition of prey library Growth assays for MYTH baits that failed quality
control screening. N-terminal Sad1 bait fusion protein showed growth on selection media when co-expressed with the empty MYTH
prey plasmid (pPR3-N), indicating autoactivation. No growth was observed for C-terminal baits of Sad1 or Man, or for the N-terminal
Man1 bait, when co-expressed with the positive control prey construct (Ost1-NubI), which contains a Nub fragment that retains its
affinity for Cub.
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Fig. S2. Criteria used to determine positive interactions A) (left) Representative images of MYTH colony growth after 4 days of growth
on SD-leu-trp-ade-his + 25mM 3-AT test plates. At least 100 individual colonies were manually scored and binned into four categories:
strong, medium, weak and negative. (center ) A density cutoff was set at the 25th percentile value for "weak" colonies, depicted
by dashed line. (right) Colony densities for each bait showing distribution of densities, with those falling above the threshold cutoff
highlighted in blue. B) Comparison of normalized density values extracted using our custom ImageJ plugin with those available in the
SGATools software package (http://sgatools.ccbr.utoronto.ca). C) Heat map of prey with GO annotation for telomere
localization (GO:0034397). D) Growth assays confirming that Cut11 mutant baits are expressed and do not autoactivate.
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Supplemental Tables

Table S1: S. pombe MYTH prey library Each prey in libray is listed, with columns for Pombase StrainID, Gene, Product,
presence of transmembrane (TM) domain, S. cerevisiae and H. sapiens orthologs, and the location of each protein as determined
using a nucleoplasmic split-GFP reporter screen in S. cerevisiae. “INM” indicates observed localization to the inner nuclear
membrane, “Nucleoplasmic” indicates soluble nuclear localization, “Negative” indicates no signal detected with nucleoplasmic
reporter, and “Unknown” indicates that the protein was not included in the screen.
Table S2: Interactors identified by MYTH screen All 343 prey identified as a positive interactor for either Cut11, Ima1 or
Lem2 bait proteins. Values represent averaged density values for all technical replicates for each prey.
Table S3: Interactomes of wild-type and mutant Cut11 Prey identified as interactors for Cut11 bait proteins. Values represent
averaged densities for all technical replicates for each prey. An additional column is provided showing fold-change relative to
wild-type (WT) for each mutant bait (L521F, C525R and T498I).
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