

A White Noise Approach to Evolutionary Ecology

² Bob Week^{*a}, Scott L. Nuismer^{b,a}, Luke J. Harmon^{b,a}, Stephen M. Krone^{c,a}

^a*Program in Bioinformatics and Computational Biology, University of Idaho, Moscow, Idaho 83844*

^b*Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844*

^c*Department of Mathematics, University of Idaho, 875 Perimeter Drive MS 1103, Moscow, Idaho, 83844*

⁶ Abstract

Although the evolutionary response to random genetic drift is classically modelled as a sampling process for populations with fixed abundance, the abundances of populations in the wild fluctuate over time. Furthermore, since wild populations exhibit demographic stochasticity, it is reasonable to consider the evolutionary response to demographic stochasticity and its relation to random genetic drift. Here we close this gap in the context of quantitative genetics by deriving the dynamics of the distribution of a quantitative character and the abundance of a biological population from a stochastic partial differential equation driven by space-time white noise. In the process we develop a useful set of heuristics to operationalize the powerful, but abstract theory of white noise and measure-valued stochastic processes. This approach allows us to compute the full implications of demographic stochasticity on phenotypic distributions and abundances of populations. We demonstrate the utility of our approach by deriving a quantitative genetic model of diffuse coevolution mediated by exploitative competition for a continuum of resources. In addition to trait and abundance distributions, this model predicts interaction networks defined by rates of interactions, competition coefficients, or selection gradients. Analyzing the relationship between selection gradients and competition coefficients reveals independence between linear selection gradients and competition coefficients. In contrast, absolute values of linear selection gradients and quadratic selection gradients tend to be positively correlated with competition coefficients. That is, competing species that strongly affect each other's abundance tend to also impose selection on one another, but the directionality is not predicted. This approach contributes to the development of a synthetic theory of evolutionary ecology by formalizing first principle derivations of stochastic models that underlie rigorous investigations of the relationship between feedbacks of biological processes and the patterns of diversity they produce.

Key words: quantitative genetics, demographic stochasticity, measure-valued branching processes, diffusion-limits, SPDE

^{*}Corresponding Author

Email address: bobweek@gmail.com (Bob Week)

1. Introduction

10 Current mathematical approaches to synthesize the dynamics of abundance
12 and evolution in populations have capitalized on the fact that biological fitness plays a key role in determining both sets of dynamics. In particular,
14 while covariance of fitness and genotype is the basis of evolution by natural selection, the mean fitness across all individuals in a population determines
16 the growth, stasis or decline of abundance. Although this connection has been established in the contexts of population genetics (Crow and Kimura, 1970,
18 Roughgarden, 1979), evolutionary game theory (Hofbauer and Sigmund, 1998, Lion, 2018, Nowak, 2006), quantitative genetics (Doebeli, 1996, Lande, 1982,
20 Lion, 2018) and a unifying framework for these three distinct approaches to evolutionary theory (Champagnat et al., 2006), there remains a gap in incorporating the intrinsically random nature of abundance into the evolution of continuous traits. Specifically, in theoretical quantitative genetics the derivation
22 of a population's response to random genetic drift is derived in discrete time under the assumption of constant effective population size using arguments based on properties of random samples (Lande, 1976). Though this approach conveniently mimics the formalism provided by the Wright-Fisher
24 model of population genetics, real population sizes fluctuate over time. Furthermore, since these fluctuations are themselves stochastic, it seems natural
26 to derive expressions for the evolutionary response to demographic stochasticity and consider how the results relate to characterizations of random genetic drift. This can be done in continuous time for population genetic models without too much technical overhead, assuming a finite number of alleles (Gomulkiewicz et al., 2017, Lande et al., 2009, Parsons et al., 2010). However, for populations with a continuum of types, such as a quantitative trait, finding a formal approach to derive the evolutionary response to demographic stochasticity has remained a vexing mathematical challenge. In this paper we close
30 this gap by combining the calculus of white noise with results on rescaled limits of measure-valued branching processes (MVBP) and stochastic partial differential equations (SPDE).
32
34

Our goals in this paper are twofold: 1) Establish a novel synthetic approach
42 to theoretical evolutionary ecology that provides a formal connection between demographic stochasticity and random genetic drift in the context of quantitative traits. 2) Communicate some useful properties of space-time white noise, MVBP and SPDE to a wide audience of mathematical evolutionary ecologists.
44 With these goals in mind we will not provide a rigorous treatment of any of these mathematically rich topics. Instead, we introduce a set of heuristics that
46 only require the basic concepts of Riemann integration, partial differentiation and some exposure to Brownian motion and stochastic ordinary differential
48 equations (SDE). A concise introduction to SDE and Brownian motion has been provided by Evans (2014).
50

52 Since MVBP are abstract mathematical objects and their rigorous study re-
53 quires elaborate mathematical machinery, the use of MVBP in mainstream
54 theoretical evolutionary ecology has been limited. However, they provide
55 natural models of biological populations by capturing various mechanistic
56 details. In particular, MVBP generalize classical birth-death processes, such
57 as the Galton-Watson process (Kimmel and Axelrod, 2015, Dawson, 1993), to
58 model populations of discrete individuals that carry some value in a given
59 type-space. Selection can then be modelled by associating these values with
60 average reproductive output and mutation can be incorporated using a model
61 that determines the distribution of offspring values given their parental value.
62 For population genetic models the type-space is the discrete set of possible
63 alleles individuals can carry. In quantitative genetic models tracking the evo-
64 lution of d -dimensional phenotypes, this type-space is typically set to the Eu-
65 clidean space \mathbb{R}^d . By starting with branching processes we can implement
66 mechanistic models of biological fitness that account for the phenotype of the
67 focal individual along with the phenotypes and number of all other individ-
68 uals in a population or community. By taking a rescaled limit, we can then
69 use these detailed individual-based models to derive population-level models
70 tracking the dynamics of population abundance and phenotypic distribution
71 driven by selection, mutation and demographic stochasticity. Hence, rescaled
72 limits of MVBP provide a means to derive mathematically tractable, yet bio-
73 logically mechanistic models of eco-evolutionary dynamics.

74 For univariate traits (i.e., $d = 1$) Konno and Shiga (1988), Reimers (1989), Li
75 (1998) and Champagnat et al. (2006) have shown that rescaled limits for a large
76 class of MVBP converge to solutions of SPDE. Although cases in which $d \geq 1$
77 can be treated using the so-called martingale problem formulation (Dawson,
78 1993), the SPDE formulation provides a more intuitive description of the bi-
79 ological processes involved. We therefore focus on the case $d = 1$ here. This
80 allows us to introduce a concrete set of heuristics for deriving SDE track-
81 ing the dynamics of abundance, phenotypic mean and phenotypic variance
82 to a wide audience of mathematical evolutionary ecologists. Following our
83 approach to simplify notation and develop heuristics for calculations, future
84 work can possibly use the martingale formulation to extend the results pre-
85 sented here for $d > 1$ and even for infinite-dimensional traits (Dawson, 1993,
86 Stinchcombe et al., 2012). Rigorous introductions to SPDE and rescaled limits
87 of MVBP have been respectively provided by Da Prato and Zabczyk (2014)
88 and Etheridge (2000).

89 In this paper we begin in §2 by introducing the basic framework of our
90 approach. We first outline the essential ideas behind deriving evolutionary
91 dynamics from abundance dynamics using a deterministic partial differential
92 equation (PDE). In SM §3.1 we review rescaled limits of MVBP, their asso-
93 ciated SPDE and introduce an approach to derive SDE tracking the dynam-
94 ics of abundance, phenotypic mean and phenotypic variance. This approach
95 requires performing calculations with respect to space-time white noise pro-
96 cesses and we provide heuristics for doing so in SM §2.1. In §2.2 we discuss
97 consequences of the derived SDE for general phenotypic distributions and

98 simplify their expressions by assuming normally distributed phenotypes. For
99 added biological relevance, we incorporate models of inheritance and devel-
100 opment following classical quantitative genetics. To demonstrate how our
101 framework can be used to formulate a synthetic theory of evolutionary ecol-
102 ogy, in §3 we derive a model of diffuse coevolution for a set of S species
103 competing along a resource continuum. The basic approach follows classical
104 niche theory to develop biological fitness as a function of niche parameters
105 and niche locations of other individuals in the community. We then use this
106 model to derive formula for selection gradients and competition coefficients.
107 Finally, we investigate the relationship between selection gradients and com-
108 petition coefficients using a high-richness (large S) approximation.

2. The Framework

110 At the core of our approach is a model of stochastic abundance dynamics
111 for a structured population in continuous time and phenotypic space. From
112 this stochastic equation we derive a system of SDE for the dynamics of to-
113 tal abundance, mean trait and additive genetic variance of a population. In
114 particular, our approach develops a quantitative genetic theory of evolution-
115 ary ecology. A popular alternative to quantitative genetics is the theory of
116 adaptive dynamics (Dieckmann and Law, 1996, Metz et al., 1996). As demon-
117 strated by Page and Nowak (2002) and Champagnat et al. (2006), the canon-
118 ical equation of adaptive dynamics can be derived from the replicator-mutator
119 equation, which in turn can be derived from models of abundance dynamics,
120 revealing a synthesis of mathematical approaches to theoretical evolutionary
121 ecology. In this section we briefly outline derivations of the replicator-mutator
122 equation and trait dynamics from abundance dynamics in the deterministic
123 case. We then extend these formula along with related results to the case of
124 random reproductive output (i.e., demographic stochasticity).

2.1. Deterministic Dynamics

125 *Finite Number of Types.* We start by considering the dynamics of an asexually
126 reproducing population in a homogeneous environment. For simplicity, we
127 first assume individuals are haploid and carry one of K alleles each with a dif-
128 ferent fitness expressed as growth rate before introducing a model involving
129 a quantitative trait. Under these assumptions, the derivation of the evolution
130 of allele frequencies due to natural selection can be derived from expressions
131 of exponential growth. This, and a few related approaches, have been pro-
132 vided by Crow and Kimura (1970). Mutation can be included using a matrix
133 of transition rates. Specifically, denoting ν_i the abundance of individuals with
134 allele i , m_i the growth rate of allele i (called the Malthusian parameter in Crow
135 and Kimura, 1970), μ_{ij} the mutation rate from allele i to allele j and assuming
136 selection and mutation are decoupled (Bürger, 2000), we have

$$\frac{d\nu_i}{dt} = m_i \nu_i + \sum_{j=1}^K (\mu_{ji} \nu_j - \mu_{ij} \nu_i). \quad (1)$$

138 Starting from this model, we get the total abundance of the population as
 140 $N = \sum_i \nu_i$, the frequency of allele i as $p_i = \nu_i/N$ and the mean Malthusian
 142 fitness of the population as $\bar{m} = \sum_i p_i m_i$. Note we have used the abbreviation
 $\sum_i = \sum_{i=1}^K$ to simplify inline notation. Observing $\sum_{ij} \mu_{ij} \nu_j = \sum_{ij} \mu_{ij} \nu_i$, we use
 linearity of differentiation to derive the dynamics of abundance dN/dt as

$$\frac{dN}{dt} = \sum_{i=1}^K m_i \nu_i + \sum_{i,j=1}^K (\mu_{ij} \nu_j - \mu_{ji} \nu_i) = \bar{m}N. \quad (2)$$

144 To derive the dynamics of the allele frequencies p_1, \dots, p_K , we use the
 quotient rule of elementary calculus to find

$$\frac{dp_i}{dt} = (m_i - \bar{m}) p_i + \sum_{j=1}^K (\mu_{ji} p_j - \mu_{ij} p_i). \quad (3)$$

146 Two important observations of these equations include: (i) Mean Malthusian
 148 fitness \bar{m} is equivalent to the population growth rate and thus determines
 150 the abundance dynamics of the entire population. (ii) Selection for allele i occurs
 when $m_i > \bar{m}$ and selection against allele i occurs when $m_i < \bar{m}$. Hence, as mentioned in the introduction, fitness plays a key role in determining both
 abundance dynamics and evolution.

152 Equation (3) is known in the field of evolutionary game theory as a replicator-
 154 mutator equation (Nowak, 2006). Instead of being explicitly focused on alleles,
 the replicator-mutator equation describes the fluctuations of relative abundances
 156 of various types in a population in terms of replication and annihilation
 rates of each type and hence can be used to model dynamical systems outside of evolutionary biology (Nowak, 2006).

158 *Continuum of Types.* Inspired by equations (1)-(3), we derive an analog of the
 160 replicator-mutator equation for a continuum of types (that is, for a quantitative
 162 trait). In particular, we model a continuously reproducing population with trait
 164 values $x \in \mathbb{R}$ and an abundance density $\nu(x, t)$ that represents the amount of individuals in the population with trait value x at time t . Hence, the abundance density satisfies $N(t) = \int \nu(x, t) dx$ and $p(x, t) = \nu(x, t)/N(t)$ is the relative density of trait x which we also refer to as the phenotypic distribution. Note we have used the abbreviation $\int = \int_{-\infty}^{+\infty}$ to simplify inline notation.

166 In analogy with the growth rates m_i for equation (1) we write $m(\nu, x)$ as
 168 the growth rate associated with trait value x which depends on the abundance
 170 density ν . We assume mutation is captured by diffusion with coefficient $\frac{\mu}{2}$. Hence, we model the demographic dynamics of a population and the dynamics of a quantitative character simultaneously by the PDE

$$\frac{\partial}{\partial t} \nu(x, t) = m(\nu, x) \nu(x, t) + \frac{\mu}{2} \frac{\partial^2}{\partial x^2} \nu(x, t). \quad (4)$$

172 Equation (4) qualifies both as a semilinear evolution equation and also a
 173 scalar reaction-diffusion equation. Although the general theory of such equa-
 174 tions is quite rich, it is also quite difficult (Evans, 2010, Zheng, 2004). Hence,
 175 to stay within the realms of analytical tractability and biological plausibility,
 176 we require a set of technical assumptions which we list in SM §1.1. These
 177 assumptions guarantee solutions to equation (4) exist for all finite time $t > 0$
 178 and, hence, let us investigate the ecological and evolutionary dynamics of
 biological populations.

180 Equation (4) can be seen as an analog of equation (1) for a continuum of
 181 types. By assuming mutation acts via diffusion, the effect of mutation causes
 182 the abundance density $\nu(x, t)$ to flatten out across phenotypic space. In fact,
 183 if the growth rate is constant across x , then this model of mutation will cause
 184 $\nu(x, t)$ to converge to a flat line in x as $t \rightarrow \infty$. Interpreting the trait value x
 185 as location in geographic space, equation (4) becomes a well-studied model of
 186 spatially distributed population dynamics (Cantrell and Cosner, 2004).

187 Although clearly an idealized representation of biological reality, this model
 188 is sufficiently general to capture a large class of dynamics including density
 189 dependent growth and frequency dependent selection. As an example, lo-
 190 gistic growth combined with stabilizing selection can be captured using the
 growth rate

$$m(\nu, x) = R - \frac{a}{2}(\theta - x)^2 - c \int_{-\infty}^{+\infty} \nu(y, t) dy = R - \frac{a}{2}(\theta - x)^2 - cN(t), \quad (5)$$

191 where $a > 0$ the is strength of abiotic stabilizing selection around the phe-
 192 notypic optimum θ , $c > 0$ is the strength of intraspecific competition and we
 193 refer to R as the innate growth rate (see §3.3 below). In the language of popu-
 194 lation ecology, $r = R - \frac{a}{2}(\theta - x)^2$ is the intrinsic growth rate of the population
 (Chesson, 2000). This model assumes competitive interactions cause the same
 195 reduction in fitness regardless of trait value.

196 This exemplary fitness function has a few convenient properties. First,
 197 the effect of competition induces a local carrying capacity on the population,
 198 leading to a finite equilibrium abundance over bounded subsets of pheno-
 199 typic (or geographic) space. Second, abiotic selection prevents the abundance
 200 density from diffusing too far from the abiotic optimum. In particular, when
 201 $R > \frac{1}{2}\sqrt{a\mu} > 0$, $\bar{x}(0)$ is finite, $\sigma^2(0)$ is non-negative and finite and $N(0)$ is
 202 positive and finite, this leads to a unique stable equilibrium given by

$$\hat{N} = \frac{1}{c}(R - \frac{1}{2}\sqrt{a\mu}), \quad (6a)$$

$$\hat{x} = \theta, \quad (6b)$$

$$\hat{\sigma}^2 = \sqrt{\frac{\mu}{a}}. \quad (6c)$$

203 We demonstrate this result in SM §1.2. The equilibrial phenotypic variance
 204 predicted by this model coincides with a classic quantitative genetic result

²⁰⁶ predicted by modelling the combined effects of Gaussian stabilizing selection
²⁰⁸ and the Gaussian allelic model of mutation (Bürger, 2000, Johnson and Barton,
²⁰⁵ Lande, 1975, Walsh and Lynch, 2018).

²¹⁰ To derive a replicator-mutator equation from equation (4), we employ
²¹² integration-by-parts and the chain rule from calculus. Writing

$$\bar{m} = \int_{-\infty}^{\infty} m(\nu, x) p(x, t) dx \quad (7)$$

for the mean fitness, we find

$$\frac{dN}{dt} = \bar{m}N, \quad (8a)$$

$$\frac{\partial}{\partial t} p(x, t) = \left(m(\nu, x) - \bar{m}(t) \right) p(x, t) + \frac{\mu}{2} \frac{\partial^2}{\partial x^2} p(x, t). \quad (8b)$$

²¹² Equation 8b result closely resembles Kimura's continuum-of-alleles model
²¹⁴ (Kimura, 1965). The primary difference being that our model utilizes diffusion
²¹⁶ instead of convolution with an arbitrary mutation kernel. However, our model
²¹⁸ of mutation can be derived as an approximation to Kimura's model, which
²²⁰ has been referred to as the Gaussian allelic approximation in reference to the
²²² distribution of mutational effects on trait values at each locus in a genome
²²⁴ (Lande, 1975, Bürger, 1986, Bürger, 2000, Johnson and Barton, 2005), the in-
²²⁶ finitesimal genetics approximation in reference to modelling continuous traits
²²⁸ as being encoded by an infinite number of loci each having infinitesimal effect
²³⁰ (Fisher, 1919, Barton et al., 2017) and the Gaussian descendants approxima-
²³² tion in reference to offspring trait values being normally distributed around
²³⁴ their parental values (Bulmer, 1971, Turelli, 2017).

²²⁴ To distinguish this model from previous models of phenotypic evolution
²²⁶ we refer to PDE (4) from which (8b) was derived as the Deterministic Asex-
²²⁸ ual Gaussian allelic model with Abundance dynamics (abbreviated DAGA).
²³⁰ Later, we will extend this model to include the effects of demographic stochas-
²³² ticity, which we refer to as the Stochastic Asexual Gaussian allelic model with
²³⁴ Abundance dynamics (abbreviated SAGA).

Evolutionary Dynamics. We now apply DAGA to derive the dynamics of mean
²³⁰ trait \bar{x} and phenotypic variance σ^2 . Both of these dynamics are expressible in
²³² terms of covariances with fitness. For an abundance distribution $\nu(x)$ and as-
²³⁴ sociated phenotypic distribution $p(x)$, the covariance of fitness and phenotype
²³⁶ across the population is defined as

$$\text{Cov}(m(\nu, x), x) = \int_{-\infty}^{+\infty} (m(\nu, x) - \bar{m})(x - \bar{x}) p(x) dx. \quad (9)$$

²³⁴ Following this, we again apply integration-by-parts and the chain rule
²³⁶ from calculus to find the dynamics of the mean trait \bar{x} as

$$\frac{d\bar{x}}{dt} = \text{Cov}(m(\nu, x), x). \quad (10)$$

236 Equation (10) is a continuous time analog of the well known Robertson-
238 Price equation without transmission bias (Frank, 2012, Lion, 2018, Price, 1970,
240 Queller, 2017, Robertson, 1966). Whether or not the covariance of fitness and
242 phenotype creates change in \bar{x} to maximize mean fitness \bar{m} depends on the
244 degree to which selection is frequency dependent (Lande, 1976). Since this
change is driven by a covariance with respect to phenotypic diversity, the
response in mean trait to selection is mediated by the phenotypic variance. In
particular, when $\sigma^2 = 0$, \bar{x} will not respond to selection.

246 Following the approach taken to calculate the evolution of \bar{x} , we find the
248 response of phenotypic variation to this model of mutation and selection is

$$\frac{d\sigma^2}{dt} = \mu + \text{Cov}(m(v, x), (x - \bar{x})^2). \quad (11)$$

250 In the absence of mutation equation (11) mirrors the result derived by Lion
252 (2018) for discrete phenotypes. From a statistical perspective, if we think of
254 $(x - \bar{x})^2$ as a square error, then in analogy to the dynamics of the mean trait,
we see that the response in σ^2 to selection can be expressed as a covariance of
fitness and square error, which is defined in analogy to $\text{Cov}(m(v, x), x)$. Just
as for the evolution of \bar{x} , this covariance also creates change in σ^2 that can
either increase or decrease mean fitness \bar{m} , depending on whether or not se-
256 lection is frequency dependent. The effect of selection on phenotypic variance
can be positive or negative depending on whether selection is stabilizing or
disruptive.

258 2.2. Extending DAGA to Demographic Stochasticity

260 In SM §4, we extend these results to include the effects of demographic
262 stochasticity. The idea is to add an appropriate noise term to DAGA. Hence,
we wish to study stochastic partial differential equations (SPDE) that provide
natural generalizations of DAGA. Fortunately, rigorous first principle deriva-
264 tions of such SPDE have been provided by Li (1998) and Champagnat et al.
266 (2006). The noise terms driving these SPDE are space-time white noise pro-
cesses, denoted $\dot{W}(x, t)$, which are random processes uncorrelated in both
space and time. In SM §2.1, we provide a set of heuristics for performing
268 calculations with respect to space-time white noise including methods to de-
270 rive SDE from SPDE in analogy to our derivations of ordinary differential
272 equations (ODE) from PDE above. Since our aim is to present this material
274 to a wide audience of mathematical evolutionary ecologists, our treatment
of space-time white noise and stochastic integration deviates from standard
definitions to remove the need for a detailed technical treatment. However,
in SM §2.2, we show our heuristics are consistent with the rigorous infinite-
dimensional stochastic calculus presented in Da Prato and Zabczyk (2014).
Using our simplified approach, the reader will only need some elementary
probability and an intuitive understanding of SDE, including Brownian motion,
in addition to the notions of Riemann integration and partial differentia-
276 tion already employed.

278 To understand how SPDE can be derived from biological first principles,
 279 we provide in SM §3.1 an informal discussion of measure-valued branch-
 280 ing processes (MVPB) (which provide individual-based models) and their
 281 diffusion-limits (which provide population-level models). Diffusion-limits of
 282 MVPB return so-called superprocesses which track the evolution of abun-
 283 dance and phenotypic distribution (Etheridge, 2000). For univariate traits and
 284 under biologically natural conditions, these superprocesses admit abundance
 285 densities satisfying SPDE. Under the simplifying assumptions inherited from
 286 our treatment of deterministic dynamics and the additional assumption that
 287 the variance of individual reproductive output, denoted by $V \geq 0$, is indepen-
 288 dent of trait values, we obtain as a special case the relatively simple expression
 for an SPDE that generalizes DAGA

$$\frac{\partial}{\partial t} v(x, t) = m(v, x)v(x, t) + \frac{\mu}{2} \frac{\partial^2}{\partial x^2} v(x, t) + \sqrt{Vv(x, t)} \dot{W}(x, t). \quad (12)$$

290 We refer to this special case as the Stochastic Asexual Gaussian allelic
 291 model with Abundance dynamics (SAGA). The simplicity of SAGA allows
 292 us to use properties of space-time white noise processes to derive a set of SDE
 that generalize equations (8a), (10) and (11) to include the effects of demo-
 graphic stochasticity (see SM §3.2 and SM §4). In particular, we find

$$\frac{dN}{dt} = \bar{m}Ndt + \sqrt{VN} \frac{dW_N}{dt}, \quad (13a)$$

$$\frac{d\bar{x}}{dt} = \text{Cov}(m, x) + \sqrt{V \frac{\sigma^2}{N}} \frac{dW_{\bar{x}}}{dt}, \quad (13b)$$

$$\frac{d\sigma^2}{dt} = \mu + \text{Cov}\left(m, (x - \bar{x})^2\right) - V \frac{\sigma^2}{N} + \sqrt{V \frac{(x - \bar{x})^4}{N} - \sigma^4} \frac{dW_{\sigma^2}}{dt}, \quad (13c)$$

294 where W_N , $W_{\bar{x}}$ and W_{σ^2} are standard Brownian motions and barred expres-
 295 sions such as $(x - \bar{x})^4$ are averaged quantities with respect to the phenotypic
 296 distribution $p(x, t)$. Intuitively, one can interpret equations (13) as if they are
 297 ordinary differential equations, but this is not technically rigorous since Brow-
 298 nian motion is nowhere differentiable with respect to time. In SM §4 we show
 299 that in general W_N is independent of both $W_{\bar{x}}$ and W_{σ^2} , but $W_{\bar{x}}$ and W_{σ^2} may
 300 covary depending on the shape of $p(x, t)$.

301 Many known results follow directly from expressions (13). Firstly, assum-
 302 ing no variance in reproductive output so that $V = 0$ recovers the deter-
 303 ministic dynamics derived in §2.1. Alternatively, one can take $N \rightarrow \infty$ to recover
 304 the deterministic dynamics for \bar{x} and σ^2 . Characteristically, we note the effect
 305 of demographic stochasticity on abundance grows with \sqrt{N} . Hence, divid-
 306 ing by N , we find the effects of demographic stochasticity on the per-capita
 307 growth rate diminish with increased abundance. Relating the response to
 308 demographic stochasticity derived here to the effect of random genetic drift

310 derived in classic quantitative genetic theory, if we set σ^2 and N constant with
311 respect to time, then integrating the stochastic term in equation (13b) over a
312 single unit of time returns a normally distributed random variable with mean
313 zero and variance equal to $V\sigma^2/N$. In particular, assuming perfect inheritance,
314 when reproductive variance is unity ($V = 1$) this random variable coincides
315 with the effect of random genetic drift on the change in mean trait over a
316 single generation derived using sampling arguments (Lande, 1976). There is
317 also an interesting connection with classical population genetics. A funda-
318 mental result from early population genetic theory is the expected reduction
319 in diversity due to the chance loss of alleles in finite populations (Fisher, 1923,
320 Wright, 1931). This expected reduction in diversity due to random genetic
321 drift is captured by the third term in the deterministic component of expres-
322 sion (13c), particularly $-V\sigma^2/N$. The component of SDE (13c) describing
323 random fluctuations in σ^2 is more complicated and is proportional to the root
324 of the difference between the centralized fourth moment of the phenotypic
325 distribution and square of the phenotypic variance σ^4 .

326 These expressions can be used to investigate the dynamics of the mean
327 and variance for a very general set of phenotypic distributions. However, in
328 the next subsection we simplify these expressions by assuming normally dis-
329 tributed trait values, known as the Gaussian population assumption (Turelli
330 2017). In SM §4 we show that under the Gaussian case W_N , $W_{\bar{x}}$ and W_{σ^2} are
331 independent. Hence, although the Gaussian population assumption is very re-
332 strictive as a model of phenotypic diversity and, except for very special cases
333 of growth rates, is not formally justified, its exceedingly convenient properties
334 make it an important initial approximation.

334 2.3. Particular Results Assuming a Gaussian Phenotypic Distribution

336 By assuming normally distributed trait values, expressions (13) transform
337 into efficient tools for deriving the dynamics of populations given a fitness
338 function $m(v, x)$. Gaussian phenotypic distributions can be formally obtained
339 through Gaussian, exponential or weak selection approximations together
340 with a simplified model of mutation, genotype-phenotype mapping and asex-
341 ual reproduction or random mating (Bürger, 2000, Lande, 1980, Turelli, 2017,
342 1986, 1984). Hence, given appropriate assumptions on selection, mutation
343 and reproduction, the abundance density $v(x, t)$ can be approximated as a
344 Gaussian curve in x when the ratio V/N is small (i.e., when the variance in
345 reproductive output is much smaller than the population size). As with any
346 diffusion approximation, this requires a sufficiently large abundance to accu-
347 rately reflect the dynamics of populations. Therefore, models developed in
348 this framework are not suitable for studies involving very small population
349 sizes. Allowing for these restrictions, we assume

$$v(x, t) = \frac{N(t)}{\sqrt{2\pi\sigma^2(t)}} \exp\left(-\frac{(x - \bar{x}(t))^2}{2\sigma^2(t)}\right). \quad (14)$$

Under this assumption, covariances with fitness can be written in terms of
 350 fitness gradients. In particular, we find

$$\text{Cov}(m, x) = \sigma^2 \left(\frac{\partial \bar{m}}{\partial \bar{x}} - \frac{\overline{\partial m}}{\partial \bar{x}} \right), \quad (15a)$$

$$\text{Cov}(m, (x - \bar{x})^2) = 2\sigma^4 \left(\frac{\partial \bar{m}}{\partial \sigma^2} - \frac{\overline{\partial m}}{\partial \sigma^2} \right) \quad (15b)$$

and $\overline{(x - \bar{x})^4} = 3\sigma^4$. These results imply trait dynamics can be rewritten as

$$\frac{d\bar{x}}{dt} = \sigma^2 \left(\frac{\partial \bar{m}}{\partial \bar{x}} - \frac{\overline{\partial m}}{\partial \bar{x}} \right) + \sqrt{V \frac{\sigma^2}{N} \frac{dW_{\bar{x}}}{dt}}, \quad (16a)$$

$$\frac{d\sigma^2}{dt} = \mu + 2\sigma^4 \left(\frac{\partial \bar{m}}{\partial \sigma^2} - \frac{\overline{\partial m}}{\partial \sigma^2} \right) - V \frac{\sigma^2}{N} + \sigma^2 \sqrt{\frac{2V}{N} \frac{dW_{\sigma^2}}{dt}}. \quad (16b)$$

352 These equations allow us to derive the response in trait mean and variance
 353 by taking derivatives of fitness, a much more straightforward operation than
 354 calculating a covariance for general phenotypic distributions. Note that in the
 355 above expressions, the partial derivatives of \bar{m} represent frequency independent
 356 selection and the averaged partial derivatives of m represent frequency
 357 dependent selection. This relationship has already been pointed out by Lande
 358 (1976) for the evolution of the mean trait in discrete time, but here we see an
 359 analogous relationship holds in continuous time and also for the evolution of
 360 trait variance.

361 In SM §5 we generalize this result to the case when traits are imperfectly
 362 inherited. In this case, the phenotypic variance σ^2 is replaced by a genetic
 363 variance G . This genetic variance represents the component of σ^2 explained by
 364 additive effects among genetic loci encoding for the focal phenotype (Bulmer,
 365 1971, Roughgarden, 1979, Walsh and Lynch, 2018). It is therefore fitting that G
 366 is referred to as the additive genetic variance. Following classical quantitative
 367 genetic assumptions we find

$$\frac{d\bar{x}}{dt} = G \left(\frac{\partial \bar{m}}{\partial \bar{x}} - \frac{\overline{\partial m}}{\partial \bar{x}} \right) + \sqrt{V \frac{G}{N} \frac{dW_{\bar{x}}}{dt}}, \quad (17a)$$

$$\frac{dG}{dt} = \mu + 2G^2 \left(\frac{\partial \bar{m}}{\partial G} - \frac{\overline{\partial m}}{\partial G} \right) - V \frac{G}{N} + G \sqrt{\frac{2V}{N} \frac{dW_G}{dt}}. \quad (17b)$$

368 From expressions (17) we see that, under our simple treatment of inheritance,
 369 focusing on additive genetic variance G instead of the variance in expressed traits σ^2 makes no structural changes to the basic equations describing
 370 the dynamics of populations. Instead we see the role played by the variance
 371 of expressed traits is now being played by the additive genetic variance. In the
 372 next section, we make use of these expressions to develop a model of diffuse
 373 coevolution in a guild of S species competing along a resource continuum.

3. A Model of Diffuse Coevolution

376 In this section we demonstrate the use of our framework by developing
377 a model of diffuse coevolution across a guild of S species whose interactions
378 are mediated by resource competition along a single niche axis. Because our
379 approach treats abundance dynamics and evolutionary dynamics simultaneously,
380 this model allows us to investigate the relationship between selection
381 gradients and competition coefficients, which we carry out in §3.3.

382 3.1. Formulation

383 The dynamics of phenotypic distributions and abundances have been de-
384 rived above and so the only task remaining is the formulation of a fitness
385 function. Our approach mirrors closely the theory developed by MacArthur
386 and Levins (1967), Levins (1968) and MacArthur (1972, 1970, 1969). The most
387 significant difference, aside from allowing evolution to occur, is our treatment
388 of resource availability. In particular, we assume resources are replenished
389 rapidly enough to ignore the dynamics of their availability. A derivation from
390 the MVBP framework is provided in SM §6.

391 *Abiotic Selection and Competition.* For species i we inherit the above notation
392 for trait value, distribution, average, variance, abundance, etc., except with an
393 i in the subscript. Real world examples of niche axes include the size of seeds
394 consumed by competing finch species and the date of activity in a season for
395 pollinators competing for floral resources. For mathematical convenience, we
396 model the axis of resources by the real line \mathbb{R} . The value of a resource along
397 this axis is denoted by the symbol ζ . For an individual in species i , we assume
398 resources are sampled from the environment following the utilization curve
399 u_i , which we assume can be written as

$$u_i(\zeta, x_i) = \frac{U_i}{\sqrt{2\pi w_i}} \exp\left(-\frac{(x_i - \zeta)^2}{2w_i}\right). \quad (18)$$

400 We further assume the niche center x_i is normally distributed among indi-
401 viduals in species i , but the niche breadth w_i and total niche utilization U_i are
402 constant across individuals in species i and therefore cannot evolve. We as-
403 sume resources are distributed along the niche gradient and that each species
404 experiences heterogeneous fitness benefits at different niche locations. Taking
405 into account both resource availability and fitness benefits, we suppose indi-
406 viduals of species i maximize their benefits by sampling resources at niche
407 location $\theta_i \in \mathbb{R}$. We assume the benefits for individuals of species i derived
408 from resources with value $\zeta \in \mathbb{R}$ decreases as $(\zeta - \theta_i)^2$ increases at a rate
409 $A_i \geq 0$. In the absence of competition, we further suppose individuals leave
410 on average Q_i offspring when their utilization curve is concentrated at θ_i (that
411 is, when $x_i = \theta_i$ and $w_i = 0$). Combining these assumptions, we denote by
412 $e_i(\zeta)$ the fitness benefits for individuals sampling at niche location ζ so that

$$e_i(\zeta) = Q_i \exp\left(-\frac{A_i}{2}(\theta_i - \zeta)^2\right). \quad (19)$$

The effect of abiotic stabilizing selection on the fitness for an individual of species i with niche location x_i is then given by

$$\int_{-\infty}^{+\infty} e_i(\zeta) u_i(\zeta, x_i) d\zeta = \frac{Q_i U_i}{\sqrt{A_i w_i + 1}} \exp\left(-\frac{A_i}{2(A_i w_i + 1)}(\theta_i - x_i)^2\right). \quad (20)$$

To determine the potential for competition between individuals with niche locations x_i and x_j , belonging to species i and j respectively, we compute the niche overlap

$$\mathcal{O}_{ij}(x_i - x_j) = \int_{-\infty}^{+\infty} u_i(\zeta, x_i) u_j(\zeta, x_j) d\zeta = \frac{U_i U_j}{\sqrt{2\pi(w_i + w_j)}} \exp\left(-\frac{(x_i - x_j)^2}{2(w_i + w_j)}\right). \quad (21)$$

To map the degree of niche overlap to fitness, we assume competition between individuals with niche locations x_i and x_j decreases the expected reproductive output for the individual in species i at the rate $c_i \mathcal{O}_{ij}(x_i - x_j)$ for some $c_i > 0$. We refer to c_i as the strength of competition for species i .

The Fitness Function. Assuming the effects due to competitive interactions and abiotic stabilizing selection on the expected reproductive output of individuals accumulates multiplicatively, we derive in SM §6 an expression for the expected reproductive output of individuals in each. Applying a series of diffusion-limits, we then find the following expressions for the growth rate associated with trait value x for species i along with the population growth rate of species i :

$$m_i(x) = R_i - \frac{a_i}{2}(\theta_i - x)^2 - c_i \sum_{j=1}^S N_j U_i U_j \sqrt{\frac{\tilde{b}_{ij}}{2\pi}} e^{-\frac{\tilde{b}_{ij}}{2}(x - \bar{x}_j)^2}, \quad (22a)$$

$$\bar{m}_i = R_i - \frac{a_i}{2} \left((\theta_i - \bar{x}_i)^2 + G_i + \eta_i \right) - c_i \sum_{j=1}^S N_j U_i U_j \sqrt{\frac{b_{ij}}{2\pi}} e^{-\frac{b_{ij}}{2}(\bar{x}_i - \bar{x}_j)^2}, \quad (22b)$$

where a_i is the strength of abiotic stabilizing selection on species i . The variables \tilde{b}_{ij}, b_{ij} determine the sensitivity of competitive effects on species i to differences in niche locations between species i and j . We refer to R_i as the innate growth rate of species i to distinguish it from the intrinsic growth rate

commonly referred to in the field of population ecology. These are composite parameters given by the following expressions:

$$R_i = \ln \left(\frac{Q_i U_i}{\sqrt{1 + A_i w_i}} \right), \quad (23a)$$

$$a_i = \frac{A_i}{1 + A_i w_i}, \quad (23b)$$

$$\tilde{b}_{ij}(t) = (w_i + w_j + \eta_j + G_j(t))^{-1}, \quad (23c)$$

$$b_{ij}(t) = b_{ji}(t) = (w_i + w_j + \eta_i + \eta_j + G_i(t) + G_j(t))^{-1}. \quad (23d)$$

3.2. The Model

In SM §6 we combine equations (13a), (17) and (22) to find

$$\frac{dN_i}{dt} = \left\{ R_i - \frac{a_i}{2} \left((\theta_i - \bar{x}_i)^2 + G_i + \eta_i \right) - c_i \sum_{j=1}^S N_j U_i U_j \sqrt{\frac{b_{ij}}{2\pi}} e^{-\frac{b_{ij}}{2}(\bar{x}_i - \bar{x}_j)^2} \right\} N_i + \sqrt{V_i N_i} \frac{dW_{N_i}}{dt}, \quad (24a)$$

$$\begin{aligned} \frac{d\bar{x}_i}{dt} = a_i G_i (\theta_i - \bar{x}_i) - c_i G_i \left(\sum_{j=1}^S N_j U_i U_j b_{ij} (\bar{x}_j - \bar{x}_i) \sqrt{\frac{b_{ij}}{2\pi}} e^{-\frac{b_{ij}}{2}(\bar{x}_i - \bar{x}_j)^2} \right) \\ + \sqrt{V_i \frac{G_i}{N_i}} \frac{dW_{\bar{x}_i}}{dt}, \end{aligned} \quad (24b)$$

$$\begin{aligned} \frac{dG_i}{dt} = \mu_i + c_i G_i^2 \left(\sum_{j=1}^S N_j U_i U_j b_{ij} \left(1 - b_{ij} (\bar{x}_i - \bar{x}_j)^2 \right) \sqrt{\frac{b_{ij}}{2\pi}} e^{-\frac{b_{ij}}{2}(\bar{x}_i - \bar{x}_j)^2} \right. \\ \left. + N_i U_i^2 b_{ii} \sqrt{\frac{b_{ii}}{2\pi}} - a_i G_i^2 - V_i \frac{G_i}{N_i} \right) + G_i \sqrt{\frac{2V_i}{N_i}} \frac{dW_{G_i}}{dt}. \end{aligned} \quad (24c)$$

Together, equations (24) provide a synthetic model capturing the dynamics of abundance and evolution from common biological mechanisms.

Model Behavior. Despite the convoluted appearance of system (24), there are some nice features that reflect biological reasoning. For example, the dynamics of abundance generalize Lotka-Volterra dynamics. In particular, the effect of competition with species j on the fitness of species i grows linearly with N_j . However, as biotic selection pushes \bar{x}_i away from \bar{x}_j , the effect of competition

444 with species j on the fitness of species i rapidly diminishes due to the Gaussian weights capturing a reduction in niche overlap. These Gaussian weights
446 have been usefully employed to capture interaction preference in recent investigations of coevolution in mutualistic networks (de Andreazzi et al., 2019,
448 Medeiros et al., 2018, Guimarães et al., 2017). The divergence of \bar{x}_i and \bar{x}_j due
450 to competition is referred to in the community ecology literature as character
452 displacement (Brown and Wilson, 1956). We also see that the fitness of species
 i drops quadratically with the difference between \bar{x}_i and the abiotic optimum
 θ_i . Hence, abiotic selection acts to pull \bar{x}_i towards θ_i .

454 The response in mean trait \bar{x}_i to natural selection is proportional to the
456 amount of heritable variation in the population, represented by the additive
458 genetic variance G_i . However, we have that G_i is itself a dynamic quantity.
460 Under our model, abiotic stabilizing selection erodes away heritable variation
462 at a rate that is independent of both N_i and \bar{x}_i . The effect of competition
464 on G_i is a bit more complicated. When $b_{ij}(\bar{x}_i - \bar{x}_j)^2 < 1$, competition with
species j acts as diversifying selection which tends to increase the amount of
heritable variation. However, when $b_{ij}(\bar{x}_i - \bar{x}_j)^2 > 1$, competition with species
 j acts as directional selection and reduces G_i . In the following subsections we
demonstrate the behavior of system (24) by plotting numerical solutions and
investigate implications for the relationship between the strength of ecological
interactions and selection.

466 *Community Dynamics.* For the sake of illustration we numerically integrated
468 system (24) for a richness of $S = 100$ species. We assumed homogeneous
model parameters across species in the community as summarized by Table
470 1. We repeated numerical integration under the two scenarios of weak and
strong competition. For the first scenario of weak competition we set $c = 1.0 \times$
 10^{-7} and for the second scenario of strong competition we set $c = 5.0 \times 10^{-6}$.
472 With these two sets of model parameters, we simulated our model for 1000.0
units of time. For both scenarios, we initialized the trait means to $\bar{x}_i = 0.0$,
additive genetic variances to $G_i = 10.0$ and abundances to $N_i = 1000.0$ for
474 each $i = 1, \dots, S$.

476 Temporal dynamics for each scenario are provided in Figure 1. This figure
478 suggests weaker competition leads to smoother dynamics and a higher degree
of organization within the community. Considering expression (24a) we note
480 that, all else equal, relaxed competition allows for larger growth rates which
promote greater abundances. From (24a) we also note that the per-capita
482 effects on demographic stochasticity diminish with abundance. To see this,
divide both sides by N_i .

484 Inspecting expressions (24b) and (24c), we see that larger abundances also
erode the effects of demographic stochasticity on the evolution of mean trait
486 and additive genetic variance. These effects were already noted in §2.2, and
thus are not a consequence of our model of coevolution per-se, but we re-
visit them here since Figure 1 demonstrates the importance of demographic
488 stochasticity in structuring ecological communities even when populations
are very large. Hence, contrary to the common assumption that stochastic

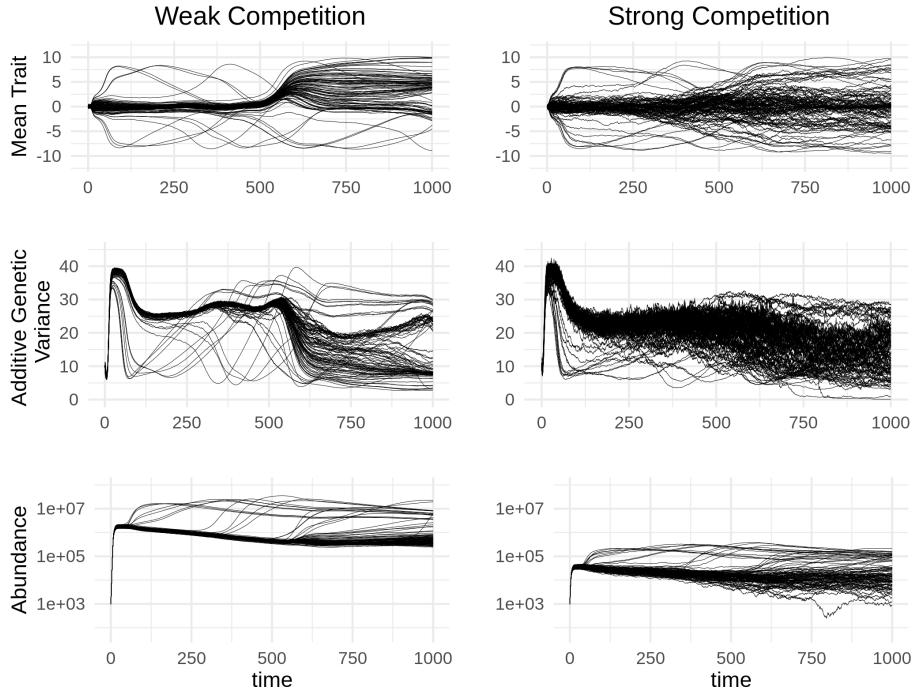


Figure 1: Temporal dynamics of mean trait (top), additive genetic variance (middle) and abundance (bottom) for the scenario of weak competition (left) and strong competition (right).

Table 1: Values of model parameters used for numerical integration.

Parameter	Description	Value
S	species richness	100
R	innate growth rate, see §3.3	1.0
θ	abiotic optimum	0.0
α	strength of abiotic selection	0.01
c	sensitivity to competition	$\{1.0 \times 10^{-7}, 5.0 \times 10^{-6}\}$
w	niche breadth	0.1
U	total niche use	1.0
η	developmental noise	1.0
μ	mutation rate	1.0×10^{-7}
V	variance of reproductive output	5.0

490 effects can be ignored for large populations, we find that minute asymmetries
 491 generated by demographic stochasticity remain significant drivers of commu-
 492 nity structure. In particular, although we initialized each species with iden-
 493 tical state variables and model parameters, we found an enormous amount
 494 of asymmetry in both the evolutionary and abundance dynamics and even
 495 some peculiar synchronized shifts. Although future work may show these
 496 bizarre features always dissipate after the system has been given sufficient
 497 time to evolve, we see demographic stochasticity has pronounced effects on
 498 communities experiencing non-equilibrium dynamics.

499 Although Figure 1 suggests interesting patterns in the dynamics of abun-
 500 dance and trait evolution, a more formal investigation is needed to better un-
 501 derstand the relationship between them. In the following subsection we take
 502 a step in this direction by approximating correlations between competition
 503 coefficients and components of selection gradients induced by interspecific
 504 interactions.

504 *3.3. The Relation Between the Strength of Ecological Interactions and Selection*

505 Here we investigate the relationship between competition coefficients, which
 506 measure the effect of ecological interactions on abundance dynamics, with se-
 507 lection gradients, which measure the magnitude and direction of selection on
 508 mean trait and trait variance. We start by considering the expressions of ab-
 509 solute competition coefficients implied by equations (24). However, it turns out
 510 absolute competition coefficients display some unfortunate behaviour with
 511 respect to our model. We therefore introduce a slightly modified form of ab-
 512 solute competition coefficients. We then provide formula for the components
 513 of linear and quadratic selection coefficients corresponding to the effects of
 514 interspecific interactions. Lastly, we use a high-richness (large S) approxima-
 515 tion to determine correlations between competition coefficients and selection
 516 gradients across the community. Associated calculations are provided in SM
 517 §7.3.

518 *Competition coefficients.* Relating our treatment of resource competition to the-
 519 oretical community ecology, the absolute competition coefficient $\tilde{\alpha}_{ij}$, which
 520 measures the effect of species j on the growth rate of species i (sensu Chesson,
 521 2000), becomes a dynamical quantity that can be written as

$$\begin{aligned} \tilde{\alpha}_{ij}(t) &= \frac{c_i}{r_i(t)} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p_i(x, t) p_j(y, t) \mathcal{O}_{ij}(x, y) dx dy \\ &= \frac{c_i U_i U_j}{r_i(t)} \sqrt{\frac{b_{ij}(t)}{2\pi}} \exp \left(-\frac{b_{ij}(t)}{2} (\bar{x}_i(t) - \bar{x}_j(t))^2 \right), \end{aligned} \quad (25)$$

522 where

$$r_i(t) = R_i - \frac{a_i}{2} ((\bar{x}_i(t) - \theta_i)^2 + G_i(t) + \eta_i), \quad (26)$$

is the intrinsic growth rate of species i . Then, $dN_i(t)$ can be expressed as

$$\frac{dN_i}{dt} = r_i \left(1 - \sum_{j=1}^S \tilde{\alpha}_{ij} N_j \right) N_i + \sqrt{V_i N_i} \frac{dW_{N_i}}{dt}. \quad (27)$$

Following our model, the classically defined absolute competition coefficient for species i is parameterized with the intrinsic growth rate of species i appearing in the denominator. In turn, these intrinsic growth rates depend on the balance between the innate growth rate R_i and the effect of abiotic stabilizing selection. However, this balance further depends on mean trait and additive genetic variance, which evolve freely. This leads to the potential for the signage of r_i to switch between positive and negative which implies the potential for infinite absolute competition coefficients. Furthermore, we see these competition coefficients are influenced by abiotic stabilizing selection instead of solely capturing the effects of inter/intraspecific interactions. Hence, we find it necessary to introduce a modification of the absolute competition coefficient $\tilde{\alpha}_{ij}$ that avoids these caveats. In particular, we define

$$\alpha_{ij} = r_i \tilde{\alpha}_{ij} = c_i U_i U_j \sqrt{\frac{b_{ij}}{2\pi}} e^{-\frac{b_{ij}}{2}(\bar{x}_i - \bar{x}_j)^2}. \quad (28)$$

We call α_{ij} the specific competition coefficient mediating the effects of species j on the growth rate of species i . Under this parameterization, the abundance dynamics of species i is now expressed as

$$\frac{dN_i}{dt} = \left(r_i - \sum_{j=1}^S \alpha_{ij} N_j \right) N_i + \sqrt{V_i N_i} \frac{dW_{N_i}}{dt}. \quad (29)$$

Selection Gradients. Linear and quadratic selection gradients have been defined by Lande and Arnold (1983). While the linear selection gradient β measures the effect of selection on mean trait evolution, the stabilizing selection gradient γ measures the effect of selection on additive genetic or phenotypic variance. Since these quantities are classically defined with respect to discrete-time models of trait evolution, we provide the analogous definitions for continuous-time models in SM §7.1. Following our model of diffuse coevolution, we then show these selection gradients can be additively partitioned into components due to interactions with each species and abiotic stabilizing selection. In particular, we find the components of linear and quadratic selection gradients for species i induced by species j are given respectively by

$$\beta_{ij} = c_i U_i U_j N_j b_{ij} (\bar{x}_i - \bar{x}_j) \sqrt{\frac{b_{ij}}{2\pi}} e^{-\frac{b_{ij}}{2}(\bar{x}_i - \bar{x}_j)^2}, \quad (30a)$$

$$\gamma_{ij} = c_i U_i U_j N_j b_{ij} \left(1 - b_{ij} (\bar{x}_i - \bar{x}_j)^2 \right) \sqrt{\frac{b_{ij}}{2\pi}} e^{-\frac{b_{ij}}{2}(\bar{x}_i - \bar{x}_j)^2}, \quad i \neq j, \quad (30b)$$

$$\gamma_{ii} = 2c_i N_i U_i^2 b_{ii} \sqrt{\frac{b_{ii}}{2\pi}}, \quad i = j. \quad (30c)$$

550 With these expressions, the dynamics of mean trait and additive genetic variance simplify to

$$\frac{d\bar{x}_i}{dt} = G_i \left(a_i(\theta_i - \bar{x}_i) + \sum_{j=1}^S \beta_{ij} \right) + \sqrt{V_i \frac{G_i}{N_i}} \frac{dW_{\bar{x}_i}}{dt}, \quad (31a)$$

$$\frac{dG_i}{dt} = \mu_i + G_i^2 \left(-a_i + \sum_{j=1}^S \gamma_{ij} \right) - V_i \frac{G_i}{N_i} + G_i \sqrt{\frac{2V_i}{N_i}} \frac{dW_{G_i}}{dt}. \quad (31b)$$

552 *High-Richness Approximation.* We now make use of the expressions derived
 554 for competition coefficients and selection gradients to investigate their relationship.
 556 As a first pass, we assume the niche-breadths w_i and intraspecific variances σ_i^2 are equivalent across species so that the sensitivity parameters
 558 $b_{ij} = 1/(w_i + w_j + \sigma_i^2 + \sigma_j^2) = b$ are constant across interacting pairs of species.
 560 We also assume abundances N_i , niche-use parameters U_i , strengths of competition c_i and mean traits \bar{x}_i are distributed independently of each other with respective means and variances denoted by \bar{N} , V_N , \bar{U} , V_U , \bar{c} , V_c , \bar{x} , $V_{\bar{x}}$. We further assume that richness S is large and the distribution of mean trait values is approximately normal.

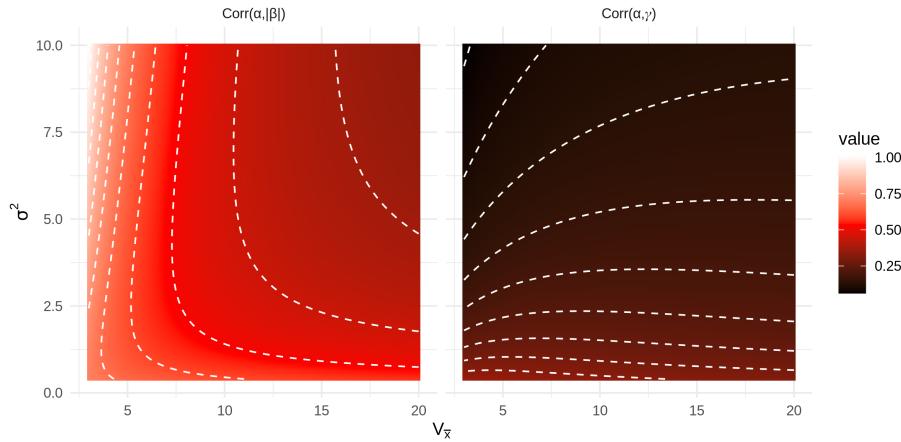


Figure 2: Heatmaps of the correlation between the magnitude of linear selection gradients and competition coefficients (left) and between stabilizing selection gradients and competition coefficients (right) as functions of community-wide variance of mean trait values $V_{\bar{x}}$ and intraspecific trait variances σ^2 . In both plots we set $w = 1.0$, $\bar{c} = 1.0 \times 10^{-7}$, $V_c = 0.0$, $\bar{U} = 1.0$, $V_U = 0.0$, $\bar{N} = 1.0 \times 10^5$, and $V_N = 100.0$.

562 Under these assumptions we obtained analytical approximations for the
 564 correlations between specific competition coefficients α_{ij} and selection gradients β_{ij} , γ_{ij} . These calculations are provided in SM §7.3. In particular,

566 we found linear selection gradients are not associated with competition co-
567 efficients ($\text{Corr}(\alpha, \beta) \approx 0$). However, we did find a non-trivial relationship
568 between the magnitudes of linear selection gradients and competition coeffi-
569 cients ($\text{Corr}(\alpha, |\beta|) \neq 0$) and also between quadratic selection gradients and
570 competition coefficients ($\text{Corr}(\alpha, \gamma) \neq 0$). Their expressions can be found in
SM §7.3.

572 To understand if associations between competition coefficients and selec-
573 tion gradients tend to be positive or negative, we visualized these rela-
574 tionships in Figure 2. We fixed $w, \bar{c}, V_c, \bar{U}, V_U, \bar{N}$ and V_N and allowed the amounts
575 of intraspecific trait variance σ^2 and interspecific trait variance $V_{\bar{x}}$ to vary. We
576 found, for biologically realistic areas of parameter space, absolute values of
577 linear selection gradients and quadratic selection gradients tend to be posi-
578 tively associated with competition coefficients. Hence, if we know of compet-
579 ing species that strongly effect each others abundances then we can guess they
580 also impose directional and diversifying selection on one another. However,
based on this information alone, we cannot guess at the direction of selection.

4. Conclusion

582 We have introduced a novel approach to derive eco-evolutionary mod-
583 els using the calculus of white noise and diffusion-limits of measure-valued
584 branching processes (MVBP) and coined SAGA, a SPDE model of phenotypic
585 evolution that accounts for demographic stochasticity. From SAGA we de-
586 rived SDE that track the dynamics of abundance, mean trait and additive
587 genetic variance. Observing the expressions of these SDE, we find the ef-
588 fects of demographic stochasticity on the evolution of mean trait and additive
589 genetic variance characterize the effects of random genetic drift. Although
590 Lande (1976) has previously characterized the effects of random genetic drift
591 on mean trait evolution in quantitative genetic models, the approach taken
592 assumed constant effective population size and discrete non-overlapping gen-
593 erations. In contrast, our approach shows random genetic drift is a result
594 of demographic stochasticity for continuously reproducing populations with
fluctuating abundances.

596 To illustrate the relevance of our approach to studies of evolutionary ecol-
597 ogy, we combined our SDE with classical competition theory to derive a model
598 of diffuse coevolution. We then used this model to investigate the relationship
599 between standardized selection gradients and competition coefficients. We
600 found absolute values of linear selection gradients and raw values of quadratic
601 selection gradients are positively related with competition coefficients. In the
602 process, we derived expressions for competition coefficients and components
603 of selection gradients due to pairwise interactions as functions of niche-use
604 parameters (niche breadth, total use and mean and variance of niche loca-
tion), strength of competitive interactions and abundance.

606 Although the framework outlined here holds great potential for develop-
607 ing a synthetic theory of coevolving ecological communities, there are two
608 technical gaps in the mathematical foundations of our approach. Firstly, we

were unable to derive formal conditions under which trait means and variances remain finite for finite time. However, a result due to Evans and Perkins (1994) shows that the diffusion-limit for a pair of interacting MVBP following our simple niche-based treatment of competition exist when growth rates, as functions of trait values and abundances, are bounded above. This result can be easily extended to finite sets of competing species and therefore formally establishes the existence of abundances as diffusion processes. Further work is needed to determine the conditions under which trait means and variances exist as diffusion processes. The models studied here provide likely sufficient conditions. In particular, since diffusive mutation does not lead to “heavy-tailed” phenotypic distributions, we expect the mean trait and trait variance to remain finite so long as total abundance is positive, given finite initial values for trait mean and variance. That is, since we have not included any processes that would cause blow-up either in mean trait or trait variance, we expect solutions of the SDE (13) to exist for all finite time t such that $N(t) > 0$ when $|\bar{x}(0)|, \sigma^2(0) < +\infty$. This assumption appears especially well-founded under quadratic stabilizing selection. Since fitness indefinitely decreases as individual trait value becomes indefinitely large (see equation (22)), the diversifying effects of mutation and competition will eventually be overwhelmed by stabilizing selection. Hence quadratic stabilizing selection prevents the abundance densities of populations from venturing indefinitely far from their phenotypic optima.

Secondly, although SDE derived under the assumption of normally distributed phenotypes provide particularly useful formula by replacing covariances between phenotype and fitness with fitness gradients, this assumption is mathematically rigorous only under deterministic dynamics and when the growth rate is a linear or concave-down quadratic function of trait value. However, following our derivation based on classical competition theory, we found the associated growth rate is highly non-linear. While this extreme non-linearity is mathematically inconvenient, it also captures important biological details and thus allows for a more realistic model of community dynamics. In spite of this inconsistency in our model formulation, we found resulting dynamics under the assumption of normally distributed trait values retained well-founded biological intuition. Furthermore, previous work in the field of theoretical quantitative genetics has demonstrated the assumption of normally distributed trait values is robust to fitness functions that select for non-normal trait distributions when inheritance is given a more realistic treatment and when populations reproduce sexually (Turelli and Barton, 1994, Barton et al., 2017). Hence, future work is needed to extend our approach to account for sexual reproduction, more realistic models of inheritance and to investigate the community-level consequences of non-normally distributed trait values.

Overall, this work demonstrates that connecting contemporary theoretical approaches of evolutionary ecology with some fundamental results in the theory of measure-valued branching processes and their diffusion-limits allows for the development of a rigorous, yet flexible approach to synthesizing the dynamics of abundance and distribution of quantitative characters. In particu-

656 lar, equations (13a) and (17) provide a fundamental set of equations for deriv-
656 ing stochastic eco-evolutionary models involving quantitative traits. However,
658 these equations require an expression for growth rates associated with each
660 trait value. Conveniently, equation (SM.34) in SM §3.1 provides a means to
662 derive such growth rates from individual based models. Taken together, these
664 results provide a means to derive analytically tractable dynamics from mecha-
666 nistic formulations of fitness as a function of phenotype. The derivation of our
model of diffuse coevolution, located in SM §6, demonstrates how to derive
eco-evolutionary models involving a set of interacting species from biological
first principles. Hence, this work provides a novel set of mathematical tools
and a tutorial for their use in theoretical studies of evolutionary ecology and
therefore paves the way for future work that provides a holistic theoretical
treatment of coevolving ecological communities.

668 **References**

N. Barton, A. Etheridge, and A. Véber. The infinitesimal model: Definition, 670 derivation, and implications. *Theoretical Population Biology*, 118:50–73, Dec. 2017.

672 W. L. Brown and E. O. Wilson. Character displacement. *Systematic Zoology*, 5(2):49, June 1956.

674 M. G. Bulmer. The effect of selection on genetic variability. *The American Naturalist*, 105(943):201–211, May 1971.

676 R. Bürger. On the maintenance of genetic variation: global analysis of kimura's continuum-of-alleles model. *Journal of Mathematical Biology*, 24(3):341–351, 678 1986.

R. Bürger. *The Mathematical Theory of Selection, Recombination, and Mutation*. Wiley, 2000.

680 R. S. Cantrell and C. Cosner. *Spatial Ecology via Reaction-Diffusion Equations*. Wiley, Jan. 2004.

682 N. Champagnat, R. Ferrière, and S. Méléard. Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models. *Theoretical Population Biology*, 69(3):297–321, May 2006.

684 P. Chesson. Mechanisms of maintenance of species diversity. *Annual Review of Ecology and Systematics*, 31(1):343–366, Nov. 2000.

686 J. F. Crow and M. Kimura. *An Introduction to Population Genetics Theory*. The Blackburn Press, 1970.

688 G. Da Prato and J. Zabczyk. *Stochastic Equations in Infinite Dimensions*. Cambridge University Press, 2014.

690 D. A. Dawson. Measure-valued markov processes. In *École d'été de Probabilités de Saint-Flour XXI-1991*, pages 1–260. Springer, 1993.

692 C. S. de Andreatzzi, J. Astegiano, and P. R. Guimarães. Coevolution by different functional mechanisms modulates the structure and dynamics of antagonistic and mutualistic networks. *Oikos*, 129(2):224–237, Nov. 2019.

694 U. Dieckmann and R. Law. The dynamical theory of coevolution: a derivation from stochastic ecological processes. *Journal of Mathematical Biology*, 34 (5-6):579–612, May 1996.

696 700 M. Doebeli. Quantitative genetics and population dynamics. *Evolution*, 50(2): 532–546, Apr. 1996.

702 M. Eigen and P. Schuster. *The Hypercycle: A Principle of Natural Self-Organization*. Springer Berlin Heidelberg, 1979.

704 704 M. Eigen, J. McCaskill, and P. Schuster. Molecular quasi-species. *The Journal of Physical Chemistry*, 92(24):6881–6891, Dec. 1988.

706 706 A. M. Etheridge. *An Introduction to Superprocesses*. American Mathematical Society, aug 2000.

708 708 L. C. Evans. *Partial Differential Equations: Second Edition*. American Mathematical Society, 2010.

710 710 L. C. Evans. *An Introduction to Stochastic Differential Equations*. American Mathematical Society, 2014.

712 712 S. N. Evans and E. A. Perkins. Measure-valued branching diffusions with singular interactions. *Canadian Journal of Mathematics*, 46(1):120–168, Feb. 1994.

714 714 R. A. Fisher. XV.—the correlation between relatives on the supposition of mendelian inheritance. *Transactions of the Royal Society of Edinburgh*, 52 (2):399–433, 1919.

716 716 R. A. Fisher. XXI.—on the dominance ratio. *Proceedings of the Royal Society of Edinburgh*, 42:321–341, 1923.

718 718 S. A. Frank. Natural selection. IV. the price equation*. *Journal of Evolutionary Biology*, 25(6) : 1002 – – 1019, 2012.

720 720 R. Gomulkiewicz, S. M. Krone, and C. H. Remien. Evolution and the duration of a doomed population. *Evolutionary Applications*, 10(5):471–484, Mar. 2017.

722 722 P. R. Guimarães, M. M. Pires, P. Jordano, J. Bascompte, and J. N. Thompson. Indirect effects drive coevolution in mutualistic networks. *Nature*, 550 (7677):511–514, Oct. 2017.

724 724 J. Hofbauer and K. Sigmund. *Evolutionary Games and Population Dynamics*. Cambridge University Press, May 1998.

726 726 T. Johnson and N. Barton. Theoretical models of selection and mutation on quantitative traits. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 360(1459):1411–1425, July 2005.

728 728 M. Kimmel and D. E. Axelrod. *Branching Processes in Biology*. Springer New York, 2015.

730 730 M. Kimura. A stochastic model concerning the maintenance of genetic variability in quantitative characters. *Proceedings of the National Academy of Sciences*, 54(3):731–736, 1965.

732 732 M. Kimura and J. F. Crow. Effect of overall phenotypic selection on genetic change at individual loci. *Proceedings of the National Academy of Sciences*, 75(12):6168–6171, 1978.

740 N. Konno and T. Shiga. Stochastic partial differential equations for some
measure-valued diffusions. *Probability Theory and Related Fields*, 79(2):
201–225, 1988.

742 R. Lande. The maintenance of genetic variability by mutation in a polygenic
character with linked loci. *Genetical Research*, 26(3):221–235, Dec. 1975.

744 R. Lande. Natural selection and random genetic drift in phenotypic evolution.
Evolution, 30(2):314–334, 1976.

746 R. Lande. The Genetic Covariance between Characters Maintained by
Pleiotropic Mutations. *Genetics*, 94(1):203–215, 1980.

748 R. Lande. A quantitative genetic theory of life history evolution. *Ecology*, 63
(3):607–615, June 1982.

750 R. Lande and S. J. Arnold. The measurement of selection on correlated char-
acters. *Evolution*, 37(6):1210, Nov. 1983.

752 R. Lande, S. Engen, and B.-E. Sæther. An evolutionary maximum principle
for density-dependent population dynamics in a fluctuating environment.
754 *Philosophical Transactions of the Royal Society B: Biological Sciences*, 364
(1523):1511–1518, June 2009.

756 R. Levins. *Evolution in Changing Environments: Some Theoretical
Explorations. (MPB-2) (Monographs in Population Biology)*. Princeton Uni-
758 versity Press, 1968.

760 Z.-H. Li. Absolute continuity of measure branching processes with interaction.
Chinese Journal of Applied Probability and Statistics, 14:231–242, 1998.

762 S. Lion. Theoretical approaches in evolutionary ecology: Environmental feed-
back as a unifying perspective. *The American Naturalist*, 191(1):21–44, 2018.

764 R. H. MacArthur. Species Packing, and what Competition Minimizes.
Proceedings of the National Academy of Sciences, 64(4):1369–1371, 1969.

766 R. H. MacArthur. Species packing and competitive equilibrium for many
species. *Theoretical Population Biology*, 1(1):1–11, 1970.

768 R. H. MacArthur. *Geographical Ecology*. Princeton University Press, 1972.

770 R. H. MacArthur and R. Levins. The limiting similarity, convergence, and
divergence of coexisting species. *The American Naturalist*, 101(921):377–
385, 1967.

772 L. P. Medeiros, G. Garcia, J. N. Thompson, and P. R. Guimarães. The geo-
graphic mosaic of coevolution in mutualistic networks. *Proceedings of the
National Academy of Sciences*, 115(47):12017–12022, Nov. 2018.

774 J. A. Metz, S. A. Geritz, G. Meszéna, F. J. Jacobs, and J. S. Van Heerwaarden. Adaptive dynamics: a geometrical study of the consequences of nearly
776 faithful reproduction. 1996.

778 M. A. Nowak. *Evolutionary Dynamics: Exploring the Equations of Life*. Belknap Press, 2006.

780 K. M. Page and M. A. Nowak. Unifying evolutionary dynamics. *Journal of Theoretical Biology*, 219(1):93–98, 2002.

782 T. L. Parsons, C. Quince, and J. B. Plotkin. Some consequences of demographic stochasticity in population genetics. *Genetics*, 185(4):1345–1354, May 2010.

784 G. R. Price. Selection and covariance. *Nature*, 227(5257):520–521, 1970.

786 D. C. Queller. Fundamental theorems of evolution. *The American Naturalist*, 189(4):345–353, 2017.

788 M. Reimers. One dimensional stochastic partial differential equations and the branching measure diffusion. *Probability Theory and Related Fields*, 81(3):319–340, 1989.

790 A. Robertson. A mathematical model of the culling process in dairy cattle. *Animal Science*, 8(1):95–108, 1966.

792 J. Roughgarden. *Theory of population genetics and evolutionary ecology: An introduction*. Macmillan, 1979.

794 P. Schuster and K. Sigmund. Replicator dynamics. *Journal of Theoretical Biology*, 100(3):533–538, 1983.

796 J. R. Stinchcombe, Function-valued Traits Working Group, and M. Kirkpatrick. Genetics and evolution of function-valued traits: understanding environmentally responsive phenotypes. *Trends in Ecology & Evolution*, 27(11):637–647, Nov. 2012.

800 P. D. Taylor and L. B. Jonker. Evolutionary stable strategies and game dynamics. *Mathematical Biosciences*, 40(1-2):145–156, 1978.

802 M. Turelli. Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. *Theoretical Population Biology*, 25(2):138–193, 1984.

804 M. Turelli. Gaussian versus non-gaussian genetic analyses of polygenic mutation-selection balance. In *Evolutionary Processes and Theory*, pages 607–628. Academic Press, 1986.

806 M. Turelli. Commentary: Fisher's infinitesimal model: A story for the ages. *Theoretical Population Biology*, 118:46–49, Dec. 2017.

810 M. Turelli and N. Barton. Genetic and statistical analyses of strong selection
on polygenic traits: what, me normal? Genetics, 138(3):913–941, 1994.

812 B. Walsh and M. Lynch. Evolution and Selection of Quantitative Traits. Oxford
University Press, 2018.

814 S. Wright. Evolution in mendelian populations. Genetics, 16(2):97–159, 1931.
ISSN 0016-6731.

816 S. Zheng. Nonlinear evolution equations. Chapman & Hall/CRC Press, Boca
Raton, Fla, 2004.