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1 Abstract

Many brain imaging studies aim to measure structural connectivity with diffusion
tractography. However, biases in tractography data, particularly near the boundary between
white matter and cortical grey matter can limit the accuracy of such studies. When seeding
from the white matter, streamlines tend to travel parallel to the convoluted cortical surface,
largely avoiding sulcal fundi and terminating preferentially on gyral crowns. When seeding
from the cortical grey matter, streamlines generally run near the cortical surface until
reaching deep white matter. These so-called “gyral biases” limit the accuracy and effective
resolution of cortical structural connectivity profiles estimated by tractography algorithms,
and they do not reflect the expected distributions of axonal densities seen in invasive tracer
studies or stains of myelinated fibres. We propose an algorithm that concurrently models
fibre density and orientation using a divergence-free vector field within gyral blades to
encourage an anatomically-justified streamline density distribution along the cortical
white/grey-matter boundary while maintaining alignment with the diffusion MRI estimated
fibre orientations. Using in vivo data from the Human Connectome Project, we show that this
algorithm reduces tractography biases. We compare the structural connectomes to functional
connectomes from resting-state fMRI, showing that our model improves cross-modal
agreement. Finally, we find that after parcellation the changes in the structural connectome
are very minor with slightly improved interhemispheric connections (i.e, more homotopic
connectivity) and slightly worse intrahemispheric connections when compared to tracers.

2 Introduction

By tracing continuous paths along the distributions of axonal fibre orientations estimated for
each voxel of the brain, diffusion MRI (dAMRI) tractography aims to infer the trajectories of
white matter fibre bundles. This technique has been used to map the paths of major tracts
coursing through white matter or to estimate the connectivity between grey matter regions.
This connectivity is often expressed as a “structural connectome”, which is a matrix that
contains area to area non-invasive estimates of anatomical connectivity (Sporns, Tononi, and
Kotter 2005). Estimating accurate connectivities in the cortex is limited however, by the
strong bias of tractography streamlines to avoid sulcal fundi and walls and instead to
terminate on gyral crowns and has been termed a “gyral bias” (Van Essen et al. 2014;
Reveley et al. 2015; Schilling et al. 2018; Sotiropoulos and Zalesky 2019). This gyral bias
limits the accuracy and spatial resolution at which the termination points of white matter
bundles can be localised or of grey matter to grey matter connection strength estimation. For
example, tractography may localize the termination zone of a streamline to an entire gyrus
but not accurately assign it to either sulcal wall, instead leaving it to terminate on the gyral
crown. Importantly, we do expect some preference for axons to terminate in the gyral crowns
based on the geometry of the gyri (i.e., because of their convex surface curvature, gyral
crowns have a greater ratio of overlying grey matter volume to their white matter surface
area, sulcal walls have a neutral ratio, and concave sulcal fundi have a smaller overlying grey
matter volume to white matter surface area ratio (Van Essen et al. 2014)). However, the gyral
bias observed in tractography is much larger than that expected from the geometry of the
gyri.

The gyral bias may reflect the strong tendency for fibre bundles to run parallel to the
white/grey-matter boundary in the superficial white matter, because even high resolution
dMRI fails to adequately capture the sharply curved trajectories of axons ‘peeling off” to
connect with grey matter sulcal walls and fundi seen with histology (Van Essen et al. 2014).
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U-fibres connecting neighbouring gyri may be a large contributor to these bundles (Reveley
et al. 2015). These parallel fibres lead to the fibre orientations estimated from dMRI to
closely align with the nearby white/grey-matter boundary in superficial white matter along
sulcal walls and fundi (Figure 1A; Cottaar et al. 2018). Hence most tractography streamlines
keep running parallel to the sulcal walls and fundi until they reach the gyral crown, which
results in the gyral bias (Figure 1B; Sotiropoulos et al. 2016). While seeding from the cortical
volume can reduce this gyral bias by ensuring a uniform distribution of seed points within the
cortex, this now creates a bias in the streamline density in white matter, with most
streamlines remaining close to the gyral wall (Figure 1C; Smith et al. 2012). Moreover, the
gyral bias problem persists for the eventual grey matter terminations of these streamlines as
tractography will still overestimate their terminations on gyral crowns versus sulcal fundi.
Here we propose a model for gyral white matter that aims to both reduce the overestimation
gyral streamline terminations relative to sulcal terminations and the bias of streamlines
seeded in the sulcal walls to remain close to the sulcal walls. For our target streamline density
distribution when counting on cortical surfaces, we make the first-order assumption that the
density of streamline crossing the white/grey-matter boundary in any cortical region should
be proportional to the cortical volume divided by the underlying white matter surface area
(Van Essen et al. 2014). Thus, our fundamental assumption is that the cortical streamline
density per unit cortical volume is uniform; accordingly, we will display our results
normalized to unit cortical volume.

A) Dominant B) Deep white matter C) White/grey-matter D) Uniform in

fibre orientation volume seeding boundary seeding volume & surface E) Radial at surface

11\
It

Figure 1 Sketch of possible fibre configurations in white matter of a gyral blade (represented by 10 streamlines). A)

Typically, the dominant voxel-wise fibre orientation estimated from diffusion MRl is closely aligned with the gyral wall and
points to the gyral crown. This causes two types of gyral biases (B and C): B) It causes local tractography streamlines
uniformly entering from deep white matter to preferentially terminate in the gyral crown resulting in a biased density in
the cortex. C) Similarly, local tractography streamlines uniformly seeded from the cortex tend to remain close to the gyral
walls, resulting in a biased density in the white matter. Note that these streamlines are uniform per associated unit of
volume of cortical grey matter rather than uniform across the white/grey-matter boundary. D) By enforcing uniform
densities both for the streamlines entering the gyral white matter and in the cortex, more realistic fibre configurations can
be obtained, (E) especially if additional constraints such as radiality at the surface are added. Note that the fibre

configurations in panels B, C, and E (but not D) are all consistent with the diffusion MRI orientations in panel A.

Our model aims to find a fibre configuration consistent with the diffusion MRI data that has
both a uniform density in the white matter within gyral blades as well as a uniform
distribution of fibre end-points within the cortical grey matter volume (Figure 1D,E). This
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requires not only constraining the streamline orientation, but also its density. Hence, we can
no longer model a single streamline at a time as in local tractography, but instead need to
model the complete set of streamlines at once. To make our initial formulation tractable, we
assume that streamlines within gyral blades do not cross or intermix. This means we cannot
reconstruct fibres crossing from one side of a gyral bank to the other, which need to be
estimated in a different way. Given this assumption, the resultant density constraints create a
fibre configuration where the streamlines entering the gyrus at the left will connect to the left
gyral wall, while those entering on the right connect to the right gyral wall and those in the
centre continue upwards towards the gyral crown (Figure 1D). More realistic 3D fibre
configurations can be created by adding additional constraints such as having radial fibre
orientations when they reach the cortex (Figure 1E) and alignment with the fibre orientations
estimated from diffusion MRI. With this set of geometric and anatomical constraints, the
streamlines disperse towards the surface qualitatively similar to that seen in histology (Budde
and Annese 2013; Van Essen et al. 2014) and high-resolution diffusion MRI data (Miller et
al. 2011; Heidemann et al. 2012; Sotiropoulos et al. 2016).

3 Gyral white matter model

3.1 Defining gyral white matter

We split the white matter into gyral white matter, which is the white matter contained within
the gyral blades, and deep white matter. For the gyral white matter we propose a novel
tractography algorithm to describe the white matter configuration not as individual
streamlines, but as a continuous vector field. This algorithm is likely to be most accurate in
regions where the white matter fibre configuration (i) is constrained by the geometry of the
cortical folds (which is typically neglected in local tractography approaches) and (ii) can be
accurately described using only single dominant fibre population filling up the available
space. While this may be a reasonable description of the white matter over much of the gyral
blades, deep white matter is not generally well described in this way. Hence, we implemented
a way to apply the novel tractography model to the gyral blades and use standard

probabilistic tractography algorithms in the underlying deep white matter.
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F}gure 2 D;ﬁnition of deep/gyral white matter interface. A) “gyral thickness” is defined as the length of the shortest
line through the voxels that hit the white/grey-matter boundary at both ends. B) Thresholding the “Gyral thickness” map

separates the white matter in the gyral blades from the deep white matter underneath.
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To define the boundary between the gyral and deep white matter, we introduce a new “gyral
thickness” measure for each voxel. This measure is defined as the length of the shortest
straight line through the voxel connecting the white/grey-matter boundary on both sides
(Figure 2A). This measure is small between the neighbouring sulcal walls and fundi, but
large for any white matter below the sulcal fundi. The gyral white matter is any white matter
with a gyral thickness less than some threshold. There tends to be a sharp increase in gyral
thickness just below the sulcal fundi, so the boundary location is not very sensitive to the
exact value chosen for the gyral thickness threshold (Figure 2B). In this study we adopt a
threshold of 10 mm.

3.2 Gyral white model overview

Within the gyral blades we model the fibres as a continuous vector field f (X). The norm of

this vector field | f (%)| defines the local fibre density at position X, and the orientation of this
Proy — (D)
vector field (f (x) = )
represent, and potentially impose constraints on, both fibre density (e.g., uniform density
across the cortex) and fibre orientation (e.g., matching the voxel-wise fibre orientations
observed from diffusion MRI).
To produce a realistic fibre configuration, an important constraint is that fibres avoid
terminating in white matter. This is strictly enforced by constructing the vector field to be
divergence-free:

) defines the local fibre orientation. Hence, this model allows us to

2_0fx  Ofy | 0f;

V'f:¥+a—;}+¥:0. (1)
Setting the divergence to zero implies that any decrease in the number of fibres travelling in
one direction must be compensated by an increasing number of streamlines in another
direction, so that the total number of streamlines traveling along a tract remains constant.
This ensures that no streamlines terminate in the white matter.
This single vector field only defines a single fibre orientation and density at every
(infinitesimally small) point (X) in the brain and hence does not allow for crossing fibres.
Crossing fibres could be modelled by describing each white matter tract as a different vector
field, which can overlap. However, in this initial formulation we model the superficial white
matter as a single, divergence-free vector field, hence ignoring any crossing fibres within this
region. Fibre crossings are taken into account for deeper white matter, where we use
probabilistic tractography based on a crossing-fibre model (Behrens et al. 2007; Jbabdi et al.
2012), as available in FSL.
Figure 3 shows an overview of our tractography algorithm for the gyral white matter. An
initial estimate of the fibre configuration is provided by distributing negative charges at each
centre of the triangles in the pial surface mesh and a single, positive charge in deep white
matter. The field at any point (X = (x,y, z) )) in the white matter is hence given by:

fcharge(f; qi, ﬁl) =2 %r (2)
where the p; ‘s are the positions of the point charges and the g;’s are the charge at point p;.
The negative charges at the pial surface are set proportional to the cortical volume
represented by that triangle (Winkler et al. 2010). These charges generate streamlines
proportional to the cortical volume. The single positive charge in deep white matter is set to
the negation of the sum of all negative charges and hence acts as the other termination point
for streamlines generated at the pial surface. Note that the resulting vector field is divergence-
free, except at the charge locations.
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These charges ensure an initial vector field through which streamlines run from deep white
matter up to the cortical surface, but the streamlines are not constrained to respect the
observed diffusion data or even to remain within the white matter. This vector field is then
adjusted while remaining divergence-free by adding a linear combination of dipole-like basis
functions (see section 3.3), whose orientation and strength is determined by fitting to a
predefined cost function describing constraints on the fibre density and orientation (see
section 0). For the example in Figure 3, the cost function encourages both a uniform density
distribution along the white/grey-matter boundary and a radial orientation at this surface. The
best-fit vector field is used to guide tractography streamlines through the white matter in the
gyral blades (see section 3.4).

Initial condition ‘ Best-fit fibre
vector field

(electrostatic field) _ Tractography

(weights based on

cost function) I

Optionally iterate with new cost O_—hlgI|1
function and/or smaller dipoles Streamline density (\f_b

Figure 3 Procedure for modelling the gyral white matter. An initial vector field is estimated from negative
electrostatic charges at the pial surface and an equal positive charge in the deep white matter (left). This initial vector field
is updated by adding dipole basis functions, where the dipole strengths and orientations are determined by minimizing a
cost function, which imposes data fidelity (on fibre orientations) and anatomical constraints (on fibre density and
orientation). This step may be iterative with an updated cost function and/or smaller dipoles as basis functions. The
resulting vector field configuration can then be used for tractography within the gyral white matter (right). The vector

colour encodes the streamline density (colourbar in lower right). The individual steps are explained in sections 3.3-3.4.

3.3 Dipole basis functions

While streamlines travelling through the vector field generated by the charges defined in
section 3.2 will tend to travel from the positive charge in deep white matter to the negative
charges along the pial surfaces, they are not constrained to align with the fibre orientations
estimated from dMRI or even to traversing through the white matter. By adding divergence-
free dipole basis functions to the initial vector field, we can adjust the path of these
streamlines (Figure 4) to make them more realistic. In this section we examine these dipole
basis functions; in section 0 we investigate the various terms in the cost function used to
optimise the dipole orientations and strengths.
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Figure 4 Effect of adding dipoles to a uniform vector field running from left to right. The numbers above each panel

show the weights of the dipole, which set the dipole strength in respectively the x- and y- direction. Because the dipoles
are divergence-free, they only alter the shape of the existing streamlines rather than allow them to terminate or
reconnect. However, for sufficiently strong dipoles new, closed streamline loops might be generated (see panel in upper

left).

The dipole basis functions are used to update the field distribution from the charges (eq. 2)

given a set of weights w. In order to efficiently evaluate the vector field f (X) we choose to
restrict ourselves to a linear and sparse mapping M between the parameters and the vector
field:

F@) = fonarge (& @i, B) + M(E) - W. (3)

Hence the vector field is modelled as a linear combination of the columns in the matrix M
(which represent the individual dipole-like basis functions). The shape of the matrix M(¥X) is
3xN, where each row defines the x-, y-, and z-component at position X for each of the N basis
functions. This vector field will be divergence-free by construction if each individual column
in the matrix M is itself divergence-free, because the divergence operator is linear.

The vector field generated by actual dipoles extend infinitely far from the dipole and they are
therefore challenging to handle as a basis function in our application. Infinite extent of
dipoles means that the mapping M(X) defined above will be dense, which makes the
optimisation of any non-linear cost function unfeasible. Instead, we devise dipole-like basis
functions that only extend a limited range from the dipole centre, which ensures that the
mapping M(X) is sparse and hence the optimisation is tractable.

We start the construction of these dipole-like basis functions by defining a radial basis
function. A radial basis function is any scalar function g(x) that only depends on the distance
from some control point y. To ensure the sparsity of M(X) we use compactly supported radial
basis functions (Wendland 1995; Buhmann 2000), which are only non-zero within a sphere


https://doi.org/10.1101/2020.07.27.222778
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.222778; this version posted July 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

around the control point, i.e. g (r = lx;—yl) = 0 if r > 1, where r is the distance to the control

point normalized by the extent of the radial basis function s. Here we use a compactly
supported radial basis function from Wendland (1995):
g@) =1 -r)°@B5r2+18r+3)forr <1 (4)

This radial basis function has the advantage that it is 4 times continuously differentiable at
both r = 0 and r = 1 in 3-dimensional space (Wendland 1995), which means there will be
no discontinuities in the vector field (or its first derivative), when defined from the second
derivatives of this radial basis function.

The vector field basis functions are defined as (—V?I + V - V) g(¥) (Narcowich and Ward
1994), where g(X) is the radial basis function defined above (eq. 4). The operator

(—=V21 + V - V') is chosen, so that the columns of the resulting matrix are divergence-free
and hence can be used as basis functions. These columns are:

o _ o oy o
dy2  09z2 0xdy 0x0z
2% _%g _ g Pg (5)
dxdy ’ ax2  0z2 |’ 0yodz )
2%g 9%g _9%g _ 9%
9xdz dydz ax%z  oy?

We can define N different radial basis functions (g (X)) by defining these dipole-like basis
functions around N control points. This will give us 3N basis functions (eq. 5), whose
contribution to the vector field is determined by 3N parameters (W; eq. 3).

To fit to an arbitrary orientation field, we place these dipoles in a hexagonal grid with the
distance between neighbouring dipoles given by 1/3 of the size s of their full extent. When
these dipole-like fields are embedded within a larger field they can locally alter the shape of
the field in 3 dimensions (Figure 4) to fit any target density or vector orientation, e.g. white
matter orientations estimated from diffusion MRI.

The mapping from the weights (W) to the vector field ( f (X)) described above has been
implemented in the accompanying code for both CPU and GPU. On both CPU and GPU, the
matrix M (X) can either be pre-computed to allow for fast evaluation or can be computed on
the fly if there are memory constraints.

Cost function and anatomical constraints

We use both the geometry of the cortical folds as well as fibre orientations estimated from
diffusion MRI data to constrain the shape and density of our white matter model (i.e.,
optimise the strength and orientation of the dipoles defined in section 3.2). Here we discuss
the terms adopted for the cost function in this work. Additional terms available in the
accompanying code are listed in Table 1.

For white matter voxels within the gyral blades our main data fidelity term in the cost
function constraint will be encouraging alignment with the fibre orientations estimated from
the diffusion data. As we do not model crossing fibres in this work, we define this by

alignment between the principal eigenvector of the best-fit diffusion tensor (171) and the
vector field f averaged over each voxel:

A oe o~ N2

Con = — ((f(xi) : Vl,i) ), (6)

where the triangular brackets (-) refer to taking the average across all voxels. Note that this is
f(2)

since we don’t have access to

a constraint on the normalized vector field f(¥) = ok
voxel-wise estimates of the fibre density in the tensor model. Because this constraint adds a
degeneracy to the cost function by giving the same result for f(X;) and -f (X;), we only add

it to the cost function once a decent initial estimate of the vector field has been obtained.
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To encourage a smooth density distribution throughout the white matter, we also add an L2
norm constraint to the streamline density:

Gz = (|f(55i)|2>- (7)

We set additional constraints at both the white/grey-matter boundary and mid-cortical surface
(i.e., a mesh halfway between the white/grey-matter boundary and the pial surface). These

constraints are applied to the vector field f averaged over each triangle in the cortical
surfaces. A constraint on density at the surface is defined for a given target density d; by:

Csurf—density = ((f(iél) Ay — di)2>r (8)

where 71; is the surface normal. The target surface density is set to encourage a uniform
density of streamline endpoints through the cortical grey matter volume (Van Essen et al.
2014).

Finally, a radial fibre orientation at the surface is encouraged by including the following term
to the cost function:

Cradial = _(f(fl) - A_i) (9)
Minimising this term will maximise the alignment between the orientation of the vector field
and the surface normal.
The total cost function is then given by:
C = Csyri-density T AradialCradial T ApTiCori + A2C12, (10)

where the individual cost functions are defined in eqs. 6-9 and the As give the relative

weights of the different cost functions (which will be given in section 3.5).
Table 1 List of the available cost functions to constrain the fibre distribution.

Constraints on fibre orientation (f = f /1 f D

Von Mises —f-a Aligns with i (signed)

Watson” —(f- ﬁ)z Aligns with @ (unsigned)

Bingham” —(f-B-f) Aligns with fibre orientation with
anisotropic configuration (encoded by
the Bingham matrix B)

Constraints on fibre density (| f D

Volume 7 2 Target fibre density d

density (|f | )

Surface ( l;’ o d)2 Target fibre density d crossing surface

density with normal 71

Total surface ( [ f . AdS — N)Z Total number of streamlines N crossing

density surface S, which has normal 7

Li norm | f | Reduced fibre density

L> norm | lz’lz Reduced fibre density

Spatial smoothness constraint between neighbouring voxels with fields jTl) and 72)

Density” (|]T1)| _ UTZ’DZ Smooths density variations

Orientation —fi- 5 Smooths orientational variations

Both (71’ _ 172’)2 Sm.oo.ths density and orientational
variations
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* These cost functions have two distinct minima as they give the same result for f = - f

and don’t have a minimum for | f | = 0, so they should only be added to the cost function
once a reasonable field estimate has already been produced (i.e., a field estimate where
within each voxel the estimated fibre orientation is within 90 degrees of the correct one) to
ensure the fitting converges to the global rather than a local minimum.

3.4 Interface with probabilistic tractography

The vector field produced by optimising the cost function above can be thought of as
providing a one-to-one mapping between any location on the cortical surface with a location
for streamlines to enter into deep white matter. We take each vertex on the cortical surface
and move it along the vector field as described below to the interface between the gyral and
deep white matter (right in Figure 2). This creates a deformed but topologically equivalent
version of surface around deep white matter, which excludes the cortical convolutions. This
surface can then be used as a seed and/or target mask in any tractography algorithm.

3.5 Building whole-brain connectomes

Given cortical surface models, surfaces (e.g. extracted from an anatomical T1w image) and
diffusion MRI data for a single subject, we build a dense (i.e. vertex/voxel-wise rather than
parcel-wise) connectome using the following steps:

First, we create a mask of the white matter within the gyral blades. This mask is
designed to include any voxels within the gyral white matter and includes those
voxels through which the shortest line connecting the gyral walls on both sides is
shorter than 10 mm (Figure 2).

Within the gyral white matter we estimate the fibre configuration in three steps:

An initial estimate of the vector field is generated by placing uniform
“negative” charges across the pial surface. These charges are compensated for
by an equal-sized positive charge in the centre of the deep white matter in
each hemisphere. These charges generate a vector field flowing from the pial
surface into the brain according to eq. 2.

This initial field is refined using the dipole-like basis functions (egs. 3-5).
These basis functions have a finite extent of s (=20 mm used here) and are
interspersed on a hexagonal close packing configuration at a distance of g mm.

The strength and orientation of the dipoles is optimised by minimizing the cost
function using the quasi-Newton method L-BFGS-B (Byrd et al. 1995; Zhu et
al. 1997):

C= Csurf—density + AradialCradial + A2C12+ (11)

which encourages a uniform density of streamline endpoints in the cortical
volume (eq. 8), a radial orientation at the cortical surface (eq. 9) and imposes
an L2 norm on the volumetric fibre density (eq. 7). Both surface constraints
Csurt-density and Cragial are enforced at the white/grey-matter boundary as well as
the mid-cortical surface.

Finally, a set of smaller dipoles (extent of 7 mm, interspersed on a hexagonal

grid with distance of g mm) is optimized by the cost function above and
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additionally enforcing alignment between the principal eigenvector of the
diffusion tensor and the proposed fibre orientation (eq., 6)

C = Csyri-density T Aradial Cradial T A2C12 + ApmiCor- (12)

Here we use A,aq = 1, App = 1, and A;, = 1073, These values were
determined through trial-and-error based on the quality of the resulting fit and
visual inspection of the resulting vector field. How these parameters should be
set to robustly work across a large number of datasets, remains to be
investigated. The final vector field is given by the sum of the contribution of
the initial field (step 1), the large dipoles (step 2) and the smaller dipoles (step
3).

e The final vector field is used to guide the vertices of the white/grey-matter boundary
through the gyral white matter. This provides a 1:1 mapping and results in a new
deformed surface at the interface between the gyral and deep white matter that
encloses deep white matter.

¢ During tracking from the white/grey-matter boundary neighbouring vertices do not
always remain immediately adjacent to one another other, which leads to a very
ragged-looking mesh. To resolve this, we smooth the mesh at the gyral and deep
white matter interface by moving each vertex towards the mean of its neighbours.
During this smoothing the vertices moved a median distance of less than 1 mm, with
95% of vertices moving less than 3 mm. The smoothed surface (which has a mesh
density that varies greatly across the interface) was used as seed and target for
tractography.

3.6 Data and analysis

We tested our algorithm on pre-processed data from 20 subjects of the Human Connectome
Project (HCP) (Van Essen et al. 2012). The pre-processed data includes white/grey-matter
boundaries and pial surfaces extracted from the T1-weighted and T2-weighted images using
the HCP Pipelines (Glasser et al. 2013). The diffusion constraint was obtained by fitting a
diffusion tensor to the b=1000 shell of the pre-processed HCP diffusion MRI data
(Sotiropoulos et al. 2013; Andersson and Sotiropoulos 2016). Group-average analysis were
carried out on datasets aligned using MSMAII intersubject registration (Robinson et al. 2014;
Glasser et al. 2016).

We used FSL’s probtrackx2 (Behrens et al. 2007; Hernandez-Fernandez et al. 2019) to
compare the features of the connectome when seeding/terminating streamlines at either the
white/grey-matter boundary or at the new interface between the gyral and deep white matter.
For these two surfaces we (i) compared the density distribution of streamline endpoints when
seeding from the subcortical volume or from the contralateral hemisphere, (ii) assessed the
similarity in the path that streamlines seeded from the surface take through deep white matter,
and (ii1) performed a comparison between the functional and structural connectome. In each
case the structural connectivity was estimated by dividing the number of streamlines
connecting two voxels or vertices by the cortical volume associated with the target vertex or
voxel. This makes our structural connectivity from A to B measure proportional to the
probability of streamlines seeded in voxel/vertex A to terminate in each mm? of voxel/vertex
B.

In four subjects these connectomes were parcellated using the subject-specific multi-modal
parcellations from Glasser et al. (2016). The connectivity from parcel A to parcel B was
estimated by adding up all the streamlines going from A to B and then divide by the number
of vertices in A and the total cortical volume associated with B. This connectivity measure is
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once again proportional to the average probability of streamlines seeded in parcel A to
terminate in each mm? of parcel B. This parcellation allows quantification of the connectivity
between homotopic and heterotopic interhemispheric connections.

For comparison with tracer data from Markov et al. (2011; 2014) we also compute a
parcellated connectome in an ex-vivo macaque diffusion MRI dataset in the same manner as
described above, except for scaling down the threshold to define gyral white matter (10 to 4
mm) and the size of the dipoles (in initial fit from 20 to 9 mm, in final fit from 7 to 3 mm) to
compensate for the smaller brain size. As the tracer data is reported as the fraction of labelled
cells within a given ROI, we also apply such fractional scaling to the connectome from
tractography using the algorithm described by Donahue et al. (2016). The diffusion MRI data
and its preprocessing have been previously described in Jbabdi et al. (2013). In summary ex-
vivo diffusion data was acquired on a 4.7 T scanner using a 3D-segmented spin-echo EPI
sequence (430 um isotropic resolution, TE=33 ms, TR=350 ms, 120 directions, b,,,= 8000
s/mm?).

Results that are displayed as Connectome Workbench scenes are available via the BALSA
database (https://balsa.wustl.edu/study/show/0LGM?2). Code, documentation, and a tutorial of
the proposed algorithm can be found at https://git.fmrib.ox.ac.uk/nden0236/gyral_structure.

4 Results

First, we defined for each subject a gyral white matter mask including those white matter
voxels that lie between the gyral folds (Figure 2). Within this gyral white matter we found the
best-fit vector field (by minimising eq. 10) that aligns with the primary eigenvector of the
diffusion tensor and is both uniform and radial at the white/grey-matter boundary and mid-
cortical surface.

Figure 5 shows maps of the best-fit vector field density and orientational alignment with the
diffusion tensor for a sample subject as well as histograms of the full distribution for both
hemispheres in 20 subjects. Consistently across both hemispheres in 20 subjects we find an
excellent alignment with the diffusion tensor primary eigenvector (Figure 5B) in all regions
apart from the boundaries where the vector field becomes radial, as well as a fairly uniform
density distribution at both the white/grey-matter boundary (Figure 5C) and the mid-cortical
surface (Figure 5E). While the orientation field has become mostly radial at the mid-cortical
surface (Figure 5F), at the white/grey-matter boundary the field is still far from radial for
large parts of the cortical surface (Figure 5D). The radiality can be improved by increasing its
influence in the cost function or reducing the size of the dipoles in the basis function (which
allows for sharper curvature of the vector field), however the lack of perfect radiality at the

white/grey-matter boundary is expected in a realistic fibre configuration (Budde and Annese
2013; Reveley et al. 2015; Cottaar et al. 2018).
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Figure 5 The distribution of the different terms of the cost function for the best-fit vector field. This cost function
includes an L2 norm on the volumetric streamlines density (A), increases alignment with DTI V1 (B), approximates a
uniform density per cortical volume element across both the white/grey-matter boundary (C) and the mid-cortical surface
(i.e., halfway between the white/grey-matter boundary and the pial surface) (E), and finally increases alignment with the
surface normal at both surfaces (D & F). For each variable a volumetric or surface map is shown for a single subject and the
density distributions for 20 subjects (left hemisphere in blue and right hemisphere in red). Note that this plot illustrates the
density of the best-fit vector field in the superficial white matter. The density of this vector field might not reflect the

density of streamlines resulting from tractography running through the deep white matter (which is illustrated in later

figures).

While the L2 norm (eq. 7) attempts to reduce the volumetric streamline density (Figure 5A),
the divergence-free constraint limits its effectiveness as the streamlines crossing the surface
must go somewhere. The weight on the L2 norm is chosen to be low enough not to
significantly lower the number of streamlines crossing the white/grey-matter boundary, but
high enough that it discourages those streamlines from taking a circuitous route through the
gyral white matter (which would increase the average streamline density).

13


https://doi.org/10.1101/2020.07.27.222778
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.222778; this version posted July 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

1 IA j
/,;_f' /
?\ - 1
/
] Z g
{gs‘- 1 T >
NNHE S @
..§ m 3
N = 33
\§“\{{L g o, %
= <
2.
>0
o
=

10129AUR8

o

Figure 6 Vector field configuration in sample gyri for a single subject. Note that the vector field itself is a continuous
3D function defined at every intermediate point, but here we discretise it by averaging the vectors within each image voxel
and showing a grid of these mean vectors extracted from the vector field. The colour map shows the absolute value of the
dot-product between the continuous vector field sampled at the centre of each voxel and the primary eigenvector of the
diffusion tensor at that voxel. The deep/gyral white matter interface (blue) has a one-to-one vertex correspondence with

the white/grey-matter boundary (turquoise) and pial surface (green).

The resulting best-fit fibre configuration is illustrated in Figure 6 for a few gyri. This vector
field is used to guide the vertices from the white/grey-matter boundary to the deep white
matter. This creates a new deep/gyral white matter interface (blue) where each vertex has a
one-to-one correspondence with the white/grey-matter boundary (turquoise). Note that the
deep/gyral white matter interface shown here has been smoothed.
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Figure 7 For a single subject volumetric density (left) and surface density (per cortical volume element) at the
white/grey-matter boundary (right) for the vector field model (A), probabilistic tractography from the white/grey-matter
boundary (B) and from the deep/gyral white matter interface (C). Overlaid are the pial surface (green), white/grey-matter
boundary (cyan) and deep/gyral white matter interface (blue). Because the streamline density has very different scaling in
the different panels, the density in each panel was normalised independently before applying the same linear mapping to
colour. While the vector field has a smooth density in the white matter (A; left) and on the surface (A; right), tractography
seeded from the white/grey-matter boundary leads to a bias of streamlines close to the cortex (B; left), while tractography

seeded from the deep/gyral white matter interface has a strong gyral bias on the surface (C; right).

Figure 7 compares the density of the estimated vector field (A) with the streamline density
from seeding tractography at the white/grey-matter boundary (B) or the deep/gyral white
matter interface (C). While seeding from the white/grey-matter boundary is (by construction)
uniform on the surface, the resulting distribution is very non-uniform in the gyral white
matter (left in Figure 7B). Streamlines tend to stick closely to the white/grey-matter boundary
following the U-fibres and relatively few reach deep white matter. On the other hand,
streamlines seeded from deep/gyral white matter interface tend to have a higher density in the
central part of the gyri and avoid the white/grey-matter boundary (left in Figure 7C) until
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they reach the top of the gyral crown (right in Figure 7C). Our vector field model uniformly
connects the white/grey-matter boundary with most (although still not all) of the gyral white
matter (Figure 7A).

It is worth noting that even if the vector field describing the gyral white matter is uniform per
cortical volume element, this does not guarantee that the tractography streamlines will be
uniformly distributed per cortical volume element after travelling through deep white matter.
The vector field merely provides a one-to-one mapping between points on the cortical surface
and points at the interface between the deep and gyral white matter. Whether this leads to a
reduction in the gyral bias depends on the distribution of streamlines along this deep/gyral
white matter interface.
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Figure 8 Reduction in gyral bias by tracking to the deep/gyral white matter interface (top) rather than to the
white/grey-matter boundary (bottom). Seeding is from subcortical grey matter and the contralateral cortex. A) Streamline
termination density per mm3 of cortex on left cortical surface for a single subject using a logarithmic scale spanning five
orders of magnitude. B) Streamline termination density per mm3 of cortex for five sulcal depth bins (all bins have an equal
total area on the mid-cortical surface). C) Streamline termination density per mm3 of one hemisphere per 106 streamlines

seeded in the contralateral hemisphere for the same five sulcal depth bins.

Thus, to further investigate the gyral bias, we run tractography streamlines seeded in the
contralateral cortex and subcortical grey matter regions (as defined in the HCP grayordinate
space) (Glasser et al. 2013) up to either the deep/gyral white matter interface (top in Figure 8)
or the white/grey-matter boundary (bottom in Figure 8). Due to the one-to-one
correspondence of the vertices between the two surfaces, we can assign each streamline
terminating at the deep/gyral white matter interface to the equivalent vertex at the white/grey-
matter boundary. This is equivalent to propagating these streamlines to the white/grey-matter
boundary along the best-fit vector field.

When only considering these streamlines from other grey matter brain regions, the large
effect of the gyral bias can be appreciated. Tens of thousands of streamlines terminate in part
of the cortex (in particular the gyral crowns and the insula), while large parts of the cortex get
no streamlines at all (bottom in Figure 8A). When terminating at the deep/gyral white matter
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interface a great increase in the coverage can be seen (top in Figure 8A), however many of
the sulcal fundi are still not covered (see Figure S3A for a similar result in the macaque).
This corresponds to a reduction in the dependence of the streamline density on sulcal depth
(Figure 8B).

Figure 8C illustrates in more detail the connectivity profile of the commissural streamlines.
Commissural streamlines seeded at the white/grey matter surface are very likely to terminate
in the gyral crown of the contralateral white/grey matter surface (bottom in Figure 8C). While
this trend is reduced for the deep/gyral white matter interface, some preference for
terminating at the gyral crown in still present (top in Figure 8C). The same preference for
gyral crowns is now found for streamline traveling in the other direction, with streamlines
seeded from the gyral crowns being more likely to reach the contralateral cortex (top in
Figure 8C). It is unclear whether this remaining dependence on sulcal depth is genuine, but in
any event its magnitude is minor compared with the gyral bias observed when tracking
between the contra-lateral white/grey matter boundaries (bottom in Figure 8C).
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Figure 9 Dissimilarity of the structural connectivity profiles in the deep white matter between neighbouring vertices

for streamlines seeded from the white/grey matter surface or the deep/gyral WM interface. The dissimilarity is computed
as one minus the Pearson-r correlation across the connectivity with all voxels below the deep/gyral WM interface. High
dissimilarity indicates that streamlines seeded from that vertex take a very different path through the deep white matter
from the neighbouring vertices (i.e., there is a strong gradient in structural connectivity). Top: dissimilarity maps for a
single subject (A & C) and averaged across 20 subjects (B & D) for streamlines seeded from the white/grey-matter
boundary (A & B) and the deep/gyral white matter interface (C & D). White arrows point to the parieto-occipital sulcus; E:
trend lines of the dissimilarity with sulcal depth for 20 subjects (each line represents a single subject) with seeding from the
white/grey-matter boundary in red and seeding from the deep/gyral white matter interface in blue. Trend lines were

created using median-filtering of the dissimilarity across 400 vertices after sorting by sulcal depth.

Next, we investigate the behaviour of streamlines seeded from the cortical surface, rather
than the gyral bias of those approaching the surface. Figure 9 illustrates the dissimilarity of
the path streamlines take through deep white matter between neighbouring vertices. A large
dissimilarity corresponds to a sudden change in the structural connectivity profile, indicating
a potential border between two distinct cortical areas (Johansen-Berg et al. 2004; Fan et al.
2016).

When seeding from the white/grey-matter boundary, narrow strips with high dissimilarity are
widespread across the cortex (Figure 9A). These tend to follow the gyral crowns and sulcal
fundi with streamlines seeded from the gyral walls being very similar between neighbouring
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vertices (Figure 9E). This likely reflects the tendency of streamlines seeded from the gyral
walls to stick close to the cortex as illustrated in Figure 7B, which causes streamlines seeded
from the gyral walls to enter the deep white matter close to each other. When seeding from
the deep/gyral white matter interface this alignment of the structural connectivity gradient
with the gyrification is reduced (Figure 9C), although on average the dissimilarity remains
largest in the sulcal fundi (Figure 9E).

When averaging across subjects, most of the detail in these structural connectivity boundary
maps disappears (Figure 9B,D). Still, some plausible boundaries remain such as at the edge
of the occipital lobe (marked by white arrows), particularly on the medial side in the parieto-
occipital sulcus. These boundaries are less well defined when seeding from the white/grey-
matter boundary than from the deep/gyral white matter interface, which likely reflects the
better alignment of the structural connectivity profile gradients when the effect of the
gyrification on the tractography is reduced.
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Figure 10 Comparison of the structural connectome (averaged over 20 subjects) with the functional connectome
(averaged over all HCP subjects). The connectivity from a reference vertex with from left to right: functional connectivity,
structural connectivity when using deep/gyral white matter interface (using reference vertex as seed on left or as target on
right), and finally structural connectivity using white/grey-matter boundary (again using reference vertex as seed on left or
as target on right). From top to bottom reference vertices are in the parietal lobe, frontal lobe, insula, and cingulate
(marked by white dots and the blue arrow). Green arrows mark distant intrahemispheric connections where the
agreement with the functional connectome seems to have improved when using the deep/gyral white matter interface,

while the purple arrow marks an area where using the white/grey-matter boundary works better.

Figure 10 compares the estimated group structural connectivity profiles for selected seeds
when using the deep/gyral white matter interface rather than the white/grey-matter boundary.
For comparison the average functional connectome across all subjects as downloaded from
the HCP database has been included on the left. While the structural connectivity profiles are
generally similar, many differences are evident. In general, there appear to be more long-
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distance connections when seeding from and targeting the deep/gyral white matter interface.
In some regions this improves the agreement with the functional connectome (green arrows
in Figure 10), although counter-examples can also be found (purple arrow in Figure 10).
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Correlation between the connectivity maps illustrated at top

Figure 11 Distribution of the correlations between the structural and functional connectivity profiles when seeding
from the white/grey-matter boundary (blue) or gyral/deep white matter interface (red) with each line showing the
distribution for one out of 20 subjects. For each vertex the correlation is computed between the connectivity estimates
with respect to either all other vertices in the same hemisphere excluding local and U-fibres as defined in Figure S1 (top
panels), or all vertices on the contralateral hemisphere (middle panels), or all sub-cortical grey meter voxels as defined in
the HCP grayordinate space (bottom panels). As illustrated at the top, the correlations are computed between the
functional connectome with either the log-density of streamlines terminating in a vertex (left panels) or the log-density of
streamlines seeded in a vertex (centre panels). The right panels compare the log-density of the two structural connectivity

profiles (i.e., seeding from or targeting a vertex).

To quantify the comparisons between these 3 connectomes (i.e., streamlines seeded from a
reference vertex, streamlines terminating in a reference vertex, and the functional
connectivity) we compute the Pearson correlation between them for every vertex (Figure 11).
Overall, the correlations between the (log-transformed) structural and functional connectome
are very low (left two columns), whether we consider nonlocal intrahemispheric connections
(top), interhemispheric connections (middle) or connections with the subcortex (bottom). A
slight improvement in the correlation is seen in the interhemispheric connections when
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adopting the deep/gyral white matter interface. Adopting the deep/gyral white matter
interface does greatly boost the symmetry of tractography, with the distribution of
streamlines seeded from a vertex being more similar to the distribution of streamlines
terminating in a vertex (right column in Figure 11).

So far, we have exclusively focussed on the dense (i.e., vertex-wise) connectome. Further
validation can be obtained by studying the parcellated connectome. We use the multi-modal
parcellation from Glasser et al. (2016) to parcellate the cortical connectome (Figure S2A).
Because we only alter the tractography within the gyral blades, the connectivity strengths in
these parcellated connectomes are strongly conserved between using the white/grey-matter
boundary or deep/gyral white matter interface (Figure S2B,C). However, these minor
changes in the parcellated connectomes still allow for some additional validation. The results
of this experiment appear to be mixed. In the HCP data adopting the deep/gyral white matter
interface increases the interhemisphere connectivity between homotopic regions, while
decreasing the interhemispheric connectivity between heterotopic regions (Figure S2D),
which is in line with the predominance of homotopic connections seen in tracer studies (e.g.,
Oh et al. 2014). However, when applied in a macaque diffusion MRI dataset previously
described in Jbabdi et al. (2013), the correlation with the “ground-truth” connectome based
on neuroanatomical tracers from Markov et al. (2011; 2014) decreases.

5 Discussion

Here we present a model for the white matter in gyral blades, which reduces the
overestimation of gyral connectivity and underestimation of sulcal connectivity by
considering the shape of the gyrus when running tractography in the gyral white matter
(Figure 8). This is done by imposing two physical constraints on the gyral white matter fibre
configuration: (1) fibres do not terminate in the white matter (i.e., the vector field is
divergence-free) and (2) fibres do not cross each other. The first continuity constraint ensures
that all these streamlines uniformly entering the gyral white matter have to go somewhere
and the only possible destination is deep white matter. The second non-crossing constraint
ensures that when the streamlines converge on the interface with the deep white matter, those
from the left gyral wall remain on the left, those from the right gyral wall remain on the right,
while those from the gyral crown get compressed into the centre of the gyral white matter
(Figure 1). It has previously been argued that such an assumption of spatial organisation
within a white matter bundle is crucial for tractography to be able to claim any relation
between where fibres enter and leave a white matter bundle (Jbabdi et al. 2015). With these
constraints, we optimise a cost function to create a uniform (and radial) fibre distribution at
the white/grey-matter boundary and mid-cortical surface and to align with the primary
eigenvector of the diffusion tensor in each voxel. The optimisation routine is consistently
able to achieve a fairly uniform distribution with excellent alignment with the DTI across all
20 HCP subjects tested here (Figure 5). While this does lead to a realistic-looking fanning
fibre configuration (e.g., compare Figure 6 with (Heidemann et al. 2012; Budde and Annese
2013; Van Essen et al. 2014; Sotiropoulos et al. 2016)), this model does have some
limitations.

5.1 Model assumptions and limitations

The method assumes that there is a one-to-one mapping from each point on the cortical
surface to where the fibres enter deep white matter. There is evidence for such organisation
from tracer studies, at least for long-distance fibres, such as those connecting with many sub-
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cortical regions and the contralateral hemisphere. Many long-distance axons (in particular
those connecting to the striatum, corpus callosum, cingulum bundle or the capsules) tend to
be well-clustered in a narrow “stalk” while travelling through the gyral white matter and only
disperse in deep white matter (Figure 12) (Krieg 1973; Safadi et al. 2018). Hence, these long-
distance fibres might be well represented by the one-to-one mapping provided by the
proposed model. On the other hand, the vector field does not represent the U-fibres or other
short-distance fibres. These are unlikely to follow this path to deep white matter and are
found to be in general far more spread out (Figure 12). Although these fibres could be
included in the model by superimposing a second (or even third) vector field on top of the
single one modelled here, the fact that they are spread out suggests that they might be better
represented by a model that allows for fibres to cross within a single white matter bundle,
such as local probabilistic tractography or the spin-glass model by Reisert et al. (2011).

Subsequent slices of macaque brain

”Stalk” of axons from
injection site

Tracer injection site

The “stalk” divides into
three bundles

U-fibres and

local connections U-fibres and

local connections
Figure 12 Traced axons from a bidirectional tracer (Lucifer Yellow) in the prefrontal cortex (left) of an adult male

monkey (Macaca fascicularis). Long-distance axons can be seen to travel together from the injection site in a relatively
“narrow” stalk (middle) until enter the deep white matter (right) and divide into separate bundles that travel to the corpus
callosum, cingulum bundle and capsules, and the striatum. U-fibres and axons connecting within the same gyrus and those
traveling to other cortical regions do not form part of this “stalk” and are far more spread out (insets). For experimental
details see Lehman et al. (2011) and Safadi et al. (2018). The tracing experiment was performed in accordance with the
Institute of Laboratory Animal Resources Guide for the Care and Use of Laboratory Animals and approved by the University

Committee on Animal Resources at University of Rochester.

A major assumption made by the vector field model is that the fibres represented by the
vector field do not cross each other. This assumption is intrinsic to our choice of modelling
the fibre configuration as a vector field, where at any point we only have a single fibre
orientation. Although a crossing fibre bundle could be added to the model by representing it
with a second vector field (e.g., to model the U-fibres), the vector field model would still
ensure that within each fibre bundle the fibres cannot cross each other. In other words, we
assume that while the “stalks” seen in Figure 12 might cross the U-fibres or local axons, they

21


https://doi.org/10.1101/2020.07.27.222778
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.222778; this version posted July 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

do not cross “stalks” connected with different parts of the cortex (i.e., “stalks” from the left
gyral wall stay on the left, those from the right gyral wall stay on the right). As far as we are
aware, this assumption is as yet untested.

Finally, the target density distribution adopted in this work (i.e., a uniform streamline
termination density per unit of cortical volume) is only a first-order approximation of the true
expected density distribution. In reality there will be significant variation between cortical
regions in the density of long-distance connections. Given the limitations of tractography in
estimating the density of long-distance connections, more accurate estimates of the expected
density distribution across the surface likely have to come from detailed histological studies,
which is beyond the scope of this article.

5.2 Validation

Adopting the vector field model for the gyral white matter can be viewed as a regularisation
algorithm, where we take some of the streamlines which would have terminated on the gyral
crown and move them to the sulcal walls or fundi, following anatomical constraints. We
show that this reduces the gyral bias when streamlines travel up to the cortex (Figure 8). By
allowing streamlines not to have to track through the gyral white matter, we find many more
streamlines connecting to the cortex. Still some more subtle trends with the sulcal depth
remain, with commissural streamlines showing a residual gyral bias, although this bias is now
the same for the hemisphere where we are seeding from and the target hemisphere (Figure
8C).

Even when seeding from the white/grey-matter boundary this reduction of the gyral bias
becomes obvious when examining boundaries in the cortical connectivity profile to the deep
white matter is (Figure 9). When seeding from the white/grey-matter boundary these borders
align preferentially with the sulcal fundi and gyral crowns as all the streamlines seeded from
the gyral walls tend to cluster together (Figure 7B). Seeding from the deep/gyral white matter
interface eliminates this bias. This reduction of the gyral bias creates a better alignment of the
structural connectivity gradients across subjects, which leads to more robust detection of
these gradients when averaging across subjects (Figure 9). It also increases the symmetry in
tractography with the connectivity estimated by seeding streamlines in a vertex becoming
much more similar to the connectivity estimated when considering the streamlines
terminating in a vertex (Figure 11).

More promising evidence comes from comparison between the structural and functional
connectome for which we show a qualitative improvement in the intrahemispheric
connectivity (green arrows in Figure 10) and a small quantitative improvement for the
connectivity with the contralateral hemisphere (Figure 11) when adopting the divergence-free
model to guide the streamlines through the gyral white matter.

Further validation could come from comparing the connectome estimated from tractography
with some known connectivity “ground-truth”, such as that interhemispheric connections are
stronger between homotopic than heterotopic regions, which our results suggest. An even
stronger validation is a comparison with neuroanatomical tracers in non-human primates.
Unfortunately, such ground truth connectivity has been published only at the level of cortical
regions, not at the level of individual vertices. Because many of these cortical regions span
both sulcal fundi and gyral crowns, the changes in tractography in the gyral blades proposed
here has only a minor effect on the parcellated connectomes (Figure S2B,C). Still for
completeness, we do include such comparisons in the supplementary materials, where we
find that adopting our approach increases the preference for interhemispheric streamlines to
connect between homotopic regions (Figure S2D), but find a slightly decreased correlation
with tracer data in a macaque dataset (Figure S3).
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5.3 Alternatives

Explicit constraints on the streamline density like the ones used here to reduce the gyral bias
could also be used as part of the cost function in other algorithms. This would not work for
local tractography algorithms that only model a single streamline at a time as there is not a
meaningful measure of the streamline density. Global tractography algorithms such as the
spin glass model (Mangin et al. 2002; Kreher, Mader, and Kiselev 2008; Fillard, Poupon, and
Mangin 2009; Reisert et al. 2011) that model all streamlines at once could be used to measure
and constrain the streamline density. The spin-glass model might be a better model for U-
fibres or other local axons as it allows streamlines within a single bundle to cross each other.
Recently, (Teillac et al. 2017) proposed an extension on the spin-glass model to reduce the
gyral bias, although their proposal alters the target fibre orientations close to the sulcal walls
to allow streamlines to smoothly bend into the gyral walls rather than an explicit constraint
on the streamline density. (Wu et al. 2019) also showed a reduction in the gyral bias by
encouraging a smooth transition between the radial fibre orientation in the grey matter and
the tangential orientation underneath using asymmetric fibre orientation distribution functions
(Bastiani et al. 2017).

Density constraints on streamline endpoints could also be added as part of the cost-function,
when filtering or weighting streamlines in post-processing (Daducci et al. 2016) by
algorithms such as Contrack (Sherbondy et al. 2008), SIFT/SIFT2 (Smith et al. 2013; 2015),
LiFE (Pestilli et al. 2014), or COMMIT (Daducci et al. 2015). These algorithms have in
common that they filter or assign weights to streamlines produced by local tractography
algorithms to represent their relative contribution. While so far these weights are only fitted
to the diffusion MRI data, the surface density could be added as an additional constraint. Of
course, this does require generating enough streamlines that there is a sufficient population of
streamlines connecting to the sulcal walls and fundi. Streamlines connecting sulcal fundi at
both ends are so rare (Figure 8) that even after post-processing they might be
underrepresented in the final fibre population. Therefore, this post-processing approach might
achieve a reduction of gyral bias simply by upweighting the fundi-to-crown connections and
not include the many fundi-fundi connections found when tracking to the deep/gyral white
matter interface (Figure 8C).

In our approach, the gyral bias is reduced not due to the enforcement of a uniform density
across the cortical surface for the vector field, but in using the vector field to map the cortical
surface to a less convoluted surface, namely the deep/gyral white matter interface.
Tractography to this less convoluted surface does not suffer from a gyral bias. (St-Onge et al.
2018) proposed using a mean-curvature flow model to produce such a less convoluted
surface. Their model has the advantage of being much less computationally expensive than
the fitting of a vector field to the gyral white matter proposed here. While the reported
decrease in the gyral bias seen in St-Onge et al. (2018) is less than found here, this might
simply reflect that their final surface is still far more convoluted than the deep/gyral white
matter interface adopted here. Ideally, tracer data such as the one shown in Figure 12 would
be used to validate the paths proposed by these algorithms through the gyral white matter.
While these alternative algorithms discussed above reduce the gyral bias, the degree of
reduction of the gyral bias as shown in Figure 8, has not been shown before. This might
increase the accuracy of long-distance connections although perhaps at the cost of losing any
information about short-distance connections, in particular those within a gyrus or U-fibres.
Code, documentation, and a tutorial for the algorithm proposed in this paper can be found at
https://git.fmrib.ox.ac.uk/nden0236/gyral structure and the surface maps displayed are
available in the BALSA database (https://balsa.wustl.edu/study/show/0LGM?2).
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7 Supplementary

Figure S1 Definition of te intrahemispheric connections excluding local connections and U-fibres used in Figure 11.
The cortex is sub-divided into 50 parcels (illustrated for single subject) with the borders between the parcels preferentially
located in the sulcal fundi. Local connections and U-fibres are excluded by only considering the connectivity between
vertices in different parcels that do not border each other. The parcellation is obtained using a watershed algorithm: the
vertices are sorted by sulcal depth (from high to low) and then iterated through. Each vertex is assigned to a new parcel if
none of its neighbours are in existing parcels (i.e., it is a local maximum) and otherwise assigned to the neighbouring
parcels. If two parcels touch, they are merged if one of them is insufficient deep (i.e., maximum — minimum sulcal depth is
below some threshold), otherwise they are kept separate. The depth threshold is chosen, so that we end up with 50

parcels.
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Figure S2 Analysis of parcellated connectomes for 4 subjects (one column per subject). A) Single-subject multi-modal
parcellation from Glasser et al. (2016) used to parcellate the connectome. B) Heat map of the streamline density obtained
using the white/grey-matter boundary (top) or the deep/gyral white matter interface. The parcellated connnectomes are
very similar as also seen in the scatter plot (C). D) Distribution of streamline density for the interhemispheric streamline
density between homotopic parcels (top) and heterotopic parcels (bottom). The homotopic connectivity has a median
increase of 66%, 37%, 35%, and 53% for these 4 subjects when adopting the deep/gyral white matter interface (red), while
the heterotopic connectivity has a median decrease of 10%, 11%, 8%, and 20%. The streamline density measures the

number of streamlines seeded from the vertices in one parcel that terminate in each mm?-3 of the target parcel.
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termination points (colour map is the same as in Figure 8A). B) Heatmap of the reference connectome with the log-
transformed extrinsic fraction of labelled neurons (FLNe) on the left and the connectomes when using the white/grey-
matter boundary in the middle and the deep/gyral white matter interface on the right. C) Correlation between the
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When adopting the deep/gyral white matter interface the correlation with the tracer connectome becomes worse. This
negative trend becomes statistically insignificant when regressing out distance as in Donahue et al. (2016). D) ROC curves
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