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1 Abstract 

Many brain imaging studies aim to measure structural connectivity with diffusion 
tractography. However, biases in tractography data, particularly near the boundary between 
white matter and cortical grey matter can limit the accuracy of such studies. When seeding 
from the white matter, streamlines tend to travel parallel to the convoluted cortical surface, 
largely avoiding sulcal fundi and terminating preferentially on gyral crowns. When seeding 
from the cortical grey matter, streamlines generally run near the cortical surface until 
reaching deep white matter.  These so-called “gyral biases” limit the accuracy and effective 
resolution of cortical structural connectivity profiles estimated by tractography algorithms, 
and they do not reflect the expected distributions of axonal densities seen in invasive tracer 
studies or stains of myelinated fibres. We propose an algorithm that concurrently models 
fibre density and orientation using a divergence-free vector field within gyral blades to 
encourage an anatomically-justified streamline density distribution along the cortical 
white/grey-matter boundary while maintaining alignment with the diffusion MRI estimated 
fibre orientations. Using in vivo data from the Human Connectome Project, we show that this 
algorithm reduces tractography biases. We compare the structural connectomes to functional 
connectomes from resting-state fMRI, showing that our model improves cross-modal 
agreement. Finally, we find that after parcellation the changes in the structural connectome 
are very minor with slightly improved interhemispheric connections (i.e, more homotopic 
connectivity) and slightly worse intrahemispheric connections when compared to tracers. 

2 Introduction 

By tracing continuous paths along the distributions of axonal fibre orientations estimated for 
each voxel of the brain, diffusion MRI (dMRI) tractography aims to infer the trajectories of 
white matter fibre bundles. This technique has been used to map the paths of major tracts 
coursing through white matter or to estimate the connectivity between grey matter regions. 
This connectivity is often expressed as a “structural connectome”, which is a matrix that 
contains area to area non-invasive estimates of anatomical connectivity (Sporns, Tononi, and 
Kötter 2005). Estimating accurate connectivities in the cortex is limited however, by the 
strong bias of tractography streamlines to avoid sulcal fundi and walls and instead to 
terminate on gyral crowns and has been termed a “gyral bias” (Van Essen et al. 2014; 
Reveley et al. 2015; Schilling et al. 2018; Sotiropoulos and Zalesky 2019). This gyral bias 
limits the accuracy and spatial resolution at which the termination points of white matter 
bundles can be localised or of grey matter to grey matter connection strength estimation. For 
example, tractography may localize the termination zone of a streamline to an entire gyrus 
but not accurately assign it to either sulcal wall, instead leaving it to terminate on the gyral 
crown. Importantly, we do expect some preference for axons to terminate in the gyral crowns 
based on the geometry of the gyri (i.e., because of their convex surface curvature, gyral 
crowns have a greater ratio of overlying grey matter volume to their white matter surface 
area, sulcal walls have a neutral ratio, and concave sulcal fundi have a smaller overlying grey 
matter volume to white matter surface area ratio (Van Essen et al. 2014)). However, the gyral 
bias observed in tractography is much larger than that expected from the geometry of the 
gyri.  
The gyral bias may reflect the strong tendency for fibre bundles to run parallel to the 
white/grey-matter boundary in the superficial white matter, because even high resolution 
dMRI fails to adequately capture the sharply curved trajectories of axons ‘peeling off’ to 
connect with grey matter sulcal walls and fundi seen with histology (Van Essen et al. 2014). 
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U-fibres connecting neighbouring gyri may be a large contributor to these bundles (Reveley 
et al. 2015). These parallel fibres lead to the fibre orientations estimated from dMRI to 
closely align with the nearby white/grey-matter boundary in superficial white matter along 
sulcal walls and fundi (Figure 1A; Cottaar et al. 2018). Hence most tractography streamlines 
keep running parallel to the sulcal walls and fundi until they reach the gyral crown, which 
results in the gyral bias (Figure 1B; Sotiropoulos et al. 2016). While seeding from the cortical 
volume can reduce this gyral bias by ensuring a uniform distribution of seed points within the 
cortex, this now creates a bias in the streamline density in white matter, with most 
streamlines remaining close to the gyral wall (Figure 1C; Smith et al. 2012). Moreover, the 
gyral bias problem persists for the eventual grey matter terminations of these streamlines as 
tractography will still overestimate their terminations on gyral crowns versus sulcal fundi. 
Here we propose a model for gyral white matter that aims to both reduce the overestimation 
gyral streamline terminations relative to sulcal terminations and the bias of streamlines 
seeded in the sulcal walls to remain close to the sulcal walls. For our target streamline density 
distribution when counting on cortical surfaces, we make the first-order assumption that the 
density of streamline crossing the white/grey-matter boundary in any cortical region should 
be proportional to the cortical volume divided by the underlying white matter surface area 
(Van Essen et al. 2014). Thus, our fundamental assumption is that the cortical streamline 
density per unit cortical volume is uniform; accordingly, we will display our results 
normalized to unit cortical volume. 

 
Figure 1 Sketch of possible fibre configurations in white matter of a gyral blade (represented by 10 streamlines). A) 

Typically, the dominant voxel-wise fibre orientation estimated from diffusion MRI is closely aligned with the gyral wall and 

points to the gyral crown. This causes two types of gyral biases (B and C): B) It causes local tractography streamlines 

uniformly entering from deep white matter to preferentially terminate in the gyral crown resulting in a biased density in 

the cortex. C) Similarly, local tractography streamlines uniformly seeded from the cortex tend to remain close to the gyral 

walls, resulting in a biased density in the white matter. Note that these streamlines are uniform per associated unit of 

volume of cortical grey matter rather than uniform across the white/grey-matter boundary. D) By enforcing uniform 

densities both for the streamlines entering the gyral white matter and in the cortex, more realistic fibre configurations can 

be obtained, (E) especially if additional constraints such as radiality at the surface are added. Note that the fibre 

configurations in panels B, C, and E (but not D) are all consistent with the diffusion MRI orientations in panel A. 

Our model aims to find a fibre configuration consistent with the diffusion MRI data that has 
both a uniform density in the white matter within gyral blades as well as a uniform 
distribution of fibre end-points within the cortical grey matter volume (Figure 1D,E). This 
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requires not only constraining the streamline orientation, but also its density. Hence, we can 
no longer model a single streamline at a time as in local tractography, but instead need to 
model the complete set of streamlines at once. To make our initial formulation tractable, we 
assume that streamlines within gyral blades do not cross or intermix. This means we cannot 
reconstruct fibres crossing from one side of a gyral bank to the other, which need to be 
estimated in a different way. Given this assumption, the resultant density constraints create a 
fibre configuration where the streamlines entering the gyrus at the left will connect to the left 
gyral wall, while those entering on the right connect to the right gyral wall and those in the 
centre continue upwards towards the gyral crown (Figure 1D). More realistic 3D fibre 
configurations can be created by adding additional constraints such as having radial fibre 
orientations when they reach the cortex (Figure 1E) and alignment with the fibre orientations 
estimated from diffusion MRI. With this set of geometric and anatomical constraints, the 
streamlines disperse towards the surface qualitatively similar to that seen in histology (Budde 
and Annese 2013; Van Essen et al. 2014) and high-resolution diffusion MRI data (Miller et 
al. 2011; Heidemann et al. 2012; Sotiropoulos et al. 2016). 

3 Gyral white matter model 

3.1 Defining gyral white matter 

We split the white matter into gyral white matter, which is the white matter contained within 
the gyral blades, and deep white matter. For the gyral white matter we propose a novel 
tractography algorithm to describe the white matter configuration not as individual 
streamlines, but as a continuous vector field.  This algorithm is likely to be most accurate in 
regions where the white matter fibre configuration (i) is constrained by the geometry of the 
cortical folds (which is typically neglected in local tractography approaches) and (ii) can be 
accurately described using only single dominant fibre population filling up the available 
space. While this may be a reasonable description of the white matter over much of the gyral 
blades, deep white matter is not generally well described in this way. Hence, we implemented 
a way to apply the novel tractography model to the gyral blades and use standard 
probabilistic tractography algorithms in the underlying deep white matter. 

 
Figure 2 Definition of deep/gyral white matter interface. A) “gyral thickness” is defined as the length of the shortest 

line through the voxels that hit the white/grey-matter boundary at both ends. B) Thresholding the “Gyral thickness” map 

separates the white matter in the gyral blades from the deep white matter underneath. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2020. ; https://doi.org/10.1101/2020.07.27.222778doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.27.222778
http://creativecommons.org/licenses/by/4.0/


 

 5 

To define the boundary between the gyral and deep white matter, we introduce a new “gyral 
thickness” measure for each voxel. This measure is defined as the length of the shortest 
straight line through the voxel connecting the white/grey-matter boundary on both sides 
(Figure 2A). This measure is small between the neighbouring sulcal walls and fundi, but 
large for any white matter below the sulcal fundi. The gyral white matter is any white matter 
with a gyral thickness less than some threshold. There tends to be a sharp increase in gyral 
thickness just below the sulcal fundi, so the boundary location is not very sensitive to the 
exact value chosen for the gyral thickness threshold (Figure 2B). In this study we adopt a 
threshold of 10 mm. 

3.2 Gyral white model overview 

Within the gyral blades we model the fibres as a continuous vector field  𝑓(𝑥⃗). The norm of 
this vector field |𝑓(𝑥⃗)| defines the local fibre density at position 𝑥⃗, and the orientation of this 

vector field (𝑓'(𝑥⃗) ≡ !⃗($⃗)
|'⃗($⃗)|	

	) defines the local fibre orientation. Hence, this model allows us to 
represent, and potentially impose constraints on, both fibre density (e.g., uniform density 
across the cortex) and fibre orientation (e.g., matching the voxel-wise fibre orientations 
observed from diffusion MRI). 
To produce a realistic fibre configuration, an important constraint is that fibres avoid 
terminating in white matter. This is strictly enforced by constructing the vector field to be 
divergence-free: 

 𝛻 ⋅ 𝑓 = !"!
!#
+ !""

!$
+ !"#

!%
= 0. (1) 

Setting the divergence to zero implies that any decrease in the number of fibres travelling in 
one direction must be compensated by an increasing number of streamlines in another 
direction, so that the total number of streamlines traveling along a tract remains constant. 
This ensures that no streamlines terminate in the white matter.  
This single vector field only defines a single fibre orientation and density at every 
(infinitesimally small) point (𝑥⃗) in the brain and hence does not allow for crossing fibres. 
Crossing fibres could be modelled by describing each white matter tract as a different vector 
field, which can overlap. However, in this initial formulation we model the superficial white 
matter as a single, divergence-free vector field, hence ignoring any crossing fibres within this 
region. Fibre crossings are taken into account for  deeper white matter, where we use 
probabilistic tractography based on a crossing-fibre model (Behrens et al. 2007; Jbabdi et al. 
2012), as available in FSL. 
Figure 3 shows an overview of our tractography algorithm for the gyral white matter. An 
initial estimate of the fibre configuration is provided by distributing negative charges at each 
centre of the triangles in the pial surface mesh and a single, positive charge in deep white 
matter. The field at any point (𝑥⃗ = (𝑥, 𝑦, 𝑧)	)) in the white matter is hence given by: 

 𝑓charge(𝑥⃗; 𝑞, , 𝑝,) = ∑ -$	(#⃗12⃗$)
45|#⃗12⃗$|%, , (2) 

where the 𝑝)‘s are the positions of the point charges and the 𝑞)’s are the charge at point 𝑝). 
The negative charges at the pial surface are set proportional to the cortical volume 
represented by that triangle (Winkler et al. 2010). These charges generate streamlines 
proportional to the cortical volume. The single positive charge in deep white matter is set to 
the negation of the sum of all negative charges and hence acts as the other termination point 
for streamlines generated at the pial surface. Note that the resulting vector field is divergence-
free, except at the charge locations.  
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These charges ensure an initial vector field through which streamlines run from deep white 
matter up to the cortical surface, but the streamlines are not constrained to respect the 
observed diffusion data or even to remain within the white matter. This vector field is then 
adjusted while remaining divergence-free by adding a linear combination of dipole-like basis 
functions (see section 3.3), whose orientation and strength is determined by fitting to a 
predefined cost function describing constraints on the fibre density and orientation (see 
section 0). For the example in Figure 3, the cost function encourages both a uniform density 
distribution along the white/grey-matter boundary and a radial orientation at this surface. The 
best-fit vector field is used to guide tractography streamlines through the white matter in the 
gyral blades (see section 3.4). 

 
Figure 3  Procedure for modelling the gyral white matter. An initial vector field is estimated from negative 

electrostatic charges at the pial surface and an equal positive charge in the deep white matter (left). This initial vector field 

is updated by adding dipole basis functions, where the dipole strengths and orientations are determined by minimizing a 

cost function, which imposes data fidelity (on fibre orientations) and anatomical constraints (on fibre density and 

orientation). This step may be iterative with an updated cost function and/or smaller dipoles as basis functions. The 

resulting vector field configuration can then be used for tractography within the gyral white matter (right). The vector 

colour encodes the streamline density (colourbar in lower right). The individual steps are explained in sections 3.3-3.4. 

3.3 Dipole basis functions 

While streamlines travelling through the vector field generated by the charges defined in 
section 3.2 will tend to travel from the positive charge in deep white matter to the negative 
charges along the pial surfaces, they are not constrained to align with the fibre orientations 
estimated from dMRI or even to traversing through the white matter. By adding divergence-
free dipole basis functions to the initial vector field, we can adjust the path of these 
streamlines (Figure 4) to make them more realistic. In this section we examine these dipole 
basis functions; in section 0 we investigate the various terms in the cost function used to 
optimise the dipole orientations and strengths. 
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Figure 4 Effect of adding dipoles to a uniform vector field running from left to right. The numbers above each panel 

show the weights of the dipole, which set the dipole strength in respectively the x- and y- direction. Because the dipoles 

are divergence-free, they only alter the shape of the existing streamlines rather than allow them to terminate or 

reconnect. However, for sufficiently strong dipoles new, closed streamline loops might be generated (see panel in upper 

left). 

The dipole basis functions are used to update the field distribution from the charges (eq. 2) 
given a set of weights 𝑤11⃗ . In order to efficiently evaluate the vector field 𝑓(𝑥⃗)	we choose to 
restrict ourselves to a linear and sparse mapping M between the parameters and the vector 
field: 

 𝑓(𝑥⃗) = 𝑓charge(𝑥⃗; 𝑞, , 𝑝,) + 𝐌(𝑥⃗) ⋅ 𝑤33⃗ . (3) 

Hence the vector field is modelled as a linear combination of the columns in the matrix M 
(which represent the individual dipole-like basis functions). The shape of the matrix 𝐌(𝑥⃗) is 
3x𝑁, where each row defines the x-, y-, and z-component at position 𝑥⃗ for each of the N basis 
functions. This vector field will be divergence-free by construction if each individual column 
in the matrix M is itself divergence-free, because the divergence operator is linear. 
The vector field generated by actual dipoles extend infinitely far from the dipole and they are 
therefore challenging to handle as a basis function in our application. Infinite extent of 
dipoles means that the mapping 𝐌(𝑥⃗) defined above will be dense, which makes the 
optimisation of any non-linear cost function unfeasible. Instead, we devise dipole-like basis 
functions that only extend a limited range from the dipole centre, which ensures that the 
mapping 𝐌(𝑥⃗) is sparse and hence the optimisation is tractable. 
We start the construction of these dipole-like basis functions by defining a radial basis 
function. A radial basis function is any scalar function 𝑔(𝑥⃗) that only depends on the distance 
from some control point 𝑦⃗. To ensure the sparsity of 𝐌(𝑥⃗) we use compactly supported radial 
basis functions (Wendland 1995; Buhmann 2000), which are only non-zero within a sphere 
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around the control point, i.e. 𝑔 5𝑟 = |$⃗*+,⃗ |
-
7 = 0 if 𝑟 > 1, where 𝑟 is the distance to the control 

point normalized by the extent of the radial basis function 𝑠. Here we use a compactly 
supported radial basis function from Wendland (1995): 

 𝑔(𝑟) = (1 − 𝑟)7(35𝑟8 + 18𝑟 + 3) for 𝑟 ≤ 1 (4) 

This radial basis function has the advantage that it is 4 times continuously differentiable at 
both 𝑟 = 0 and 𝑟 = 1 in 3-dimensional space (Wendland 1995), which means there will be 
no discontinuities in the vector field (or its first derivative), when defined from the second 
derivatives of this radial basis function. 
The vector field basis functions are defined as (−∇.I + ∇ ⋅ ∇/)𝑔(𝑥⃗) (Narcowich and Ward 
1994), where 𝑔(𝑥⃗) is the radial basis function defined above (eq. 4). The operator 
(−∇.I + ∇ ⋅ ∇/) is chosen, so that the columns of the resulting matrix are divergence-free 
and hence can be used as basis functions. These columns are: 

 

⎝

⎜
⎛
	

− !&9
!$&

− !&9
!%&

!&9
!#!$
!&9
!#!% ⎠

⎟
⎞
,

⎝

⎜
⎛
	

!&9
!#!$

− !&9
!#&

− !&9
!%&

!&9
!$!% ⎠

⎟
⎞
,

⎝

⎜
⎛
	

!&9
!#!%
!&9
!$!%

− !&9
!#&

− !&9
!$&⎠

⎟
⎞
.   (5) 

We can define N different radial basis functions (𝑔(𝑥⃗)) by defining these dipole-like basis 
functions around N control points. This will give us 3N basis functions (eq. 5), whose 
contribution to the vector field is determined by 3N parameters (𝑤11⃗ ; eq. 3). 
To fit to an arbitrary orientation field, we place these dipoles in a hexagonal grid with the 
distance between neighbouring dipoles given by 1/3 of the size 𝑠 of their full extent. When 
these dipole-like fields are embedded within a larger field they can locally alter the shape of 
the field in 3 dimensions (Figure 4) to fit any target density or vector orientation, e.g. white 
matter orientations estimated from diffusion MRI. 
The mapping from the weights (𝑤11⃗ ) to the vector field (𝑓(𝑥⃗)) described above has been 
implemented in the accompanying code for both CPU and GPU. On both CPU and GPU, the 
matrix 𝑀(𝑥⃗) can either be pre-computed to allow for fast evaluation or can be computed on 
the fly if there are memory constraints.  
Cost function and anatomical constraints 
We use both the geometry of the cortical folds as well as fibre orientations estimated from 
diffusion MRI data to constrain the shape and density of our white matter model (i.e., 
optimise the strength and orientation of the dipoles defined in section 3.2). Here we discuss 
the terms adopted for the cost function in this work. Additional terms available in the 
accompanying code are listed in Table 1. 
For white matter voxels within the gyral blades our main data fidelity term in the cost 
function constraint will be encouraging alignment with the fibre orientations estimated from 
the diffusion data. As we do not model crossing fibres in this work, we define this by 
alignment between the principal eigenvector of the best-fit diffusion tensor (𝑉1⃗0) and the 
vector field 𝑓 averaged over each voxel: 

 𝐶DTI = −〈E𝑓F(𝑥⃗,) ⋅ VH:,,I
8〉, (6) 

where the triangular brackets 〈∙〉 refer to taking the average across all voxels. Note that this is 

a constraint on the normalized vector field 𝑓'(𝑥⃗) ≡ !⃗($⃗)
|'⃗($⃗)|	

, since we don’t have access to 
voxel-wise estimates of the fibre density in the tensor model. Because this constraint adds a 
degeneracy to the cost function by giving the same result for  𝑓'(𝑥⃗)) and -𝑓'(𝑥⃗)), we only add 
it to the cost function once a decent initial estimate of the vector field has been obtained. 
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To encourage a smooth density distribution throughout the white matter, we also add an L2 
norm constraint to the streamline density: 

 𝐶L2 = 〈K𝑓(𝑥⃗,)K
8
〉. (7) 

We set additional constraints at both the white/grey-matter boundary and mid-cortical surface 
(i.e., a mesh halfway between the white/grey-matter boundary and the pial surface). These 
constraints are applied to the vector field 𝑓 averaged over each triangle in the cortical 
surfaces. A constraint on density at the surface is defined for a given target density 𝑑) by: 

 𝐶surf-density = 〈E𝑓(𝑥⃗,) ⋅ 𝑛M, − 𝑑,I
8
〉, (8) 

where 𝑛H) is the surface normal. The target surface density is set to encourage a uniform 
density of streamline endpoints through the cortical grey matter volume (Van Essen et al. 
2014). 
Finally, a radial fibre orientation at the surface is encouraged by including the following term 
to the cost function: 

 𝐶radial = −〈𝑓F(𝑥⃗,) ⋅ 𝑛M_𝑖〉 (9) 

Minimising this term will maximise the alignment between the orientation of the vector field 
and the surface normal. 
The total cost function is then given by: 

 𝐶 = 𝐶surf-density + 𝜆radial𝐶radial + 𝜆DTI𝐶DTI + 𝜆L2𝐶L2, (10) 

where the individual cost functions are defined in eqs. 6-9 and the 𝜆s give the relative 
weights of the different cost functions (which will be given in section 3.5).  

Table 1 List of the available cost functions to constrain the fibre distribution.  

Constraints on fibre orientation (𝑓' = 𝑓/|𝑓|)  
Von Mises −𝑓' ⋅ 𝑢H  Aligns with 𝑢H  (signed) 

Watson* 
−L𝑓' ⋅ 𝑢HM

.
 Aligns with 𝑢H  (unsigned) 

Bingham* −(𝑓' ⋅ 𝐁 ⋅ 𝑓') Aligns with fibre orientation with 
anisotropic configuration (encoded by 
the Bingham matrix B) 

Constraints on fibre density (|𝑓|)  
Volume 
density* LO𝑓O − 𝑑M

.
 Target fibre density 𝑑  

Surface 
density 

L𝑓 ⋅ 𝑛H − 𝑑M
.
 Target fibre density 𝑑 crossing surface 

with normal 𝑛H 
Total surface 
density 

L∫ 𝑓 ⋅ 𝑛H𝑑𝑆 − 𝑁M
.
 Total number of streamlines 𝑁 crossing 

surface 𝑆, which has normal  𝑛H 
L1 norm |𝑓| Reduced fibre density 
L2 norm O𝑓O

.
 Reduced fibre density 

Spatial smoothness constraint between neighbouring voxels with fields 𝑓0111⃗  and 𝑓.111⃗  
Density* 

L|𝑓0111⃗ | − |𝑓.111⃗ |M
.
 Smooths density variations 

Orientation −𝑓0R ⋅ 𝑓.R  Smooths orientational variations 

Both L𝑓0111⃗ − 𝑓.111⃗ M
.
 Smooths density and orientational 

variations 
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* These cost functions have two distinct minima as they give the same result for 𝑓 = −𝑓 
and don’t have a minimum for O𝑓O = 0, so they should only be added to the cost function 
once a reasonable field estimate has already been produced (i.e., a field estimate where 
within each voxel the estimated fibre orientation is within 90 degrees of the correct one) to 
ensure the fitting converges to the global rather than a local minimum. 

 

3.4 Interface with probabilistic tractography 

The vector field produced by optimising the cost function above can be thought of as 
providing a one-to-one mapping between any location on the cortical surface with a location 
for streamlines to enter into deep white matter. We take each vertex on the cortical surface 
and move it along the vector field as described below to the interface between the gyral and 
deep white matter (right in Figure 2). This creates a deformed but topologically equivalent 
version of surface around deep white matter, which excludes the cortical convolutions. This 
surface can then be used as a seed and/or target mask in any tractography algorithm. 

3.5 Building whole-brain connectomes 

Given cortical surface models, surfaces (e.g. extracted from an anatomical T1w image) and 
diffusion MRI data for a single subject, we build a dense (i.e. vertex/voxel-wise rather than 
parcel-wise) connectome using the following steps: 

• First, we create a mask of the white matter within the gyral blades. This mask is 
designed to include any voxels within the gyral white matter and includes those 
voxels through which the shortest line connecting the gyral walls on both sides is 
shorter than 10 mm (Figure 2). 

• Within the gyral white matter we estimate the fibre configuration in three steps: 
1. An initial estimate of the vector field is generated by placing uniform 

“negative” charges across the pial surface. These charges are compensated for 
by an equal-sized positive charge in the centre of the deep white matter in 
each hemisphere. These charges generate a vector field flowing from the pial 
surface into the brain according to eq. 2. 

2. This initial field is refined using the dipole-like basis functions (eqs. 3-5). 
These basis functions have a finite extent of s (=20 mm used here) and are 
interspersed on a hexagonal close packing configuration at a distance of -

1
 mm. 

The strength and orientation of the dipoles is optimised by minimizing the cost 
function  using the quasi-Newton method L-BFGS-B (Byrd et al. 1995; Zhu et 
al. 1997): 

 𝐶 = 𝐶surf-density + 𝜆radial𝐶radial 	+ 𝜆L2𝐶L2., (11) 

which encourages a uniform density of streamline endpoints in the cortical 
volume (eq. 8), a radial orientation at the cortical surface (eq. 9) and imposes 
an L2 norm on the volumetric fibre density (eq. 7). Both surface constraints 
Csurf-density and Cradial are enforced at the white/grey-matter boundary as well as 
the mid-cortical surface. 

3. Finally, a set of smaller dipoles (extent of 7 mm, interspersed on a hexagonal 
grid with distance of 2

1
 mm) is optimized by the cost function above and 
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additionally enforcing alignment between the principal eigenvector of the 
diffusion tensor and the proposed fibre orientation (eq., 6) 

 𝐶 = 𝐶surf-density + 𝜆radial𝐶radial + 𝜆L2𝐶L2 + 𝜆DTI𝐶DTI. (12) 

Here we use 𝜆radial = 1, 𝜆DTI = 1, and 𝜆L2 = 10*1. These values were 
determined through trial-and-error based on the quality of the resulting fit and 
visual inspection of the resulting vector field. How these parameters should be 
set to robustly work across a large number of datasets, remains to be 
investigated. The final vector field is given by the sum of the contribution of 
the initial field (step 1), the large dipoles (step 2) and the smaller dipoles (step 
3). 

• The final vector field is used to guide the vertices of the white/grey-matter boundary 
through the gyral white matter. This provides a 1:1 mapping and results in a new 
deformed surface at the interface between the gyral and deep white matter that 
encloses deep white matter.  

• During tracking from the white/grey-matter boundary neighbouring vertices do not 
always remain immediately adjacent to one another other, which leads to a very 
ragged-looking mesh. To resolve this, we smooth the mesh at the gyral and deep 
white matter interface by moving each vertex towards the mean of its neighbours. 
During this smoothing the vertices moved a median distance of less than 1 mm, with 
95% of vertices moving less than 3 mm. The smoothed surface (which has a mesh 
density that varies greatly across the interface) was used as seed and target for 
tractography. 

3.6 Data and analysis 

We tested our algorithm on pre-processed data from 20 subjects of the Human Connectome 
Project (HCP) (Van Essen et al. 2012). The pre-processed data includes white/grey-matter 
boundaries and pial surfaces extracted from the T1-weighted and T2-weighted images using 
the HCP Pipelines (Glasser et al. 2013). The diffusion constraint was obtained by fitting a 
diffusion tensor to the b=1000 shell of the pre-processed HCP diffusion MRI data 
(Sotiropoulos et al. 2013; Andersson and Sotiropoulos 2016). Group-average analysis were 
carried out on datasets aligned using MSMAll intersubject registration (Robinson et al. 2014; 
Glasser et al. 2016). 
We used FSL’s probtrackx2 (Behrens et al. 2007; Hernandez-Fernandez et al. 2019) to 
compare the features of the connectome when seeding/terminating streamlines at either the 
white/grey-matter boundary or at the new interface between the gyral and deep white matter. 
For these two surfaces we (i) compared the density distribution of streamline endpoints when 
seeding from the subcortical volume or from the contralateral hemisphere, (ii) assessed the 
similarity in the path that streamlines seeded from the surface take through deep white matter, 
and (iii) performed a comparison between the functional and structural connectome. In each 
case the structural connectivity was estimated by dividing the number of streamlines 
connecting two voxels or vertices by the cortical volume associated with the target vertex or 
voxel. This makes our structural connectivity from A to B measure proportional to the 
probability of streamlines seeded in voxel/vertex A to terminate in each mm3 of voxel/vertex 
B. 
In four subjects these connectomes were parcellated using the subject-specific multi-modal 
parcellations from Glasser et al. (2016). The connectivity from parcel A to parcel B was 
estimated by adding up all the streamlines going from A to B and then divide by the number 
of vertices in A and the total cortical volume associated with B. This connectivity measure is 
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once again proportional to the average probability of streamlines seeded in parcel A to 
terminate in each mm3 of parcel B. This parcellation allows quantification of the connectivity 
between homotopic and heterotopic interhemispheric connections. 
For comparison with tracer data from Markov et al. (2011; 2014) we also compute a 
parcellated connectome in an ex-vivo macaque diffusion MRI dataset in the same manner as 
described above, except for scaling down the threshold to define gyral white matter (10 to 4 
mm) and the size of the dipoles (in initial fit from 20 to 9 mm, in final fit from 7 to 3 mm) to 
compensate for the smaller brain size. As the tracer data is reported as the fraction of labelled 
cells within a given ROI, we also apply such fractional scaling to the connectome from 
tractography using the algorithm described by Donahue et al. (2016). The diffusion MRI data 
and its preprocessing have been previously described in Jbabdi et al. (2013). In summary ex-
vivo diffusion data was acquired on a 4.7 T scanner using a 3D-segmented spin-echo EPI 
sequence (430 μm isotropic resolution, TE=33 ms, TR=350 ms, 120 directions, 𝑏max= 8000 
s/mm2). 
Results that are displayed as Connectome Workbench scenes are available via the BALSA 
database (https://balsa.wustl.edu/study/show/0LGM2). Code, documentation, and a tutorial of 
the proposed algorithm can be found at https://git.fmrib.ox.ac.uk/ndcn0236/gyral_structure. 

4 Results 

First, we defined for each subject a gyral white matter mask including those white matter 
voxels that lie between the gyral folds (Figure 2). Within this gyral white matter we found the 
best-fit vector field (by minimising eq. 10) that aligns with the primary eigenvector of the 
diffusion tensor and is both uniform and radial at the white/grey-matter boundary and mid-
cortical surface.  
Figure 5 shows maps of the best-fit vector field density and orientational alignment with the 
diffusion tensor for a sample subject as well as histograms of the full distribution for both 
hemispheres in 20 subjects.  Consistently across both hemispheres in 20 subjects we find an 
excellent alignment with the diffusion tensor primary eigenvector (Figure 5B) in all regions 
apart from the boundaries where the vector field becomes radial, as well as a fairly uniform 
density distribution at both the white/grey-matter boundary (Figure 5C) and the mid-cortical 
surface (Figure 5E). While the orientation field has become mostly radial at the mid-cortical 
surface (Figure 5F), at the white/grey-matter boundary the field is still far from radial for 
large parts of the cortical surface (Figure 5D). The radiality can be improved by increasing its 
influence in the cost function or reducing the size of the dipoles in the basis function (which 
allows for sharper curvature of the vector field), however the lack of perfect radiality at the 
white/grey-matter boundary is expected in a realistic fibre configuration (Budde and Annese 
2013; Reveley et al. 2015; Cottaar et al. 2018).  
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Figure 5 The distribution of the different terms of the cost function for the best-fit vector field. This cost function 

includes an L2 norm on the volumetric streamlines density (A), increases alignment with DTI V1 (B), approximates a 

uniform density per cortical volume element across both the white/grey-matter boundary (C) and the mid-cortical surface 

(i.e., halfway between the white/grey-matter boundary and the pial surface) (E), and finally increases alignment with the 

surface normal at both surfaces (D & F). For each variable a volumetric or surface map is shown for a single subject and the 

density distributions for 20 subjects (left hemisphere in blue and right hemisphere in red). Note that this plot illustrates the 

density of the best-fit vector field in the superficial white matter. The density of this vector field might not reflect the 

density of streamlines resulting from tractography running through the deep white matter (which is illustrated in later 

figures). 

While the L2 norm (eq. 7) attempts to reduce the volumetric streamline density (Figure 5A), 
the divergence-free constraint limits its effectiveness as the streamlines crossing the surface 
must go somewhere. The weight on the L2 norm is chosen to be low enough not to 
significantly lower the number of streamlines crossing the white/grey-matter boundary, but 
high enough that it discourages those streamlines from taking a circuitous route through the 
gyral white matter (which would increase the average streamline density).  
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Figure 6 Vector field configuration in sample gyri for a single subject. Note that the vector field itself is a continuous 

3D function defined at every intermediate point, but here we discretise it by averaging the vectors within each image voxel 

and showing a grid of these mean vectors extracted from the vector field. The colour map shows the absolute value of the 

dot-product between the continuous vector field sampled at the centre of each voxel and the primary eigenvector of the 

diffusion tensor at that voxel. The deep/gyral white matter interface (blue) has a one-to-one vertex correspondence with 

the white/grey-matter boundary (turquoise) and pial surface (green). 

The resulting best-fit fibre configuration is illustrated in Figure 6 for a few gyri. This vector 
field is used to guide the vertices from the white/grey-matter boundary to the deep white 
matter. This creates a new deep/gyral white matter interface (blue) where each vertex has a 
one-to-one correspondence with the white/grey-matter boundary (turquoise). Note that the 
deep/gyral white matter interface shown here has been smoothed. 
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Figure 7 For a single subject volumetric density (left) and surface density (per cortical volume element) at the 

white/grey-matter boundary (right) for the vector field model (A), probabilistic tractography from the white/grey-matter 

boundary (B) and from the deep/gyral white matter interface (C). Overlaid are the pial surface (green), white/grey-matter 

boundary (cyan) and deep/gyral white matter interface (blue). Because the streamline density has very different scaling in 

the different panels, the density in each panel was normalised independently before applying the same linear mapping to 

colour. While the vector field has a smooth density in the white matter (A; left) and on the surface (A; right), tractography 

seeded from the white/grey-matter boundary leads to a bias of streamlines close to the cortex (B; left), while tractography 

seeded from the deep/gyral white matter interface has a strong gyral bias on the surface (C; right). 

Figure 7 compares the density of the estimated vector field (A) with the streamline density 
from seeding tractography at the white/grey-matter boundary (B) or the deep/gyral white 
matter interface (C). While seeding from the white/grey-matter boundary is (by construction) 
uniform on the surface, the resulting distribution is very non-uniform in the gyral white 
matter (left in Figure 7B). Streamlines tend to stick closely to the white/grey-matter boundary 
following the U-fibres and relatively few reach deep white matter. On the other hand, 
streamlines seeded from deep/gyral white matter interface tend to have a higher density in the 
central part of the gyri and avoid the white/grey-matter boundary (left in Figure 7C) until 
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they reach the top of the gyral crown (right in Figure 7C). Our vector field model uniformly 
connects the white/grey-matter boundary with most (although still not all) of the gyral white 
matter (Figure 7A). 
It is worth noting that even if the vector field describing the gyral white matter is uniform per 
cortical volume element, this does not guarantee that the tractography streamlines will be 
uniformly distributed per cortical volume element after travelling through deep white matter. 
The vector field merely provides a one-to-one mapping between points on the cortical surface 
and points at the interface between the deep and gyral white matter. Whether this leads to a 
reduction in the gyral bias depends on the distribution of streamlines along this deep/gyral 
white matter interface.  

 
Figure 8 Reduction in gyral bias by tracking to the deep/gyral white matter interface (top) rather than to the 

white/grey-matter boundary (bottom). Seeding is from subcortical grey matter and the contralateral cortex. A) Streamline 

termination density per mm3 of cortex on left cortical surface for a single subject using a logarithmic scale spanning five 

orders of magnitude. B) Streamline termination density per mm3 of cortex for five sulcal depth bins (all bins have an equal 

total area on the mid-cortical surface). C) Streamline termination density per mm3 of one hemisphere per 106 streamlines 

seeded in the contralateral hemisphere for the same five sulcal depth bins. 

Thus, to further investigate the gyral bias, we run tractography streamlines seeded in the 
contralateral cortex and subcortical grey matter regions (as defined in the HCP grayordinate 
space) (Glasser et al. 2013) up to either the deep/gyral white matter interface (top in Figure 8) 
or the white/grey-matter boundary (bottom in Figure 8). Due to the one-to-one 
correspondence of the vertices between the two surfaces, we can assign each streamline 
terminating at the deep/gyral white matter interface to the equivalent vertex at the white/grey-
matter boundary. This is equivalent to propagating these streamlines to the white/grey-matter 
boundary along the best-fit vector field. 
When only considering these streamlines from other grey matter brain regions, the large 
effect of the gyral bias can be appreciated. Tens of thousands of streamlines terminate in part 
of the cortex (in particular the gyral crowns and the insula), while large parts of the cortex get 
no streamlines at all (bottom in Figure 8A). When terminating at the deep/gyral white matter 
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interface a great increase in the coverage can be seen (top in Figure 8A), however many of 
the sulcal fundi are still not covered (see Figure S3A for a similar result in the macaque).  
This corresponds to a reduction in the dependence of the streamline density on sulcal depth 
(Figure 8B). 
Figure 8C illustrates in more detail the connectivity profile of the commissural streamlines. 
Commissural streamlines seeded at the white/grey matter surface are very likely to terminate 
in the gyral crown of the contralateral white/grey matter surface (bottom in Figure 8C). While 
this trend is reduced for the deep/gyral white matter interface, some preference for 
terminating at the gyral crown in still present (top in Figure 8C). The same preference for 
gyral crowns is now found for streamline traveling in the other direction, with streamlines 
seeded from the gyral crowns being more likely to reach the contralateral cortex (top in 
Figure 8C). It is unclear whether this remaining dependence on sulcal depth is genuine, but in 
any event its magnitude is minor compared with the gyral bias observed when tracking 
between the contra-lateral white/grey matter boundaries (bottom in Figure 8C). 

 
Figure 9 Dissimilarity of the structural connectivity profiles in the deep white matter between neighbouring vertices 

for streamlines seeded from the white/grey matter surface or the deep/gyral WM interface. The dissimilarity is computed 

as one minus the Pearson-r correlation across the connectivity with all voxels below the deep/gyral WM interface. High 

dissimilarity indicates that streamlines seeded from that vertex take a very different path through the deep white matter 

from the neighbouring vertices (i.e., there is a strong gradient in structural connectivity). Top: dissimilarity maps for a 

single subject (A & C) and averaged across 20 subjects (B & D) for streamlines seeded from the white/grey-matter 

boundary (A & B) and the deep/gyral white matter interface (C & D). White arrows point to the parieto-occipital sulcus; E: 

trend lines of the dissimilarity with sulcal depth for 20 subjects (each line represents a single subject) with seeding from the 

white/grey-matter boundary in red and seeding from the deep/gyral white matter interface in blue. Trend lines were 

created using median-filtering of the dissimilarity across 400 vertices after sorting by sulcal depth.  

Next, we investigate the behaviour of streamlines seeded from the cortical surface, rather 
than the gyral bias of those approaching the surface. Figure 9 illustrates the dissimilarity of 
the path streamlines take through deep white matter between neighbouring vertices. A large 
dissimilarity corresponds to a sudden change in the structural connectivity profile, indicating 
a potential border between two distinct cortical areas (Johansen-Berg et al. 2004; Fan et al. 
2016). 
When seeding from the white/grey-matter boundary, narrow strips with high dissimilarity are 
widespread across the cortex (Figure 9A). These tend to follow the gyral crowns and sulcal 
fundi with streamlines seeded from the gyral walls being very similar between neighbouring 
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vertices (Figure 9E). This likely reflects the tendency of streamlines seeded from the gyral 
walls to stick close to the cortex as illustrated in Figure 7B, which causes streamlines seeded 
from the gyral walls to enter the deep white matter close to each other. When seeding from 
the deep/gyral white matter interface this alignment of the structural connectivity gradient 
with the gyrification is reduced (Figure 9C), although on average the dissimilarity remains 
largest in the sulcal fundi (Figure 9E). 
When averaging across subjects, most of the detail in these structural connectivity boundary 
maps disappears (Figure 9B,D). Still, some plausible boundaries remain such as at the edge 
of the occipital lobe (marked by white arrows), particularly on the medial side in the parieto-
occipital sulcus. These boundaries are less well defined when seeding from the white/grey-
matter boundary than from the deep/gyral white matter interface, which likely reflects the 
better alignment of the structural connectivity profile gradients when the effect of the 
gyrification on the tractography is reduced. 

 
Figure 10 Comparison of the structural connectome (averaged over 20 subjects) with the functional connectome 

(averaged over all HCP subjects). The connectivity from a reference vertex with from left to right: functional connectivity, 

structural connectivity when using deep/gyral white matter interface (using reference vertex as seed on left or as target on 

right), and finally structural connectivity using white/grey-matter boundary (again using reference vertex as seed on left or 

as target on right). From top to bottom reference vertices are in the parietal lobe, frontal lobe, insula, and cingulate 

(marked by white dots and the blue arrow). Green arrows mark distant intrahemispheric connections where the 

agreement with the functional connectome seems to have improved when using the deep/gyral white matter interface, 

while the purple arrow marks an area where using the white/grey-matter boundary works better. 

Figure 10 compares the estimated group structural connectivity profiles for selected seeds 
when using the deep/gyral white matter interface rather than the white/grey-matter boundary. 
For comparison the average functional connectome across all subjects as downloaded from 
the HCP database has been included on the left. While the structural connectivity profiles are 
generally similar, many differences are evident. In general, there appear to be more long-
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distance connections when seeding from and targeting the deep/gyral white matter interface. 
In some regions this improves the agreement with the functional connectome (green arrows 
in Figure 10), although counter-examples can also be found (purple arrow in Figure 10). 

 
Figure 11 Distribution of the correlations between the structural and functional connectivity profiles when seeding 

from the white/grey-matter boundary (blue) or gyral/deep white matter interface (red) with each line showing the 

distribution for one out of 20 subjects. For each vertex the correlation is computed between the connectivity estimates 

with respect to either all other vertices in the same hemisphere excluding local and U-fibres as defined in Figure S1 (top 

panels), or all vertices on the contralateral hemisphere (middle panels), or all sub-cortical grey meter voxels as defined in 

the HCP grayordinate space (bottom panels). As illustrated at the top, the correlations are computed between the 

functional connectome with either the log-density of streamlines terminating in a vertex (left panels) or the log-density of 

streamlines seeded in a vertex (centre panels). The right panels compare the log-density of the two structural connectivity 

profiles (i.e., seeding from or targeting a vertex).  

To quantify the comparisons between these 3 connectomes (i.e., streamlines seeded from a 
reference vertex, streamlines terminating in a reference vertex, and the functional 
connectivity) we compute the Pearson correlation between them for every vertex (Figure 11). 
Overall, the correlations between the (log-transformed) structural and functional connectome 
are very low (left two columns), whether we consider nonlocal intrahemispheric connections 
(top), interhemispheric connections (middle) or connections with the subcortex (bottom). A 
slight improvement in the correlation is seen in the interhemispheric connections when 
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adopting the deep/gyral white matter interface. Adopting the deep/gyral white matter 
interface does greatly boost the symmetry of tractography, with the distribution of 
streamlines seeded from a vertex being more similar to the distribution of streamlines 
terminating in a vertex (right column in Figure 11). 
So far, we have exclusively focussed on the dense (i.e., vertex-wise) connectome. Further 
validation can be obtained by studying the parcellated connectome. We use the multi-modal 
parcellation from Glasser et al. (2016) to parcellate the cortical connectome (Figure S2A). 
Because we only alter the tractography within the gyral blades, the connectivity strengths in 
these parcellated connectomes are strongly conserved between using the white/grey-matter 
boundary or deep/gyral white matter interface (Figure S2B,C). However, these minor 
changes in the parcellated connectomes still allow for some additional validation. The results 
of this experiment appear to be mixed. In the HCP data adopting the deep/gyral white matter 
interface increases the interhemisphere connectivity between homotopic regions, while 
decreasing the interhemispheric connectivity between heterotopic regions (Figure S2D), 
which is in line with the predominance of homotopic connections seen in tracer studies (e.g., 
Oh et al. 2014). However, when applied in a macaque diffusion MRI dataset previously 
described in Jbabdi et al. (2013), the correlation with the “ground-truth” connectome based 
on neuroanatomical tracers from Markov et al. (2011; 2014) decreases. 

5 Discussion 

Here we present a model for the white matter in gyral blades, which reduces the 
overestimation of gyral connectivity and underestimation of sulcal connectivity by 
considering the shape of the gyrus when running tractography in the gyral white matter 
(Figure 8). This is done by imposing two physical constraints on the gyral white matter fibre 
configuration: (1) fibres do not terminate in the white matter (i.e., the vector field is 
divergence-free) and (2) fibres do not cross each other. The first continuity constraint ensures 
that all these streamlines uniformly entering the gyral white matter have to go somewhere 
and the only possible destination is deep white matter. The second non-crossing constraint 
ensures that when the streamlines converge on the interface with the deep white matter, those 
from the left gyral wall remain on the left, those from the right gyral wall remain on the right, 
while those from the gyral crown get compressed into the centre of the gyral white matter 
(Figure 1). It has previously been argued that such an assumption of spatial organisation 
within a white matter bundle is crucial for tractography to be able to claim any relation 
between where fibres enter and leave a white matter bundle (Jbabdi et al. 2015). With these 
constraints, we optimise a cost function to create a uniform (and radial) fibre distribution at 
the white/grey-matter boundary and mid-cortical surface and to align with the primary 
eigenvector of the diffusion tensor in each voxel. The optimisation routine is consistently 
able to achieve a fairly uniform distribution with excellent alignment with the DTI across all 
20 HCP subjects tested here (Figure 5). While this does lead to a realistic-looking fanning 
fibre configuration (e.g., compare Figure 6 with (Heidemann et al. 2012; Budde and Annese 
2013; Van Essen et al. 2014; Sotiropoulos et al. 2016)), this model does have some 
limitations. 

5.1 Model assumptions and limitations 

The method assumes that there is a one-to-one mapping from each point on the cortical 
surface to where the fibres enter deep white matter. There is evidence for such organisation 
from tracer studies, at least for long-distance fibres, such as those connecting with many sub-
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cortical regions and the contralateral hemisphere. Many long-distance axons (in particular 
those connecting to the striatum, corpus callosum, cingulum bundle or the capsules) tend to 
be well-clustered in a narrow “stalk” while travelling through the gyral white matter and only 
disperse in deep white matter (Figure 12) (Krieg 1973; Safadi et al. 2018). Hence, these long-
distance fibres might be well represented by the one-to-one mapping provided by the 
proposed model. On the other hand, the vector field does not represent the U-fibres or other 
short-distance fibres. These are unlikely to follow this path to deep white matter and are 
found to be in general far more spread out (Figure 12). Although these fibres could be 
included in the model by superimposing a second (or even third) vector field on top of the 
single one modelled here, the fact that they are spread out suggests that they might be better 
represented by a model that allows for fibres to cross within a single white matter bundle, 
such as local probabilistic tractography or the spin-glass model by Reisert et al. (2011). 
 

 
Figure 12 Traced axons from a bidirectional tracer (Lucifer Yellow) in the prefrontal cortex (left) of an adult male 

monkey (Macaca fascicularis). Long-distance axons can be seen to travel together from the injection site in a relatively 

“narrow” stalk (middle) until enter the deep white matter (right) and divide into separate bundles that travel to the corpus 

callosum, cingulum bundle and capsules, and the striatum.  U-fibres and axons connecting within the same gyrus and those 

traveling to other cortical regions do not form part of this “stalk” and are far more spread out (insets). For experimental 

details see Lehman et al. (2011) and Safadi et al. (2018). The tracing experiment was performed in accordance with the 

Institute of Laboratory Animal Resources Guide for the Care and Use of Laboratory Animals and approved by the University 

Committee on Animal Resources at University of Rochester. 

A major assumption made by the vector field model is that the fibres represented by the 
vector field do not cross each other. This assumption is intrinsic to our choice of modelling 
the fibre configuration as a vector field, where at any point we only have a single fibre 
orientation. Although a crossing fibre bundle could be added to the model by representing it 
with a second vector field (e.g., to model the U-fibres), the vector field model would still 
ensure that within each fibre bundle the fibres cannot cross each other. In other words, we 
assume that while the “stalks” seen in Figure 12 might cross the U-fibres or local axons, they 
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do not cross “stalks” connected with different parts of the cortex (i.e., “stalks” from the left 
gyral wall stay on the left, those from the right gyral wall stay on the right). As far as we are 
aware, this assumption is as yet untested. 
Finally, the target density distribution adopted in this work (i.e., a uniform streamline 
termination density per unit of cortical volume) is only a first-order approximation of the true 
expected density distribution. In reality there will be significant variation between cortical 
regions in the density of long-distance connections. Given the limitations of tractography in 
estimating the density of long-distance connections, more accurate estimates of the expected 
density distribution across the surface likely have to come from detailed histological studies, 
which is beyond the scope of this article.  

5.2 Validation 

Adopting the vector field model for the gyral white matter can be viewed as a regularisation 
algorithm, where we take some of the streamlines which would have terminated on the gyral 
crown and move them to the sulcal walls or fundi, following anatomical constraints. We 
show that this reduces the gyral bias when streamlines travel up to the cortex (Figure 8). By 
allowing streamlines not to have to track through the gyral white matter, we find many more 
streamlines connecting to the cortex. Still some more subtle trends with the sulcal depth 
remain, with commissural streamlines showing a residual gyral bias, although this bias is now 
the same for the hemisphere where we are seeding from and the target hemisphere (Figure 
8C). 
Even when seeding from the white/grey-matter boundary this reduction of the gyral bias 
becomes obvious when examining boundaries in the cortical connectivity profile to the deep 
white matter is (Figure 9). When seeding from the white/grey-matter boundary these borders 
align preferentially with the sulcal fundi and gyral crowns as all the streamlines seeded from 
the gyral walls tend to cluster together (Figure 7B). Seeding from the deep/gyral white matter 
interface eliminates this bias. This reduction of the gyral bias creates a better alignment of the 
structural connectivity gradients across subjects, which leads to more robust detection of 
these gradients when averaging across subjects (Figure 9). It also increases the symmetry in 
tractography with the connectivity estimated by seeding streamlines in a vertex becoming 
much more similar to the connectivity estimated when considering the streamlines 
terminating in a vertex (Figure 11). 
More promising evidence comes from comparison between the structural and functional 
connectome for which we show a qualitative improvement in the intrahemispheric 
connectivity (green arrows in Figure 10) and a small quantitative improvement for the 
connectivity with the contralateral hemisphere (Figure 11) when adopting the divergence-free 
model to guide the streamlines through the gyral white matter.  
Further validation could come from comparing the connectome estimated from tractography 
with some known connectivity “ground-truth”, such as that interhemispheric connections are 
stronger between homotopic than heterotopic regions, which our results suggest. An even 
stronger validation is a comparison with neuroanatomical tracers in non-human primates. 
Unfortunately, such ground truth connectivity has been published only at the level of cortical 
regions, not at the level of individual vertices. Because many of these cortical regions span 
both sulcal fundi and gyral crowns, the changes in tractography in the gyral blades proposed 
here has only a minor effect on the parcellated connectomes (Figure S2B,C). Still for 
completeness, we do include such comparisons in the supplementary materials, where we 
find that adopting our approach increases the preference for interhemispheric streamlines to 
connect between homotopic regions (Figure S2D), but find a slightly decreased correlation 
with tracer data in a macaque dataset (Figure S3). 
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5.3 Alternatives 

Explicit constraints on the streamline density like the ones used here to reduce the gyral bias 
could also be used as part of the cost function in other algorithms. This would not work for 
local tractography algorithms that only model a single streamline at a time as there is not a 
meaningful measure of the streamline density. Global tractography algorithms such as the 
spin glass model (Mangin et al. 2002; Kreher, Mader, and Kiselev 2008; Fillard, Poupon, and 
Mangin 2009; Reisert et al. 2011) that model all streamlines at once could be used to measure 
and constrain the streamline density. The spin-glass model might be a better model for U-
fibres or other local axons as it allows streamlines within a single bundle to cross each other. 
Recently, (Teillac et al. 2017) proposed an extension on the spin-glass model to reduce the 
gyral bias, although their proposal alters the target fibre orientations close to the sulcal walls 
to allow streamlines to smoothly bend into the gyral walls rather than an explicit constraint 
on the streamline density. (Wu et al. 2019) also showed a reduction in the gyral bias by 
encouraging a smooth transition between the radial fibre orientation in the grey matter and 
the tangential orientation underneath using asymmetric fibre orientation distribution functions 
(Bastiani et al. 2017). 
Density constraints on streamline endpoints could also be added as part of the cost-function, 
when filtering or weighting streamlines in post-processing (Daducci et al. 2016) by 
algorithms such as Contrack (Sherbondy et al. 2008), SIFT/SIFT2 (Smith et al. 2013; 2015), 
LiFE (Pestilli et al. 2014), or COMMIT (Daducci et al. 2015). These algorithms have in 
common that they filter or assign weights to streamlines produced by local tractography 
algorithms to represent their relative contribution. While so far these weights are only fitted 
to the diffusion MRI data, the surface density could be added as an additional constraint. Of 
course, this does require generating enough streamlines that there is a sufficient population of 
streamlines connecting to the sulcal walls and fundi. Streamlines connecting sulcal fundi at 
both ends are so rare (Figure 8) that even after post-processing they might be 
underrepresented in the final fibre population. Therefore, this post-processing approach might 
achieve a reduction of gyral bias simply by upweighting the fundi-to-crown connections and 
not include the many fundi-fundi connections found when tracking to the deep/gyral white 
matter interface (Figure 8C). 
In our approach, the gyral bias is reduced not due to the enforcement of a uniform density 
across the cortical surface for the vector field, but in using the vector field to map the cortical 
surface to a less convoluted surface, namely the deep/gyral white matter interface. 
Tractography to this less convoluted surface does not suffer from a gyral bias. (St-Onge et al. 
2018) proposed using a mean-curvature flow model to produce such a less convoluted 
surface. Their model has the advantage of being much less computationally expensive than 
the fitting of a vector field to the gyral white matter proposed here. While the reported 
decrease in the gyral bias seen in St-Onge et al. (2018) is less than found here, this might 
simply reflect that their final surface is still far more convoluted than the deep/gyral white 
matter interface adopted here. Ideally, tracer data such as the one shown in Figure 12 would 
be used to validate the paths proposed by these algorithms through the gyral white matter. 
While these alternative algorithms discussed above reduce the gyral bias, the degree of 
reduction of the gyral bias as shown in Figure 8, has not been shown before. This might 
increase the accuracy of long-distance connections although perhaps at the cost of losing any 
information about short-distance connections, in particular those within a gyrus or U-fibres. 
Code, documentation, and a tutorial for the algorithm proposed in this paper can be found at 
https://git.fmrib.ox.ac.uk/ndcn0236/gyral_structure and the surface maps displayed are 
available in the BALSA database (https://balsa.wustl.edu/study/show/0LGM2). 
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7 Supplementary 

 
Figure S1 Definition of the intrahemispheric connections excluding local connections and U-fibres used in Figure 11. 

The cortex is sub-divided into 50 parcels (illustrated for single subject) with the borders between the parcels preferentially 

located in the sulcal fundi. Local connections and U-fibres are excluded by only considering the connectivity between 

vertices in different parcels that do not border each other. The parcellation is obtained using a watershed algorithm: the 

vertices are sorted by sulcal depth (from high to low) and then iterated through. Each vertex is assigned to a new parcel if 

none of its neighbours are in existing parcels (i.e., it is a local maximum) and otherwise assigned to the neighbouring 

parcels. If two parcels touch, they are merged if one of them is insufficient deep (i.e., maximum – minimum sulcal depth is 

below some threshold), otherwise they are kept separate. The depth threshold is chosen, so that we end up with 50 

parcels. 
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Figure S2 Analysis of parcellated connectomes for 4 subjects (one column per subject). A) Single-subject multi-modal 

parcellation from Glasser et al. (2016) used to parcellate the connectome. B) Heat map of the streamline density obtained 

using the white/grey-matter boundary (top) or the deep/gyral white matter interface. The parcellated connnectomes are 

very similar as also seen in the scatter plot (C). D) Distribution of streamline density for the interhemispheric streamline 

density between homotopic parcels (top) and heterotopic parcels (bottom). The homotopic connectivity has a median 

increase of 66%, 37%, 35%, and 53% for these 4 subjects when adopting the deep/gyral white matter interface (red), while 

the heterotopic connectivity has a median decrease of 10%, 11%, 8%, and 20%. The streamline density measures the 

number of streamlines seeded from the vertices in one parcel that terminate in each mm-3 of the target parcel. 
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Figure S3 Comparison of the parcellated connectome of a macaque with tracer data from Markov et al. (2011; 2014). 

A) Illustration of the gyral bias in the macaque diffusion MRI data showing the density of interhemispheric streamline 

termination points (colour map is the same as in Figure 8A). B) Heatmap of the reference connectome with the log-

transformed extrinsic fraction of labelled neurons (FLNe) on the left and the connectomes when using the white/grey-

matter boundary in the middle and the deep/gyral white matter interface on the right. C) Correlation between the 

connectomes from tractography and the tracer connectome (only for the 62% of connections with non-zero connectivity). 

When adopting the deep/gyral white matter interface the correlation with the tracer connectome becomes worse. This 

negative trend becomes statistically insignificant when regressing out distance as in Donahue et al. (2016). D) ROC curves 

for predicting the “true” connections by thresholding the tractography connectomes for from left to right different 

thresholds of the FLNe. Again, the ROC curves are worse when adopting the deep/gyral white matter interface. 
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