

1 **Panoramic Insights into the Microevolution and**
2 **Macroevolution of *Prevotella copri*-containing Lineage in**
3 **Primate Guts**

4

5 Hao Li¹, Jan P. Meier-Kolthoff², Can-Xin Hu¹, Zhong-Jie Wang¹, Jun Zhu¹, Wei Zheng¹, Yun
6 Tian^{1,3}, Feng Guo^{1,3*}

7 1. School of Life Sciences, Xiamen University, Fujian Province, China

8 2. Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures,

9 Department of Bioinformatics, Braunschweig, Germany

10 3. Key Laboratory of Fujian Provincial University for Microorganism Resource, Fujian

11 Province, China

12 *Corresponding author

13 Email to fguo.bio@xmu.edu.cn

14

15

16

17

18

19

20

21

22

23 **Abstract**

24 *Prevotella copri* and related taxa are widely detected in mammalian gut microbiomes
25 and have been linked with one human enterotype. However, their microevolution
26 and macroevolution among hosts are poorly characterized. In this study, extensively
27 collected marker genes and genomes were analyzed to trace their evolutionary
28 history, host specificity, and biogeographic distribution. Investigations based on 16S
29 rRNA gene, *gyrB*, and genomes suggested that a multi-specific *P. copri*-containing
30 lineage (PCL) harbors diverse species in higher primates. Firstly, *P. copri* is the
31 dominant species of PCL in the human gut and consists of multiple groups
32 exhibiting high genomic divergence and conspicuous but non-strict biogeographic
33 pattern. Most African strains with high genomic divergence from other strains were
34 phylogenetically placed near the species root, indicating the co-evolutionary history
35 of *P. copri* and *Homo sapiens*. Secondly, although long-term co-evolution between
36 PCL and higher primates was revealed, sporadic signals of co-speciation and
37 extensive host jumping of PCL members were observed among higher primates.
38 Metagenomic and phylogenetic analyses indicated that *P. copri* and other PCL
39 species found in captive mammals have been recently transmitted from humans.
40 Thirdly, strong evidence was found on the extensively horizontal transfer of genes
41 (e.g., carbohydrate-active enzyme encoding genes) among sympatric *P. copri* groups
42 and PCL species in the same primate host. Our study provides panoramic insights
43 into the complex effects of vertical and horizontal transmission, and potential niche
44 adaption on speciation, host, and biogeographical distribution spanning

45 microevolutionary and macroevolutionary history for a certain gut bacterial lineage.

46 **Importance**

47 *Prevotella copri* and its related taxa, which we designated as *Prevotella copri*-
48 containing lineage (PCL) in the present study, are widely detected in guts of human,
49 non-human primates and many captive mammals, showing positive or negative
50 correlation to some human diseases. However, a comprehensive understanding on its
51 microevolutionary (within *P. copri*) and macroevolutionary (among PCL members)
52 history across host species and host biogeography is still lacking. According to our
53 analysis based on 16S rRNA gene, *gyrB* and genomes, we provided the panoramic
54 insights into the putative effects of vertical transfer, horizontal transmission and
55 potential niche selection on host and biogeographical distribution of this gut
56 bacterial lineage and *P. copri*. To our knowledge, it is the first time that a gut
57 bacterial lineage was studied at both micro- and macroevolutionary levels, which can
58 aid our systematic understanding on the host-microbe co-evolutionary interactions.

59

60 **Keyword:** *Prevotella copri*; co-speciation; gut microbiome; enterotype; host;
61 biogeography

62

63 **Introduction**

64 Animal guts harbor complex microbe assemblies that play key roles in host
65 development, metabolism, and immunity (1-3). Phylosymbiosis between host and
66 gut microbiome has been widely investigated at the community level, and many
67 microbial assemblies show congruence with their host phylogeny (4-6). However,
68 such congruence may not necessarily result from long-term co-evolution between
69 hosts and symbionts (i.e., vertical transfer, which includes transfer along the lineage
70 of multiple host species or among conspecific hosts); other factors, such as diet, host
71 physiology, and immunology, etc. may play uncharacterized roles in shaping gut
72 microbiomes and host phylogeny (7, 8). Alternatively, focusing on certain microbial
73 lineages is a reliable and direct way to trace the history of vertical transfer (9-12).

74 Co-evolution of a bacterial lineage within a set of hosts can be viewed at two levels,
75 namely, macroevolution (interspecies) and microevolution (intraspecies). The former
76 is often discovered among remotely related host species (9, 10, 13, 14), and the latter
77 is observed on hosts belonging to either the same or different host species (12, 15).

78

79 In addition to vertical transfer, the biogeographical and host-specific distribution of
80 certain gut bacterial lineages could be largely influenced by the potential horizontal
81 transfer among heterospecific hosts and ecological selection (16-18). Allochthonous
82 taxa may switch to new hosts and initiate new evolutionary branches, potentially
83 causing promiscuous generalists in many host species (19, 20). Novel host-microbe
84 interactions and adaptations can be introduced in such a scenario (21). However,

85 only few gut bacterial lineages have been comprehensively studied at the
86 microevolutionary and macroevolutionary levels to understand the potential effects
87 of vertical and horizontal transfers on their biogeography and host-specificity. This
88 limitation is caused by the lack of comprehensive information for a certain lineage
89 from a wide range of host species and geographic regions and the potential
90 extinction of hosts and microbes. In addition, samples must be collected from wild
91 animals barely affected by humans as a prerequisite to minimize artificial
92 interferences (22, 23). However, data from wild animals are usually less available
93 than those from captive animals.

94

95 *Prevotella* is a representative genus of one human enterotype (24, 25). Multiple
96 species in this genus have been detected in human feces. *Prevotella copri* and a few
97 closely related species have the highest frequency and abundance (26) and have been
98 linked with a few human diseases as potential disadvantageous factors (27, 28). On
99 the one hand, two studies based on single-nucleotide polymorphisms have
100 preliminarily reported intraspecies diversification, biogeography, and microevolution
101 (15, 29). A recent work collected over 1,000 *P. copri*-related genome bins using a
102 reference-based metagenomic binning strategy and reported four species-level clades
103 occurring in human guts, thereby validating the species-level diversification in this
104 lineage (30). However, phylogeny conducted solely based on genome bins may lose
105 the overall diversity from minor and rare organisms that could not be genetically
106 retrieved from metagenomes. On the other hand, *P. copri* and related taxa have been

107 frequently discovered in the gut microbiomes of nonhuman primates and other
108 mammals (31-33). Panoramic insights into the macroevolutionary and
109 microevolutionary history of *P. copri* related with its host phylogeny across
110 mammals, primates, and humans remain unclear.

111

112 In this study, we reconstructed the robust phylogeny of *P. copri* and its related taxa
113 by comprehensively collecting their phylogenetic markers from multiple hosts and
114 various geographic regions. The rRNA gene, gene encoding DNA gyrase subunit B
115 (*gyrB*) sequences, and genomes were used as a reference to solve interspecies
116 phylogeny, which showed the existence of a multi-specific *P. copri*-containing
117 lineage (PCL). The genomes and a selected marker gene were employed as a basis in
118 investigating the intraspecific phylogeny and microevolution of *P. copri*. With
119 regard to the phylogenies at different levels, vertical and horizontal transmission of *P.*
120 *copri* and related species can be deduced.

121

122 **Results**

123 **Existence of a *P. copri*-containing lineage based on 16S rRNA gene sequence
124 analysis**

125 Figure 1A shows that among the 36 clone sequences, the type strain DSM 18205 and
126 six isolates formed a lineage within *Prevotella* with moderately supportive BS
127 values. All 43 sequences were obtained from the fecal samples of humans,
128 nonhuman primates, bovines, and humanized mice. Several clone sequences from

129 nonhuman primates were located at the root of the clade and exhibited a deeply
130 branching feature.

131

132 A total of 5,316 SILVA 16S rRNA gene sequences putatively affiliated with the
133 lineage were retrieved to comprehensively profile the source of this lineage. As
134 shown in Figure 1B, most of the sequences were obtained from the fecal samples of
135 the four hosts, and the rest (<3%) were obtained from other mammals (mostly
136 captive ones such as pig, dog, and mammals from zoos) and human-related
137 environments (e.g., human skin and wastewater). Nonhuman primate-derived
138 sequences contributed over 25% of the remotely related fraction (<95% similarity to
139 the 16S rRNA gene of DSM 18205, Figure 1B) but only accounted for 5% of total
140 sequences. This analysis provides preliminary evidence of a multi-specific PCL, and
141 the results point to its potential macroevolutionary history with primates and the
142 occurrence of PCL members in the guts of captive mammals.

143

144 **Phylogeographical pattern of *P. copri* suggests a co-evolutionary history with**
145 ***Homo sapiens***

146 A total of 130 *P. copri* genomes (all >70% completeness and <10% contamination,
147 DATA SET S1: Table S1) were used in the phylogenomic reconstruction to
148 investigate the intra-species phylogeny of the most dominant human gut PCL
149 member, *P. copri*. Among which, 116 genomes reached the high-quality criterion
150 (>90% completeness and <5% contamination, according to Bowers et al. (34)).

151 NMPZ01, Y7XP, and Y7FG (belong to the same species) are not *P. copri* according
152 to the average nucleotide identity (ANI) and digital DNA–DNA hybridization
153 (dDDH) values (DATA SET S1: Table S2) and thus were set as the outgroup. The
154 phylogenetic trees reconstructed by concatenating the sequences of 1,095 core
155 single-copy genes and dDDH were highly consistent in terms of topology (Figure
156 2A). In the core-gene based phylogenetic tree (Figure 2A), the genomes were
157 divided into nine groups (non-monophyletic g0 and monophyletic g1–g8) and three
158 single branches. The six major groups were g0 ($n=18$), g1 ($n=12$), g3 ($n=9$), g4
159 ($n=26$), g5 ($n=6$), g6 ($n=43$), and g7 ($n=9$) and exhibited well-supported
160 phylogeographical pattern to a great extent. Group g0 was mostly contributed by
161 Africans (only one from USA), g1 and g7 almost exclusively occurred in China (two
162 g1 strains are from Africa), and g5 was only covered by the strains found in Salvador.
163 Groups g4 and g6 consisted of strains from multiple continents, mostly from
164 European countries, USA, and Kazakhstan and a few from China and African
165 countries. Type strain DSM 18205 formed g8 together with one strain from
166 Denmark. Under the dDDH-based species clustering, 130 *P. copri* genomes can be
167 assigned into nine maximally supported, monophyletic species-level clusters or
168 single branches (Figure 2A) (35). Therein, g0 comprises eight clusters, and all the
169 other groups constitute a single cluster. According to both approaches, no close
170 relatives was observed for any of the 130 genome pairs, except for those obtained
171 from the sequential samples of one person (O2.UC17-0 and O2.UC17-1 in g4 and
172 O2.UC38-0 and O2.UC38-2 in g6) and four from a family (M04.1-V3, M04.3-V1,

173 M04.4-V3, and M04.5-V3 in g4).

174

175 The co-evolutionary history between the species and *Homo sapiens* was supported
176 by that most strains from Africa were located at the root of the tree and remotely
177 separated from other groups. The large phylogenetic distance between g0 strains and
178 other groups or among g0 strains was further confirmed for single housekeeping
179 genes (Figure 2B). The median synonymous mutation rate of 18 housekeeping genes
180 (without significant intragenic recombination in Pairwise-homoplasy index (PHI)
181 test) from African-derived strains and other strains was 0.052 (DATA SET S1: Table
182 S3). On the basis of the mutation rate of 2.6×10^{-7} per site per year for housekeeping
183 genes of another human symbiont, *Helicobacter pylori* (36), the split of g0 strains
184 and other strains was dated at approximately 99,000 years ago (Figure 2C). This
185 period roughly coincided with the time for modern humans outside Africa [69] and
186 was also supported by *H. pylori* results (37, 38). The median split time for strains for
187 each major group g0, g1, g3, g4, g6, and g7 was 117,000, 53,000, 50,000, 52,000,
188 22,000 and 28,000 years ago, respectively (Figure 2C).

189

190 **Divergence and potential sympatric gene transfer for carbohydrate-active
191 enzymes (CAZys) among *P. copri* groups**

192 *P. copri* was thought to be positively selected by non-westernized diet with high
193 plant-sourced polysaccharides (30, 39, 40). Therefore, the divergence of CAZy
194 modules in the major groups was examined. Pan genomes of the six major groups

195 contained 144 CAZys, nearly half of which were generally distributed in all genomes
196 without significant difference between any two groups (Fisher's exact test, FDR-
197 corrected $P > 0.05$). However, 30 group-specific and 43 sporadic CAZy modules
198 were determined (Figure 3A). High group-specificity was found in several putative
199 alginases (genes containing PL6, PL6_1, and PL17) in g1 and a putative
200 hyaluronidase (the gene containing GH84) in g4 and g6. A gene almost exclusively
201 detected in g1 was identified as a putative alginase by Pfam annotation (PF05426,
202 not annotated against the CAZy database) and functionally verified via the
203 heterologous expression in *Escherichia coli* (cloned from YF2) and biochemical
204 assays (TEXT S1: Figure S1 and SI methods).

205
206 A sporadic CAZy (containing three modules of GH142, GH143, and GH43_18) was
207 related with a novel depolymerase from *Bacteroides thetaiotaomicron* targeting on
208 complex glycans (>60% amino acid similarity with protein BT1020 (41)). Genomic
209 synteny showed that the absence or presence of the gene-related cluster (containing
210 four CAZy encoding genes) was not due to incorrect assembly or binning (Figure
211 3B). The gene cluster (approximately 40 kb in length, containing 15 genes in the
212 complete genome of YF2) was colocalized on the same genomic region in all
213 positive strains but was clearly deleted in negative strains. Phylogenies of the two
214 sporadic CAZy-encoding genes located in the cluster revealed inter-group horizontal
215 gene transfer (HGT) for sympatric groups (Figures 3C and S2, the other two CAZy-
216 encoding genes have similar signals but not shown). For example, the gene

217 containing GH140 had three phylogenetic clusters consisting of highly similar
218 sequences (>99.5% amongst all the nucleotide sequences) and strains from
219 geographically co-occurring groups (e.g., g1/g7 in China and g4/g6 mostly in
220 European countries and USA). Investigation on the *P. copri* genomes of g1 ($n=8$), g6
221 ($n=1$), and g7 ($n=3$) isolates provided by a recently study on the Chinese population
222 to exclude the possibility of genomic contaminations for metagenomic bins (42). The
223 findings further supported that the above phylogenetic crosslinks were not derived
224 from genomic contamination (TEXT S1: Figure S2).

225

226 **Indications of non-strict geographic distribution for *P. copri* groups**

227 Although phylogenomics revealed the biogeographic distribution of groups, a few
228 exceptions could be found in Figure 2A (e.g., g6 strains from China). The results
229 based on genome bins may not sufficiently represent the population-level
230 composition in each fecal sample because some strains could be missed during
231 genome binning due to their low abundance or microdiversity (43). Two
232 investigations based on a selected intra-species marker gene, *orth10* (See TEXT S1:
233 Figure S3 for the reason to use this gene), were conducted to further investigate the
234 strictness of the phylogeography.

235

236 The first study quantitatively assigned the metagenomic reads of *orth10* into groups.
237 Analysis was conducted for 47, 70, 139, and 14 metagenomic datasets selected from
238 Africans, Chinese, Europeans, and Americans, respectively, in accordance with *P.*

239 *copri* abundance determined by its *gyrB* abundance ($>10^{-6}$) in 1,267 integrated gene
240 catalog database of human (IGC) samples and 67 African samples. All the four
241 datasets showed a non-strict group-level distribution pattern, while the dominant
242 groups were consistent with aforementioned biogeographic pattern (Figure 4A).
243 Noticeably, the presence of g0, g1 and g7 in Europeans and detection of g0 in
244 Chinese was revealed by this approach, was completely missing based on genomic
245 information.

246
247 The second process was to conduct high-throughput sequencing for the *orth10*
248 amplicons of sewage samples collected from five cities in China. As shown in Figure
249 4B, each sample contained 27–142 unique *orth10* phylotypes. Groups other than g1
250 and g7 (especially g0 and g6) were detected in the sewage samples, although
251 sequences affiliated with g1 and g7 usually exhibited dominance. Although
252 foreigners live in the cities, their contribution to the sewage was improbably high
253 enough to change the main profile. Moreover, this result also suggested that the
254 genome bins were a good representation of group-level diversity because all detected
255 phylotypes are highly similar with the references ($>95\%$ and mostly 100% Figure 4B,
256 TEXT S1: Figure S3 showed the similarity of almost all intragroup *orth10* exceeded
257 95% except group g0). Basing on the above results, we conclude that the group-level
258 distribution in *P. copri* is not geographically strict, at least for the major groups.

259
260 **Long-term co-evolution and sporadic co-speciation of PCL with higher**

261 **primates**

262 Phylogeny based on 16S rRNA suggested that multiple PCL species have co-
263 evolved with primates (Figure 1). Thus, the PCL abundance in fecal metagenomes
264 ($n=168$) from 20 species of wild primates was analyzed based on the abundance of
265 *gyrB* affiliated with PCL in these metagenomes (Figure 5A). Metagenomic assembly
266 initially generated 82 PCL *gyrB* sequences, which represented 39 species-level
267 clusters under 98% similarity cut-off (TEXT S1: Figure S4 shows the reason for
268 using this criterion as the species-level cut-off in PCL). All these sequences were
269 retrieved from eight species of higher wild primates (all from Cercopithecidae and
270 Hominidae). The 39 representatives and 9 de-replicated (under 98% similarity cut-
271 off) human gut *gyrB* sequences (extracted from the IGC database and isolates) were
272 verified as PCL members because they formed a well-supported clade within
273 *Prevotella* (Figure 5B, full-view in TEXT S1: Figure S5). Read-based quantification
274 confirmed the absence of PCL in the guts of all lower wild primates and *Colobus*
275 *guereza* (Figure 5A). The high diversity of previously unrecognized PCL species in
276 higher primates strongly supported a long-term co-evolutionary history between the
277 lineage and the hosts.

278

279 Most host species were inhabited by multiple PCL species (Figure 5B). The PCL
280 profile exhibited a conspicuous host-specific pattern, and no strong signals of
281 phylosymbiosis were observed (clustering on the bottom in Figure 5B). Four *gyrB*
282 representatives contained assembled sequences from multiple hosts, indicating their

283 non-strict host specificity (Figure 5B). Phylogeny of *gyrB* hinted co-speciation
284 events among four host species (*Papio anubis*, *Papio cynocephalus*, *Papio kindae*,
285 and *Cercopithecus Ascanius*) with the furthest split time of 16.2–22.4 million years
286 ago (Mya) (Figure 5A) but no signal across all higher primate hosts (Figure 5B). The
287 split times of the four corresponding *gyrB* clusters (determined as the split time
288 between hosts) were used as a reference to calculate the molecular clock rate and
289 perform dating for the whole phylogenetic tree (Figure 5B). The initial date of PCL
290 from other *Prevotella* species was deduced as 8.7–43.8 Mya (TEXT S1: Figure S5),
291 which was highly variable but covered the split time of higher primates from others
292 (28.0–31.4 Mya). Consistency was compared between the split times of hosts and
293 bacteria (Figure 5C). Although the molecular clock rate for bacteria was highly
294 variable, the two split times were still inconsistent in most pairs, except for some
295 closely related host species such as between *Papio* spp. and between *Homo sapiens*
296 and *Pan troglodytes*.

297

298 **Evidence of gene HGT among PCL members detected in the same host**

299 In addition to *gyrB*, 16 PCL genome bins were retrieved from the fecal metagenomes
300 of nonhuman primates (only three host species, i.e., *Papio cynocephalus*, *Pan*
301 *troglodytes*, and *Gorilla gorilla*). Phylogeny of these strains representing seven
302 uncultured species (designated as s1–s7 according to ANI values), *P. copri*, and
303 Y7XP/Y7FG based on concatenated universal genes was generally consistent with
304 that based on *gyrB* (Figure 6A and TEXT S1: Figure S6). The CAZys of the seven

305 species highly overlapped with those of *P. copri*. The few absent CAZys in genomes
306 of the *P. copri* include CE3, GH30_2, GH39, and GH76 that putatively target xylan
307 or mannan (Figure 6A), which are important plant cell wall components (44). These
308 polysaccharides are reasonably less abundant in the diet of modern human beings
309 than in the diet of wild primates.

310

311 Since the HGT signal for CAZy genes has been detected among sympatric *P. copri*
312 groups (Figure 3C), the potential gene HGT events among PCL members were
313 examined. The upper boundary of 95% confidence interval of universal marker
314 genes was set as the threshold for recognizing the HGT genes (TEXT S1: Figure S7).

315 The bacterial species detected in different hosts only shared 0.6% genes with HGT
316 signal, while the value is 4.0% for species from the same host (median value,
317 Wilcoxon test, $P < 2.2 \times 10^{-16}$, Figure 6B). Although this phenomenon may be partially
318 attributed to the potential genomic contamination for metagenome-derived genomes,
319 analysis based on isolates still showed the high proportion of HGT signals for the
320 species from the same host (the median proportion between 24 *P. copri* isolates and
321 Y7XP/Y7FG is 4.3%). Figure 6C shows the gene synteny of representative CAZy
322 genes with HGT signal, which were putatively occurred in homologous genomic
323 regions.

324

325 **PCL members in captive mammalian hosts were recently gained from humans**
326 On the basis of the above results, PCL was hypothesized to have co-evolved with

327 higher primates for a long period. However, *P. copri* and related taxa were widely
328 detected in diverse non-primate captive mammals. Whether these taxa have evolved
329 vertically or horizontally transferred to non-primate mammalian hosts remains
330 unknown. Therefore, potential PCL *gyrB* sequences were extracted from the gene
331 catalog of pigs and mice. Six pig-derived PCL *gyrB* sequences were
332 phylogenetically affiliated with PCL, but no mouse-derived PCL *gyrB* was found
333 (Figure 7A). However, three of the six pig-derived sequences were clustered (>98%
334 similarity) with the human-derived *gyrB* representatives extracted from IGC
335 database. The other three sequences still shared >95% identity to human-derived
336 *gyrB* representatives. Noticeably, de-redundancy at a cut-off of 95% was conducted
337 for the genes in the IGC database (45). Hence, every pig-derived PCL member has
338 close relatives in human-derived members, but not *vice versa*. This finding suggests
339 that these PCL species are horizontally transferred from humans.

340

341 In reference to the above *gyrB* sequences, PCL was detected in fecal metagenomes
342 from cats ($n=36$), dogs ($n=125$), pigs ($n=533$), and bovines ($n=52$). Figure 7B shows
343 that the total PCL in the samples had an abundance over 10^{-6} (one assigned as PCL
344 *gyrB* per million reads, requiring >95% similarity and 90% coverage, see TEXT S1:
345 Figure S8 for the reason of the similarity criterion). In particular, 35, 108, 463, and
346 38 samples passed the abundance threshold for cat, dog, pig, and bovine,
347 respectively. All these hits were profiled into six catalogues including *P. copri*,
348 human-derived, human-pig shared, human-pig-primate shared, pig-derived, and

349 primate-derived PCL members other than *P. copri* (Figure 7C). The PCL species
350 detected in cat and dog samples were dominated by *P. copri*, and those in pig and
351 bovine samples were mainly inhabited by *P. copri*, human-pig shared species, and
352 pig-derived species.

353

354 Considering that *P. copri* was widely detected in these samples, group-level profiles
355 of *P. copri* were established in the pig ($n=386$), bovine ($n=25$), cat ($n=35$) and dog
356 ($n=105$) samples with high *orth10* ($>10^{-6}$) abundance. As shown in Figure 7D,
357 *orth10*-based quantification showed that cats and dogs (sampled from Europe and
358 North America, respectively) almost exclusively harbored g6 strains, which
359 geographically co-occurred in European and North American hosts. Pigs and bovines
360 from Asia and Europe and bovines from North America were all dominated by g8.
361 Bovines from Salvador were dominated by g5, a group also dominating the gut of
362 Salvadorians.

363

364 **Discussion**

365 **Co-evolutionary history for PCL in higher primates**

366 Microbial samples from wild animals instead of captive ones are fundamental in
367 determining their phylosymbiosis and co-evolutionary relationships to minimize
368 artificial influence from humans (23, 46, 47). Besides that, our work emphasizes the
369 need to use a comprehensive data source from multiple hosts in diverse geographical
370 regions to obtain panoramic information (15, 29, 30). *De novo* retrieval of PCL

371 genomes from the metagenomes of most human and animal samples must be
372 conducted due to the high genomic divergence and microdiversity. In addition to
373 genomes, the most comprehensive and accessible biomarkers rRNA and *gyrB* gene
374 sequences (although not the most precise) can also be used as references to bypass
375 the limitations of genome binning (e.g., low abundance and microdiversity).

376

377 A recent study found that *P. copri* complex in human gut comprises four species-
378 level clades based on the genomes retrieved from metagenomes via referring to a
379 few core-genomes (30). The current work discovered that PCL members in the
380 human gut and higher primates are far more diverse than only four species according
381 to *gyrB* sequences and genomes from expanded host spectrum. Similar to the co-
382 speciation of *Bacteroides* spp. detected in extant hominid species (10), a signal of a
383 few PCL members was found in four higher primates. However, the overall
384 phylogenetic inconsistency suggested extensive horizontal transfer and extinction for
385 the PCL members. A recent study showed the strong influence of environmental
386 microbes on the gut microbiome of baboons (48), thus representing a possible
387 pathway of host jumping. Our data of sharing the same PCL species amongst
388 different wild hosts provided additional evidence for recent host jumping (Figure
389 5A). In addition, the extinction of certain species, which may be related to diet and
390 behavior change as observed in experimental animals over several generations (49),
391 may also play important roles in the distribution of PCL members.

392

393 **Are gut bacterial species shared by remotely related hosts evolved
394 independently?**

395 Genomic analysis further confirmed the intraspecific diversity and biogeographical
396 pattern of *P. copri* (15, 29). Different *P. copri* groups shared critical or lower values
397 to the species-level ANI and dDDH, suggesting their rapid evolutionary rates, which
398 has also been proposed for endosymbionts (50), and experiencing allopatric
399 speciation, a major mechanism for bacterial speciation (51). Coincident with *H.*
400 *pylori* (37) and *Eubacterium rectale* (52), our results indicate that *P. copri* has a
401 consistent phylogeographical pattern with human migration history, thus allowing
402 calibration for its genomic evolutionary rates. As the low ANI values between
403 conspecific strains in *H. pylori* have also been reported (53), the high evolutionary
404 rate in *H. pylori* and *P. copri* raises a concern on whether a certain symbiotic
405 bacterial species or clade shared by remotely related hosts has thoroughly evolved
406 across the host phylogeny. Several previously reported gut bacteria, such as
407 *Lactobacillus reuteri*, *Enterococcus faecalis*, and *Enterococcus faecium*, have
408 experienced host-driven evolution across a wide range of mammals or even
409 vertebrates (12, 14). Oh et al. (12) deduced the split time of *L. reuteri* strains from
410 multiple hosts by referring to a low mutation rate (54), resulting in molecular dating
411 approximately 10 Mya. However, the low mutation rate has been suspected to be
412 caused by the outdated methodology (55). If these species evolved at rates
413 comparable with those of *H. pylori* and *P. copri*, then they are not likely to
414 continuously co-evolve with the hosts for a long period without speciation. The

415 conspecific ancestral strains were possibly incorporated into the gut microbiome of
416 various hosts and have recently initiated a host-driven adaption (21). Comprehensive
417 surveys on various symbiotic bacterial species across hosts will provide convincing
418 evidence on their diversifying processes.

419

420 **Non-strict biogeography and host for PCL members suggest limited**
421 **transmission barrier and potential niche selection**

422 Poor host and geographical barrier have been observed in animal-associated
423 microbial transmission (21, 47, 56, 57). Non-strict biogeographic distribution for
424 subspecies-level profile of *P. copri* in human gut was proven by our study as well as
425 by Tett et al. (30). The current work also revealed the putative extensive
426 transmission of PCL members within different higher primates. Different (or at least
427 for some) groups of *P. copri* and PCL members are distributed more ubiquitously
428 than expected to a large extent following the microbiological tenet “everything is
429 everywhere, but, the environment selects” (58). Factors other than geographical and
430 host isolation, such as host diets and behaviors, and environmental characteristics in
431 a given location have favored their occurrence and dissemination in the local
432 population and certain host species. This explanation could be supported by the
433 strain-level profile of *P. copri* being associated with different habitual diets (59); and
434 some group-specific CAZys (e.g., alginase in g1 and hyaluronidase in g4/6) detected
435 in our study.

436

437 Although no PCL *gyrB* sequence was detected in mouse gut bacterial gene catalog,
438 which was generated from common laboratory mice (non-humanized) (60), a recent
439 study verified the reliable transmission of *Prevotellaceae* from human feces to germ-
440 free mice (61). Our investigation on the PCL members in captive mammals
441 suggested that these bacteria recently originated from sympatric human hosts and
442 potentially experienced niche selection, e.g., g8 of *P. copri* in bovines and pigs.
443 Group g8 might be selected by the farming mode (e.g., diet) for the bovines and pigs.
444 The bovines in Salvador, which were dominated by g5, were domesticated in
445 different ways (e.g., the animals may be closer to humans than the industrial farming
446 mode and fed with different diets) (62). Further comparison on the metabolic
447 features of these animal-derived strains and human-derived strains may illustrate the
448 evolutionary shaping of host adaptation within a limited period.

449

450 **Potential relevance of intra-lineage horizontal transfer of functional genes**

451 Each host provides a distinct niche (or a collection of sub-niches) that can be
452 colonized by bacteria (21, 63). Horizontal gene transfer and recombination are the
453 main drivers of genomic divergence (64, 65) and play key roles in ecological
454 adaption to new niches [83]. HGT is facilitated by the closely related phylogeny of
455 donor and acceptor (66). Despite focusing on the genes encoding CAZy and
456 uncharacterized mechanisms, our results provided evidence that HGT events have
457 widely occurred among sympatric conspecific strains and closely related intra-
458 lineage PCL members from the same host. The unique glycan degradation capability

459 is important for gut colonization and sustention in human gut bacteria (67). Niche-
460 driven rapid gain and loss of these genes within a large exchangeable pool may
461 render the PCL members to be highly superior in the source competition. Moreover,
462 extensive intra-lineage HGT events may result in the unreliable determination of
463 specific phenotypes by group-level (or subspecies-level) and species-level
464 identification. Caution must be adopted when linking phenotypes with taxa because
465 the novel gene function may be rendered by recent HGT. A direct comparison
466 among positive and negative strains is preferred (27).

467

468 In summary, our study focused on the macroevolution and microevolution of PCL in
469 the guts of higher primates and humans. The results provided panoramic insights
470 into the multiple effects of vertical transfer, horizontal transmission, and niche
471 selection on the host and biogeographical distribution of a certain gut bacterial
472 lineage. Studying the effects of PCL or other co-evolutionary lineages in animal guts
473 on host phenotypes (e.g., health or disease) from the co-evolution perspective can aid
474 the understanding on the interactions between host and gut microbes.

475

476 **Materials and methods**

477 **Data collection for 16S rRNA gene, *gyrB*, metagenomes, and genomes**

478 16S rRNA gene sequences from type strains and clones classified as *Prevotella*
479 ($n=534$) were downloaded from EzBioCloud (68). Seven additional sequences were
480 obtained from *P. copri*-like isolates (GCF_002224675.1, GCA_001405915.1, and

481 five contributed by this study). SILVA SSU reference database (version 132) was
482 used to track the host origins of *P. copri*-related sequences (69) (see TEXT S1: SI
483 methods for the details).

484

485 As a species-level marker, the *gyrB* sequences of *Prevotellaceae* members in human
486 gut were retrieved from the integrated gene catalog database of human, pig and
487 mouse gut microbiomes (45, 60, 70), the metagenomic assemblies of wild nonhuman
488 primates and 50 reference genomes (see TEXT S1: SI methods for the details). The
489 *gyrB* sequences affiliated within PCL were included in the database to profile PCL
490 members in the gut metagenomes of humans, nonhuman primates, and captive
491 mammalian hosts (see TEXT S1: SI methods for the details).

492

493 A total of 2,784 publicly available gut metagenomes of humans, nonhuman primates
494 and other mammals were collected from 21 studies involving 26 host species from
495 30 countries (DATA SET S1: Table S4). Forty-eight published *P. copri*-like
496 genomes, including 21 isolates and 27 genome bins from African (30, 42), were
497 collected. The present study contributed 119 new genomes (5 from isolates and 114
498 from metagenomes). Information for all genomes was listed in DATA SET S1:
499 Table S1.

500

501 **Isolates and genome sequencing**

502 Fresh stool samples were collected from four healthy Chinese volunteers (previous
503 investigation on their gut microbiota suggested high abundance of *P. copri*-like taxa)
504 and immediately transferred to an anaerobic glovebox (N₂: CO₂: H₂=80: 15: 5) for
505 isolation on YCFA medium (71). Colonies were picked after cultivation at 37 °C for
506 96 h. Full-length 16S rRNA gene sequences of the isolates were used to identify *P.*
507 *copri* and its related strains on the EzBioCloud platform (68).

508

509 Genomic DNA of *P. copri* and their related species isolated in this study was
510 extracted and sequenced with PE150 strategy on Illumina Hiseq 4000 platform
511 (commercial service, Novogene, Beijing). *De novo* assembly was performed by
512 SPAdes v3.9.0 (72). Only scaffolds longer than 1,000 bp were included in the
513 downstream analysis. The whole genome of YF2 strain was achieved by combining
514 Illumina and PacBio RSII platform sequencing (commercial service, Novogene,
515 Beijing).

516

517 **Genome binning, quality assessment, and annotation**

518 Genomic binning using mmgenome was manually performed to obtain high-quality
519 *de novo* assembled genomes of *P. copri* and related taxa from humans and
520 nonhuman primates, respectively (73). Prescreening of the 1,679 gut metagenomes
521 from humans (DATA SET S1: Table S4) was conducted using the relative
522 abundance of *P. copri* as estimated by the relative abundance of *gyrB* (usually $>10^{-5}$
523 for IGC data) or MetaPhlAn v2.0 ($>10\%$ relative abundance for non-IGC data) to

524 improve the efficiency (74). For the 168 gut metagenomes from nonhuman primates
525 (DATA SET S1: Table S4), raw reads were quality filtered with Trimmomatic
526 v.0.36 (75). The raw reads of selected human and nonhuman primate samples were
527 first assembled using SPAdes v3.9.0 (72). Only scaffolds longer than 1,000 bp were
528 retained for genome binning. The raw reads were mapped to the scaffolds using
529 Bowtie2 v2.2.9 (76), and the coverage profile was calculated by SAMtools v0.9.1
530 (77). Other necessary files were generated using script data.generation.2.1.0.sh (73).

531

532 Completeness and contamination of all draft genomes were assessed by CheckM
533 v1.0.7 (78). Pairwise ANI and dDDH values among *P. copri* genomes were
534 calculated by FastANI v1.3 (79) and Genome-to-Genome Distance Calculator 2.1
535 (35), respectively. Genes encoding CAZy families were annotated using HMMER
536 3.1b2 (80) against dbCAN HMMs v6 (81), and the results were filtered according to
537 the recommended threshold.

538

539 **Defining core protein orthologues of *P. copri***

540 Core orthologous gene clusters of *P. copri* genomes were defined using the method
541 of Oyserman et al. (82) with modifications. All incomplete open reading frames
542 (ORFs) with potential redundancy (i.e., multiple fragments from one ORF) were
543 cleaned prior to downstream analysis (see TEXT S1: SI methods for the details). All-
544 against-all BLASTP was performed for cleaned ORFs from *P. copri* genomes (83).
545 Identity and inflation values were determined according to McCill et al. (84) by

546 maximizing the maintenance of genes with the same function in a cluster.

547 Orthologous gene clusters were generated by MCL with optimized inflation value of

548 1.2 (85). A total of 1,095 single-copy core orthologs that appeared in more than 90%

549 of the *P. copri* genomes were determined.

550

551 **Phylogenetic analysis**

552 Phylogenetic analyses were performed for single genes and concatenated alignments

553 of single-copy core ORFs. The trees based on single genes were reconstructed using

554 MEGA v6.06 with 100 bootstrap iterations (86), and those based on concatenated

555 genes were reconstructed by maximum likelihood analysis using RAxML v.8.2.4 (87)

556 or FastTree v2.1 (88) on CIPRES web server (89). A truly whole-genome-based

557 phylogenetic analysis of the coding sequences was conducted at the nucleotide level

558 using the latest version of the Genome BLAST Distance Phylogeny method under

559 recommended settings (35, 90). All phylogenetic trees were visualized via the iTOL

560 web server (91). Further details are described in TEXT S1: SI methods.

561

562 **Determination and application of a quantitative gene with intraspecific**

563 **resolution for metagenomes**

564 A quantitative marker gene with intraspecific resolution must be selected because *P.*

565 *copri* has high genomic diversity that may cause quantitative biases at sub-species

566 level in metagenomes. For *P. copri* genomic pairs, the best candidate was

567 determined by calculating the Spearman correlation of distances between

568 concatenated 1,095 single-copy core orthologs and each single core ortholog. The
569 optimized gene was designated as *orth10* (the corresponding gene of type strain
570 DSM 18205 was EFB36125.1, a response regulator receiver domain protein) and
571 was used as the basis for the group-level profiling of *P. copri* in human and
572 mammalian gut metagenomes and the investigation on *P. copri* populations in raw
573 sewages collected from five cities of China (See TEXT S1: SI methods for details).

574

575 **Molecular dating for the split times between *P. copri* groups and between PCL
576 members**

577 Molecular dating was conducted as previously reported by Oh et al. (12). PHI test
578 was used to identify the intragenic recombination of 120 universal genes as proposed
579 by Parks et al. (92, 93). The dN/dS ratios for genes without significant intragenic
580 recombination (PHI test, $P > 0.05$) were calculated by using KaKs Calculator (94).
581 Split time was estimated by the synonymous mutation rate among various groups
582 and the long-term mutation rate of housekeeping genes of another human gut
583 symbiont, namely, *H. pylori* (2.6×10^{-7} per site per year) (36).

584

585 The divergence time of the *gyrB* sequences retrieved from IGC and nonhuman
586 primates was estimated by Bayesian MCMC analysis implemented in BEAST2
587 v2.5.2 (95). The bacterial lineages showing signals of co-speciation with primate
588 hosts were used as calibration, and the maximum likelihood tree inferred by MEGA
589 was employed as the starting tree. The analysis was run 50 million generations and

590 sampled every 1,000 steps under the GTR+G+I substitution model with a lognormal
591 relaxed molecular clock (10). Tracer v1.7.1 (<http://tree.bio.ed.ac.uk/software/tracer/>)
592 was utilized to ensure that the effective sample size was larger than 200 for all
593 parameters. The tree files were summarized in TreeAnnotator with the first 25%
594 discarded as burn-in (96).

595

596 **Determination of HGT events among PCL species**

597 All-against-all BLSATN was preformed between heterospecific genome pairs to
598 define the HGT events among PCL species. Shared genes with high similarity
599 between any two heterospecific genomes were classified as HGT due to the lack of
600 available tools to identify HGT events among closely related species. For a given
601 species pair, HGT signal threshold was set as the upper boundary of the 95%
602 confidence interval of similarity between complete universal genes (92). Gene pairs
603 with similarity higher than the threshold were recognized as HGT positive, and the
604 proportion of genes with HGT signal was calculated for each genome pair
605
$$\left(\frac{\text{Number of genes with HGT signal}}{\text{Total number of ORFs in one genome}} \right)$$
.

606

607 **Statistical analysis and visualization**

608 Statistical analysis was conducted in R 3.5.1. The *rcompanion* (97) package was
609 used for Fisher exact tests, and *ggplot2* (98), *pheatmap* (99), and *ggalluvial* (100)
610 packages were applied for data visualization. The genomic synteny of the fragment
611 containing CAZy was visualized by MCscan (Python version) (101).

612

613 **Acknowledgements**

614 Prof. Xin Yu and Mr. Chengsong Ye are thanked for their help in obtaining the
615 sewage samples.

616

617 **Funding**

618 This study was supported by the National Natural Science Foundation of China (No.
619 31670492 and No. 31500100).

620

621 **Data availability**

622 The 16S rRNA gene sequences contributed by this study have been deposited in
623 Genbank under accession numbers MN658562-MN658566. The genomes recovered
624 in this study have been deposited in the Sequence Read Archive (SRA) under
625 accession number PRJNA555508. The genome sequencing data of isolates in this
626 study and the *orth10* amplicon sequencing data had been deposited in the SRA under
627 accession number PRJNA555745, PRJNA565808 and PRJNA557417.

628

629 **Author contributions**

630 FG conceived and supervised the study. HL and FG designed the study. CXH and JZ
631 performed the experiments. HL, JMK, ZJW and FG analysed the data. HL and FG
632 wrote the manuscripts. JMK, WZ and YT reviewed and provided valuable edits to
633 the manuscript.

634

635 **Ethics approval and consent to participate**

636 Not applicable.

637

638 **Consent for publication**

639 Not applicable.

640

641 **Competing interests**

642 The authors declare that they have no competing interests.

643

644 **References**

645 1. Round JL, Mazmanian SK. 2009. The gut microbiota shapes intestinal
646 immune responses during health and disease. *Nat Rev Immunol* 9:313-323.

647 2. Sommer F, Bäckhed F. 2013. The gut microbiota-masters of host development
648 and physiology. *Nat Rev Microbiol* 11:227-238.

649 3. Tremaroli V, Bäckhed F. 2012. Functional interactions between the gut
650 microbiota and host metabolism. *Nature* 489:242-249.

651 4. Brooks AW, Kohl KD, Brucker RM, van Opstal EJ, Bordenstein SR. 2016.
652 Phylosymbiosis: relationships and functional effects of microbial communities
653 across host evolutionary history. *PLoS Biol* 14:e2000225.

654 5. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS,
655 Schlegel ML, Tucker TA, Schrenzel MD, Knight R. 2008. Evolution of
656 mammals and their gut microbes. *Science* 320:1647-1651.

657 6. Ochman H, Worobey M, Kuo C-H, Ndjango J-BN, Peeters M, Hahn BH,
658 Hugenholtz P. 2010. Evolutionary relationships of wild hominids recapitulated
659 by gut microbial communities. *PLoS Biol* 8:e1000546.

660 7. Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, Alm
661 EJ. 2017. Unraveling the processes shaping mammalian gut microbiomes over
662 evolutionary time. *Nat Commun* 8:14319.

663 8. Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L,
664 Henrissat B, Knight R, Gordon JI. 2011. Diet drives convergence in gut
665 microbiome functions across mammalian phylogeny and within humans.

666 Science 332:970-974.

667 9. Gaulke CA, Arnold HK, Humphreys IR, Kembel SW, O'Dwyer JP, Sharpton
668 TJ. 2018. Ecophylogenetics clarifies the evolutionary association between
669 mammals and their gut microbiota. MBio 9:e01348-18.

670 10. Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV,
671 Muller MN, Pusey AE, Peeters M, Hahn BH, Ochman H. 2016. Cospeciation
672 of gut microbiota with hominids. Science 353:380-382.

673 11. Eren AM, Morrison HG, Lescault PJ, Reveillaud J, Vineis JH, Sogin ML.
674 2015. Minimum entropy decomposition: unsupervised oligotyping for
675 sensitive partitioning of high-throughput marker gene sequences. ISME J
676 9:968-979.

677 12. Oh PL, Benson AK, Peterson DA, Patil PB, Moriyama EN, Roos S, Walter J.
678 2010. Diversification of the gut symbiont *Lactobacillus reuteri* as a result of
679 host-driven evolution. ISME J 4:377-387.

680 13. Smet A, Yahara K, Rossi M, Tay A, Backert S, Armin E, Fox JG, Flahou B,
681 Ducatelle R, Haesebrouck F. 2018. Macroevolution of gastric *Helicobacter*
682 species unveils interspecies admixture and time of divergence. ISME J
683 12:2518-2531.

684 14. Lebreton F, Manson AL, Saavedra JT, Straub TJ, Earl AM, Gilmore MS. 2017.
685 Tracing the enterococci from Paleozoic origins to the hospital. Cell 169:849-
686 861.

687 15. Nayfach S, Rodriguezmueller B, Garud NR, Pollard KS. 2016. An integrated

688 metagenomics pipeline for strain profiling reveals novel patterns of bacterial
689 transmission and biogeography. *Genome Res* 26:1612-1625.

690 16. Shapira M. 2016. Gut microbiotas and host evolution: scaling up symbiosis.
691 *Trends Ecol Evol* 31:539-549.

692 17. Perofsky AC, Lewis RJ, Meyers LA. 2019. Terrestriality and bacterial transfer:
693 a comparative study of gut microbiomes in sympatric Malagasy mammals.
694 *ISME J* 13:50-63.

695 18. Martino ME, Joncour P, Leenay RT, Gervais H, Shah M, Hughes S, Gillet B,
696 Beisel CL, Leulier F. 2018. Bacterial adaptation to the host's diet is a key
697 evolutionary force shaping *Drosophila-Lactobacillus* symbiosis. *Cell Host*
698 *Microbe* 24: 109-119.

699 19. Toju H, Tanabe AS, Notsu Y, Sota T, Fukatsu T. 2013. Diversification of
700 endosymbiosis: replacements, co-speciation and promiscuity of bacteriocyte
701 symbionts in weevils. *ISME J* 7:1378-1390.

702 20. Kikuchi Y, Hosokawa T, Fukatsu T. 2011. An ancient but promiscuous host-
703 symbiont association between *Burkholderia* gut symbionts and their
704 heteropteran hosts. *ISME J* 5:446-460.

705 21. Sheppard SK, Guttman DS, Fitzgerald JR. 2018. Population genomics of
706 bacterial host adaptation. *Nat Rev Genet* 19:549-565.

707 22. Amato KR, Sanders JG, Song SJ, Nute M, Metcalf JL, Thompson LR, Morton
708 JT, Amir A, McKenzie VJ, Humphrey G. 2019. Evolutionary trends in host
709 physiology outweigh dietary niche in structuring primate gut microbiomes.

710 ISME J 13:576-587.

711 23. Amato KR. 2013. Co-evolution in context: the importance of studying gut
712 microbiomes in wild animals. Microbiome Sci Med 1:10-29.

713 24. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR,
714 Fernandes GR, Tap J, Bruls T, Batto J-M. 2011. Enterotypes of the human gut
715 microbiome. Nature 473:174-180.

716 25. Costea PI, Hildebrand F, Arumugam M, Bäckhed F, Blaser MJ, Bushman FD,
717 De Vos WM, Ehrlich SD, Fraser CM, Hattori M. 2018. Enterotypes in the
718 landscape of gut microbial community composition. Nat Microbiol 3:8-16.

719 26. Ley RE. 2016. Gut microbiota in 2015: *Prevotella* in the gut: choose carefully.
720 Nat Rev Gastroenterol Hepatol 13:69-70.

721 27. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, Rostron T,
722 Cerundolo V, Pamer EG, Abramson SB. 2013. Expansion of intestinal
723 *Prevotella copri* correlates with enhanced susceptibility to arthritis. Elife
724 2:e01202.

725 28. Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T,
726 Jensen BA, Forslund K, Hildebrand F, Prifti E, Falony G. 2016. Human gut
727 microbes impact host serum metabolome and insulin sensitivity. Nature
728 535:376-381.

729 29. Costea PI, Coelho LP, Sunagawa S, Munch R, Huerta-Cepas J, Forslund K,
730 Hildebrand F, Kushugulova A, Zeller G, Bork P. 2017. Subspecies in the
731 global human gut microbiome. Mol Syst Biol 13:960.

732 30. Tett A, Huang KD, Asnicar F, Fehlner-Peach H, Pasolli E, Karcher N,
733 Armanini F, Manghi P, Bonham K, Zolfo M, De Filippis F, Magnabosco C,
734 Bonneau R, Lusingu J, Amuasi J, Reinhard K, Rattei T, Boulund F, Engstrand
735 L, Zink A, Collado MC, Littman DR, Eibach D, Ercolini D, Rota-Stabelli O,
736 Huttenhower C, Maixner F, Segata N. 2019. The *Prevotella copri* complex
737 comprises four distinct clades underrepresented in westernized populations.
738 Cell Host Microbe 26:666-679.

739 31. Barr T, Sureshchandra S, Ruegger P, Zhang J, Ma W, Borneman J, Grant K,
740 Messaoudi I. 2018. Concurrent gut transcriptome and microbiota profiling
741 following chronic ethanol consumption in nonhuman primates. Gut Microbes
742 9:338-356.

743 32. Brooke CG, Najafi N, Dykier KC, Hess M. 2019. *Prevotella copri*, a potential
744 indicator for high feed efficiency in western steers. Anim Sci J 90:696-701.

745 33. Hu J, Nie Y, Chen J, Zhang Y, Wang Z, Fan Q, Yan X. 2016. Gradual changes
746 of gut microbiota in weaned miniature piglets. Front Microbiol 7:1727.

747 34. Bowers RM, Kyrpides NC, Stepanskas R, Harmon-Smith M, Doud D,
748 Reddy T, Schulz F, Jarett J, Rivers AR, Elo-Fadrosh EA. 2017. Minimum
749 information about a single amplified genome (MISAG) and a metagenome-
750 assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35:725-
751 731.

752 35. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. 2013. Genome sequence-
753 based species delimitation with confidence intervals and improved distance

754 functions. *BMC Bioinforma* 14:60.

755 36. Morelli G, Didelot X, Kusecek B, Schwarz S, Bahlawane C, Falush D,
756 Suerbaum S, Achtman M. 2010. Microevolution of *Helicobacter pylori* during
757 prolonged infection of single hosts and within families. *PLoS Genet*
758 6:e1001036.

759 37. Falush D, Wirth T, Linz B, Pritchard JK, Stephens M, Kidd M, Blaser MJ,
760 Graham DY, Vacher S, Perez-Perez GI. 2003. Traces of human migrations in
761 *Helicobacter pylori* populations. *Science* 299:1582-1585.

762 38. Hershkovitz I, Weber GW, Quam R, Duval M, Grun R, Kinsley L, Ayalon A,
763 Barmathews M, Valladas H, Mercier N. 2018. The earliest modern humans
764 outside Africa. *Science* 359:456-459.

765 39. Chen T, Long W, Zhang C, Liu S, Zhao L, Hamaker BR. 2017. Fiber-utilizing
766 capacity varies in *Prevotella*-versus *Bacteroides*-dominated gut microbiota.
767 *Sci Rep* 7:2594.

768 40. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T,
769 Hallen A, Martens E, Björck I, Bäckhed F. 2015. Dietary fiber-induced
770 improvement in glucose metabolism is associated with increased abundance of
771 *Prevotella*. *Cell Metab* 22:971-982.

772 41. Ndeh D, Rogowski A, Cartmell A, Luis AS, Baslé A, Gray J, Venditto I,
773 Briggs J, Zhang X, Labourel A. 2017. Complex pectin metabolism by gut
774 bacteria reveals novel catalytic functions. *Nature* 544:65-70.

775 42. Zou Y, Xue W, Luo G, Deng Z, Qin P, Guo R, Sun H, Xia Y, Liang S, Dai Y.

776 2019. 1,520 reference genomes from cultivated human gut bacteria enable
777 functional microbiome analyses. *Nat Biotechnol* 37:179-185.

778 43. Albertsen M, Hugenholtz P, Skarszewski A, Nielsen KL, Tyson GW, Nielsen
779 PH. 2013. Genome sequences of rare, uncultured bacteria obtained by
780 differential coverage binning of multiple metagenomes. *Nat Biotechnol*
781 31:533-538.

782 44. Selvendran RR. 1984. The plant cell wall as a source of dietary fiber:
783 chemistry and structure. *Am J Clin Nutr* 39:320-337.

784 45. Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR,
785 Prifti E, Nielsen T. 2014. An integrated catalog of reference genes in the
786 human gut microbiome. *Nat Biotechnol* 32:834-841.

787 46. Nelson TM, Rogers TL, Carlini AR, Brown MV. 2013. Diet and phylogeny
788 shape the gut microbiota of Antarctic seals: a comparison of wild and captive
789 animals. *Environ Microbiol* 15:1132-1145.

790 47. Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM, Al-Ghalith GA,
791 Travis DA, Long HT, Van Tuan B, Van Minh V. 2016. Captivity humanizes
792 the primate microbiome. *Proc Natl Acad Sci USA* 113:10376-10381.

793 48. Grieneisen LE, Charpentier MJ, Alberts SC, Blekhman R, Bradburd G, Tung J,
794 Archie EA. 2019. Genes, geology and germs: gut microbiota across a primate
795 hybrid zone are explained by site soil properties, not host species. *Proc R Soc
796 B* 286:20190431.

797 49. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS,

798 Sonnenburg JL. 2016. Diet-induced extinctions in the gut microbiota
799 compound over generations. *Nature* 529:212-215.

800 50. Moran NA, Mccutcheon JP, Nakabachi A. 2008. Genomics and evolution of
801 heritable bacterial symbionts. *Annu Rev Genet* 42:165-190.

802 51. Fraser C, Hanage WP, Spratt BG. 2007. Recombination and the nature of
803 bacterial speciation. *Science* 315:476-480.

804 52. Karcher N, Pasolli E, Asnicar F, Huang KD, Tett A, Manara S, Armanini F,
805 Bain D, Duncan SH, Louis P. 2020. Analysis of 1321 *Eubacterium rectale*
806 genomes from metagenomes uncovers complex phylogeographic population
807 structure and subspecies functional adaptations. *Genome Biol* 21:1-27.

808 53. On SL, Miller WG, Houf K, Fox JG, Vandamme P. 2017. Minimal standards
809 for describing new species belonging to the families *Campylobacteraceae* and
810 *Helicobacteraceae*: *Campylobacter*, *Arcobacter*, *Helicobacter* and *Wolinella*
811 spp. *Int J Syst Evol Microbiol* 67:5296-5311.

812 54. Ochman H, Elwyn S, Moran NA. 1999. Calibrating bacterial evolution. *Proc
813 Natl Acad Sci USA* 96:12638-12643.

814 55. Achtman M, Wagner M. 2008. Microbial diversity and the genetic nature of
815 microbial species. *Nat Rev Microbiol* 6:431-440.

816 56. Teng L, Lee S, Ginn A, Markland SM, Mir RA, DiLorenzo N, Boucher C,
817 Prosperi M, Johnson J, Morris JG. 2019. Genomic comparison reveals natural
818 occurrence of clinically relevant multidrug-resistant extended-spectrum- β -
819 lactamase-producing *Escherichia coli* strains. *Applied and Environ Microbiol*

820 85:e03030-18.

821 57. Livermore JA, Jones SE. 2015. Local–global overlap in diversity informs
822 mechanisms of bacterial biogeography. ISME J 9:2413-2422.

823 58. De Wit R, Bouvier T. 2006. Everything is everywhere, but, the environment
824 selects'; what did Baas Becking and Beijerinck really say? Environ Microbiol
825 8:755-758.

826 59. De Filippis F, Pasolli E, Tett A, Tarallo S, Naccarati A, De Angelis M,
827 Neviani E, Cocolin LS, Gobbetti M, Segata N. 2019. Distinct genetic and
828 functional traits of human intestinal *Prevotella copri* strains are associated
829 with different habitual diets. Cell Host Microbe 25:444-53.

830 60. Xiao L, Feng Q, Liang S, Sonne SB, Xia Z, Qiu X, Li X, Long H, Zhang J,
831 Zhang D. 2015. A catalog of the mouse gut metagenome. Nat Biotechnol
832 33:1103-1108.

833 61. Fouladi F, Glenny EM, Bulik-Sullivan EC, Tsilimigras MC, Sioda M, Thomas
834 SA, Wang Y, Djukic Z, Tang Q, Tarantino LM. 2020. Sequence variant
835 analysis reveals poor correlations in microbial taxonomic abundance between
836 humans and mice after gnotobiotic transfer. ISME J 14:1809-1820.

837 62. Pehrsson EC, Tsukayama P, Patel S, Mejía-Bautista M, Sosa-Soto G,
838 Navarrete KM, Calderon M, Cabrera L, Hoyos-Arango W, Bertoli MT. 2016.
839 Interconnected microbiomes and resistomes in low-income human habitats.
840 Nature 533:212-216.

841 63. Toft C, Andersson SG. 2010. Evolutionary microbial genomics: insights into

842 bacterial host adaptation. *Nat Rev Genet* 11:465-475.

843 64. Bailly X, Olivieri I, Brunel B, Cleyet-Marel J-C, Béna G. 2007. Horizontal
844 gene transfer and homologous recombination drive the evolution of the
845 nitrogen-fixing symbionts of *Medicago* species. *J Bacteriol* 189:5223-5236.

846 65. Potnis N, Kandel PP, Merfa MV, Retchless AC, Parker JK, Stenger DC,
847 Almeida RP, Bergsma-Vlami M, Westenberg M, Cobine PA. 2019. Patterns of
848 inter-and intrasubspecific homologous recombination inform eco-evolutionary
849 dynamics of *Xylella fastidiosa*. *ISME J* 13:2319-2333.

850 66. Popa O, Dagan T. 2011. Trends and barriers to lateral gene transfer in
851 prokaryotes. *Curr Opin Microbiol* 14:615-623.

852 67. Shepherd ES, Deloache WC, Pruss K, Whitaker WR, Sonnenburg JL. 2018.
853 An exclusive metabolic niche enables strain engraftment in the gut microbiota.
854 *Nature* 557:434-438.

855 68. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing
856 EzBioCloud: a taxonomically united database of 16S rRNA gene sequences
857 and whole-genome assemblies. *Int J Syst Evol Microbiol* 67:1613-1617.

858 69. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J,
859 Glockner FO. 2012. The SILVA ribosomal RNA gene database project:
860 improved data processing and web-based tools. *Nucleic Acids Res* 41:590-596.

861 70. Xiao L, Estellé J, Kiilerich P, Ramayo-Caldas Y, Xia Z, Feng Q, Liang S,
862 Pedersen AØ, Kjeldsen NJ, Liu C. 2016. A reference gene catalogue of the pig
863 gut microbiome. *Nat Microbiol* 1:16161.

864 71. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD,
865 Goulding D, Lawley TD. 2016. Culturing of ‘unculturable’ human microbiota
866 reveals novel taxa and extensive sporulation. *Nature* 533:543-546.

867 72. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS,
868 Lesin VM, Nikolenko SI, Pham S, Prjibelski AD. 2012. SPAdes: a new
869 genome assembly algorithm and its applications to single-cell sequencing.
870 *Journal of computational biology* 19:455-477.

871 73. Karst SM, Kirkegaard RH, Albertsen M. 2016. mmgenome: a toolbox for
872 reproducible genome extraction from metagenomes. *bioRxiv*:059121.

873 74. Segata N, Waldron L, Ballarini A, Narasimhan VM, Jousson O, Huttenhower
874 C. 2012. Metagenomic microbial community profiling using unique clade-
875 specific marker genes. *Nat Methods* 9:811-814.

876 75. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for
877 Illumina sequence data. *Bioinformatics* 30:2114-2120.

878 76. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2.
879 *Nat Methods* 9:357-359.

880 77. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
881 Abecasis G, Durbin R. 2009. The sequence alignment/map format and
882 SAMtools. *Bioinformatics* 25:2078-2079.

883 78. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015.
884 CheckM: assessing the quality of microbial genomes recovered from isolates,
885 single cells, and metagenomes. *Genome Res* 25:1043-1055.

886 79. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018.
887 High throughput ANI analysis of 90K prokaryotic genomes reveals clear
888 species boundaries. *Nat Commun* 9: 5114.

889 80. Eddy SR. 2011. Accelerated profile HMM searches. *PLoS Comput Biol*
890 7:e1002195-16.

891 81. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. 2012. dbCAN: a web resource
892 for automated carbohydrate-active enzyme annotation. *Nucleic Acids Res*
893 40:W445-W451.

894 82. Oyserman BO, Moya F, Lawson CE, Garcia AL, Vogt M, Heffernan M,
895 Noguera DR, McMahon KD. 2016. Ancestral genome reconstruction identifies
896 the evolutionary basis for trait acquisition in polyphosphate accumulating
897 bacteria. *ISME J* 10:2931-2945.

898 83. Tange O. 2011. Gnu parallel-the command-line power tool. *USENIX Mag*
899 36:42-47.

900 84. McGill S, Barker D. 2017. Comparison of the protein-coding genomes of three
901 deep-sea, sulfur-oxidising bacteria: “*Candidatus Ruthia magnifica*”,
902 “*Candidatus Vesicomyosocius okutanii*” and *Thiomicrospira crunogena*.
903 *BMC Res Notes* 10:296.

904 85. Van Dongen SM. 2000. Graph clustering by flow simulation. PhD Thesis,
905 University of Utrecht, The Netherlands.

906 86. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6:
907 molecular evolutionary genetics analysis version 6.0. *Mol Biol Evol* 30:2725-

908 2729.

909 87. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and
910 post-analysis of large phylogenies. *Bioinformatics* 30:1312-1313.

911 88. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2—approximately maximum-
912 likelihood trees for large alignments. *PLoS One* 5:e9490.

913 89. Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science
914 Gateway for inference of large phylogenetic trees. 2010 Gateway Computing
915 Environments Workshop (GCE). New Orleans, LA, USA; p. 1-8.

916 90. Meierkothoff JP, Auch AF, Klenk H, Goker M. 2014. Highly parallelized
917 inference of large genome-based phylogenies. *Concurr Comput* 26:1715-1729.

918 91. Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for
919 the display and annotation of phylogenetic and other trees. *Nucleic Acids Res*
920 44:W242-W245.

921 92. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarszewski A, Chaumeil P,
922 Hugenholtz P. 2018. A standardized bacterial taxonomy based on genome
923 phylogeny substantially revises the tree of life. *Nat Biotechnol* 36:996-1004.

924 93. Bruen TC, Philippe H, Bryant D. 2006. A simple and robust statistical test for
925 detecting the presence of recombination. *Genetics* 172:2665-2681.

926 94. Zhang Z, Li JY, Zhao X, Wang J, Wong GK, Yu JM. 2006. KaKs_Calculator :
927 Calculating Ka and Ks through model selection and model averaging.
928 *Genomics Proteomics Bioinformatics* 4:259-263.

929 95. Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M,

930 Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N. 2019. BEAST 2.5:
931 An advanced software platform for Bayesian evolutionary analysis. PLoS
932 Comput Biol 15:e1006650.

933 96. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA,
934 Rambaut A, Drummond AJ. 2014. BEAST 2: a software platform for
935 Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537.

936 97. Mangiafico S. 2018. rcompanion: functions to support extension education
937 program evaluation. R package version 2.0.0.

938 98. Wickham H. 2016. ggplot2: elegant graphics for data analysis. Springer.

939 99. Kolde R. 2012. Pheatmap: pretty heatmaps. R package version 1.0.9.

940 100. Brunson J. 2018. ggalluvial: Alluvial Diagrams in “ggplot2”. R package
941 version 0.9.1.

942 101. Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH. 2008. Synteny
943 and collinearity in plant genomes. Science 320:486-488.

944

945

946 **Legends of Figures**

947 Figure 1 16S rRNA gene-based analysis on the distribution and phylogeny of PCL. A)
948 Neighbor-joining tree based on 534 16S rRNA gene sequences of the genus
949 *Prevotella* with 100 iterations of bootstrapping. Bold labels indicate sequences from
950 isolates. B) Sankey diagram showing the distribution of host origins and similarity
951 fraction (to DSM 18205) for 16S rRNA gene sequences from SILVA database
952 identified as the PCL ($n=5,316$).

953

954 Figure 2 Phylogenomic analyses and molecular dating of 130 globally collected
955 strains primarily belonging to *P. copri*. A) Maximum-likelihood tree of concatenated
956 1,095 core single-copy orthologous genes (left) and GBDP phylogenomic analysis of
957 the nucleotide sequences restricted to coding regions (right). Values above branches
958 in both trees represent (pseudo) bootstrap support above 60%. Shared annotations
959 include geographical origin ①, clustered groups ②, and dDDH-based species clusters
960 ③. B) Distance of 120 universal marker genes of between group g0 with other strains
961 and within group g0 and other strains. C) Split time of intergroup (g0 to other groups)
962 and intragroup strains.

963

964 Figure 3 CAZys of the six major *P. copri* groups and their biogeography related
965 microevolution. A) Group-specific (FDR-corrected $P < 0.05$ for Fisher's exact test on
966 the frequency of any groups) or sporadic (detected in less than half of the genomes
967 and no significant difference between any two groups) CAZy families in six major
968 groups are shown in the heatmap (black: present; grey: absent). The gene indicated by
969 the arrow was identified by Pfam annotation using HMMER and functionally verified
970 (TEXT S1: Figure S1). B) Genomic synteny of the fragment containing four sporadic
971 CAZy-encoding genes with flanking genes are displayed for six genomes belonging to
972 g1 ($n=3$) and g7 ($n=3$) using the complete genome of YF2 for mapping. Gene in sense
973 strand (green) or reverse strand (blue) are shown by block colors. C) Maximum-
974 likelihood trees of two sporadic CAZy-encoding genes (in nucleotide) with 100

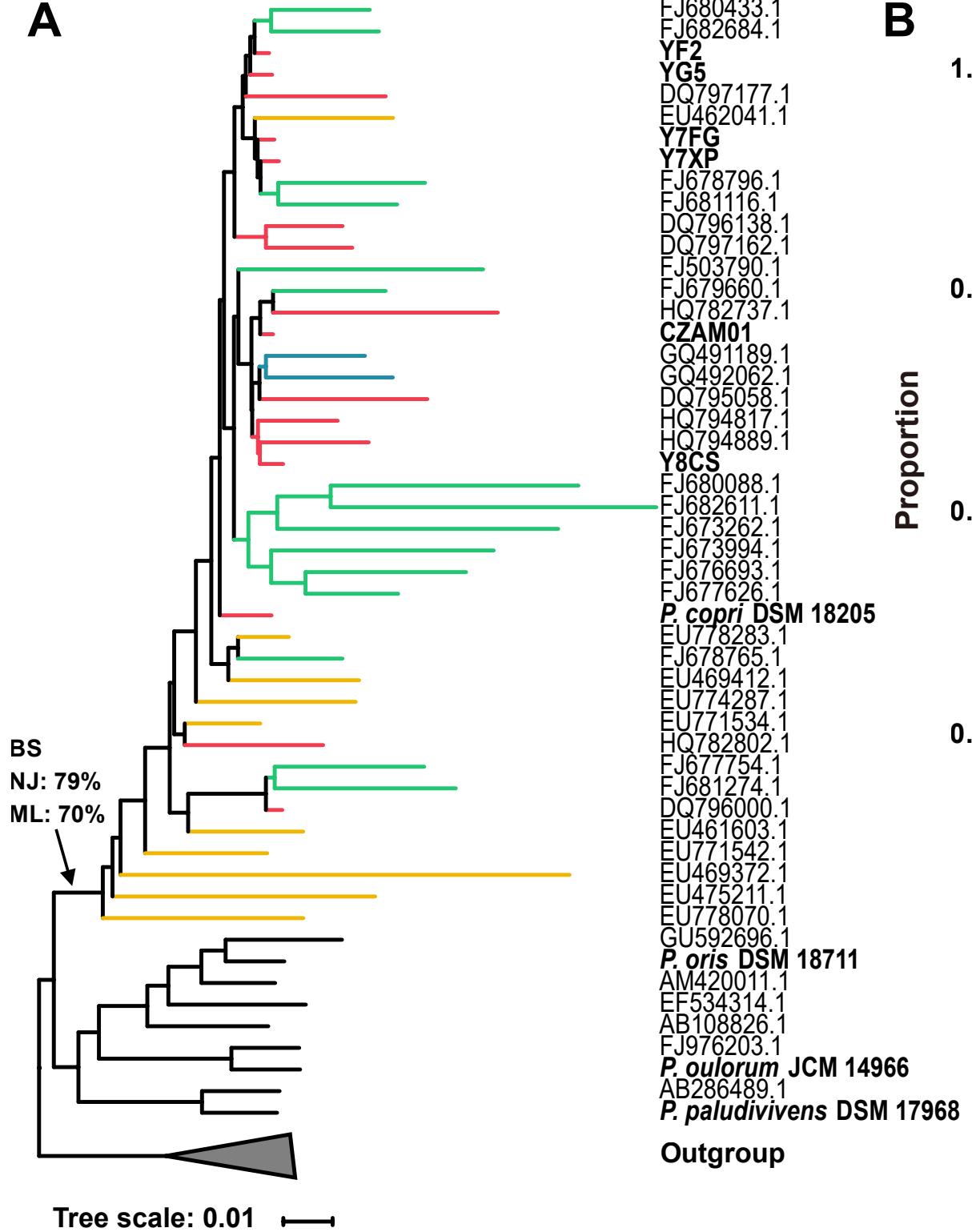
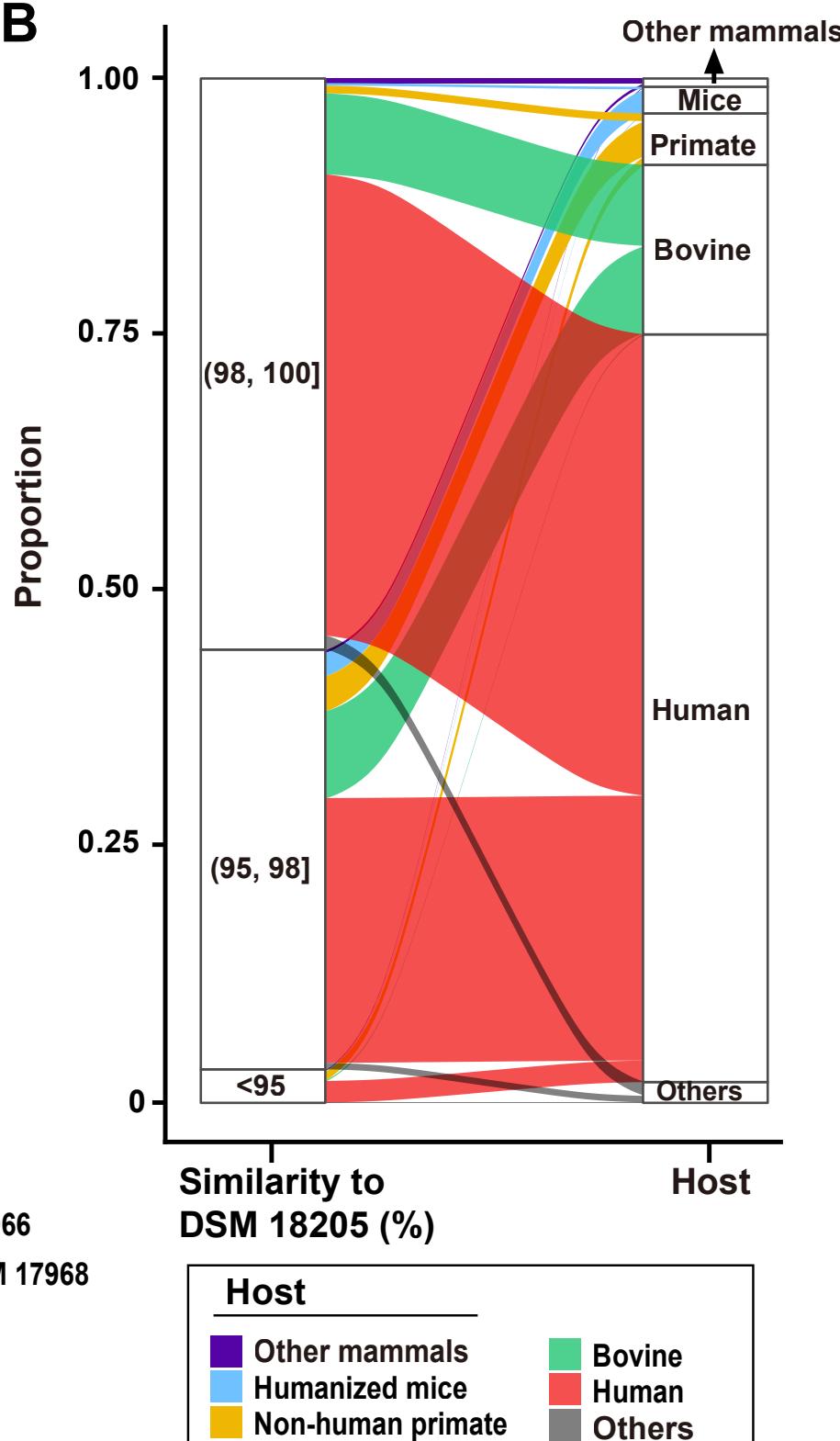
975 bootstrap iterations. Sequences exhibiting extremely high similarity (>99%) are
976 collapsed, and their composition is shown.

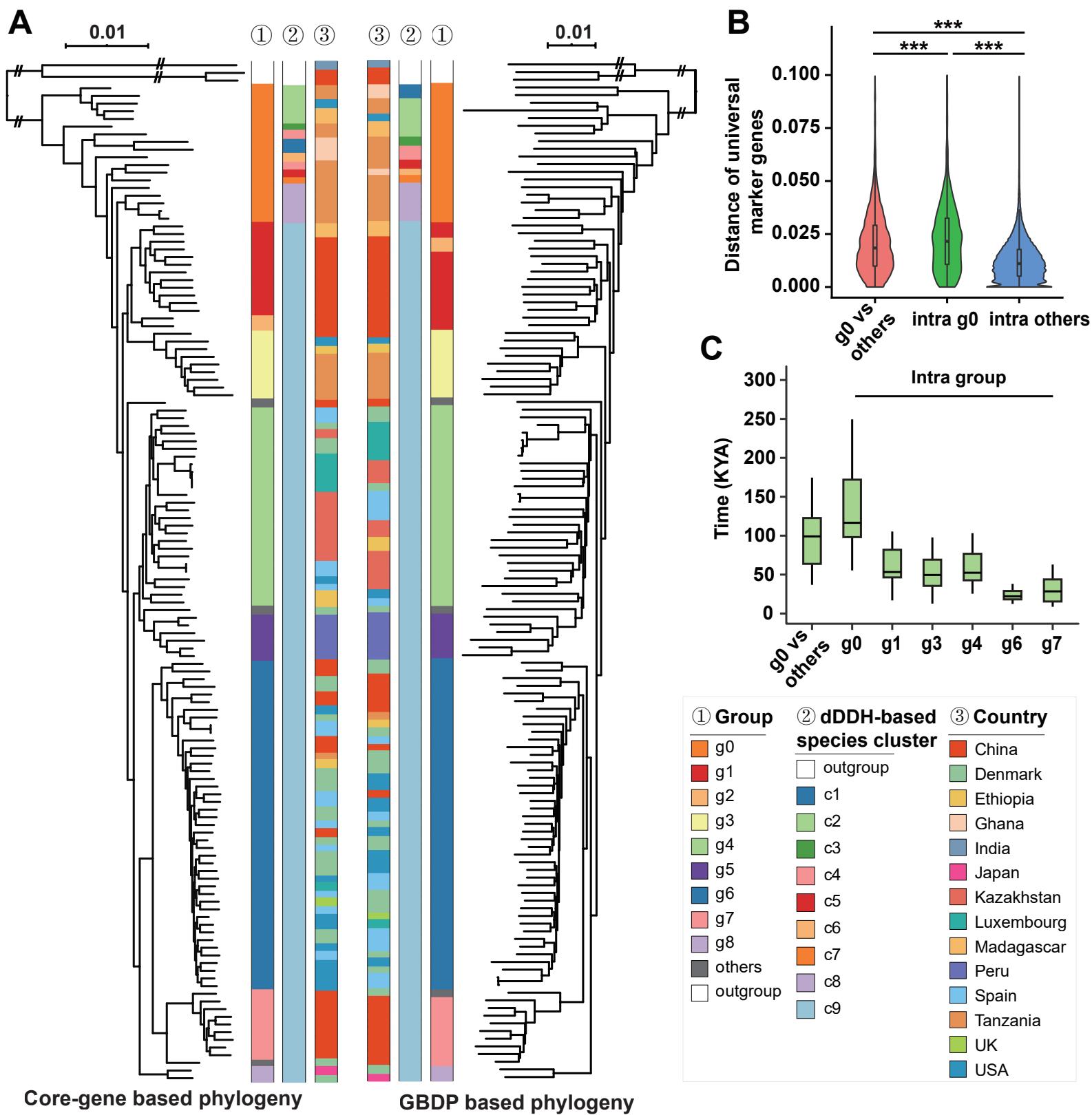
977

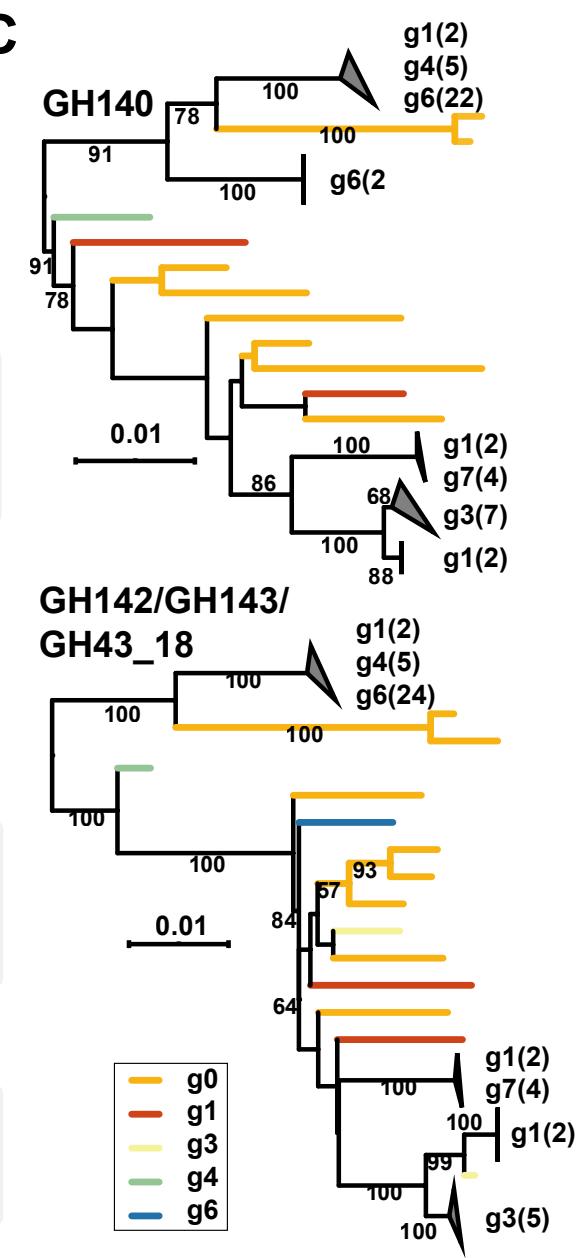
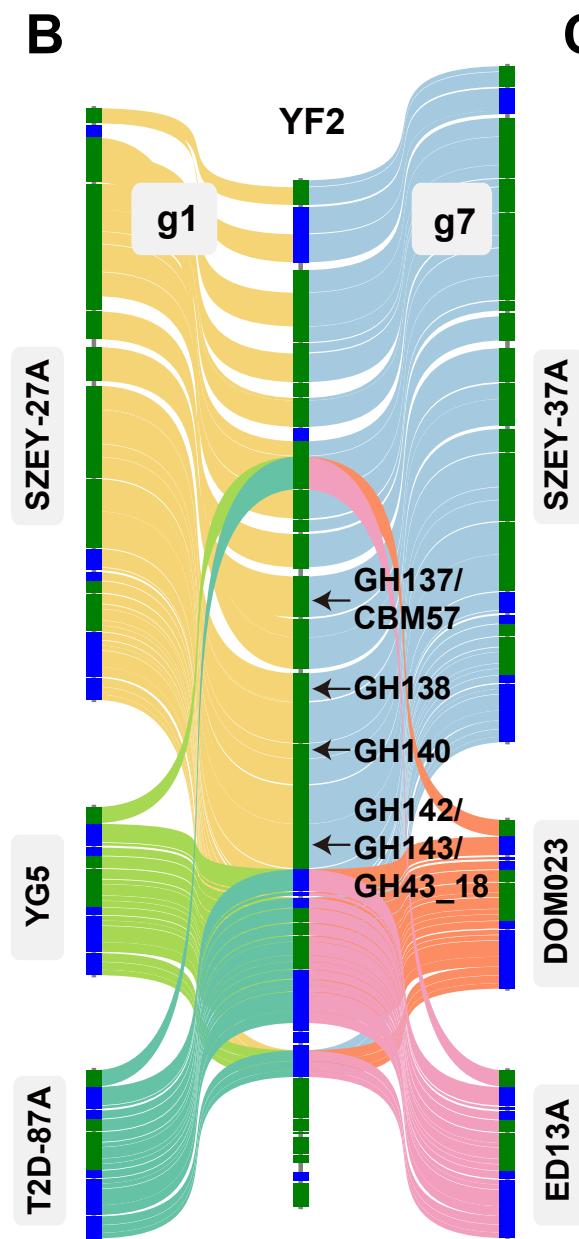
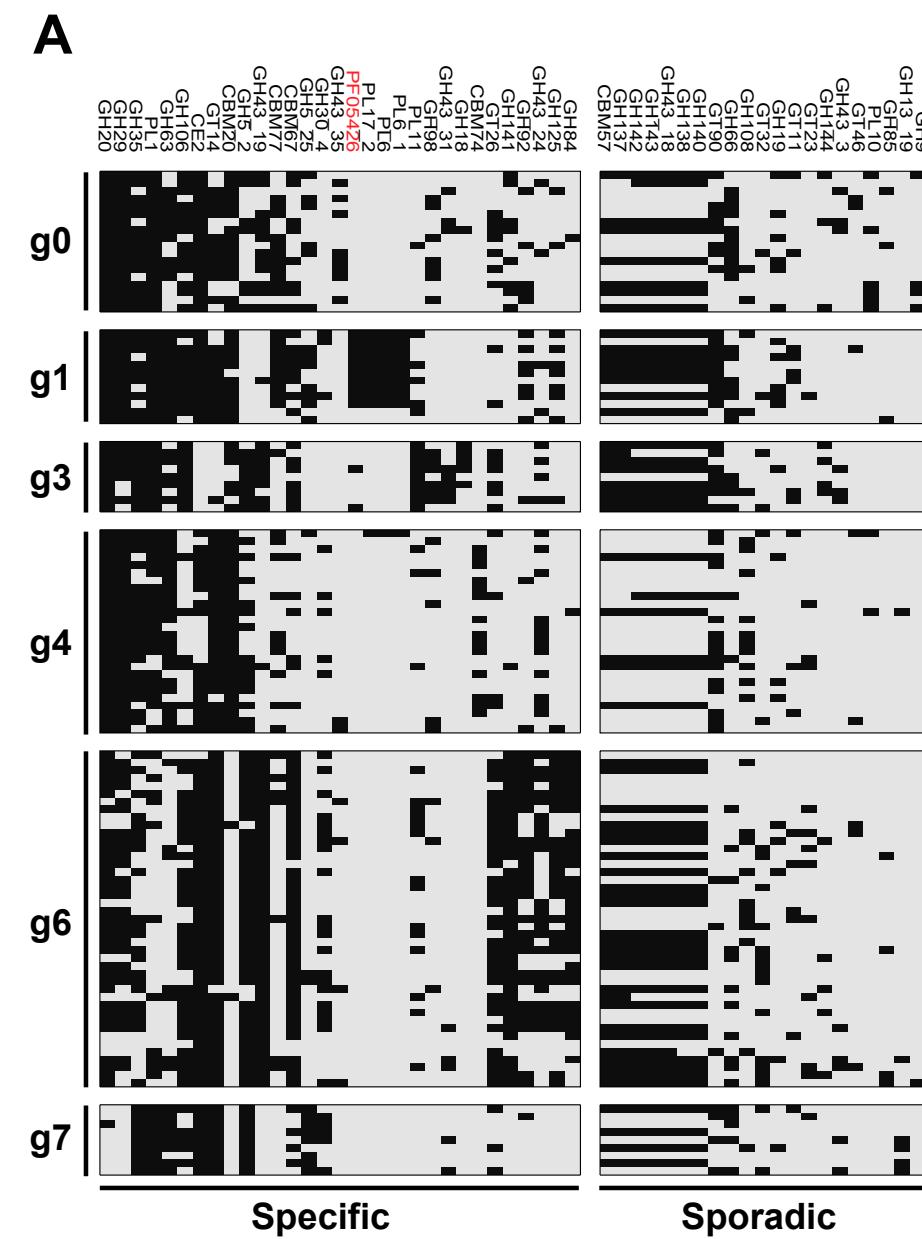
978 Figure 4 Non-strict biogeographical distribution for *P. copri* groups. A) Group-level
979 profile of *P. copri* based on the full-length *orth10* in human gut metagenomes. The
980 sample number with *P. copri* abundance $>10^{-6}$ are shown in the brackets. Groups (i.e.,
981 g1/g7 and g4/g6) from the same geographical origin were merged to display. B) *P.*
982 *copri* group-level profile in sewages of five cities in China based on the amplicon
983 sequencing of the *orth10*. All samples are normalized to 10,000 sequences. In some
984 cases, the short amplicon could not be clearly classified because of multiple top hits
985 belonging to different groups (e.g. g1/g7). The number in brackets indicates the
986 number of unique phylotypes detected in the sewage sample.

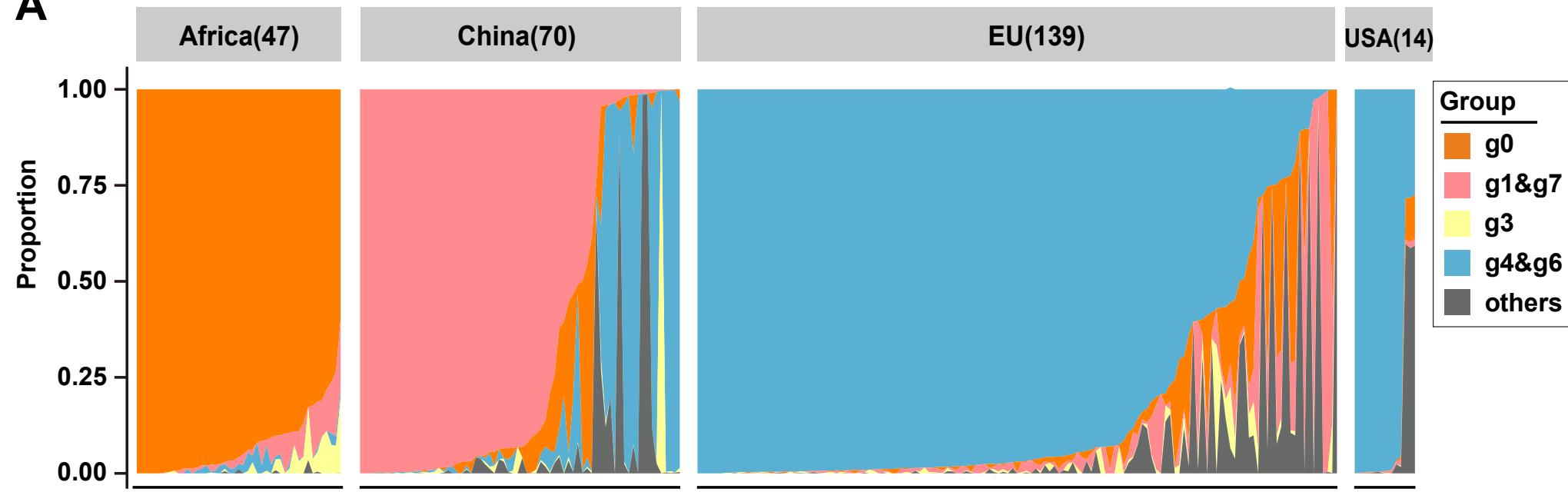
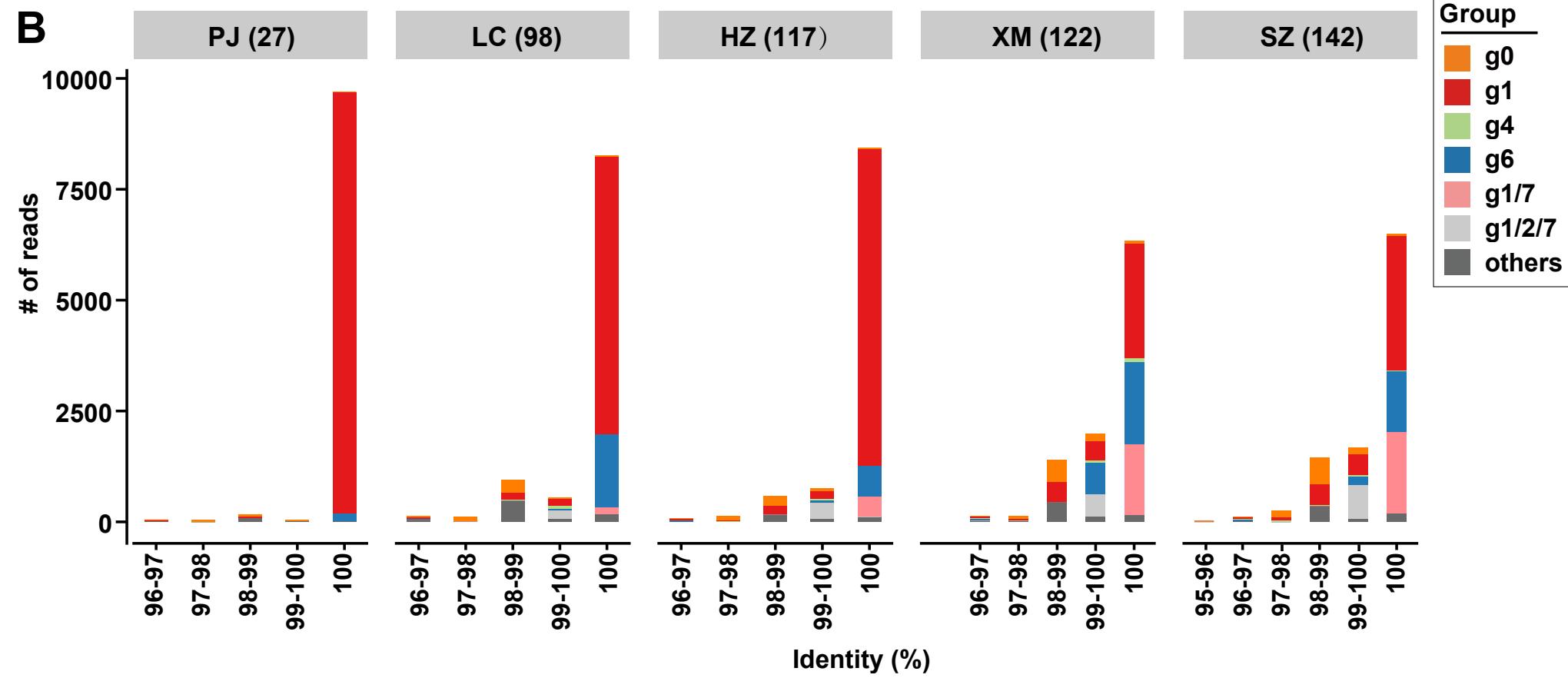
987

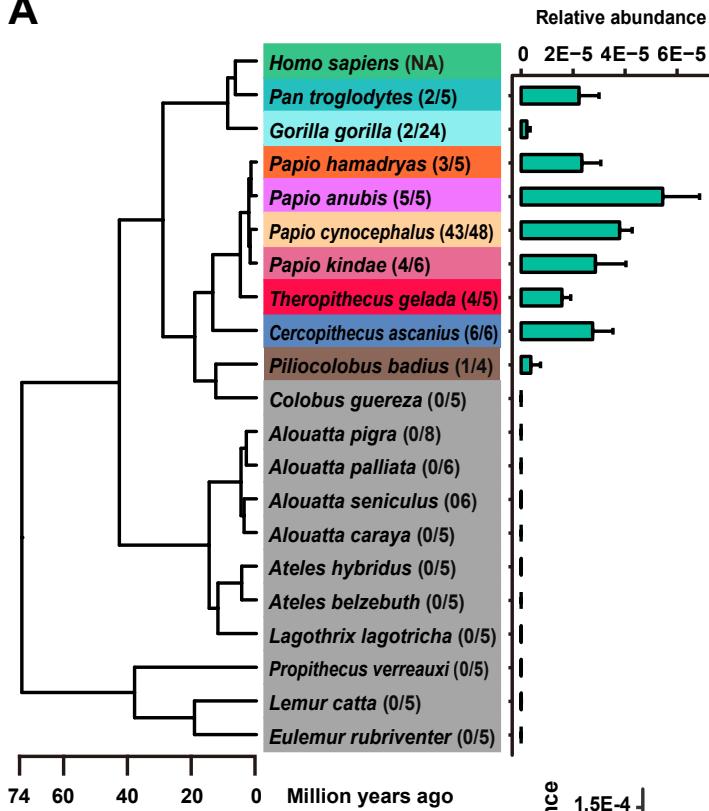
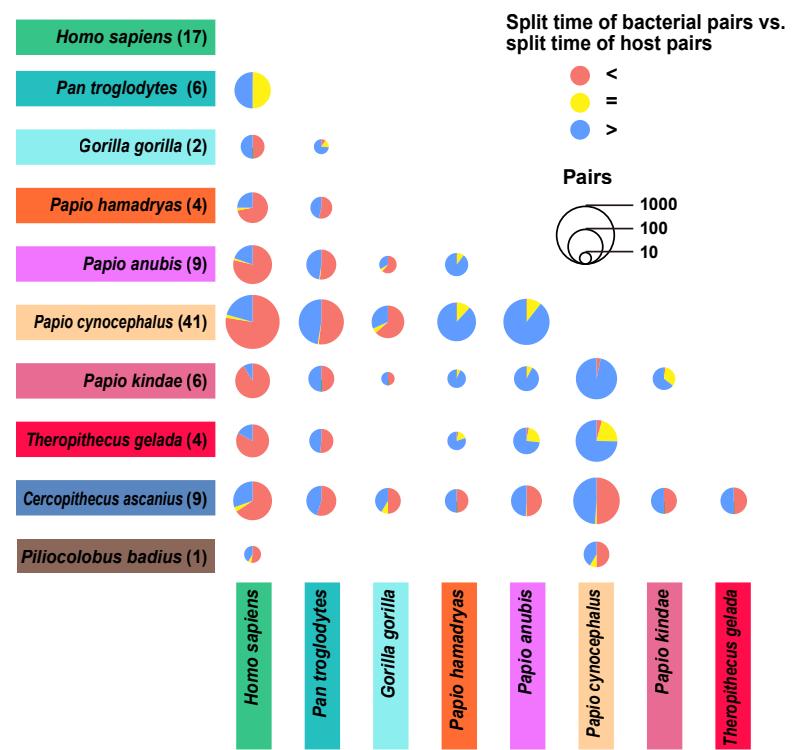
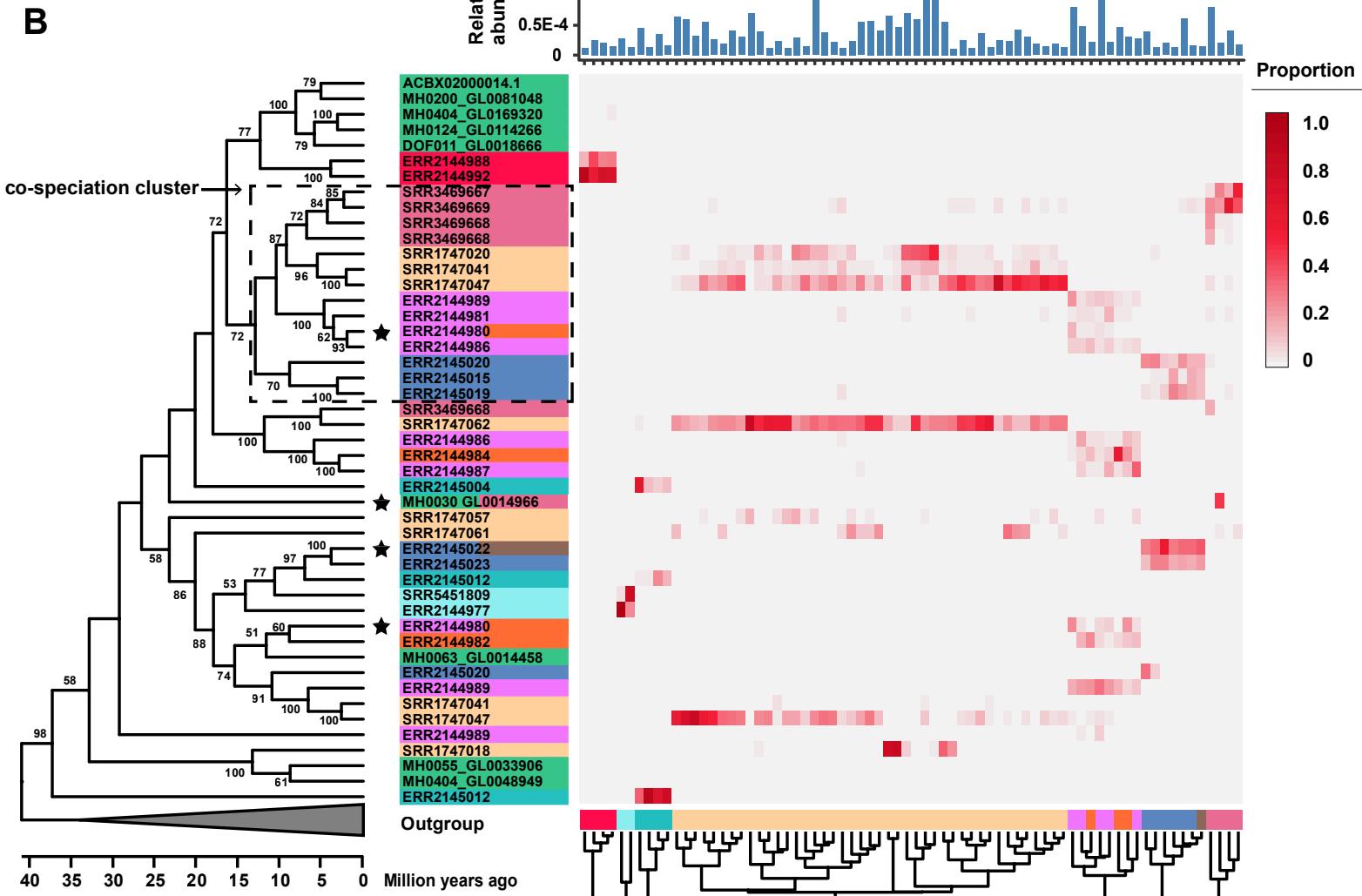
988 Figure 5 Diverse PCL members detected in the gut microbiome of nonhuman
989 primates. A) Time-tree of hosts based on the evolutionary timescale. The relative
990 abundance of total PCL in each host is shown in the barplot. B) Time constraint
991 phylogenetic tree based on the 47 PCL *gyrB* representatives retrieved from wild
992 nonhuman primates and human. The timescale is estimated by calibration based on
993 the co-speciation cluster. Four representative sequences recovered from multiple host
994 origins are marked by star. Read-based abundances are shown in the heatmap. Only
995 samples with over 10^{-5} relative abundance of PCL in the metagenomes are listed with
996 clustering according to Bray-Curtis dissimilarity (bottom). C) Pie chart showing the
997 consistency between the split time of bacterial pairs and split time of host pairs. Only
998 bacterial pairs more than 10 are shown. The number of *gyrB* sequences retrieved from
999 the corresponding host are shown in the brackets.

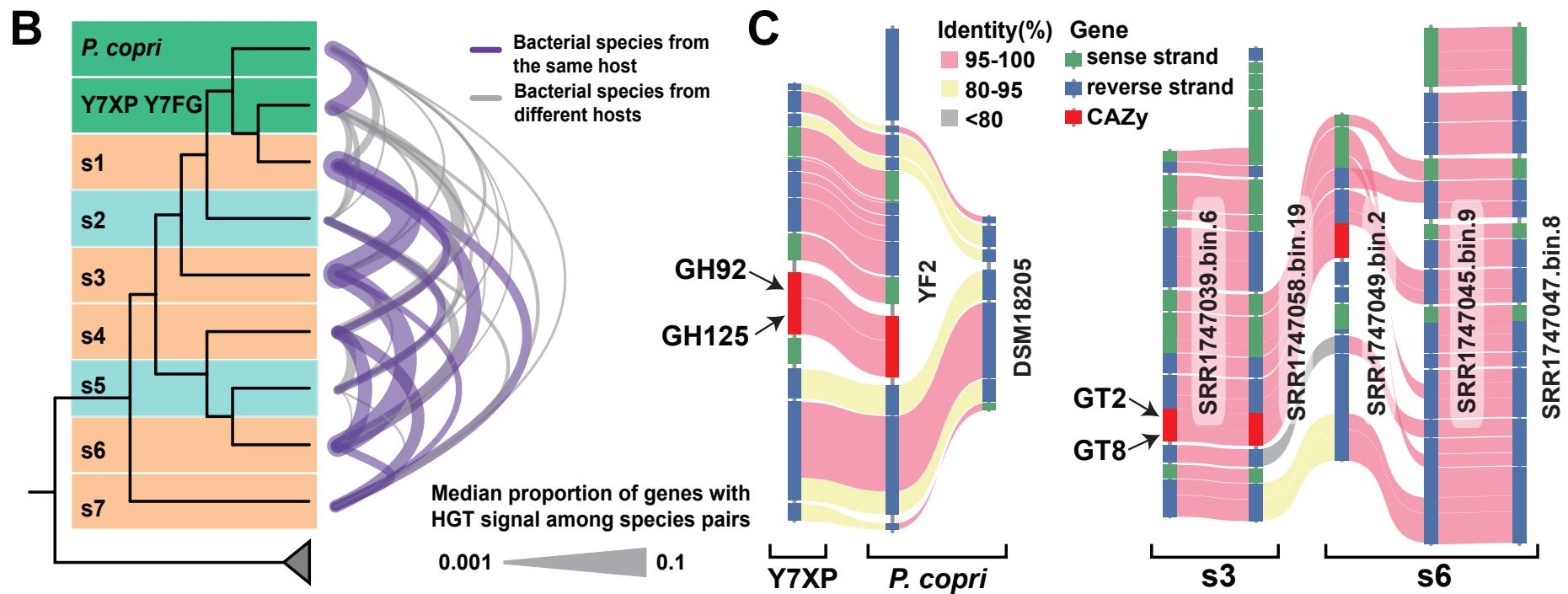
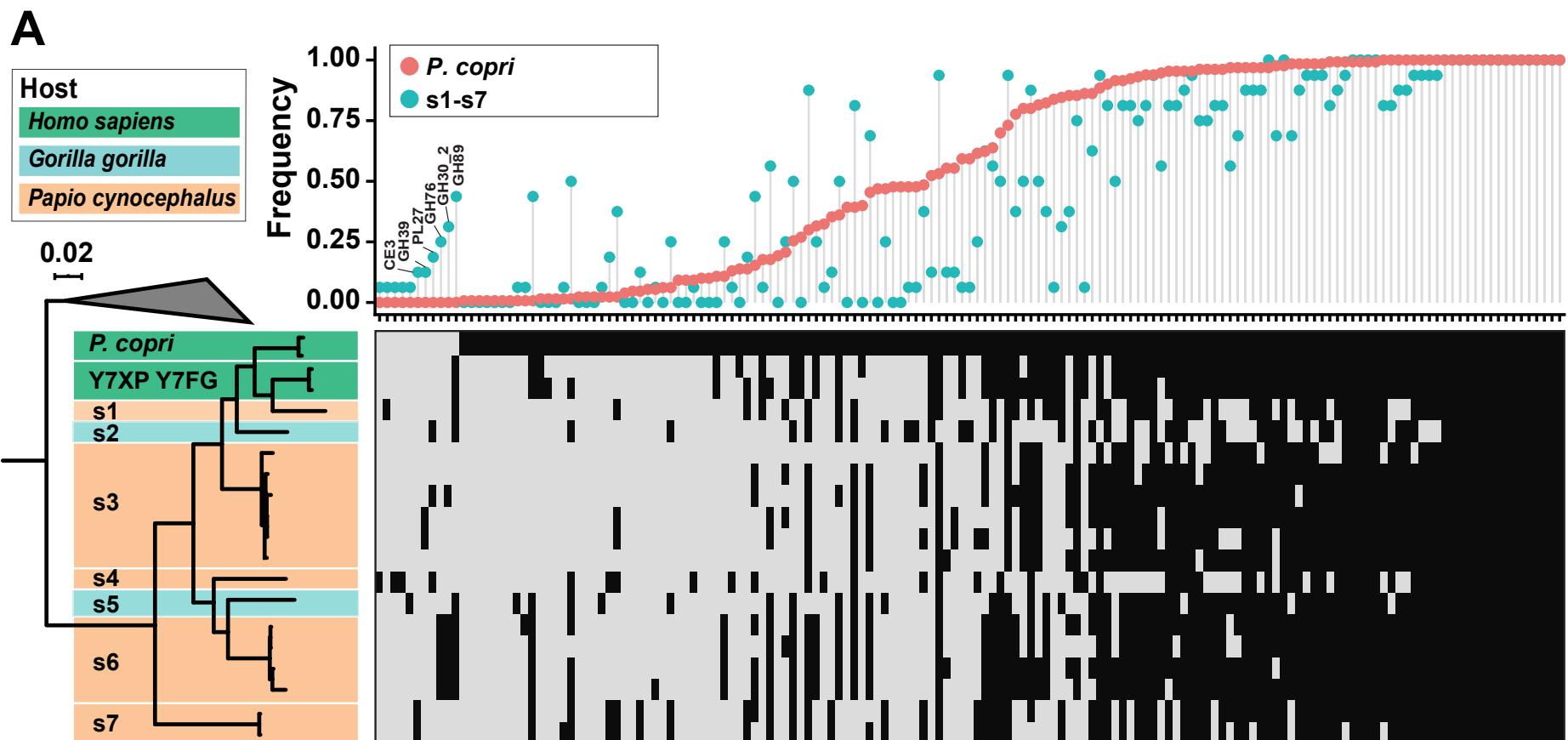


1000

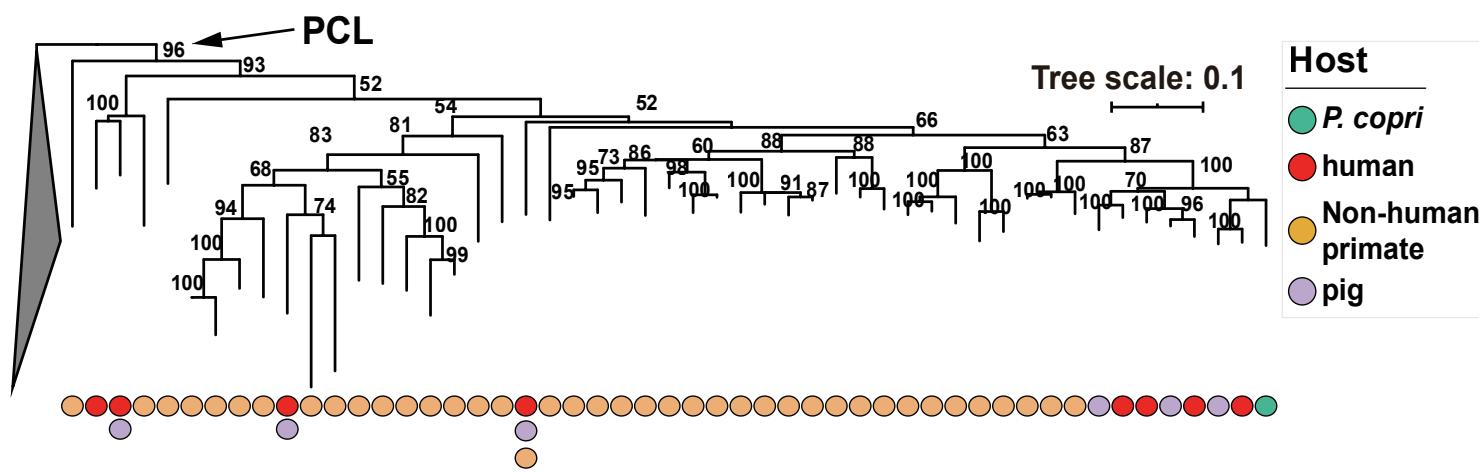
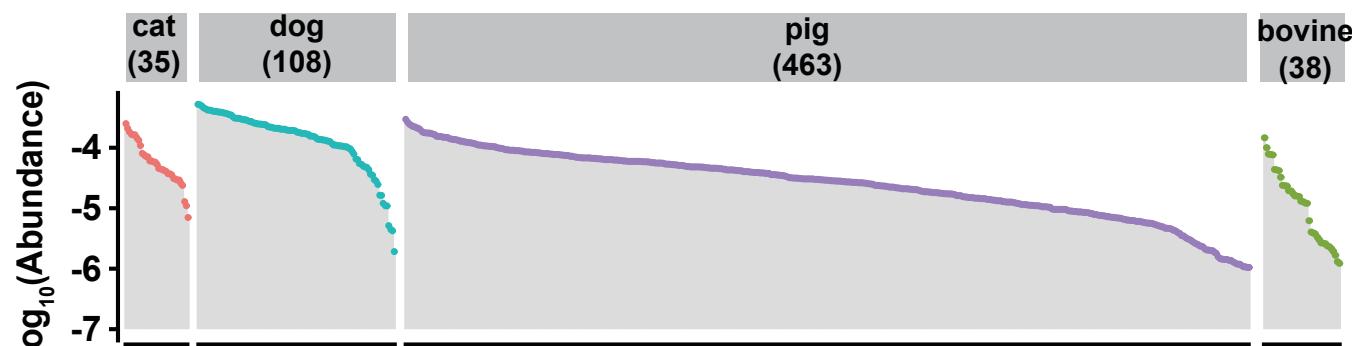
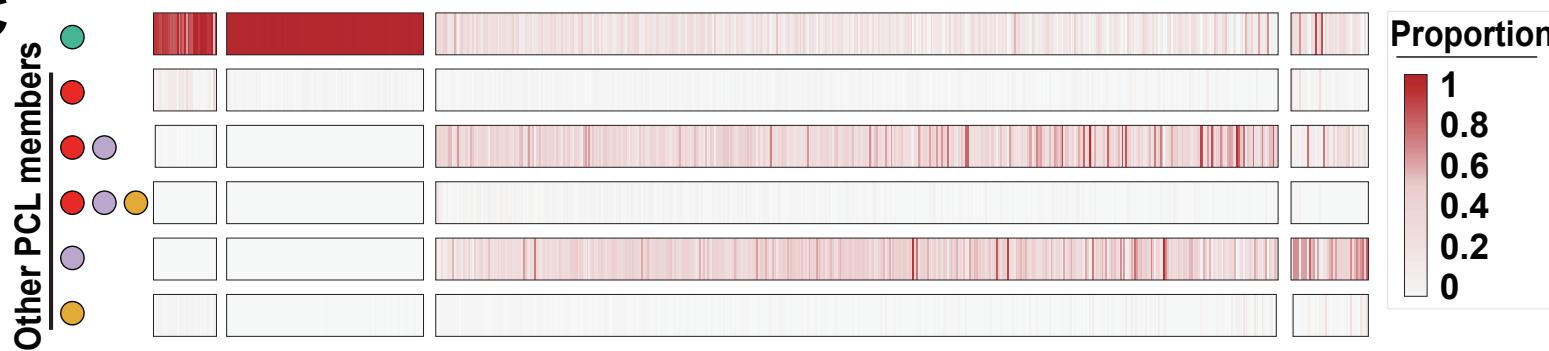
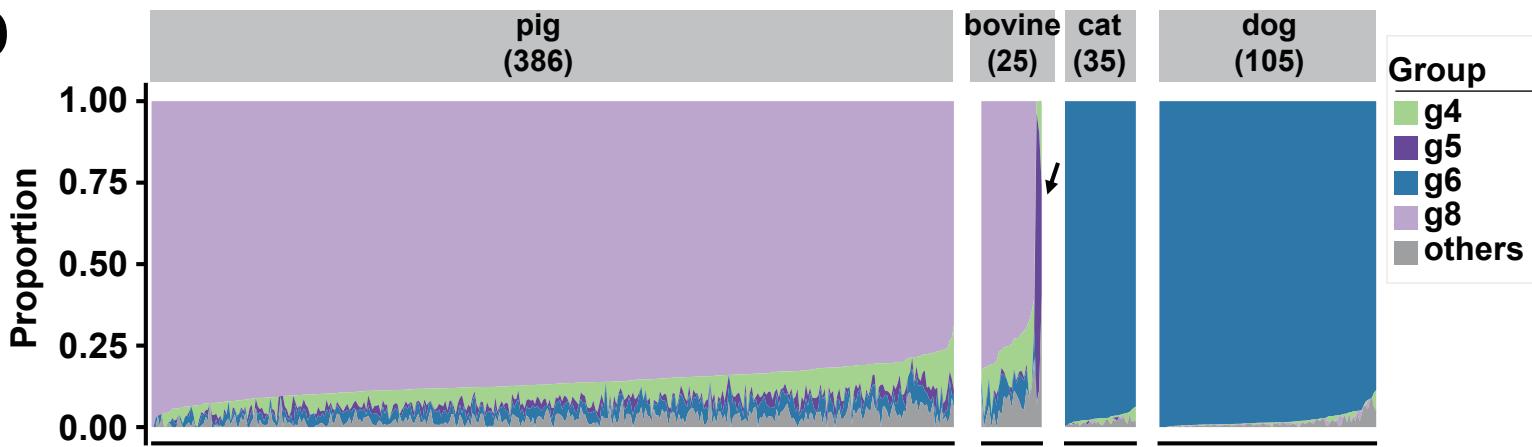

1001 Figure 6 CAZys and HGT events of genomes affiliated within PCL. A) Phylogenetic
1002 tree of genomes affiliated within PCL inferred using 120 universal marker genes
1003 under the JTT model (left). The background color indicates the host origin. CAZy




1004 families are shown in the heatmap (black, present; grey, absent). The dropline plot
1005 shows the frequency of the CAZy families in 130 *P. copri* genomes (red) or 16
1006 nonhuman primate derived PCL genomes (blue). B) HGT events among species of
1007 PCL. C) Two examples of selected CAZy genes with HGT signal shown by genomic
1008 synteny.



1009




1010 Figure 7 Distribution of PCL members and group-level profile of *P. copri* in the
1011 captive mammals. A) Phylogenetic tree based on representative *gyrB* sequences
1012 affiliated within PCL retrieved from humans, nonhuman primates, and pigs. The
1013 circle color shows the host origin. B) Relative abundance of total PCL in mammalian
1014 gut metagenomes according to their hits against the *gyrB* database. Only samples with
1015 the abundance of total PCL $gyrB > 10^{-6}$ are displayed and the numbers of samples are
1016 presented in the brackets. C) Heatmap shows the proportion of PCL members
1017 retrieved from different host origin in the captive mammals. D) Group-level profile of
1018 *P. copri* in the mammalian gut metagenomes according to their hits against the *orth10*
1019 database. The number shown in the brackets represents the samples number of
1020 animals with *orth10* abundance $> 10^{-6}$.



A**B**

A**B**

A**C****B**

A**B****C****D**