

1 **Title: An antibody-dependent enhancement (ADE) activity eliminated neutralizing
2 antibody with potent prophylactic and therapeutic efficacy against SARS-CoV-2 in rhesus
3 monkeys**

4

5 **Authors:**

6 Shuang Wang^{1,7, 8}, Yun Peng^{2, 8}, Rongjuan Wang^{1,7, 8}, Shasha Jiao^{1,7, 8}, Min Wang^{1, 8}, Weijin
7 Huang^{3, 8}, Chao Shan⁴, Wen Jiang¹, Zepeng Li¹, Chunying Gu¹, Ben Chen¹, Xue Hu⁴, Yanfeng
8 Yao², Juan Min⁵, Huajun Zhang², Ying Chen², Ge Gao², Peipei Tang¹, Gang Li¹, An Wang¹, Lan
9 Wang³✉, Shuo Chen⁶✉, Xun Gui¹✉, Jinchao Zhang¹✉, Zhiming Yuan²✉, Datao Liu¹✉

10

11 **Affiliations:**

12 ¹Mabwell (Shanghai) Bioscience Co., Ltd., Shanghai, 201210, China.

13 ²Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of
14 Sciences, Wuhan, Hubei, 430071, China.

15 ³Key Laboratory of the Ministry of Health for Research on Quality and Standardization of
16 Biotech Products, National Institutes for Food and Drug Control, Beijing, 100050, China.

17 ⁴State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences,
18 Wuhan, Hubei, 430071, China.

19 ⁵Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.

20 ⁶Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford
21 OX3 7DQ, United Kingdom.

22 ⁷Beijing Kohnoor Science & Technology Co., Ltd., Beijing, 102206, China.

23 ⁸These authors contributed equally: Shuang Wang, Yun Peng, Rongjuan Wang, Shasha Jiao,
24 Min Wang, Weijin Huang.

25 ✉Email: wanglan@nifdc.org.cn; ericshuochen@gmail.com; xun.gui@mabwell.com;

26 jinchao.zhang@mabwell.com; yzm@wh.iov.cn; datao.liu@mabwell.com

27

28

29 **Abstract:**

30 Efficacious interventions are urgently needed for the treatment of COVID-19. Here, we report
31 a monoclonal antibody (mAb), MW05, showing high SARS-CoV-2 neutralizing activity by
32 disrupting the interaction of receptor binding domain (RBD) with angiotensin-converting
33 enzyme 2 (ACE2) receptor. Crosslinking of Fc with Fc γ RIIB mediates antibody-dependent
34 enhancement (ADE) activity by MW05. This activity was eliminated by introducing the LALA
35 mutation to the Fc region (MW05/LALA). Most importantly, potent prophylactic and
36 therapeutic effects against SARS-CoV-2 were observed in rhesus monkeys. A single dose of
37 MW05/LALA completely blocked the infection of SARS-CoV-2 in a study of its prophylactic
38 effect and totally cleared SARS-CoV-2 in three days in a treatment setting. These results pave
39 the way for the development of MW05/LALA as an effective strategy for combating COVID-
40 19.

41

42 COVID-19, caused by SARS-CoV-2, is currently spreading globally, threatening human
43 health and economic development ^{1,2}. As of July 27, 2020, COVID-19 has resulted in more than
44 16 million infections and 647,784 deaths. Although, multiple clinical trials are ongoing to
45 evaluate repurposing anti-viral and anti-inflammatory agents, no specific treatment against
46 SARS-CoV-2 has been approved since the worldwide outbreak began six months ago ³.
47 Treatments using plasma from convalescent COVID-19 patients have shown clear clinical
48 improvement of both mild and severe cases of COVID-19, indicating that passive
49 administration of neutralizing mAbs could have a major impact on controlling the SARS-CoV-
50 2 pandemic by providing immediate protection ^{4,5}. During the SARS and Middle East
51 respiratory syndrome coronavirus (MERS-CoV) outbreaks, a number of neutralizing mAbs
52 were developed and proved their potential therapeutic uses for the treatment of coronavirus
53 infections ^{6,7}. Neutralizing antibodies for Ebola virus, mAb114 and REGN-EB3, are other
54 encouraging examples that using antibody-based therapy can be effective during an infectious
55 disease outbreak ⁸⁻¹⁰.

56 The spike (S) protein on the surface of SARS-CoV-2 is the major molecular determinant
57 for viral attachment, membrane fusion and entry into host cells. Therefore, this protein is the
58 main target for development of neutralizing antibodies and vaccines. Previous studies revealed
59 that a large number of antibodies targeting the receptor binding domain (RBD) of either SARS-
60 CoV or MERS-CoV showed potent neutralizing activities by disrupting the interaction of spike
61 protein with receptors on host cells ¹¹⁻¹³. Screening of RBD targeting antibodies is the most
62 straightforward way to generate SARS-CoV-2 neutralizing antibodies.

63 To obtain fully human SARS-CoV-2 neutralizing mAbs, we first generated SARS-CoV-2

64 RBD recombinant protein. We used this protein as bait to isolate specific memory B cells from
65 peripheral blood mononuclear cells (PBMCs) of a COVID-19 convalescent patient. We then
66 used a single B cell cloning strategy to amplify the variable regions of IgG antibodies from
67 individual B cells and insert them into human IgG1 vectors for recombinant antibody
68 expression ¹⁴. A large panel of SARS-CoV-2 RBD-binding mAbs were generated and
69 characterized. Two mAbs, MW05 and MW07, showed high RBD binding abilities and strong
70 RBD/ACE2 disrupting activities in ELISA. IC₅₀ was determined to be 0.054 µg/mL for MW05
71 and 0.037 µg/mL for MW07. (Fig. 1 A to C). FACS analysis showed that both mAbs could
72 specifically bind to SARS-CoV-2 S protein expressed on HEK293 cells (Fig. 1D). The
73 dissociation constants (K_d) of MW05 and MW07 binding to SARS-CoV-2 S1 recombinant
74 protein was measured by a surface plasmon resonance (SPR) assay. K_d was 0.403 nM for
75 MW05 and 0.462 nM for MW07 (Fig.1E). No cross reactivity with SARS-CoV or MERS-CoV
76 S1 recombinant proteins was detected for either mAb, as assessed using ELISA (Fig. 1 F).
77 SARS-CoV-2 raced around the world after its initial outbreak. Over the past few months it has
78 been mutating. We next expressed RBD recombinant proteins from eight SARS-CoV-2 strains
79 with reported high-frequency mutations. Binding assays showed that both MW05 and MW07
80 exhibited the same binding abilities to all RBD recombinant proteins. This result suggests that
81 MW05 and MW07 may neutralize all eight of these strains (Fig. 1G; Extended Data Fig. 1).

82 To investigate the neutralizing activities of MW05 and MW07, we used *in vitro* assays to
83 assess neutralization of first pseudovirus bearing the S protein of SARS-CoV-2 and then
84 authentic virus. Both MW05 and MW07 inhibited pseudovirus infection of Huh7 cells
85 effectively. NT₅₀ was measured as 0.030 µg/ml for MW05 and 0.063 µg/ml for MW07 (Fig. 2,

86 A and B). We further evaluated the neutralizing activities of these two mAbs with authentic
87 SARS-CoV-2 infection of Vero E6 cells. As expected, MW05 and MW07 blocked authentic
88 SARS-CoV-2 entry into Vero E6 cells, with 100% neutralization titer (NT₁₀₀) around 1 µg/ml
89 for MW05 and 5 µg/ml for MW07 (Fig. 2, C and D). In summary, MW05 and MW07 exhibited
90 substantial neutralization of both SARS-CoV-2 pseudovirus and authentic virus.

91 ADE has been observed for coronaviruses and several publications have shown that sera
92 induced by SARS-CoV S protein enhanced viral entry into immune cells and inflammation^{15,16}.

93 To evaluate ADE activities of MW05 and MW07, we assessed the infection of SARS-CoV-2
94 pseudovirus and mAbs complex in THP-1, K562 and Raji cells. These cells are resistant to
95 SARS-CoV-2 pseudovirus infection, as they do not express ACE2 receptor (Extended Data Fig.

96 2). Cells were incubated with the mixture of pseudovirus with serially diluted MW05. Enhanced
97 SARS-CoV-2 pseudovirus infection of Raji cells, but not of THP-1 or K562 cells was observed
98 (Fig. 3A). Interestingly, No ADE activity was detected for MW07 on all three cell lines (Fig.

99 3B). Next, we determined the FcγR expression profile of the three cell lines. FACS data
100 revealed that Raji cells, which showed ADE activity for MW05, only express a relatively high
101 level of FcγRIIB; THP-1 cells express high levels of FcγRIA and FcγRIIA; and K562 cells only
102 express high level of FcγRIIA (Fig. 3C). These results indicate that FcγRIIB is the major FcγR
103 contributing to the enhancement of SARS-CoV-2 infection mediated by MW05.

104 To further assess the ADE activities of MW05, we pre-incubated Raji cells along with
105 irrelevant hIgG1 or MW05 along with FcγRIA recombinant protein to disrupt the interaction of
106 MW05 Fc with FcγRIIB on Raji cells. Both pre-incubation strategies effectively inhibited the
107 ADE activities of MW05 (Fig. 3D and E). FcγRIA has high affinity for the Fc of human IgG1.

108 Accordingly, pre-incubation of MW05 with Fc γ RIA recombinant protein showed higher ADE
109 inhibition than did pre-incubation of irrelevant hIgG1 with Raji cells by disruption of MW05 Fc
110 with Fc γ RIIB on Raji cells (Fig. 3 D and E). To eliminate the risk of ADE and Fc-
111 mediated acute lung injury *in vivo*, we introduced the LALA mutation to the Fc region of MW05
112 (MW05/LALA) to decrease the engagement of MW05 with Fc γ Rs. This mutation completely
113 eliminated ADE activity of MW05 without decreasing its neutralizing activity (Fig. 3 F and G).

114 We evaluated the prophylactic and therapeutic effects of MW05/LALA in a rhesus monkey
115 SARS-CoV-2 infection model. In the prophylactic (pre-challenge) group, three animals were
116 injected intravenously with a single dose of MW05/LALA (20 mg/kg) one day before receiving
117 a 1×10^5 50% tissue culture infectious dose (TCID₅₀) SARS-CoV-2 challenge via intratracheal
118 incubation (Fig. 4A). MW05/LALA antibody effectively protected animals from SARS-CoV-2
119 infection; almost no virus was detected in the oropharyngeal swabs of the prophylactic group
120 (Fig. 4B).

121 In the treatment (post-challenge) group, three animals were first challenged with 1×10^5
122 TCID₅₀ SARS-CoV-2. Then, at day 1 post infection (dpi), a single dose of MW05/LALA (40
123 mg/kg) was administered intravenously to these animals (Fig. 4A). Animals in the control group
124 (n=3) were given a single dose of irrelevant hIgG1 (20 mg/kg) on 1 dpi. In the control group,
125 the viral loads in oropharyngeal swabs increased to a peak of about $10^{7.0}$ RNA copies/mL on 4
126 dpi, then decreased to the limit of detection on 7 dpi (Fig. 4B). Virus was only detected in the
127 rectal swabs of two animals in the control group (Fig. 4C). Notably, virus titers decreased in
128 the MW05/LALA treatment group immediately after administration. No virus was detected in
129 the MW05/LALA treatment group even on 4 dpi, the time point at which viral titers in the

130 control group reached their peak. A single dose of MW05/LALA exhibited SARS-CoV-2
131 therapeutic efficacy in a rhesus monkey model, clearing virus in three days after antibody
132 administration (Fig. 4B). No significant weight loss or body temperature change was observed
133 in any of the animals during the study (Extended Data Fig. 3 and 4). No virus was detected in
134 nasal swabs or blood samples (Extended Data Fig. 5). Additionally, no significant abnormal
135 hematology changes were observed (Extended Data Fig. 6).

136 Rhesus monkeys challenged with SARS-CoV-2 were evaluated for tissue damage. One
137 monkey from each group was euthanized for necropsy on 6 and 7 dpi. Interstitial pneumonia
138 symptoms were observed in the control group, including thickened alveolar septa, intensive
139 infiltration of monocytes and lymphocytes, and proliferation of fibroblasts (Fig. 4D). We also
140 observed cellulose exudation in some alveolar cavities, with the formation of hyaline membrane
141 and pulmonary hemorrhaging (Fig. 4D). Monkeys in treatment group displayed limited
142 pathological lung changes, with overall alveolar structure intact and much lower levels of
143 fibroblasts proliferation and leukocyte infiltration than were observed in the control monkeys
144 (Fig. 4D). No lesions were observed in the lungs of the animal euthanized on 6 dpi and very
145 mild pulmonary hemorrhaging of the animal euthanized on 7 dpi in the prophylactic group (Fig.
146 4D). In summary, MW05/LALA effectively inhibited lung tissue damage in both prophylactic
147 and therapeutic ways in a rhesus monkey SARS-CoV-2 infection model.

148 Immunohistochemical analysis of virus in lung tissues showed that SARS-CoV-2 protein
149 only been detected in the lung tissue of the control group on 5 dpi but not 6 dpi and 7 dpi. In
150 comparison, viral proteins were undetectable in the lung tissues of animals in the prophylactic
151 and therapeutic groups (Fig. 4E). In order to further understand the distribution of SARS-CoV-

152 2 in upper respiratory tract, trachea and bronchus tissue samples were collected on 6 dpi and 7
153 dpi. Viral titers were then determined by qRT-PCR. On 6 dpi and 7 dpi, high levels of SARS-
154 CoV-2 RNA copies were detected in trachea and bronchi tissues of control animals, while no
155 viral nucleic acid was detected from tissue samples of both prophylactic and therapeutic groups
156 (Fig. 4F).

157 The global COVID-19 pandemic is running rampant over the world. There are great unmet
158 medical needs for COVID-19 therapy as no SARS-CoV-2 specific drugs or vaccines have yet
159 been approved. Neutralizing mAbs are promising agents to combat emerging infectious
160 diseases. Our results showed the prophylactic and therapeutic efficacy of MW05/LALA on
161 SARS-CoV-2 *in vivo*. This work paves the way for further development of antibody-based
162 therapies for prophylactic or therapeutic treatment of COVID-19.

163

164 **Methods**

165 **Ethics statement.** All neutralizing assays using SARS-CoV-2 authentic virus were performed in
166 biosafety level 3 (BSL-3) facility. Monkey studies were carried out in an animal biosafety level 4
167 (ABSL-4) facility with protocols approved by the Laboratory Animal Welfare and Ethics Committee
168 of the Chinese Academy of Sciences. The blood was taken from a convalescent COVID-19 patient
169 after got his signature for the informed consent form.

170

171 **Cells and viruses.** HEK293 (ATCC, CRL-3216) cells, Huh7 (Institute of Basic Medical Sciences
172 CAMS, 3111C0001CCC000679) cells and Vero E6 (ATCC, CRL-1586) cells were cultured at 37 °C
173 in Dulbecco's Modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS).

174 Raji (ATCC, CCL-86) cells, THP-1 (ATCC, TIB-202) cells and K562 (ATCC, CCL-243) cells were
175 cultured at 37 °C in RPMI 1640 Medium with 10% FBS. SARS-CoV-2 was isolated by the Center
176 for Disease Control and Prevention of Zhejiang province. Vero E6 cells were applied to the
177 reproduction of SARS-CoV-2 stocks.

178

179 **Recombinant protein generation.** The SARS-CoV-2 RBD (319-533aa, accession number:
180 QHD43416.1) , SARS-CoV-2 S1 (1-685aa, accession number: QHD43416.1) and SARS-CoV-2
181 RBD mutants recombinant proteins tagged with C-terminal 6 × His were cloned into the pKN293E
182 expression vector. HEK293 cells were transiently transfected with plasmids using 293fectinTM
183 Transfection Reagent (Cat: 12347019, Life Technologies) when the cell density reached 1×10^6
184 cells/mL. Four days after transfection, the conditioned media was collected by centrifugation
185 followed by purification using HisTrapTM HP (Cat: 17-5248-01, GE Healthcare). The purified
186 protein was buffer exchanged into PBS using a Vivacon 500 concentrator (Cat: VS0122, Sartorius
187 Stedim). For the generation of human ACE2-hFc and SARS-CoV-2 RBD-mFc recombinant
188 proteins , RBD or ACE2 sequence (1-615aa, accession number: NP_068576.1) was cloned into
189 mouse IgG1 or human IgG1 Fc backbone in pKN293E expression vectors and transiently
190 transfected into HEK293 cells followed by media collection and purification using MabSelect SuRe
191 antibody purification resin (Cat: 29-0491-04, GE Healthcare). SEC-HPLC and SDS-PAGE were
192 used to check the size and purity of these recombinant proteins.

193 SARS-CoV-2 RBD mutant information:

Mutants	Virus Strain Name	Accession ID	Data Source
---------	-------------------	--------------	-------------

RBD/NE39K	hCoV-19/Scotland/EDB162/2020	EPI_ISL_425924	GISAID
V367F	HCoV-19/England/20134027504/2020	EPI_ISL_423136	GISAID
G476S	hCoV-19/USA/WA-S28/2020	EPI_ISL_417081	GISAID
V483A	hCoV-19/USA/WA-S529/2020	EPI_ISL_434289	GISAID
Q414E	hCoV-19/USA/AZ-TGEN-TG268099/2020	EPI_ISL_426500	GISAID
G446V	hCoV-19/Australia/VIC329/2020	EPI_ISL_426639	GISAID
A475V	hCoV-19/USA/AZ-TGEN-TG268282/2020	EPI_ISL_426504	GISAID
A520S	hCoV-19/USA/WA_0432/2020	EPI_ISL_426441	GISAID

194

195 **Antibody discovery and expression.** mAbs were generated from SARS-CoV-2 RBD specific
196 memory B cells using single B cell isolation and cloning strategy¹⁷. For preparation of MW05 and
197 MW07 recombinant antibodies, heavy chain and light chain plasmids were transiently co-
198 transfected into HEK293 cells or stably expressed in CHO cells followed by purification with
199 Protein A resin. Antibodies MW05/LALA and MW07/LALA were generated by introducing the
200 LALA mutation (L234A and L235A) in the Fc region of IgG1 to abolish binding with FcγRs and
201 prepared using the same protocol used for generation of wild-type mAbs.

202

203 **ELISA.** To access the binding of mAbs to recombinant proteins (SARS-CoV-2 RBD, SARS-CoV-
204 2 RBD mutants, SARS-CoV-2 S1, SARS-CoV S1 (Cat: 40150-V08B1, Sino Biological), MERS-
205 CoV S1 (Cat: 40069-V08B1, Sino Biological)), the proteins were first coated on 96 well ELISA

206 plates at 1 μ g/ml in 100 μ L at 4°C overnight. After blocking with 5% BSA in PBS, serially diluted
207 mAbs were added to the plates and incubated for 60 min at 37°C. Plates were washed and secondary
208 Ab Goat Anti-Human IgG Fc-HRP (Cat: 109-035-098, Jackson ImmunoResearch) was added. TMB
209 was used for color development and absorbance at 450 nm was measured using a microplate reader.
210 For the RBD/ACE2-hFc blocking assay, ACE2-hFc recombinant protein was coated on a 96 well
211 ELISA plate at 0.75 μ g/ml in 100 μ L at 4°C overnight. Equal volumes (100 μ L + 100 μ L) of pre-
212 incubated RBD-mFc/mAb complex (RBD-mFc concentration: 100 ng/ml, mAb concentrations
213 between 40 to 0.00023 μ g/ml) were added to the plates and incubated for 60 min at 37°C. Plates
214 were washed and secondary Ab Goat Anti-Mouse IgG Fc-HRP (Cat:115-035-071, Jackson
215 ImmunoResearch) was added. TMB was used for color development and absorbance at 450 nm was
216 measured using a microplate reader.

217

218 **Flow cytometry assay.** The binding of MW05 and MW07 to S protein expression on cell surface
219 was assessed by FACS. HEK293 cells were transiently transfected by SARS-CoV-2 Spike
220 expression plasmid (Cat: VG40589-UT, Sino Biological) for 24 to 48 hours. Cells were then
221 collected and blocked with 5% BSA for 30 min at RT. 3-fold serially diluted MW05, MW07, ACE2-
222 hFc and isotype control antibody were added into cells (2×10^5 cells/sample in 100 μ L) and
223 incubated for 60 min on ice. After washing twice with 1 \times PBS, cells were stained with 1/200 diluted
224 Goat Anti human IgG Fc-FITC antibody (Cat: F9512, Sigma) for 45 min and analyzed using flow
225 cytometry (CytoFLEX, Beckman Coulter). The Fc γ R expression profiles of Raji, THP-1 and K562
226 were determined by FACS. Cells were collected and washed twice with 1 \times PBS, then blocked with
227 Fc receptor blocking solution buffer (Cat: MX1505, Maokang Biological) for 30 min at RT. Then

228 10 μ L anti-Fc γ RI antibody-FITC (Cat: 10256-R401-F, Sino Biological), anti-Fc γ RIIa antibody-
229 FITC (Cat: 10374-MM02-F, Sino Biological), anti-Fc γ RIIIa antibody-FITC (Cat: 10389-MM41-F,
230 Sino Biological) and FITC-labeled anti-Fc γ RIIb antibody (Cat: NBP2-14905, Biotechne; Cat:
231 MX488AS100-1KT, Sigma-Aldrich) were added into cells (1 \times 10⁶ cells/sample in 100 μ L) and
232 incubated for 60 min at 2-6°C and analyzed using flow cytometry (CytoFLEX, Beckman Coulter).

233

234 **Surface plasmon resonance (SPR).** SPR measurements were performed at room temperature using
235 a BIAcore S200 system with CM4 biosensor chips (GE Healthcare). For all measurements, a buffer
236 consisting of 150 mM NaCl, 10 mM HEPES, 3 mM EDTA, pH 7.4 and 0.005% (v/v) Tween-20 was
237 used as running buffer. All proteins were exchanged into this buffer in advance. The blank channel
238 of the chip served as the negative control. SARS-CoV-2 S1 recombinant protein was captured on
239 the chip at 175 response units. Gradient concentrations of MW05 Fab or MW07 Fab (from 200 nM
240 to 6.25 nM with 2-fold dilution) were then flowed over the chip surface. After each cycle, the sensor
241 was regenerated with Gly-HCl (pH 1.5). The affinity was calculated using a 1:1 (R_{max} Local fit)
242 binding fit model with BIAevaluation software.

243

244 **Neutralization assay.** SARS-CoV-2 pseudovirus was prepared and provided by the Institute for
245 Biological Product Control, National Institutes for Food and Drug Control (NIFDC)¹⁸. The TCID₅₀
246 was determined by the transduction of pseudovirus into Huh7 cells. For pseudovirus neutralization
247 assay, 100 μ L of mAbs at different concentrations were mixed with 50 μ L supernatant containing
248 500 TCID₅₀ pseudovirus. The mixture was incubated for 60 min at 37 °C, supplied with 5% CO₂.
249 All mAbs were tested in concentrations ranging from 0.55 ng/mL to 28 μ g/mL in the context of

250 Huh7 cells. 100 μ L of Huh7 cell suspension (2×10^5 cells/mL) was then added to the mixtures of
251 pseudoviruses and mAbs for an additional 24 h incubation at 37 °C. Then, 150 μ L of supernatant
252 was removed, and 100 μ L luciferase detecting regents (Promega) was added to each well. After 2
253 mins incubation, each well was mixed 10 times by pipetting, and 150 μ L of the mixture was
254 transferred to a new microplate. Luciferase activity was measured using a microplate luminometer
255 (ThermoFisher). The 50% neutralization titer (NT₅₀) was calculated using GraphPad Prism 7.0. For
256 SARS-CoV-2 authentic virus neutralization assay, Vero E6 cells were diluted and seeded into a 96-
257 well plate with 1×10^4 cells/well in 100 μ L volume at 37 °C. 16 h later, cells were washed by 1 \times PBS
258 for 3 times and added diluted antibodies in equal volume with the concentration ranging from 0.1
259 μ g/mL to 100 μ g/mL. 100 TCID₅₀ SARS-CoV-2 authentic virus was used for each well. Meanwhile,
260 a control group without antibody was set up. A virus back-titration was performed to assess the
261 correct virus titer used in each experiment. Cytopathic effect of each well was monitored every day
262 and photographed at day 3 or day 4 after virus infection. All experiments were conducted following
263 the standard operating procedures of the approved BSL-3 facility.

264

265 **Antibody-dependent enhancement (ADE) assay.** The ADE assays were performed using Raji,
266 THP-1 and K562 cell lines. 25 μ L of 2-fold serially diluted mAbs were mixed with 25 μ L
267 supernatant containing 250 TCID₅₀ pseudovirus. The mixture was incubated for 60 min at 37 °C,
268 supplied with 5% CO₂. All mAbs were tested in the concentrations ranging from 6000 to 23.4 ng/mL.
269 100 μ L of THP-1, Raji and K562 cells at the density of 2×10^6 cells/mL were added to the mixtures
270 of pseudoviruses and mAbs for an additional 24 h incubation. Then, same volume of luciferase
271 detecting regents (Promega) was added to each well. After 2 mins incubation, the luciferase activity

272 was measured using a microplate luminometer (Thermo Fisher).

273

274 **Animal experiments.** All animal experiments were performed according to the procedures

275 approved by the Chinese Academy of Sciences and complied with all relevant ethical regulations

276 regarding animal research. Nine 6 or 7 year-old rhesus monkeys (3 females and 6 males) were

277 divided into 3 groups: a control group (one female and two males), a pre-exposure group (one female

278 and two males) and a post-exposure group (one female and two males). Rhesus monkeys in the

279 control group were injected with 20 mg/kg negative control antibody. For the prophylactic study,

280 monkeys in the pre-exposure group were given a single dose of 20 mg/kg MW05/LALA antibody

281 intravenously one day before being challenged with 1×10^5 TCID₅₀ SARS-CoV-2 via intratracheal

282 routes. For the therapeutic study, monkeys in the post-exposure group were administrated with a

283 single dose of 40 mg/kg MW05/LALA antibody intravenously one day after challenged with 1×10^5

284 TCID₅₀ SARS-CoV-2 via intratracheal routes. Body weight and body temperature were monitored

285 every day. Oropharyngeal, nasal and rectal swabs were collected for 7 days. Blood samples were

286 collected. White blood cells (WBC), neutrophils (NEUT), lymphocytes (LYMPH) and monocytes

287 (MONO) were assessed for all monkeys. Swabs were placed into 1 mL of DMEM after collection.

288 Viral RNA was extracted by the QIAamp Viral RNA Mini Kit (Qiagen) according to the

289 manufacturer's instructions. RNA was eluted in 50 μ L of elution buffer and used as the template for

290 RT-PCR. The pairs of primers were used targeting S gene: RBD-qF1: 5'-

291 CAATGGTTAACAGGCACAGG-3'; RBD-qR1: 5'-CTCAAGTGTCTGTGGATCACG-3'. 2 μ L

292 of RNA were used to verify the RNA quantity by HiScript® II One Step qRT-PCR SYBR® Green

293 Kit (Vazyme Biotech Co., Ltd) according to the manufacturer's instructions. The amplification was

294 performed as follows: 50°C for 3 min, 95°C for 30 s followed by 40 cycles consisting of 95°C for
295 10 s, 60°C for 30 s, and a default melting curve step in an ABI step-one machine (14).

296

297 **Histopathology and Immunohistochemistry.** Animal necropsies were performed according to a
298 standard protocol. Samples for histological examination were stored in 10% neutral-buffered
299 formalin for 7 days, embedded in paraffin, sectioned and stained with hematoxylin and eosin or
300 Masson's trichrome prior to examination by light microscopy.

301

302 **Data availability.** Further information and requests for resources and reagents should be directed
303 to and will be fulfilled by the corresponding author Xun Gui (xun.gui@mabwell.com).

304

305

306 **References**

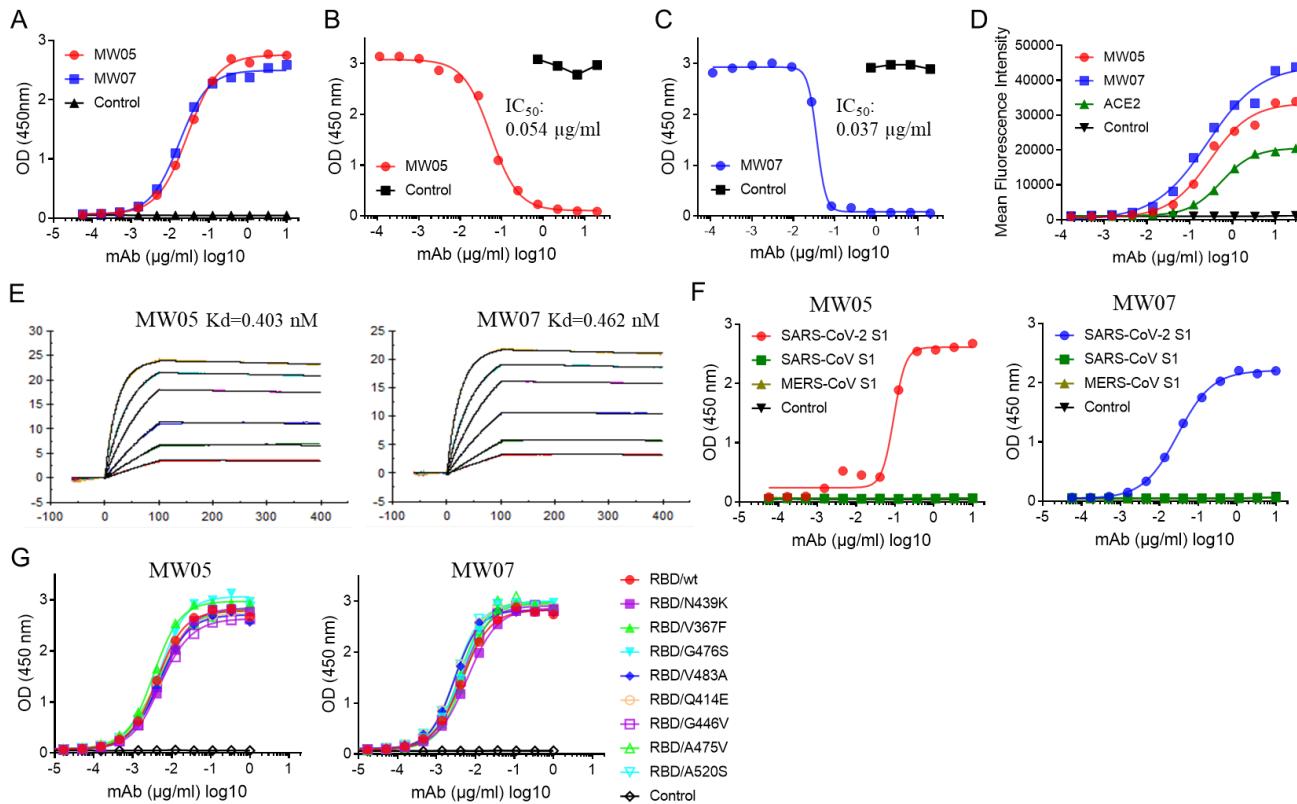
- 307 1 Zhou, P. *et al.* A pneumonia outbreak associated with a new coronavirus of
308 probable bat origin. *Nature* **579**, 270-273, doi:10.1038/s41586-020-2012-7
309 (2020).
- 310 2 Wang, C., Horby, P. W., Hayden, F. G. & Gao, G. F. A novel coronavirus outbreak
311 of global health concern. *Lancet* **395**, 470-473, doi:10.1016/S0140-
312 6736(20)30185-9 (2020).
- 313 3 Galluccio, F. *et al.* Treatment algorithm for COVID-19: a multidisciplinary point of
314 view. *Clin Rheumatol*, doi:10.1007/s10067-020-05179-0 (2020).
- 315 4 Chen, L., Xiong, J., Bao, L. & Shi, Y. J. T. L. I. D. Convalescent plasma as a potential
316 therapy for COVID-19. **20**, 398-400 (2020).
- 317 5 Shen, C. *et al.* Treatment of 5 critically ill patients with COVID-19 with
318 convalescent plasma. **323**, 1582-1589 (2020).
- 319 6 Sui, J. *et al.* Potent neutralization of severe acute respiratory syndrome (SARS)
320 coronavirus by a human mAb to S1 protein that blocks receptor association. **101**,
321 2536-2541 (2004).
- 322 7 ter Meulen, J. *et al.* Human monoclonal antibody as prophylaxis for SARS
323 coronavirus infection in ferrets. **363**, 2139-2141 (2004).
- 324 8 Corti, D. *et al.* Protective monotherapy against lethal Ebola virus infection by a

325 potently neutralizing antibody. **351**, 1339-1342 (2016).
326 9 Moekotte, A. *et al.* Monoclonal antibodies for the treatment of Ebola virus disease.
327 **25**, 1325-1335 (2016).
328 10 Saphire, E. O., Schendel, S. L., Gunn, B. M., Milligan, J. C. & Alter, G. J. N. i.
329 Antibody-mediated protection against Ebola virus. **19**, 1169-1178 (2018).
330 11 Li, Y. *et al.* A humanized neutralizing antibody against MERS-CoV targeting the
331 receptor-binding domain of the spike protein. **25**, 1237-1249 (2015).
332 12 Du, L. *et al.* The spike protein of SARS-CoV—a target for vaccine and therapeutic
333 development. **7**, 226-236 (2009).
334 13 Wang, Q., Wong, G., Lu, G., Yan, J. & Gao, G. F. J. A. r. MERS-CoV spike protein:
335 Targets for vaccines and therapeutics. **133**, 165-177 (2016).
336 14 Shi, R. *et al.* A human neutralizing antibody targets the receptor binding site of
337 SARS-CoV-2. **1-8** (2020).
338 15 Liu, L. *et al.* Anti-spike IgG causes severe acute lung injury by skewing
339 macrophage responses during acute SARS-CoV infection. **4** (2019).
340 16 Wan, Y. *et al.* Molecular mechanism for antibody-dependent enhancement of
341 coronavirus entry. **94** (2020).
342 17 Ju, B. *et al.* Human neutralizing antibodies elicited by SARS-CoV-2 infection. **1-8**
343 (2020).
344 18 Nie, J. *et al.* Establishment and validation of a pseudovirus neutralization assay for
345 SARS-CoV-2. **9**, 680-686 (2020).
346

347

348

349 **Acknowledgements:** We thank all colleagues from National Biosafety Laboratory (Wuhan), CAS
350 for their support during the study. We thank Dr. Zhou Yi-Wu for his assistance in the
351 histopathological analysis. We are grateful to Dr. Dayong Tian and Dr. Qi An from Shanghai King-
352 cell Biotechnology Co. Ltd. for helping us performing the SARS-CoV-2 authentic virus neutralizing
353 assays in the P3 laboratory. We thank Ms. Hongyuan Ren and Mr. Pan Gao for their helping in
354 measuring the affinities in SPR assay. We thank Dr. Yu Mao and Ms. Wenlu Liang for the stimulating
355 discussions.

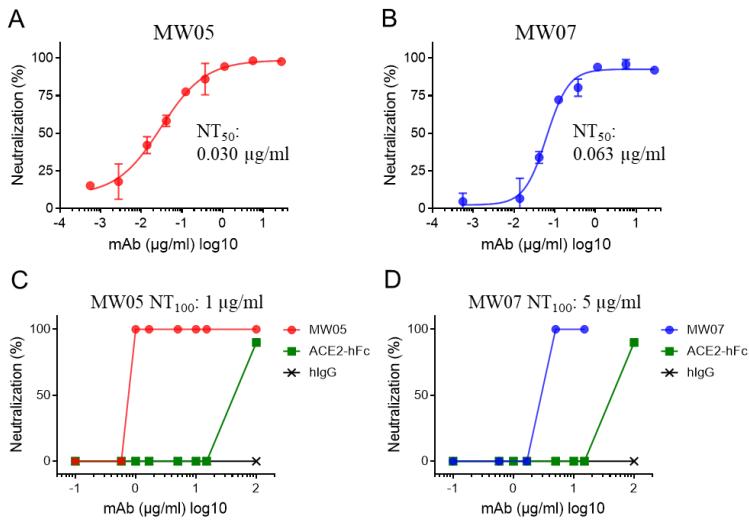

356 **Funding:** This work was supported by National Key R&D Program (2020YFC0848600).

357 **Author contributions:** D.L, J.Z, X.G. and S.W. initiated and coordinated the project. R.W. and S.J.

358 analyzed antigen sequences, expressed and purified recombinant proteins. Z.L., M.W., and P.T.
359 expressed and purified antibodies. R.W. and S.J. performed the binding and blocking assays. B.C.
360 and W.J. performed the pseudovirus neutralization assays. C.G. and W.J. checked the expression
361 profile of Fc γ Rs. W.H. and L.W. designed and supervised the SARS-CoV-2 pseudovirus tests. X.G.,
362 B.C., W.J. and C.G. designed and performed the ADE experiments. G.L, A.W. and B.C supervised
363 the protein quality control work. Z.Y., Y.P., C.S., X.H., Y.Y. carried out the monkey studies with the
364 help from H.Z., Y.C. and G.G. J.M. and Y.C. performed histopathology and immunohistochemistry
365 assays. S.C performed the Sars-CoV-2 mutants sequence data analysis and design work. X.G., S.W.,
366 S.C. and J.Z. analyzed and prepared the manuscript with input from all authors.

367 **Competing interests:** X.G., S.W., R.W., S.J., W.J. and C.G. are listed as inventors on the licensed
368 patents for MW05 and MW07. S.W., R.W., S.J., M.W., W.J., Z.L., C.G., B.C., P.T., J.Z., X.G. and
369 D.L. are employees of Mabwell (Shanghai) Bioscience Co., Ltd. and may hold shares in Mabwell
370 (Shanghai) Bioscience Co., Ltd. The other authors declare no competing interests.

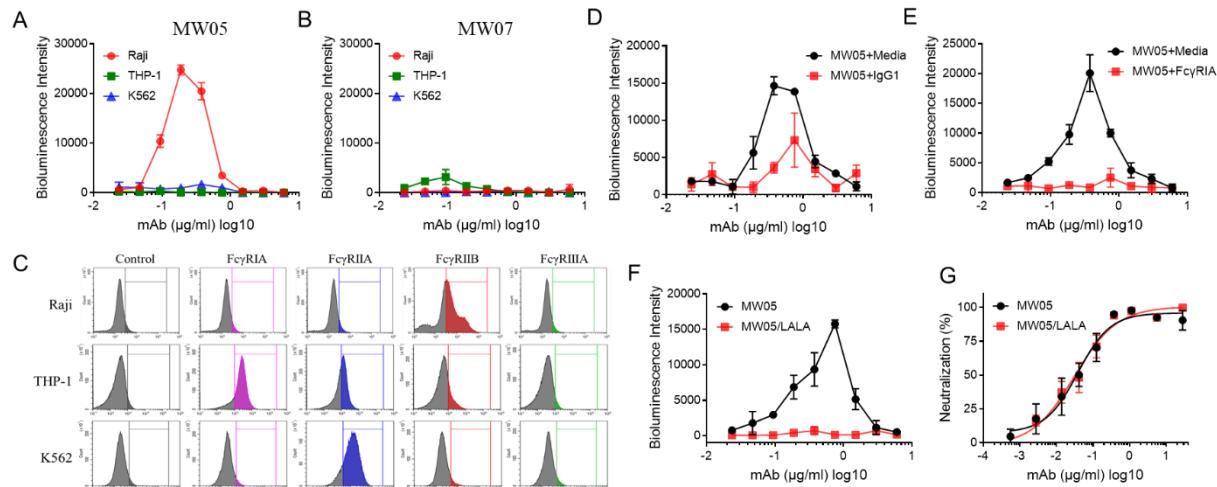
Figure 1



371 **Fig. 1. MW05 and MW07 disrupting the interaction of SARS-CoV-2 RBD with hACE2**

372 **receptor. (A)** The binding abilities of MW05 and MW07 to SARS-CoV-2 RBD recombinant
373 protein were assessed by ELISA. **(B and C)** The ability of MW05 and MW07 to block SARS-
374 CoV-2 RBD interaction with ACE2 was evaluated by competition ELISA. **(D)** The binding of
375 MW05 and MW07 to SARS-CoV-2 S protein expressed on HEK293 cells was measured by
376 FACS. **(E)** The dissociation constants (K_d) of MW05 and MW07 to SARS-CoV-2 S1
377 recombinant protein were measured using a BIACore S200 system. **(F)** The cross-reactivities
378 of MW05 and MW07 to SARS-CoV-2, SARS-CoV and MERS-CoV recombinant S1
379 subunit of spike proteins (S1) were tested by ELISA. **(G)** The binding of MW05 and MW07 to
380 RBD recombinant proteins of SARS-CoV-2 mutated strains.

381


Figure 2

382 **Fig. 2. Neutralizing activities of MW05 and MW07. (A and B) SARS-CoV-2 pseudovirus**
383 neutralizing activities of MW05 and MW07 were evaluated on Huh7 cells. 50% neutralization
384 titer (NT₅₀) was calculated by fitting the luciferase activities from serially diluted antibodies to
385 a sigmoidal dose-response curve. (C and D) SARS-CoV-2 authentic virus neutralizing activities
386 of MW05 and MW07 were evaluated using Vero E6 cells. 100% neutralization titer (NT₁₀₀)
387 was labeled accordingly.

388

Figure 3

389 **Fig. 3. Crosslinking of Fc and FcγR contributing to ADE activities of MW05. (A and B)**

390 ADE activities of MW05 and MW07 were assessed using SARS-CoV-2 pseudovirus.

391 Pseudoviruses pre-incubated with serially diluted mAb mixture were added to Raji, THP-1 and

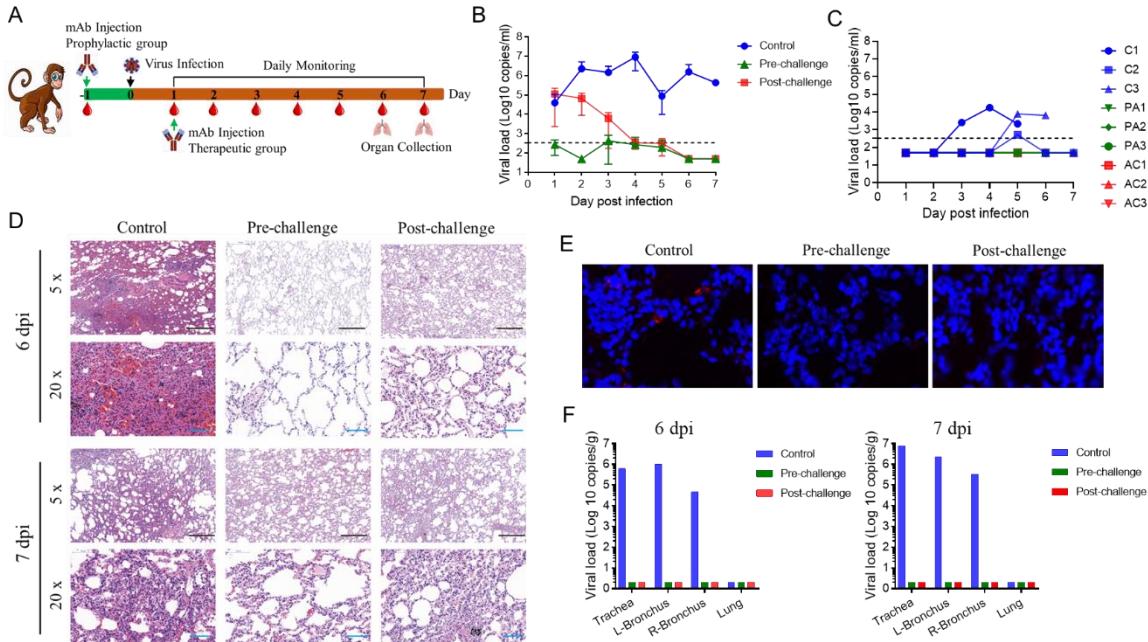
392 K562 cells to evaluate their ability to enhance infection. RPMI 1640 media containing 10%

393 FBS was used as negative control. (C) ADE activities of MW05 on Raji cells pre-treated with

394 media or 400 μg/mL irrelevant hIgG1 were assessed using SARS-CoV-2 pseudovirus. (D) ADE

395 activities of MW05 pre-incubated with media or 80 μg/mL FcγRIA were assessed on Raji cells

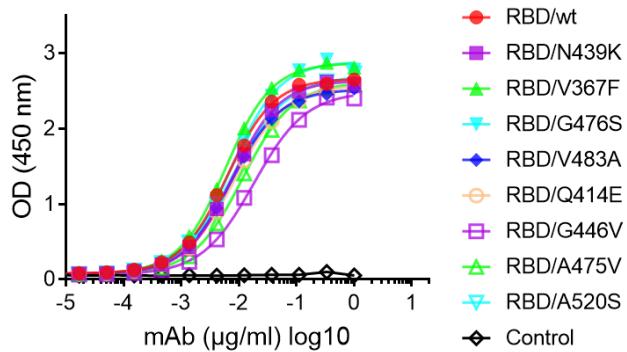
396 using SARS-CoV-2 pseudovirus. (E) The ADE activities of MW05 and MW05/LALA on Raji


397 cells were compared using SARS-CoV-2 pseudovirus. (F) The pseudovirus neutralizing

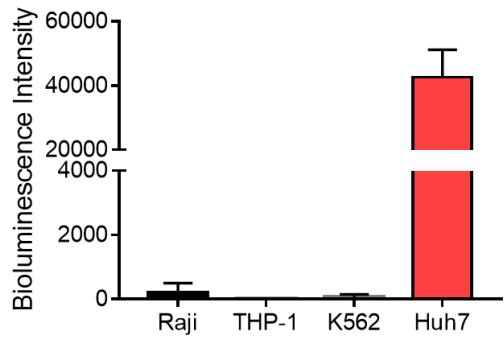
398 activities of MW05 and MW05/LALA on Huh7 cells were measured.

399

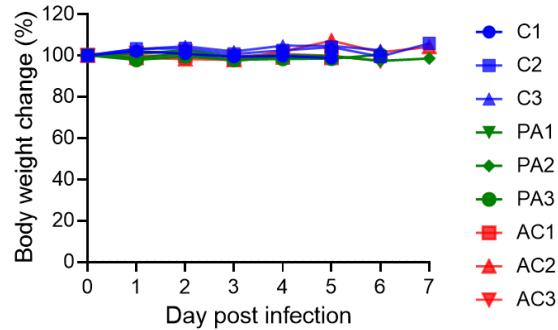
400


Figure 4

401 **Fig. 4. Prophylactic and therapeutic effects of MW05/LALA. (A)** A schematic of the
402 experimental *in vivo* set up. Nine rhesus monkeys were divided into pre-challenge
403 (prophylactic), post-challenge (therapeutic) and control groups with 3 animals in each group.
404 Before virus challenge, the monkeys in the pre-challenge group were injected intravenously
405 with a single dose of 20 mg/kg MW05/LALA . One day later, all monkeys were challenged
406 with 1×10^5 TCID₅₀ SARS-CoV-2 via intratracheal intubation. A single dose of 40 mg/kg
407 MW05/LALA was administered to each animal in the post-challenge group on day 1 post
408 challenge. Monkeys in the control group were given 20 mg/kg irrelevant hIgG1 one day before
409 virus challenge. **(B)** Viral titer of oropharyngeal swabs at the indicated time points were
410 evaluated using qRT-PCR. Data are average values from three monkeys (n=3) for the first 5
411 days, from two monkeys (n=2) for 6 dpi, and from one monkey (n=1) for 7 dpi. The line for
412 limit of detection is labeled. **(C)** Viral titer of rectal swabs at the indicated time point were
413 evaluated by qRT-PCR. “C” indicates the control group, “PA” indicates the pre-challenge


414 group and “AC” indicates the post-challenge group. **(D)** Histopathology and
415 immunohistochemical examination of lung tissues from pre-challenge, post-challenge and
416 control monkeys. **(E)** Immunohistochemical analysis of SARS-CoV-2 protein expression in
417 lung tissues from pre-challenge, post-challenge and control monkeys. **(F)** Viral load analysis
418 of trachea, bronchus and lung tissues of experimental animals. L-Bronchus means left bronchus;
419 R-Bronchus means right bronchus.

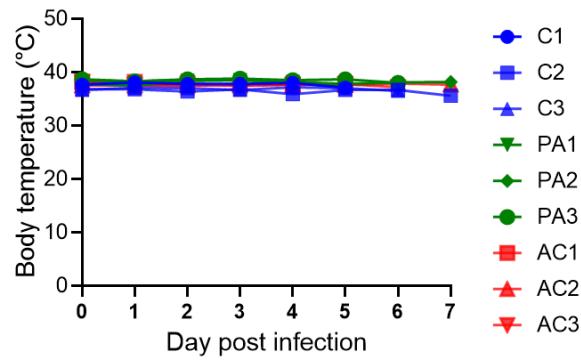
420


421 **Extended Data Fig. 1 Binding of ACE2 to different SARS-CoV-2 RBD mutants by**
422 **ELISA.** RBD recombinant proteins were coated on 96-well plates. Human ACE2-mFc was
423 then added into plates to check the binding.

424

425 **Extended Data Fig. 2 The infection of SARS-CoV-2 pseudovirus in Raji, THP-1, K562 and**

426 **Huh7 cells.**

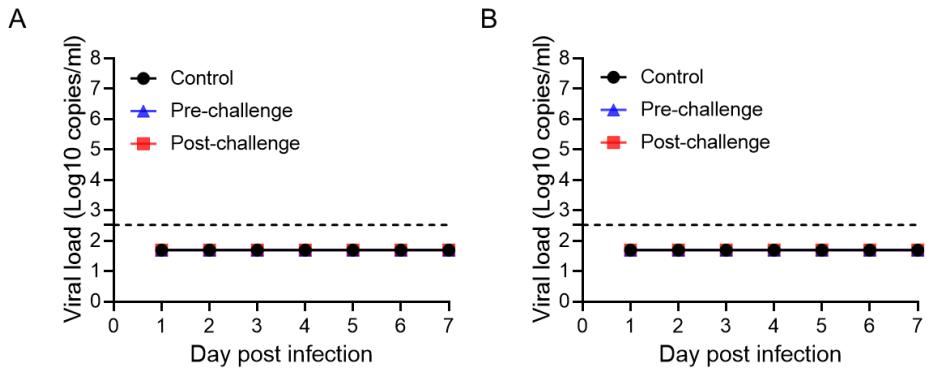


427 **Extended Data Fig. 3 The body weight of each monkey was checked every day. “C”**

428 indicates the control group, “PA” indicates the pre-challenge group and “AC” indicates the

429 post-challenge group.

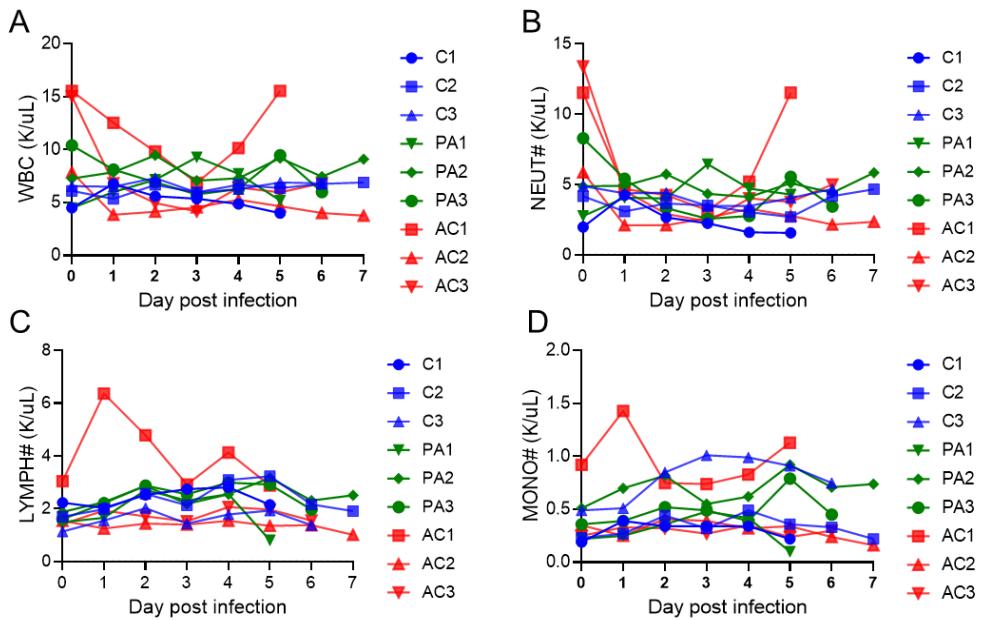
430



431 **Extended Data Fig. 4 The body temperature of each monkey was checked every day. “C”**

432 indicates the control group, “PA” indicates the pre-challenge group and “AC” indicates the

433 post-challenge group.


434

435 **Extended Data Fig. 5 Viral titer of nasal swabs (A) or blood samples (B) of all monkeys**

436 **were evaluated by qRT-PCR.**

437

438 **Extended Data Fig. 6 White blood cells (A), neutrophils (B), lymphocytes (C) and**
439 **monocytes (D) in each monkey were monitored every day. "C" indicates the control group,**
440 **"PA" indicates the pre-challenge group and "AC" indicates the post-challenge group.**

441