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Abstract6

Although the evolutionary response to random genetic drift is classically mod-
elled as a sampling process for populations with fixed abundance, the abun-
dances of populations in the wild fluctuate over time. Furthermore, since wild
populations exhibit demographic stochasticity, it is reasonable to consider the
evolutionary response to demographic stochasticity and its relation to random
genetic drift. Here we close this gap in the context of quantitative genetics
by deriving the dynamics of the distribution of a quantitative character and
the abundance of a biological population from a stochastic partial differen-
tial equation driven by space-time white noise. In the process we develop a
useful set of heuristics to operationalize the powerful, but abstract theory of
white noise and measure-valued stochastic processes. This approach allows us
to compute the full implications of demographic stochasticity on phenotypic
distributions and abundances of populations. We demonstrate the utility of
our approach by deriving a quantitative genetic model of diffuse coevolu-
tion mediated by exploitative competition for a continuum of resources. In
addition to trait and abundance distributions, this model predicts interaction
networks defined by rates of interactions, competition coefficients, or selection
gradients. Analyzing the relationship between selection gradients and com-
petition coefficients reveals independence between linear selection gradients
and competition coefficients. In contrast, absolute values of linear selection
gradients and quadratic selection gradients tend to be positively correlated
with competition coefficients. That is, competing species that strongly affect
each other’s abundance tend to also impose selection on one another, but the
directionality is not predicted. This approach contributes to the development
of a synthetic theory of evolutionary ecology by formalizing first principle
derivations of stochastic models that underlie rigorous investigations of the
relationship between feedbacks of biological processes and the patterns of di-
versity they produce.
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1. Introduction

Current mathematical approaches to synthesize the dynamics of abun-10

dance and evolution in populations have capitalized on the fact that biological12

fitness plays a key role in determining both sets of dynamics. In particular,
while covariance of fitness and genotype is the basis of evolution by natural14

selection, the mean fitness across all individuals in a population determines
the growth, stasis or decline of abundance. Although this connection has been16

established in the contexts of population genetics (Crow and Kimura, 1970,
Roughgarden, 1979), evolutionary game theory (Hofbauer and Sigmund, 1998,18

Lion, 2018, Nowak, 2006), quantitative genetics (Doebeli, 1996, Lande, 1982,
Lion, 2018) and a unifying framework for these three distinct approaches to20

evolutionary theory (Champagnat et al., 2006), there remains a gap in incor-
porating the intrinsically random nature of abundance into the evolution of22

continuous traits. Specifically, in theoretical quantitative genetics the deriva-
tion of a population’s response to random genetic drift is derived in discrete24

time under the assumption of constant effective population size using argu-
ments based on properties of random samples (Lande, 1976). Though this26

approach conveniently mimics the formalism provided by the Wright-Fisher
model of population genetics, real population sizes fluctuate over time. Fur-28

thermore, since these fluctuations are themselves stochastic, it seems natural
to derive expressions for the evolutionary response to demographic stochas-30

ticity and consider how the results relate to characterizations of random ge-
netic drift. This can be done in continuous time for population genetic models32

without too much technical overhead, assuming a finite number of alleles (Go-
mulkiewicz et al., 2017, Lande et al., 2009, Parsons et al., 2010). However, for34

populations with a continuum of types, such as a quantitative trait, finding a
formal approach to derive the evolutionary response to demographic stochas-36

ticity has remained a vexing mathematical challenge. In this paper we close
this gap by combining the calculus of white noise with results on rescaled38

limits of measure-valued branching processes (MVBP) and stochastic partial
differential equations (SPDE).40

Our goals in this paper are twofold: 1) Establish a novel synthetic approach
to theoretical evolutionary ecology that provides a formal connection between42

demographic stochasticity and random genetic drift in the context of quantita-
tive traits. 2) Communicate some useful properties of space-time white noise,44

MVBP and SPDE to a wide audience of mathematical evolutionary ecologists.
With these goals in mind we will not provide a rigorous treatment of any of46

these mathematically rich topics. Instead, we introduce a set of heuristics that
only require the basic concepts of Riemann integration, partial differentiation48

and some exposure to Brownian motion and stochastic ordinary differential
equations (SDE). A concise introduction to SDE and Brownian motion has50

been provided by Evans (2014).
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Since MVBP are abstract mathematical objects and their rigorous study re-52

quires elaborate mathematical machinery, the use of MVBP in mainstream
theoretical evolutionary ecology has been limited. However, they provide54

natural models of biological populations by capturing various mechanistic
details. In particular, MVBP generalize classical birth-death processes, such56

as the Galton-Watson process (Kimmel and Axelrod, 2015, Dawson, 1993), to
model populations of discrete individuals that carry some value in a given58

type-space. Selection can then be modelled by associating these values with
average reproductive output and mutation can be incorporated using a model60

that determines the distribution of offspring values given their parental value.
For population genetic models the type-space is the discrete set of possible62

alleles individuals can carry. In quantitative genetic models tracking the evo-
lution of d-dimensional phenotypes, this type-space is typically set to the Eu-64

clidean space Rd. By starting with branching processes we can implement
mechanistic models of biological fitness that account for the phenotype of the66

focal individual along with the phenotypes and number of all other individ-
uals in a population or community. By taking a rescaled limit, we can then68

use these detailed individual-based models to derive population-level models
tracking the dynamics of population abundance and phenotypic distribution70

driven by selection, mutation and demographic stochasticity. Hence, rescaled
limits of MVBP provide a means to derive mathematically tractable, yet bio-72

logically mechanistic models of eco-evolutionary dynamics.
For univariate traits (i.e., d = 1) Konno and Shiga (1988), Reimers (1989), Li74

(1998) and Champagnat et al. (2006) have shown that rescaled limits for a large
class of MVBP converge to solutions of SPDE. Although cases in which d ≥ 176

can be treated using the so-called martingale problem formulation (Dawson,
1993), the SPDE formulation provides a more intuitive description of the bi-78

ological processes involved. We therefore focus on the case d = 1 here. This
allows us to introduce a concrete set of heuristics for deriving SDE track-80

ing the dynamics of abundance, phenotypic mean and phenotypic variance
to a wide audience of mathematical evolutionary ecologists. Following our82

approach to simplify notation and develop heuristics for calculations, future
work can possibly use the martingale formulation to extend the results pre-84

sented here for d > 1 and even for infinite-dimensional traits (Dawson, 1993,
Stinchcombe et al., 2012). Rigorous introductions to SPDE and rescaled limits86

of MVBP have been respectively provided by Da Prato and Zabczyk (2014)
and Etheridge (2000).88

In this paper we begin in §2 by introducing the basic framework of our
approach. We first outline the essential ideas behind deriving evolutionary90

dynamics from abundance dynamics using a deterministic partial differential
equation (PDE). In SM §3.1 we review rescaled limits of MVBP, their asso-92

ciated SPDE and introduce an approach to derive SDE tracking the dynam-
ics of abundance, phenotypic mean and phenotypic variance. This approach94

requires performing calculations with respect to space-time white noise pro-
cesses and we provide heuristics for doing so in SM §2.1. In §2.2 we discuss96

consequences of the derived SDE for general phenotypic distributions and
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simplify their expressions by assuming normally distributed phenotypes. For98

added biological relevance, we incorporate models of inheritance and devel-
opment following classical quantitative genetics. To demonstrate how our100

framework can be used to formulate a synthetic theory of evolutionary ecol-
ogy, in §3 we derive a model of diffuse coevolution for a set of S species102

competing along a resource continuum. The basic approach follows classical
niche theory to develop biological fitness as a function of niche parameters104

and niche locations of other individuals in the community. We then use this
model to derive formula for selection gradients and competition coefficients.106

Finally, we investigate the relationship between selection gradients and com-
petition coefficients using a high-richness (large S) approximation.108

2. The Framework

At the core of our approach is a model of stochastic abundance dynamics110

for a structured population in continuous time and phenotypic space. From
this stochastic equation we derive a system of SDE for the dynamics of to-112

tal abundance, mean trait and additive genetic variance of a population. In
particular, our approach develops a quantitative genetic theory of evolution-114

ary ecology. A popular alternative to quantitative genetics is the theory of
adaptive dynamics (Dieckmann and Law, 1996, Metz et al., 1996). As demon-116

strated by Page and Nowak (2002) and Champagnat et al. (2006), the canoni-
cal equation of adaptive dynamics can be derived from the replicator-mutator118

equation, which in turn can be derived from models of abundance dynamics,
revealing a synthesis of mathematical approaches to theoretical evolutionary120

ecology. In this section we briefly outline derivations of the replicator-mutator
equation and trait dynamics from abundance dynamics in the deterministic122

case. We then extend these formula along with related results to the case of
random reproductive output (i.e., demographic stochasticity).124

2.1. Deterministic Dynamics
Finite Number of Types. We start by considering the dynamics of an asexually126

reproducing population in a homogeneous environment. For simplicity, we
first assume individuals are haploid and carry one of K alleles each with a dif-128

ferent fitness expressed as growth rate before introducing a model involving
a quantitative trait. Under these assumptions, the derivation of the evolution130

of allele frequencies due to natural selection can be derived from expressions
of exponential growth. This, and a few related approaches, have been pro-132

vided by Crow and Kimura (1970). Mutation can be included using a matrix
of transition rates. Specifically, denoting νi the abundance of individuals with134

allele i, mi the growth rate of allele i (called the Malthusian parameter in Crow
and Kimura, 1970), µij the mutation rate from allele i to allele j and assuming136

selection and mutation are decoupled (Bürger, 2000), we have

dνi
dt

= miνi +
K

∑
j=1

(µjiνj − µijνi). (1)

4
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Starting from this model, we get the total abundance of the population as138

N = ∑i νi, the frequency of allele i as pi = νi/N and the mean Malthusian
fitness of the population as m̄ = ∑i pimi. Note we have used the abbreviation140

∑i = ∑K
i=1 to simplify inline notation. Observing ∑ij µjiνj = ∑ij µijνi, we use

linearity of differentiation to derive the dynamics of abundance dN/dt as142

dN
dt

=
K

∑
i=1

miνi +
K

∑
i,j=1

(µijνj − µjiνi) = m̄N. (2)

To derive the dynamics of the allele frequencies p1, . . . , pK, we use the
quotient rule of elementary calculus to find144

dpi
dt

= (mi − m̄)pi +
K

∑
j=1

(µji pj − µij pi). (3)

Two important observations of these equations include: (i) Mean Malthu-
sian fitness m̄ is equivalent to the population growth rate and thus determines146

the abundance dynamics of the entire population. (ii) Selection for allele i oc-
curs when mi > m̄ and selection against allele i occurs when mi < m̄. Hence,148

as mentioned in the introduction, fitness plays a key role in determining both
abundance dynamics and evolution.150

Equation (3) is known in the field of evolutionary game theory as a replicator-
mutator equation (Nowak, 2006). Instead of being explicitly focused on alleles,152

the replicator-mutator equation describes the fluctuations of relative abun-
dances of various types in a population in terms of replication and annihila-154

tion rates of each type and hence can be used to model dynamical systems
outside of evolutionary biology (Nowak, 2006).156

Continuum of Types. Inspired by equations (1)-(3), we derive an analog of the
replicator-mutator equation for a continuum of types (that is, for a quanti-158

tative trait). In particular, we model a continuously reproducing population
with trait values x ∈ R and an abundance density ν(x, t) that represents the160

amount of individuals in the population with trait value x at time t. Hence,
the abundance density satisfies N(t) =

∫
ν(x, t)dx and p(x, t) = ν(x, t)/N(t)162

is the relative density of trait x which we also refer to as the phenotypic dis-
tribution. Note we have used the abbreviation

∫
=
∫ +∞
−∞ to simplify inline164

notation.
In analogy with the growth rates mi for equation (1) we write m(ν, x) as166

the growth rate associated with trait value x which depends on the abundance
density ν. We assume mutation is captured by diffusion with coefficient µ

2 .168

Hence, we model the demographic dynamics of a population and the dynam-
ics of a quantitative character simultaneously by the PDE170

∂

∂t
ν(x, t) = m(ν, x)ν(x, t) +

µ

2
∂2

∂x2 ν(x, t). (4)
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Equation (4) qualifies both as a semilinear evolution equation and also a
scalar reaction-diffusion equation. Although the general theory of such equa-172

tions is quite rich, it is also quite difficult (Evans, 2010, Zheng, 2004). Hence,
to stay within the realms of analytical tractability and biological plausibility,174

we require a set of technical assumptions which we list in SM §1.1. These
assumptions guarantee solutions to equation (4) exist for all finite time t > 0176

and, hence, let us investigate the ecological and evolutionary dynamics of
biological populations.178

Equation (4) can be seen as an analog of equation (1) for a continuum of
types. By assuming mutation acts via diffusion, the effect of mutation causes180

the abundance density ν(x, t) to flatten out across phenotypic space. In fact,
if the growth rate is constant across x, then this model of mutation will cause182

ν(x, t) to converge to a flat line in x as t → ∞. Interpreting the trait value x
as location in geographic space, equation (4) becomes a well-studied model of184

spatially distributed population dynamics (Cantrell and Cosner, 2004).
Although clearly an idealized representation of biological reality, this model186

is sufficiently general to capture a large class of dynamics including density
dependent growth and frequency dependent selection. As an example, lo-188

gistic growth combined with stabilizing selection can be captured using the
growth rate190

m(ν, x) = R− a
2
(θ − x)2 − c

∫ +∞

−∞
ν(y, t)dy = R− a

2
(θ − x)2 − cN(t), (5)

where a > 0 the is strength of abiotic stabilizing selection around the phe-
notypic optimum θ, c > 0 is the strength of intraspecific competition and we192

refer to R as the innate growth rate (see §3.3 below). In the language of popu-
lation ecology, r = R− a

2 (θ− x)2 is the intrinsic growth rate of the population194

(Chesson, 2000). This model assumes competitive interactions cause the same
reduction in fitness regardless of trait value.196

This exemplary fitness function has a few convenient properties. First,
the effect of competition induces a local carrying capacity on the population,198

leading to a finite equilibrium abundance over bounded subsets of pheno-
typic (or geographic) space. Second, abiotic selection prevents the abundance200

density from diffusing too far from the abiotic optimum. In particular, when
R > 1

2
√

aµ > 0, x̄(0) is finite, σ2(0) is non-negative and finite and N(0) is202

positive and finite, this leads to a unique stable equilibrium given by

N̂ = 1
c (R− 1

2
√

aµ), (6a)

ˆ̄x = θ, (6b)

σ̂2 =

√
µ

a
. (6c)

We demonstrate this result in SM §1.2. The equilibrial phenotypic variance204

predicted by this model coincides with a classic quantitative genetic result
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predicted by modelling the combined effects of Gaussian stabilizing selection206

and the Gaussian allelic model of mutation (Bürger, 2000, Johnson and Barton,
2005, Lande, 1975, Walsh and Lynch, 2018).208

To derive a replicator-mutator equation from equation (4), we employ
integration-by-parts and the chain rule from calculus. Writing210

m̄ =
∫ ∞

−∞
m(ν, x)p(x, t)dx (7)

for the mean fitness, we find

dN
dt

= m̄N, (8a)

∂

∂t
p(x, t) =

(
m(ν, x)− m̄(t)

)
p(x, t) +

µ

2
∂2

∂x2 p(x, t). (8b)

Equation 8b result closely resembles Kimura’s continuum-of-alleles model
(Kimura, 1965). The primary difference being that our model utilizes diffusion212

instead of convolution with an arbitrary mutation kernel. However, our model
of mutation can be derived as an approximation to Kimura’s model, which214

has been referred to as the Gaussian allelic approximation in reference to the
distribution of mutational effects on trait values at each locus in a genome216

(Lande, 1975, Bürger, 1986, Bürger, 2000, Johnson and Barton, 2005), the in-
finitesimal genetics approximation in reference to modelling continuous traits218

as being encoded by an infinite number of loci each having infinitesimal effect
(Fisher, 1919, Barton et al., 2017) and the Gaussian descendants approxima-220

tion in reference to offspring trait values being normally distributed around
their parental values (Bulmer, 1971, Turelli, 2017).222

To distinguish this model from previous models of phenotypic evolution
we refer to PDE (4) from which (8b) was derived as the Deterministic Asex-224

ual Gaussian allelic model with Abundance dynamics (abbreviated DAGA).
Later, we will extend this model to include the effects of demographic stochas-226

ticity, which we refer to as the Stochastic Asexual Gaussian allelic model with
Abundance dynamics (abbreviated SAGA).228

Evolutionary Dynamics. We now apply DAGA to derive the dynamics of mean
trait x̄ and phenotypic variance σ2. Both of these dynamics are expressible in230

terms of covariances with fitness. For an abundance distribution ν(x) and as-
sociated phenotypic distribution p(x), the covariance of fitness and phenotype232

across the population is defined as

Cov
(
m(ν, x), x

)
=
∫ +∞

−∞

(
m(ν, x)− m̄

)(
x− x̄

)
p(x)dx. (9)

Following this, we again apply integration-by-parts and the chain rule234

from calculus to find the dynamics of the mean trait x̄ as

dx̄
dt

= Cov
(
m(ν, x), x

)
. (10)
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Equation (10) is a continuous time analog of the well known Robertson-236

Price equation without transmission bias (Frank, 2012, Lion, 2018, Price, 1970,
Queller, 2017, Robertson, 1966). Whether or not the covariance of fitness and238

phenotype creates change in x̄ to maximize mean fitness m̄ depends on the
degree to which selection is frequency dependent (Lande, 1976). Since this240

change is driven by a covariance with respect to phenotypic diversity, the
response in mean trait to selection is mediated by the phenotypic variance. In242

particular, when σ2 = 0, x̄ will not respond to selection.
Following the approach taken to calculate the evolution of x̄, we find the244

response of phenotypic variation to this model of mutation and selection is

dσ2

dt
= µ + Cov

(
m(ν, x), (x− x̄)2

)
. (11)

In the absence of mutation equation (11) mirrors the result derived by Lion246

(2018) for discrete phenotypes. From a statistical perspective, if we think of
(x− x̄)2 as a square error, then in analogy to the dynamics of the mean trait,248

we see that the response in σ2 to selection can be expressed as a covariance of
fitness and square error, which is defined in analogy to Cov(m(ν, x), x). Just250

as for the evolution of x̄, this covariance also creates change in σ2 that can
either increase or decrease mean fitness m̄, depending on whether or not se-252

lection is frequency dependent. The effect of selection on phenotypic variance
can be positive or negative depending on whether selection is stabilizing or254

disruptive.

2.2. Extending DAGA to Demographic Stochasticity256

In SM §4, we extend these results to include the effects of demographic
stochasticity. The idea is to add an appropriate noise term to DAGA. Hence,258

we wish to study stochastic partial differential equations (SPDE) that provide
natural generalizations of DAGA. Fortunately, rigorous first principle deriva-260

tions of such SPDE have been provided by Li (1998) and Champagnat et al.
(2006). The noise terms driving these SPDE are space-time white noise pro-262

cesses, denoted Ẇ(x, t), which are random processes uncorrelated in both
space and time. In SM §2.1, we provide a set of heuristics for performing264

calculations with respect to space-time white noise including methods to de-
rive SDE from SPDE in analogy to our derivations of ordinary differential266

equations (ODE) from PDE above. Since our aim is to present this material
to a wide audience of mathematical evolutionary ecologists, our treatment268

of space-time white noise and stochastic integration deviates from standard
definitions to remove the need for a detailed technical treatment. However,270

in SM §2.2, we show our heuristics are consistent with the rigorous infinite-
dimensional stochastic calculus presented in Da Prato and Zabczyk (2014).272

Using our simplified approach, the reader will only need some elementary
probability and an intuitive understanding of SDE, including Brownian mo-274

tion, in addition to the notions of Riemann integration and partial differentia-
tion already employed.276
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To understand how SPDE can be derived from biological first principles,
we provide in SM §3.1 an informal discussion of measure-valued branch-278

ing processes (MVBP) (which provide individual-based models) and their
diffusion-limits (which provide population-level models). Diffusion-limits of280

MVBP return so-called superprocesses which track the evolution of abun-
dance and phenotypic distribution (Etheridge, 2000). For univariate traits and282

under biologically natural conditions, these superprocesses admit abundance
densities satisfying SPDE. Under the simplifying assumptions inherited from284

our treatment of deterministic dynamics and the additional assumption that
the variance of individual reproductive output, denoted by V ≥ 0, is indepen-286

dent of trait values, we obtain as a special case the relatively simple expression
for an SPDE that generalizes DAGA288

∂

∂t
ν(x, t) = m(ν, x)ν(x, t) +

µ

2
∂2

∂x2 ν(x, t) +
√

Vν(x, t)Ẇ(x, t). (12)

We refer to this special case as the Stochastic Asexual Gaussian allelic
model with Abundance dynamics (SAGA). The simplicity of SAGA allows290

us to use properties of space-time white noise processes to derive a set of SDE
that generalize equations (8a), (10) and (11) to include the effects of demo-292

graphic stochasticity (see SM §3.2 and SM §4). In particular, we find

dN
dt

= m̄Ndt +
√

VN
dWN

dt
, (13a)

dx̄
dt

= Cov(m, x) +

√
V

σ2

N
dWx̄

dt
, (13b)

dσ2

dt
= µ + Cov

(
m, (x− x̄)2

)
−V

σ2

N
+

√
V
(x− x̄)4 − σ4

N
dWσ2

dt
, (13c)

where WN , Wx̄ and Wσ2 are standard Brownian motions and barred expres-294

sions such as (x− x̄)4 are averaged quantities with respect to the phenotypic
distribution p(x, t). Intuitively, one can interpret equations (13) as if they are296

ordinary differential equations, but this is not technically rigorous since Brow-
nian motion is nowhere differentiable with respect to time. In SM §4 we show298

that in general WN is independent of both Wx̄ and Wσ2 , but Wx̄ and Wσ2 may
covary depending on the shape of p(x, t).300

Many known results follow directly from expressions (13). Firstly, assum-
ing no variance in reproductive output so that V = 0 recovers the determin-302

istic dynamics derived in §2.1. Alternatively, one can take N → ∞ to recover
the deterministic dynamics for x̄ and σ2. Characteristically, we note the effect304

of demographic stochasticity on abundance grows with
√

N. Hence, divid-
ing by N, we find the effects of demographic stochasticity on the per-capita306

growth rate diminish with increased abundance. Relating the response to
demographic stochasticity derived here to the effect of random genetic drift308
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derived in classic quantitative genetic theory, if we set σ2 and N constant with
respect to time, then integrating the stochastic term in equation (13b) over a310

single unit of time returns a normally distributed random variable with mean
zero and variance equal to Vσ2/N. In particular, assuming perfect inheritance,312

when reproductive variance is unity (V = 1) this random variable coincides
with the effect of random genetic drift on the change in mean trait over a314

single generation derived using sampling arguments (Lande, 1976). There is
also an interesting connection with classical population genetics. A funda-316

mental result from early population genetic theory is the expected reduction
in diversity due to the chance loss of alleles in finite populations (Fisher, 1923,318

Wright, 1931). This expected reduction in diversity due to random genetic
drift is captured by the third term in the deterministic component of expres-320

sion (13c), particularly −Vσ2/N. The component of SDE (13c) describing
random fluctuations in σ2 is more complicated and is proportional to the root322

of the difference between the centralized fourth moment of the phenotypic
distribution and square of the phenotypic variance σ4.324

These expressions can be used to investigate the dynamics of the mean
and variance for a very general set of phenotypic distributions. However, in326

the next subsection we simplify these expressions by assuming normally dis-
tributed trait values, known as the Gaussian population assumption (Turelli328

2017). In SM §4 we show that under the Gaussian case WN , Wx̄ and Wσ2 are
independent. Hence, although the Gaussian population assumption is very re-330

strictive as a model of phenotypic diversity and, except for very special cases
of growth rates, is not formally justified, its exceedingly convenient properties332

make it an important initial approximation.

2.3. Particular Results Assuming a Gaussian Phenotypic Distribution334

By assuming normally distributed trait values, expressions (13) transform
into efficient tools for deriving the dynamics of populations given a fitness336

function m(ν, x). Gaussian phenotypic distributions can be formally obtained
through Gaussian, exponential or weak selection approximations together338

with a simplified model of mutation, genotype-phenotype mapping and asex-
ual reproduction or random mating (Bürger, 2000, Lande, 1980, Turelli, 2017,340

1986, 1984). Hence, given appropriate assumptions on selection, mutation
and reproduction, the abundance density ν(x, t) can be approximated as a342

Gaussian curve in x when the ratio V/N is small (i.e., when the variance in
reproductive output is much smaller than the population size). As with any344

diffusion approximation, this requires a sufficiently large abundance to accu-
rately reflect the dynamics of populations. Therefore, models developed in346

this framework are not suitable for studies involving very small population
sizes. Allowing for these restrictions, we assume348

ν(x, t) =
N(t)√
2πσ2(t)

exp

(
−
(
x− x̄(t)

)2

2σ2(t)

)
. (14)

10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.226001doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.226001
http://creativecommons.org/licenses/by/4.0/


Under this assumption, covariances with fitness can be written in terms of
fitness gradients. In particular, we find350

Cov(m, x) = σ2

(
∂m̄
∂x̄
− ∂m

∂x̄

)
, (15a)

Cov
(

m, (x− x̄)2
)
= 2σ4

(
∂m̄
∂σ2 −

∂m
∂σ2

)
(15b)

and (x− x̄)4 = 3σ4. These results imply trait dynamics can be rewritten as

dx̄
dt

= σ2

(
∂m̄
∂x̄
− ∂m

∂x̄

)
+

√
V

σ2

N
dWx̄

dt
, (16a)

dσ2

dt
= µ + 2σ4

(
∂m̄
∂σ2 −

∂m
∂σ2

)
−V

σ2

N
+ σ2

√
2V
N

dWσ2

dt
. (16b)

These equations allow us to derive the response in trait mean and variance352

by taking derivatives of fitness, a much more straightforward operation than
calculating a covariance for general phenotypic distributions. Note that in the354

above expressions, the partial derivatives of m̄ represent frequency indepen-
dent selection and the averaged partial derivatives of m represent frequency356

dependent selection. This relationship has already been pointed out by Lande
(1976) for the evolution of the mean trait in discrete time, but here we see an358

analogous relationship holds in continuous time and also for the evolution of
trait variance.360

In SM §5 we generalize this result to the case when traits are imperfectly
inherited. In this case, the phenotypic variance σ2 is replaced by a genetic362

variance G. This genetic variance represents the component of σ2 explained by
additive effects among genetic loci encoding for the focal phenotype (Bulmer,364

1971, Roughgarden, 1979, Walsh and Lynch, 2018). It is therefore fitting that G
is referred to as the additive genetic variance. Following classical quantitative366

genetic assumptions we find

dx̄
dt

= G

(
∂m̄
∂x̄
− ∂m

∂x̄

)
+

√
V

G
N

dWx̄

dt
, (17a)

dG
dt

= µ + 2G2

(
∂m̄
∂G
− ∂m

∂G

)
−V

G
N

+ G

√
2V
N

dWG
dt

. (17b)

From expressions (17) we see that, under our simple treatment of inheri-368

tance, focusing on additive genetic variance G instead of the variance in ex-
pressed traits σ2 makes no structural changes to the basic equations describing370

the dynamics of populations. Instead we see the role played by the variance
of expressed traits is now being played by the additive genetic variance. In the372

next section, we make use of these expressions to develop a model of diffuse
coevolution in a guild of S species competing along a resource continuum.374
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3. A Model of Diffuse Coevolution

In this section we demonstrate the use of our framework by developing376

a model of diffuse coevolution across a guild of S species whose interactions
are mediated by resource competition along a single niche axis. Because our378

approach treats abundance dynamics and evolutionary dynamics simultane-
ously, this model allows us to investigate the relationship between selection380

gradients and competition coefficients, which we carry out in §3.3.

3.1. Formulation382

The dynamics of phenotypic distributions and abundances have been de-
rived above and so the only task remaining is the formulation of a fitness384

function. Our approach mirrors closely the theory developed by MacArthur
and Levins (1967), Levins (1968) and MacArthur (1972, 1970, 1969). The most386

significant difference, aside from allowing evolution to occur, is our treatment
of resource availability. In particular, we assume resources are replenished388

rapidly enough to ignore the dynamics of their availability. A derivation from
the MVBP framework is provided in SM §6.390

Abiotic Selection and Competition. For species i we inherit the above notation
for trait value, distribution, average, variance, abundance, etc., except with an392

i in the subscript. Real world examples of niche axes include the size of seeds
consumed by competing finch species and the date of activity in a season for394

pollinators competing for floral resources. For mathematical convenience, we
model the axis of resources by the real line R. The value of a resource along396

this axis is denoted by the symbol ζ. For an individual in species i, we assume
resources are sampled from the environment following the utilization curve398

ui, which we assume can be written as

ui(ζ, xi) =
Ui√
2πwi

exp
(
− (xi − ζ)2

2wi

)
. (18)

We further assume the niche center xi is normally distributed among indi-400

viduals in species i, but the niche breadth wi and total niche utilization Ui are
constant across individuals in species i and therefore cannot evolve. We as-402

sume resources are distributed along the niche gradient and that each species
experiences heterogeneous fitness benefits at different niche locations. Taking404

into account both resource availability and fitness benefits, we suppose indi-
viduals of species i maximize their benefits by sampling resources at niche406

location θi ∈ R. We assume the benefits for individuals of species i derived
from resources with value ζ ∈ R decreases as (ζ − θi)

2 increases at a rate408

Ai ≥ 0. In the absence of competition, we further suppose individuals leave
on average Qi offspring when their utilization curve is concentrated at θi (that410

is, when xi = θi and wi = 0). Combining these assumptions, we denote by
ei(ζ) the fitness benefits for individuals sampling at niche location ζ so that412
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ei(ζ) = Qi exp
(
−Ai

2
(θi − ζ)2

)
. (19)

The effect of abiotic stabilizing selection on the fitness for an individual of
species i with niche location xi is then given by414

∫ +∞

−∞
ei(ζ)ui(ζ, xi)dζ =

QiUi√
Aiwi + 1

exp
(
− Ai

2(Aiwi + 1)
(θi − xi)

2
)

. (20)

To determine the potential for competition between individuals with niche
locations xi and xj, belonging to species i and j respectively, we compute the416

niche overlap

Oij(xi− xj) =
∫ +∞

−∞
ui(ζ, xi)uj(ζ, xj)dζ =

UiUj√
2π(wi + wj)

exp

(
−

(xi − xj)
2

2(wi + wj)

)
.

(21)
To map the degree of niche overlap to fitness, we assume competition418

between individuals with niche locations xi and xj decreases the expected
reproductive output for the individual in species i at the rate ciOij(xi − xj) for420

some ci > 0. We refer to ci as the strength of competition for species i.

The Fitness Function. Assuming the effects due to competitive interactions and422

abiotic stabilizing selection on the expected reproductive output of individu-
als accumulates multiplicatively, we derive in SM §6 an expression for the424

expected reproductive output of individuals in each. Applying a series of
diffusion-limits, we then find the following expressions for the growth rate426

associated with trait value x for species i along with the population growth
rate of species i:428

mi(x) = Ri −
ai
2
(θi − x)2 − ci

S

∑
j=1

NjUiUj

√
b̃ij

2π
e−

b̃ij
2 (x−x̄j)

2
, (22a)

m̄i = Ri −
ai
2

(
(θi − x̄i)

2 + Gi + ηi

)
− ci

S

∑
j=1

NjUiUj

√
bij

2π
e−

bij
2 (x̄i−x̄j)

2
, (22b)

where ai is the strength of abiotic stabilizing selection on species i. The vari-
ables b̃ij, bij determine the sensitivity of competitive effects on species i to430

differences in niche locations between species i and j. We refer to Ri as the
innate growth rate of species i to distinguish it from the intrinsic growth rate432
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commonly referred to in the field of population ecology. These are composite
parameters given by the following expressions:434

Ri = ln
(

QiUi√
1 + Aiwi

)
, (23a)

ai =
Ai

1 + Aiwi
, (23b)

b̃ij(t) =
(
wi + wj + ηj + Gj(t)

)−1, (23c)

bij(t) = bji(t) =
(
wi + wj + ηi + ηj + Gi(t) + Gj(t)

)−1. (23d)

3.2. The Model
In SM §6 we combine equations (13a), (17) and (22) to find436

dNi
dt

=

{
Ri −

ai
2

(
(θi − x̄i)

2 + Gi + ηi

)

− ci

S

∑
j=1

NjUiUj

√
bij

2π
e−

bij
2 (x̄i−x̄j)

2

}
Ni +

√
Vi Ni

dWNi

dt
, (24a)

dx̄i
dt

= aiGi(θi − x̄i)− ciGi

( S

∑
j=1

NjUiUjbij(x̄j − x̄i)

√
bij

2π
e−

bij
2 (x̄i−x̄j)

2
)

+

√
Vi

Gi
Ni

dWx̄i

dt
, (24b)

dGi
dt

= µi + ciGi
2
( S

∑
j=1

NjUiUjbij

(
1− bij(x̄i − x̄j)

2
)√ bij

2π
e−

bij
2 (x̄i−x̄j)

2

+ NiU2
i bii

√
bii
2π
− aiGi

2 −Vi
Gi
Ni

)
+ Gi

√
2Vi
Ni

dWGi

dt
. (24c)

Together, equations (24) provide a synthetic model capturing the dynamics
of abundance and evolution from common biological mechanisms.438

Model Behavior. Despite the convoluted appearance of system (24), there are
some nice features that reflect biological reasoning. For example, the dynam-440

ics of abundance generalize Lotka-Volterra dynamics. In particular, the effect
of competition with species j on the fitness of species i grows linearly with Nj.442

However, as biotic selection pushes x̄i away from x̄j, the effect of competition
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with species j on the fitness of species i rapidly diminishes due to the Gaus-444

sian weights capturing a reduction in niche overlap. These Gaussian weights
have been usefully employed to capture interaction preference in recent in-446

vestigations of coevolution in mutualistic networks (de Andreazzi et al., 2019,
Medeiros et al., 2018, Guimarães et al., 2017). The divergence of x̄i and x̄j due448

to competition is referred to in the community ecology literature as character
displacement (Brown and Wilson, 1956). We also see that the fitness of species450

i drops quadratically with the difference between x̄i and the abiotic optimum
θi. Hence, abiotic selection acts to pull x̄i towards θi.452

The response in mean trait x̄i to natural selection is proportional to the
amount of heritable variation in the population, represented by the additive454

genetic variance Gi. However, we have that Gi is itself a dynamic quantity.
Under our model, abiotic stabilizing selection erodes away heritable variation456

at a rate that is independent of both Ni and x̄i. The effect of competition
on Gi is a bit more complicated. When bij(x̄i − x̄j)

2 < 1, competition with458

species j acts as diversifying selection which tends to increase the amount of
heritable variation. However, when bij(x̄i − x̄j)

2 > 1, competition with species460

j acts as directional selection and reduces Gi. In the following subsections we
demonstrate the behavior of system (24) by plotting numerical solutions and462

investigate implications for the relationship between the strength of ecological
interactions and selection.464

Community Dynamics. For the sake of illustration we numerically integrated
system (24) for a richness of S = 100 species. We assumed homogeneous466

model parameters across species in the community as summarized by Table
1. We repeated numerical integration under the two scenarios of weak and468

strong competition. For the first scenario of weak competition we set c = 1.0×
10−7 and for the second scenario of strong competition we set c = 5.0× 10−6.470

With these two sets of model parameters, we simulated our model for 1000.0
units of time. For both scenarios, we initialized the trait means to x̄i = 0.0,472

additive genetic variances to Gi = 10.0 and abundances to Ni = 1000.0 for
each i = 1, . . . , S.474

Temporal dynamics for each scenario are provided in Figure 1. This figure
suggests weaker competition leads to smoother dynamics and a higher degree476

of organization within the community. Considering expression (24a) we note
that, all else equal, relaxed competition allows for larger growth rates which478

promote greater abundances. From (24a) we also note that the per-capita
effects on demographic stochasticity diminish with abundance. To see this,480

divide both sides by Ni.
Inspecting expressions (24b) and (24c), we see that larger abundances also482

erode the effects of demographic stochasticity on the evolution of mean trait
and additive genetic variance. These effects were already noted in §2.2, and484

thus are not a consequence of our model of coevolution per-se, but we re-
visit them here since Figure 1 demonstrates the importance of demographic486

stochasticity in structuring ecological communities even when populations
are very large. Hence, contrary to the common assumption that stochastic488
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Figure 1: Temporal dynamics of mean trait (top), additive genetic variance (middle) and abun-
dance (bottom) for the scenario of weak competition (left) and strong competition (right).

Table 1: Values of model parameters used for numerical integration.

Parameter Description Value
S species richness 100
R innate growth rate, see §3.3 1.0
θ abiotic optimum 0.0
a strength of abiotic selection 0.01
c sensitivity to competition {1.0× 10−7, 5.0× 10−6}
w niche breadth 0.1
U total niche use 1.0
η developmental noise 1.0
µ mutation rate 1.0× 10−7

V variance of reproductive output 5.0
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effects can be ignored for large populations, we find that minute asymmetries
generated by demographic stochasticity remain significant drivers of commu-490

nity structure. In particular, although we initialized each species with iden-
tical state variables and model parameters, we found an enormous amount492

of asymmetry in both the evolutionary and abundance dynamics and even
some peculiar synchronized shifts. Although future work may show these494

bizarre features always dissipate after the system has been given sufficient
time to evolve, we see demographic stochasticity has pronounced effects on496

communities experiencing non-equilibrium dynamics.
Although Figure 1 suggests interesting patterns in the dynamics of abun-498

dance and trait evolution, a more formal investigation is needed to better un-
derstand the relationship between them. In the following subsection we take500

a step in this direction by approximating correlations between competition
coefficients and components of selection gradients induced by interspecific502

interactions.

3.3. The Relation Between the Strength of Ecological Interactions and Selection504

Here we investigate the relationship between competition coefficients, which
measure the effect of ecological interactions on abundance dynamics, with se-506

lection gradients, which measure the magnitude and direction of selection on
mean trait and trait variance. We start by considering the expressions of abso-508

lute competition coefficients implied by equations (24). However, it turns out
absolute competition coefficients display some unfortunate behaviour with510

respect to our model. We therefore introduce a slightly modified form of ab-
solute competition coefficients. We then provide formula for the components512

of linear and quadratic selection coefficients corresponding to the effects of
interspecific interactions. Lastly, we use a high-richness (large S) approxima-514

tion to determine correlations between competition coefficients and selection
gradients across the community. Associated calculations are provided in SM516

§7.3.

Competition coefficients. Relating our treatment of resource competition to the-518

oretical community ecology, the absolute competition coefficient α̃ij, which
measures the effect of species j on the growth rate of species i (sensu Chesson,520

2000), becomes a dynamical quantity that can be written as

α̃ij(t) =
ci

ri(t)

∫ +∞

−∞

∫ +∞

−∞
pi(x, t)pj(y, t)Oij(x, y)dxdy

=
ciUiUj

ri(t)

√
bij(t)
2π

exp
(
−

bij(t)
2
(
x̄i(t)− x̄j(t)

)2
)

, (25)

where522

ri(t) = Ri −
ai
2

(
(x̄i(t)− θi)

2 + Gi(t) + ηi

)
, (26)
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is the intrinsic growth rate of species i. Then, dNi(t) can be expressed as

dNi
dt

= ri

(
1−

S

∑
j=1

α̃ijNj

)
Ni +

√
Vi Ni

dWNi

dt
. (27)

Following our model, the classically defined absolute competition coeffi-524

cient for species i is parameterized with the intrinsic growth rate of species
i appearing in the denominator. In turn, these intrinsic growth rates depend526

on the balance between the innate growth rate Ri and the effect of abiotic sta-
bilizing selection. However, this balance further depends on mean trait and528

additive genetic variance, which evolve freely. This leads to the potential for
the signage of ri to switch between positive and negative which implies the530

potential for infinite absolute competition coefficients. Furthermore, we see
these competition coefficients are influenced by abiotic stabilizing selection in-532

stead of solely capturing the effects of inter/intraspecific interactions. Hence,
we find it necessary to introduce a modification of the absolute competition534

coefficient α̃ij that avoids these caveats. In particular, we define

αij = riα̃ij = ciUiUj

√
bij

2π
e−

bij
2 (x̄i−x̄j)

2
. (28)

We call αij the specific competition coefficient mediating the effects of536

species j on the growth rate of species i. Under this parameterization, the
abundance dynamics of species i is now expressed as538

dNi
dt

=

(
ri −

S

∑
j=1

αijNj

)
Ni +

√
Vi Ni

dWNi

dt
. (29)

Selection Gradients. Linear and quadratic selection gradients have been de-
fined by Lande and Arnold (1983). While the linear selection gradient β540

measures the effect of selection on mean trait evolution, the stabilizing se-
lection gradient γ measures the effect of selection on additive genetic or phe-542

notypic variance. Since these quantities are classically defined with respect to
discrete-time models of trait evolution, we provide the analogous definitions544

for continuous-time models in SM §7.1. Following our model of diffuse coevo-
lution, we then show these selection gradients can be additively partitioned546

into components due to interactions with each species and abiotic stabiliz-
ing selection. In particular, we find the components of linear and quadratic548

selection gradients for species i induced by species j are given respectively by

βij = ciUiUjNjbij(x̄i − x̄j)

√
bij

2π
e−

bij
2 (x̄i−x̄j)

2
, (30a)

γij = ciUiUjNjbij

(
1− bij(x̄i − x̄j)

2
)√ bij

2π
e−

bij
2 (x̄i−x̄j)

2
, i 6= j, (30b)
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γii = 2ci NiU2
i bii

√
bii
2π

, i = j. (30c)

With these expressions, the dynamics of mean trait and additive genetic550

variance simplify to

dx̄i
dt

= Gi

(
ai(θi − x̄i) +

S

∑
j=1

βij

)
+

√
Vi

Gi
Ni

dWx̄i

dt
, (31a)

dGi
dt

= µi + Gi
2
(
− ai +

S

∑
j=1

γij

)
−Vi

Gi
Ni

+ Gi

√
2Vi
Ni

dWGi

dt
. (31b)

High-Richness Approximation. We now make use of the expressions derived552

for competition coefficients and selection gradients to investigate their rela-
tionship. As a first pass, we assume the niche-breadths wi and intraspecific554

variances σ2
i are equivalent across species so that the sensitivity parameters

bij = 1/(wi +wj + σ2
i + σ2

j ) = b are constant across interacting pairs of species.556

We also assume abundances Ni, niche-use parameters Ui, strengths of compe-
tition ci and mean traits x̄i are distributed independently of each other with558

respective means and variances denoted by N̄, VN , Ū, VU , c̄, Vc, ¯̄x, Vx̄. We fur-
ther assume that richness S is large and the distribution of mean trait values560

is approximately normal.

Figure 2: Heatmaps of the correlation between the magnitude of linear selection gradients and
competition coefficients (left) and between stabilizing selection gradients and competition coeffi-
cients (right) as functions of community-wide variance of mean trait values Vx̄ and intraspecific
trait variances σ2. In both plots we set w = 1.0, c̄ = 1.0× 10−7, Vc = 0.0, Ū = 1.0, VU = 0.0,
N̄ = 1.0× 105, and VN = 100.0.

Under these assumptions we obtained analytical approximations for the562

correlations between specific competition coefficients αij and selection gra-
dients βij, γij. These calculations are provided in SM §7.3. In particular,564
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we found linear selection gradients are not associated with competition co-
efficients (Corr(α, β) ≈ 0). However, we did find a non-trivial relationship566

between the magnitudes of linear selection gradients and competition coeffi-
cients (Corr(α, |β|) 6= 0) and also between quadratic selection gradients and568

competition coefficients (Corr(α, γ) 6= 0). Their expressions can be found in
SM §7.3.570

To understand if associations between competition coefficients and selec-
tion gradients tend to be positive or negative, we visualized these relation-572

ships in Figure 2. We fixed w, c̄, Vc, Ū, VU , N̄ and VN and allowed the amounts
of intraspecific trait variance σ2 and interspecific trait variance Vx̄ to vary. We574

found, for biologically realistic areas of parameter space, absolute values of
linear selection gradients and quadratic selection gradients tend to be posi-576

tively associated with competition coefficients. Hence, if we know of compet-
ing species that strongly effect each others abundances then we can guess they578

also impose directional and diversifying selection on one another. However,
based on this information alone, we cannot guess at the direction of selection.580

4. Conclusion

We have introduced a novel approach to derive eco-evolutionary mod-582

els using the calculus of white noise and diffusion-limits of measure-valued
branching processes (MVBP) and coined SAGA, a SPDE model of phenotypic584

evolution that accounts for demographic stochasticity. From SAGA we de-
rived SDE that track the dynamics of abundance, mean trait and additive586

genetic variance. Observing the expressions of these SDE, we find the ef-
fects of demographic stochasticity on the evolution of mean trait and additive588

genetic variance characterize the effects of random genetic drift. Although
Lande (1976) has previously characterized the effects of random genetic drift590

on mean trait evolution in quantitative genetic models, the approach taken
assumed constant effective population size and discrete non-overlapping gen-592

erations. In contrast, our approach shows random genetic drift is a result
of demographic stochasticity for continuously reproducing populations with594

fluctuating abundances.
To illustrate the relevance of our approach to studies of evolutionary ecol-596

ogy, we combined our SDE with classical competition theory to derive a model
of diffuse coevolution. We then used this model to investigate the relationship598

between standardized selection gradients and competition coefficients. We
found absolute values of linear selection gradients and raw values of quadratic600

selection gradients are positively related with competition coefficients. In the
process, we derived expressions for competition coefficients and components602

of selection gradients due to pairwise interactions as functions of niche-use
parameters (niche breadth, total use and mean and variance of niche loca-604

tion), strength of competitive interactions and abundance.
Although the framework outlined here holds great potential for develop-606

ing a synthetic theory of coevolving ecological communities, there are two
technical gaps in the mathematical foundations of our approach. Firstly, we608
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were unable to derive formal conditions under which trait means and vari-
ances remain finite for finite time. However, a result due to Evans and Perkins610

(1994) shows that the diffusion-limit for a pair of interacting MVBP following
our simple niche-based treatment of competition exist when growth rates, as612

functions of trait values and abundances, are bounded above. This result can
be easily extended to finite sets of competing species and therefore formally614

establishes the existence of abundances as diffusion processes. Further work
is needed to determine the conditions under which trait means and variances616

exist as diffusion processes. The models studied here provide likely sufficient
conditions. In particular, since diffusive mutation does not lead to “heavy-618

tailed” phenotypic distributions, we expect the mean trait and trait variance
to remain finite so long as total abundance is positive, given finite initial values620

for trait mean and variance. That is, since we have not included any processes
that would cause blow-up either in mean trait or trait variance, we expect so-622

lutions of the SDE (13) to exist for all finite time t such that N(t) > 0 when
|x̄(0)|, σ2(0) < +∞. This assumption appears especially well-founded under624

quadratic stabilizing selection. Since fitness indefinitely decreases as individ-
ual trait value becomes indefinitely large (see equation (22)), the diversifying626

effects of mutation and competition will eventually be overwhelmed by stabi-
lizing selection. Hence quadratic stabilizing selection prevents the abundance628

densities of populations from venturing indefinitely far from their phenotypic
optima.630

Secondly, although SDE derived under the assumption of normally dis-
tributed phenotypes provide particularly useful formula by replacing covari-632

ances between phenotype and fitness with fitness gradients, this assumption
is mathematically rigorous only under deterministic dynamics and when the634

growth rate is a linear or concave-down quadratic function of trait value.
However, following our derivation based on classical competition theory, we636

found the associated growth rate is highly non-linear. While this extreme non-
linearity is mathematically inconvenient, it also captures important biological638

details and thus allows for a more realistic model of community dynamics.
In spite of this inconsistency in our model formulation, we found resulting640

dynamics under the assumption of normally distributed trait values retained
well-founded biological intuition. Furthermore, previous work in the field of642

theoretical quantitative genetics has demonstrated the assumption of normally
distributed trait values is robust to fitness functions that select for non-normal644

trait distributions when inheritance is given a more realistic treatment and
when populations reproduce sexually (Turelli and Barton, 1994, Barton et al.,646

2017). Hence, future work is needed to extend our approach to account for
sexual reproduction, more realistic models of inheritance and to investigate648

the community-level consequences of non-normally distributed trait values.
Overall, this work demonstrates that connecting contemporary theoretical650

approaches of evolutionary ecology with some fundamental results in the the-
ory of measure-valued branching processes and their diffusion-limits allows652

for the development of a rigorous, yet flexible approach to synthesizing the
dynamics of abundance and distribution of quantitative characters. In particu-654
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lar, equations (13a) and (17) provide a fundamental set of equations for deriv-
ing stochastic eco-evolutionary models involving quantitative traits. However,656

these equations require an expression for growth rates associated with each
trait value. Conveniently, equation (SM.34) in SM §3.1 provides a means to658

derive such growth rates from individual based models. Taken together, these
results provide a means to derive analytically tractable dynamics from mecha-660

nistic formulations of fitness as a function of phenotype. The derivation of our
model of diffuse coevolution, located in SM §6, demonstrates how to derive662

eco-evolutionary models involving a set of interacting species from biological
first principles. Hence, this work provides a novel set of mathematical tools664

and a tutorial for their use in theoretical studies of evolutionary ecology and
therefore paves the way for future work that provides a holistic theoretical666

treatment of coevolving ecological communities.

22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.226001doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.226001
http://creativecommons.org/licenses/by/4.0/


References668

N. Barton, A. Etheridge, and A. Véber. The infinitesimal model: Definition,
derivation, and implications. Theoretical Population Biology, 118:50–73,670

Dec. 2017.

W. L. Brown and E. O. Wilson. Character displacement. Systematic Zoology,672

5(2):49, June 1956.

M. G. Bulmer. The effect of selection on genetic variability. The American674

Naturalist, 105(943):201–211, May 1971.

R. Bürger. On the maintenance of genetic variation: global analysis of kimura's676

continuum-of-alleles model. Journal of Mathematical Biology, 24(3):341–
351, 1986.678

R. Bürger. The Mathematical Theory of Selection, Recombination, and
Mutation. Wiley, 2000.680

R. S. Cantrell and C. Cosner. Spatial Ecology via Reaction-Diffusion Equations.
Wiley, Jan. 2004.682

N. Champagnat, R. Ferrière, and S. Méléard. Unifying evolutionary dynamics:
From individual stochastic processes to macroscopic models. Theoretical684

Population Biology, 69(3):297–321, May 2006.

P. Chesson. Mechanisms of maintenance of species diversity. Annual Review686

of Ecology and Systematics, 31(1):343–366, Nov. 2000.

J. F. Crow and M. Kimura. An Introduction to Population Genetics Theory.688

The Blackburn Press, 1970.

G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions.690

Cambridge University Press, 2014.

D. A. Dawson. Measure-valued markov processes. In École d’été de692

Probabilités de Saint-Flour XXI-1991, pages 1–260. Springer, 1993.

C. S. de Andreazzi, J. Astegiano, and P. R. Guimarães. Coevolution by different694

functional mechanisms modulates the structure and dynamics of antagonis-
tic and mutualistic networks. Oikos, 129(2):224–237, Nov. 2019.696

U. Dieckmann and R. Law. The dynamical theory of coevolution: a derivation
from stochastic ecological processes. Journal of Mathematical Biology, 34698

(5-6):579–612, May 1996.

M. Doebeli. Quantitative genetics and population dynamics. Evolution, 50(2):700

532–546, Apr. 1996.

M. Eigen and P. Schuster. The Hypercycle: A Principle of Natural702

Self-Organization. Springer Berlin Heidelberg, 1979.

23

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.226001doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.226001
http://creativecommons.org/licenses/by/4.0/


M. Eigen, J. McCaskill, and P. Schuster. Molecular quasi-species. The Journal704

of Physical Chemistry, 92(24):6881–6891, Dec. 1988.

A. M. Etheridge. An Introduction to Superprocesses. American Mathematical706

Society, aug 2000.

L. C. Evans. Partial Differential Equations: Second Edition. American Mathe-708

matical Society, 2010.

L. C. Evans. An Introduction to Stochastic Differential Equations. American710

Mathematical Society, 2014.

S. N. Evans and E. A. Perkins. Measure-valued branching diffusions with712

singular interactions. Canadian Journal of Mathematics, 46(1):120–168, Feb.
1994.714

R. A. Fisher. XV.—the correlation between relatives on the supposition of
mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52716

(2):399–433, 1919.

R. A. Fisher. XXI.-on the dominance ratio. Proceedings of the Royal Society of718

Edinburgh, 42:321–341, 1923.

S. A. Frank. Natural selection. IV. the price
equation∗. Journalo f EvolutionaryBiology, 25(6) : 1002−−1019, 2012.

R. Gomulkiewicz, S. M. Krone, and C. H. Remien. Evolution and the duration720

of a doomed population. Evolutionary Applications, 10(5):471–484, Mar.
2017.722

P. R. Guimarães, M. M. Pires, P. Jordano, J. Bascompte, and J. N. Thomp-
son. Indirect effects drive coevolution in mutualistic networks. Nature, 550724

(7677):511–514, Oct. 2017.

J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics.726

Cambridge University Press, May 1998.

T. Johnson and N. Barton. Theoretical models of selection and mutation728

on quantitative traits. Philosophical Transactions of the Royal Society B:
Biological Sciences, 360(1459):1411–1425, July 2005.730

M. Kimmel and D. E. Axelrod. Branching Processes in Biology. Springer New
York, 2015.732

M. Kimura. A stochastic model concerning the maintenance of genetic vari-
ability in quantitative characters. Proceedings of the National Academy of734

Sciences, 54(3):731–736, 1965.

M. Kimura and J. F. Crow. Effect of overall phenotypic selection on genetic736

change at individual loci. Proceedings of the National Academy of Sciences,
75(12):6168–6171, 1978.738

24

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.226001doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.226001
http://creativecommons.org/licenses/by/4.0/


N. Konno and T. Shiga. Stochastic partial differential equations for some
measure-valued diffusions. Probability Theory and Related Fields, 79(2):740

201–225, 1988.

R. Lande. The maintenance of genetic variability by mutation in a polygenic742

character with linked loci. Genetical Research, 26(3):221–235, Dec. 1975.

R. Lande. Natural selection and random genetic drift in phenotypic evolution.744

Evolution, 30(2):314–334, 1976.

R. Lande. The Genetic Covariance between Characters Maintained by746

Pleiotropic Mutations. Genetics, 94(1):203–215, 1980.

R. Lande. A quantitative genetic theory of life history evolution. Ecology, 63748

(3):607–615, June 1982.

R. Lande and S. J. Arnold. The measurement of selection on correlated char-750

acters. Evolution, 37(6):1210, Nov. 1983.

R. Lande, S. Engen, and B.-E. Sæther. An evolutionary maximum principle752

for density-dependent population dynamics in a fluctuating environment.
Philosophical Transactions of the Royal Society B: Biological Sciences, 364754

(1523):1511–1518, June 2009.

R. Levins. Evolution in Changing Environments: Some Theoretical756

Explorations. (MPB-2) (Monographs in Population Biology). Princeton Uni-
versity Press, 1968.758

Z.-H. Li. Absolute continuity of measure branching processes with interaction.
Chinese Journal of Applied Probability and Statistics, 14:231–242, 1998.760

S. Lion. Theoretical approaches in evolutionary ecology: Environmental feed-
back as a unifying perspective. The American Naturalist, 191(1):21–44, 2018.762

R. H. MacArthur. Species Packing, and what Competition Minimizes.
Proceedings of the National Academy of Sciences, 64(4):1369–1371, 1969.764

R. H. MacArthur. Species packing and competitive equilibrium for many
species. Theoretical Population Biology, 1(1):1–11, 1970.766

R. H. MacArthur. Geographical Ecology. Princeton University Press, 1972.

R. H. MacArthur and R. Levins. The limiting similarity, convergence, and768

divergence of coexisting species. The American Naturalist, 101(921):377–
385, 1967.770

L. P. Medeiros, G. Garcia, J. N. Thompson, and P. R. Guimarães. The geo-
graphic mosaic of coevolution in mutualistic networks. Proceedings of the772

National Academy of Sciences, 115(47):12017–12022, Nov. 2018.

25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.226001doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.226001
http://creativecommons.org/licenses/by/4.0/


J. A. Metz, S. A. Geritz, G. Meszéna, F. J. Jacobs, and J. S. Van Heerwaar-774

den. Adaptive dynamics: a geometrical study of the consequences of nearly
faithful reproduction. 1996.776

M. A. Nowak. Evolutionary Dynamics: Exploring the Equations of Life. Belk-
nap Press, 2006.778

K. M. Page and M. A. Nowak. Unifying evolutionary dynamics. Journal of
Theoretical Biology, 219(1):93–98, 2002.780

T. L. Parsons, C. Quince, and J. B. Plotkin. Some consequences of demographic
stochasticity in population genetics. Genetics, 185(4):1345–1354, May 2010.782

G. R. Price. Selection and covariance. Nature, 227(5257):520–521, 1970.

D. C. Queller. Fundamental theorems of evolution. The American Naturalist,784

189(4):345–353, 2017.

M. Reimers. One dimensional stochastic partial differential equations and the786

branching measure diffusion. Probability Theory and Related Fields, 81(3):
319–340, 1989.788

A. Robertson. A mathematical model of the culling process in dairy cattle.
Animal Science, 8(1):95–108, 1966.790

J. Roughgarden. Theory of population genetics and evolutionary ecology: An
introduction. Macmillan, 1979.792

P. Schuster and K. Sigmund. Replicator dynamics. Journal of Theoretical
Biology, 100(3):533–538, 1983.794

J. R. Stinchcombe, Function-valued Traits Working Group, and M. Kirkpatrick.
Genetics and evolution of function-valued traits: understanding environ-796

mentally responsive phenotypes. Trends in Ecology & Evolution, 27(11):
637–647, Nov. 2012.798

P. D. Taylor and L. B. Jonker. Evolutionary stable strategies and game dynam-
ics. Mathematical Biosciences, 40(1-2):145–156, 1978.800

M. Turelli. Heritable genetic variation via mutation-selection balance: Lerch's
zeta meets the abdominal bristle. Theoretical Population Biology, 25(2):802

138–193, 1984.

M. Turelli. Gaussian versus non-gaussian genetic analyses of polygenic804

mutation-selection balance. In Evolutionary Processes and Theory, pages
607–628. Academic Press, 1986.806

M. Turelli. Commentary: Fisher’s infinitesimal model: A story for the ages.
Theoretical Population Biology, 118:46–49, Dec. 2017.808

26

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.226001doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.226001
http://creativecommons.org/licenses/by/4.0/


M. Turelli and N. Barton. Genetic and statistical analyses of strong selection
on polygenic traits: what, me normal? Genetics, 138(3):913–941, 1994.810

B. Walsh and M. Lynch. Evolution and Selection of Quantitative Traits. Oxford
University Press, 2018.812

S. Wright. Evolution in mendelian populations. Genetics, 16(2):97–159, 1931.
ISSN 0016-6731.814

S. Zheng. Nonlinear evolution equations. Chapman & Hall/CRC Press, Boca
Raton, Fla, 2004.816

27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.226001doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.226001
http://creativecommons.org/licenses/by/4.0/

	Introduction
	The Framework
	Deterministic Dynamics
	Extending DAGA to Demographic Stochasticity
	Particular Results Assuming a Gaussian Phenotypic Distribution

	A Model of Diffuse Coevolution
	Formulation
	The Model
	The Relation Between the Strength of Ecological Interactions and Selection

	Conclusion

