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Residence Time Analysis of RNA Polymerase Transcription
Dynamics: A Bayesian Sticky HMM Approach

Zeliha Kilic!, loannis Sgouralis! and Steve Pressé? * T

ABSTRACT

The time spent by a single RNA polymerase (RNAP)
at specific locations along the DNA, termed “residence
time”, reports on the initiation, elongation and termination
stages of transcription. At the single molecule level, this
information can be obtained from dual ultra-stable optical
trapping experiments, revealing a transcriptional elongation
of RNAP interspersed with residence times of variable
duration. Successfully discriminating between long and short
residence times was used by previous approaches to learn
about RNAP's transcription elongation dynamics. Here, we
propose an approach based on the Bayesian sticky hidden
Markov models that treats all residence times, for an E. Coli
RNAP, on an equal footing without a priori discriminating
between long and short residence times. In addition, our
method has two additional advantages, we provide: full
distributions around key point statistics; and directly treat
the sequence-dependence of RNAP’s elongation rate.

By applying our approach to experimental data, we find:
no emergent separation between long and short residence
times warranted by the data; force dependent average
residence time transcription elongation dynamics; limited
effects of GreB on average backtracking durations and
counts; and a slight drop in the average residence time as a
function of applied force in RNaseA's presence.

STATEMENT OF SIGNIFICANCE

Much of what we know about RNA Polymerase, and
its associated transcription factors, relies on successfully
discriminating between what are believed to be short and
long residence times in the data. This is achieved by applying
pause-detection algorithms to trace analysis. Here we propose
a new method relying on Bayesian sticky hidden Markov
models to interpret time traces provided by dual optical
trapping experiments associated with transcription elongation
of RNAP. Our method does not discriminate between short and
long residence times from the offset in the analysis. It allows
for DNA site-dependent transition probabilities of RNAP to
neighboring sites (thereby accounting for chemical variability
in site to site transitions) and does not demand any time trace
pre-processing (such as denoising).

INTRODUCTION

The last two decades have seen a surge in single molecule
experiments that probe transcriptional dynamics by a number
of methods (1-19) including optical force trapping (12, 20—
29).

Optical force trapping of single molecules has provided a
unique window into the transcriptional dynamics of individual
RNAP molecules (30). However, insight drawn from such
experiments are highly sensitive to analysis methods of the
time traces generated by optical force trapping.

Insights on RNAP transcription include (25, 30, 31): 1) the
sequence-dependence of long residence time events (21, 22,
24, 25); 2) the heterogeneity in residence time statistics across
RNAP molecules (21, 22, 25); 3) the role of transcription
elongation factors such as GreA, GreB, NusG on residence
time (20, 22); 4) the role of interactions between the nascent
RNA chain and the RNAP molecule and its possible role in
the subtle change in residence time statistics as a function of
transcriptional duration (20-22, 24, 25); and 5) the possibility
of off RNAP pathways resulting in long (trapped) residence
times (20-22, 24).

These insights are drawn from time series analysis. The
analysis is inherently difficult because of intrinsic noise in
time traces obtained from optical trapping arising mainly from
thermal fluctuations (30) and extrinsic noise arising mainly
from measurement errors (32-35). To facilitate the analysis,
experimental time traces are often treated using pause-
detection algorithms (20-25) to draw insight on RNAP’s
transcriptional residence time dynamics (20, 21, 23-25).
These algorithms involve extensive pre-processing such as
downsampling and denoising of the data. Subsequently, the
user must pre-specify a duration threshold to discriminate
between different types of residence time (such as short
residences and longer residences) (20, 21, 23, 25). As it is
well known, such methods may eliminate fast transitions and
introduce artificial states in the experimental time traces (34,
36-39). What is more, in these two-stage methods: 1) the
denoising is not achieved simultaneously, and thus self-
consistently, alongside the determination of the residence
time kinetics; and 2) the physics dictating the noise’s
origin, and thus the nature of the noise statistics, is not
exploited in the analysis. Thus noise fluctuations anticipated
by physical considerations may be misinterpreted as kinetic
transitions of the underlying molecule and affect residence
time duration estimates. These reasons are chiefly why hidden
Markov models (HMMs) have become the workhorse of
Biophysics time series analysis in the first place, for example
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in smFRET (35, 39) and in force spectroscopy (25, 32—
34). HMMs have been used in the analysis of optical
trapping experiments as they pertain to transcription residence
time dynamics; however, in the application of plain HMMs
thresholds are often still invoked to discriminate long from
short pauses (20-22, 24, 25, 40). Furthermore, plain HMMs
assume that the kinetics of RNAP remain homogeneous
in space (36-39). A variant of the plain HMM was
proposed to find the step distribution of RNAP based on
the prescribed residence time distributions (uniform, gamma
or exponential distributions) from the analysis of optical
trapping experiments (40). This proposed method requires
data downsampling and also requires the data to be split into
smaller segments for faster convergence of the method (40).
Additionally, implementing the method in (40) requires that
backtracked motion be removed from the analyzed data for
applied forces above a threshold 15 pN due to rarely occuring
backtracking events. Similarly, estimating the step distribution
of RNAP based on maximum likelihood approaches was
previously carried out for magnetic tweezer experiments (41,
42). This maximum likelihood approach also requires pre-
processing of the acquired data from magnetic tweezer
experiments. Furthermore, this method appearing in (41, 42)
is limited to point estimates for the step distribution rather
than providing full step distributions. Recently, a slightly
different optimization approach was presented in (24) for the
data analysis of optical trapping experiments. This approach is
based on estimating the crossing times of a set of nucleotides
(pausing sites) on the transcribed DNA template. While this
new method in (24) is not a pause detection algorithm, it relies
on investigating residence time distribution of RNAP based on
crossing time distributions. This method in (24) is still subject
to heavy data pre-processing prior to the analysis.

What we need instead is a method of analysis that
has the following features: 1) can achieve everything
the HMM already can (namely exploit noise statistics
rigorously in learning transition probabilities); 2) captures
the inhomogeneity in space of the transition kinetics (i.e.,
transition probabilities) of RNAP from base pair (bp) to bp as
it evolves in time and avoids thresholds to separate short from
long residence time in the analysis; 3) provides not only error
bars but also full distributions over all point statistics (such as
average residence time or average backtrack durations).

Here, we propose a novel method that satisfies all three
criteria above for the analysis of time traces generated by
single molecule dual optical trap experiment as illustrated
in Figure 1. We leverage the strengths of HMMs to capture
spatially inhomogeneous kinetics. Additionally, as transition
probabilities are anticipated to be heterogeneous in space,
we consider a generalization of the HMM termed the sticky
HMM (43, 44) that achieves point 2 above. This allows
to avoid over-interpreting noise in the experimental data
from the inherently heterogeneous kinetics where transition
probabilities vary depending on the transcribed bps. Finally,
we leverage the strength of Bayesian methods (which yield
full distributions over unknowns) to achieve point 3 above.

MATERIALS AND METHODS

In this study, we consider the conventional dual optical
trap setup (20, 22, 24, 27). Precisely, in the experimental

setup, a DNA template is attached to one optically trapped
bead while RNAP is attached to the other bead (22, 24).
Before the onset of the measurements, the two beads
approach each other and subsequently RNAP attaches to
the DNA template (22, 24). Upon this attachment, during
the measurements, RNAP moves along the DNA template
while it produces the transcribed RNA (20, 24). The motion
of RNAP along the DNA template is represented in the
measurements by the change of the distance between the
beads (27). Depending on the force geometry employed in the
experiment during the measurements, the measured extension
may decrease (opposing force geometry) or increase (assisting
force geometry) (24). The setup in Figure 1 illustrates the case
when the experiment is carried out under the assisting force
geometry. All experimental data here are described in (24).
Below, we present our model and the method we developed
for the analysis of the measurements.

Model description

Here we describe the mathematical formulation of our
method. We begin with the overall input that consists of
the measured extension x=(z1,22,23,...,£n) where xp
indicates the extension, associated with the translocation of
RNAP, measured at equidistant time levels that we label ¢,
forn=1,2,...,N; see Figures 1 and 2.

We begin by defining s,, which is the bp on the DNA
template occupied at time level ¢,,. Base pairs run from 1 (the
begining bp) to the end of the transcribed region which is M
(end bp). Naively, the average extension associated with this
location is s, A where A is a conversion factor from nm to bp
(0.33 nm/bp) (45).

As we avoid any pre-processing, the initial extension, x1
onwards (typically the first few thousand of a total of tens to
hundreds of thousands of data points), is set by the distance
between the beads called the offset denoted by [*. Thus the
average T, for any n, is {* 4+, .

In the presence of measurement noise, the recorded
extension z, is stochastic and sampled from

1
zpn ~Normal <l*+l5n,7_> 1

forn=1,2,...,N. Here 7 is called precision and it has units of
1 /nm2. Equation (1) should read as follows “z,, is sampled
from a normal (Gaussian) distribution with mean {*+[;, and
variance %”.

In the presence of intrinsic noise (arising from the
variability in bp jump size of RNAP depending on the bp
DNA sequence and local environment), the extension, /g, is
also stochastic and sampled from

1
ls,, ~Normal (sn)\,> 2)
Terr

where 1/7¢,, is again a variance with units of nm2.

Finally, the progression of RNAP from bp to bp, is governed
by the Markovian assumption. Put differently, the probability
of visiting the location s, (termed a “state” in the language
of HMMs) at time level ¢,, is determined exclusively by the
state s,,—1 occupied at the very previous time. In statistical
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Figure 1. Schematic of a dual optical trap and the data generated. On panel (a), we have an illustration of an dual optical trap experiment. It shows RNAP
actively transcribing a DNA template. Experimentally, in the dual optical trap setup, an assisting force (F > 0 in the arrow direction labeled with 1) may be applied
to the bottom bead while the top bead is fixed in space. By “assisting” we mean that the force is applied in the same direction as the transcription of RNAP and
producing an extension in the arrow direction labeled with 2. Opposing forces (where F < 0) are also possible. For each location change (translocation) of RNAP
there is an extension measurement. This measurement gives rise to the signal on panel (b) that represents the extension between the two beads. Panel (b) contains
a simulated extension time trace. In the panel (c) we are showing the regions defined with dashed green lines in panel (b). In panel (b) and (c) we also show
the simulated true extension (in the absence of noise) between the optically trapped beads associated to RNAP’s progression (in magenta) as a function of time.
The equivalent noisy extension as a function of time (with realistically added noise as described later in Model Description section is shown by the cyan. In this
study our goal is, in part, to estimate the true extension (termed maximum a posteriori, or MAP, estimate) given this noise level under the added constraints that
transition probabilities are location-dependent (i.e., heterogeneous in space).

Position of RNAP
_)‘ Initial state attime t,
probability  Time—- ~ =

Transition

probabilities s L _,
- @
——

£ e
— Measured
Extensions Noise extgnsion at
parameter time t,

Figure 2. Graphical representation of the formulation used in the analysis of optical trap trajectories. By convention, quantities contained in gray circles
denote observations and those contained in blue circles demand prior distributions. Here, a Markov chain s, denotes the location of RNAP on the transcribed
DNA, the measurements are denoted by x,,. Measurements are directly affected by the locations of RNAP namely s, at time ¢,, and the measurement noise 7
and extensions [, for all n=0,1,...,N and m=1,2,..., M. RNAP dynamics at each location s, during the time course of an experiment are governed by the
transition probabilities 7y, for all m=0,1,2,..., M.
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notation, we write
sp~ Categorical (7?5%1 ) 3

where 75, , is the transition probability vector associated
with transitions out of s,,_1 including self-transitions (that is,
the probability of staying put).

In this setting, when we speak of the transition probability
vector associated with transitions out of the m" location, we
write 7,. The transition probability matrix, denoted by 7,
contains 7, as its row and is a matrix of size M x M that
encodes transitions from any location to any other location
including self transition. The size M coincides with the total
number of visited bp and by virtue of its value (as we have
different matrix elements from neighboring bp to neighboring
bp location) inherently imposes nonidentical transition matrix
elements across all bps.

Armed with the data, x, and the generative model that
incorporates both forward and backward steps, that we have
just described, our goal now is to infer from the data those
quantities that we care about. These include: RNAP locations
sp for n=1,--- N, extensions /s, for n=1,---,N associated
with locations sy, transition probabilities 7, for m=0,--- M
where 7y is the initial probability vector associated with
RNAP’s 15¢ location (namely sq).

Model Inference

To determine full distributions over the quantities listed above,
we follow the Bayesian paradigm. Other parameters not
included in the above list (such as 7e.r, {* and \) can be
also learned within the Bayesian paradigm. However, it is
computationally more efficient to calibrate these parameters
separately. For this reason, we set these parameters to known
physical values within our framework. Details regarding the
values of these parameters are provided in Supplementary
Notes 1 and 4. We place prior distributions for the parameters
Tm,50,ls,,7 for all n=1,2,...,N and m=0,1,...,M that we
wish to learn from the data. We discuss these priors below.

We start with 7, for all m=0,1,2,...,.M. To estimate
transition probabilities Ty, = (Ty—1,Tm—2,-» Tins M) WE
place a sticky Dirichlet prior on each of 7,,. This
prior is conjugate to the categorical distribution appearing
in Equation (3) and it reads as follows

7 ~ Dirichlet (€ ((1—p) B+ pdm)) @

where 3, is a collection of hyperparameters that play the
role of the base distribution (34), d,, is the Dirac delta
centered at m, ¢ is known as the sticky parameter and p
is the sticky proportion parameter. Larger p values promote
self-transitions. Next we define the structure of the base
distribution, ;.

We have two cases: the base distribution for the initial
fictitious state sg and that for all other states from 1,---, M.
For the first case, as we can start from any state from 1 through
M, the base distribution [ is

- 1 1 1
= —=,—,.,— . 5
ﬁo (M ) M’ ,M) ( )
For the second case, only self-transitions, or steps one bp
forward (for m=1,---,M —1) or backward (for m=2,---, M)

within one time level to two steps forward (form=1,--- ;M —
2) or backward (for m=3,---,M) within one time level are
allowed. The form for (8, for m=1,---,M is specified in
Supplementary Note 2.

Next we place a prior on sy which is sqg|7g~
Categorical(7y). The evolution of the subsequent states
is dictated by Equation (3). The prior on [, is dictated
by Equation (2) and its hyperparameter 7 is dictated by the

conjugate prior 7~ Gamma %,7]2—9) with hyperparameters

1 and 6. Details of the adopted distributions are provided
in Supplementary Note 4. Once the choices for the priors
given above are made, we form a joint posterior distribution
(32-35, 46, 47)
P(so.nsl1:0,7[%)
containing all unknown variables that we can learn. Due
to lack of an analytical form for the posterior distribution,
we developed a specialized computational scheme exploiting
Markov Chain Monte Carlo (MCMC) methods to generate
random samples from this distribution.

We explain the details of the implementation of our method
in Supplementary Notes 3 and 4. A graphical summary of the
entire formulation is shown in Figure 2.

RESULTS

In this section, we first validate our method by computing
posteriors over the unknown quantities (sg. 7, 7,01.07,7) using
simulated time traces, x, mimicking the properties of single-
molecule optical trap RNAP transcription experiments. We
later move onto results from time traces from control in
vitro experiments. The time required for the computations is
provided in Supplementary Note 4.3.

Demonstration and validation with simulated data

To demonstrate the robustness of our method, we simulate
optical-trap time traces assumed to be collected at 800 Hz for
50 s. This is commensurate with the number of data points
for the experiments we analyze. We simulate two cases: i)
low measurement noise (high 7), see Figure 3; and ii) high
measurement noise (low 7), see Figure 4. In Supplementary
Figure 4, we provide the power spectral density plots of the
analyzed time traces to show what the noise amplitudes are
for both analyzed low and high measurement noise cases.
The posteriors we obtain, in all our figures for the simulated
data Figures 3 to 6 are informed from the analysis of only
one time trace. To begin, in Figure 3 we simulate an optical
trap transcription extension time trace with low measurement
noise (1/7=0.25 nm?). The sample trace is shown in Figure 3
(a) where we zoom into a portion of panel (a) in panel
(b) and panel (c). We first determine the posterior over the
RNAP trajectories and, for illustrative purposes, show the
maximum a posteriori estimate trajectory in Figure 3 (a),
(b) and (c); Figure 5 shows the posterior over the average
residence residence time distribution. The average residence
time distribution in Figure 5 is obtained from the posterior
over the transition probabilities and this is described in detail
in Supplementary Note 4.

The breadth of the posterior (i.e., its variance) in Figures 3,
4 and 6 referenced above, reflects intrinsic noise levels such as
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thermal noise and the stochasticity in the elongation process. It
also reflects the fact that the data is finite. In other words, if we
had more data, the posterior would be sharpened but only up
to a point. It retains some width on account of the stochasticity
inherent to transcriptional elongation.

We briefly discuss in greater depth the MAP trajectory
estimate, Figures 3 and 4 (a), (b) and (c). From Figure 3 (a),
we see how closely the MAP estimate and the true simulated
trajectory are overlapping. These MAP estimates can be used
to extract residence time. We observe from the simulated
data analysis, MAP estimates provided by standard HMM
performs poorly in approximating residence time associated
with every bp as shown in panel (c) of Figure 6. Instead, our
method performs quite well in learning the correct residence
time given in panel (f) of Figure 6.

As we have access to the full posterior of trajectories,
we have also knowledge of the 95% confidence interval
associated with every step in that path. The confidence interval
is determined by the lower and upper limits of 95 percentile of
the sampled trajectories. This confidence interval is shown as
the green-white color curve of Figures 3 and 4 (c).

Next, we discuss the average residence time distribution
in Figure 5. Due to the Markovian dynamics for the location
transitions, the average residence time distribution associated
with every mth bp denoted by “I;,” is a function of self-
transition probabilities, 7;,—m, and the time between time
levels, At. That is,

At
Tm=

1—mm—m

(6)

Detailed information regarding the derivation of the formulae
for the average residence time distribution is provided
in Supplementary Note 4 and the notations are listed in
Supplementary Table 1.

Experimental data

Next, we apply our method to experimental time traces
obtained from dual ultra-stable optical traps (24). Within our
framework, we analyze individual time traces under different
experimental force geometries (assisting, opposing) as well
as in the absence and presence of different elongation factors
(GreB). Here, we consider 6 experimental setups. These are:
1) assisting force geometry with no addition of elongation
factors (Figures 7 and 10 to 12); 2) assisting force geometry in
the presence of GreB (Figures 10 to 12); 3) assisting force
geometry in the presence of RNaseA (Figures 10 to 12);
4) opposing force geometry with no addition of elongation
factors (Figures 8 and 10 to 12); 4) opposing force geometry
in the presence of GreB (Figures 10 to 12); 6) opposing force
geometry in the presence of RNaseA (Figures 10 to 12). In
this section we focus on the 15, 274 4th apd 5th experimental
setups.

A brief note on the types of DNA being transcribed is
noteworthy here. These DNA contain 8 repeats each with
identical sequence. However the length of nascent RNA is
different for each of these repeats due to the experimental
conditions including assisting and opposing geometries as
well as the addition of RNaseA and elongation factor
GreB (24). Next, the role of GreB is to rescue the backtracked

RNAP (48) while RNaseA is responsible for cleaving the
nascent chain (25).

There is no clear distinction between short and long
residence time

In Figure 7 (a) and Figure 8 (a), we show samples of analyzed
experimental time traces associated with 410 pN and —10 pN
forces. These help illustrate how the transitions between the
steps of the MAP trajectory and approximate MAP trajectory
look like with forces of the same magnitude but opposing
directions. We present the definition of the approximate MAP
trajectory in Supplementary Note 3.

While the MAP trajectory is shown in Figure 7 (a)
and Figure 8 (a), within the Bayesian framework, we obtain
the full posterior distribution over all variables in the model
and in Figure 7 (b) and Figure 8 (b) we provide the 95%
confidence intervals over the trajectories.

This posterior distribution allows us to obtain distributions
for residence times. To interpret the terminology provided by
the existing literature on the classification of the residence
times (20, 22, 24), in Figure 9, we superpose average
residence time histograms for 10 trajectories (obtained from
one experimental trace by resampling the posterior) and
corresponding double and single exponential fits to these
histograms.

We should note that the quality of the exponential fits
depends on how representative the chosen sampled trajectories
are. We showed the analyzed experimental time trace
in Figure 8. In Figure 8 panel (b), we zoomed in the analyzed
time trace and provided the 95% confidence interval along
with the MAP estimate. The sharp width of the posterior (as
suggested by the 95% confidence interval) suggests that the
majority of trajectories closely resemble the MAP estimate.
As can we sample multiple trajectories from the posterior,
perhaps surprisingly, we find that some histograms over
residence times are better fit by single and others by double
exponentials. This suggests that variations around the MAP
estimate may raise questions on the validity of single versus
multi-exponential fits (20-22). Next, we report our results for
the comparison of first 2 experimental setups along with the
4 and 5th experimental setups.

Average residence times are not appreciably affected by
the presence of GreB

We carried out our analysis for the experimental time
traces associated with RNAP transcription in the presence
of anti-backtracking (48) or elongation factor (24) GreB
(0.87uM) (24). We compare these results to the control
experimental setups where the elongation factor GreB is
absent. In our analysis, effects of GreB on transcriptional
residence time are investigated based on 3 quantities (1)
average residence time; 2) average backtracking duration; and
3) average backtracking counts. All these quantities were
analyzed in two ways: 1) evaluating them over the entire 8
DNA tandem repeat regions and 2) evaluating them over the
2-4, 4-6 and 6-8 repeat regions. The reason for this is to
determine the net effect of the length of the nascent chain on
each of the 3 quantities of interest.

We find that there is limited effect of GreB on the average
residence time over each of the DNA tandem repeat regions


https://doi.org/10.1101/2020.07.28.132373
http://creativecommons.org/licenses/by-nc-nd/4.0/

R e O &I O SRR 2 s o posted.

[0]

B et ey

ight holder for this preprint
%reprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

(a)

250 |
—_ 2 '
= 00
<
& 150 |
k%)
C
0]
% 100t
LLi
True traj.
50} ——— MAP est.
Data (800 Hz)
0 10 20 30 40 50
Time (s)
0.025 0.2625 0.5 0.7375 0.975

95% Conf. inter.

Extension (nm)

Extension (nm)

(b)

250 1
200 1
True traj.
150 = MAP est.
Data (800 Hz)
20 30 40 50
Time (s)
(c)
166 1 1
165 1 ! ' \ \
164 .

31.2 31.3

Time (s)

Figure 3. Simulated data analysis with low measurement noise 1/1/7=0.5 nm. In panel (a), simulated extension data in cyan is shown with parameters set
to values provided in Supplementary Notes 2 and 4. As this is simulated data, the ground truth trajectory, s1,---,s, is known and each s, corresponds to a
bp on DNA. Therefore we know the associated trajectory with this ground truth trajectory by simply multiplying it with the A=0.33 nm/bp. In the generative
model, we allow RNAP to take at most two steps at once. Therefore, in the trajectory we have some steps that are one or two times ~ 0.33 nm. This trajectory is
given in panels (a), (b) and (c) by the magenta line. Using our framework, we determine the MAP estimate for the trajectory, blue line, that closely overlaps with
the ground truth. For visual purposes we shifted the MAP estimate trajectory upward to avoid ambiguity in the comparison of trajectories. Panels (b) and (c) are
zoomed in versions of panel (a). Further analysis for the measurement noise estimates is provided in Supplementary Figure 3.

or the repeat sections as we show in Figure 10 (b) when we
compare it with the control experiment where GreB is absent,
that is Figure 10 (a).

The study in (20) investigates the effects of GreB on pausing
(short-long) events. These events are defined based on their
duration and this duration starts from the cessation of the
transcription elongation until RNAP recovers from it and starts
forward translocating. In (20), it is reported that GreB was
effective in reducing long pausing events that last longer
than their identified threshold 20 s. As we do not pickup
significant differences between short and long residence time,
we therefore do not note an effect of GreB at the 75%
confidence interval from panel (b) of Figure 10. Our result
regarding the limited effects of GreB is also consistent with
(22, 49).

In the next section we focus on and
experimental setups to investigate the effects of RNaseA on
average residence time.

1875’ 3T‘d’ 4th 6th

The effect of applied forces is abolished in the presence of
RNaseA

We further investigate the presence of RNaseA
(0.1 mg/ml) (24) on the average residence time dynamics of
RNAP with our framework.

Here, our objective is to investigate the relation between
the nascent chain and the average residence time dynamics

of RNAP. Thereby, we analyze experimental traces in the
presence and absence of RNaseA, namely in the absence and
presence of the nascent chain, respectively.

When we analyze the data with our framework, we find that
RNaseA reduces the variance in the average residence time
distribution over the repeat regions under the opposing applied
force under opposing force geometry as shown in Figure 10
(c).

As the absence of nascent chain (due to the presence of
RNaseA) leaded to the reduced effects of the opposing force
geometry on the averaged residence time of RNAP, we make
an analogy of “shoe-lace effect” for this contribution of the
nascent RNA over the RNAP residence time dynamics.

In the literature, there has been discussions on the
effects of nascent RNA on the residence time dynamics of
RNAP through its interaction with RNAP prior to RNAP’s
translocation (24) yet it remains unproven. Moreover, in (25,
30, 40), researchers investigated the effects of transcribed
DNA’s chemical composition on residence time of RNAP
based on the interaction of the nascent chain with RNAP.
They found that upon removal of the nascent chain, the
chemical composition effects of the transcribed DNA template
on residence time dynamics of RNAP disappears. Yet these
results rely on heavy data pre-processing to eliminate detected
backtracks as well as defining the short and long residence
times prior to the analysis (40).
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Figure 4. Simulated data analysis with high measurement noise 1//7~1.826 nm. As in Figure 3, we shifted the MAP estimate trajectory upward to avoid
ambiguity in the comparison of the MAP estimate and true trajectories. Other than the value of 7, all other parameters are the same as in Figure 3. In panel (a),
simulated extension data in cyan is shown with parameters set to values provided in Supplementary Notes 2 and 4. As this is simulated data, the ground truth
trajectory, s1,--+,S N, is known and each s, corresponds to a bp on DNA. Therefore we know the associated trajectory with this ground truth trajectory by simply
multiplying it with the A=0.33 nm/bp. This trajectory is given in panels (a), (b) and (c) by the magenta line. Using our framework, we determine the MAP
estimate for the trajectory, blue line, that closely overlaps with the ground truth. Panels (b) and (c) are zoomed in versions of panel (a). Further analysis for the

measurement noise estimates is provided in Supplementary Figure 2.

Next, we would like to investigate the role of GreB and the
nascent chain (therefore the absence or presence of RNaseA)
on the backtracking motion of RNAP.

To begin, in (22, 24, 48), researchers mentioned that GreB
is responsible for rescuing RNAP upon RNAP’s backtracking
as little as 2 bp. Additionally, in (24), they did not find a
direct communication between the role of nascent chain and
backtracking dynamics of RNAP from their analysis. Inspired
from these studies, here, we analyze the experimental time
traces in the presence of GreB (24) with our framework to
further investigate GreB’s effects on backtracking motion of
RNAP based on the average backtracking duration and counts.

We analyze the experimental traces (24) in the presence of
RNaseA to investigate the interplay between the backtracking
motion of RNAP and the role of nascent chain.

Thereby, in the next section, we look into all the
experimental setups as we listed previously especially we
will investigate the roles of RNaseA and GreB from
the perspective of two point estimates including average
backtracking duration and backtracking counts.

Average backtracking durations show little change in the
presence of GreB

In this section, we probed the effect of RNaseA
(0.1 mg/ml) (24) and GreB (0.87uM) (24) on the average
backtracking durations and counts.

First, we start with the analysis of the effect of RNaseA on
the average backtracking durations under both assisting and
opposing force geometries. Our results indicate that, as shown
in Figure 11, there is slight change in the average backtracking
durations in the presence and absence of RNaseA over the
repeat sections at the 75% confidence interval.

As in (24), our results suggest that this slight effect
of RNaseA namely, removal of the force dependence of
backtracking duration, is stronger for the opposing force
geometry case. This might be due to relatively lower
transcription rates of RNAP under the opposing force
geometry (22, 24). Therefore, there would be enough time for
the secondary structures to form from the nascent RNA (24,
25). This may be the reason of the nascent RNA’s enhanced
effect on the residence time of RNAP during its transcription
elongation under opposing force.

Next, we investigated how GreB affects backtracking
motion of RNAP by analyzing first, its effects on the average
backtracking duration and average backtracking counts.

Figure 11 shows that there is limited effect of GreB, namely
reduced average backtacking durations with 75% confidence.

This slight effect of GreB on the average backtracking
duration can be attributed to the less than sufficiently long
residence times recovered with our framework. In (20, 50),
it is mentioned that GreB rescues the RNAP from a location
after it spends long time (longer than 20 s) at that location. In
our framework, we have not observed residence times longer
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Figure 5. Analysis of average residence time distribution associated with
the MAP estimate for the simulated data with our framework for the
low measurement noise 1//7=0.5 (nm). The minimum residence time
is 0 and the maximum residence time is the end of the experiment. These
two extremes are shown in black as the bottom most and top most lines,
respectively. The ground truth for the average residence time is shown by the
lines in cyan at (1/(1—0.983))At,(1/(1—0.984))At,(1/(1—0.995))At
where At=1/800 s. We show the average residence time distribution for
the MAP estimate with blue dots for each bp. Namely, we used the MAP
estimate diagonal transition probabilities to calculate the average residence
time for each bp as given in Equation (6). The reason behind the discrepancy
between the exact value of the average residence times and its estimated
distribution is due to the size of the unknown parameter space and limited data
size. Although the model underestimates the exact distribution of the average
residence times for every visited bp, the true trajectory is within the 95%
confidence interval of the posterior distribution as we provided in Figure 3. All
of our average residence time analysis relies on the residence times extracted
from the MAP trajectories rather than the ones calculated from the transition
probabilities. We provided the exact same analysis for the high measurement
noise average residence time distribution associated with the MAP estimate
in Supplementary Figure 4.

than 20 s over all of the force geometries. We believe that
this might be the reason behind our observation regarding the
limited effect of GreB on the averege backtracking durations.
These findings are consistent with (20, 51).

Finally, we analyze how backtracking counts are correlating
with the applied forces (Figure 12) in the presence of
RNaseA and transcription elongation factor GreB. Our
analysis provides support on account of force dependence for
backtracking counts in experimental traces with no RNaseA
or GreB. Namely, it is expected to observe more backtracking
counts under opposing force geometry than the assisting force
geometry as explained in (50).

DISCUSSION

In this study, we developed a Bayesian approach to use
Markov models to systematically investigate transcription
elongation dynamics of E. Coli RNAP by analyzing

experimental time traces obtained from dual optical trap
assays. Our method has a number of unique features. First,
unlike other kinetic models (16, 52-54), our method does
not assume that transcription elongation dynamics of RNAP
consists of well separated short or long residence time events.
In addition, by contrast to earlier studies, we also allow
the transcriptional dynamics to vary based on the visited
locations by RNAP on the DNA template via location-
dependent transition probabilities. In our analysis, we treat
extensions [y, for m=1,2,...,M stochastically and assume
these are sampled from a distribution that depends on the
detected location s,, for n=1,2,...,N. As such, [, is treated
as a variable and learned in our Bayesian framework.

Typically, the way in which previous studies get good
statistics and error bars is by collecting many experimental
time traces (41, 42). Here, on the other hand within error
bars (as propagated from data uncertainty within the Bayesian
paradigm), we find a number of models all which could be
consistent with the data. The latter is true even as we increase
the amount of data analyze. In other words, this suggests
that within error many pause models could potentially be
consistent with data.

No discrimination between short and long residence times

We analyzed multiple experimental time traces under a variety
of applied forces with and without GreB and RNaseA. We
provide the list of analyzed time traces for every experimental
condition in Supplementary Figures 6-15. We demonstrated
the applied force dependence of various point statistics with
our framework including average residence times, average
backtrack durations and average backtrack counts over the
repeats even when we have the average with respect to
the corresponding DNA sequence of the analyzed traces.
We also demonstrated the average backtracking lengths in
Supplementary Figure 15. Contrary to existing literature, we
emphasize that we do not find posterior probabilities for
residence times appreciably longer than 1 s though we can still
infer small posterior probabilities for finding residence times
that are longer than 1 s. This is demonstrated from the analysis
illustrated in Figures 9 and 10.

Shoe-Lace effect of nascent RNA

Ultimately, we find that the effect of the elongation factor
GreB on the average residence time is quite limited. In the
past, the effect of GreB was investigated on the long pauses
where a pause means the interval starting with the cessation
of the elongation that lasts until the RNAP recovers from it
and starts forward translocating (20). Specifically, in (20), they
reported that GreB reduces the duration of long pauses that last
longer than 20 s. We speculate that because our framework did
not recover probable trajectories with long residence times, as
long as 20 s, we could not see GreB affecting the duration of
such undetected events.

On the other hand, in the presence of RNaseA (namely
when the nascent RNA is removed), the variance in the
average residence time distribution over the repeat regions
under the opposing applied force is reduced. We described
this finding with our analogy of the “shoe-lace effect” of
nascent RNA on the residence time dynamics of RNAP during
transcription.
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Figure 6. Analyzing the low noise regime data with a naive HMM and our framework. Here, simulated data is generated with measurement noise 1/+/7 =
0.5 nm. Simulated data shown in panel (a) in cyan is generated with parameters set to values M =49, [* =8 nm for total 30 s measurement time with the
transition probability matrix provided in Supplementary Note 2. As this is simulated data, the ground truth trajectory, s1,---,sn is known corresponding to the
transcribed bps on DNA. Therefore the associated extension can be readily calculated by multiplying this sequence s1,---,s by 0.33 nm/bp. This extension is
given by the magenta line. Using a plain HMM framework, we determine the MAP estimate for the trajectory, blue line, that overlaps poorly with the ground truth
as it grossly underestimates the residence time from the noisy signal. As in Figures 3 and 4, we shifted the MAP estimate trajectories upward for visual clarity
in the comparison of trajectories. In panel (c), we see the disagreement between the extracted residence time by the MAP estimates and ground truth residence
time given in panel (b). We now analyze the same simulated data with our framework shown in panels (d), (e) and (f) where panel (e) provides the true residence
information as in panel (b). In panel (d), we determine the MAP estimate for the trajectory given by the blue line, that overlaps very well with the ground truth.
Panel (f) shows the true residence time histogram in magenta color and the residence time provided by the MAP estimate from our framework in blue color. We

observe that the resulting MAP estimate from our framework performs quite well.

Previously, researchers in (22, 24, 25) found that the nascent
chain modulates the residence time of RNAP. In (40), it
was shown that the removal of the nascent RNA abolishes
the effects of the chemical composition of the transcribed
DNA on the residence time dynamics. Therefore our result,
regarding the nascent RNA’s effect on the residence time
dynamics of RNAP during transcription, aligns with the
existing literature (22, 24, 25, 40).

Presence of GreB has limited effects on average
backtracking durations

Now we turn to backtracking. The reason is, as mentioned
in (20, 22, 24, 30, 50), that backtracking can be considered
as a process that plays the role of proofreading in RNAP
transcription in addition to providing a mechanism for
transcription termination (50). Although it is believed that
the long residence times are providing enough time for
the transcription activities to be regulated (24, 25, 30),
backtracking plays a role in helping elongation factor (GreB)
to enforce RNAP for controlling its accuracy in transcription
and translocation (50).

Interestingly, what we find from our backtracking analysis
is that there is limited effect of GreB on average backtracking
durations over the repeat regions that is more apparent under

—10 pN force than the assisting forces with 75% confidence.
Indeed, backtracking is known to be favored under the
opposing force geometry in the literature (50). Therefore,
GreB facilitates protruding RNA 3’-end cleavage and thus
rescues RNAP from longer backtracking durations (24,
50, 55). This leads RNA 3’-end to align well with the
RNAP active site again. Hence, we observe reduced average
backtracking durations as soon as GreB acts on RNAP during
its transcription elongation.

Similarly, based on our analysis of the experimental time
traces in the presence and absence of RNaseA, nascent
RNA did not appear to have any effect in backtracking
durations. However, the average number of backtracking
counts turned out to be reduced in the absence of the
nascent RNA. This suggests that, as the nascent RNA gets
longer it is more likely for the nascent RNA to interact with
the RNAP before it translocates (24). This might give rise
to higher number of backtracks for RNAP to manage its
accuracy in transcription (50). Therefore the average number
of backtracks become higher in the presence of the nascent
RNA.
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Figure 7. Analysis of +10 pN experimental trace with our framework in the absence of GreB and RNaseA. In panel (b) of this figure we zoomed in a

small region of one of the analyzed traces for 410 pN shown in panel (a) and

we superpose the MAP trajectory as well as the approximate MAP trajectory on the

experimental trace. Here the approximate MAP trajectory stands for the trajectory that is closest to the MAP trajectory with respect to /2- norm. Further zoomed
experimental trace, MAP trajectory and the approximate MAP trajectory are provided in panel (c). Details of this approximate MAP trajectory is provided in
Supplementary Note 3. As it was mentioned earlier in Figures 3 and 4, here we shifted the approximate MAP trajectory upward for visual reasons.

CONCLUSION

We have used an approach based on the Bayesian sticky
HMMs to interpret time traces obtained from dual optical
trapping experiments associated with RNAP’s transcription
elongation. Our approach enabled us to analyze these time
traces for RNAP’s transcription elongation without denoising
them. Upon the analysis of time traces with our approach, we
estimated the trajectories of RNAP with the MAP trajectory
estimate. We used MAP trajectory estimates to learn RNAP’s
transcription elongation dynamics. In doing so, we calculated
various point statistics from the MAP trajectory estimate
including: average residence time, average backtracking
duration and average backtracking counts. According to the
analysis of these point statistics, our approach revealed the
following: 1) there is no clear separation between short and
long residence times; 2) the presence of RNaseA reduces the
variance of average residence time distribution. Therefore, this
result suggests that nascent RNA affects the average residence
time dynamics of RNAP. We term the effect of the nascent
RNA on RNAP the “shoe-lace effect”; 3) the presence of GreB
has limited effects on the average residence time and average
backtracking duration.

SUPPLEMENTARY INFORMATION

Supplementary information, source code and GUI versions
(see Supplementary Note 1 and Supplementary Figure 1) of
the methods developed are provided seperately.
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Figure 8. Analysis of —10 pN experimental trace with our framework in the absence of GreB and RNaseA. Here, we show an analyzed trace under —10 pN
force. Other than the analyzed experimental time trace all the explanation about the panels in the figure is the same as in Figure 7. The approximate MAP trajectory

is shifted upward for visual reasons.
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Figure 9. Double exponential dwell time distributions fitted to multiple
sampled trajectories. Here we show the analysis regarding multiple sampled
trajectories besides the MAP estimate with our tool for one experimental
trace under —10 pN force in the absence of GreB or RNaseA. We combined
the residence times over all repeat regions for each randomly chosen 10
trajectory. This type of analysis of the residence times for each experimental
time trace is what we call as “collective residence time” abbreviated as “coll.
res. time”. In this figure, we show how the PDFs of collective residence time
for each trajectory are distributed. We should note that, double exponential
fits as good as the single exponential to these residence time PDFs. Therefore,
there is no clear distinction between short and long residence times for the
RNAP transcription dynamics based on how residence time PDFs are fit to
exponential distributions.
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Figure 10. Average residence time for the collective analyses of experimental traces under various experimental conditions. Here we focus on the average
residence time point statistic under different experimental conditions. Average residence time is calculated separately for all experimental conditions. In this
manuscript, we analyzed 5 experimental traces for 425 pN force geometry, 5 traces for +10 pN, 3 traces for —10 pN and 5 traces for —7 pN. In addition,
in the presence of GreB, 8 experimental traces under +10 pN, 6 traces for —10 pN and 7 traces for —7 pN force geometries were analyzed. Besides, in the
presence of RNaseA, we analyzed 5 experimental traces for 410 pN and 5 traces for —7 pN force geometry. We produced samples between 4000 — 13000 for
each analysis. There are 8 repeat regions for each analyzed trace. We emphasize that the analysis of the average residence time is not for single nucleotides but
for repeat regions that are engineered with 239 bps. We superposed the information for the same repeat regions for the analyzed multiple traces from the same
experimental conditions. The term “average” comes from the average of the superposed residence time information coming from multiple analyzed time traces
for each repeat region. We extracted the residence time information from the MAP estimate trajectory for each analyzed experimental time trace. In panel (a),
we show the analysis of the average residence time for RNAP transcription in the absence of elongation factors. Each green triangle corresponds to one of the 8
repeated region. In order to assess whether we observe different residence time across different repeats, where the sequence of translated RNA is the same but the
length of the nascent chain is different, we averaged repeats 2,3,4 and represented this average by the blue triangle that we labeled 1. We did the same for repeats
4,5,6 that we labeled with the blue triangle labeled 2 and 6,7,8 with a blue triangle labeled 3. We repeated this analysis in the presence of GreB in panel (b) and
RNaseA in panel (c) at concentrations of 0.87uM and 0.1mg/ml, respectively. We used 75% confidence interval obtained from all calculated residence time for
each repeat section. These confidence intervals are shown by green lines superposed on the point estimates associated with the repeat sections. The main results
of the figures above are discussed in Results.
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Figure 11. Average backtracking durations obtained by collective analyses of experimental traces under various experimental conditions. Here, we
obtained the average backtracking durations from the experimental time traces given as follows. We analyzed 5 experimental traces for 425 pN force geometry,
5 traces for +10 pN, 3 traces for —10 pN and 5 traces for —7 pN. In addition, in the presence of GreB, in panel (b), 8 experimental traces under +10 pN, 6
traces for —10 pN and 7 traces for —7 pN force geometries were analyzed. Besides, in the presence of RNaseA , in panel (c), we analyzed 5 experimental traces
for 410 pN and 5 traces for —7 pN force geometry. We calculated the backtracking durations for each repeat region from the MAP estimate trajectory for all
analyzed experimental time traces separately. Then we superpose the backtracking duration information for the repeat regions and then we found the average
backtracking duration from this new list of backtracking durations. We repeated this process for all experimental conditions. In panel (a) we show the analysis
of the mean backtrack durations associated with each repeat region for the wild type RNAP transcription. Each triangle corresponds to a repeat region. We later
combined the mean of backtrack durations along the repeats 2,3,4 and label it as 1 and 6,7,8 as the new repeat section 3 and investigated the backtrack duration
distribution of these repeat sections. We repeated this analysis in the presence of GreB in panel (b) and RNaseA in panel (c) at concentrations of 0.87M and
0.1mg/ml, respectively. We used 75% confidence interval obtained from all calculated backtracking durations for each repeat section. This confidence intervals
are shown in green lines super imposed on the point estimates associated with the repeat sections.

32. Sgouralis, I. and Pressé, S. (2017) ICON: an adaptation of infinite HMMs international conference on Machine learning pp. 312-319.

for time traces with drift. Biophysical journal, 112, 2117-2126. 44. Hines, K. E., Bankston, J. R., and Aldrich, R. W. (2015) Analyzing single-
33. Sgouralis, I. and Pressé, S. (2017) An introduction to infinite HMMS for molecule time series via nonparametric Bayesian inference. Biophysical

single-molecule data analysis. Biophysical journal, 112, 2021-2029. Jjournal, 108, 540-556.
34. Sgouralis, I., Whitmore, M., Lapidus, L., Comstock, M. J., and Pressé, 45. Bloom, K. S. (2007) Beyond the code: the mechanical properties of DNA

S. (2018) Single molecule force spectroscopy at high data acquisition: A as they relate to mitosis. Chromosoma, 117, 103—110.

Bayesian nonparametric analysis. The Journal of chemical physics, 148, 46. Jazani, S., Sgouralis, 1., Shafraz, O. M., Levitus, M., Sivasankar, S., and

123320. Pressé, S. (2019) An alternative framework for fluorescence correlation
35. Sgouralis, I., Madaan, S., Djutanta, F., Kha, R., Hariadi, R. F., and Pressé, spectroscopy. Nature communications, 10, 1-10.

S. A Bayesian Nonparametric Approach to Single Molecule Forster 47. Jazani, S., Sgouralis, 1., and Pressé, S. (2019) A method for single

Resonance Energy Transfer. The Journal of Physical Chemistry B, 123. molecule tracking using a conventional single-focus confocal setup. The
36. McKinney, S. A., Joo, C., and Ha, T. (2006) Analysis of Single-Molecule Journal of Chemical Physics, 150, 114108.

FRET Trajectories Using Hidden Markov Modeling. Biophysical Journal, 48. Tetone, L. E., Friedman, L. J., Osborne, M. L., Ravi, H., Kyzer, S.,

91, 1941-1951. Stumper, S. K., Mooney, R. A., Landick, R., and Gelles, J. (2017)
37. Roy, R., Hohng, S., and Ha, T. (2008) A practical guide to single-molecule Dynamics of GreB-RNA polymerase interaction allow a proofreading

FRET. Nature Methods, 5, 507-516. accessory protein to patrol for transcription complexes needing rescue.
38. Liu, Y., Park, J.,, Dahmen, K. A., Chemla, Y. R., and Ha, T. (2010) Proceedings of the National Academy of Sciences, 114, E1081-E1090.

A Comparative Study of Multivariate and Univariate Hidden Markov 49. Weixlbaumer, A., Leon, K., Landick, R., and Darst, S. A. (2013)

Modelings in Time-Binned Single-Molecule FRET Data Analysis. The Structural basis of transcriptional pausing in bacteria. Cell, 152, 431-441.

Journal of Physical Chemistry B, 114, 5386-5403. 50. Nudler, E. (2012) RNA polymerase backtracking in gene regulation and
39. Ha, T. (2001) Single-Molecule Fluorescence Resonance Energy Transfer. genome instability. Cell, 149, 1438—1445.

Methods, 25, 78-86. 51. Saba, J., Chua, X. Y., Mishanina, T. V., Nayak, D., Windgassen, T. A.,
40. Righini, M., Lee, A., Cadari-Chumpitaz, C., Lionberger, T., Gabizon, Mooney, R. A., and Landick, R. (2019) The elemental mechanism of

R., Coello, Y., Tinoco, I., and Bustamante, C. (2018) Full molecular transcriptional pausing. eLife, 8, e40981.

trajectories of RNA polymerase at single base-pair resolution. 52. Bai, L., Shundrovsky, A., and Wang, M. D. (2004) Sequence-dependent

Proceedings of the National Academy of Sciences, 115, 1286-1291. Kinetic Model for Transcription Elongation by RNA Polymerase. Journal
41. Dulin, D., Vilfan, I. D., Berghuis, B. A., Hage, S., Bamford, D. H., of Molecular Biology, 344, 335-349.

Poranen, M. M., Depken, M., and Dekker, N. H. (2015) Elongation- 53. Adelman, K., La Porta, A., Santangelo, T. J., Lis, J. T., Roberts, J. W.,

competent pauses govern the fidelity of a viral RNA-dependent RNA and Wang, M. D. (2002) Single molecule analysis of RNA polymerase

polymerase. Cell reports, 10, 983-992. elongation reveals uniform kinetic behavior. Proceedings of the National
42. Dulin, D., Arnold, J. J., van Laar, T., Oh, H.-S., Lee, C., Perkins, A. L., Academy of Sciences, 99, 13538—13543.

Harki, D. A., Depken, M., Cameron, C. E., and Dekker, N. H. (2017) 54. Bai, L., Fulbright, R. M., and Wang, M. D. (2007) Mechanochemical

Signatures of nucleotide analog incorporation by an RNA-dependent kinetics of transcription elongation. Physical review letters, 98, 068103.

RNA polymerase revealed using high-throughput magnetic tweezers. Cell 55. Borukhov, S., Sagitov, V., and Goldfarb, A. (1993) Transcript cleavage

reports, 21, 1063—-1076. factors from E. coli. Cell, 72, 459-466.

43. Fox, E. B., Sudderth, E. B., Jordan, M. 1., and Willsky, A. S. (2008) An
HDP-HMM for systems with state persistence. In Proceedings of the 25th


https://doi.org/10.1101/2020.07.28.132373
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: httpsi#/Qpi. 2373; thj jor; posted. 29, The copyright holder for this preprint
(which was not certified b, revi #ﬁ%tﬁ&ﬁu‘?ﬁer m&%@%am Xiv & licen dgglay th§% eprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

14
A WT-non averaged repeats ¢  GreB-non averaged repeats B  RNaseA-non averaged repeats
A WT-averaged repeats ¢ GreB-averaged repeats o RNaseA-averaged repeats
(a) WT (b) GreB (c) RNaseA
A o
2 ¢
S 30 30 ¢ L& 30
© 9o
Il 20 201 ¢ 20
3 ':‘;3; . i
o)
2 E 0| %8 ¥ 10
- 35 7Y v A
G>J Q by 3 v !I!‘S e
< ©O A = ! E
0 0
-10 +10 +25 -10 +10 -10 +10
Force (pN) Force (pN) Force (pN)

Figure 12. Average backtracking counts through the collective analysis of experimental traces under various experimental conditions. Our analysis
provided in this figure relies on the analysis of the following traces. We analyzed 5 experimental traces for 425 pN force geometry, 5 traces for 410 pN, 3 traces
for —10 pN and 5 traces for —7 pN. In addition, in the presence of GreB, in 8 experimental traces under +10 pN, 6 traces for —10 pN and 7 traces for —7 pN
force geometries were analyzed. Besides, in the presence of RNaseA, we analyzed 5 experimental traces for 410 pN and 5 traces for —7 pN force geometry.
We calculated the backtracking counts for each repeat region from the MAP estimate trajectory for all analyzed experimental time traces separately. Then we
superpose the backtracking count information for the repeat regions and then we found the average backtracking counts (here average is calculated with respect
to the total number of analyzed time traces) from this new list of backtracking counts. We repeated this process for all experimental conditions. In panel (a),
we show the analysis of average backtrack counts for the wild type RNAP transcription. Each triangle corresponds to a repeated region and later we averaged
backtrack counts along the repeats 2,3,4 and label it as 1 and 6,7,8 as the new repeat section 3 and investigated the backtrack count distribution of these repeat
sections. We repeated this analysis in the presence of GreB in panel (b) and RNaseA in panel (c) at concentrations of 0.87uM and 0.1mg/ml, respectively.
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