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Abstract7

8

Brain-Computer Interfaces (BCIs) are systems that allow users to control9

devices using brain activity alone. However, the ability of participants to10

command BCIs varies from subject to subject. For BCIs based on the11

modulation of sensorimotor rhythms as measured by means of electroen-12

cephalography (EEG), about 20% of potential users do not obtain enough13

accuracy to gain reliable control of the system. This lack of efficiency of14

BCI systems to decode user’s intentions requires the identification of neuro-15

physiological factors determining ‘good’ and ‘poor’ BCI performers. Given16

that the neuronal oscillations, used in BCI, demonstrate rich a repertoire of17

spatial interactions, we hypothesized that neuronal activity in sensorimotor18

areas would define some aspects of BCI performance. Analyses for this19

study were performed on a large dataset of 80 inexperienced participants.20

They took part in calibration and an online feedback session in the same21

day. Undirected functional connectivity was computed over sensorimotor22

areas by means of the imaginary part of coherency. The results show that23

post- as well as pre-stimulus connectivity in the calibration recordings is24

significantly correlated to online feedback performance in µ and feedback25

frequency bands. Importantly, the significance of the correlation between26

connectivity and BCI feedback accuracy was not due to the signal-to-noise27

ratio of the oscillations in the corresponding post and pre-stimulus intervals.28

Thus, this study shows that BCI performance is not only dependent on29

the amplitude of sensorimotor oscillations as shown previously, but that it30

also relates to sensorimotor connectivity measured during the preceding31

training session. The presence of such connectivity between motor and32

somatosensory systems is likely to facilitate motor imagery, which in turn33

is associated with the generation of a more pronounced modulation of sen-34

sorimotor oscillations (manifested in ERD/ERS) required for the adequate35

BCI performance. We also discuss strategies for the up-regulation of such36

connectivity in order to enhance BCI performance.37
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1 Introduction41

Brain Computer Interfaces (BCIs) were developed with the aim to offer patients42

suffering from loss of voluntary motor abilities devices to increase their capacity43

to control and communicate with their environment. BCIs based on the modu-44

lation of Sensorimotor Rhythms (SMR) use brain signals recorded during the45

performance of movement imagination or movement attempt to extract features46

that allow the classification of different motor imagery (MI) tasks (Wolpaw et al.,47

2002; Neuper and Pfurtscheller, 2001; Dornhege et al., 2007; Blankertz et al.,48

2008; Lemm et al., 2011; Müller-Putz et al., 2015; Sannelli et al., 2019). SMR are49

oscillatory signals generated in the sensorimotor areas of the cortex. In general,50

oscillatory signals are divided within frequency ranges, where µ (9-14 Hz) and51

β (15-25 Hz) bands play a specially important role in MI feature extraction52

(Neuper and Pfurtscheller, 2001; Wolpaw, 2007; Millán et al., 2010; Vidaurre53

et al., 2013; Blankertz et al., 2011; Sannelli et al., 2019).54

A modulation of brain activity in µ and β bands has been observed in relation55

to motor execution (Salmelin and Hari, 1994; Pfurtscheller et al., 1997; Klopp56

et al., 2001), motor preparation (Pfurtscheller and Neuper, 1997; Pineda, 2005),57

somatosensory processing (Nikulin et al., 2007), and motor imagery (Neuper58

et al., 2005; Pfurtscheller et al., 2006; Bauer et al., 2015). And because of its59

malleability by diverse aspects of sensorimotor processing, µ rhythm serves as60

the main neuronal signal for sensorimotor BCI based on MI (Sannelli et al., 2019;61

Nierhaus et al., 2019; Buch et al., 2008; Waldert et al., 2008; Leuthardt et al.,62

2004).63

Furthermore, the power of sensorimotor oscillations in the µ-band (and if64

existing also in β-band) during resting state, has been established as a predictor65

of SMR-based BCI performance in two different large scale studies (Blankertz66

et al., 2010; Acqualagna et al., 2016). In addition, spatio-temporal features based67

on power values in µ and β bands of resting state data have also been used to68

predict BCI performance (Suk et al., 2014; Blankertz et al., 2010). Considering69

the power in other frequency bands, Ahn et al. (2013b) found that oscillatory70

activity at high θ and low α frequency were present in users who could not71

attain BCI control. Grosse-Wentrup et al. (2011) showed that γ activity in the72

fronto-parietal network is related to subject-specific MI performance variations.73

Also in Ahn et al. (2013a), it was found that pre-frontal γ band activity is74

positively correlated with MI performance, concluding that concentration as75

mental state could be used to predict MI performance. Finally, Robinson et al.76

(2018) showed that the resting state activation patterns such as γ power from77

pre-motor and posterior areas, and β power from posterior areas can be used to78

estimate BCI performance. In summary, power of brain oscillations at different79
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frequency bands has been successfully established as BCI performance predictor.80

Importantly, these measures being directly based on the power of oscillations,81

can explain BCI performance due to the changes in the SNR of a control signal82

(i.e. sensorimotor oscillations). And thus, other measures, not being directly83

defined by the power of oscillations, should be utilized in order to shed light into84

neurophysiological aspects of neuronal activity defining BCI performance.85

Regarding such neurophysiological predictors, Samek et al. (2016) showed that86

long-range temporal correlations, estimated with Hurst exponents in calibration87

recordings, could predict the subsequent performance of feedback recordings. Also88

Zhang et al. (2015) could find a significant correlation between BCI performance89

and spectral entropy in the band between 0.5 and 14 Hz. In addition Hammer et al.90

(2012) could establish correlates of psychological variables and BCI performance.91

From a structural perspective, it was shown in Halder et al. (2011) that the92

number of activated voxels in the supplementary motor area of participants93

with good BCI performance was greater than for those demonstrating worse94

performance. Then, in Halder et al. (2013) it was shown that the structural95

integrity and myelination quality of deep white matter structures was significantly96

correlated to BCI performance. Actually, structural white matter integrity as97

measured by means of fractional anisotropy (FA) has been significantly correlated98

to idle α peak (Valdés-Hernández et al., 2010). In fact, α oscillations occur in the99

same frequency range as µ rhythms, with the latter originating in sensorimotor100

areas and being directly related to SMR. Finally, Zhang et al. (2016) showed101

that the fronto-parietal attention network (measured by MRI) is correlated102

to BCI performance using structural (cortical thickness) as well as functional103

connectivity features (eigenvector centrality and degree of centrality).104

Regarding connectivity of non-invasive time-resolved signals, phase synchrony105

of MEG signals in the µ-band has also been related to BCI performance in Sugata106

et al. (2014). There, the authors found a significant correlation between the107

strength of imaginary part of coherency (iCOH) Nolte et al. (2004, 2008) and108

estimated (offline) BCI performance in data of ten participants. In that work,109

iCOH was estimated between M1 and motor association areas in the post-110

stimulus interval of the trial. Although this is an interesting result, the study111

presented two drawbacks: iCOH and BCI performance were estimated in exactly112

the same trials and the same time interval and BCI performance was estimated113

by cross-validation of an off-line (without online feedback) session. Thus, the114

ability of iCOH to predict future BCI accuracy has not been established yet.115

Furthermore, those correlations were not tested against the influence of the116

power (signal-to-noise-ratio, SNR) of the signals, that as aforementioned has117

been shown to significantly correlate to BCI performance. Additionally, SNR118

might influence coherency values: for example, large amplitudes of oscillatory119

signals (large power, large SNR) might produce larger iCOH values than lower120

ones Bayraktaroglu et al. (2013). Thus in general, the effect of SNR should121

be studied. Finally, since the analysis was performed only in the post-stimulus122

interval, the question remains whether connectivity-vs-BCI prediction could123

also be extended to the pre-stimulus interval, which in turn would indicate that124

general trait-like connectivity patterns might define BCI performance.125
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The study presented here is in relation to our previous work Vidaurre et al.126

(2019). There, we observed that iCOH of pre and post-central gyri extracted127

during the post-stimulus interval of MI concurrent to submotor threshold neuro-128

muscular electrical stimulation was significantly correlated to subsequent BCI129

performance. Here we rather concentrate on MI and investigate, using a large130

dataset of 80 naive participants, whether iCOH in sensorimotor areas and in131

pre- and post-stimulus time intervals, is significantly associated with the future132

BCI online performance. Besides, we systematically control for the influence133

that SNR of the oscillatory signals might have on the extracted connectivity134

estimates.135

2 Materials and methods136

2.1 Experimental setup137

Eighty healthy BCI-novices took part in the study (41 female, age 29.9 ± 11.5138

years; 4 left-handed). Calibration and feedback runs were recorded in a single139

session.140

The participants were sitting in a comfortable chair with arms lying relaxed141

on armrests. Brain activity was recording using EEG amplifiers (BrainAmp142

DC by Brain Products, Munich, Germany). For this study we selected 61143

channels, referenced at nasion of an extended 10-20 system. The recorded signals144

were down-sampled at 100 Hz after filtering the data between 0.5 and 45 Hz.145

Calibration runs lasted approximately 15 minutes with three different visual146

cues, each of them representing on motor imagery task (left hand, right hand147

or feet movement imagination). One run consisted of 25 trials of each class, 75148

trials in total. Three runs of imagined movements were recorded, amounting to149

225 trials. Each trial lasted approximately 8 seconds and started with a period150

of 2 seconds with a black fixation in the center of a gray screen. Then, an arrow151

appeared indicating the task to be performed (left or right for motor imagery152

classes left hand and right hand and downward for class feet) for 4 s, followed153

by a period of random length between 1.5 and 2 s, see Fig. 1 top row for the154

trial timing of the calibration trials.155

After the calibration, participants performed three runs of 100 trials each156

with an online feedback paradigm. Each trial started with a period of 2 s with157

a black fixation cross in the center of a gray screen. Then an arrow appeared158

behind the cross to indicate the target direction of that trial (left or right for159

motor imagery classes left hand and right hand and downward for class feet).160

One second later the cross turned purple and started moving according to the161

classifier output. For the feet class, the cursor moved downwards, for left and162

right hands, it moved toward left or right respectively. After 4 s of cursor163

movement the cross froze at the final position and turned black again. Two164

seconds later the cross was reset to the center position and the next trial began.165

Hits or misses were counted according to this final position, but the score was166

only indicated during a break of 15 s after every block of 20 trials (see Fig. 1,167
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bottom row, for timing during feedback runs).168

169

Figure 1 around here...170

2.2 Feature extraction and classification171

EEG from the calibration session was filtered in a subject-specific frequency172

band, that was found using heuristics based on the spectra of channels located173

over the sensorimotor cortices, (Sannelli et al., 2019). The subject-specific time174

interval of maximal discrimination between classes was computed based on the175

event-related-desynchronization (ERD) and synchronization (ERS) of the signals176

of each channel during each class. The time-resolved ERD/ERS curved were177

computed as follows: the data were band-pass filtered at the previously selected178

subject-specific band. Then, the Hilbert transform (Clochon et al., 1996) was179

applied to obtain the amplitude envelope of the oscillations. EEG activity180

processed in this way was averaged across epochs separately for each class (left181

hand/right hand/feet MI). The time-resolved ERD curve was calculated for each182

channel over the sensorimotor cortex according to: ERD = 100∗(POST−PRE)/PRE,183

where POST is the EEG amplitude at each sample of time in the post-stimulus184

interval and PRE is the average activity in the pre-stimulus interval (-500 to185

0 ms). After selecting the subject-specific time interval using heuristics on the186

ERD/ERS values (see Sannelli et al. (2019)), the EEG data were epoched to187

form post-stimulus filtered trials.188

The band-pass filtered signals were then spatially filtered using common189

spatial pattern (CSP) analysis, (Blankertz et al., 2008; Sannelli et al., 2019).190

Then, log-variance features were computed for each trial of the calibration191

data. These features were used to train a binary linear classifier called Linear192

Discriminant Analysis (LDA), (Vidaurre et al., 2007; Müller et al., 2003; Lemm193

et al., 2011). The best classified pair of classes was chosen to provide feedback to194

the users, based on 5-fold chronological validation (Lemm et al., 2011; Blankertz195

et al., 2011; Sannelli et al., 2019). 30 participants performed feedback runs196

using classes left and right hand motor imagery, 34 participants used left hand197

versus feet motor imagery and finally 16 users used right hand versus feet motor198

imagery.199

During the feedback recording, and in order to provide continuous feedback200

during a trial, the EEG signal was epoched in windows of 750 ms. These were201

overlapped such that every 40 ms the features were recomputed (applying CSP202

filters, band-pass filters, computing log-variance and applying LDA, see (Lemm203

et al., 2011; Sannelli et al., 2019). Thus, every 40 ms a classifier output was204

computed and this result added to the cursor position.205

Figure 2 around here...206

The trial was considered correctly classified if at the end task-time the cursor207

was located in the correct side (left/right/down for left hand/right hand/feet208

MI) of the screen. As the number of classified classes was two and they were209
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balanced, the total accuracy after all feedback runs was then computed as:210

acc =
number of correctly classified trials

total number of trials
(1)

2.3 Functional connectivity analysis211

This analysis was performed to test whether online BCI performance can be212

associated, on a neurophysiological level, with the communication changes in the213

sensorimotor cortices. We detected these changes using functional connectivity214

metrics. Estimates of connectivity were computed in the pre-stimulus (-1000 0215

ms) as well as the post-stimulus (1500-3000 ms) intervals of the calibration data.216

Importantly, note that feedback datasets were not used to compute connectivity,217

but only to extract BCI performance. The EEG signals of those temporal218

intervals were mapped to the cortical surface using an accurate standardized219

volume conductor model of an average adult human head (Huang et al., 2016).220

Source reconstruction was implemented with eLORETA (Pascual-Marqui, 2007;221

Pascual-Marqui et al., 2011) using 4502 sources locations. Then, four regions of222

interest were selected (left and right pre and post central gyri) corresponding to223

the sensorimotor areas of both hemispheres. Each precentral region consisted of224

125 voxels, whereas the postcentral areas contained 112 voxels each. Regions were225

defined based on the Harvard- Oxford atlas included in FSL (Makris et al., 2006)226

and they were considered representative of primary motor and somatosensory227

cortices. We focused on these ROIs as our previous research showed that they228

were actively involved in sensorimotor BCI (Samek et al., 2016). A graphical229

representation of the ROIs is shown in Figure 3. Visualization routines were230

adopted from Haufe and Ewald (2019).231

Figure 3 around here...232

Voxel activity along each of the three spatial orientation was normalized to233

unit variance. A singular value decomposition (SVD) of the standardized activity234

was performed for each region of interest. Then, only the three components235

of largest variability were retained. Functional connectivity was computed236

separately within each hemisphere and across hemispheres and it was evaluated237

using the imaginary part of coherency, iCOH. iCOH is an undirected connectivity238

measure between two time series that quantifies the presence of a stable non-zero239

phase delay at a given frequency (Nolte et al., 2004). Thus, one value of iCOH240

was obtained per frequency bin for each pair of SVD components, and rectified241

taking the absolute value. Absolute values were averaged across the pairs of242

components per region pair, classes, frequencies in the spectral bands (µ or243

feedback band). In particular, the connectivity between pre- and postcentral gyri244

was separately computed for each hemisphere and averaged, providing a measure245

of ‘within hemispheres’ functional connectivity. Furthermore, the pre- precentral246

gyri, post- postcentral gyri and pre-postcentral gyri connectivity values across247

hemispheres were also computed and averaged, yielding an estimate of ‘across248

hemispheres’ connectivity. A graphical representation of ‘within’ and ‘across’249

hemispheres connectivity is visible in the last column of Figure 3.250
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This eventually yielded four connectivity values per subject: within hemi-251

spheres or across hemispheres in µ and feedback bands iCOH. We tested whether252

these values were significantly positively correlated to the online performance253

obtained with a different dataset of the same subject. For that, Spearman254

correlations between the previously described connectivity values and subsequent255

online feedback performance were computed. The corresponding p-values were256

corrected for multi-comparison using the False Discovery Rate (FDR) correction257

(Benjamini and Yekutieli, 2001).258

259

2.4 Signal-to-noise ratio estimation260

It is known that connectivity values might be positively or negatively influenced261

by the signal to noise ratio of the EEG (Bayraktaroglu et al., 2013). This is due262

to the fact that the phase portrait for the signal is more clearly defined for the263

signals with higher SNR and thus a phase difference required for coherency (or264

phase locking) does not suffer from phase-slips due to low SNR. In order to rule265

out that a potential significant correlation between connectivity estimates and266

BCI performance could be due to SNR (power) of the signals used to estimate267

connectivity, we partially regressed an estimate of SNR in the temporal intervals268

of interest.269

In order to obtain an estimate of SNR we applied the same procedure as in270

(Blankertz et al., 2010), where the Power Spectral Densities (PSD) of interest271

and their corresponding decaying noise curves were modeled as follows: one272

curve was fitted for the noise baseline of the spectrum and another one was fitted273

to model the peaks of the PSD. The optimization procedure to find the fitting274

parameters is based on minimizing the L2-norm of the difference vector between275

the spectral PSD and the modelled parametric curves. The SNR estimate is the276

maximal difference between the maximum peak and the noise at the specific277

frequency value. An example of SNR estimation using PSD modeling is visible278

in Figure 4. More details of the whole procedure can be found in Blankertz et al.279

(2010).280

Figure 4 around here...281

In particular for this study, we estimated the SNR from the fitted power282

spectral densities of the same SVD components used to compute iCOH (see283

Section 2.3), in each time interval and for each class. The maximum difference284

between the maximal peak of the fitted PSD curve and a fit of the 1/f noise285

spectrum was taken as estimate of SNR of the signal. This estimation was286

performed separately for each SVD component of each ROI and for each class287

and then all those results corresponding to the same time interval were averaged.288

289
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3 Results290

3.1 Estimation of BCI feedback performance291

In this study we used a large dataset of 80 participants described in (Sannelli292

et al., 2019). The mean accuracy (acc) over all users was 73.67 ± 15.60%. From293

80 participants, 66 of them performed above random (acc > 54.67% determined294

by the binomial inverse cumulative distribution).295

Figure 5 around here...296

The left panel of Figure 5 displays typical topographies of the two most297

discriminative CSP components. As explained in section 2.2, the corresponding298

CSP filters determine the most discriminative features used to train the classifier299

(calibration session) and also to classify EEG data during the feedback session.300

The middle panel of Figure 5 shows power-spectral densities of CSP components301

with typical peaks in the µ ( 10 Hz) and β ( 20 Hz) frequency ranges. Finally,302

the right panel of the figure displays time-resolved ERD/ERS curves of the303

amplitude of µ oscillations during left/right hand motor imagery (see section304

2.2): note stronger attenuation of the oscillations in the left and right hemispheres305

for the imagery of right (upper row) and left hand movements (bottom row),306

respectively.307

Figure 6 displays the cortical sources corresponding to the patterns of CSP in308

the left panel of Figure 5. The inverse modeling was performed with eLORETA309

(Pascual-Marqui, 2007; Pascual-Marqui et al., 2011). There, it is visible that310

the active sources were primarily localized over the contralateral pre- and post-311

central gyri. In particular, the pattern on the left panel of Figure 6 corresponds312

to the right hand motor imagery and is contralateral, as expected. The pattern313

in the right panel corresponds to left hand motor imagery and is analogously314

contralateral.315

316

Figure 6 around here...317

3.2 Estimation of SNR318

As discussed in section 1, there exist several predictors of BCI performance based319

on the amount of power (or SNR) at resting state in different frequency bands.320

Furthermore, the SNR might influence the level of synchrony between brain321

regions, even if volume conduction safe measures are employed, (Bayraktaroglu322

et al., 2013). Thus, we inspected whether the SNR of the SVD components used323

to calculate iCOH were significantly correlated to the BCI performance attained324

by the participants during the online session. These results are depicted in table325

1.326

Table 1 around here...327

There, one can observe that SNR correlates weakly (but significantly) with328

BCI accuracy for the pre-stimulus interval, and not significantly to the perfor-329

mance in the post-stimulus interval.330

331
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3.3 Correlation between sensorimotor functional connec-332

tivity and BCI performance333

All correlation coefficients between connectivity estimates and online feedback per-334

formance are summarized in table 2. The first two columns refer to whether con-335

nectivity was computed in µ-band (9-14 Hz) or in the subject-selected frequency336

band used during online operation (feedback band). This subject-dependent337

band had mean values of 11.67 Hz for the lower and 17.58 Hz for the upper band338

limits. The smallest value for the lower band limit was 5.5 Hz and the greatest339

for the upper band limit was 35 Hz. The last two columns refer to the same340

estimates, but the correlation was performed by partially regressing the SNR ap-341

proximation of SVD components obtained from the corresponding time-interval.342

Then, the first row corresponds to connectivity computed between sensory and343

motor regions within the same hemisphere (both hemispheres averaged), in the344

post-stimulus interval. The second row is the connectivity computed from the345

same regions, but for the pre-stimulus interval. The third row relates to iCOH346

computed across the two hemispheres: left sensory to right motor areas, right347

sensory to left motor areas, left motor to right motor areas and finally left sensory348

to right sensory areas connectivity. These last four values were estimated in349

the post-stimulus interval of the calibration dataset and averaged. Finally, row350

four of table 2 refers to the same connectivity estimates, but computed on the351

pre-stimulus interval.352

Table 2 around here...353

The corresponding FDR-corrected p-values (threshold 0.05) to the correlation354

coefficients presented in table 2 are visible in parenthesis next to the r-values in355

the same table. All values are significant.356

The table shows that ‘within hemispheres’ connectivity is more significantly357

correlated to BCI accuracy than ‘across hemispheres’ connectivity. It is also358

visible that post-stimulus connectivity is less influenced by SNR than pre-359

stimulus, as expected given the insignificant relation between performance and360

post-stimulus SNR. Also, connectivity in the feedback band is, on average, more361

correlated to performance than iCOH in µ-band.362

In Figure 7 two correlation plots are depicted. They correspond to the363

correlation values of row 2, columns 1 and 2 respectively. In particular, the364

left panel shows the correlation plot of the pre-stimulus µ-band connectivity vs.365

feedback accuracy. The right panel is similar, but representing the result of the366

feedback band instead of the µ-band.367

Figure 7 around here...368

4 Discussion369

The results presented in the previous section show that connectivity ‘within’ and370

‘across hemispheres’ in the sensorimotor system significantly predicts future BCI371

performance.372

Typically, BCI systems based of the modulation of SMR using MI tasks have373
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lower rates of efficiency than other BCI paradigms based on evoked potentials374

such as event-related potentials (ERP) or steady-state visual potentials (SSVEP)375

(Nierhaus et al., 2019; Chen et al., 2015; Min et al., 2016). This is because376

MI-based BCI users normally need to acquire the skill to efficiently perform the377

MI tasks. In this situation, a learning curve over time can be usually observed378

(Sannelli et al., 2016, 2011; Vidaurre et al., 2011a,b). Thus, in this paradigm,379

BCI performance critically depends on the ability of the participants to perform380

movement imaginations that are able to modulate the amplitude of ongoing381

oscillations (Vidaurre and Blankertz, 2010; Sannelli et al., 2019).382

Motor imagery is a complex cognitive process, associated with the activation383

of both somatosensory and motor cortices (Decety, 1996; Guillot and Collet,384

2005; Porro et al., 1996). Motor imagery is accompanied not only by the feeling385

of motor agency but also by the feeling of consequences of the movement likely386

to be based on reactivation of proprioceptive sensations (Nikulin et al., 2008).387

For example, proprioception concurrent to MI has been shown to increase the388

decoding capability of classification algorithms for BCI Ramos-Murguialday and389

Birbaumer (2015); Corbet et al. (2018); Vidaurre et al. (2013, 2019).390

However, such complex and parallel activation of motor and sensory pro-391

cesses should then be integrated via neuronal connectivity, which represents a392

mechanism for joining distributed neuronal processing.393

It is therefore quite possible that successful performance of motor imagery and394

consequently reliable BCI control critically depends on the presence of connectiv-395

ity between relevant sensorimotor areas. Let us consider the sequence of motor396

imagery. Taking into account the time perspective, we should acknowledge that397

a subject usually starts with imagining a movement initiation, which is then398

followed by imagining the consequences of the movement, i.e. proprioceptive399

feedback. The first process relates to the activation of pre-central gyrus while400

the second one involves activation of the post-central gyrus. However, these401

two processes (efferent and afferent) are tightly related to each other, where the402

initiation of the movement (even an imagined one) relates to the anticipation403

of its sensory consequences (Wolpert et al., 1995). That is why connectivity404

between motor and sensory cortical areas represents a mechanistic explanation405

for how holistic imagery performance can be achieved. Importantly, in our study406

we show that connectivity in both in pre- and post-stimulus intervals is capable407

to predict future BCI accuracy.408

409

The fact that pre-stimulus connectivity significantly correlates with BCI410

performance, even after discarding the influence of SNR (which in this case is411

also positively correlated to performance, see table 1), indicates that it is indeed412

the strength of the underlying functional pathways, and not their modulation413

by tasks that is important for BCI performance. The connectivity in this sense414

represents a prerequisite for the successful transfer and integration of information415

during BCI online feedback. The presence of connectivity in the pre-stimulus416

interval can thus facilitate task related modulations of connectivity in BCI.417

Online feedback dependency on connectivity estimates during task performance418

(equivalent to post-stimulus connectivity) has recently been shown to enhance419
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BCI classification (Gu et al., 2020).420

Extending the findings of that study, in the present work we use measures421

of connectivity based on pre-stimulus activity. This has some advantage over422

resting state predictors; although pre-stimulus connectivity does not directly423

reflect task-related modulation, it nonetheless allows to estimate connectivity424

in the context of the task, thus quantifying the readiness of the system to be425

engaged into the upcoming processing of sensory information and the generation426

of appropriate behavioral response. In case of BCI, this response is manifested427

in the generation of the corresponding motor imagery. This means that context428

dependent rather than resting-state connectivity could be used as a variable to429

estimate or increase BCI performance without the actual necessity to perform430

any task.431

In section 3, it has been shown that although the correlation between connec-432

tivity and BCI performance was not particularly strong, it was indeed significant.433

Its presence indicates that not only the power (or SNR) of oscillations is impor-434

tant for predicting BCI performance, as shown for example in Blankertz et al.435

(2010), but also more delicate neuronal processes typically associated with motor436

performance have to be taken into account. Moreover, it has been shown that437

the measurement of neuronal connectivity using non-invasive technology such as438

EEG (and MEG) is very challenging (Mahjoory et al., 2017). Thus, even the439

modest correlation observed in the present study evidences that connectivity440

is an important factor defining sensorimotor BCI performance. This finding441

indicates that strengthening functional connectivity within the sensorimotor442

system might boost relating BCI performance. Up-regulation of functional443

connectivity via neurofeedback has recently been demonstrated in a study on444

corticomuscular coherence, (von Carlowitz-Ghori et al., 2015). We hypothesize445

that the up-regulation of functional connectivity between S1 and M1 can enhance446

further BCI performance via strengthening the communication between neuronal447

populations involved in motor imagery. In order to further enhance the effect of448

such neuro-feedback one can even consider the application of non-invasive neuro-449

modulation techniques (e.g. with Transcranial magnetic stimulation (TMS) or450

transcranial Direct Current Stimulation, tDCS) to change cortical excitability451

and promote further cortical connectivity (Sehm et al., 2012).452

Another aspect visible from table 2 is that SNR influenced predictions stronger453

in µ-band than in the feedback band. This is understandable since µ-band only454

partially captures the information contained in feedback band as the later might455

extend over lower and higher frequency ranges. Moreover, regarding SNR another456

interesting aspect is that, although we found significant pre-stimulus correlation457

between the SNR of SVD components and BCI accuracy, this was much weaker458

than other SNR-based measures directly computed for EEG electrodes over459

sensorimotor areas (Blankertz et al., 2010; Ahn et al., 2013b; Robinson et al.,460

2018). This can be due to the fact that SVD components capture primarily461

activity from sensorimotor areas, while electrodes record activity also from other462

cortical areas which potentially can contribute to the classification accuracy.463

Furthermore, the correlation of SNR in the post-stimulus interval and BCI464

accuracy was not significant, which might be related to the ERD (i.e. the power465
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drop) observed during the post-stimulus interval of MI tasks (see Figure 5. In466

this case the amplitude of oscillations is attenuated strongly (see Figure 5) thus467

making an estimation of SNR challenging.468

Finally, we computed not only within hemispheres connectivity but also469

across hemispheres iCOH. The goal behind this analysis was to understand470

whether the communication between hemispheres also plays a significant role in471

the prediction of future BCI performance. Understandably, within hemispheres472

connectivity was more predictive of BCI performance than across hemispheres.473

This is most likely due to the fact that motor imagery tasks primarily involve a474

contralateral hemisphere to the imagined movement (Nikulin et al., 2008). And it475

is thus in the contralateral hemisphere, where both afferent and efferent aspects476

(and their integration requiring connectivity) are particularly pronounced in477

motor imagery. Since across-hemispheres connectivity was also predictable of478

BCI accuracy, it is possible that the performance of unilateral movements is479

associated with the activation of both hemispheres (Kic̆ić et al., 2008). Finally,480

given that MI is a rehearsal of the actual movements by extension one can assume481

that unilateral MI might also depend on the functioning of both hemispheres482

whose neuronal states are defined by extensive callosal interactions (Ni et al.,483

2008), which can be captured with iCOH.484

Thus, our findings show that the level of sensorimotor functional connec-485

tivity should be taken into account when strategies to predict or improve BCI486

performance of a specific subject are designed.487
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Tables735

SNR r-value p-value
Post-stimulus 0.1268 0.1311
Pre-stimulus 0.1952 0.0413

Table 1: Spearman correlations and corresponding p-values between SNR values
and BCI accuracy. SNR was calculated for SVD components on the basis of
which iCOH was computed.

µ-band fb-band µ-band/SNR fb-band/SNR
Within post-stimulus 0.3631 (0.0037) 0.3668 (0.0037) 0.3440 (0.0038) 0.3484 (0.0038)
Within pre-stimulus 0.3141 (0.0073) 0.3075 (0.0074) 0.2624 (0.0168) 0.2554 (0.0168)
Across post-stimulus 0.2664 (0.0168) 0.2778 (0.0144) 0.2363 (0.0206) 0.2515 (0.0169)
Across pre-stimulus 0.2445 (0.0178) 0.2556 (0.0168) 0.2016 (0.0399) 0.1975 (0.0405)

Table 2: Spearman r-values of correlations (first two columns) and partial corre-
lations (regressing our effects of power, last two columns) of connectivity values
in µ and feedback bands with online performance. The first two rows correspond
to within hemispheres connectivity and the last two to across hemispheres con-
nectivity. The corresponding FDR corrected p-values are in parenthesis next to
the correlation value. All values are significant after FDR correction.

Figures736
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Figure 1: Experimental design of the BCI session. Top left: calibration trial
timing. Top right: details of the calibration recording (3 runs of 75 trials each
and 25 trials per class, left hand, right hand and feet motor imagery). Bottom
left: feedback trial timing. Bottom right: details of the feedback session (3 runs
of 100 trials each and two subject-dependent classes).
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Figure 2: Data flow of the BCI session. The calibration data was processed to
obtain a subject-specific band and time interval for the subsequent CSP-analysis.
This analysis returned a subject-specific number of CSP filters, to compute
log-variance features. The features were used to train a LDA classifier. During
the feedback session, the EEG was filtered in time using the specific band and
in space with the CSP filters. Then, log-variance features were computed in
overlapping windows of 750 ms and classified with the previously trained LDA.
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Figure 3: The first columns are a graphical representation of ROIs used to
compute functional connectivity. Different colors represent each of the four
regions. The fourth column is a graphical representation of ‘within’ and ‘across’
hemispheres connectivity between the four ROIs. Please, notice that iCOH is a
functional and not a directed measure of connectivity.

Figure 4: An example of SNR estimation using the PSD model described in
(Blankertz et al., 2010). The SNR estimate coincides with maximal difference
between the greater fitted PSD peak and the estimated noise curve at the
corresponding frequency value of the peak.
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Figure 5: Example of calibration EEG data of one participant during task
performance: the left panels display two sensorimotor CSP patterns (one for each
class), the middle panels their corresponding power-spectra during calibration,
with blue and red lines indicating left and right hand imagery, respectively, and
the right panels display ERD/ERS responses. For right hand motor imagery
(top row) the CSP pattern shows an activation over the left sensorimotor cortex
and the power spectrum (red line) displays a strong power decrease in the µ
band. The ERD response of the µ band filtered signal depicts the time course of
the power decrease. For left hand motor imagery (bottom row, blue lines) the
responses are analogous.
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Figure 6: eLORETA localization of CSP patterns presented in Figure 5, with
classes left versus right hand motor imagery. The neuronal sources of these CSP
patterns are clearly located in sensorimotor areas.

Figure 7: Plot of correlations between connectivity values and feedback accuracy.
Left panel corresponds to µ-band and right panel to feedback band
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