

1 Sensorimotor functional connectivity: a
2 neurophysiological factor related to BCI
3 performance

4 Carmen Vidaurre^{1*} Stefan Haufe^{2,3} Tania Jorajuria¹
5 Klaus-Robert Müller^{4,5,6,7*} Vadim V. Nikulin^{8,9*}

6 July 24, 2020

7 **Abstract**

8

9 Brain-Computer Interfaces (BCIs) are systems that allow users to control
10 devices using brain activity alone. However, the ability of participants to
11 command BCIs varies from subject to subject. For BCIs based on the
12 modulation of sensorimotor rhythms as measured by means of electroen-
13 cephalography (EEG), about 20% of potential users do not obtain enough
14 accuracy to gain reliable control of the system. This lack of efficiency of
15 BCI systems to decode user's intentions requires the identification of neuro-
16 physiologically factors determining 'good' and 'poor' BCI performers. Given
17 that the neuronal oscillations, used in BCI, demonstrate rich a repertoire of
18 spatial interactions, we hypothesized that neuronal activity in sensorimotor
19 areas would define some aspects of BCI performance. Analyses for this
20 study were performed on a large dataset of 80 inexperienced participants.
21 They took part in calibration and an online feedback session in the same
22 day. Undirected functional connectivity was computed over sensorimotor
23 areas by means of the imaginary part of coherency. The results show that
24 post- as well as pre-stimulus connectivity in the calibration recordings is
25 significantly correlated to online feedback performance in μ and feedback
26 frequency bands. Importantly, the significance of the correlation between
27 connectivity and BCI feedback accuracy was not due to the signal-to-noise
28 ratio of the oscillations in the corresponding post and pre-stimulus intervals.
29 Thus, this study shows that BCI performance is not only dependent on
30 the amplitude of sensorimotor oscillations as shown previously, but that it
31 also relates to sensorimotor connectivity measured during the preceding
32 training session. The presence of such connectivity between motor and
33 somatosensory systems is likely to facilitate motor imagery, which in turn
34 is associated with the generation of a more pronounced modulation of sen-
35 sorimotor oscillations (manifested in ERD/ERS) required for the adequate
36 BCI performance. We also discuss strategies for the up-regulation of such
37 connectivity in order to enhance BCI performance.

38 **Keywords:**

39 connectivity, sensorimotor signals, BCI performance, μ -band, BCI effi-
40 ciency.

41 **1 Introduction**

42 Brain Computer Interfaces (BCIs) were developed with the aim to offer patients
43 suffering from loss of voluntary motor abilities devices to increase their capacity
44 to control and communicate with their environment. BCIs based on the modu-
45 lation of Sensorimotor Rhythms (SMR) use brain signals recorded during the
46 performance of movement imagination or movement attempt to extract features
47 that allow the classification of different motor imagery (MI) tasks (Wolpaw et al.,
48 2002; Neuper and Pfurtscheller, 2001; Dornhege et al., 2007; Blankertz et al.,
49 2008; Lemm et al., 2011; Müller-Putz et al., 2015; Sannelli et al., 2019). SMR are
50 oscillatory signals generated in the sensorimotor areas of the cortex. In general,
51 oscillatory signals are divided within frequency ranges, where μ (9-14 Hz) and
52 β (15-25 Hz) bands play a specially important role in MI feature extraction
53 (Neuper and Pfurtscheller, 2001; Wolpaw, 2007; Millán et al., 2010; Vidaurre
54 et al., 2013; Blankertz et al., 2011; Sannelli et al., 2019).

55 A modulation of brain activity in μ and β bands has been observed in relation
56 to motor execution (Salmelin and Hari, 1994; Pfurtscheller et al., 1997; Klopp
57 et al., 2001), motor preparation (Pfurtscheller and Neuper, 1997; Pineda, 2005),
58 somatosensory processing (Nikulin et al., 2007), and motor imagery (Neuper
59 et al., 2005; Pfurtscheller et al., 2006; Bauer et al., 2015). And because of its
60 malleability by diverse aspects of sensorimotor processing, μ rhythm serves as
61 the main neuronal signal for sensorimotor BCI based on MI (Sannelli et al., 2019;
62 Nierhaus et al., 2019; Buch et al., 2008; Waldert et al., 2008; Leuthardt et al.,
63 2004).

64 Furthermore, the power of sensorimotor oscillations in the μ -band (and if
65 existing also in β -band) during resting state, has been established as a predictor
66 of SMR-based BCI performance in two different large scale studies (Blankertz
67 et al., 2010; Acqualagna et al., 2016). In addition, spatio-temporal features based
68 on power values in μ and β bands of resting state data have also been used to
69 predict BCI performance (Suk et al., 2014; Blankertz et al., 2010). Considering
70 the power in other frequency bands, Ahn et al. (2013b) found that oscillatory
71 activity at high θ and low α frequency were present in users who could not
72 attain BCI control. Grosse-Wentrup et al. (2011) showed that γ activity in the
73 fronto-parietal network is related to subject-specific MI performance variations.
74 Also in Ahn et al. (2013a), it was found that pre-frontal γ band activity is
75 positively correlated with MI performance, concluding that concentration as
76 mental state could be used to predict MI performance. Finally, Robinson et al.
77 (2018) showed that the resting state activation patterns such as γ power from
78 pre-motor and posterior areas, and β power from posterior areas can be used to
79 estimate BCI performance. In summary, power of brain oscillations at different

80 frequency bands has been successfully established as BCI performance predictor.
81 Importantly, these measures being directly based on the power of oscillations,
82 can explain BCI performance due to the changes in the SNR of a control signal
83 (i.e. sensorimotor oscillations). And thus, other measures, not being directly
84 defined by the power of oscillations, should be utilized in order to shed light into
85 neurophysiological aspects of neuronal activity defining BCI performance.

86 Regarding such neurophysiological predictors, Samek et al. (2016) showed that
87 long-range temporal correlations, estimated with Hurst exponents in calibration
88 recordings, could predict the subsequent performance of feedback recordings. Also
89 Zhang et al. (2015) could find a significant correlation between BCI performance
90 and spectral entropy in the band between 0.5 and 14 Hz. In addition Hammer et al.
91 (2012) could establish correlates of psychological variables and BCI performance.

92 From a structural perspective, it was shown in Halder et al. (2011) that the
93 number of activated voxels in the supplementary motor area of participants
94 with good BCI performance was greater than for those demonstrating worse
95 performance. Then, in Halder et al. (2013) it was shown that the structural
96 integrity and myelination quality of deep white matter structures was significantly
97 correlated to BCI performance. Actually, structural white matter integrity as
98 measured by means of fractional anisotropy (FA) has been significantly correlated
99 to idle α peak (Valdés-Hernández et al., 2010). In fact, α oscillations occur in the
100 same frequency range as μ rhythms, with the latter originating in sensorimotor
101 areas and being directly related to SMR. Finally, Zhang et al. (2016) showed
102 that the fronto-parietal attention network (measured by MRI) is correlated
103 to BCI performance using structural (cortical thickness) as well as functional
104 connectivity features (eigenvector centrality and degree of centrality).

105 Regarding connectivity of non-invasive time-resolved signals, phase synchrony
106 of MEG signals in the μ -band has also been related to BCI performance in Sugata
107 et al. (2014). There, the authors found a significant correlation between the
108 strength of imaginary part of coherency (iCOH) Nolte et al. (2004, 2008) and
109 estimated (offline) BCI performance in data of ten participants. In that work,
110 iCOH was estimated between M1 and motor association areas in the post-
111 stimulus interval of the trial. Although this is an interesting result, the study
112 presented two drawbacks: iCOH and BCI performance were estimated in exactly
113 the same trials and the same time interval and BCI performance was estimated
114 by cross-validation of an off-line (without online feedback) session. Thus, the
115 ability of iCOH to predict future BCI accuracy has not been established yet.
116 Furthermore, those correlations were not tested against the influence of the
117 power (signal-to-noise-ratio, SNR) of the signals, that as aforementioned has
118 been shown to significantly correlate to BCI performance. Additionally, SNR
119 might influence coherency values: for example, large amplitudes of oscillatory
120 signals (large power, large SNR) might produce larger iCOH values than lower
121 ones Bayraktaroglu et al. (2013). Thus in general, the effect of SNR should
122 be studied. Finally, since the analysis was performed only in the post-stimulus
123 interval, the question remains whether connectivity-vs-BCI prediction could
124 also be extended to the pre-stimulus interval, which in turn would indicate that
125 general trait-like connectivity patterns might define BCI performance.

126 The study presented here is in relation to our previous work Vidaurre et al.
127 (2019). There, we observed that iCOH of pre and post-central gyri extracted
128 during the post-stimulus interval of MI concurrent to submotor threshold neuro-
129 muscular electrical stimulation was significantly correlated to subsequent BCI
130 performance. Here we rather concentrate on MI and investigate, using a large
131 dataset of 80 naive participants, whether iCOH in sensorimotor areas and in
132 pre- and post-stimulus time intervals, is significantly associated with the future
133 BCI online performance. Besides, we systematically control for the influence
134 that SNR of the oscillatory signals might have on the extracted connectivity
135 estimates.

136 2 Materials and methods

137 2.1 Experimental setup

138 Eighty healthy BCI-novices took part in the study (41 female, age 29.9 ± 11.5
139 years; 4 left-handed). Calibration and feedback runs were recorded in a single
140 session.

141 The participants were sitting in a comfortable chair with arms lying relaxed
142 on armrests. Brain activity was recorded using EEG amplifiers (BrainAmp
143 DC by Brain Products, Munich, Germany). For this study we selected 61
144 channels, referenced at nasion of an extended 10-20 system. The recorded signals
145 were down-sampled at 100 Hz after filtering the data between 0.5 and 45 Hz.
146 Calibration runs lasted approximately 15 minutes with three different visual
147 cues, each of them representing one motor imagery task (left hand, right hand
148 or feet movement imagination). One run consisted of 25 trials of each class, 75
149 trials in total. Three runs of imagined movements were recorded, amounting to
150 225 trials. Each trial lasted approximately 8 seconds and started with a period
151 of 2 seconds with a black fixation in the center of a gray screen. Then, an arrow
152 appeared indicating the task to be performed (left or right for motor imagery
153 classes left hand and right hand and downward for class feet) for 4 s, followed
154 by a period of random length between 1.5 and 2 s, see Fig. 1 top row for the
155 trial timing of the calibration trials.

156 After the calibration, participants performed three runs of 100 trials each
157 with an online feedback paradigm. Each trial started with a period of 2 s with
158 a black fixation cross in the center of a gray screen. Then an arrow appeared
159 behind the cross to indicate the target direction of that trial (left or right for
160 motor imagery classes left hand and right hand and downward for class feet).
161 One second later the cross turned purple and started moving according to the
162 classifier output. For the feet class, the cursor moved downwards, for left and
163 right hands, it moved toward left or right respectively. After 4 s of cursor
164 movement the cross froze at the final position and turned black again. Two
165 seconds later the cross was reset to the center position and the next trial began.
166 Hits or misses were counted according to this final position, but the score was
167 only indicated during a break of 15 s after every block of 20 trials (see Fig. 1,

168 bottom row, for timing during feedback runs).

169

170 Figure 1 around here...

171 2.2 Feature extraction and classification

172 EEG from the calibration session was filtered in a subject-specific frequency
173 band, that was found using heuristics based on the spectra of channels located
174 over the sensorimotor cortices, (Sannelli et al., 2019). The subject-specific time
175 interval of maximal discrimination between classes was computed based on the
176 event-related-desynchronization (ERD) and synchronization (ERS) of the signals
177 of each channel during each class. The time-resolved ERD/ERS curves were
178 computed as follows: the data were band-pass filtered at the previously selected
179 subject-specific band. Then, the Hilbert transform (Clochon et al., 1996) was
180 applied to obtain the amplitude envelope of the oscillations. EEG activity
181 processed in this way was averaged across epochs separately for each class (left
182 hand/right hand/feet MI). The time-resolved ERD curve was calculated for each
183 channel over the sensorimotor cortex according to: $ERD = 100 * (POST - PRE) / PRE$,
184 where POST is the EEG amplitude at each sample of time in the post-stimulus
185 interval and PRE is the average activity in the pre-stimulus interval (-500 to
186 0 ms). After selecting the subject-specific time interval using heuristics on the
187 ERD/ERS values (see Sannelli et al. (2019)), the EEG data were epoched to
188 form post-stimulus filtered trials.

189 The band-pass filtered signals were then spatially filtered using common
190 spatial pattern (CSP) analysis, (Blankertz et al., 2008; Sannelli et al., 2019).
191 Then, log-variance features were computed for each trial of the calibration
192 data. These features were used to train a binary linear classifier called Linear
193 Discriminant Analysis (LDA), (Vidaurre et al., 2007; Müller et al., 2003; Lemm
194 et al., 2011). The best classified pair of classes was chosen to provide feedback to
195 the users, based on 5-fold chronological validation (Lemm et al., 2011; Blankertz
196 et al., 2011; Sannelli et al., 2019). 30 participants performed feedback runs
197 using classes left and right hand motor imagery, 34 participants used left hand
198 versus feet motor imagery and finally 16 users used right hand versus feet motor
199 imagery.

200 During the feedback recording, and in order to provide continuous feedback
201 during a trial, the EEG signal was epoched in windows of 750 ms. These were
202 overlapped such that every 40 ms the features were recomputed (applying CSP
203 filters, band-pass filters, computing log-variance and applying LDA, see (Lemm
204 et al., 2011; Sannelli et al., 2019)). Thus, every 40 ms a classifier output was
205 computed and this result added to the cursor position.

206 Figure 2 around here...

207 The trial was considered correctly classified if at the end task-time the cursor
208 was located in the correct side (left/right/down for left hand/right hand/feet
209 MI) of the screen. As the number of classified classes was two and they were

210 balanced, the total accuracy after all feedback runs was then computed as:

$$acc = \frac{\text{number of correctly classified trials}}{\text{total number of trials}} \quad (1)$$

211 **2.3 Functional connectivity analysis**

212 This analysis was performed to test whether online BCI performance can be
213 associated, on a neurophysiological level, with the communication changes in the
214 sensorimotor cortices. We detected these changes using functional connectivity
215 metrics. Estimates of connectivity were computed in the pre-stimulus (-1000 0
216 ms) as well as the post-stimulus (1500-3000 ms) intervals of the calibration data.
217 Importantly, note that feedback datasets were not used to compute connectivity,
218 but only to extract BCI performance. The EEG signals of those temporal
219 intervals were mapped to the cortical surface using an accurate standardized
220 volume conductor model of an average adult human head (Huang et al., 2016).
221 Source reconstruction was implemented with eLORETA (Pascual-Marqui, 2007;
222 Pascual-Marqui et al., 2011) using 4502 sources locations. Then, four regions of
223 interest were selected (left and right pre and post central gyri) corresponding to
224 the sensorimotor areas of both hemispheres. Each precentral region consisted of
225 125 voxels, whereas the postcentral areas contained 112 voxels each. Regions were
226 defined based on the Harvard- Oxford atlas included in FSL (Makris et al., 2006)
227 and they were considered representative of primary motor and somatosensory
228 cortices. We focused on these ROIs as our previous research showed that they
229 were actively involved in sensorimotor BCI (Samek et al., 2016). A graphical
230 representation of the ROIs is shown in Figure 3. Visualization routines were
231 adopted from Haufe and Ewald (2019).

232 Figure 3 around here...

233 Voxel activity along each of the three spatial orientation was normalized to
234 unit variance. A singular value decomposition (SVD) of the standardized activity
235 was performed for each region of interest. Then, only the three components
236 of largest variability were retained. Functional connectivity was computed
237 separately within each hemisphere and across hemispheres and it was evaluated
238 using the imaginary part of coherency, iCOH. iCOH is an undirected connectivity
239 measure between two time series that quantifies the presence of a stable non-zero
240 phase delay at a given frequency (Nolte et al., 2004). Thus, one value of iCOH
241 was obtained per frequency bin for each pair of SVD components, and rectified
242 taking the absolute value. Absolute values were averaged across the pairs of
243 components per region pair, classes, frequencies in the spectral bands (μ or
244 feedback band). In particular, the connectivity between pre- and postcentral gyri
245 was separately computed for each hemisphere and averaged, providing a measure
246 of ‘within hemispheres’ functional connectivity. Furthermore, the pre- precentral
247 gyri, post- postcentral gyri and pre-postcentral gyri connectivity values across
248 hemispheres were also computed and averaged, yielding an estimate of ‘across
249 hemispheres’ connectivity. A graphical representation of ‘within’ and ‘across’
250 hemispheres connectivity is visible in the last column of Figure 3.

251 This eventually yielded four connectivity values per subject: within hemi-
252 spheres or across hemispheres in μ and feedback bands iCOH. We tested whether
253 these values were significantly positively correlated to the online performance
254 obtained with a different dataset of the same subject. For that, Spearman
255 correlations between the previously described connectivity values and subsequent
256 online feedback performance were computed. The corresponding p-values were
257 corrected for multi-comparison using the False Discovery Rate (FDR) correction
258 (Benjamini and Yekutieli, 2001).

259

260 2.4 Signal-to-noise ratio estimation

261 It is known that connectivity values might be positively or negatively influenced
262 by the signal to noise ratio of the EEG (Bayraktaroglu et al., 2013). This is due
263 to the fact that the phase portrait for the signal is more clearly defined for the
264 signals with higher SNR and thus a phase difference required for coherency (or
265 phase locking) does not suffer from phase-slips due to low SNR. In order to rule
266 out that a potential significant correlation between connectivity estimates and
267 BCI performance could be due to SNR (power) of the signals used to estimate
268 connectivity, we partially regressed an estimate of SNR in the temporal intervals
269 of interest.

270 In order to obtain an estimate of SNR we applied the same procedure as in
271 (Blankertz et al., 2010), where the Power Spectral Densities (PSD) of interest
272 and their corresponding decaying noise curves were modeled as follows: one
273 curve was fitted for the noise baseline of the spectrum and another one was fitted
274 to model the peaks of the PSD. The optimization procedure to find the fitting
275 parameters is based on minimizing the L_2 -norm of the difference vector between
276 the spectral PSD and the modelled parametric curves. The SNR estimate is the
277 maximal difference between the maximum peak and the noise at the specific
278 frequency value. An example of SNR estimation using PSD modeling is visible
279 in Figure 4. More details of the whole procedure can be found in Blankertz et al.
280 (2010).

281 Figure 4 around here...

282 In particular for this study, we estimated the SNR from the fitted power
283 spectral densities of the same SVD components used to compute iCOH (see
284 Section 2.3), in each time interval and for each class. The maximum difference
285 between the maximal peak of the fitted PSD curve and a fit of the $1/f$ noise
286 spectrum was taken as estimate of SNR of the signal. This estimation was
287 performed separately for each SVD component of each ROI and for each class
288 and then all those results corresponding to the same time interval were averaged.

289

290 3 Results

291 3.1 Estimation of BCI feedback performance

292 In this study we used a large dataset of 80 participants described in (Sannelli
293 et al., 2019). The mean accuracy (acc) over all users was $73.67 \pm 15.60\%$. From
294 80 participants, 66 of them performed above random ($acc > 54.67\%$ determined
295 by the binomial inverse cumulative distribution).

296 Figure 5 around here...

297 The left panel of Figure 5 displays typical topographies of the two most
298 discriminative CSP components. As explained in section 2.2, the corresponding
299 CSP filters determine the most discriminative features used to train the classifier
300 (calibration session) and also to classify EEG data during the feedback session.
301 The middle panel of Figure 5 shows power-spectral densities of CSP components
302 with typical peaks in the μ (10 Hz) and β (20 Hz) frequency ranges. Finally,
303 the right panel of the figure displays time-resolved ERD/ERS curves of the
304 amplitude of μ oscillations during left/right hand motor imagery (see section
305 2.2): note stronger attenuation of the oscillations in the left and right hemispheres
306 for the imagery of right (upper row) and left hand movements (bottom row),
307 respectively.

308 Figure 6 displays the cortical sources corresponding to the patterns of CSP in
309 the left panel of Figure 5. The inverse modeling was performed with eLORETA
310 (Pascual-Marqui, 2007; Pascual-Marqui et al., 2011). There, it is visible that
311 the active sources were primarily localized over the contralateral pre- and post-
312 central gyri. In particular, the pattern on the left panel of Figure 6 corresponds
313 to the right hand motor imagery and is contralateral, as expected. The pattern
314 in the right panel corresponds to left hand motor imagery and is analogously
315 contralateral.

316
317 Figure 6 around here...

318 3.2 Estimation of SNR

319 As discussed in section 1, there exist several predictors of BCI performance based
320 on the amount of power (or SNR) at resting state in different frequency bands.
321 Furthermore, the SNR might influence the level of synchrony between brain
322 regions, even if volume conduction safe measures are employed, (Bayraktaroglu
323 et al., 2013). Thus, we inspected whether the SNR of the SVD components used
324 to calculate iCOH were significantly correlated to the BCI performance attained
325 by the participants during the online session. These results are depicted in table
326 1.

327 Table 1 around here...

328 There, one can observe that SNR correlates weakly (but significantly) with
329 BCI accuracy for the pre-stimulus interval, and not significantly to the perfor-
330 mance in the post-stimulus interval.

331

332 **3.3 Correlation between sensorimotor functional connec-**
333 **tivity and BCI performance**

334 All correlation coefficients between connectivity estimates and online feedback per-
335 formance are summarized in table 2. The first two columns refer to whether con-
336 nectivity was computed in μ -band (9-14 Hz) or in the subject-selected frequency
337 band used during online operation (feedback band). This subject-dependent
338 band had mean values of 11.67 Hz for the lower and 17.58 Hz for the upper band
339 limits. The smallest value for the lower band limit was 5.5 Hz and the greatest
340 for the upper band limit was 35 Hz. The last two columns refer to the same
341 estimates, but the correlation was performed by partially regressing the SNR ap-
342 proximation of SVD components obtained from the corresponding time-interval.
343 Then, the first row corresponds to connectivity computed between sensory and
344 motor regions within the same hemisphere (both hemispheres averaged), in the
345 post-stimulus interval. The second row is the connectivity computed from the
346 same regions, but for the pre-stimulus interval. The third row relates to iCOH
347 computed across the two hemispheres: left sensory to right motor areas, right
348 sensory to left motor areas, left motor to right motor areas and finally left sensory
349 to right sensory areas connectivity. These last four values were estimated in
350 the post-stimulus interval of the calibration dataset and averaged. Finally, row
351 four of table 2 refers to the same connectivity estimates, but computed on the
352 pre-stimulus interval.

353 Table 2 around here...

354 The corresponding FDR-corrected p-values (threshold 0.05) to the correlation
355 coefficients presented in table 2 are visible in parenthesis next to the r-values in
356 the same table. All values are significant.

357 The table shows that ‘within hemispheres’ connectivity is more significantly
358 correlated to BCI accuracy than ‘across hemispheres’ connectivity. It is also
359 visible that post-stimulus connectivity is less influenced by SNR than pre-
360 stimulus, as expected given the insignificant relation between performance and
361 post-stimulus SNR. Also, connectivity in the feedback band is, on average, more
362 correlated to performance than iCOH in μ -band.

363 In Figure 7 two correlation plots are depicted. They correspond to the
364 correlation values of row 2, columns 1 and 2 respectively. In particular, the
365 left panel shows the correlation plot of the pre-stimulus μ -band connectivity vs.
366 feedback accuracy. The right panel is similar, but representing the result of the
367 feedback band instead of the μ -band.

368 Figure 7 around here...

369 **4 Discussion**

370 The results presented in the previous section show that connectivity ‘within’ and
371 ‘across hemispheres’ in the sensorimotor system significantly predicts future BCI
372 performance.

373 Typically, BCI systems based of the modulation of SMR using MI tasks have

374 lower rates of efficiency than other BCI paradigms based on evoked potentials
375 such as event-related potentials (ERP) or steady-state visual potentials (SSVEP)
376 (Nierhaus et al., 2019; Chen et al., 2015; Min et al., 2016). This is because
377 MI-based BCI users normally need to acquire the skill to efficiently perform the
378 MI tasks. In this situation, a learning curve over time can be usually observed
379 (Sannelli et al., 2016, 2011; Vidaurre et al., 2011a,b). Thus, in this paradigm,
380 BCI performance critically depends on the ability of the participants to perform
381 movement imaginations that are able to modulate the amplitude of ongoing
382 oscillations (Vidaurre and Blankertz, 2010; Sannelli et al., 2019).

383 Motor imagery is a complex cognitive process, associated with the activation
384 of both somatosensory and motor cortices (Decety, 1996; Guillot and Collet,
385 2005; Porro et al., 1996). Motor imagery is accompanied not only by the feeling
386 of motor agency but also by the feeling of consequences of the movement likely
387 to be based on reactivation of proprioceptive sensations (Nikulin et al., 2008).
388 For example, proprioception concurrent to MI has been shown to increase the
389 decoding capability of classification algorithms for BCI Ramos-Murgialday and
390 Birbaumer (2015); Corbet et al. (2018); Vidaurre et al. (2013, 2019).

391 However, such complex and parallel activation of motor and sensory pro-
392 cesses should then be integrated via neuronal connectivity, which represents a
393 mechanism for joining distributed neuronal processing.

394 It is therefore quite possible that successful performance of motor imagery and
395 consequently reliable BCI control critically depends on the presence of connectiv-
396 ity between relevant sensorimotor areas. Let us consider the sequence of motor
397 imagery. Taking into account the time perspective, we should acknowledge that
398 a subject usually starts with imagining a movement initiation, which is then
399 followed by imagining the consequences of the movement, i.e. proprioceptive
400 feedback. The first process relates to the activation of pre-central gyrus while
401 the second one involves activation of the post-central gyrus. However, these
402 two processes (efferent and afferent) are tightly related to each other, where the
403 initiation of the movement (even an imagined one) relates to the anticipation
404 of its sensory consequences (Wolpert et al., 1995). That is why connectivity
405 between motor and sensory cortical areas represents a mechanistic explanation
406 for how holistic imagery performance can be achieved. Importantly, in our study
407 we show that connectivity in both in pre- and post-stimulus intervals is capable
408 to predict future BCI accuracy.

409
410 The fact that pre-stimulus connectivity significantly correlates with BCI
411 performance, even after discarding the influence of SNR (which in this case is
412 also positively correlated to performance, see table 1), indicates that it is indeed
413 the strength of the underlying functional pathways, and not their modulation
414 by tasks that is important for BCI performance. The connectivity in this sense
415 represents a prerequisite for the successful transfer and integration of information
416 during BCI online feedback. The presence of connectivity in the pre-stimulus
417 interval can thus facilitate task related modulations of connectivity in BCI.
418 Online feedback dependency on connectivity estimates during task performance
419 (equivalent to post-stimulus connectivity) has recently been shown to enhance

420 BCI classification (Gu et al., 2020).

421 Extending the findings of that study, in the present work we use measures
422 of connectivity based on pre-stimulus activity. This has some advantage over
423 resting state predictors; although pre-stimulus connectivity does not directly
424 reflect task-related modulation, it nonetheless allows to estimate connectivity
425 in the context of the task, thus quantifying the readiness of the system to be
426 engaged into the upcoming processing of sensory information and the generation
427 of appropriate behavioral response. In case of BCI, this response is manifested
428 in the generation of the corresponding motor imagery. This means that context
429 dependent rather than resting-state connectivity could be used as a variable to
430 estimate or increase BCI performance without the actual necessity to perform
431 any task.

432 In section 3, it has been shown that although the correlation between connec-
433 tivity and BCI performance was not particularly strong, it was indeed significant.
434 Its presence indicates that not only the power (or SNR) of oscillations is impor-
435 tant for predicting BCI performance, as shown for example in Blankertz et al.
436 (2010), but also more delicate neuronal processes typically associated with motor
437 performance have to be taken into account. Moreover, it has been shown that
438 the measurement of neuronal connectivity using non-invasive technology such as
439 EEG (and MEG) is very challenging (Mahjoory et al., 2017). Thus, even the
440 modest correlation observed in the present study evidences that connectivity
441 is an important factor defining sensorimotor BCI performance. This finding
442 indicates that strengthening functional connectivity within the sensorimotor
443 system might boost relating BCI performance. Up-regulation of functional
444 connectivity via neurofeedback has recently been demonstrated in a study on
445 corticomuscular coherence, (von Carlowitz-Ghori et al., 2015). We hypothesize
446 that the up-regulation of functional connectivity between S1 and M1 can enhance
447 further BCI performance via strengthening the communication between neuronal
448 populations involved in motor imagery. In order to further enhance the effect of
449 such neuro-feedback one can even consider the application of non-invasive neuro-
450 modulation techniques (e.g. with Transcranial magnetic stimulation (TMS) or
451 transcranial Direct Current Stimulation, tDCS) to change cortical excitability
452 and promote further cortical connectivity (Sehm et al., 2012).

453 Another aspect visible from table 2 is that SNR influenced predictions stronger
454 in μ -band than in the feedback band. This is understandable since μ -band only
455 partially captures the information contained in feedback band as the later might
456 extend over lower and higher frequency ranges. Moreover, regarding SNR another
457 interesting aspect is that, although we found significant pre-stimulus correlation
458 between the SNR of SVD components and BCI accuracy, this was much weaker
459 than other SNR-based measures directly computed for EEG electrodes over
460 sensorimotor areas (Blankertz et al., 2010; Ahn et al., 2013b; Robinson et al.,
461 2018). This can be due to the fact that SVD components capture primarily
462 activity from sensorimotor areas, while electrodes record activity also from other
463 cortical areas which potentially can contribute to the classification accuracy.
464 Furthermore, the correlation of SNR in the post-stimulus interval and BCI
465 accuracy was not significant, which might be related to the ERD (i.e. the power

466 drop) observed during the post-stimulus interval of MI tasks (see Figure 5. In
467 this case the amplitude of oscillations is attenuated strongly (see Figure 5) thus
468 making an estimation of SNR challenging.

469 Finally, we computed not only within hemispheres connectivity but also
470 across hemispheres iCOH. The goal behind this analysis was to understand
471 whether the communication between hemispheres also plays a significant role in
472 the prediction of future BCI performance. Understandably, within hemispheres
473 connectivity was more predictive of BCI performance than across hemispheres.
474 This is most likely due to the fact that motor imagery tasks primarily involve a
475 contralateral hemisphere to the imagined movement (Nikulin et al., 2008). And it
476 is thus in the contralateral hemisphere, where both afferent and efferent aspects
477 (and their integration requiring connectivity) are particularly pronounced in
478 motor imagery. Since across-hemispheres connectivity was also predictable of
479 BCI accuracy, it is possible that the performance of unilateral movements is
480 associated with the activation of both hemispheres (Kičić et al., 2008). Finally,
481 given that MI is a rehearsal of the actual movements by extension one can assume
482 that unilateral MI might also depend on the functioning of both hemispheres
483 whose neuronal states are defined by extensive callosal interactions (Ni et al.,
484 2008), which can be captured with iCOH.

485 Thus, our findings show that the level of sensorimotor functional connec-
486 tivity should be taken into account when strategies to predict or improve BCI
487 performance of a specific subject are designed.

488 **Conflict of Interest Statement**

489 The authors declare that the research was conducted in the absence of any
490 commercial or financial relationships that could be construed as a potential
491 conflict of interest.

492 **Author Contributions**

493 CV, SH, KRM and VVN, conceived and designed the analyses interpreted results.
494 CV and VVN drafted the article. All authors critically revised the manuscript.
495 All authors gave final approval of the submitted version.

496 **Funding**

497 CV was supported by MINECO-RyC-2014-15671. SH was supported by the
498 European Research Council (ERC) under the European Union's Horizon 2020
499 research and innovation programme (Grant agreement No. 758985). KRM was
500 supported in part by the Institute for Information & Communications Technology
501 Promotion and funded by the Korea government (MSIT) (No. 2017-0-01779),
502 and was partly supported by the German Ministry for Education and Research
503 (BMBF) under Grants 01IS14013A-E, 01GQ1115, 01GQ0850, 01IS18025A and

504 01IS18037A; the German ResearchFoundation (DFG) under Grant Math+, EXC
505 2046/1, Project ID 390685689. VVN was partly supported by the HSE Basic
506 Research Program and the Russian Academic Excellence Project ‘5-100’.

507 Acknowledgments

508 The authors would like to thank Sebastian Halder, Eva-Maria Hammer and
509 Simon Scholler for recording part of the data. Additionally, they want to also
510 thank Andrea Kübler, who was responsible for the study in Tübingen.

511 Data Availability Statement

512 The datasets analyzed for this study can be found at the depositeonce.tu-berlin.de
513 repository (<http://dx.doi.org/10.14279/depositeonce-8102>).

514 References

515 Acqualagna, L., Botrel, L., Vidaurre, C., Kübler, A., and Blankertz, B. (2016).
516 Large-scale assessment of a fully automatic co-adaptive motor imagery-based
517 brain computer interface. *PLoS ONE* 11, 1–19

518 Ahn, M., Ahn, S., Hong, J., Cho, H., Kim, K., Kim, B., et al. (2013a). Gamma
519 band activity associated with bci performance: simultaneous meg/eeg study.
520 *Front Hum Neurosci* 7, 848

521 Ahn, M., Cho, H., Ahn, S., and Jun, S. (2013b). High theta and low alpha powers
522 may be indicative of bci-illiteracy in motor imagery. *Plos one* 8, e80886

523 Bauer, R., Fels, M., Vukelic, M., Ziemann, U., and Gharabaghi, A. (2015).
524 Bridging the gap between motor imagery and motor execution with a braimn-
525 obot interface. *Neuroimage* 108, 319–327

526 Bayraktaroglu, Z., von Carlowitz-Ghori, K., Curio, G., and Nikulin, V. V. (2013).
527 It is not all about phase: Amplitude dynamics in corticomuscular interactions.
528 *NeuroImage* 64, 496 – 504

529 Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery
530 rate in multiple testing under dependency. *Ann. Statist.* 29, 1165–1188. doi:
531 [10.1214/aos/1013699998](https://doi.org/10.1214/aos/1013699998)

532 Blankertz, B., Lemm, S., Treder, M., Haufe, S., and Müller, K.-R. (2011). Single-
533 trial analysis and classification of erp components—a tutorial. *NeuroImage*
534 56, 814–825

535 Blankertz, B., Sannelli, C., Halder, S., Hammer, E. M., Kübler, A., Müller, K.-R.,
536 et al. (2010). Neurophysiological predictor of SMR-based BCI performance.
537 *NeuroImage* 51, 1303–1309. doi:[10.1016/j.neuroimage.2010.03.022](https://doi.org/10.1016/j.neuroimage.2010.03.022)

538 Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., and Muller, K.-R. (2008).
539 Optimizing spatial filters for robust eeg single-trial analysis. *IEEE Signal*
540 *processing magazine* 25, 41–56

541 Buch, E., Weber, C., Cohen, L., Braun, C., Dimyan, M., Ard, T., et al. (2008).
542 Think to move: a neuromagnetic brain-computer interface (bci) system for
543 chronic stroke. *Stroke* 39, 910–917

544 Chen, X., Wang, Y., Gao, S., Jung, T.-P., and Gao, X. (2015). Filter bank
545 canonical correlation analysis for implementing a high-speed SSVEP-based
546 brain–computer interface. *Journal of Neural Engineering* 12, 046008

547 Clochon, P., Fontbonne, J., Lebrun, N., and Etevenon, P. (1996). A new method
548 for quantifying eeg event-related desynchronization: Amplitude envelope
549 analysis. *Electroencephalography and clinical neurophysiology* 98, 126–129

550 Corbet, T., Iturrate, I., Pereira, M., Perdikis, S., and Millan, J. d. R. (2018).
551 Sensory threshold neuromuscular electrical stimulation fosters motor imagery
552 performance. *NeuroImage* 176

553 Decety, J. (1996). Do imagined and executed actions share the same neural
554 substrate? *Cognitive Brain Research* 3, 87–93

555 Dornhege, G., del R. Millán, J., Hinterberger, T., McFarland, D., and Müller,
556 K.-R. (eds.) (2007). *Toward Brain-Computer Interfacing* (Cambridge, MA:
557 MIT Press)

558 Grosse-Wentrup, M., Schölkopf, B., and Hill, J. (2011). Causal influence of
559 gamma oscillations on the sensorimotor rhythm. *NeuroImage* 56, 837–842

560 Gu, L., Yu, Z., Ma, T., Wang, H., Li, Z., and Fan, H. (2020). Eeg-based classifi-
561 cation of lower limb motor imagery with brain network analysis. *Neuroscience*
562 436, 93 – 109

563 Guillot, A. and Collet, C. (2005). Contribution from neurophysiological and
564 psychological methods to the study of motor imagery. *Brain Research Reviews*
565 50, 387–397

566 Halder, S., Agorastos, D., Veit, R., Hammer, E. M., Lee, S., Varkuti, B., et al.
567 (2011). Neural mechanisms of brain-computer interface control. *NeuroImage*
568 55, 1779–1790

569 Halder, S., Varkuti, B., Kübler, A., Rosenstiel, W., Sitaram, R., and Birbaumer,
570 N. (2013). Prediction of brain-computer interface aptitude from individual
571 brain structure. *Frontiers in human neuroscience* , 7

572 Hammer, E. M., Halder, S., Blankertz, B., Sannelli, C., Dickhaus, T., Kleih,
573 S., et al. (2012). Psychological predictors of smr-bci performance. *Biological*
574 *psychology* 89, 80–86

575 Haufe, S. and Ewald, A. (2019). A Simulation Framework for Benchmarking
576 EEG-Based Brain Connectivity Estimation Methodologies. *Brain Topography*
577 32, 625–642. doi:10.1007/s10548-016-0498-y

578 Huang, Y., Parra, L. C., and Haufe, S. (2016). The New York Head-A precise
579 standardized volume conductor model for EEG source localization and tES
580 targeting. *NeuroImage* 140, 150–162. doi:10.1016/j.neuroimage.2015.12.019

581 Kičić, D., Lioumis, P., Ilmoniemi, R., and Nikulin, V. (2008). Bilateral changes
582 in excitability of sensorimotor cortices during unilateral movement: Com-
583 bined electroencephalographic and transcranial magnetic stimulation study.
584 *Neuroscience* 152, 1119 – 1129

585 Klopp, J., Marinkovic, K., Clarke, J., Chauvel, P., Nenov, V., and Halgren, E.
586 (2001). Timing and localization of movement-related spectral changes in the
587 human peri-rolandic cortex: intracranial recordings. *Neuroimage* 14, 391–405

588 Lemm, S., Blankertz, B., Dickhaus, T., and Müller, K.-R. (2011). Introduction
589 to machine learning for brain imaging. *Neuroimage* 56, 387–399

590 Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. G., and Moran, D. W.
591 (2004). A brain computer interface using electrocorticographic signals in
592 humans. *Journal of Neural Engineering* 1, 63–71. doi:10.1088/1741-2560/1/2/
593 001

594 Mahjoory, K., Nikulin, V. V., Botrel, L., Linkenkaer-Hansen, K., Fato, M. M.,
595 and Haufe, S. (2017). Consistency of eeg source localization and connectiv-
596 ity estimates. *NeuroImage* 152, 590 – 601. doi:<https://doi.org/10.1016/j.neuroimage.2017.02.076>

598 Makris, N., Goldstein, J. M., Kennedy, D., Hodge, S. M., Caviness, V. S.,
599 Faraone, S. V., et al. (2006). Decreased volume of left and total anterior
600 insular lobule in schizophrenia. *Schizophrenia research* 83, 155–171

601 Millán, J. d. R., Rupp, R., Müller-Putz, G. R., Murray-Smith, R., Giugliemma,
602 C., Tangermann, M., et al. (2010). Combining Brain-Computer interfaces and
603 assistive technologies: State-of-the-art and challenges. *Frontiers in Neuro-
604 science* 4. doi:10.3389/fnins.2010.00161

605 Min, B.-K., Dähne, S., Ahn, M.-H., Noh, Y.-K., and Müller, K.-R. (2016).
606 Decoding of top-down cognitive processing for ssvep-controlled bmi. *Scientific
607 Reports* 6, 36267

608 Müller, K.-R., Anderson, C. W., and Birch, G. E. (2003). Linear and nonlinear
609 methods for brain-computer interfaces. *IEEE Transactions on Neural Systems
610 and Rehabilitation Engineering* 11, 165–169

611 Müller-Putz, G., Leeb, R., Tangermann, M., Höhne, J., Kübler, A., Cincotti,
612 F., et al. (2015). Towards noninvasive hybrid brain–computer interfaces:
613 framework, practice, clinical application, and beyond. *Proceedings of the IEEE*
614 103, 926–943

615 Neuper, C. and Pfurtscheller, G. (2001). Event-related dynamics of cortical
616 rhythms: frequency-specific features and functional correlates. *International*
617 *Journal of Psychophysiology* 43, 41–58

618 Neuper, C., Scherer, R., Reiner, M., and Pfurtscheller, G. (2005). Imagery of
619 motor actions: differential effects of kinesthetic and visual-motor mode of
620 imagery in single-trial EEG. *Brain Research. Cognitive Brain Research* 25,
621 668–677. doi:10.1016/j.cogbrainres.2005.08.014

622 Ni, Z., Gunraj, C., Nelson, A. J., Yeh, I.-J., Castillo, G., Hoque, T., et al.
623 (2008). Two Phases of Interhemispheric Inhibition between Motor Related
624 Cortical Areas and the Primary Motor Cortex in Human. *Cerebral Cortex* 19,
625 1654–1665

626 Nierhaus, T., Vidaurre, C., Sannelli, C., Müller, K.-R., and Villringer, A. (2019).
627 Immediate brain plasticity after one hour of brain-computer interface (bci).
628 *The Journal of physiology* doi:10.1113/jp278118

629 Nikulin, V., Hohlefeld, F., Jacobs, A., and Curio, G. (2008). Quasi-movements:
630 a novel motor-cognitive phenomenon. *Neuropsychologia* 46, 727–742

631 Nikulin, V. V., Linkenkaer-Hansen, K., Nolte, G., Lemm, S., Müller, K. R.,
632 Ilmoniemi, R. J., et al. (2007). A novel mechanism for evoked responses in
633 the human brain. *European Journal of Neuroscience* 25, 3146–3154

634 Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., and Hallett, M. (2004).
635 Identifying true brain interaction from eeg data using the imaginary part of
636 coherency. *Clinical neurophysiology* 115, 2292–2307

637 Nolte, G., Ziehe, A., Nikulin, V. V., Schlögl, A., Krämer, N., Brismar, T., et al.
638 (2008). Robustly estimating the flow direction of information in complex
639 physical systems. *Physical review letters* 100, 234101

640 Pascual-Marqui, R. D. (2007). Discrete, 3D distributed, linear imaging methods
641 of electric neuronal activity. part 1: exact, zero error localization. *arXiv*
642 *preprint arXiv:0710.3341*

643 Pascual-Marqui, R. D., Lehmann, D., Koukkou, M., Kochi, K., Anderer, P.,
644 Saletu, B., et al. (2011). Assessing interactions in the brain with exact low-
645 resolution electromagnetic tomography. *Philos Trans A Math Phys Eng Sci*
646 369, 3768–3784

647 Pfurtscheller, G., Brunner, C., Schlögl, A., and Lopes da Silva, F. H. (2006).
648 Mu rhythm (de)synchronization and EEG single-trial classification of different
649 motor imagery tasks. *NeuroImage* 31, 153–159. doi:10.1016/j.neuroimage.
650 2005.12.003

651 Pfurtscheller, G. and Neuper, C. (1997). Motor imagery activates primary
652 sensorimotor area in humans. *Neuroscience letters* 239, 65–68

653 Pfurtscheller, G., Stancájk, J., A, and Edlinger, G. (1997). On the existence of
654 different types of central beta rhythms below 30 hz. *Electroencephalography*
655 and *Clinical Neurophysiology* 102, 316–325

656 Pineda, J. A. (2005). The functional significance of mu rhythms: translating
657 “seeing” and “hearing” into “doing”. *Brain Research. Brain Research Reviews*
658 50, 57–68. doi:10.1016/j.brainresrev.2005.04.005

659 Porro, C. A., Francescato, M. P., Cettolo, V., Diamond, M. E., Baraldi, P.,
660 Zuiani, C., et al. (1996). Primary motor and sensory cortex activation during
661 motor performance and motor imagery: A functional magnetic resonance
662 imaging study. *Journal of Neuroscience* 16, 7688–7698

663 Ramos-Murguialday, A. and Birbaumer, N. (2015). Brain oscillatory signatures
664 of motor tasks. *Journal of neurophysiology* 113, 3663–3682

665 Robinson, N., Thomas, K., and Vinod, A. (2018). Neurophysiological predictors
666 and spectro-spatial discriminative features for enhancing smr-bci. *J Neural*
667 *Eng* 15, 066032

668 Salmelin, R. and Hari, R. (1994). Spatiotemporal characteristics of sensorimotor
669 neuromagnetic rhythms related to thumb movement. *Neuroscience* 60, 537–
670 550

671 Samek, W., Blythe, D., Curio, G., Müller, K.-R., Blankertz, B., and Nikulin,
672 V. (2016). Multiscale temporal neural dynamics predict performance in a
673 complex sensorimotor task. *Neuroimage* 141, 291–303

674 Sannelli, C., Vidaurre, C., Müller, K., and Blankertz, B. (2019). A large
675 scale screening study with a smr-based bci: Categorization of bci users and
676 differences in their smr activity. *PLOS ONE* 14, e0207351

677 Sannelli, C., Vidaurre, C., Müller, K.-R., and Blankertz, B. (2011). CSP patches:
678 an ensemble of optimized spatial filters. an evaluation study. *Journal of Neural*
679 *Engineering* 8, 025012. doi:10.1088/1741-2560/8/2/025012

680 Sannelli, C., Vidaurre, C., Müller, K.-R., and Blankertz, B. (2016). Ensembles of
681 adaptive spatial filters increase bci performance: an online evaluation. *Journal*
682 *of Neural Engineering* 13, 046003

683 Sehm, B., Schäfer, A., Kipping, J., Margulies, D., Conde, V., Taubert, M., et al.
684 (2012). Dynamic modulation of intrinsic functional connectivity by transcranial
685 direct current stimulation. *Journal of Neurophysiology* 108, 3253–3263

686 Sugata, H., Hirata, M., Yanagisawa, T., Shayne, M., Matsushita, K., Goto, T.,
687 et al. (2014). Alpha band functional connectivity correlates with the perfor-
688 mance of brain–machine interfaces to decode real and imagined movements.
689 *Frontiers in Human Neuroscience* 8, 620

690 Suk, H.-I., Fazli, S., Mehnert, J., Müller, K.-R., and Lee, S.-W. (2014). Predicting
691 bci subject performance using probabilistic spatio-temporal filters. *PLoS ONE*
692 9, e87056

693 Valdés-Hernández, P. A., Ojeda-González, A., Martínez-Montes, E., Lage-
694 Castellanos, A., Virués-Alba, T., Valdés-Urrutia, L., et al. (2010). White
695 matter architecture rather than cortical surface area correlates with the eeg
696 alpha rhythm. *NeuroImage* 49, 2328 – 2339

697 Vidaurre, C. and Blankertz, B. (2010). Towards a cure for BCI illiteracy. *Brain*
698 *Topography* 23, 194–198. doi:10.1007/s10548-009-0121-6

699 Vidaurre, C., Murguialday, A. R., Haufe, S., Gómez, M., Müller, K.-R., and
700 Nikulin, V. (2019). Enhancing sensorimotor bci performance with assistive
701 afferent activity: An online evaluation. *NeuroImage* 199, 375 – 386

702 Vidaurre, C., Pascual, J., Ramos-Murguialday, A., Lorenz, R., Blankertz, B.,
703 Birbaumer, N., et al. (2013). Neuromuscular electrical stimulation induced
704 brain patterns to decode motor imagery. *Clinical Neurophysiology* 124, 1824 –
705 1834

706 Vidaurre, C., Sannelli, C., Müller, K.-R., and Blankertz, B. (2011a). Co-adaptive
707 calibration to improve BCI efficiency. *Journal of Neural Engineering* 8, 025009.
708 doi:10.1088/1741-2560/8/2/025009

709 Vidaurre, C., Sannelli, C., Müller, K.-R., and Blankertz, B. (2011b). Machine-
710 learning-based coadaptive calibration for brain-computer interfaces. *Neural*
711 *Computation* 23, 791–816

712 Vidaurre, C., Scherer, R., Cabeza, R., Schlögl, A., and Pfurtscheller, G. (2007).
713 Study of discriminant analysis applied to motor imagery bipolar data. *Med*
714 *Bio Eng Comput* 45, 61–68

715 von Carlowitz-Ghori, K., Bayraktaroglu, Z., Waterstraat, G., Curio, G., and
716 Nikulin, V. (2015). Voluntary control of corticomuscular coherence through
717 neurofeedback: A proof-of-principle study in healthy subjects. *Neuroscience*
718 290, 243 – 254

719 Waldert, S., Preissl, H., Demandt, E., Braun, C., Birbaumer, N., Aertsen, A.,
720 et al. (2008). Hand movement direction decoded from MEG and EEG. *The*
721 *Journal of Neuroscience* 28, 1000–1008

722 Wolpaw, J. (2007). Brain-computer interfaces as new brain output pathways.
723 *The Journal of Physiology* 579, 613

724 Wolpaw, J., Birbaumer, N., Mcfarland, D., Pfurtscheller, G., and Vaughan,
725 T. (2002). Brain-computer interfaces for communication and control. *Clin.*
726 *Neurophysiol.* 113, 767–791

727 Wolpert, D., Ghahramani, Z., and Jordan, M. (1995). An internal model for
728 sensorimotor integration. *Science* 269, 1880–1882. doi:10.1126/science.7569931

729 Zhang, R., Xu, P., Chen, R., Li, F., Guo, L., Li, P., et al. (2015). Predicting
730 inter-session performance of smr-based brain–computer interface using the
731 spectral entropy of resting-state eeg. *Brain Topography* 28, 680–690

732 Zhang, T., Liu, T., Li, F., Li, M., Liu, D., Zhang, R., et al. (2016). Structural
733 and functional correlates of motor imagery bci performance: Insights from the
734 patterns of fronto-parietal attention network. *NeuroImage* 134, 475 – 485

735 **Tables**

SNR	r-value	p-value
Post-stimulus	0.1268	0.1311
Pre-stimulus	0.1952	0.0413

Table 1: Spearman correlations and corresponding p-values between SNR values and BCI accuracy. SNR was calculated for SVD components on the basis of which iCOH was computed.

	μ-band	fb-band	μ-band/SNR	fb-band/SNR
Within post-stimulus	0.3631 (0.0037)	0.3668 (0.0037)	0.3440 (0.0038)	0.3484 (0.0038)
Within pre-stimulus	0.3141 (0.0073)	0.3075 (0.0074)	0.2624 (0.0168)	0.2554 (0.0168)
Across post-stimulus	0.2664 (0.0168)	0.2778 (0.0144)	0.2363 (0.0206)	0.2515 (0.0169)
Across pre-stimulus	0.2445 (0.0178)	0.2556 (0.0168)	0.2016 (0.0399)	0.1975 (0.0405)

Table 2: Spearman r-values of correlations (first two columns) and partial correlations (regressing out effects of power, last two columns) of connectivity values in μ and feedback bands with online performance. The first two rows correspond to within hemispheres connectivity and the last two to across hemispheres connectivity. The corresponding FDR corrected p-values are in parenthesis next to the correlation value. All values are significant after FDR correction.

736 **Figures**

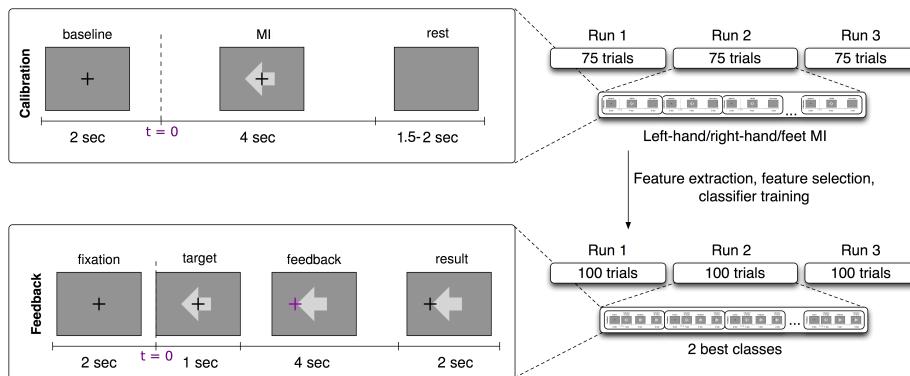


Figure 1: Experimental design of the BCI session. Top left: calibration trial timing. Top right: details of the calibration recording (3 runs of 75 trials each and 25 trials per class, left hand, right hand and feet motor imagery). Bottom left: feedback trial timing. Bottom right: details of the feedback session (3 runs of 100 trials each and two subject-dependent classes).

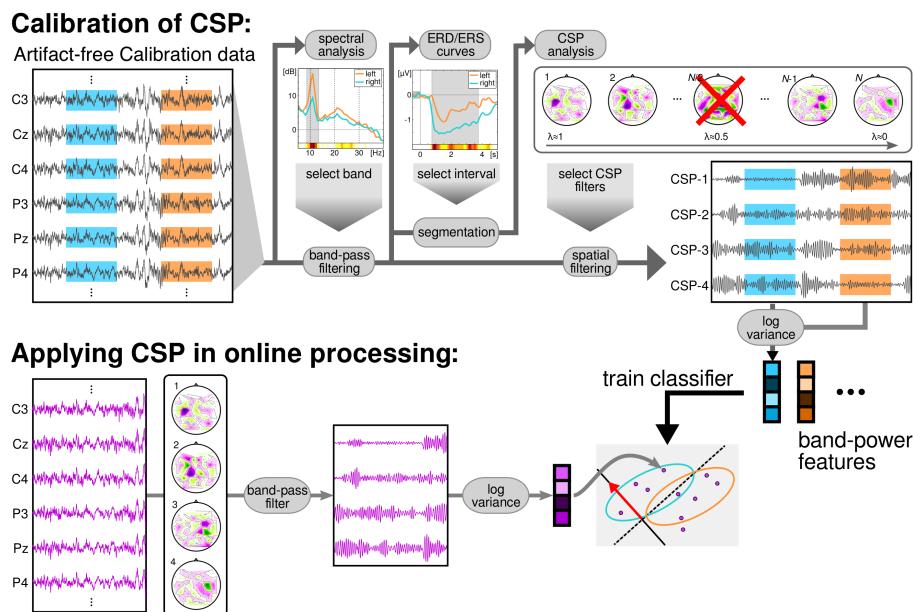


Figure 2: Data flow of the BCI session. The calibration data was processed to obtain a subject-specific band and time interval for the subsequent CSP-analysis. This analysis returned a subject-specific number of CSP filters, to compute log-variance features. The features were used to train a LDA classifier. During the feedback session, the EEG was filtered in time using the specific band and in space with the CSP filters. Then, log-variance features were computed in overlapping windows of 750 ms and classified with the previously trained LDA.

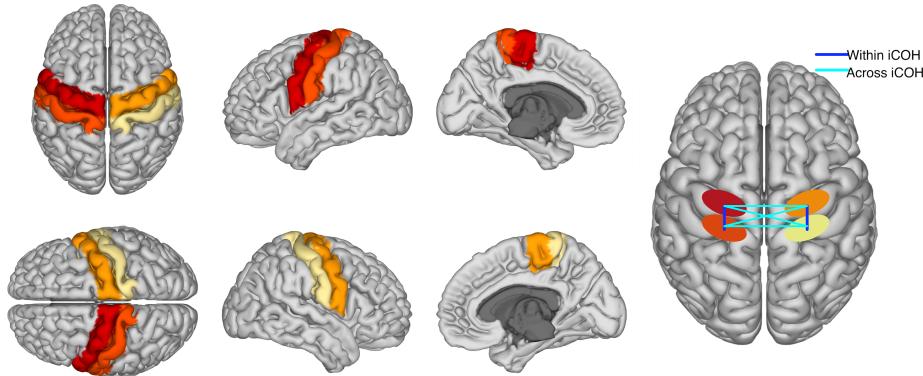


Figure 3: The first columns are a graphical representation of ROIs used to compute functional connectivity. Different colors represent each of the four regions. The fourth column is a graphical representation of ‘within’ and ‘across’ hemispheres connectivity between the four ROIs. Please, notice that iCOH is a functional and not a directed measure of connectivity.

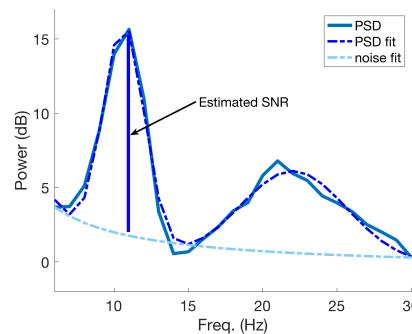


Figure 4: An example of SNR estimation using the PSD model described in (Blankertz et al., 2010). The SNR estimate coincides with maximal difference between the greater fitted PSD peak and the estimated noise curve at the corresponding frequency value of the peak.

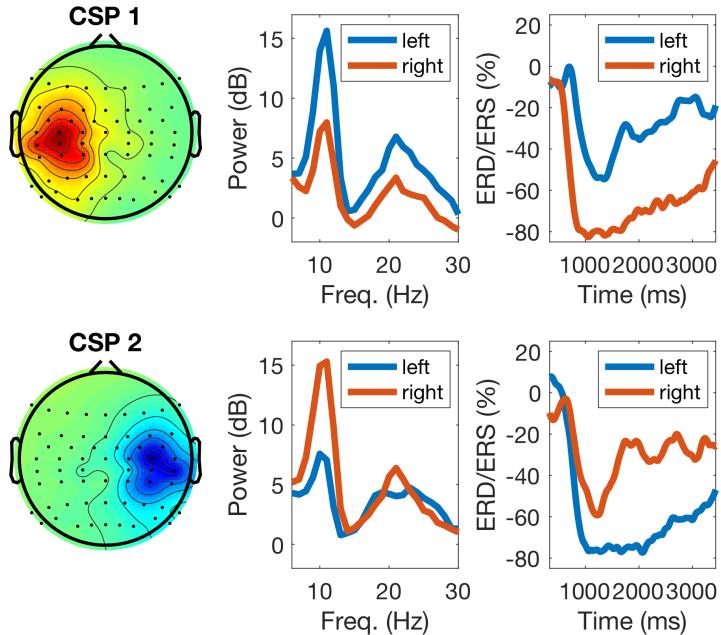


Figure 5: Example of calibration EEG data of one participant during task performance: the left panels display two sensorimotor CSP patterns (one for each class), the middle panels their corresponding power-spectra during calibration, with blue and red lines indicating left and right hand imagery, respectively, and the right panels display ERD/ERS responses. For right hand motor imagery (top row) the CSP pattern shows an activation over the left sensorimotor cortex and the power spectrum (red line) displays a strong power decrease in the μ band. The ERD response of the μ band filtered signal depicts the time course of the power decrease. For left hand motor imagery (bottom row, blue lines) the responses are analogous.

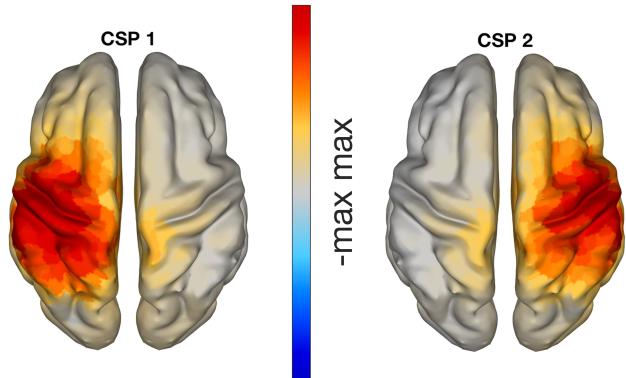


Figure 6: eLORETA localization of CSP patterns presented in Figure 5, with classes left versus right hand motor imagery. The neuronal sources of these CSP patterns are clearly located in sensorimotor areas.

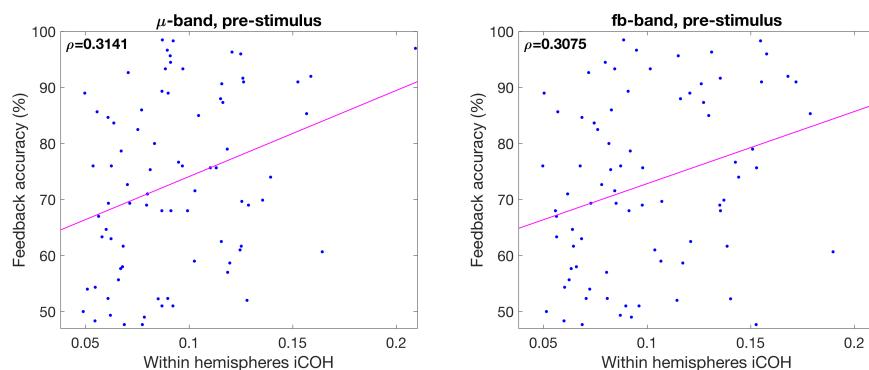


Figure 7: Plot of correlations between connectivity values and feedback accuracy. Left panel corresponds to μ -band and right panel to feedback band