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s Abstract

Although the evolutionary response to random genetic drift is classically mod-
elled as a sampling process for populations with fixed abundance, the abun-
dances of populations in the wild fluctuate over time. Furthermore, since wild
populations exhibit demographic stochasticity, it is reasonable to consider the
evolutionary response to demographic stochasticity and its relation to random
genetic drift. Here we close this gap in the context of quantitative genetics
by deriving the dynamics of the distribution of a quantitative character and
the abundance of a biological population from a stochastic partial differen-
tial equation driven by space-time white noise. In the process we develop a
useful set of heuristics to operationalize the powerful, but abstract theory of
white noise and measure-valued stochastic processes. This approach allows us
to compute the full implications of demographic stochasticity on phenotypic
distributions and abundances of populations. We demonstrate the utility of
our approach by deriving a quantitative genetic model of diffuse coevolu-
tion mediated by exploitative competition for a continuum of resources. In
addition to trait and abundance distributions, this model predicts interaction
networks defined by rates of interactions, competition coefficients, or selection
gradients. Analyzing the relationship between selection gradients and com-
petition coefficients reveals independence between linear selection gradients
and competition coefficients. In contrast, absolute values of linear selection
gradients and quadratic selection gradients tend to be positively correlated
with competition coefficients. That is, competing species that strongly affect
each other’s abundance tend to also impose selection on one another, but the
directionality is not predicted. This approach contributes to the development
of a synthetic theory of evolutionary ecology by formalizing first principle
derivations of stochastic models that underlie rigorous investigations of the
relationship between feedbacks of biological processes and the patterns of di-
versity they produce.

Key words: quantitative genetics, demographic stochasticity, measure-valued
s branching processes, diffusion-limits, SPDE

*Corresponding Author
Email address: bobweek@gmail.com (Bob Week)

July 28, 2020


https://doi.org/10.1101/2020.07.28.226001
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.226001; this version posted July 29, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1. Introduction

10 Current mathematical approaches to synthesize the dynamics of abun-
2 dance and evolution in populations have capitalized on the fact that biological
fitness plays a key role in determining both sets of dynamics. In particular,
1 while covariance of fitness and genotype is the basis of evolution by natural
selection, the mean fitness across all individuals in a population determines
1 the growth, stasis or decline of abundance. Although this connection has been
established in the contexts of population genetics (Crow and Kimura, 1970,
1z Roughgarden, 1979), evolutionary game theory (Hofbauer and Sigmund, 1998,
Lion, 2018, Nowak, 2006), quantitative genetics (Doebeli, 1996, Lande, 1982,
» Lion, 2018) and a unifying framework for these three distinct approaches to
evolutionary theory (Champagnat et al., 2006), there remains a gap in incor-
» porating the intrinsically random nature of abundance into the evolution of
continuous traits. Specifically, in theoretical quantitative genetics the deriva-
2 tion of a population’s response to random genetic drift is derived in discrete
time under the assumption of constant effective population size using argu-
s ments based on properties of random samples (Lande, 1976). Though this
approach conveniently mimics the formalism provided by the Wright-Fisher
s model of population genetics, real population sizes fluctuate over time. Fur-
thermore, since these fluctuations are themselves stochastic, it seems natural
» to derive expressions for the evolutionary response to demographic stochas-
ticity and consider how the results relate to characterizations of random ge-
2 netic drift. This can be done in continuous time for population genetic models
without too much technical overhead, assuming a finite number of alleles (Go-
s mulkiewicz et al., 2017, Lande et al., 2009, Parsons et al., 2010). However, for
populations with a continuum of types, such as a quantitative trait, finding a
s formal approach to derive the evolutionary response to demographic stochas-
ticity has remained a vexing mathematical challenge. In this paper we close
3 this gap by combining the calculus of white noise with results on rescaled
limits of measure-valued branching processes (MVBP) and stochastic partial
w differential equations (SPDE).
Our goals in this paper are twofold: 1) Establish a novel synthetic approach
2 to theoretical evolutionary ecology that provides a formal connection between
demographic stochasticity and random genetic drift in the context of quantita-
w  tive traits. 2) Communicate some useful properties of space-time white noise,
MVBP and SPDE to a wide audience of mathematical evolutionary ecologists.
s With these goals in mind we will not provide a rigorous treatment of any of
these mathematically rich topics. Instead, we introduce a set of heuristics that
s only require the basic concepts of Riemann integration, partial differentiation
and some exposure to Brownian motion and stochastic ordinary differential
so equations (SDE). A concise introduction to SDE and Brownian motion has
been provided by Evans (2014).
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52 Since MVBP are abstract mathematical objects and their rigorous study re-
quires elaborate mathematical machinery, the use of MVBP in mainstream
s« theoretical evolutionary ecology has been limited. However, they provide
natural models of biological populations by capturing various mechanistic
ss details. In particular, MVBP generalize classical birth-death processes, such
as the Galton-Watson process (Kimmel and Axelrod, 2015, Dawson, 1993), to
s model populations of discrete individuals that carry some value in a given
type-space. Selection can then be modelled by associating these values with
o average reproductive output and mutation can be incorporated using a model
that determines the distribution of offspring values given their parental value.
2 For population genetic models the type-space is the discrete set of possible
alleles individuals can carry. In quantitative genetic models tracking the evo-
s« lution of d-dimensional phenotypes, this type-space is typically set to the Eu-
clidean space R?. By starting with branching processes we can implement
s mechanistic models of biological fitness that account for the phenotype of the
focal individual along with the phenotypes and number of all other individ-
e uals in a population or community. By taking a rescaled limit, we can then
use these detailed individual-based models to derive population-level models
20 tracking the dynamics of population abundance and phenotypic distribution
driven by selection, mutation and demographic stochasticity. Hence, rescaled
22 limits of MVBP provide a means to derive mathematically tractable, yet bio-
logically mechanistic models of eco-evolutionary dynamics.
7 For univariate traits (i.e., d = 1) Konno and Shiga (1988), Reimers (1989), Li
(1998) and Champagnat et al. (2006) have shown that rescaled limits for a large
76 class of MVBP converge to solutions of SPDE. Although cases in which d > 1
can be treated using the so-called martingale problem formulation (Dawson,
s 1993), the SPDE formulation provides a more intuitive description of the bi-
ological processes involved. We therefore focus on the case d = 1 here. This
0 allows us to introduce a concrete set of heuristics for deriving SDE track-
ing the dynamics of abundance, phenotypic mean and phenotypic variance
22 to a wide audience of mathematical evolutionary ecologists. Following our
approach to simplify notation and develop heuristics for calculations, future
s work can possibly use the martingale formulation to extend the results pre-
sented here for d > 1 and even for infinite-dimensional traits (Dawson, 1993,
s Stinchcombe et al., 2012). Rigorous introductions to SPDE and rescaled limits
of MVBP have been respectively provided by Da Prato and Zabczyk (2014)
s and Etheridge (2000).
In this paper we begin in §2 by introducing the basic framework of our
o approach. We first outline the essential ideas behind deriving evolutionary
dynamics from abundance dynamics using a deterministic partial differential
22 equation (PDE). In SM §3.1 we review rescaled limits of MVBP, their asso-
ciated SPDE and introduce an approach to derive SDE tracking the dynam-
u ics of abundance, phenotypic mean and phenotypic variance. This approach
requires performing calculations with respect to space-time white noise pro-
s cesses and we provide heuristics for doing so in SM §2.1. In §2.2 we discuss
consequences of the derived SDE for general phenotypic distributions and
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s simplify their expressions by assuming normally distributed phenotypes. For
added biological relevance, we incorporate models of inheritance and devel-
wo opment following classical quantitative genetics. To demonstrate how our
framework can be used to formulate a synthetic theory of evolutionary ecol-
2 ogy, in §3 we derive a model of diffuse coevolution for a set of S species
competing along a resource continuum. The basic approach follows classical
s niche theory to develop biological fitness as a function of niche parameters
and niche locations of other individuals in the community. We then use this
s model to derive formula for selection gradients and competition coefficients.
Finally, we investigate the relationship between selection gradients and com-
s petition coefficients using a high-richness (large S) approximation.

2. The Framework

110 At the core of our approach is a model of stochastic abundance dynamics
for a structured population in continuous time and phenotypic space. From
uz this stochastic equation we derive a system of SDE for the dynamics of to-
tal abundance, mean trait and additive genetic variance of a population. In
u  particular, our approach develops a quantitative genetic theory of evolution-
ary ecology. A popular alternative to quantitative genetics is the theory of
us adaptive dynamics (Dieckmann and Law, 1996, Metz et al., 1996). As demon-
strated by Page and Nowak (2002) and Champagnat et al. (2006), the canoni-
us cal equation of adaptive dynamics can be derived from the replicator-mutator
equation, which in turn can be derived from models of abundance dynamics,
o revealing a synthesis of mathematical approaches to theoretical evolutionary
ecology. In this section we briefly outline derivations of the replicator-mutator
122 equation and trait dynamics from abundance dynamics in the deterministic
case. We then extend these formula along with related results to the case of
1+ random reproductive output (i.e., demographic stochasticity).

2.1. Deterministic Dynamics
s Finite Number of Types. We start by considering the dynamics of an asexually
reproducing population in a homogeneous environment. For simplicity, we
s first assume individuals are haploid and carry one of K alleles each with a dif-
ferent fitness expressed as growth rate before introducing a model involving
1 a quantitative trait. Under these assumptions, the derivation of the evolution
of allele frequencies due to natural selection can be derived from expressions
1z of exponential growth. This, and a few related approaches, have been pro-
vided by Crow and Kimura (1970). Mutation can be included using a matrix
14 of transition rates. Specifically, denoting v; the abundance of individuals with
allele i, m; the growth rate of allele i (called the Malthusian parameter in Crow
13 and Kimura, 1970), y;; the mutation rate from allele i to allele j and assuming
selection and mutation are decoupled (Biirger, 2000), we have

dl/i K
ap = mivit Y (jivj — pijvi)- 1
=1

4
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138 Starting from this model, we get the total abundance of the population as
N = Y v;, the frequency of allele i as p; = v;/N and the mean Malthusian
uo fitness of the population as 1 = ) ; p;m;. Note we have used the abbreviation
Y= Zlel to simplify inline notation. Observing Y.ij MjiVj = Lij HijVi, We use
w2 linearity of differentiation to derive the dynamics of abundance dN/dt as

AN K K
e Y mivi+ Y (ivj — ujivi) = mN. )
i=1 i,j=1
To derive the dynamics of the allele frequencies py,...,px, we use the
s  quotient rule of elementary calculus to find

dp; K
% = (m; —m)p; + Zi(ﬂjipj — WijPi)- 3)
=
Two important observations of these equations include: (i) Mean Malthu-
us sian fitness 7 is equivalent to the population growth rate and thus determines
the abundance dynamics of the entire population. (ii) Selection for allele 7 oc-
us curs when m; > 1 and selection against allele i occurs when m; < . Hence,
as mentioned in the introduction, fitness plays a key role in determining both
150 abundance dynamics and evolution.
Equation (3) is known in the field of evolutionary game theory as a replicator-
12 mutator equation (Nowak, 2006). Instead of being explicitly focused on alleles,
the replicator-mutator equation describes the fluctuations of relative abun-
15« dances of various types in a population in terms of replication and annihila-
tion rates of each type and hence can be used to model dynamical systems
155 outside of evolutionary biology (Nowak, 2006).

Continuum of Types. Inspired by equations (1)-(3), we derive an analog of the
155 replicator-mutator equation for a continuum of types (that is, for a quanti-
tative trait). In particular, we model a continuously reproducing population
w0 with trait values x € R and an abundance density v(x,t) that represents the
amount of individuals in the population with trait value x at time . Hence,
w2 the abundance density satisfies N(t) = [v(x,t)dx and p(x,t) = v(x,t)/N(t)
is the relative density of trait x which we also refer to as the phenotypic dis-
1w tribution. Note we have used the abbreviation [ = fj;o to simplify inline
notation.
166 In analogy with the growth rates m; for equation (1) we write m(v, x) as
the growth rate associated with trait value x which depends on the abundance
s density v. We assume mutation is captured by diffusion with coefficient 5.
Hence, we model the demographic dynamics of a population and the dynam-
o ics of a quantitative character simultaneously by the PDE

d 02
gv(x,t) =m(v,x)v(x, t)+ %ﬁv(x,t). 4)
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Equation (4) qualifies both as a semilinear evolution equation and also a
w2 scalar reaction-diffusion equation. Although the general theory of such equa-
tions is quite rich, it is also quite difficult (Evans, 2010, Zheng, 2004). Hence,
1z to stay within the realms of analytical tractability and biological plausibility,
we require a set of technical assumptions which we list in SM §1.1. These
s assumptions guarantee solutions to equation (4) exist for all finite time ¢t > 0
and, hence, let us investigate the ecological and evolutionary dynamics of
s biological populations.
Equation (4) can be seen as an analog of equation (1) for a continuum of
1w types. By assuming mutation acts via diffusion, the effect of mutation causes
the abundance density v(x,t) to flatten out across phenotypic space. In fact,
12 if the growth rate is constant across x, then this model of mutation will cause
v(x,t) to converge to a flat line in x as t — oo. Interpreting the trait value x
1+ as location in geographic space, equation (4) becomes a well-studied model of
spatially distributed population dynamics (Cantrell and Cosner, 2004).
186 Although clearly an idealized representation of biological reality, this model
is sufficiently general to capture a large class of dynamics including density
s dependent growth and frequency dependent selection. As an example, lo-
gistic growth combined with stabilizing selection can be captured using the
wo  growth rate

m(v,x) = R— g(G—x)Z—c/_J:Ov(y,t)dy: R— %(G—x)z—cN(t), ()

where a > 0 the is strength of abiotic stabilizing selection around the phe-
12 notypic optimum 6, ¢ > 0 is the strength of intraspecific competition and we
refer to R as the innate growth rate (see §3.3 below). In the language of popu-
1 lation ecology, r = R — (6 — x)? is the intrinsic growth rate of the population
(Chesson, 2000). This model assumes competitive interactions cause the same
s reduction in fitness regardless of trait value.
This exemplary fitness function has a few convenient properties. First,
s the effect of competition induces a local carrying capacity on the population,
leading to a finite equilibrium abundance over bounded subsets of pheno-
20 typic (or geographic) space. Second, abiotic selection prevents the abundance
density from diffusing too far from the abiotic optimum. In particular, when
2 R > %./ap > 0, x(0) is finite, ¢?(0) is non-negative and finite and N(0) is
positive and finite, this leads to a unique stable equilibrium given by

N=YR-1ap), (6a)
=0, (6b)
2 _ K
0 = ot (60)
204 We demonstrate this result in SM §1.2. The equilibrial phenotypic variance

predicted by this model coincides with a classic quantitative genetic result
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25 predicted by modelling the combined effects of Gaussian stabilizing selection
and the Gaussian allelic model of mutation (Biirger, 2000, Johnson and Barton,
2: 2005, Lande, 1975, Walsh and Lynch, 2018).
To derive a replicator-mutator equation from equation (4), we employ
20 integration-by-parts and the chain rule from calculus. Writing

m= /Oo m(v, x)p(x, t)dx (7)
for the mean fitness, we find
dN
T mN, (8a)
0 B _ u o2
P = (m(v,x) —m() pxt) + 5 op(x ). (80)

Equation 8b result closely resembles Kimura’s continuum-of-alleles model
22 (Kimura, 1965). The primary difference being that our model utilizes diffusion
instead of convolution with an arbitrary mutation kernel. However, our model
24 of mutation can be derived as an approximation to Kimura’s model, which
has been referred to as the Gaussian allelic approximation in reference to the
us  distribution of mutational effects on trait values at each locus in a genome
(Lande, 1975, Biirger, 1986, Biirger, 2000, Johnson and Barton, 2005), the in-
zs  finitesimal genetics approximation in reference to modelling continuous traits
as being encoded by an infinite number of loci each having infinitesimal effect
20 (Fisher, 1919, Barton et al., 2017) and the Gaussian descendants approxima-
tion in reference to offspring trait values being normally distributed around
22 their parental values (Bulmer, 1971, Turelli, 2017).
To distinguish this model from previous models of phenotypic evolution
24 we refer to PDE (4) from which (8b) was derived as the Deterministic Asex-
ual Gaussian allelic model with Abundance dynamics (abbreviated DAGA).
26 Later, we will extend this model to include the effects of demographic stochas-
ticity, which we refer to as the Stochastic Asexual Gaussian allelic model with
2 Abundance dynamics (abbreviated SAGA).

Evolutionary Dynamics. We now apply DAGA to derive the dynamics of mean
20 trait ¥ and phenotypic variance o2. Both of these dynamics are expressible in
terms of covariances with fitness. For an abundance distribution v(x) and as-
2 sociated phenotypic distribution p(x), the covariance of fitness and phenotype
across the population is defined as

—+o00
Cov (m(v,x),x) = ./_Oo (m(v,x) —m) (x — %) p(x)dx. )

2 Following this, we again apply integration-by-parts and the chain rule
from calculus to find the dynamics of the mean trait ¥ as

— = Cov(m(v,x),x). (10)
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236 Equation (10) is a continuous time analog of the well known Robertson-
Price equation without transmission bias (Frank, 2012, Lion, 2018, Price, 1970,

28 Queller, 2017, Robertson, 1966). Whether or not the covariance of fitness and
phenotype creates change in ¥ to maximize mean fitness # depends on the

20 degree to which selection is frequency dependent (Lande, 1976). Since this
change is driven by a covariance with respect to phenotypic diversity, the

22 response in mean trait to selection is mediated by the phenotypic variance. In
particular, when 02 =0, ¥ will not respond to selection.

244 Following the approach taken to calculate the evolution of ¥, we find the
response of phenotypic variation to this model of mutation and selection is

do? 2
o= V+Cov(m(v,x),(x—x) ) (11)
246 In the absence of mutation equation (11) mirrors the result derived by Lion
(2018) for discrete phenotypes. From a statistical perspective, if we think of
us (X — %)? as a square error, then in analogy to the dynamics of the mean trait,
we see that the response in ¢ to selection can be expressed as a covariance of
x0 fitness and square error, which is defined in analogy to Cov(m (v, x), x). Just
as for the evolution of ¥, this covariance also creates change in ¢ that can
=2 either increase or decrease mean fitness 771, depending on whether or not se-
lection is frequency dependent. The effect of selection on phenotypic variance
2+ can be positive or negative depending on whether selection is stabilizing or
disruptive.

6 2.2. Extending DAGA to Demographic Stochasticity

In SM 84, we extend these results to include the effects of demographic
s stochasticity. The idea is to add an appropriate noise term to DAGA. Hence,
we wish to study stochastic partial differential equations (SPDE) that provide
20 natural generalizations of DAGA. Fortunately, rigorous first principle deriva-
tions of such SPDE have been provided by Li (1998) and Champagnat et al.
22 (2006). The noise terms driving these SPDE are space-time white noise pro-
cesses, denoted W(x,t), which are random processes uncorrelated in both
2« space and time. In SM §2.1, we provide a set of heuristics for performing
calculations with respect to space-time white noise including methods to de-
26 rive SDE from SPDE in analogy to our derivations of ordinary differential
equations (ODE) from PDE above. Since our aim is to present this material
s to a wide audience of mathematical evolutionary ecologists, our treatment
of space-time white noise and stochastic integration deviates from standard
2o definitions to remove the need for a detailed technical treatment. However,
in SM §2.2, we show our heuristics are consistent with the rigorous infinite-
22 dimensional stochastic calculus presented in Da Prato and Zabczyk (2014).
Using our simplified approach, the reader will only need some elementary
an  probability and an intuitive understanding of SDE, including Brownian mo-
tion, in addition to the notions of Riemann integration and partial differentia-

zs  tion already employed.
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To understand how SPDE can be derived from biological first principles,
e we provide in SM §3.1 an informal discussion of measure-valued branch-
ing processes (MVBP) (which provide individual-based models) and their
20  diffusion-limits (which provide population-level models). Diffusion-limits of
MVBP return so-called superprocesses which track the evolution of abun-
22 dance and phenotypic distribution (Etheridge, 2000). For univariate traits and
under biologically natural conditions, these superprocesses admit abundance
2« densities satisfying SPDE. Under the simplifying assumptions inherited from
our treatment of deterministic dynamics and the additional assumption that
26 the variance of individual reproductive output, denoted by V > 0, is indepen-
dent of trait values, we obtain as a special case the relatively simple expression

s  for an SPDE that generalizes DAGA

0 02

gv(x,t) =m(v,x)v(x, t)+ %@

We refer to this special case as the Stochastic Asexual Gaussian allelic

20 model with Abundance dynamics (SAGA). The simplicity of SAGA allows

us to use properties of space-time white noise processes to derive a set of SDE

22 that generalize equations (8a), (10) and (11) to include the effects of demo-
graphic stochasticity (see SM §3.2 and SM §4). In particular, we find

v(x,t) + 1/ Vu(x, ) W(x, t). (12)

AN _ Ndt + VNN (13a)
dt dt
dx o / 02 dWx

do?

2 +\4
B ) o (x —x)* —c*dW,2
o —y—i-Cov(m,(x x)) v VTR S, (130

2s  where Wy, Wy and W, are standard Brownian motions and barred expres-

sions such as (x — x)* are averaged quantities with respect to the phenotypic
26 distribution p(x, t). Intuitively, one can interpret equations (13) as if they are
ordinary differential equations, but this is not technically rigorous since Brow-
»: nian motion is nowhere differentiable with respect to time. In SM §4 we show
that in general Wy is independent of both Wi and W, but Wz and W,>» may

w0 covary depending on the shape of p(x,t).
Many known results follow directly from expressions (13). Firstly, assum-
32 ing no variance in reproductive output so that V' = 0 recovers the determin-
istic dynamics derived in §2.1. Alternatively, one can take N — oo to recover
2 the deterministic dynamics for ¥ and ¢?. Characteristically, we note the effect
of demographic stochasticity on abundance grows with v/N. Hence, divid-
ws ing by N, we find the effects of demographic stochasticity on the per-capita
growth rate diminish with increased abundance. Relating the response to
3¢ demographic stochasticity derived here to the effect of random genetic drift
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derived in classic quantitative genetic theory, if we set 02 and N constant with
s respect to time, then integrating the stochastic term in equation (13b) over a
single unit of time returns a normally distributed random variable with mean
22 zero and variance equal to Vo?/N. In particular, assuming perfect inheritance,
when reproductive variance is unity (V = 1) this random variable coincides
su  with the effect of random genetic drift on the change in mean trait over a
single generation derived using sampling arguments (Lande, 1976). There is
a6 also an interesting connection with classical population genetics. A funda-
mental result from early population genetic theory is the expected reduction
as  in diversity due to the chance loss of alleles in finite populations (Fisher, 1923,
Wright, 1931). This expected reduction in diversity due to random genetic
20 drift is captured by the third term in the deterministic component of expres-
sion (13c), particularly —V¢?/N. The component of SDE (13c) describing
2 random fluctuations in o2 is more complicated and is proportional to the root
of the difference between the centralized fourth moment of the phenotypic
2 distribution and square of the phenotypic variance o*.
These expressions can be used to investigate the dynamics of the mean
26 and variance for a very general set of phenotypic distributions. However, in
the next subsection we simplify these expressions by assuming normally dis-
2 tributed trait values, known as the Gaussian population assumption (Turelli
2017). In SM §4 we show that under the Gaussian case Wy, Wz and W2 are
s0 independent. Hence, although the Gaussian population assumption is very re-
strictive as a model of phenotypic diversity and, except for very special cases
sz of growth rates, is not formally justified, its exceedingly convenient properties
make it an important initial approximation.

s 2.3. Particular Results Assuming a Gaussian Phenotypic Distribution

By assuming normally distributed trait values, expressions (13) transform
1 into efficient tools for deriving the dynamics of populations given a fitness
function m (v, x). Gaussian phenotypic distributions can be formally obtained
s through Gaussian, exponential or weak selection approximations together
with a simplified model of mutation, genotype-phenotype mapping and asex-
s ual reproduction or random mating (Biirger, 2000, Lande, 1980, Turelli, 2017,
1986, 1984). Hence, given appropriate assumptions on selection, mutation
»2 and reproduction, the abundance density v(x,t) can be approximated as a
Gaussian curve in x when the ratio V/N is small (i.e., when the variance in
s reproductive output is much smaller than the population size). As with any
diffusion approximation, this requires a sufficiently large abundance to accu-
us rately reflect the dynamics of populations. Therefore, models developed in
this framework are not suitable for studies involving very small population

s sizes. Allowing for these restrictions, we assume

2
v(x, t) = &exp (_(x—x(t))) . (14)

10
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Under this assumption, covariances with fitness can be written in terms of
s0  fitness gradients. In particular, we find

Cov(m,x) = o (82)7;1 — %’:) , (15a)
_ om  om

and (x — %)* = 3¢*. These results imply trait dynamics can be rewritten as

dx  ,(om om [ 02 dWs

do? om  om o? 2V AW,

— = 208 |25 — =5 | — V= + 02/ =2 16b

ar —HTA <8¢72 aﬂ) NTOVN @ (16b)
352 These equations allow us to derive the response in trait mean and variance

by taking derivatives of fitness, a much more straightforward operation than
s calculating a covariance for general phenotypic distributions. Note that in the
above expressions, the partial derivatives of 77 represent frequency indepen-
sss  dent selection and the averaged partial derivatives of m represent frequency
dependent selection. This relationship has already been pointed out by Lande
s (1976) for the evolution of the mean trait in discrete time, but here we see an
analogous relationship holds in continuous time and also for the evolution of
s0  trait variance.
In SM §5 we generalize this result to the case when traits are imperfectly
% inherited. In this case, the phenotypic variance o2 is replaced by a genetic
variance G. This genetic variance represents the component of o2 explained by
s« additive effects among genetic loci encoding for the focal phenotype (Bulmer,
1971, Roughgarden, 1979, Walsh and Lynch, 2018). It is therefore fitting that G
ss  1s referred to as the additive genetic variance. Following classical quantitative
genetic assumptions we find

dx om  om [ G dWs

dG o [om om G 2V dWg

— = 2 — | -V= — 17b

g TR <8G ac) NtV N @ (170)
368 From expressions (17) we see that, under our simple treatment of inheri-

tance, focusing on additive genetic variance G instead of the variance in ex-
70 pressed traits 0> makes no structural changes to the basic equations describing

the dynamics of populations. Instead we see the role played by the variance
sz of expressed traits is now being played by the additive genetic variance. In the

next section, we make use of these expressions to develop a model of diffuse
s coevolution in a guild of S species competing along a resource continuum.

11
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3. A Model of Diffuse Coevolution

376 In this section we demonstrate the use of our framework by developing
a model of diffuse coevolution across a guild of S species whose interactions

s are mediated by resource competition along a single niche axis. Because our
approach treats abundance dynamics and evolutionary dynamics simultane-

s ously, this model allows us to investigate the relationship between selection
gradients and competition coefficients, which we carry out in §3.3.

sz 3.1. Formulation

The dynamics of phenotypic distributions and abundances have been de-
s« rived above and so the only task remaining is the formulation of a fitness
function. Our approach mirrors closely the theory developed by MacArthur
s and Levins (1967), Levins (1968) and MacArthur (1972, 1970, 1969). The most
significant difference, aside from allowing evolution to occur, is our treatment
ss  Of resource availability. In particular, we assume resources are replenished
rapidly enough to ignore the dynamics of their availability. A derivation from

s the MVBP framework is provided in SM §6.

Abiotic Selection and Competition. For species i we inherit the above notation
w2 for trait value, distribution, average, variance, abundance, etc., except with an
i in the subscript. Real world examples of niche axes include the size of seeds
3 consumed by competing finch species and the date of activity in a season for
pollinators competing for floral resources. For mathematical convenience, we
1 model the axis of resources by the real line R. The value of a resource along
this axis is denoted by the symbol ¢. For an individual in species i, we assume
we resources are sampled from the environment following the utilization curve
u;, which we assume can be written as

u; (xi —0)?
(0, xi) = - . 1
il xi) Vamw; O F < 2w; o
400 We further assume the niche center x; is normally distributed among indi-

viduals in species i, but the niche breadth w; and total niche utilization U; are
a2 constant across individuals in species i and therefore cannot evolve. We as-
sume resources are distributed along the niche gradient and that each species
ws  experiences heterogeneous fitness benefits at different niche locations. Taking
into account both resource availability and fitness benefits, we suppose indi-
ws viduals of species i maximize their benefits by sampling resources at niche
location 8; € R. We assume the benefits for individuals of species i derived
ws from resources with value { € R decreases as ({ — 6;)> increases at a rate
A; > 0. In the absence of competition, we further suppose individuals leave
a0 on average Q; offspring when their utilization curve is concentrated at 6; (that
is, when x; = 0; and w; = 0). Combining these assumptions, we denote by
sz ¢;({) the fitness benefits for individuals sampling at niche location ( so that

12
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6(0) = Qrexp (516, 02). (19)

The effect of abiotic stabilizing selection on the fitness for an individual of
as  species i with niche location x; is then given by

teo iti Ai
Lw ei(§)ui(g, x;)dg = fTuHeXP <_2(Aiwi+1)(9i - xi)2> - (20)

To determine the potential for competition between individuals with niche
at6 lgcations x; and x;, belonging to species i and j respectively, we compute the
niche overlap

Oo U;u; i — X 2
Ojj(x; —xj) = /—; i (g, x:)u; (g, x)dg = —J)exp <_(xx])> .

271 (w; + wj 2(w; + wj)
(21)
at To map the degree of niche overlap to fitness, we assume competition

between individuals with niche locations x; and x; decreases the expected
20 reproductive output for the individual in species i at the rate c;O;;(x; — x;) for
some c¢; > 0. We refer to c; as the strength of competition for species i.

a2 The Fitness Function. Assuming the effects due to competitive interactions and
abiotic stabilizing selection on the expected reproductive output of individu-
s+ als accumulates multiplicatively, we derive in SM §6 an expression for the
expected reproductive output of individuals in each. Applying a series of
w6 diffusion-limits, we then find the following expressions for the growth rate
associated with trait value x for species i along with the population growth
w5  rate of species i:

a; 2 Y bij _%i(x_sy2
mi(x) =R, — 5(91 - x) — ¢ Z N]U,ll] Ee 2 7, (22a)

j=1

. a 2 > bij iz _z)
mi:Ri—E((Gi—xi) +G,-+;7,»)—ci§1Njuiuj SLe 2 (07, (22p)
j=

where g; is the strength of abiotic stabilizing selection on species i. The vari-
a0 ables Eij, b;j determine the sensitivity of competitive effects on species i to
differences in niche locations between species i and j. We refer to R; as the
a2 innate growth rate of species i to distinguish it from the intrinsic growth rate

13
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commonly referred to in the field of population ecology. These are composite
14 parameters given by the following expressions:

(Y
%= ( ) (222)
A
a; = T+ Aw,’ (23b)
Bi(t) = (w; + wj + 1+ Gi(1)) (23¢)
() = byi(t) = (wi +w; + 1 + 1+ Gil) + Gy() (23d)

3.2. The Model
436 In SM §6 we combine equations (13a), (17) and (22) to find

dN; a
— = {Ri_ 2’((9 - x;)? +Gi+77i)

b b .
—CzZNUU n**@ff"f }NJH/VN dtl' (24a)

j=1

ax; bij iz g2
d7t1_ a;Gi(6; — %i) — ;G (ZNUUbU( i)\/ﬁe 2 (% x1)>

G; AWy,
+\/VziNi g (24b)

b

by
4G i A (xixp)?

S
— 2 = —\2
it = Wi + CiGi (]g N]Ulu]bl] <1 — bl-]'(xl- — x]) ) o

[ bj; Gi [2V: dWG,
+ N;U?b;; T 2G> — Vil\;)JrGi Wl (240
1 1

Together, equations (24) provide a synthetic model capturing the dynamics
s of abundance and evolution from common biological mechanisms.

Model Behavior. Despite the convoluted appearance of system (24), there are
w0 some nice features that reflect biological reasoning. For example, the dynam-
ics of abundance generalize Lotka-Volterra dynamics. In particular, the effect
w2 of competition with species j on the fitness of species i grows linearly with N;.
However, as biotic selection pushes x; away from ¥;, the effect of competition

14
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ws  with species j on the fitness of species i rapidly diminishes due to the Gaus-
sian weights capturing a reduction in niche overlap. These Gaussian weights
us have been usefully employed to capture interaction preference in recent in-
vestigations of coevolution in mutualistic networks (de Andreazzi et al., 2019,
us  Medeiros et al., 2018, Guimardes et al., 2017). The divergence of ¥; and X; due
to competition is referred to in the community ecology literature as character
w0 displacement (Brown and Wilson, 1956). We also see that the fitness of species
i drops quadratically with the difference between X; and the abiotic optimum
w2 0;. Hence, abiotic selection acts to pull ¥; towards 6;.
The response in mean trait ¥; to natural selection is proportional to the
s+ amount of heritable variation in the population, represented by the additive
genetic variance G;. However, we have that G; is itself a dynamic quantity.
ss6  Under our model, abiotic stabilizing selection erodes away heritable variation
at a rate that is independent of both N; and %;. The effect of competition
s on Gj is abit more complicated. When bi]-(xl- — 3?]-)2 < 1, competition with
species j acts as diversifying selection which tends to increase the amount of
w0 heritable variation. However, when b;;(%; — Xj)z > 1, competition with species
j acts as directional selection and reduces G;. In the following subsections we
w2 demonstrate the behavior of system (24) by plotting numerical solutions and
investigate implications for the relationship between the strength of ecological
w4 interactions and selection.

Community Dynamics. For the sake of illustration we numerically integrated
ws system (24) for a richness of S = 100 species. We assumed homogeneous
model parameters across species in the community as summarized by Table
ws 1. We repeated numerical integration under the two scenarios of weak and
strong competition. For the first scenario of weak competition we set ¢ = 1.0 x
a0 1077 and for the second scenario of strong competition we set ¢ = 5.0 x 107°.
With these two sets of model parameters, we simulated our model for 1000.0
a2 units of time. For both scenarios, we initialized the trait means to x; = 0.0,
additive genetic variances to G; = 10.0 and abundances to N; = 1000.0 for
s eachi—= 1,...,5.
Temporal dynamics for each scenario are provided in Figure 1. This figure
ae  suggests weaker competition leads to smoother dynamics and a higher degree
of organization within the community. Considering expression (24a) we note
as  that, all else equal, relaxed competition allows for larger growth rates which
promote greater abundances. From (24a) we also note that the per-capita
w0 effects on demographic stochasticity diminish with abundance. To see this,
divide both sides by N;.
a2 Inspecting expressions (24b) and (24c), we see that larger abundances also
erode the effects of demographic stochasticity on the evolution of mean trait
w¢ and additive genetic variance. These effects were already noted in §2.2, and
thus are not a consequence of our model of coevolution per-se, but we re-
ass  visit them here since Figure 1 demonstrates the importance of demographic
stochasticity in structuring ecological communities even when populations
w5 are very large. Hence, contrary to the common assumption that stochastic
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Figure 1: Temporal dynamics of mean trait (top), additive genetic variance (middle) and abun-
dance (bottom) for the scenario of weak competition (left) and strong competition (right).

Table 1: Values of model parameters used for numerical integration.

Parameter Description Value

S species richness 100

R innate growth rate, see §3.3 1.0

0 abiotic optimum 0.0

a strength of abiotic selection 0.01

c sensitivity to competition {1.0 x 1077,5.0 x 107}
w niche breadth 0.1

u total niche use 1.0

n developmental noise 1.0

U mutation rate 1.0 x 1077
Vv variance of reproductive output 5.0
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effects can be ignored for large populations, we find that minute asymmetries
w0 generated by demographic stochasticity remain significant drivers of commu-
nity structure. In particular, although we initialized each species with iden-
a2 tical state variables and model parameters, we found an enormous amount
of asymmetry in both the evolutionary and abundance dynamics and even
s some peculiar synchronized shifts. Although future work may show these
bizarre features always dissipate after the system has been given sufficient
ws time to evolve, we see demographic stochasticity has pronounced effects on
communities experiencing non-equilibrium dynamics.
498 Although Figure 1 suggests interesting patterns in the dynamics of abun-
dance and trait evolution, a more formal investigation is needed to better un-
so derstand the relationship between them. In the following subsection we take
a step in this direction by approximating correlations between competition
s coefficients and components of selection gradients induced by interspecific
interactions.

s 3.3. The Relation Between the Strength of Ecological Interactions and Selection

Here we investigate the relationship between competition coefficients, which
ss measure the effect of ecological interactions on abundance dynamics, with se-
lection gradients, which measure the magnitude and direction of selection on
se mean trait and trait variance. We start by considering the expressions of abso-
lute competition coefficients implied by equations (24). However, it turns out
s0  absolute competition coefficients display some unfortunate behaviour with
respect to our model. We therefore introduce a slightly modified form of ab-
sz solute competition coefficients. We then provide formula for the components
of linear and quadratic selection coefficients corresponding to the effects of
su  interspecific interactions. Lastly, we use a high-richness (large S) approxima-
tion to determine correlations between competition coefficients and selection
s gradients across the community. Associated calculations are provided in SM
§7.3.

sie  Competition coefficients. Relating our treatment of resource competition to the-
oretical community ecology, the absolute competition coefficient &;;, which

s0 measures the effect of species j on the growth rate of species i (sensu Chesson,
2000), becomes a dynamical quantity that can be written as

fij(t) = rfé) /:o /:: pi(x, t)pj(y, £)Oij (x, y)dxdy
Uil |b; bij
= ee (" w0 5. e
s2 Wwhere
ri(t) = Ri = % (5i(6) = 8% + Gilt) + 1), (26)
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is the intrinsic growth rate of species i. Then, dN;(t) can be expressed as

dN; S, AWy
dtl =7 (1 — Xile]Nj> Ni + vV ViNjidt L. (27)
]:

524 Following our model, the classically defined absolute competition coeffi-
cient for species i is parameterized with the intrinsic growth rate of species

6 1 appearing in the denominator. In turn, these intrinsic growth rates depend
on the balance between the innate growth rate R; and the effect of abiotic sta-

s bilizing selection. However, this balance further depends on mean trait and
additive genetic variance, which evolve freely. This leads to the potential for

s the signage of r; to switch between positive and negative which implies the
potential for infinite absolute competition coefficients. Furthermore, we see

sz these competition coefficients are influenced by abiotic stabilizing selection in-
stead of solely capturing the effects of inter/intraspecific interactions. Hence,

s»  we find it necessary to introduce a modification of the absolute competition
coefficient &;; that avoids these caveats. In particular, we define

b“ bii , o _\2
wjj = rifj; = ciUin\/geZJ(xixf) : (28)

536 We call a;; the specific competition coefficient mediating the effects of
species j on the growth rate of species i. Under this parameterization, the
s abundance dynamics of species i is now expressed as

AN,

S AWy,
I =|r—- Z tX,‘]'N]' N; + v/ ViNiidt . (29)
=1

Selection Gradients. Linear and quadratic selection gradients have been de-
so0 fined by Lande and Arnold (1983). While the linear selection gradient
measures the effect of selection on mean trait evolution, the stabilizing se-
s lection gradient v measures the effect of selection on additive genetic or phe-
notypic variance. Since these quantities are classically defined with respect to
s« discrete-time models of trait evolution, we provide the analogous definitions
for continuous-time models in SM §7.1. Following our model of diffuse coevo-
6 lution, we then show these selection gradients can be additively partitioned
into components due to interactions with each species and abiotic stabiliz-
s ing selection. In particular, we find the components of linear and quadratic
selection gradients for species i induced by species j are given respectively by

bi; Y. .
Bij = cilli;N;bi;(%; — ;) iff‘%(""‘xf)z, (30a)
= - \2 bl] _ﬁ(f._f.)z . .
vij = ciU;U;N;jb;; (1 — byj(%; — %) ) e 2T £, (30b)
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bi; . .
Yii = ZCiNiUizbii\/ ﬁ i=j. (30c)

550 With these expressions, the dynamics of mean trait and additive genetic
variance simplify to

dfi ( _ 5 Gi de
Y _ G0 — 5+ Y By )+ Vi (31a)
dt 1 1 1 1 ]:1 1] INZ dt
aG; ) : Gi o [2vidWg,
e —a PR A AT bl SiadiS 1b
It Wi —+ Gl ( a; + ]; ’)’1] lNi + Gz Nz' dt (3 )

sz High-Richness Approximation. We now make use of the expressions derived

for competition coefficients and selection gradients to investigate their rela-

s tionship. As a first pass, we assume the niche-breadths w; and intraspecific
2

variances 0} are equivalent across species so that the sensitivity parameters

s bij = 1/(w;+w;+ o?+ (sz) = b are constant across interacting pairs of species.
We also assume abundances N;, niche-use parameters U;, strengths of compe-

s tition ¢; and mean traits ¥; are distributed independently of each other with
respective means and variances denoted by N, Vy, U, Vi, ¢, V;, X, Vz. We fur-

s0 ther assume that richness S is large and the distribution of mean trait values
is approximately normal.

Corr(a,|B]) Corr(a,y)

10.0

75

value
1.00

25

0.0

Figure 2: Heatmaps of the correlation between the magnitude of linear selection gradients and
competition coefficients (left) and between stabilizing selection gradients and competition coeffi-
cients (right) as functions of community-wide variance of mean trait values V; and intraspecific
trait variances ¢2. In both plots we set w = 1.0, ¢ = 1.0 x 1077, V. = 0.0, U = 1.0, Vy = 0.0,
N =1.0 x 10°, and Vy = 100.0.

562 Under these assumptions we obtained analytical approximations for the
correlations between specific competition coefficients «;; and selection gra-
s« dients Bj;, ;. These calculations are provided in SM §7.3. In particular,
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we found linear selection gradients are not associated with competition co-
sos efficients (Corr(a, B) ~ 0). However, we did find a non-trivial relationship
between the magnitudes of linear selection gradients and competition coeffi-
ss cients (Corr(a, |B|) # 0) and also between quadratic selection gradients and
competition coefficients (Corr(a,y) # 0). Their expressions can be found in

s SM §7.3.
To understand if associations between competition coefficients and selec-
sz tion gradients tend to be positive or negative, we visualized these relation-
ships in Figure 2. We fixed w, ¢, V;, U, V;, N and Vy and allowed the amounts
s»  of intraspecific trait variance % and interspecific trait variance V; to vary. We
found, for biologically realistic areas of parameter space, absolute values of
ss  linear selection gradients and quadratic selection gradients tend to be posi-
tively associated with competition coefficients. Hence, if we know of compet-
s ing species that strongly effect each others abundances then we can guess they
also impose directional and diversifying selection on one another. However,
s0  based on this information alone, we cannot guess at the direction of selection.

4. Conclusion

562 We have introduced a novel approach to derive eco-evolutionary mod-
els using the calculus of white noise and diffusion-limits of measure-valued
s« branching processes (MVBP) and coined SAGA, a SPDE model of phenotypic
evolution that accounts for demographic stochasticity. From SAGA we de-
sss rived SDE that track the dynamics of abundance, mean trait and additive
genetic variance. Observing the expressions of these SDE, we find the ef-
se  fects of demographic stochasticity on the evolution of mean trait and additive
genetic variance characterize the effects of random genetic drift. Although
so Lande (1976) has previously characterized the effects of random genetic drift
on mean trait evolution in quantitative genetic models, the approach taken
s2 assumed constant effective population size and discrete non-overlapping gen-
erations. In contrast, our approach shows random genetic drift is a result
s« of demographic stochasticity for continuously reproducing populations with
fluctuating abundances.
596 To illustrate the relevance of our approach to studies of evolutionary ecol-
ogy, we combined our SDE with classical competition theory to derive a model
se¢  of diffuse coevolution. We then used this model to investigate the relationship
between standardized selection gradients and competition coefficients. We
o0 found absolute values of linear selection gradients and raw values of quadratic
selection gradients are positively related with competition coefficients. In the
sz process, we derived expressions for competition coefficients and components
of selection gradients due to pairwise interactions as functions of niche-use
s« parameters (niche breadth, total use and mean and variance of niche loca-
tion), strength of competitive interactions and abundance.
606 Although the framework outlined here holds great potential for develop-
ing a synthetic theory of coevolving ecological communities, there are two
s technical gaps in the mathematical foundations of our approach. Firstly, we
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were unable to derive formal conditions under which trait means and vari-
s10 ances remain finite for finite time. However, a result due to Evans and Perkins
(1994) shows that the diffusion-limit for a pair of interacting MVBP following
sz our simple niche-based treatment of competition exist when growth rates, as
functions of trait values and abundances, are bounded above. This result can
su  be easily extended to finite sets of competing species and therefore formally
establishes the existence of abundances as diffusion processes. Further work
s is needed to determine the conditions under which trait means and variances
exist as diffusion processes. The models studied here provide likely sufficient
se conditions. In particular, since diffusive mutation does not lead to “heavy-
tailed” phenotypic distributions, we expect the mean trait and trait variance
0 to remain finite so long as total abundance is positive, given finite initial values
for trait mean and variance. That is, since we have not included any processes
2 that would cause blow-up either in mean trait or trait variance, we expect so-
lutions of the SDE (13) to exist for all finite time ¢ such that N(t) > 0 when
e |%(0)],02(0) < +oo. This assumption appears especially well-founded under
quadratic stabilizing selection. Since fitness indefinitely decreases as individ-
s ual trait value becomes indefinitely large (see equation (22)), the diversifying
effects of mutation and competition will eventually be overwhelmed by stabi-
s lizing selection. Hence quadratic stabilizing selection prevents the abundance
densities of populations from venturing indefinitely far from their phenotypic
0 optima.
Secondly, although SDE derived under the assumption of normally dis-
s tributed phenotypes provide particularly useful formula by replacing covari-
ances between phenotype and fitness with fitness gradients, this assumption
s is mathematically rigorous only under deterministic dynamics and when the
growth rate is a linear or concave-down quadratic function of trait value.
s However, following our derivation based on classical competition theory, we
found the associated growth rate is highly non-linear. While this extreme non-
e linearity is mathematically inconvenient, it also captures important biological
details and thus allows for a more realistic model of community dynamics.
so In spite of this inconsistency in our model formulation, we found resulting
dynamics under the assumption of normally distributed trait values retained
s well-founded biological intuition. Furthermore, previous work in the field of
theoretical quantitative genetics has demonstrated the assumption of normally
ss distributed trait values is robust to fitness functions that select for non-normal
trait distributions when inheritance is given a more realistic treatment and
s When populations reproduce sexually (Turelli and Barton, 1994, Barton et al.,
2017). Hence, future work is needed to extend our approach to account for
s sexual reproduction, more realistic models of inheritance and to investigate
the community-level consequences of non-normally distributed trait values.
650 Overall, this work demonstrates that connecting contemporary theoretical
approaches of evolutionary ecology with some fundamental results in the the-
2 ory of measure-valued branching processes and their diffusion-limits allows
for the development of a rigorous, yet flexible approach to synthesizing the
s« dynamics of abundance and distribution of quantitative characters. In particu-
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lar, equations (13a) and (17) provide a fundamental set of equations for deriv-
s ing stochastic eco-evolutionary models involving quantitative traits. However,
these equations require an expression for growth rates associated with each
e trait value. Conveniently, equation (SM.34) in SM §3.1 provides a means to
derive such growth rates from individual based models. Taken together, these
0 results provide a means to derive analytically tractable dynamics from mecha-
nistic formulations of fitness as a function of phenotype. The derivation of our
sz model of diffuse coevolution, located in SM §6, demonstrates how to derive
eco-evolutionary models involving a set of interacting species from biological
s first principles. Hence, this work provides a novel set of mathematical tools
and a tutorial for their use in theoretical studies of evolutionary ecology and
s therefore paves the way for future work that provides a holistic theoretical
treatment of coevolving ecological communities.
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