

1 **Intrathecal catheter implantation decreases cerebrospinal 2 fluid dynamics in cynomolgus monkeys**

3

4 **Authors:** Mohammadreza Khani¹, Audrey Q. Fu², Joshua Pluid¹, Christina P. Gibbs¹, John N.
5 Oshinski³, Tao Xing⁴, Gregory R. Stewart^{5,6}, Jillynne R. Zeller⁷, Bryn A. Martin^{1*}

6

7 **Affiliations:**

8 ¹Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, USA.

9 ²Department of Statistical Science, University of Idaho, Moscow, ID, USA.

10 ³Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA.

11 ⁴Department of Mechanical Engineering, University of Idaho, Moscow, ID, USA.

12 ⁵Axovant, New York, NY, USA.

13 ⁶Voyager Therapeutics, Cambridge, MA, USA.

14 ⁷Northern Biomedical Research, Spring Lake, MI, USA

15

16 ***Corresponding author:**

17 E-mail: brynm@uidaho.edu (BAM)

18

20 **Abstract**

21 A detailed understanding of the CSF dynamics is essential for testing and evaluation of
22 intrathecal drug delivery. Preclinical work using large-animal models (e.g., monkeys, dogs and
23 sheep) has great utility for defining spinal drug distribution/pharmacokinetics and provide an
24 important tool for defining safety. In this study, we investigated the impact of catheter implantation
25 in the sub-dural space on CSF flow dynamics in Cynomolgus monkeys. Magnetic resonance
26 imaging (MRI) was performed before and after catheter implantation to quantify the differences
27 based on catheter placement location in the cervical compared to the lumbar spine. Several
28 geometric and hydrodynamic parameters were calculated based on the 3D segmentation and flow
29 analysis. Hagen-Poiseuille equation was used to investigate the impact of catheter implantation on
30 flow reduction and hydraulic resistance. A linear mixed-effects model was used in this study to
31 investigate if there is a statistically significant difference between cervical and lumbar
32 implantation, or between two MRI time points. Results showed that geometric parameters did not
33 change statistically across MRI measurement time points and did not depend on catheter location.
34 However, catheter insertion did have a significant impact on the hydrodynamic parameters and the
35 effect was greater with the cervical implantation. CSF flow rate decreased up to 54.7% when the
36 catheter located in the cervical region. The maximum flow rate reduction in the lumbar
37 implantation group was 21%. Overall, lumbar catheter implantation disrupted CSF dynamics to a
38 lesser degree than cervical catheter implantation and this effect remained up to two weeks post-
39 catheter implantation

40

41

43 **Background and Introduction**

44 A detailed understanding of the CSF dynamics is needed for testing and evaluation of
45 intrathecal drug delivery associated with catheter insertion. The cerebrospinal fluid (CSF) is
46 secreted from arterial blood by the choroid plexus of the lateral and fourth ventricles by a
47 combined process of diffusion, pinocytosis and active transfer (1-3). A small amount is produced
48 by ependymal cells. The circulation of CSF is aided by the pulsations of the choroid plexus and
49 by the motion of the cilia of ependymal cells (4, 5). CSF is absorbed across the arachnoid villi
50 into the venous circulation and a significant amount probably also drains into lymphatic vessels
51 around the cranial cavity and spinal canal (6, 7). CSF acts as a cushion that protects the brain
52 from mechanical insult and supports the venous sinuses (5). It also plays an important role in the
53 homeostasis and metabolism of the central nervous system (8).

54 In intrathecal drug delivery, medications are introduced directly to the spinal fluid
55 (intrathecal space) through a drug delivery system. An externalized intrathecal catheter is the
56 most widely used technique for administration of intrathecal drugs (9). With intrathecal delivery,
57 less medication is necessary than if the medication was taken orally, and fewer side effects are
58 often seen. Currently approved medications for intrathecal administration by the U.S. Food and
59 Drug Administration (FDA) include morphine, ziconotide and baclofen. For these therapies, the
60 doctor places a catheter beneath the skin and into the space along the spine (the intrathecal space)
61 to release the drug into the cerebrospinal fluid. With intrathecal delivery, the drug can bypass the
62 blood-brain barrier and more directly reach nervous system tissue. If the goal of treatment is to
63 reduce spasticity in both the arms and the legs, an intrathecal catheter can be placed in a more
64 rostral position potentially leading to increased uniformity in baclofen dosing of the cervical and
65 lumbar spine and improved reduction in spasticity of the upper and lower limbs (10).

66 Preclinical studies need to be performed using large-animal models (e.g., monkeys, dogs and
67 sheep) since these models have utility to define spinal drug distribution/pharmacokinetics and
68 provide an important tool for assessment of drug safety. Preclinical studies also provide insight
69 into the potential mechanisms of intrathecal drug delivery. Cynomolgus monkeys are a
70 commonly used animal model for these studies because of their similarity to humans with regard
71 to the pathophysiology of a variety of diseases and presumed similarity with regard to central
72 nervous system (CNS) anatomy and CSF hydrodynamics.

73 There have been previous reports of CSF analyses in nonhuman primates. Acute procedures
74 include cisterna magna tap in anesthetized rhesus monkeys and baboons (11) and lumbar
75 puncture in anesthetized rhesus monkeys (12), baboons(13), and chimpanzees (14). Chronic
76 procedures include lumbar puncture with needle and stylet, where the needle remains in place for
77 periods of 90 to 300 minutes (15). Taylor et al. reported cannulating the lumbar subarachnoid
78 space (SAS), which allowed CSF collection from a rhesus monkey for 72 hours (16). Perlow
79 catheterized the SAS of a rhesus monkey by inserting a catheter into the lumbar region and
80 advancing it cephalad so that the tip terminated in the cisternal-cervical SAS (17). CSF was then
81 withdrawn continuously by a peristaltic pump for 48 hours. However, these reports provided
82 relatively few details of the spinal tap procedures nor specifications of the apparatus, such as the
83 gauge of the cannula or catheter. Also, none of these procedures continued for more than 48
84 hours. Thus, the potential impact of prolonged intrathecal catheterization on CSF dynamics was
85 not analyzed.

86 To our knowledge, no studies have investigated how catheter placement may impact CSF
87 dynamics in Cynomolgus monkeys. Our previous study developed a quantitative method to
88 characterize CSF dynamics and geometry in non-human primates (NHPs) (18) . This method was

89 demonstrated to reliably measure CSF dynamics parameters over a two-week period in a group
90 of eight NHPs. The goal of the current study was to apply the same MRI measurements and post-
91 processing methods on a series of scans collected for the same cohort of NHPs to quantify: a)
92 alterations in CSF dynamics due to catheter placement in the intrathecal space, b) track these
93 changes over time, and c) determine if there are any differences that occur based on catheter
94 placement location in the cervical compared to lumbar spine.

95

96

97 Materials and methods

98 Ethics statement

99 This study was submitted to and approved by the local governing Institutional Animal Care
100 and Use Committee at Northern Biomedical Research (IACUC approval #084-014A, Spring
101 Lake, MI). This study did not unnecessarily duplicate previous experiments and alternatives to
102 the use of live animals were considered. Procedures used in this study were designed with
103 consideration of the well-being of the animals.

104

105 Catheter Placement and Parameters

106 Eight (NHP 01-08) healthy cynomolgus monkeys (*Macaca fascicularis*, origin Mauritius)
107 were obtained from Charles River Research Models, Houston TX with an average weight of 4.4 ± 1.2 kg and age of 4.6 ± 0.4 years (mean \pm standard deviation) (Table 1). NHP 01 was male
108 and all other NHPs were female (02-08). These animals were purpose-bred and experimentally
109 naïve.

111 **Table 1. Cynomolgus monkey case information.**


Designation	Gender	Catheter Placement	Weight (kg)	Age (yr.)
NHP 01	M	C5	4.0	4.1
NHP 02	F	C5	3.3	4.7
NHP 03	F	L1	5.1	4.5
NHP 04	F	L1	3.2	4.4
NHP 05	F	C5	4.8	4.2
NHP 06	F	C5	3.0	4.9
NHP 07	F	L1	4.2	5.2
NHP 08	F	L1	5.8	4.4

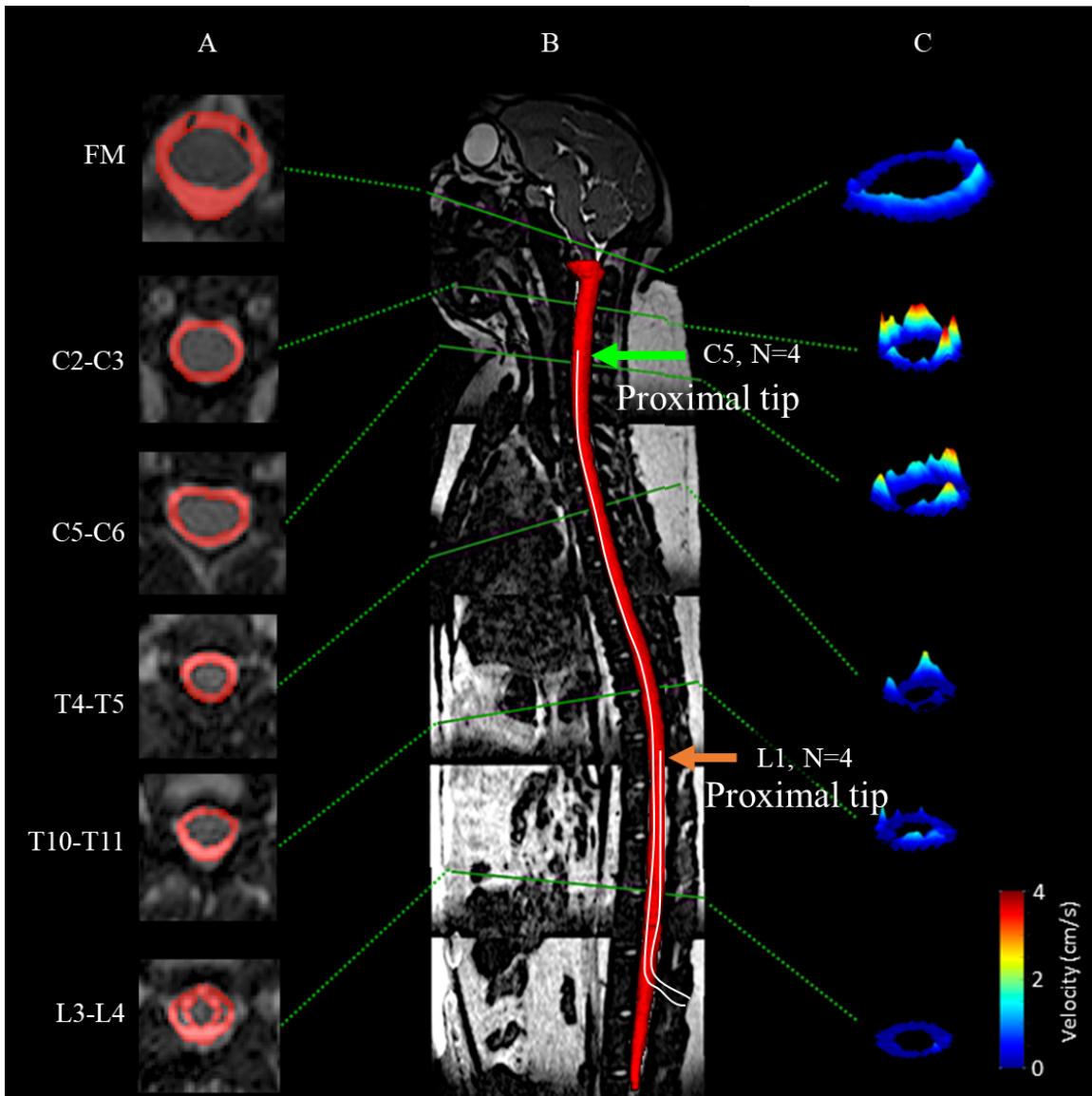
112

113

114 Each NHP was scanned with an identical MRI protocol (see MRI methods) across all study
115 time points (**Fig 1**). MRI_{PRE-1} and MRI_{PRE-2} were spaced 14 days apart prior to catheter
116 placement. MRI_{PRE-1} and MRI_{PRE-2} were used in our previous publication (19) to quantify
117 reliability of CSF flow parameters. At day 17, the NHP's were randomly assigned to have
118 intrathecal catheter implantation (IT-PEPU-35, SAI Infusion Technologies, Lake Villa, IL,
119 U.S.A.) in the spinal SAS at C5 (Cervical Group, n = 4) or L1 (Lumbar Group, n = 4). The
120 catheter had the following dimensions: first 10 cm distal to the tip (ID = 0.38 mm and OD = 0.99
121 mm), next 24 cm (ID = 1.19 mm and OD = 1.98 mm) and last ~1.5 cm (ID = 1.07 mm and OD =
122 1.93 mm). Implantation was performed by fluoroscopic imaging with contrast agent. Catheter
123 patency was verified by visual inspection and confirmation of the ability to withdraw CSF from
124 the port/catheter system at day 24 and 28. MRI_{POST-1} was collected on day 31 to determine the
125 acute impact of implantation on CSF dynamics and geometry by comparison of results to
126 MRI_{PRE-2}. MRI_{POST-2} was collected at day 45 to determine if this impact persisted after
127 implantation.

128

133 within the cervical SAS (C5, n=4) and lumbar SAS (L1, n=4). Catheter patency was confirmed
134 on day 24 and 28. MRI_{POST-1} was collected to determine the acute impact of catheter implantation
135 compared to MRI_{PRE-2}. MRI_{POST-2} was collected to determine if this impact persisted two weeks
136 after implantation.


137

138 **MRI scan protocols**

139 MRI scan protocols were previously described in detail by Khani et al. (18). In brief, all MRI
140 measurements were acquired at Northern Biomedical Research (Norton Shores, Michigan, U.S.A.)
141 on a Philips 3T scanner (Achieva, software V2.6.3.7, Best, The Netherlands). Prior to MRI
142 scanning each NHP was prepared using standard procedures and precautions. NHPs were
143 positioned in the scanner in the supine position without assistance from artificial respiration.
144 During each scan, heart rate and respiration were monitored continuously with ~ 1 liter/minute of
145 oxygen and 1-3% isoflurane anesthetic administered via an endotracheal tube for sedation.

146 A stack of high-resolution axial T2-weighted MR images of the complete spinal SAS
147 geometry was acquired for each NHP. The anatomical region scanned was ~30 cm in length, which
148 included the intrathecal SAS below the lower brain stem extending caudally to the filum terminale.

149 Thru-plane (head-foot, z-direction) CSF flow was measured by phase-contrast MRI (PC-MRI)
150 images collected at six axial locations along the spine for each NHP. Axial locations were marked
151 at the foramen magnum (FM), C2-C3, C5-C6, T4-T5, T10-T11, and L3-L4. The slice location for
152 each scan was oriented approximately perpendicular to the CSF flow direction with slice planes
153 intersecting vertebral discs (**Fig 2**).

155 **Fig 2. Manual segmentation of the spinal SAS using a T2-weighted MR image and axial**
156 **PC-MRI and CSF velocity profiles at corresponding vertebral levels for a cynomolgus**
157 **monkey analyzed in this study.** (A) Visualization of SAS area manually selected around the
158 spinal cord at multiple axial levels. (B) Mid-sagittal high-resolution T2-weighted MRI and 3D
159 visualization of entire SAS geometry. (C) 3D visualization of peak systolic CSF velocity profiles
160 based on in vivo PC-MRI measurements at FM, C2-C3, C5-C6, T4-T5, T11-T12, and L3-L4.

161 Arrows represent the location of catheter placement at the cervical (C5) or lumbar (L1)
162 implantation groups (N=4 NHPs in each group).

163

164 **Image segmentation and flow analysis**

165 The high-resolution T2-weighted anatomic MRI images were semi-automatically segmented
166 using the free open-source ITK-snap software (Version 3.0.0, University of Pennsylvania, U.S.A.)
167 (20), which provided semi-automatic segmentation using active contour methods, as well as
168 manual delineation and image navigation (**Fig 2A**). The manual segmentation tool was used most
169 frequently with the view of the three orthogonal planes. The catheter was considered to be an
170 empty region within the spinal SAS, because it was not possible to consistently identify within the
171 MR images due to its small lumen diameter. Once the segmentation was complete, the 3D model
172 (**Fig 2B**) was exported in a .STL (Stereo Lithography) format for subsequent analysis as outlined
173 below. Detailed information on the segmentation procedure is provided by Khani et al. (18).

174 CSF flow was quantified at six axial locations along the spine (**Fig 2C**) using GTFLOW
175 software (64-bit, Version 2.2.10, Gyrotools, Zurich, Switzerland) by the procedure previously
176 described by Khani et al. (18). The six distinct flow rates were smoothed in a spatial-temporal
177 fashion using MATLAB and a 2D “fit” function with the fit-type designated as “smoothing-
178 spline”. Since heart rate variability was present between the PC-MRI scans, the CSF flow
179 waveform timing was normalized to the average heart rate for all NHPs. An average spatial-
180 temporal CSF waveform was determined for each case. CSF pulse wave velocity, *PWV*, was
181 computed based on the slope of the arrival time of peak CSF flow along the spine (21).

182

183 **Geometric and hydrodynamic parameter quantification**

184 Several geometric and hydrodynamic parameters were calculated based on the 3D
185 segmentation and flow analysis using our previously published methods (18). Total SAS surface
186 area, SA_{sas} , was calculated as the sum of the surface area of spinal cord, SA_c , and dura, SA_d . Spinal
187 cord nerve roots were not included in the surface area calculation of the cord since these small
188 features were not possible to accurately visualize by MR imaging. Total volume of the SAS, V_{sas} ,
189 was computed by subtracting the volume of the spinal cord, V_c from the volume of the dura, V_d .
190 Total SAS length, L_{sas} , from the FM to the SAS termination was quantified.

191 Axial distribution of the SAS cross-sectional area, $A_{sas}(z)$, was based on cross-sectional
192 area of the spinal cord at that location, $A_c(z)$, and dura, $A_d(z)$. The axial distribution of the
193 catheter cross-sectional area for the lumbar and cervical catheters were subtracted for MRI_{POST-1}
194 and MRI_{POST-2}. Similarly, hydraulic diameter, $D_h(z) = 4A_{sas}(z) / P_{sas}(z)$, was determined based on
195 the wetted perimeter, $P_{sas}(z)$, with the perimeter computed as the sum of the spinal cord, $P_c(z)$,
196 and dura, $P_d(z)$, perimeters at each z-location. The axial distribution of the catheter perimeter for
197 the lumbar and cervical catheters were added for MRI_{POST-1} and MRI_{POST-2}. Axial distribution of
198 CSF stroke volume was computed as $SV(z) = \int |Q(z,t)| dt$, where $|Q(z,t)|$ is the absolute value
199 (22). Peak systolic (toward feet) and diastolic (toward the head) CSF flow rate was quantified as
200 $Q_{sys}(z)$ and $Q_{dia}(z)$, and the CSF flow rate amplitude was given by $Q_a(z) = Q_{dia}(z) - Q_{sys}(z)$.
201 Spatial mean thru-plane velocity at peak systole was computed as $\bar{U}_{sys}(z) = Q_{sys}(z) / A_{sas}(z)$ and at
202 diastole as $\bar{U}_{dia}(z) = Q_{dia}(z) / A_{sas}(z)$. Reynolds number was computed as
203 $Re(z) = (\bar{U}_{sys}(z) \cdot D_h(z)) / \nu$, where ν is the kinematic viscosity of CSF at body temperature, 0.693

204 mPa·s (23). Womersley number was computed as $\alpha(z) = \frac{D_h(z)}{2} \sqrt{\omega/v}$, where ω is the angular
205 velocity ($\omega = 2\pi/T$) of the volume flow waveform with T equal to the heart rate. To allow
206 parameter comparison across NHPs, each parameter's axial distribution for each NHP was
207 normalized to the average L_{sas} measured for all NHPs. After normalization, the mean axial
208 distribution for each parameter was computed for each group (Cervical or Lumbar catheter
209 implantation) at each MRI time point (MRI_{PRE-2}, MRI_{POST-1} and MRI_{POST-2}).

210 Catheter implantation could potentially reduce CSF flow due to increased hydraulic
211 resistance. We estimated the flow reduction for the cervical and lumbar implantation group by:

212 $flow\ reduction = 1 - \left(\sum_{z=0}^{z=L_{sas}} 1/D_{h(z)}^4 \right) / \left(\sum_{z=0}^{z=L_{sas}} 1/D_{h-w(z)}^4 \right)$. Where $D_h(z)$, is the axial distribution of
213 hydraulic diameter for MRI_{PRE-2}, and $D_{h-w}(z)$, is the predicted hydraulic diameter by taking into
214 account the axial distribution of catheter area and perimeter for the lumbar and cervical groups.
215 This flow reduction is approximated based on the Hagen-Poiseuille equation for steady,
216 incompressible, laminar pipe flow under the assumption that intracranial pressure pulsations, that
217 drive CSF flow along the spine, are not affected by presence or absence of the catheter (i.e. $\Delta p =$
218 constant).

219 Statistical analysis

220 We hypothesized that implantation of the catheter would decrease CSF dynamics and
221 geometry, and that these changes would be elevated for NHPs with cervical implantation compared
222 to lumbar implantation. For each of the parameters investigated here, it was measured at multiple
223 locations along the spinal cord for each cynomolgus monkey and MRI measurement with a certain

224 implantation. Since the NHPs were randomly selected from a population, we developed the
225 following linear mixed-effects model:

226
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{1i}^2 + \beta_3 x_{2i} + \beta_4 x_{3i} + \beta_5 x_{4i} + z_{0i} + z_{1i} x_{1i} + z_{2i} x_{1i}^2 + \varepsilon_i$$

227 Where y_i is the parameter of interest (a geometric or hydrodynamic parameter), x_{1i} is the
228 location, x_{2i} is the catheter location (cervical / lumbar) or the MRI time point (e.g., MRI_{PRE-2},
229 MRI_{POST-1} and MRI_{POST-2}), x_{3i} and x_{4i} are the age and weight of each NHP, respectively. The
230 random error, ε_i , has a normal distribution with mean 0 and variance σ^2 : $\varepsilon_i \sim N(0, \sigma^2)$. While β are
231 fixed effect sizes, z represent the random-effect coefficients, which follow a multivariate normal
232 distribution with mean of 0 and a symmetric variance-covariance matrix:

233
$$\begin{pmatrix} Z_{0i} \\ Z_{1i} \\ Z_{2i} \end{pmatrix} \sim N \left(\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_0^2 & \sigma_{01} & \sigma_{02} \\ \sigma_{01} & \sigma_1^2 & \sigma_{12} \\ \sigma_{02} & \sigma_{12} & \sigma_2^2 \end{pmatrix} \right)$$

234 We used the “*fitlme*” function in Matlab (Ver. R2019a Mathworks Corp., Natick, MA) to
235 estimate the parameters in this linear mixed-effects model and test the hypothesis.

236 This model treats the catheter location and the MRI time point as a fixed effect, with the
237 corresponding coefficient indicating the effect size. We could further test whether the true effect
238 size is significantly different from zero. If so, it means that there is a statistically significant
239 difference between cervical and lumbar implantation, or between two MRI time points. This
240 model treats the NHPs as random; this means that the multiple measurements from an NHP can
241 form a curve, and that this curve may be different from one NHP to another.

242 Using this linear mixed-effects model, we estimated the relative effect sizes of the following
243 seven pairs: four pairs comparing time points (time points PRE-2C versus POST-1C for cervical
244 implantation; time points PRE-2L versus POST-1L for lumbar implantation; time points PRE-2C

245 versus POST-2C for cervical implantation; times points PRE-2L versus POST-2L for lumbar
246 implantation), and three comparing cervical versus lumbar implantation (at time point PRE-2,
247 POST-1 and POST-2). For each pair, we tested the statistical significance of the two groups being
248 different and obtained a P value. Since we performed this analysis for 13 geometric and
249 hydrodynamic parameters, we derived $13 \times 7 = 91$ P values. Many of these P values were
250 dependent due to the strong dependence among several parameters of interest. We accounted for
251 multiple comparison with Bonferroni correction by adjusting the threshold for P values to be
252 $0.05/91=5.49e-4$. This identified a highly conservative set of significant P values. Note that this
253 approach assumes independence among P values. When two parameters of interest are highly
254 correlated, they would lead to similar P values that are both identified to be significant after
255 correction. In this case, we can only conclude that one or both parameters are significant, but we
256 cannot pinpoint the truly significant parameter.

258 Results

259 A summary of geometric and hydrodynamic parameter results obtained at MRI_{PRE-2},
260 MRI_{POST-1}, and MRI_{POST-2} for the cervical (C) and lumbar (L) groups are shown in **Table 2**
261 (Mean \pm STD). Statistical assessments revealed that multiple hydrodynamic parameters were
262 statistically different across study groups and time points (**Table 3**). However, geometric
263 parameters were largely unchanged.

264

265 **Table 2. Cynomolgus monkey geometric and hydrodynamic parameter results at each**
266 **measurement time point and for the cervical and lumbar implantation groups.** Note: The
267 mean axial distribution for each parameter is shown based on N=4 NHPs in each group.

268

Parameters		MRI _{PRE-2C} Mean \pm STD		MRI _{PRE-2L} Mean \pm STD		MRI _{POST-1C} Mean \pm STD		MRI _{POST-1L} Mean \pm STD		MRI _{POST-2C} Mean \pm STD		MRI _{POST-2L} Mean \pm STD	
<i>Geometric parameter (Mean value along spine)</i>	<i>P_c (mm)</i>	13.39	2.06	14.06	1.64	13.31	2.10	14.09	1.44	13.79	2.13	14.65	1.20
	<i>P_d (mm)</i>	21.53	1.96	22.30	1.66	21.81	1.91	22.30	1.47	22.05	1.97	22.55	1.38
	<i>P_sas (mm)</i>	35.72	4.38	37.46	3.91	39.29	4.15	38.06	3.08	40.60	4.82	39.02	2.88
	<i>A_c (mm²)</i>	14.40	2.72	15.47	3.07	14.89	3.25	16.12	2.57	15.46	3.46	16.24	2.25
	<i>A_d (mm²)</i>	38.21	6.22	40.10	5.89	38.89	6.00	40.05	5.11	39.91	6.05	40.72	4.88
	<i>A_sas (mm²)</i>	23.81	4.66	24.63	4.31	22.51	4.50	23.76	3.76	22.96	4.17	24.30	3.62
	<i>SA_c (cm²)</i>	40.24	3.38	42.40	2.71	38.68	1.67	41.32	2.80	39.85	3.43	42.97	1.76
	<i>SA_d (cm²)</i>	64.85	3.83	67.37	3.54	63.59	4.72	65.55	3.03	63.87	4.90	66.32	2.47
	<i>SA_sas (cm²)</i>	105.09	7.17	109.78	6.07	102.27	6.12	106.87	5.74	103.72	8.22	109.29	4.22
	<i>V_c (mL)</i>	4.33	0.39	4.70	0.59	4.35	0.41	4.76	0.44	4.48	0.39	4.80	0.32
	<i>V_d (mL)</i>	11.51	1.18	12.13	1.21	11.35	1.10	11.80	0.95	11.59	1.03	12.00	0.87
	<i>V_sas (mL)</i>	7.17	0.82	7.43	0.79	6.57	0.77	6.99	0.57	6.68	0.67	7.15	0.58
<i>Hydrodynamic parameter (Mean value along spine)</i>	<i>D_h (mm)</i>	2.67	0.34	2.66	0.37	2.35	0.43	2.54	0.34	2.31	0.29	2.52	0.29
	<i>Re</i>	32.32	14.12	28.51	13.12	15.13	11.74	21.77	11.61	10.79	6.58	21.45	13.03
	<i>α</i>	5.45	0.86	5.43	0.65	4.61	1.04	5.05	0.66	4.42	0.56	5.09	0.59
	<i>U_peak-sys (cm/s)</i>	-0.92	0.42	-0.84	0.36	-0.49	0.40	-0.63	0.32	-0.34	0.21	-0.64	0.39
	<i>U_peak-dia (cm/s)</i>	0.66	0.30	0.56	0.23	0.40	0.29	0.46	0.23	0.32	0.19	0.49	0.26
	<i>Q_peak-sys (mL/s)</i>	-0.21	0.09	-0.19	0.08	-0.11	0.08	-0.15	0.08	-0.08	0.04	-0.15	0.09
	<i>Q_peak-dia (mL/s)</i>	0.15	0.06	0.13	0.05	0.08	0.05	0.11	0.05	0.07	0.04	0.11	0.06
	<i>Q_a (mL/s)</i>	0.36	0.22	0.32	0.25	0.19	0.11	0.25	0.20	0.15	0.08	0.26	0.21
	<i>SV (cm³)</i>	0.06	0.02	0.05	0.03	0.03	0.02	0.05	0.03	0.03	0.01	0.04	0.03
	<i>PWV (cm/s)</i>	1.15	1.21	1.11	0.21	1.25	0.59	1.16	0.52	1.16	0.06	1.09	0.21

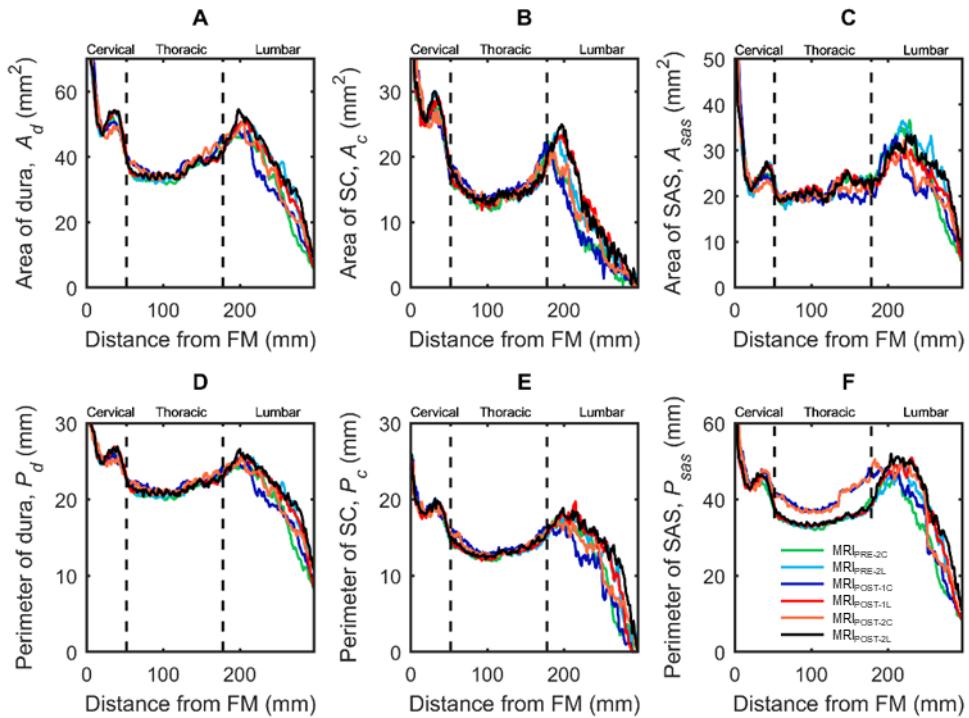
270 **Table 3. Statistical comparison of parameters across measurement time points for baseline**
271 **vs. follow-up MRIs and cervical vs. lumbar catheter insertion.** P values are obtained from
272 linear mixed effects model (see “Statistical analysis” section for details).

273

Parameters		Baseline vs Follow-up				Cervical vs Lumbar		
		MRI _{PRE-2C} vs MRI _{POST-1C}	MRI _{PRE-2L} vs MRI _{POST-1L}	MRI _{PRE-2C} vs MRI _{POST-2C}	MRI _{PRE-2L} vs MRI _{POST-2L}	MRI _{PRE-2C} vs MRI _{PRE-2L}	MRI _{POST-1C} vs MRI _{POST-1L}	MRI _{POST-2C} vs MRI _{POST-2L}
<i>Geometric</i>	A_d	0.2042	0.9044	0.0027	0.2230	0.4912	0.3702	0.0157
	A_c	0.0545	0.0247	**	0.0056	0.0332	***	0.3373
	A_{sas}	*	0.0036	0.0175	0.2675	0.6254	0.3090	0.0612
	P_d	0.0377	0.9536	*	0.0512	0.0170	0.3940	0.2902
	P_c	0.6221	0.9015	0.0063	**	0.3013	0.0055	0.5454
	P_{sas}	****	0.1155	****	***	0.0034	0.0012	***
<i>Hydrodynamic</i>	D_h	****	****	****	****	0.3255	0.5997	0.0080
	α	****	****	****	****	0.0565	****	0.1960
	Re	****	****	****	****	***	**	***
	$U_{peak-sys}$	****	****	****	****	***	0.0873	***
	$U_{peak-dia}$	****	****	****	****	0.0299	0.0008	***
	Q_a	****	****	****	****	***	*	***
	SV	****	****	****	****	***	0.0026	***

274 P: Probability value based on linear mixed effects model. The significance codes below use
275 Bonferroni correction.

276 p<0.05/91 = *, p<0.01/91 = **, p<0.005/91 = ***, p<0.001/91 = ****

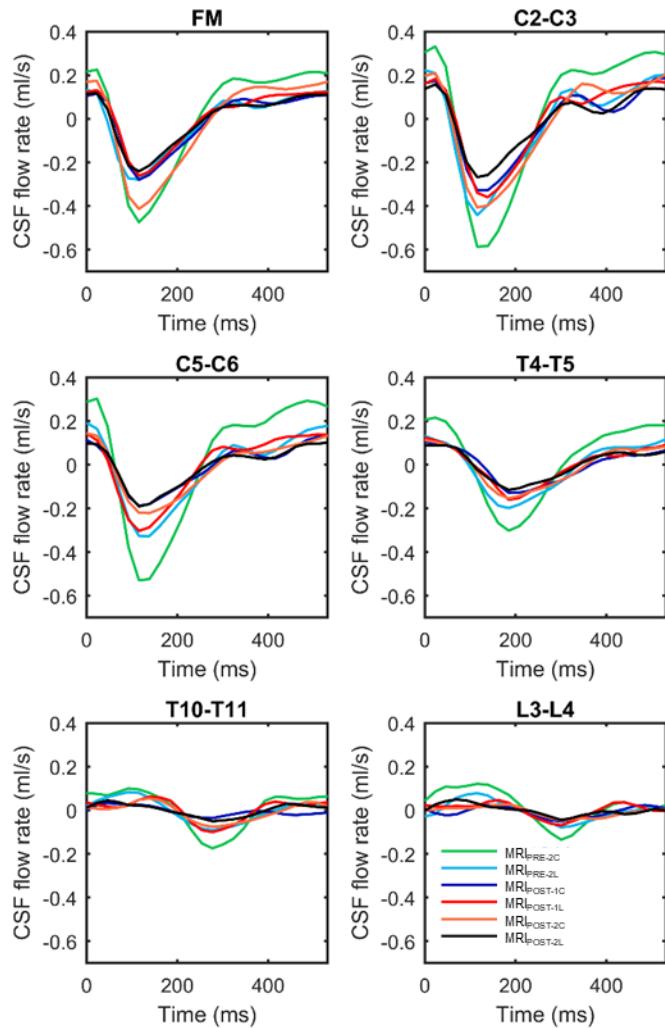

277

278 **Geometric parameter results**

279 Results indicated that cervical catheter insertion altered spinal SAS geometry to a greater
280 degree than lumbar catheter insertion (**Fig 3**). Overall, 33 out of 42 geometric parameters did not
281 change statistically across MRI measurement time points or depending on catheter location
282 (**Table 3**).

283 Axial distribution of geometric parameters showed relatively small changes across the
284 lumbar and cervical implantation groups for A_d , A_c , A_{sas} , P_d , and P_c at all time points (**Fig 3A**
285 through **E**). However, P_{sas} (**Fig 3F**) for the MRI_{POST-1C} and MRI_{POST-2C} groups increased
286 significantly below the catheter tip after insertion (**Table 3**). Average CSF volume in the spinal
287 SAS for all NHPs across all measurement time points (MRI_{PRE-2}, MRI_{POST-1} and MRI_{POST-2} for
288 both cervical and lumbar groups) was 7.00 ml. Average cross-sectional area for spinal cord, dura

289 and SAS for all NHPs was 15.43, 39.65 and 23.66 mm², respectively. Average perimeter for
290 spinal cord, dura and SAS was 13.88, 22.09, and 38.36 mm, respectively.

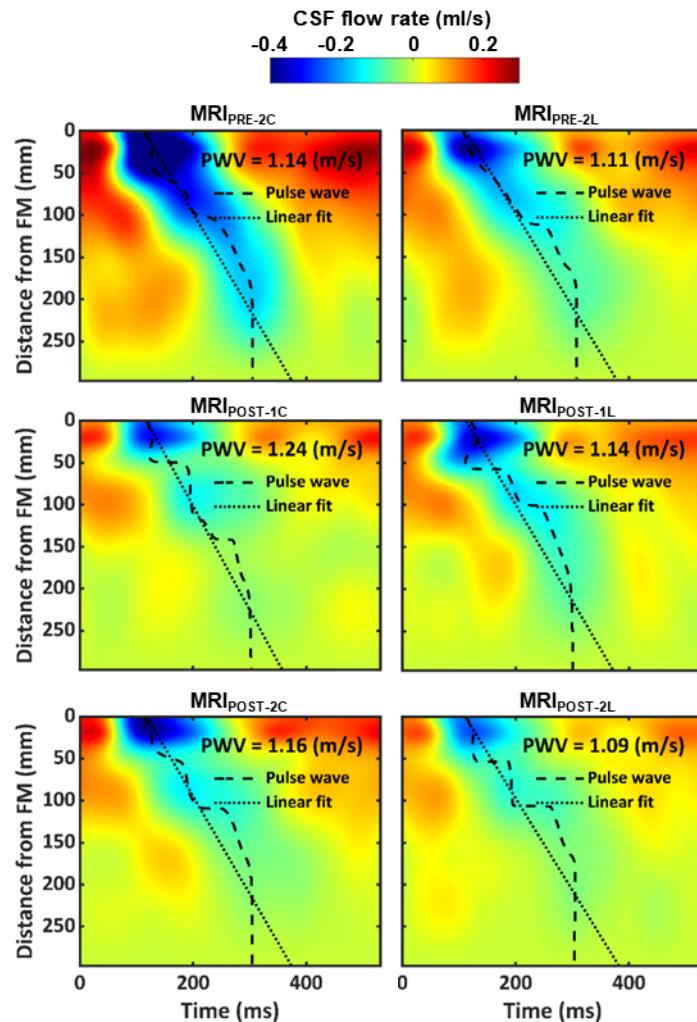

291
292 **Fig 3. Axial distribution of geometric parameters computed along the spine for**
293 **cynomolgus monkeys with cervical catheter implantation (MRI #C) or lumbar catheter**
294 **implantation (MRI #L) measured prior to catheter implantation (MRI_{PRE-2}), 17 days after**
295 **catheter implantation (MRI_{POST-1}), and 31 days after catheter implantation (MRI_{POST-2}).**
296 (A) Area of dura, A_d , (B) Area of spinal cord, A_c , (C) Area of SAS, A_{sas} , (D) Perimeter of dura,
297 P_d , (E) Perimeter of spinal cord, P_c , (F) Perimeter of SAS, P_{sas} . Each line corresponds to mean
298 value of each NHPs group with catheter located in the lumbar (L) or cervical (c) spine before
299 (MRI_{PRE-2}) or after catheter placement (MRI_{POST-1} and MRI_{POST-2}).
300

301 **Hydrodynamic parameter results**

302 Catheter implantation was found to decrease CSF flow pulsations along the entire spine and
303 this impact was greater for cervical catheter implantation compared to lumbar implantation (**Fig**
304 **4**). For example, $\text{MRI}_{\text{POST-1C}}$ flow rate was lower than $\text{MRI}_{\text{PRE-2C}}$ for all axial locations. Catheter
305 implantation was found to decrease CSF flow pulsations even 31 days after catheter insertion
306 ($\text{MRI}_{\text{POST-2C}}$ and $\text{MRI}_{\text{POST-2L}}$). These findings were supported by statistical analysis that showed
307 changes in hydrodynamic parameters with cervical and lumbar catheter implantation to be highly
308 significant for 40 out of 49 hydrodynamic parameters with p values $< 0.05/91$ (**Table 3**).

309 CSF flow rate of each NHP group quantified along the spine had a similar waveform shape,
310 and axial distribution (**Fig 4**). CSF flow waveform showed a systolic peak at 100 to 150 ms in
311 the cervical spine ranging from 0.2 - 0.6 (ml/s) for all NHPs. CSF flow rate at the C5-C6 for
312 $\text{MRI}_{\text{POST-1C}}$ and $\text{MRI}_{\text{POST-2C}}$ was markedly smaller than both $\text{MRI}_{\text{PRE-2C}}$ and $_{2L}$, and $\text{MRI}_{\text{POST-1L}}$
313 and $\text{MRI}_{\text{POST-2L}}$ due to catheter placement within cervical SAS in those cases.

314 Average spatial-temporal distribution of the CSF flow along the spine showed a
315 relatively smooth decrease in amplitude with a caudally directed CSF pulse wave velocity (**Fig**
316 **5**). Pulse wave velocity magnitude was similar across the groups and ranged from 1.09 – 1.24
317 m/s. Maximum CSF flow rate occurred for the $\text{MRI}_{\text{PRE-2}}$ measurement within the cervical spine.
318 Catheter placement decreased the flow rate spatially and temporally below the catheter tip in
319 both $\text{MRI}_{\text{POST-1}}$ and $\text{MRI}_{\text{POST-2}}$.



320

321 **Fig 4. Average CSF flow waveforms for each MRI time point (4 NHPs at each point)**
322 **measured at six axial locations along the spine (FM, C2-C3, C5-C6, T4-T5, T10-T11, L3-L4).**

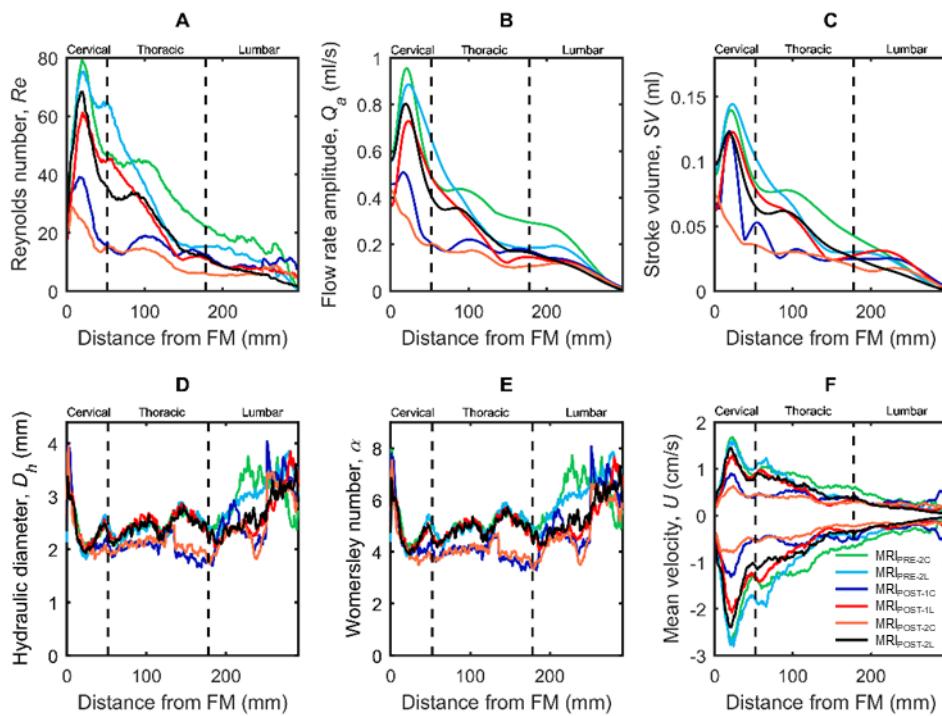
323 Note: Peak systolic, CSF flow is in the caudal direction (negative values).

324

325

326 **Fig 5. Mean CSF flow waveforms and Spatial-temporal distribution of CSF flow rate.**

327 Spatial-temporal distribution of the interpolated CSF flow rate along the spine for all cases
328 measured by PC-MRI. Dashed line indicates peak CSF flow rate at each axial level and dotted line
329 indicates linear fit on top of those values used to compute CSF pulse wave velocity (*PWV*).


330

331 Maximum *Re* number for MRI_{PRE-2C} was 80 at C3-C4 level (Fig 6A). MRI_{POST-2C} had the
332 lowest *Re* value of 28 due to the cervical catheter implantation. Catheter implantation also
333 decreased CSF flow rate amplitude (Fig 6B) and stroke volume (Fig 6C) at MRI_{POST-1C} and
334 MRI_{POST-2C} compared to MRI_{PRE-2C} and for MRI_{POST-1L} and MRI_{POST-2L} compared to MRI_{PRE-2L}.

335 Albeit, the changes in flow rate amplitude and stroke volume were greater under cervical
336 implantation.

337 D_h (Fig 6D) and α (Fig 6E) decreased a great degree with cervical catheter implantation and
338 to a lesser degree with lumbar implantation. Maximum D_h and α was 4 and 8 located near the
339 FM. The peak value of the mean velocity ranged from +1.8 to -2.9 cm/s in MRI_{PRE-2} and
340 occurred at the C3-C4 level (Fig 6F). Based on Hagen–Poiseuille equation, CSF flow reduction
341 was predicted to be 48% after cervical implantation and 6% after lumbar implantation. These
342 predictions were comparable to the MRI-measured $Q_{peak-sys}$ reduction of 55% after cervical
343 implantation and 21% after lumbar implantation (Table 2).

344

345
346 **Fig 6. Hydrodynamic parameter axial distribution computed along the spine for cynomolgus**
347 **monkeys.** (A) Reynolds number, Re , (B) Flow rate amplitude, Q_a , (C) Stroke Volume, SV , (D)

348 left axis, Hydraulic diameter, D_h , right axis, Womersley number, α , (E) mean peak systolic,

349 \bar{U}_{sys} , and diastolic , \bar{U}_{dia} , CSF velocity. Each line corresponds to mean value of each NHPs group

350 with catheter located in the lumbar or cervical spine before or after catheter placement.

351 **Discussion**

352

353 To the best of our knowledge, the impact of intrathecal catheter implantation on spinal CSF
354 dynamics in a cynomolgus monkey has not been reported in the literature. Our results show that
355 catheter implantation decreases spinal CSF dynamics and that the decrease is greater for cervical
356 implantation compared to lumbar implantation. Also, that the decrease in spinal CSF dynamics
357 was present immediately post-implantation and persisted two weeks after implantation.

358

359 **Catheter insertion decreased spinal CSF flow**

360 The potential impact of catheter implantation on intrathecal CSF dynamics should be
361 considered when implanting spinal catheters in NHPs and potentially humans. Although catheter
362 diameter is relatively small, our results showed that cervical catheter implantation reduced peak
363 CSF flow by 54% compared to 21% for lumbar implantation (**Fig 4 and 5**). Additionally, nearly
364 all measures of CSF dynamics were altered to a greater degree for cervical implantation
365 compared to lumbar implantation (**Table 2**). These results were further supported by estimation
366 of CSF flow reduction, based on the Hagen-Poiseuille equation, indicating that the CSF flow
367 reduction was likely due to increased hydraulic resistance stemming from the catheter's
368 reduction in subarachnoid space hydraulic diameter (**Fig 3 and Table 2**).

369 The reduction in CSF flow could also potentially be attributed to inflammatory and/or
370 infection post-catheter insertion, as documented in previous research (24). However, given that
371 a) the reduction in CSF flow remained weeks following catheter insertion, b) the magnitude of
372 flow reduction agreed with the estimated reduction based on fluid physics, and c) CSF flow

373 reduction was greater for cervical catheter insertion, we believe the most probable source of CSF
374 flow reduction to be increased hydraulic resistance directly due to the catheter.

375 In combination, the results indicate that to preserve normative intrathecal CSF flow, catheter
376 placement should be located within the shortest length of the spine as possible and / or catheter
377 diameter should be minimized to reduce its potential impact on hydraulic resistance within the
378 spinal subarachnoid space. However, a smaller diameter catheter may not allow infusion of a
379 desired flow rate or could potentially produce presence of a flow jet near the catheter tip. These
380 factors could be assessed by parametric simulations. Alternatively, if possible, lumbar puncture
381 should be applied as it would have minimal impact on CSF hydraulic resistance within the spine
382 in NHPs or humans. However, for prolonged intrathecal drug delivery applications, catheter
383 insertion may be the only viable for drug delivery.

384 Average *PWV* was found to be 1.15 m/s across all NHPs and was not impacted by catheter
385 implantation (**Fig 5**). This is a potential indicator that spinal compliance, and likely intracranial
386 pressure, was not affected due to catheter implantation. CSF *PWV* was previously measured by
387 our research group in NHPs and found to have a similar value at 1.13 m/s (19). However, in
388 humans, CSF *PWV* was measured to be 1.94 m/s (25), indicating that *PWV* within the spine in
389 humans to potentially be different than NHPs.

390

391 **Spinal NHP CSF dynamics were laminar and inertial dominated**

392 CSF flow remained laminar throughout the CSF flow cycle for all cases analyzed. Results
393 showed that CSF dynamics were affected the most in the cervical spine near the C5 vertebral
394 level in MRI_{POST-2C} with a maximum *Re* of 28, 100% less than MRI_{PRE-2C} (**Fig 6**). *Re* was
395 computed to represent the ratio of steady inertial forces to viscous forces and help indicate

396 whether laminar flow (<2300) was present at each phase-contrast slice location (**Fig 2**). A
397 laminar CSF flow indicates that the flow is smooth with relatively little lateral mixing. This is
398 different from a turbulent flow, where chaotic changes in pressure and velocity occur and can
399 lead to a large increase in lateral mixing. Chaotic CSF velocity or pressure fluctuations are not
400 expected to occur before or after catheter placement. However, it is possible that disease states
401 that result in strongly elevated CSF flow velocities (jets) could result in turbulence (26).

402 Inertial effects are expected to dominate the SAS CSF flow field for normal physiological
403 flow rates, frequencies and CSF fluid properties. α varied along the spine in a similar fashion as
404 D_h with a minimum and maximum value of 3.8 and 8.1 (**Fig 6**). α was computed to quantify
405 the ratio of unsteady inertial forces to viscous forces that impact the CSF velocity profile shape
406 (27). For $\alpha < 2$, the CSF velocity profiles will be parabolic in shape and considered quasi-static.
407 For $2 < \alpha < 10$ velocity profiles will be M-shaped and, for $\alpha > 10$, velocity profiles will be
408 relatively flat (plug shaped) (28). The maximum value of α in the thoracic region decreased to ~4
409 after cervical catheter insertion. This means that the CSF velocity profiles will have a M-shape
410 throughout the spine. However, the upper cervical and lumbar spine had higher α indicating a
411 relatively flat velocity profile within those regions. Our previous computational fluid dynamics
412 NHP model without catheter implantation indicated a relatively blunt CSF velocity profile in the
413 cervical spine (29). It is not possible to confirm if the in vivo velocity profiles measured in the
414 current study were blunt shaped (**Fig 2C**) as the MRI resolution was not fine enough to accurately
415 capture the relatively thin boundary layer expected in a blunt or M-shaped flow profile.

416

417 **Potential relevance of results with respect to intrathecal drug**

418 **delivery**

419 Based on the statistical analysis, catheter implantation led to decreased CSF flow rate within
420 the spinal SAS, most notably under cervical implantation. In principle, a lower CSF flow rate is
421 expected to decrease solute transport in the spine. Thus, it is expected that cervical catheter
422 implantation would decrease solute transport to a greater degree than lumbar implantation.
423 However, previous research (our paper, ref), and our current study results (Re in **Fig 6A** and
424 **Table 2**), indicate that CSF velocities and streaming in the cervical spine are much greater than
425 the lumbar spine. Thus, although catheter placement in the cervical spine may result in
426 decreased CSF flow, drug delivery in this region may still allow more rapid mixing compared to
427 the lumbar spine. Catheter implantation location may also need to be taken into account
428 alongside potentially diminished CSF flow dynamics in disease states, such as ALS (30).
429 Optimal catheter implantation location can be explored in future work in combination with the
430 potential role of catheter implantation on CSF flow dynamics, but was outside the scope of the
431 present research.

432 Based on the results, it can be hypothesized that the impact of catheter implantation on CSF
433 dynamics would potentially be greater in cynomolgus monkeys compared to adult humans due to
434 relatively smaller SAS cross-sectional area in NHPs compared to humans (10X greater (19, 30)).
435 The average catheter diameter of 1.5 mm used in this study for cynomolgus monkeys is within
436 the range of catheter diameters used in humans, ranging from 1.2 to 1.65 mm in outer diameter
437 (31). Given the relatively smaller catheter diameter applied in adult humans, the potential impact
438 of catheter implantation on CSF flow dynamics in adult humans may be relatively small.
439 However, greater potential for catheter impact on CSF flow dynamics may be present in
440 pediatric humans due to their relatively smaller SAS cross-sectional area compared to adults.
441

442 **Limitations and future directions**

443 This study provides quantitative measures and comparison to investigate the impact
444 of catheter insertion on intrathecal CSF dynamics and geometry in cynomolgus monkeys.
445 Further studies should quantify the potential variance of these parameters in a larger study size
446 across NHP species, age, sex, weight, and in disease states. Geometric characterization did not
447 take into account spinal cord nerve root surface area or volume, which may account for ~231 cm²
448 and ~6 ml, respectively within the SAS in humans (32). It is expected that these structures will
449 alter the SAS surface area results presented in the current study. Albeit, the surface area in
450 contact with the spinal cord and dura is likely similar since the junction of spinal cord nerve
451 roots with these structures is relatively small. Also, we do not expect these structures to alter
452 spinal cord and dura surface area to a great degree or total SAS volume.

453 There are also a few unknowns in relation CSF flow dynamics. First, CSF flow coupling
454 with the cardiovascular cycle is accounted for in the present study. However, CSF flow is also
455 affected by respiration (33), which was not considered in this study using cardiac-gated PC-MRI
456 measurements. Future studies could investigate the relative contribution of respiration and
457 cardiovascular pulsations to CSF flow dynamics along the spinal axis. Finally, CSF flow was
458 measured at six axial locations and interpolated to generate a smooth distribution along the spine.
459 The ideal study would minimize or eliminate interpolation as much as possible by adding more
460 axial slice locations. Also, CSF dynamics should be quantified within the intracranial space to
461 better understand the exact distribution of CSF flow disruption that a spinal catheter may
462 produce. However, in the present study, MRI time limitation for each NHP did not allow
463 additional slice measurement locations. The focus of the present study was on the intrathecal
464 space, as this region is most nearby intrathecal therapeutic injection location that can be accessed

465 by lumbar puncture or other relatively minimally invasive procedures. Injection of medications
466 within the ventricular space of the brain or cortical SAS would also be impacted by nearby CSF
467 dynamics within the ventricles and cisterns of the brain.

468 The axial distribution for all geometric parameters tended to have a similar trend (**Fig 3**)
469 indicating a strong dependence among geometric parameters. This means that if one parameter
470 shows a significant difference between two conditions or two-time points, some of the other
471 parameters should also display a significant difference. On the other hand, if only one parameter
472 shows a significant difference, such significance may be due to experimental error and may not
473 be reliable. Therefore, although nine of the 42 p values in Table 3 are significant, they are not
474 consistent with the dependence among the parameters and therefore should be interpreted with
475 caution.

476

477

478

479

480 **Conclusions**

481 This study presents a detailed geometric and hydrodynamic characterization of intrathecal
482 CSF dynamics for eight cynomolgus monkey (*Macaca fascicularis*) to quantify the differences
483 that occur based on catheter placement location in the cervical compared to the lumbar spine.
484 The overall findings were: 1) Catheter insertion decreases CSF dynamics within the spine, 2)
485 These changes in CSF dynamics were greater for cervical implantation compared to lumbar
486 catheter implantation, and 3) The decreases in CSF dynamics persisted up to two weeks post-
487 catheter implantation. In combination, these results support that intrathecal catheter implantation
488 can adversely impact CSF flow dynamics in the spinal SAS.

489

490

491 **Supplementary files**

492 **S1 Table. Source data for the axial distribution of SAS geometric and hydrodynamic**
493 **parameters and the CSF flow waveforms collected at different vertebral levels.** Data for all
494 eight NHPs measured before catheter implantation (MRI_{PRE-2}) and after catheter implantation
495 (MRI_{POST-1} and MRI_{POST-2}).

496

497 **Acknowledgements**

498 None.

499

500 **Data availability**

501 All relevant data are within the manuscript and its Supporting Information files.

502

503 **Funding**

504 This work was supported by Voyager Therapeutics, National Institutes of Health, National
505 Institute of General Medical Sciences grant P20GM103408 and 4U54GM104944-04 and the
506 University of Idaho, Vandal Ideas Project. Publication of this article was funded by the University
507 of Idaho Open Access Publishing Fund. The funders had no role in study data collection and
508 analysis, decision to publish, or preparation of the manuscript. Voyager Therapeutics had a role in
509 the study design. Author GRS is employed by Axovant and was employed by Voyager
510 Therapeutics during the course of this study. Axovant provided support in the form of salary for
511 author GRS, but did not have any additional role in the study design, data collection and analysis,

512 decision to publish, or preparation of the manuscript. Voyager Therapeutics provided support in
513 the form of salary for author GRS. Author JRZ is employed by Northern Biomedical Research.
514 Northern Biomedical Research provided support in the form of salary for author JRZ, but did not
515 have any additional role in the study design, data collection and analysis, decision to publish, or
516 preparation of the manuscript. The specific roles of these authors are articulated in the 'author
517 contributions' section

518

519

520 **Conflict of interest statement**

521 I have read the journal's policy and the authors of this manuscript have the following competing
522 interests: This study was funded in part by Voyager Therapeutics. Author GRS is employed by
523 Axovant and was employed by Voyager Therapeutics during the course of this study. JRZ is a
524 fulltime employee of Northern Biomedical. BAM has received grant support from Voyager
525 Therapeutics, Genentech, Alcyone Lifesciences, Biogen, and Minnetronix; BAM is a member of
526 the Neurapheresis Research Consortium. BAM is scientific advisory board member for Alcyone
527 Lifesciences, Chiari and Syringomyelia Foundation, The International Society for
528 Hydrocephalus and CSF Disorders, The International CSF Dynamics Society, and has served as
529 a consultant to Voyager Therapeutics, SwanBio Therapeutics, CereVasc, Minnetronix, Invicro,
530 Genentech, Medtrad Biosystems, Behavior Imaging, Neurosyntek, and Cerebral Therapeutics.
531 There are no patents, products in development or marketed products to declare. This does not
532 alter our adherence to all the PLOS ONE policies on sharing data and materials.

533

534

535 **References:**

- 536 1. Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid circulation.
537 Fluids Barriers CNS. 2014;11:10. Epub 2014/05/13.
- 538 2. Oreskovic D, Klarica M. The formation of cerebrospinal fluid: nearly a hundred years of
539 interpretations and misinterpretations. Brain Res Rev. 2010;64(2):241-62. Epub 2010/05/04.
- 540 3. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function
541 of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13-25. Epub 2009/08/12.
- 542 4. Johanson CE, Duncan JA, 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD.
543 Multiplicity of cerebrospinal fluid functions: New challenges in health and disease.
544 Cerebrospinal Fluid Res. 2008;5:10.
- 545 5. Adigun OO, Al-Dahir MA. Anatomy, Head and Neck, Cerebrospinal Fluid. StatPearls.
546 Treasure Island (FL)2019.
- 547 6. Johnston M, Papaiconomou C. Cerebrospinal fluid transport: a lymphatic perspective.
548 News Physiol Sci. 2002;17:227-30. Epub 2002/11/16.
- 549 7. Boulton M, Flessner M, Armstrong D, Mohamed R, Hay J, Johnston M. Contribution of
550 extracranial lymphatics and arachnoid villi to the clearance of a CSF tracer in the rat. Am J
551 Physiol. 1999;276(3):R818-23. Epub 1999/03/10.
- 552 8. Spector R. Vitamin homeostasis in the central nervous system. N Engl J Med.
553 1977;296(24):1393-8. Epub 1977/06/16.
- 554 9. Upadhyay SP, Mallick PN. Intrathecal drug delivery system (IDDS) for cancer pain
555 management: a review and updates. Am J Hosp Palliat Care. 2012;29(5):388-98. Epub
556 2011/11/18.
- 557 10. McCall TD, MacDonald JD. Cervical catheter tip placement for intrathecal baclofen
558 administration. Neurosurgery. 2006;59(3):634-40; discussion -40. Epub 2006/09/07.
- 559 11. McDowall DG, Harper AM. Cbf and Csf Ph in Monkey during Prolonged Hypocapnia.
560 Scand J Clin Lab Inv. 1968;S 22:E8-&.
- 561 12. Snead OC, 3rd, LaCroix JT. Lumbar puncture for obtaining cerebrospinal fluid in the
562 rhesus monkey (Macaca mulatta). Lab Anim Sci. 1977;27(6):1039-40. Epub 1977/12/01.
- 563 13. Butler TM, Wiley GL. Baseline values for adult baboon cerebrospinal fluid. Lab Anim
564 Sci. 1971;21(1):123-4. Epub 1971/02/01.
- 565 14. Derwellis SK, Butler TM, Fineg J. Baseline values of cerebrospinal fluid from the
566 chimpanzee (Pan troglodytes). Lab Anim Care. 1970;20(1):107-8. Epub 1970/02/01.
- 567 15. Turbyfill CL, Cramer MB, Dewes WA, Huguley JW, 3rd. Serum and cerebral spinal fluid
568 chemistry values for the monkey (Macaca mulatta). Lab Anim Care. 1970;20(2):269-73. Epub
569 1970/04/01.
- 570 16. Taylor PL, Garrick NA, Burns RS, Tamarkin L, Murphy DL, Markey SP. Diurnal
571 rhythms of serotonin in monkey cerebrospinal fluid. Life Sci. 1982;31(18):1993-9. Epub
572 1982/11/01.
- 573 17. Perlow MJ. Cerebrospinal fluid prolactin: a daily rhythm and response to an acute
574 perturbation. Brain Res. 1982;243(2):382-5. Epub 1982/07/15.
- 575 18. Khani M, Lawrence BJ, Sass LR, Gibbs CP, Pluid JJ, Oshinski JN, et al. Characterization
576 of intrathecal cerebrospinal fluid geometry and dynamics in cynomolgus monkeys (macaca
577 fascicularis) by magnetic resonance imaging.(Research Article)(Report). PLoS ONE.
578 2019;14(2):e0212239.

579 19. Khani M, Lawrence BJ, Sass LR, Gibbs CP, Pluid JJ, Oshinski JN, et al. Characterization
580 of intrathecal cerebrospinal fluid geometry and dynamics in cynomolgus monkeys (*macaca*
581 *fascicularis*) by magnetic resonance imaging. *PLoS One*. 2019;14(2):e0212239. Epub
582 2019/02/28.

583 20. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D
584 active contour segmentation of anatomical structures: significantly improved efficiency and
585 reliability. *Neuroimage*. 2006;31(3):1116-28.

586 21. Kalata W, Martin BA, Oshinski JN, Jerosch-Herold M, Royston TJ, Loth F. MR
587 Measurement of Cerebrospinal Fluid Velocity Wave Speed in the Spinal Canal. *IEEE*
588 transactions on bio-medical engineering. 2009. Epub 2009/01/29.

589 22. Yiallourou TI, Kroger JR, Stergiopoulos N, Maintz D, Martin BA, Bunck AC. Comparison
590 of 4D phase-contrast MRI flow measurements to computational fluid dynamics simulations of
591 cerebrospinal fluid motion in the cervical spine. *PLoS One*. 2012;7(12):e52284.

592 23. Martin BA, Kalata W, Shaffer N, Fischer P, Luciano M, Loth F. Hydrodynamic and
593 longitudinal impedance analysis of cerebrospinal fluid dynamics at the cranivertebral junction
594 in type I Chiari malformation. *PLoS One*. 2013;8(10):e75335.

595 24. McLaurin RL, Frame PT. Treatment of infections of cerebrospinal fluid shunts. *Rev*
596 *Infect Dis*. 1987;9(3):595-603. Epub 1987/05/01.

597 25. Sass LR, Khani M, Natividad GC, Tubbs RS, Baledent O, Martin BA. A 3D subject-
598 specific model of the spinal subarachnoid space with anatomically realistic ventral and dorsal
599 spinal cord nerve rootlets. *Fluids Barriers CNS*. 2017;14(1):36.

600 26. Jain K, Ringstad G, Eide PK, Mardal KA. Direct numerical simulation of transitional
601 hydrodynamics of the cerebrospinal fluid in Chiari I malformation: The role of crano-vertebral
602 junction. *International Journal for Numerical Methods in Biomedical Engineering*. 2017;33(9).

603 27. Loth F, Yardimci MA, Alperin N. Hydrodynamic modeling of cerebrospinal fluid motion
604 within the spinal cavity. *J Biomech Eng*. 2001;123(1):71-9.

605 28. Khani M, Sass LR, Xing T, Keith Sharp M, Balédent O, Martin BA. Anthropomorphic
606 Model of Intrathecal Cerebrospinal Fluid Dynamics Within the Spinal Subarachnoid Space:
607 Spinal Cord Nerve Roots Increase Steady-Streaming. *Journal of Biomechanical Engineering*.
608 2018;140(8):081012--15.

609 29. Khani M, Xing T, Gibbs C, Oshinski JN, Stewart GR, Zeller JR, et al. Nonuniform
610 Moving Boundary Method for Computational Fluid Dynamics Simulation of Intrathecal
611 Cerebrospinal Flow Distribution in a Cynomolgus Monkey. *J Biomech Eng*. 2017;139(8).

612 30. Sass LR, Khani M, Romm J, Schmid Daners M, McCain K, Freeman T, et al. Non-
613 invasive MRI quantification of cerebrospinal fluid dynamics in amyotrophic lateral sclerosis
614 patients. *Fluids Barriers CNS*. 2020;17(1):4. Epub 2020/01/22.

615 31. Nagel SJ, Reddy CG, Frizon LA, Holland MT, Machado AG, Gillies GT, et al.
616 Intrathecal Therapeutics: Device Design, Access Methods, and Complication Mitigation.
617 *Neuromodulation*. 2018;21(7):625-40. Epub 2017/09/30.

618 32. Sass LR, Khani M, Natividad GC, Tubbs RS, Baledent O, Martin BA. A 3D subject-
619 specific model of the spinal subarachnoid space with anatomically realistic ventral and dorsal
620 spinal cord nerve rootlets. *Fluids and Barriers of the CNS*. 2017;14(1):36.

621 33. Yildiz S, Thyagaraj S, Jin N, Zhong X, Heidari Pahlavian S, Martin BA, et al.
622 Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics
623 using real-time phase-contrast MRI. *J Magn Reson Imaging*. 2017;46(2):431-9.

625
626

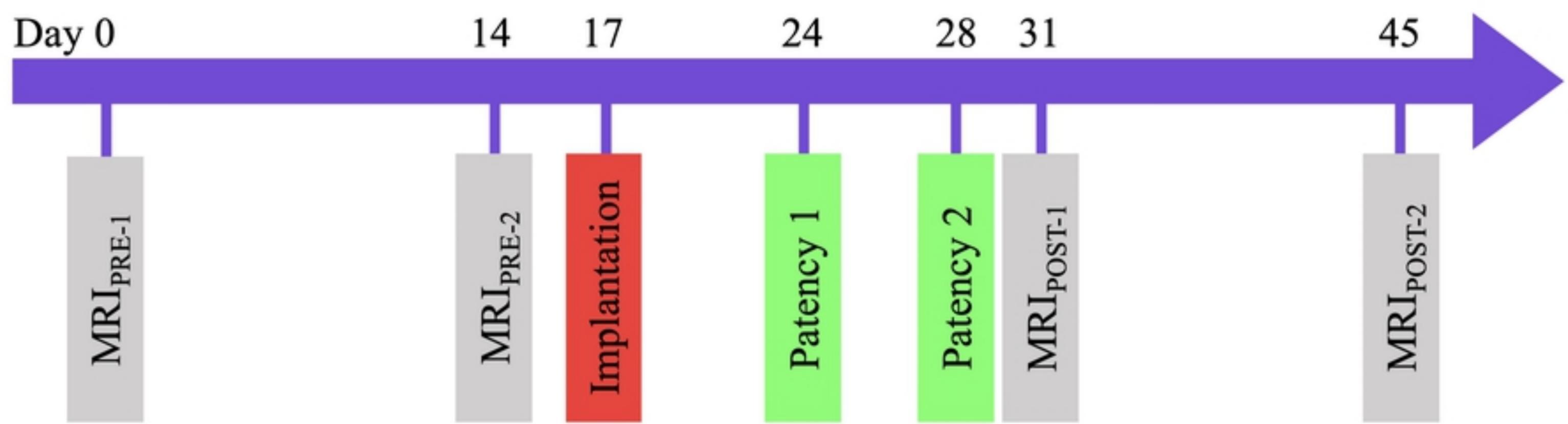
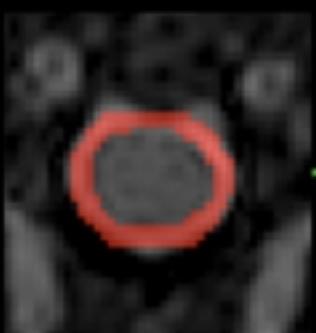


Figure 1

A

B

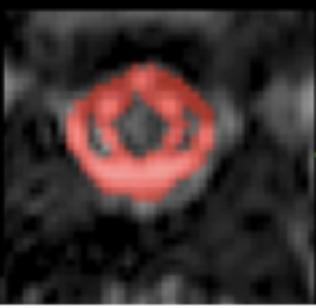

C

FM

bioRxiv preprint doi: <https://doi.org/10.1101/2020.07.27.222646>; this version posted July 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.


C2-C3

C5-C6


T4-T5

T10-T11

L3-L4

C5, N=4
Proximal tip

L1, N=4
Proximal tip

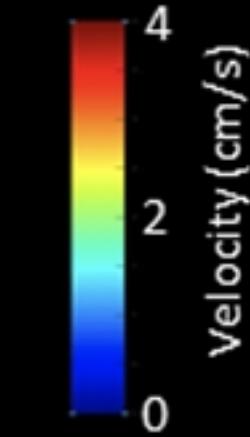


Figure 2

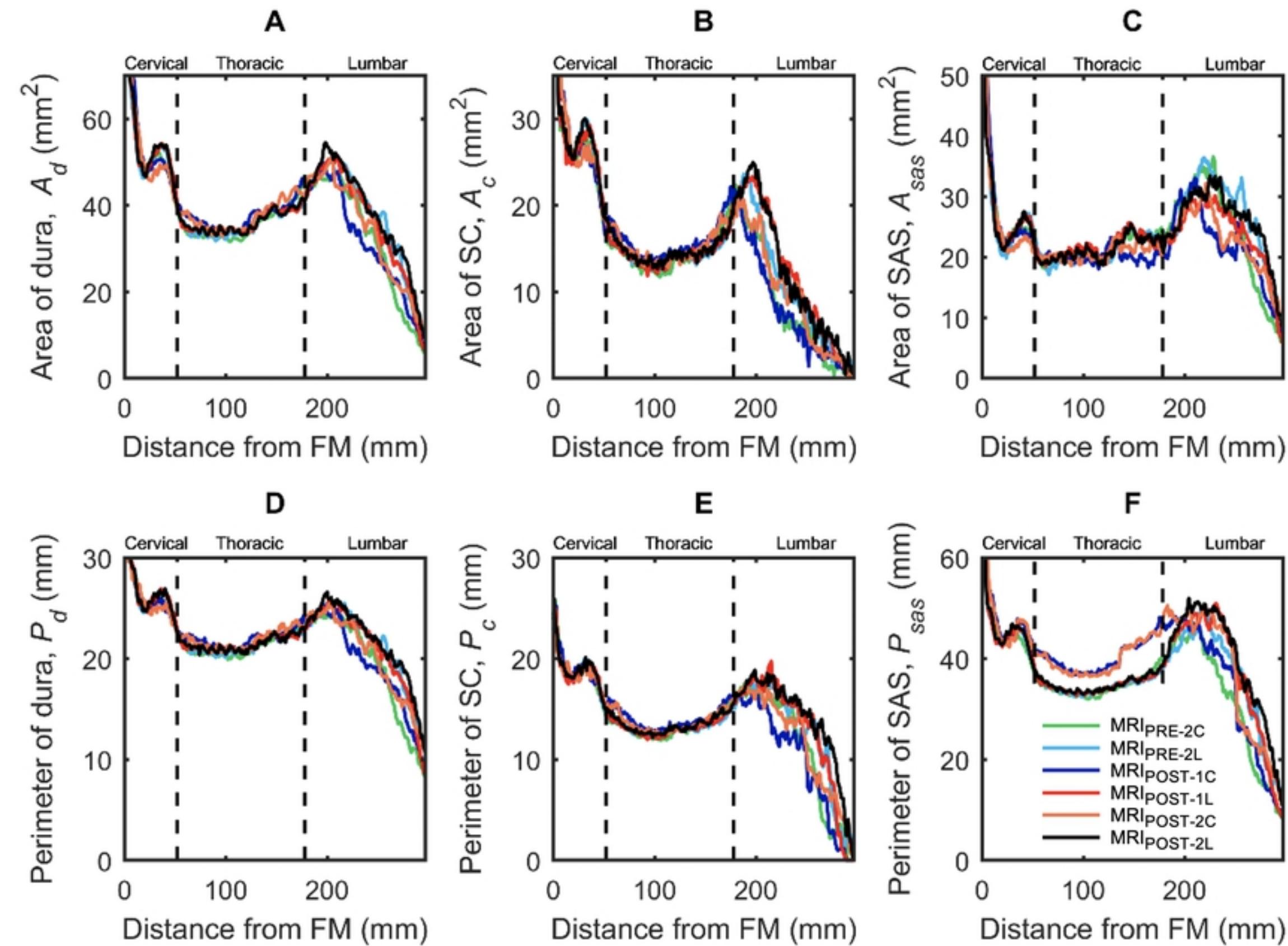


Figure 3

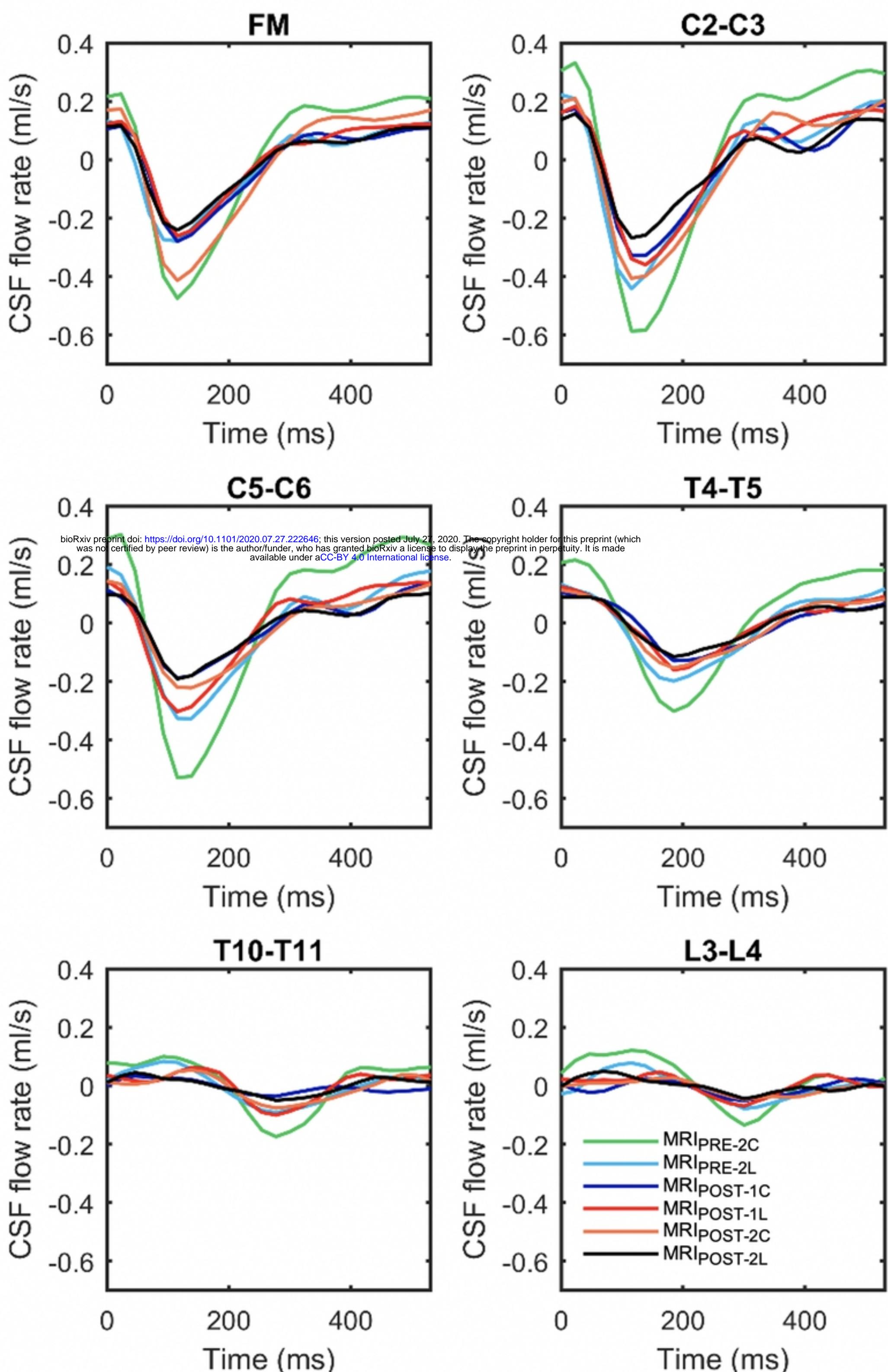


Figure 4

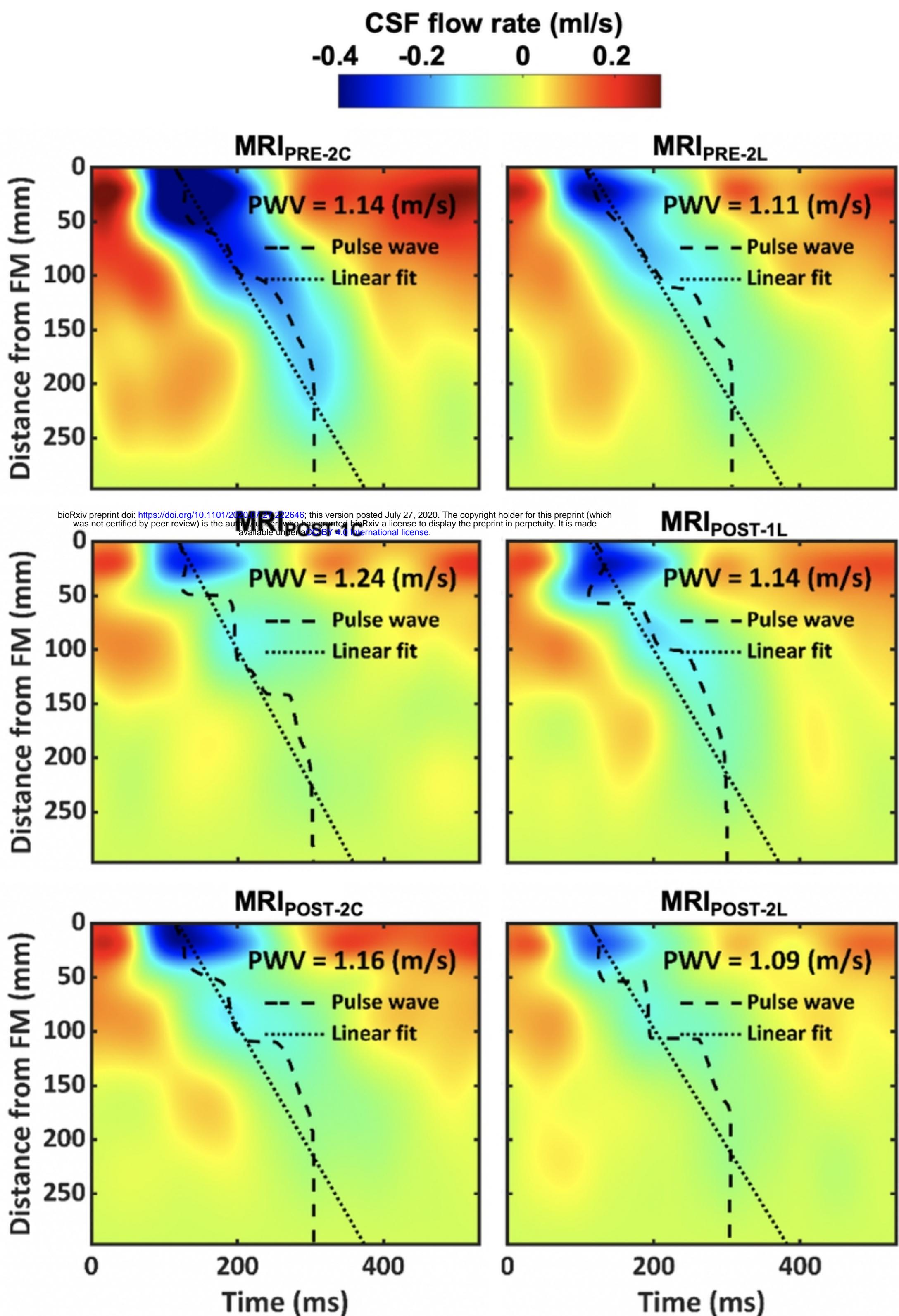


Figure 5

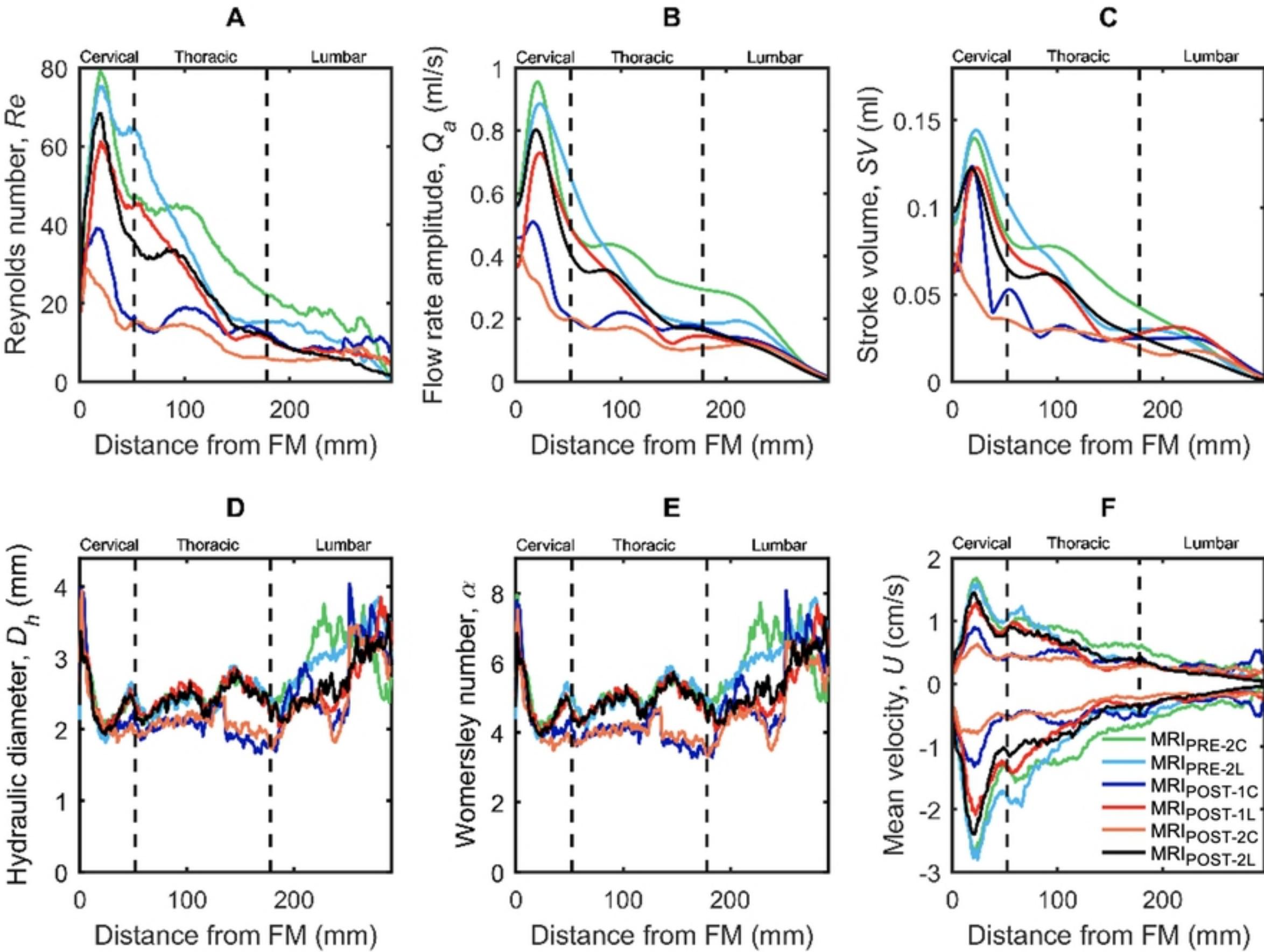


Figure 6