bioRxiv preprint doi: https://doi.org/10.1101/2020.07.24.220145; this version posted July 26, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

: Sensorimotor functional connectivity: a

: neurophysiological factor related to BCI

: performance

. Carmen Vidaurre * Stefan Haufe 23 Tania Jorajurial
5 Klaus-Robert Miiller5:6:7* Vadim V. Nikulin %%

6 July 24, 2020

7 Abstract

8

9 Brain-Computer Interfaces (BCIs) are systems that allow users to control
10 devices using brain activity alone. However, the ability of participants to
1 command BCls varies from subject to subject. For BCIs based on the
12 modulation of sensorimotor rhythms as measured by means of electroen-
13 cephalography (EEG), about 20% of potential users do not obtain enough
1 accuracy to gain reliable control of the system. This lack of efficiency of
15 BCI systems to decode user’s intentions requires the identification of neuro-
16 physiological factors determining ‘good’ and ‘poor’ BCI performers. Given
17 that the neuronal oscillations, used in BCI, demonstrate rich a repertoire of
18 spatial interactions, we hypothesized that neuronal activity in sensorimotor
19 areas would define some aspects of BCI performance. Analyses for this
20 study were performed on a large dataset of 80 inexperienced participants.
21 They took part in calibration and an online feedback session in the same
2 day. Undirected functional connectivity was computed over sensorimotor
23 areas by means of the imaginary part of coherency. The results show that
2% post- as well as pre-stimulus connectivity in the calibration recordings is
2 significantly correlated to online feedback performance in p and feedback
26 frequency bands. Importantly, the significance of the correlation between
27 connectivity and BCI feedback accuracy was not due to the signal-to-noise
28 ratio of the oscillations in the corresponding post and pre-stimulus intervals.
29 Thus, this study shows that BCI performance is not only dependent on
30 the amplitude of sensorimotor oscillations as shown previously, but that it
31 also relates to sensorimotor connectivity measured during the preceding
32 training session. The presence of such connectivity between motor and
33 somatosensory systems is likely to facilitate motor imagery, which in turn
34 is associated with the generation of a more pronounced modulation of sen-
3 sorimotor oscillations (manifested in ERD/ERS) required for the adequate
36 BCI performance. We also discuss strategies for the up-regulation of such
37 connectivity in order to enhance BCI performance.
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« 1 Introduction

«2 Brain Computer Interfaces (BCIs) were developed with the aim to offer patients
4 suffering from loss of voluntary motor abilities devices to increase their capacity
w  to control and communicate with their environment. BCIs based on the modu-
s lation of Sensorimotor Rhythms (SMR) use brain signals recorded during the
s performance of movement imagination or movement attempt to extract features
# that allow the classification of different motor imagery (MI) tasks (Wolpaw et al.
s [2002; [Neuper and Pfurtscheller], 2001} Dornhege et all, 2007; Blankertz et al.
w [2008} [Lemm et al., 2011} Miiller-Putz et al.l [2015; [Sannelli et all, 2019). SMR are
so oscillatory signals generated in the sensorimotor areas of the cortex. In general,
si oscillatory signals are divided within frequency ranges, where p (9-14 Hz) and
2 [ (15-25 Hz) bands play a specially important role in MI feature extraction
s (Neuper and Pfurtscheller, |2001; Wolpaw, 2007; Millan et al., 2010; |Vidaurre|
s« et al., 2013; Blankertz et al., 2011} Sannelli et al., 2019).

55 A modulation of brain activity in g and § bands has been observed in relation
s to motor execution (Salmelin and Hari, (1994; Pfurtscheller et al., |1997; [Klopp)
57 2001)), motor preparation (Pfurtscheller and Neuper} [1997; Pinedal, 2005,
s somatosensory processing (Nikulin et al. |2007), and motor imagery (Neuper
s et al |2005; Pfurtscheller et al., |2006; Bauer et al., [2015). And because of its
s malleability by diverse aspects of sensorimotor processing, x4 rhythm serves as
s the main neuronal signal for sensorimotor BCI based on MI (Sannelli et al.l 2019
2 |[Nierhaus et al] [2019; Buch et all 2008}; Waldert et al. [2008; [Leuthardt et al.
63 ‘M.

64 Furthermore, the power of sensorimotor oscillations in the p-band (and if
es existing also in §-band) during resting state, has been established as a predictor
s of SMR-based BCI performance in two different large scale studies (Blankertz
o let al} 2010} |Acqualagna et al., [2016). In addition, spatio-temporal features based
e on power values in y and 3 bands of resting state data have also been used to
e predict BCI performance (Suk et al. [2014; Blankertz et all [2010). Considering
0 the power in other frequency bands, |Ahn et al.| (2013b)) found that oscillatory
7 activity at high 6 and low « frequency were present in users who could not
2 attain BCI control. |Grosse-Wentrup et al.| (2011]) showed that v activity in the
7z fronto-parietal network is related to subject-specific MI performance variations.
7 Also in [Ahn et al| (2013a)), it was found that pre-frontal v band activity is
s positively correlated with MI performance, concluding that concentration as
s mental state could be used to predict MI performance. Finally,
7 showed that the resting state activation patterns such as v power from
s pre-motor and posterior areas, and 3 power from posterior areas can be used to
7 estimate BCI performance. In summary, power of brain oscillations at different
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s frequency bands has been successfully established as BCI performance predictor.
s Importantly, these measures being directly based on the power of oscillations,
&2 can explain BCI performance due to the changes in the SNR of a control signal
&z (i.e. sensorimotor oscillations). And thus, other measures, not being directly
s defined by the power of oscillations, should be utilized in order to shed light into
s neurophysiological aspects of neuronal activity defining BCI performance.

86 Regarding such neurophysiological predictors, |Samek et al.| (2016|) showed that
&7 long-range temporal correlations, estimated with Hurst exponents in calibration
s recordings, could predict the subsequent performance of feedback recordings. Also
9 [Zhang et al. (2015) could find a significant correlation between BCI performance
o and spectral entropy in the band between 0.5 and 14 Hz. In addition Hammer et al.
a (2012) could establish correlates of psychological variables and BCI performance.
o From a structural perspective, it was shown in [Halder et al.| (2011)) that the
o3 number of activated voxels in the supplementary motor area of participants
u  with good BCI performance was greater than for those demonstrating worse
s performance. Then, in |[Halder et al.|(2013) it was shown that the structural
o integrity and myelination quality of deep white matter structures was significantly
o7 correlated to BCI performance. Actually, structural white matter integrity as
s measured by means of fractional anisotropy (FA) has been significantly correlated
o toidle a peak (Valdés-Hernandez et al.[2010). In fact, v oscillations occur in the
wo same frequency range as p rhythms, with the latter originating in sensorimotor
i areas and being directly related to SMR. Finally, |Zhang et al.| (2016) showed
2 that the fronto-parietal attention network (measured by MRI) is correlated
103 to BCI performance using structural (cortical thickness) as well as functional
e connectivity features (eigenvector centrality and degree of centrality).

105 Regarding connectivity of non-invasive time-resolved signals, phase synchrony
ws of MEG signals in the p-band has also been related to BCI performance in |Sugatal
wr|et al| (2014). There, the authors found a significant correlation between the
s strength of imaginary part of coherency (iCOH) Nolte et al.| (2004} |2008) and
0o estimated (offline) BCI performance in data of ten participants. In that work,
mw 1COH was estimated between M1 and motor association areas in the post-
m  stimulus interval of the trial. Although this is an interesting result, the study
2 presented two drawbacks: iCOH and BCI performance were estimated in exactly
13 the same trials and the same time interval and BCI performance was estimated
s by cross-validation of an off-line (without online feedback) session. Thus, the
us ability of iCOH to predict future BCI accuracy has not been established yet.
us Furthermore, those correlations were not tested against the influence of the
ur  power (signal-to-noise-ratio, SNR) of the signals, that as aforementioned has
us  been shown to significantly correlate to BCI performance. Additionally, SNR
1o might influence coherency values: for example, large amplitudes of oscillatory
o signals (large power, large SNR) might produce larger iCOH values than lower
m  ones Bayraktaroglu et al.| (2013). Thus in general, the effect of SNR should
122 be studied. Finally, since the analysis was performed only in the post-stimulus
123 interval, the question remains whether connectivity-vs-BCI prediction could
124 also be extended to the pre-stimulus interval, which in turn would indicate that
s general trait-like connectivity patterns might define BCI performance.
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126 The study presented here is in relation to our previous work [Vidaurre et al.
w7 (2019). There, we observed that iCOH of pre and post-central gyri extracted
s during the post-stimulus interval of MI concurrent to submotor threshold neuro-
120 muscular electrical stimulation was significantly correlated to subsequent BCI
1o performance. Here we rather concentrate on MI and investigate, using a large
wm  dataset of 80 naive participants, whether iCOH in sensorimotor areas and in
12 pre- and post-stimulus time intervals, is significantly associated with the future
133 BCI online performance. Besides, we systematically control for the influence
14 that SNR of the oscillatory signals might have on the extracted connectivity
135 estimates.

% 2 Materials and methods

ww 2.1 Experimental setup

s Eighty healthy BCI-novices took part in the study (41 female, age 29.9 + 11.5
1o years; 4 left-handed). Calibration and feedback runs were recorded in a single
1o session.

11 The participants were sitting in a comfortable chair with arms lying relaxed
12 on armrests. Brain activity was recording using EEG amplifiers (BrainAmp
1wz DC by Brain Products, Munich, Germany). For this study we selected 61
us  channels, referenced at nasion of an extended 10-20 system. The recorded signals
us  were down-sampled at 100 Hz after filtering the data between 0.5 and 45 Hz.
us Calibration runs lasted approximately 15 minutes with three different visual
w7 cues, each of them representing on motor imagery task (left hand, right hand
us or feet movement imagination). One run consisted of 25 trials of each class, 75
uo trials in total. Three runs of imagined movements were recorded, amounting to
10 225 trials. Each trial lasted approximately 8 seconds and started with a period
11 of 2 seconds with a black fixation in the center of a gray screen. Then, an arrow
152 appeared indicating the task to be performed (left or right for motor imagery
153 classes left hand and right hand and downward for class feet) for 4 s, followed
15« by a period of random length between 1.5 and 2 s, see Fig. [I] top row for the
15 trial timing of the calibration trials.

156 After the calibration, participants performed three runs of 100 trials each
157 with an online feedback paradigm. Each trial started with a period of 2 s with
153 a black fixation cross in the center of a gray screen. Then an arrow appeared
159 behind the cross to indicate the target direction of that trial (left or right for
o motor imagery classes left hand and right hand and downward for class feet).
11 One second later the cross turned purple and started moving according to the
12 classifier output. For the feet class, the cursor moved downwards, for left and
13 right hands, it moved toward left or right respectively. After 4 s of cursor
s movement the cross froze at the final position and turned black again. Two
165 seconds later the cross was reset to the center position and the next trial began.
16 Hits or misses were counted according to this final position, but the score was
7 only indicated during a break of 15 s after every block of 20 trials (see Fig.
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e bottom row, for timing during feedback runs).
169

170 Figure 1 around here...

mn 2.2 Feature extraction and classification

2 EEG from the calibration session was filtered in a subject-specific frequency
3 band, that was found using heuristics based on the spectra of channels located
s over the sensorimotor cortices, (Sannelli et al., 2019). The subject-specific time
75 interval of maximal discrimination between classes was computed based on the
s event-related-desynchronization (ERD) and synchronization (ERS) of the signals
v of each channel during each class. The time-resolved ERD/ERS curved were
s computed as follows: the data were band-pass filtered at the previously selected
o subject-specific band. Then, the Hilbert transform (Clochon et all [1996) was
1o applied to obtain the amplitude envelope of the oscillations. EEG activity
;1 processed in this way was averaged across epochs separately for each class (left
12 hand/right hand/feet MI). The time-resolved ERD curve was calculated for each
183 channel over the sensorimotor cortex according to: ERD = 100x(POST-PRE) /pRE,
18e  where POST is the EEG amplitude at each sample of time in the post-stimulus
s interval and PRE is the average activity in the pre-stimulus interval (-500 to
s 0 ms). After selecting the subject-specific time interval using heuristics on the
1w ERD/ERS values (see Sannelli et al| (2019)), the EEG data were epoched to
188 form post-stimulus filtered trials.

180 The band-pass filtered signals were then spatially filtered using common
wo spatial pattern (CSP) analysis, (Blankertz et al., 2008} [Sannelli et al., [2019).
11 Then, log-variance features were computed for each trial of the calibration
12 data. These features were used to train a binary linear classifier called Linear
103 Discriminant Analysis (LDA), (Vidaurre et al.| [2007; [Muller et al., 2003; |Lemm
we let al., 2011)). The best classified pair of classes was chosen to provide feedback to
105 the users, based on 5-fold chronological validation (Lemm et al. 2011} Blankertz
s |et al.; |2011; |Sannelli et al., |2019). 30 participants performed feedback runs
17 using classes left and right hand motor imagery, 34 participants used left hand
s versus feet motor imagery and finally 16 users used right hand versus feet motor
199 imagery.

200 During the feedback recording, and in order to provide continuous feedback
20 during a trial, the EEG signal was epoched in windows of 750 ms. These were
2o overlapped such that every 40 ms the features were recomputed (applying CSP
203 filters, band-pass filters, computing log-variance and applying LDA, see (Lemm
200 let al., |2011; Sannelli et al., [2019)). Thus, every 40 ms a classifier output was
25 computed and this result added to the cursor position.

206 Figure 2 around here...

207 The trial was considered correctly classified if at the end task-time the cursor
28 was located in the correct side (left/right/down for left hand/right hand/feet
20 MI) of the screen. As the number of classified classes was two and they were
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a0 balanced, the total accuracy after all feedback runs was then computed as:

number of correctly classified trials
acc = - (1)
total number of trials

a1 2.3 Functional connectivity analysis

22 This analysis was performed to test whether online BCI performance can be
a3 associated, on a neurophysiological level, with the communication changes in the
24 sensorimotor cortices. We detected these changes using functional connectivity
25 metrics. Estimates of connectivity were computed in the pre-stimulus (-1000 0
zs  ms) as well as the post-stimulus (1500-3000 ms) intervals of the calibration data.
a7 Importantly, note that feedback datasets were not used to compute connectivity,
28 but only to extract BCI performance. The EEG signals of those temporal
219 intervals were mapped to the cortical surface using an accurate standardized
20 volume conductor model of an average adult human head (Huang et al., 2016).
a1 Source reconstruction was implemented with eLORETA (Pascual-Marquil, 2007}
22 [Pascual-Marqui et al., [2011)) using 4502 sources locations. Then, four regions of
23 interest were selected (left and right pre and post central gyri) corresponding to
24 the sensorimotor areas of both hemispheres. Each precentral region consisted of
2s 125 voxels, whereas the postcentral areas contained 112 voxels each. Regions were
26 defined based on the Harvard- Oxford atlas included in FSL (Makris et al., [2006))
27 and they were considered representative of primary motor and somatosensory
28 cortices. We focused on these ROIs as our previous research showed that they
2o were actively involved in sensorimotor BCI (Samek et al.l 2016]). A graphical
x0  representation of the ROIs is shown in Figure [3] Visualization routines were
a1 adopted from Haufe and Ewald| (2019).

232 Figure 3 around here...

233 Voxel activity along each of the three spatial orientation was normalized to
2% unit variance. A singular value decomposition (SVD) of the standardized activity
25 was performed for each region of interest. Then, only the three components
26 of largest variability were retained. Functional connectivity was computed
237 separately within each hemisphere and across hemispheres and it was evaluated
28 using the imaginary part of coherency, iCOH. iCOH is an undirected connectivity
230 measure between two time series that quantifies the presence of a stable non-zero
20 phase delay at a given frequency (Nolte et al.l |2004). Thus, one value of iCOH
2n - was obtained per frequency bin for each pair of SVD components, and rectified
a2 taking the absolute value. Absolute values were averaged across the pairs of
23 components per region pair, classes, frequencies in the spectral bands (u or
24 feedback band). In particular, the connectivity between pre- and postcentral gyri
25 was separately computed for each hemisphere and averaged, providing a measure
us  of ‘within hemispheres’ functional connectivity. Furthermore, the pre- precentral
a7 gyri, post- postcentral gyri and pre-postcentral gyri connectivity values across
28 hemispheres were also computed and averaged, yielding an estimate of ‘across
29 hemispheres’ connectivity. A graphical representation of ‘within’ and ‘across’
0 hemispheres connectivity is visible in the last column of Figure
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251 This eventually yielded four connectivity values per subject: within hemi-
2 spheres or across hemispheres in u and feedback bands iCOH. We tested whether
3 these values were significantly positively correlated to the online performance
x4 obtained with a different dataset of the same subject. For that, Spearman
5 correlations between the previously described connectivity values and subsequent
»6 online feedback performance were computed. The corresponding p-values were
257 corrected for multi-comparison using the False Discovery Rate (FDR) correction
s (Benjamini and Yekutieli, 2001)).

259

x 2.4 Signal-to-noise ratio estimation

1 It is known that connectivity values might be positively or negatively influenced
2 by the signal to noise ratio of the EEG (Bayraktaroglu et all 2013). This is due
»3  to the fact that the phase portrait for the signal is more clearly defined for the
26 signals with higher SNR and thus a phase difference required for coherency (or
s phase locking) does not suffer from phase-slips due to low SNR. In order to rule
%6 out that a potential significant correlation between connectivity estimates and
27 BCI performance could be due to SNR (power) of the signals used to estimate
xs connectivity, we partially regressed an estimate of SNR in the temporal intervals
x%0 of interest.

270 In order to obtain an estimate of SNR we applied the same procedure as in
o (Blankertz et all [2010), where the Power Spectral Densities (PSD) of interest
o2 and their corresponding decaying noise curves were modeled as follows: one
a3 curve was fitted for the noise baseline of the spectrum and another one was fitted
o to model the peaks of the PSD. The optimization procedure to find the fitting
;s parameters is based on minimizing the Lo-norm of the difference vector between
s the spectral PSD and the modelled parametric curves. The SNR estimate is the
o7 maximal difference between the maximum peak and the noise at the specific
o frequency value. An example of SNR estimation using PSD modeling is visible
2o in Figure [dl More details of the whole procedure can be found in [Blankertz et al.

20 (2010)).
281 Figure 4 around here...
282 In particular for this study, we estimated the SNR from the fitted power

23 spectral densities of the same SVD components used to compute iCOH (see
20 Section , in each time interval and for each class. The maximum difference
25 between the maximal peak of the fitted PSD curve and a fit of the 1/f noise
2 spectrum was taken as estimate of SNR of the signal. This estimation was
27 performed separately for each SVD component of each ROI and for each class
xs  and then all those results corresponding to the same time interval were averaged.

289
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w0 3 Resu:l.ts

»1 3.1 Estimation of BCI feedback performance

22 In this study we used a large dataset of 80 participants described in (Sannelli
203 let al.; 2019). The mean accuracy (acc) over all users was 73.67 + 15.60%. From
20« 80 participants, 66 of them performed above random (acc > 54.67% determined
205 by the binomial inverse cumulative distribution).

206 Figure 5 around here...

207 The left panel of Figure [5| displays typical topographies of the two most
208 discriminative CSP components. As explained in section the corresponding
29 CSP filters determine the most discriminative features used to train the classifier
w0 (calibration session) and also to classify EEG data during the feedback session.
sn The middle panel of Figure [5| shows power-spectral densities of CSP components
32 with typical peaks in the p ( 10 Hz) and 8 ( 20 Hz) frequency ranges. Finally,
w03 the right panel of the figure displays time-resolved ERD/ERS curves of the
s« amplitude of p oscillations during left /right hand motor imagery (see section
305 : note stronger attenuation of the oscillations in the left and right hemispheres
ws for the imagery of right (upper row) and left hand movements (bottom row),
7 respectively.

308 Figure [0] displays the cortical sources corresponding to the patterns of CSP in
200 the left panel of Figure [l The inverse modeling was performed with eLORETA
a0 (Pascual-Marqui, [2007; [Pascual-Marqui et al., |2011). There, it is visible that
s the active sources were primarily localized over the contralateral pre- and post-
sz central gyri. In particular, the pattern on the left panel of Figure [f] corresponds
si3 to the right hand motor imagery and is contralateral, as expected. The pattern
s in the right panel corresponds to left hand motor imagery and is analogously
ais  contralateral.

316

317 Figure 6 around here...

a 3.2 Estimation of SNR

a9 As discussed in section |1} there exist several predictors of BCI performance based
20 on the amount of power (or SNR) at resting state in different frequency bands.
sa Furthermore, the SNR might influence the level of synchrony between brain
2 regions, even if volume conduction safe measures are employed, (Bayraktaroglu
23 let al. [2013). Thus, we inspected whether the SNR of the SVD components used
24 to calculate iCOH were significantly correlated to the BCI performance attained
a5 by the participants during the online session. These results are depicted in table

326 m
327 Table 1 around here...
328 There, one can observe that SNR correlates weakly (but significantly) with

n9  BCI accuracy for the pre-stimulus interval, and not significantly to the perfor-
s  mance in the post-stimulus interval.

331
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= 3.3 Correlation between sensorimotor functional connec-
33 tivity and BCI performance

s All correlation coeflicients between connectivity estimates and online feedback per-
35 formance are summarized in table 2l The first two columns refer to whether con-
1 nectivity was computed in p-band (9-14 Hz) or in the subject-selected frequency
s band used during online operation (feedback band). This subject-dependent
13 band had mean values of 11.67 Hz for the lower and 17.58 Hz for the upper band
339 limits. The smallest value for the lower band limit was 5.5 Hz and the greatest
a0 for the upper band limit was 35 Hz. The last two columns refer to the same
s estimates, but the correlation was performed by partially regressing the SNR, ap-
s proximation of SVD components obtained from the corresponding time-interval.
a3 Then, the first row corresponds to connectivity computed between sensory and
s motor regions within the same hemisphere (both hemispheres averaged), in the
us  post-stimulus interval. The second row is the connectivity computed from the
us  same regions, but for the pre-stimulus interval. The third row relates to iCOH
sz computed across the two hemispheres: left sensory to right motor areas, right
us  sensory to left motor areas, left motor to right motor areas and finally left sensory
s to right sensory areas connectivity. These last four values were estimated in
0 the post-stimulus interval of the calibration dataset and averaged. Finally, row
s four of table 2] refers to the same connectivity estimates, but computed on the
32 pre-stimulus interval.

353 Table 2 around here...

354 The corresponding FDR~corrected p-values (threshold 0.05) to the correlation
35 coeflicients presented in table [2| are visible in parenthesis next to the r-values in
6 the same table. All values are significant.

357 The table shows that ‘within hemispheres’ connectivity is more significantly
s correlated to BCI accuracy than ‘across hemispheres’ connectivity. It is also
0 visible that post-stimulus connectivity is less influenced by SNR, than pre-
w0 stimulus, as expected given the insignificant relation between performance and
s post-stimulus SNR. Also, connectivity in the feedback band is, on average, more
w2 correlated to performance than iCOH in p-band.

363 In Figure [7] two correlation plots are depicted. They correspond to the
e correlation values of row 2, columns 1 and 2 respectively. In particular, the
s left panel shows the correlation plot of the pre-stimulus u-band connectivity vs.
s feedback accuracy. The right panel is similar, but representing the result of the
s7 feedback band instead of the u-band.

368 Figure 7 around here...

w 4 Discussion

s The results presented in the previous section show that connectivity ‘within’ and
sn ‘across hemispheres’ in the sensorimotor system significantly predicts future BCI
sz performance.

373 Typically, BCI systems based of the modulation of SMR using MI tasks have


https://doi.org/10.1101/2020.07.24.220145
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.24.220145; this version posted July 26, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s lower rates of efficiency than other BCI paradigms based on evoked potentials
ws  such as event-related potentials (ERP) or steady-state visual potentials (SSVEP)
s (Nierhaus et all) [2019} [Chen et all 2015} [Min et all, [2016]). This is because
s7 MI-based BCI users normally need to acquire the skill to efficiently perform the
s MI tasks. In this situation, a learning curve over time can be usually observed
wo  (Sannelli et all, [2016] [2011; [Vidaurre et al), [2011alb). Thus, in this paradigm,
s0  BCI performance critically depends on the ability of the participants to perform
s movement imaginations that are able to modulate the amplitude of ongoing
s oscillations (Vidaurre and Blankertz, 2010; Sannelli et all |2019).

383 Motor imagery is a complex cognitive process, associated with the activation
s« of both somatosensory and motor cortices (Decetyl 1996} |Guillot and Collet),
sss 2005} [Porro et all [1996). Motor imagery is accompanied not only by the feeling
;s of motor agency but also by the feeling of consequences of the movement likely
% to be based on reactivation of proprioceptive sensations (Nikulin et al., [2008).
s For example, proprioception concurrent to MI has been shown to increase the
0 decoding capability of classification algorithms for BCI Ramos-Murguialday and|
30 |Birbaumer| (2015)); |Corbet et al.| (2018); [Vidaurre et al.| (2013} [2019).

301 However, such complex and parallel activation of motor and sensory pro-
s cesses should then be integrated via neuronal connectivity, which represents a
33 mechanism for joining distributed neuronal processing.

s It is therefore quite possible that successful performance of motor imagery and
w5 consequently reliable BCI control critically depends on the presence of connectiv-
w6 ity between relevant sensorimotor areas. Let us consider the sequence of motor
s7  imagery. Taking into account the time perspective, we should acknowledge that
s a subject usually starts with imagining a movement initiation, which is then
30 followed by imagining the consequences of the movement, i.e. proprioceptive
w0 feedback. The first process relates to the activation of pre-central gyrus while
w1 the second one involves activation of the post-central gyrus. However, these
w2 two processes (efferent and afferent) are tightly related to each other, where the
w3 initiation of the movement (even an imagined one) relates to the anticipation
s of its sensory consequences (Wolpert et al., [1995). That is why connectivity
s between motor and sensory cortical areas represents a mechanistic explanation
ws for how holistic imagery performance can be achieved. Importantly, in our study
a7 we show that connectivity in both in pre- and post-stimulus intervals is capable
ws  to predict future BCI accuracy.

409

a10 The fact that pre-stimulus connectivity significantly correlates with BCI
a1 performance, even after discarding the influence of SNR (which in this case is
a2 also positively correlated to performance, see table , indicates that it is indeed
a3 the strength of the underlying functional pathways, and not their modulation
as by tasks that is important for BCI performance. The connectivity in this sense
a5 represents a prerequisite for the successful transfer and integration of information
a5 during BCI online feedback. The presence of connectivity in the pre-stimulus
a7 interval can thus facilitate task related modulations of connectivity in BCI.
sz Online feedback dependency on connectivity estimates during task performance
a0 (equivalent to post-stimulus connectivity) has recently been shown to enhance
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w0 BCI classification (Gu et al.l |2020)).

2 Extending the findings of that study, in the present work we use measures
a2 of connectivity based on pre-stimulus activity. This has some advantage over
23 resting state predictors; although pre-stimulus connectivity does not directly
a0 reflect task-related modulation, it nonetheless allows to estimate connectivity
s in the context of the task, thus quantifying the readiness of the system to be
26 engaged into the upcoming processing of sensory information and the generation
27 of appropriate behavioral response. In case of BCI, this response is manifested
w8 in the generation of the corresponding motor imagery. This means that context
20 dependent rather than resting-state connectivity could be used as a variable to
w0 estimate or increase BCI performance without the actual necessity to perform
a1 any task.

e In section [3] it has been shown that although the correlation between connec-
13 tivity and BCI performance was not particularly strong, it was indeed significant.
s¢  Its presence indicates that not only the power (or SNR) of oscillations is impor-
w5 tant for predicting BCI performance, as shown for example in [Blankertz et al.
w6 (2010), but also more delicate neuronal processes typically associated with motor
47 performance have to be taken into account. Moreover, it has been shown that
a8 the measurement of neuronal connectivity using non-invasive technology such as
2 EEG (and MEG) is very challenging (Mahjoory et al., [2017). Thus, even the
w0 modest correlation observed in the present study evidences that connectivity
w1 is an important factor defining sensorimotor BCI performance. This finding
w2 indicates that strengthening functional connectivity within the sensorimotor
w3 system might boost relating BCI performance. Up-regulation of functional
as connectivity via neurofeedback has recently been demonstrated in a study on
ws  corticomuscular coherence, (von Carlowitz-Ghori et al., [2015). We hypothesize
ws  that the up-regulation of functional connectivity between S1 and M1 can enhance
w7 further BCI performance via strengthening the communication between neuronal
wus  populations involved in motor imagery. In order to further enhance the effect of
ao  such neuro-feedback one can even consider the application of non-invasive neuro-
0 modulation techniques (e.g. with Transcranial magnetic stimulation (TMS) or
s transcranial Direct Current Stimulation, tDCS) to change cortical excitability
s and promote further cortical connectivity (Sehm et al., [2012).

453 Another aspect visible from table[2)is that SNR influenced predictions stronger
w4 in p-band than in the feedback band. This is understandable since p-band only
sss  partially captures the information contained in feedback band as the later might
s extend over lower and higher frequency ranges. Moreover, regarding SNR, another
7 interesting aspect is that, although we found significant pre-stimulus correlation
a8 between the SNR of SVD components and BCI accuracy, this was much weaker
a0 than other SNR-based measures directly computed for EEG electrodes over
w0 sensorimotor areas (Blankertz et all 2010; |Ahn et al.l 2013b; [Robinson et al.)
w1 [2018). This can be due to the fact that SVD components capture primarily
w2 activity from sensorimotor areas, while electrodes record activity also from other
w3 cortical areas which potentially can contribute to the classification accuracy.
s Furthermore, the correlation of SNR in the post-stimulus interval and BCI
w5 accuracy was not significant, which might be related to the ERD (i.e. the power
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ws drop) observed during the post-stimulus interval of MI tasks (see Figure [5| In
w7 this case the amplitude of oscillations is attenuated strongly (see Figure [5)) thus
w8 making an estimation of SNR challenging.

469 Finally, we computed not only within hemispheres connectivity but also
a0 across hemispheres iCOH. The goal behind this analysis was to understand
an whether the communication between hemispheres also plays a significant role in
a2 the prediction of future BCI performance. Understandably, within hemispheres
a3 connectivity was more predictive of BCI performance than across hemispheres.
ara This is most likely due to the fact that motor imagery tasks primarily involve a
a5 contralateral hemisphere to the imagined movement (Nikulin et al.,[2008). And it
ars is thus in the contralateral hemisphere, where both afferent and efferent aspects
w7 (and their integration requiring connectivity) are particularly pronounced in
s motor imagery. Since across-hemispheres connectivity was also predictable of
o BCI accuracy, it is possible that the performance of unilateral movements is
w0 associated with the activation of both hemispheres (Kici¢ et al., |2008]). Finally,
w1 given that MI is a rehearsal of the actual movements by extension one can assume
w2 that unilateral MI might also depend on the functioning of both hemispheres
w3 whose neuronal states are defined by extensive callosal interactions (Ni et al.)
s 2008]), which can be captured with iCOH.

ass Thus, our findings show that the level of sensorimotor functional connec-
w6 tivity should be taken into account when strategies to predict or improve BCI
w7 performance of a specific subject are designed.
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Tables
SNR r-value | p-value
Post-stimulus | 0.1268 | 0.1311
Pre-stimulus | 0.1952 | 0.0413

Table 1: Spearman correlations and corresponding p-values between SNR, values
and BCI accuracy. SNR was calculated for SVD components on the basis of
which iCOH was computed.

p-band fb-band p-band/SNR | fb-band/SNR
Within post-stimulus | 0.3631 (0.0037) | 0.3668 (0.0037) | 0.3440 (0.0038) | 0.3484 (0.0038)
Within pre-stimulus | 0.3141 (0.0073) | 0.3075 (0.0074) | 0.2624 (0.0168) | 0.2554 (0.0168)
Across post-stimulus | 0.2664 (0.0168) | 0.2778 (0.0144) | 0.2363 (0.0206) | 0.2515 (0.0169)
Across pre-stimulus | 0.2445 (0.0178) | 0.2556 (0.0168) | 0.2016 (0.0399) | 0.1975 (0.0405)

Table 2: Spearman r-values of correlations (first two columns) and partial corre-
lations (regressing our effects of power, last two columns) of connectivity values
in p and feedback bands with online performance. The first two rows correspond
to within hemispheres connectivity and the last two to across hemispheres con-
nectivity. The corresponding FDR corrected p-values are in parenthesis next to
the correlation value. All values are significant after FDR correction.
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Figure 1: Experimental design of the BCI session. Top left: calibration trial
timing. Top right: details of the calibration recording (3 runs of 75 trials each
and 25 trials per class, left hand, right hand and feet motor imagery). Bottom
left: feedback trial timing. Bottom right: details of the feedback session (3 runs
of 100 trials each and two subject-dependent classes).
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Figure 2: Data flow of the BCI session. The calibration data was processed to
obtain a subject-specific band and time interval for the subsequent CSP-analysis.
This analysis returned a subject-specific number of CSP filters, to compute
log-variance features. The features were used to train a LDA classifier. During
the feedback session, the EEG was filtered in time using the specific band and
in space with the CSP filters. Then, log-variance features were computed in
overlapping windows of 750 ms and classified with the previously trained LDA.
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Figure 3: The first columns are a graphical representation of ROIs used to
compute functional connectivity. Different colors represent each of the four
regions. The fourth column is a graphical representation of ‘within’ and ‘across’
hemispheres connectivity between the four ROIs. Please, notice that iCOH is a
functional and not a directed measure of connectivity.
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Figure 4: An example of SNR estimation using the PSD model described in
(Blankertz et all |2010). The SNR estimate coincides with maximal difference
between the greater fitted PSD peak and the estimated noise curve at the
corresponding frequency value of the peak.
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Figure 5: Example of calibration EEG data of one participant during task
performance: the left panels display two sensorimotor CSP patterns (one for each
class), the middle panels their corresponding power-spectra during calibration,
with blue and red lines indicating left and right hand imagery, respectively, and
the right panels display ERD/ERS responses. For right hand motor imagery
(top row) the CSP pattern shows an activation over the left sensorimotor cortex
and the power spectrum (red line) displays a strong power decrease in the p
band. The ERD response of the p band filtered signal depicts the time course of
the power decrease. For left hand motor imagery (bottom row, blue lines) the
responses are analogous.
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Figure 6: eLORETA localization of CSP patterns presented in Figure |5, with
classes left versus right hand motor imagery. The neuronal sources of these CSP
patterns are clearly located in sensorimotor areas.
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Figure 7: Plot of correlations between connectivity values and feedback accuracy.
Left panel corresponds to p-band and right panel to feedback band
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