

1 **Title**

2 Opposing macroevolutionary and trait-mediated patterns of threat and naturalization in
3 flowering plants
4 Opposing patterns of threat and naturalization in flowering plants

5
6 **Authors**

7 Example: J. P. Schmidt,¹* T. J. Davies,² M. J. Farrell³

8
9 **Affiliations**

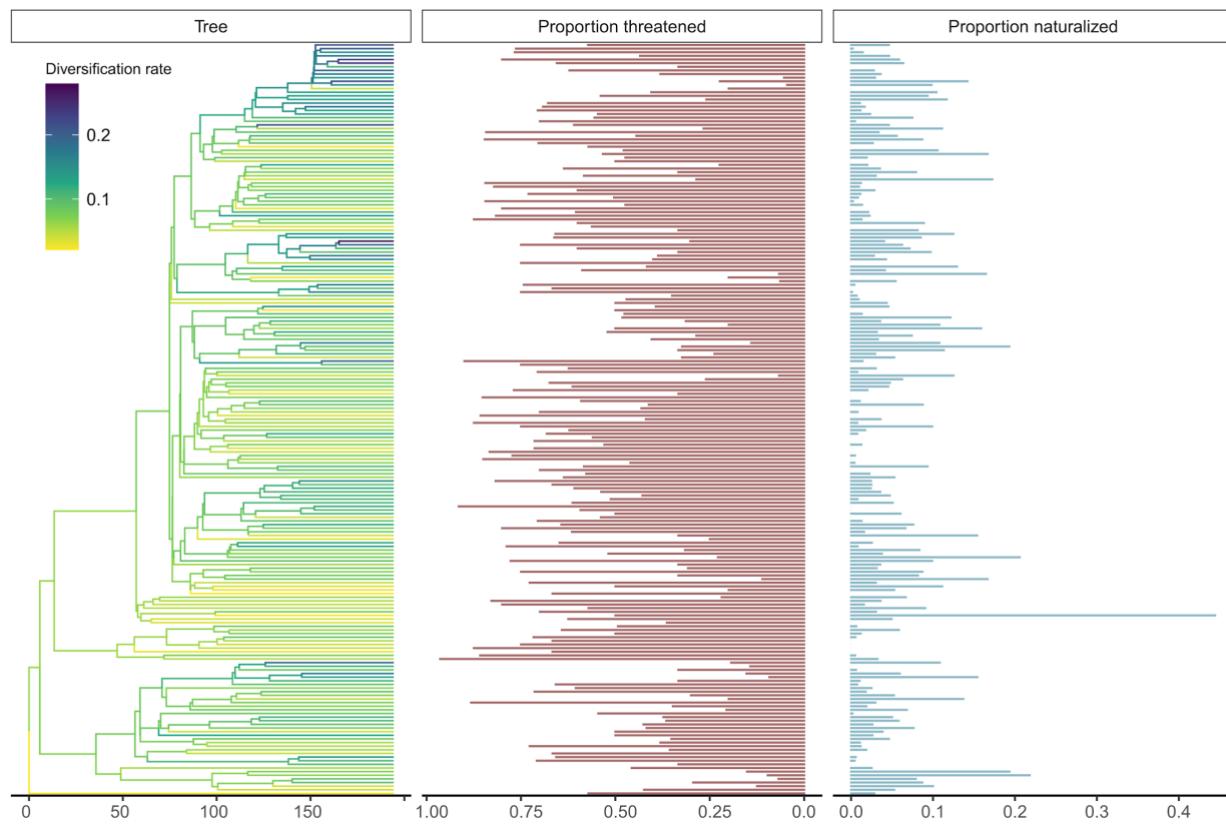
10 ¹Odum School of Ecology, University of Georgia
11 Athens, Georgia 30602
12 jpschmidt270@gmail.com

13
14 ²Departments of Botany, Forest & Conservation Sciences
15 Biodiversity Research Centre, University of British Columbia
16 Vancouver, BC V6T 1Z4, Canada

17
18 ³Department of Ecology and Evolutionary Biology
19 University of Toronto
20 Toronto, ON M5S 3B2, Canada

21
22 **Abstract**

23 Due to expanding global trade and movement, new plant species are establishing in exotic
24 ranges at increasing rates while the number of native species facing extinction from
25 multiple threats grows. Yet, how species losses and gains globally may together be linked
26 to traits and macroevolutionary processes is poorly understood. Here we show that,
27 adjusting for diversification rate and age, the proportion of threatened species across
28 flowering plant families is negatively related to the proportion of naturalized species.
29 Moreover, naturalization is positively associated with climate variability, short generation
30 time, autonomous seed production, and interspecific hybridization, but negatively with age
31 and diversification; whereas threat is negatively associated with climate variability and
32 hybridization, and positively with biotic pollination, age and diversification. Such a
33 pronounced signature of naturalization and threat across plant families suggests that both
34 trait syndromes have coexisted over deep evolutionary time and that neither strategy is
35 necessarily superior to the other.

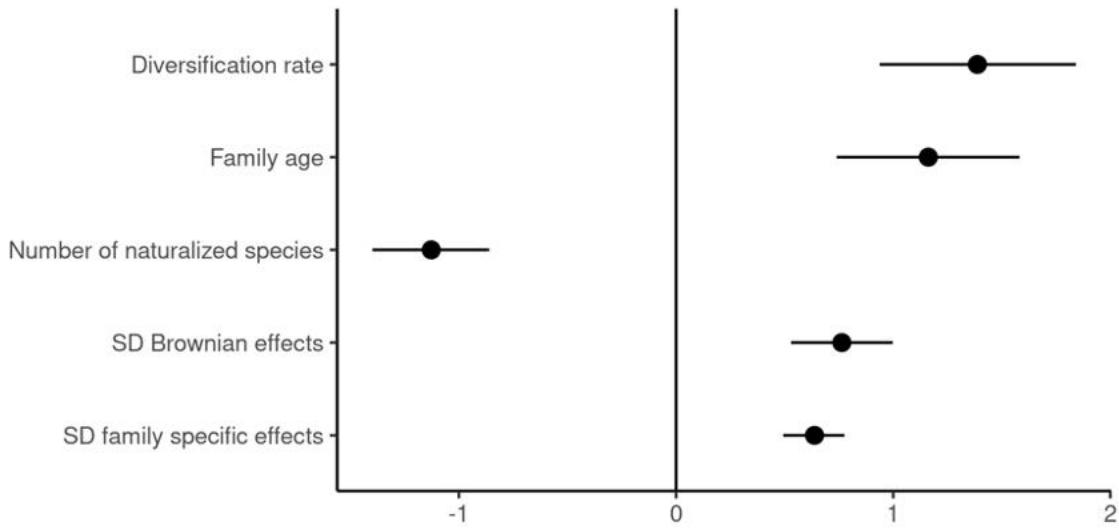

36
37 **Introduction**

38 Ongoing habitat loss, degradation, and fragmentation (Corlett 2016), disruption of historic
39 disturbance regimes (Alstad *et al.* 2016), increased invasion success of alien species
40 (Winter *et al.* 2009), and climate change (Willis *et al.* 2008) are driving plant extinctions
41 at accelerating rates (Alstad *et al.* 2016, Yessoufou & Davies 2016). At the same time,
42 global trade has increased the pace at which alien plants are introduced and become
43 established outside their native ranges (Seebens *et al.* 2017). Yet, while a broad body of
44 work suggests threatened and invasive species contrast sharply in traits and have distinct
45 phylogenetic distributions (Davies *et al.* 2011), our understanding of global patterns of
46 threat and naturalization as potentially interrelated macroecological and
47 macroevolutionary phenomena remains lacking (Vellend *et al.* 2017).

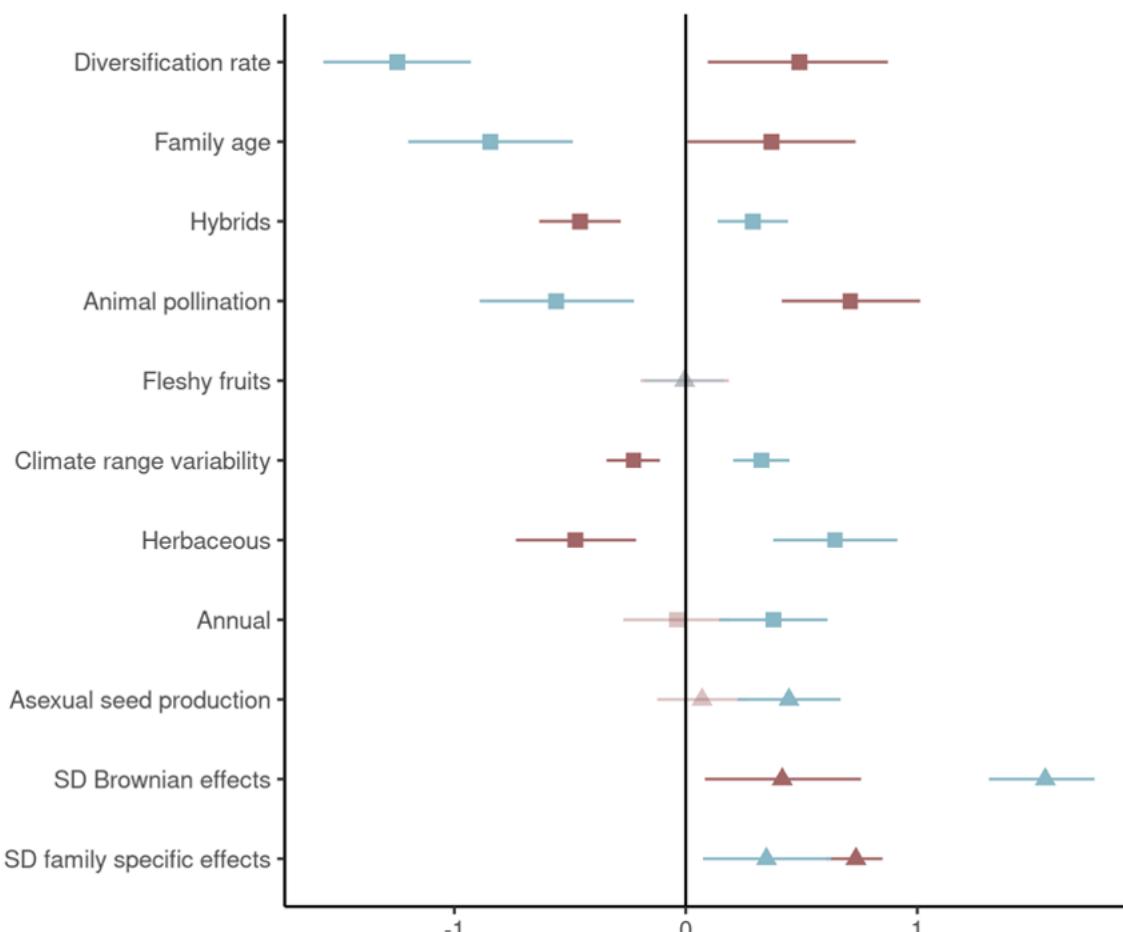
48 Extinction risk at broad scales appears to be strongly structured on plant phylogeny (e.g.
49 Vamosi & Wilson 2008, Davies *et al.* 2011, Vamosi *et al.* 2018) with the frequency of
50 threatened angiosperms highest within speciose clades (Schwartz & Simberloff 2001) and
51 generally young, rapidly diversifying lineages (Davies *et al.* 2011). Critically, extinction
52 risk may be more related to evolutionary dynamics (Davies *et al.* 2011) than to traits, and
53 contingent on extinction drivers such as habitat loss, exploitation, etc., (Godefroid *et al.*
54 2014, Davies 2019). That extinction risk correlates strongly with clade age and richness
55 suggests that the defining characteristics of rarity – endemism, limited range, and small
56 population sizes (Rabinowitz *et al.* 1986) – may simply follow from high rates of
57 speciation (Davies *et al.* 2011). However, Vamosi and Wilson (2008) found extinction
58 risk to be elevated in species-poor families, moreover, in some habitats, phylogenetically
59 distinct species may be more threatened (Daru *et al.* 2013). Therefore, in old and species-
60 poor families, perhaps remnants of formerly large and diverse clades, extinction risk may
61 be linked to life history features that are sensitive to extinction drivers (Yessoufou &
62 Davies 2016), while diversification dynamics dominate in young, species-rich families,
63 implying that the drivers of extinction differ between old vs young clades (Vamosi *et al.*
64 2018, Davies 2019).

65 Successful plant invasions are conditioned on context-specific factors that include use
66 (van Kleunen *et al.* 2020) and transport by humans (Kueffer 2017), degree of climate
67 matching (Thuiller *et al.* 2005), residence time (Wilson *et al.* 2007), propagule pressure
68 (Simberloff 2009), geography of habitat alteration and anthropogenic disturbance
69 (Lembrechts *et al.* 2016), and the invasibility of particular communities and biogeographic
70 regions (Richardson & Pyšek 2006). Nonetheless, successful invasions have been
71 correlated in comparative studies with a suite of traits – auto-fertility (Razanajatovo *et al.*
72 2016), self-compatibility (Hao *et al.* 2011), height (van Kleunen *et al.* 2007), small seeds
73 (Hamilton *et al.* 2005), high specific leaf area (Hamilton *et al.* 2005), large native range
74 size (Schmidt *et al.* 2012, van Kleunen *et al.* 2007), broad climate and habitat tolerances
75 (Schmidt *et al.* 2012, Bradshaw *et al.* 2008), competitive ability (Guo *et al.* 2018),
76 variability and perhaps plasticity in growth form and life history (Schmidt *et al.* 2012),
77 abiotic pollination (Hao *et al.* 2011), polyploidy (Schmidt *et al.* 2012) and hybridization
78 (Ellstrand & Schierenbeck 2000) – that appear consistently advantageous (Table 1). Thus,
79 while naturalized species may also be non-randomly distributed among angiosperm
80 families (Pyšek 2017, Pyšek 1998) and benefit from factors extrinsic to ecological
81 features, trait syndromes across clades appear to strongly influence invasion success.

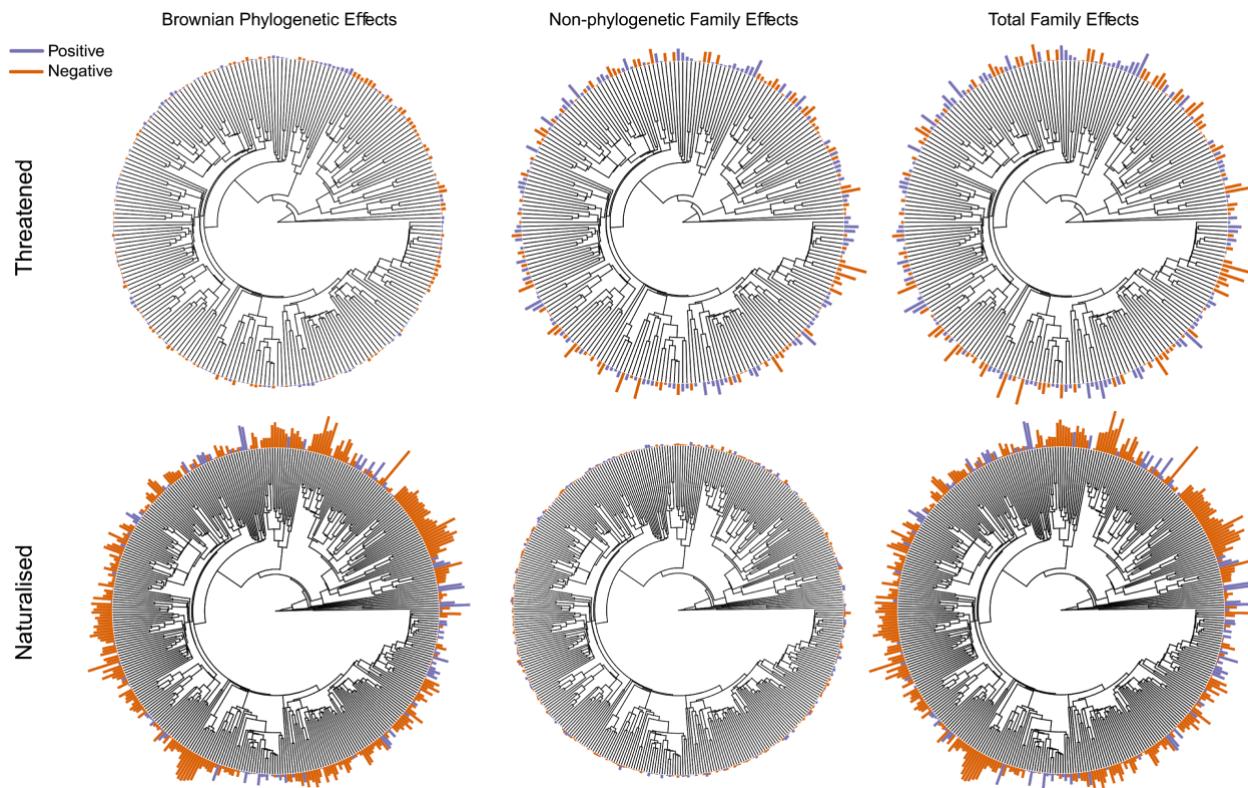
82 Here, adjusting for phylogenetic relatedness and clade size, we ask 1) how the
83 representation of globally threatened species by flowering plant family is related to that of
84 naturalized species (Fig. 1); 2) whether the frequency of species in either category tends
85 toward the opposite extremes of the same trait axes; and 3) if the relative importance of
86 traits vs evolutionary history as explanatory variables differs for threat vs naturalization.
87 We evaluate these hypotheses in a hierarchical Bayesian regression framework – allowing
88 us to quantify uncertainty in analyses, and to better compare effect sizes among predictors.


Fig. 1. Phylogeny of the 207 angiosperm families. Families included have at least one species vetted by the IUCN and less than 100% of species categorized as either threatened or naturalized. Internal branches (*left*) show family level diversification rate, $\log(\text{species richness})/\text{clade age}$ (ancestral state reconstruction calculated using *fastAnc* in the *phytools* R package). Proportion IUCN vetted species classed as globally threatened in red (*middle*), and proportion of all species in the family naturalized in blue (*right*).

Results


Across angiosperm families, the proportion of vetted species classed as threatened was negatively related to the frequency of naturalized species (Fig. 2). In separate models predicting the proportion by family of threatened to vetted species or naturalized to total species as a function of traits and evolutionary history, the proportion threatened was positively related and the proportion naturalized negatively related – to family age and diversification rate (Fig. 3). Trait covariates also showed opposing patterns for threatened and naturalized models. Threat was lower in families with greater climate variability (number of climate zones occupied), and those characterized by many interspecific hybrids and predominantly herbaceous life forms, and higher in families that included animal pollinated species (Fig. 3). In contrast, proportion naturalized per family was positively related to herbaceous growth form, climate variability, number of interspecific hybrids, and the presence of species with asexual seed production, and annual life-histories, but negatively correlated with animal pollination (Fig. 3). Notably, the negative effect sizes of diversification rate and family age on proportion naturalized were greater in magnitude than the positive effects of these same factors on proportion threatened (Fig. 3).

Model fit (normalized root mean squared error: *NRMSE*) for threat (*NRMSE* = 0.20, *sd* = 0.03) was better than for naturalization (*NRMSE* = 0.54, *sd* = 0.08). And, contrary to expectations, the proportion of the variance in family level effects explained by the Brownian phylogenetic component (phylogenetic heritability, Lynch's λ), was higher for


116 naturalization ($\lambda = 0.93$, $sd = 0.08$) than threat ($\lambda = 0.25$, $sd = 0.22$, Fig. 4). Sensitivity
117 analyses using the total number of species per family rather than IUCN vetted species in
118 the binomial response ($NRMSE = 0.49$, $sd = 0.06$, Tables S3,S4) and excluding family
119 level effects ($NRMSE = 0.55$, $sd = 0.03$, S3.1) both reduced threat model fit,
120 demonstrating the importance of controlling for data deficiencies and family level
121 variation not accounted for by trait data. Sensitivity analyses investigating the proportion
122 of invasive rather than naturalized species per family also reduced model fit ($NRMSE =$
123 0.78 , $sd = 0.11$) likely reflecting the smaller number of taxa classed as invasive, and
124 perhaps the more arbitrary application of the invasive vs naturalized label.

125
126 **Fig. 2. Estimated model parameters for predicting proportion threatened.** Regression
127 coefficients and 80% credible intervals for hierarchical effects by family among the 236
128 families with IUCN vetted species as a function of the number of naturalized species,
129 while adjusting for diversification rate (log(family size)/family age) and family-level
130 effects.

131
132 **Fig. 3. Estimated model parameters for threatened and invasive.** Regression
133 coefficients and hierarchical standard deviations, with 80% credible intervals, by family
134 (red) among the 267 families with IUCN vetted species and the proportion naturalized
135 (blue) among all species per family for all 395 families included in the study. Squares
136 (rather than triangles) indicate variables with opposite effects on naturalized vs threatened
137 status, pale triangles credible intervals overlapping zero.

138

139
140
141
142
143
144

Fig. 4. Family-level hierarchical effects for the full model. Proportion IUCN vetted species threatened per family (top row), and the proportion naturalized (bottom row) among all species per family, separated into Brownian phylogenetic, non-phylogenetic, and total family effects (Brownian + non-phylogenetic). Purple bars indicate positive effects, orange bars indicate negative effects, and bar lengths indicate the relative magnitude of the mean estimated effect per family.

145

Discussion

146
147
148
149
150
151
152
153
154

At the global scale, we show that the drivers of threat and naturalization across angiosperms are opposing, and that this can be explained by divergent macro-evolutionary and ecological trait relationships. We note that models excluding family-specific effects or phylogeny were poorer fits, indicating that a large component of the variation among families still remains unexplained; and family-level estimates of age and diversification rate (not entirely separable) may not optimally capture the signature of macroevolutionary processes towards the present. Nonetheless, our results provide the first quantitative support at a global scale across angiosperms for the hypothesis that naturalization and threat represent “two sides of the same coin” (Schmidt *et al.* 2012, Bradshaw *et al.* 2008).

155
156
157
158
159
160
161
162
163
164

Consistent with previous studies (Davies *et al.* 2011), diversification rate was positively related to proportion threatened per family. In contrast, naturalization was negatively related to both diversification rate and family age. Fast diversifying clades are often associated with localized radiations that give rise to many endemics with narrow ranges that are restricted to particular habitat types (*e.g.* many plant lineages in the Fynbos, South Africa, have diversified rapidly, and are characterized by a high diversity of narrowly distributed species, frequently restricted to particular soil types). This high ecological specialization likely restricts geographical expansion and naturalization outside of the native range, resulting in a negative correlation between diversification and naturalization. More established lineages, and those in older families may have had more time to spread

165 and thus have had more opportunities to become naturalized outside of their native range.
166 However, as species age they may also contract in their geographic extent, especially if
167 the environmental conditions which favored their initial expansion change (c.f. taxon
168 cycle: Ricklefs & Bermingham 2002). Species experiencing range contraction are also less
169 likely to become naturalized elsewhere. As only old families can contain old species, this
170 could lead to a negative correlation between naturalization and family age. The magnitude
171 of the negative effects of diversification rate and family age on naturalization were also
172 somewhat greater than those of the positive effects on threat. Contrary to initial
173 expectations, after adjusting for macroevolutionary and life-history predictors, we also
174 found that in the naturalization model, a larger fraction of variance in family level effects
175 was attributable to Brownian phylogenetic effects, compared to the equivalent model for
176 threat. We suggest that one possible explanation for the weaker signature of
177 macroevolutionary process on threat is the mixing of threatened taxa found within both
178 young and old clades such that observed threat captures two independent processes.

179 The opposing relationship between threat and naturalization was also manifested in the
180 trait syndromes that characterize either status. Naturalization was positively related to
181 herbaceous growth form, climate variability, frequency of interspecific hybrids, asexual
182 seed production, and annual life history, and negatively related to animal pollination;
183 whereas threat was negatively related to herbaceous growth form, climate variability, and
184 frequency of interspecific hybrids, and positively to animal pollination and variation in
185 growth form. The correlations we detect among angiosperm families match closely to
186 expectations from theory and existing comparative studies across various scales (Table 1)
187 – with naturalization characterized by habitat/climatic generalism, short generation time,
188 asexuality and polyploidy, and threat by habitat specialism and endemism, dependence on
189 mutualists, and diploidy.

190 That we recover such strong associations at higher taxonomic levels and at a global scale
191 is notable and suggests that the trait signatures characterizing threat and naturalization in
192 the present day extend back over deep evolutionary time. Thus, while particular trait
193 syndromes appear to predispose some species to higher risk of extinction and others to
194 ecological expansion, this might not translate straightforwardly to long-term
195 macroevolutionary dynamics. For example, the traits characteristic of threatened species
196 today may be features that permit chronically rare species to persist (e.g. the directed
197 movement of pollen by an animal vector) and, by limiting outcrossing, allow adaptation to
198 spatially restricted environmental conditions (Vermeij & Grosberg 2018). An alternative
199 strategy – promoting colonization and expansion at range margins – relies on features such
200 as abiotic pollination, asexual seed production, and, to enable rapid niche shifts in the face
201 of novel climatic conditions or sudden environmental change, hybridization and
202 polyploidy (Baniaga *et al.* 2019). Both strategies thus represent successful macro-
203 evolutionary syndromes, but under contrasting selective regimes. Include a Discussion
204 that summarizes (but does not merely repeat) your conclusions and elaborates on their
205 implications. There should be a paragraph outlining the limitations of your results and
206 interpretation, as well as a discussion of the steps that need to be taken for the findings to
207 be applied. Please avoid claims of priority.

208 Materials and Methods

209 Data

210 To estimate species richness, we tabulated the number of species (including interspecific
211 hybrids) within each of 404 angiosperm families (per APG3, Angiosperm Phylogeny

Group 2009) from The Plant List (TPL, <http://www.theplantlist.org/>) – counting only the 301,639 species with ‘accepted’ names. To determine the number of species in each class, we compiled a list of all angiosperms labeled as 1) naturalized (12,256 species) in any region, globally, from the GloNAF database (van Kleunen 2019); 2) ‘invasive’ (4,540 species) from Randall (2017); and 3) as ‘threatened’ (12,894 species), if listed as globally “Vulnerable” or more threatened by the International Union for the Conservation of Nature (<https://www.iucnredlist.org/>, accessed March 11, 2019). We labeled species as ‘not threatened’ if listed as ‘Least Concern’, ‘Near Threatened’ or ‘data deficient’ by the IUCN. To control for study effort, we summed the number of species per family that have currently been assessed by the IUCN. In all cases (naturalized, invasive, threatened and vetted), we filtered species through TPL to include only accepted names. Of the 404 families, 239 included a naturalized species, 196 included an invasive species, 237 included an IUCN-vetted species, and all vetted families included a threatened species.

For family level trait data, we retrieved binary data on climate zones (tropical, subtropical, temperate, frigid zone) occupied, and presence of animal pollination and fleshy fruits – from the Watson and Dallwitz (1992 onward) online key to angiosperm families. To capture variability in climate tolerance, we summed the number of climate zones (1-4) reported among species within each family. Animal pollination and fleshy fruits were coded for each family as 1 if biotic pollination (346 families) or fleshy fruits (77 families) was the sole mode, 0.5 if multiple traits (biotic and abiotic pollination (13 families) or fleshy and non-fleshy fruits, 130 families), and 0 if only abiotic pollination (45 families) or dry fruits (197 families) are known. From Watson and Dallwitz and data from the Plants National Database (<https://plants.sc.egov.usda.gov/>), we labeled families as known to include annual species (1, 99 families) or otherwise (0, 305 families). From Zanne *et al.* (2014) and Hawkins *et al.* (2011) we classified families as predominantly herbaceous (1, 156 families), predominantly woody (0, 192 families), or mixed (0.5, 56 families). Lastly, we used data from Hojsgaard *et al.* (2014) to identify families in which asexual seed production (1, 173 families) is known to occur vs all other families (0, 231 families).

For estimates of age and diversification rates, we relied on stem family ages from the Zanne *et al.* (2014) phylogeny of vascular plants. Zanne *et al.* first used a method of congruification to make their tree ultrametric based on the phylogeny of Soltis *et al.* (2011). Branch lengths were then time-scaled using 39 fossil calibration points, which at the time represented the most reliable set of fossils spanning the angiosperm phylogeny.

245 Statistical Analysis

We used Bayesian binomial-logit multilevel regressions to model the proportion of species threatened and naturalized plants per family. To assess the relationship between threat and naturalization, we fit an initial model with, for each family, the proportion of all species naturalized, and family age and diversification rate as continuous predictors, and with the proportion of vetted species (those assessed by the IUCN) that have been classed as threatened as the response. To aid in the comparison of effect sizes across continuous and binary predictors, we log-transformed, centered and scaled to a standard deviation of 0.5 all continuous predictors prior to analyses. To identify traits associated with the proportion of species threatened and naturalized per family, we fit two additional models that included family-level traits, and family age and diversification rate. We calculated diversification rate as $\log(N)/\text{clade age}$, which is the maximum likelihood estimate of diversification rate assuming negligible extinction (eq. 3 in Magallon & Sanderson 2001). A more complex formulation (eq. 6 in Magallon & Sanderson 2001) allows a constant

extinction, but empirically, family level diversification rates estimates are little influenced (Jansson & Davies 2008). To account for phylogenetic non-independence and family-level effects in all models, we included hierarchical effects by family separated into phylogenetic (assuming a Brownian motion model of evolution) and non-phylogenetic effects, following the additive quantitative genetic model adapted to interspecific data. The correlation matrix for determining family-level Brownian phylogenetic effects was calculated from the Zanne *et al.* (2014) phylogeny of vascular plants pruned to a single representative species per family.

We fit all models in Stan version 2.18.0 (The Stan Development Team) accessed using the R package *brms* version 2.7.0 (Buerkner 2017). We fit models with the *brms* default priors, which use a uniform prior for the regression coefficients, and half-Student's *t* distributions with three degrees of freedom and scale parameter of 10 for the variance components of the family-level effects. As these represent extremely weak priors, for the simplified and full threatened models we also explored the use of alternative custom priors (normal (0,1.5) for regression coefficients and normal (0,1) for family effect standard deviations), which provide more realistic expectations (Figs. S1, S2). We found a negligible influence of each set of priors on posterior estimates (Figs. S4, S5, S7, S8, S10, S11, S13, S14), and thus assumed the *brms* default priors for all other models. We ran models across four chains, with 10000 iterations per chain. For each chain, the first 5000 iterations were used as burn-in and discarded. The remaining iterations were thinned to retain every fourth iteration, resulting in a total of 5000 posterior draws. We diagnosed convergence by visual inspection of traceplots and observation of Rhat values equal to 1.0 for all estimated parameters, and we assessed model fit using posterior predictive checks (see Data & Code supplement) and root mean square error (*RMSE*). To compare model fits across varying responses, we calculated the normalized *RMSE* (*NRMSE*) scaling by the interquartile range of the observed data, and across all posterior samples. To calculate phylogenetic heritability (Lynch 1991) we used the *hypothesis* function in *brms* with the hypothesis $\sigma_{\text{2Brownian}} / (\sigma_{\text{2brownian}} + \sigma_{\text{family-specific}}) = 0$ across all posterior samples.

To explore the effect of including both Brownian and family-specific effects, we ran sensitivity models which fit the full threatened model with a) no family specific effects, b) only family specific effects, b) only Brownian effects. To determine the effect of using the number of IUCN vetted species rather than the total number of species per family, we fit the full threatened model with total species richness per family as *n* (the denominator) in the binomial model. Finally, to assess the sensitivity of the naturalized model results to the definition of an invasive species, we re-ran the naturalized model using the number of invasive species, defined by Randall (2017) as naturalized species that have spread and have significant ecological/economic impact.

References and Notes

Alstad, A.O. *et al.* The pace of plant community change is accelerating in remnant prairies. *Science Advances* **2**, p.e1500975 (2016).

Baniaga, A.E. *et al.* Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. *Ecology Letters* **23**, 68-78 (2019).

Bradshaw, C.J. *et al.* Threat or invasive status in legumes is related to opposite extremes of the same ecological and life-history attributes. *Journal of Ecology* **96**, 869-883 (2008).

306 Buerkner, P.C. brms: An R Package for Bayesian Multilevel Models Using Stan. *Journal*
307 *of Statistical Software* **80**, 1-28 (2017).

308
309 Corlett, R.T. Plant diversity in a changing world: status, trends, and conservation needs.
310 *Plant Diversity* **38**, 10-16 (2016).

311
312 Daru, B.H. *et al.* A global trend towards the loss of evolutionarily unique species in
313 mangrove ecosystems. *PloS One* **8**, p.e66686 (2013).

314
315 Davies, T.J. *et al.* Extinction risk and diversification are linked in a plant biodiversity
316 hotspot. *PLoS Biology* **9**, p.e1000620 (2011).

317
318 Davies, T.J. The macroecology and macroevolution of plant species at risk. *New*
319 *Phytologist* **222**, 708-713 (2019).

320
321 Ellstrand, N.C., Schierenbeck, K.A. Hybridization as a stimulus for the evolution of
322 invasiveness in plants? *Proceedings of the National Academy of Sciences* **97**,
323 7043–7050 (2000).

324
325 Godefroid, S. *et al.* Do plant reproductive traits influence species susceptibility to decline?
326 *Plant Ecology and Evolution* **147**, 154-164 (2014).

327
328 Guo, W.-Y. *et al.* The role of adaptive strategies in plant naturalization. *Ecology Letters*
329 **21**, 1380–1389 (2018).

330
331 Hamilton, M.A. *et al.* Life-history correlates of plant invasiveness at regional and
332 continental scales. *Ecology Letters* **8**, 1066-1074 (2005).

333
334 Hao, J.H. *et al.* A test of Baker's law: breeding systems of invasive species of Asteraceae
335 in China. *Biological Invasions* **13**, 571-580 (2011).

336
337 Hawkins, B.A. *et al.* Global angiosperm family richness revisited: linking ecology and
338 evolution to climate. *Journal of Biogeography* **38**, 1253-1266 (2011).

339
340 Hojsgaard, D. *et al.* *Critical Reviews in Plant Sciences* **33**, 414–27 (2014).

341
342 Jansson, R., Davies, T.J. 2008. Global variation in diversification rates of flowering
343 plants: energy vs. climate change. *Ecology Letters* **11**, 173-183.

344
345 Kueffer, C. Plant invasions in the Anthropocene. *Science* **358**, 724-725 (2017).

346
347 Lembrechts, J.J. *et al.* Disturbance is the key to plant invasions in cold environments.
348 *Proceedings of the National Academy of Sciences* **113**, 14061-14066 (2016).

349
350 Lockwood, J.L. *et al.* The role of propagule pressure in explaining species invasions.
351 *Trends in Ecology & Evolution* **20**, 223-228 (2005).

352
353 Magallon, S., Sanderson, M.J. 2001. Absolute diversification rates in angiosperm clades.
354 *Evolution* **55**, 1762-1780.

355

356 Pyšek, P. Is there a taxonomic pattern to plant invasions? *Oikos* 282-294 (1998).
357
358 Pyšek, P. *et al.* Naturalized alien flora of the world. *Preslia* **89**, 203-274 (2017).
359
360 Rabinowitz D. *et al.* Seven forms of rarity and their frequency in the flora of British Isles.
361 In: Soule M. (ed.), *Conservation Biology: The science of scarcity and diversity*.
362 Sinauer Associates, Sunderland, 1882–1204 (1986).
363
364 Randall, R.P. *A global compendium of weeds* (No. Ed. 3). R.P. Randall (2017).
365
366 Razanajatovo, M. *et al.* Autofertility and self-compatibility moderately benefit island
367 colonization of plants. *Global Ecology and Biogeography* **28**, 341–352 (2019).
368
369 Richardson, D.M., Pyšek, P. Plant invasions: merging the concepts of species invasiveness
370 and community invasibility. *Progress in Physical Geography* **30**, 409-431 (2006).
371
372 Ricklefs, R.E., Bermingham, E. The concept of the taxon cycle in biogeography. *Global
373 Ecology and Biogeography* **11**, 353-361 (2002).
374
375 Schmidt, J. P. *et al.* Cost-sensitive risk assessment for invasive plants in the United States.
376 *Ecosphere* **3**:art46 (2012).
377
378 Schwartz, Mark W., Simberloff, D. Taxon size predicts rates of rarity in vascular plants.
379 *Ecology Letters* **4**, 464–69 (2001).
380
381 Seebens, H. *et al.* No saturation in the accumulation of alien species worldwide. *Nature
382 Communications* **8**, 14435 (2017).
383
384 Simberloff, D. The role of propagule pressure in biological invasions. *Annual Review of
385 Ecology, Evolution, and Systematics* **40**, 81-102 (2009).
386
387 Soltis, D. E. *et al.* Angiosperm phylogeny: 17 genes, 640 taxa. *American Journal of
388 Botany* **98**, 704–730 (2011).
389
390 The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group
391 classification for the orders and families of flowering plants: APG III. *Botanical
392 Journal of the Linnean Society* **161**, 105–121 (2009).
393
394 The Stan Development Team. Stan Modeling Language User’s Guide and Reference
395 Manual.
396
397 Thuiller, W. *et al.* Consequences of climate change on the tree of life in Europe. *Nature
398* **470**, 531–534 (2011).
399
400 Vamosi, J.C., Wilson, J.R. Nonrandom extinction leads to elevated loss of angiosperm
401 evolutionary history. *Ecology Letters* **11**, 1047-1053 (2008).
402
403 Vamosi, J.C. *et al.* Macroevolutionary patterns of flowering plant speciation and
404 extinction. *Annual Review of Plant Biology* **69**, 685-706 (2018).
405

406 van Kleunen, M. *et al.* Economic use of plants is key to their naturalization success.
407 *Nature Communications* **11**, 1-12 (2020).

408

409 van Kleunen, M. *et al.* The Global Naturalized Alien Flora (Glo NAF) database. *Ecology*
410 **100**, e02542 (2019).

411

412 Vermeij, G.J., Grosberg, R.K. Rarity and persistence. *Ecology Letters* **21**, 3-8 (2018).

413

414 Watson, L., Dallwitz, M.J. The families of flowering plants: descriptions, illustrations,
415 identification, and information retrieval. *World Wide Web: http://delta-intkey.*
416 *com/angio/, version, 25 (1992 onwards)*.

417

418 Willis, C.G. *et al.* Phylogenetic patterns of species loss in Thoreau's woods are driven by
419 climate change. *Proceedings of the National Academy of Sciences* **105**, 17029-
420 17033 (2008).

421

422 Wilson, J.R. *et al.* Residence time and potential range: crucial considerations in modelling
423 plant invasions. *Diversity and Distributions* **13**, 11-22 (2007).

424

425 Winter, M. *et al.* Plant extinctions and introductions lead to phylogenetic and taxonomic
426 homogenization of the European flora. *Proceedings of the National Academy of*
427 *Sciences* **106**, 21721-21725 (2009).

428

429 Yessoufou, K., Davies, T.J. Reconsidering the Loss of Evolutionary History: How Does
430 Non-random Extinction Prune the Tree-of-Life? In *Biodiversity conservation and*
431 *phylogenetic systematics* (pp. 57-80). Springer, Cham (2016).

432

433 Zanne, A.E. *et al.* Three keys to the radiation of angiosperms into freezing environments.
434 *Nature* **506**, 89-92 (2014).

435

Acknowledgments:

436 **Funding:** We thank the Macroecology of Infectious Disease Research Coordination
437 Network, funded by NSF (DEB 1316223), for facilitating discussion among the authors,
438 and for supporting MJF as a postdoctoral research associate.

439 **Author contributions:** JPS, MJF, and TJD designed the study. JPS compiled the data.
440 MJF conducted the analyses. JPS wrote the manuscript with input from TJD and MJF. The
441 authors declare no conflicts of interest.

442 **Competing interests:** Include any financial interests of the authors that could be
443 perceived as being a conflict of interest. Also include any awarded or filed patents
444 pertaining to the results presented in the paper. If there are no competing interests, please
445 state so.

446 **Data and materials availability:** All data and code necessary to reproduce the results are
447 included in <https://figshare.com/s/6d032d41cf669f4bd6e1> (reserved DOI:
448 10.6084/m9.figshare.11372037).

Opposing macroevolutionary and trait-mediated patterns of threat and naturalization in flowering plants

Supplementary Materials

J.P. Schmidt^{1,2*}, Maxwell J. Farrell^{2,3} & T. Jonathan Davies^{4,5}

³Odum School of Ecology, University of Georgia

²Center for the Ecology of Infectious Diseases, University of Georgia

³Ecology & Evolutionary Biology Department, University of Toronto

⁴Botany, Forest & Conservation Sciences, University of British Columbia

⁵African Centre for DNA Barcoding, University of Johannesburg

*To whom correspondence should be addressed: e-mail: jpschmidt270@gmail.com

1 Exploration of priors

As a default for binomial-logit models, the *brms* package uses extremely flat priors for the regression coefficients and standard deviation parameters. These are improper unbounded uniform priors, and a half Student t distribution with three degrees of freedom and a scale parameter of ten, respectively. To explore the influence of these priors, and their impact on model performance, we compare them to custom priors reflecting recommendations by Richard McElreath in his textbook *Statistical Rethinking* (a normal(0,1.5) and half-normal(0,1) respectively).

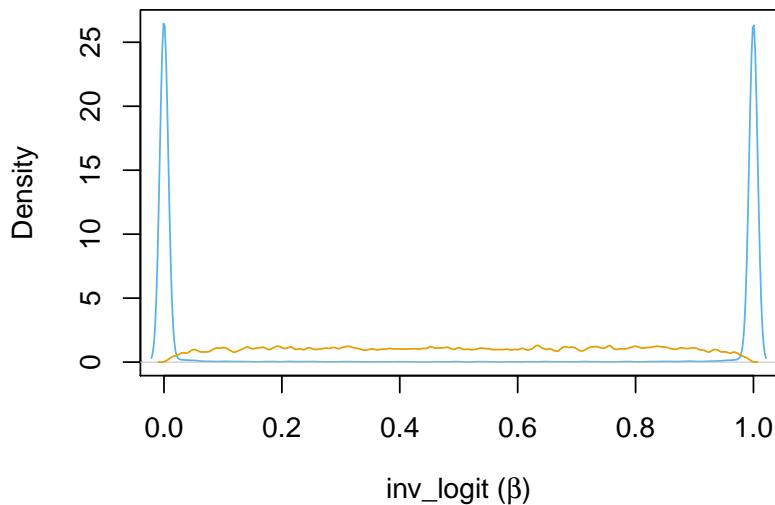


Figure SM 1: Priors on the regression coefficients for the *brms* default (blue), and custom (yellow) priors

The default improper uniform prior used by *brms* is flat on the log-odd scale, so when converted to the probability scale, puts excess mass near 0 and 1. A Normal(0, 1.5) prior is more reasonable, having a flatter distribution with a mode at 0.5 on the probability scale.

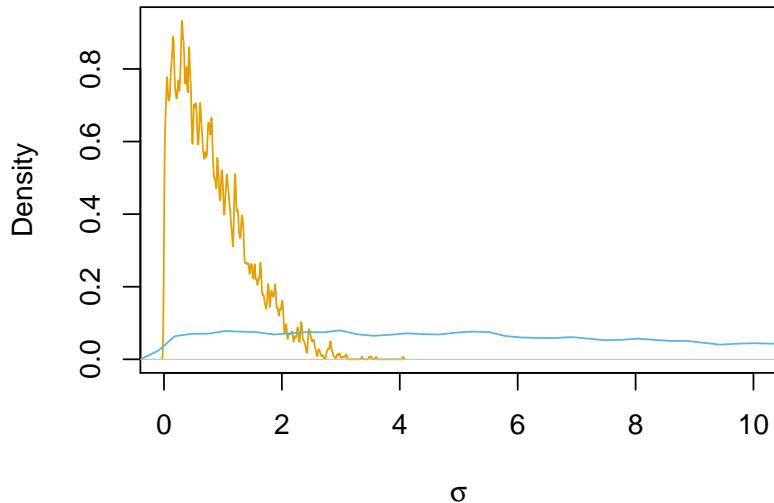


Figure SM 2: Priors on the regression coefficients for the *brms* default (blue), and custom (yellow) priors

The *brms* prior is extremely long tailed. Considering we are fitting a non-linear model in which changes in log-odds over over 4 have a diminishing influence due to the ceiling effect of the binomial distribution. With this in mind, a prior of $\text{Normal}(0,1)$ constrains the posterior to a more realistic range, and is likely to improve sampling efficiency.

To explore the impact of each of these priors, we fit the simple and full threatened models using each set of priors, and visualize the relationships between the priors and associated posteriors for two representative parameters. Overall, the choice of prior was found to have no influence on the posterior parameter estimates in these two models, so we used the *brms* defaults for all other models.

2 Main models

2.1 Simple threatened model - *brms* default priors

	mean	sd	2.5%	50%	97.5%	n.eff	Rhat
Number of naturalized species	-0.97	0.20	-1.37	-0.97	-0.56	4320.48	1.00
Diversification rate	1.67	0.35	1.00	1.66	2.36	4526.64	1.00
Family age	1.33	0.33	0.68	1.33	1.98	4473.99	1.00
SD brownian effects	0.98	0.20	0.59	0.98	1.37	991.53	1.00
SD family specific effects	0.60	0.14	0.28	0.61	0.83	813.83	1.00

Table SM 1: Summary of model output for β and σ parameters, including posterior means, posterior standard deviations, 2.5%, 50%, and 97.5% quantiles, the effective sample size (n_eff), and the potential scale reduction statistic (Rhat). n=236; RMSE=5.95 (+/- 0.73 SD); NRMSE = 0.20 (+/- 0.03).

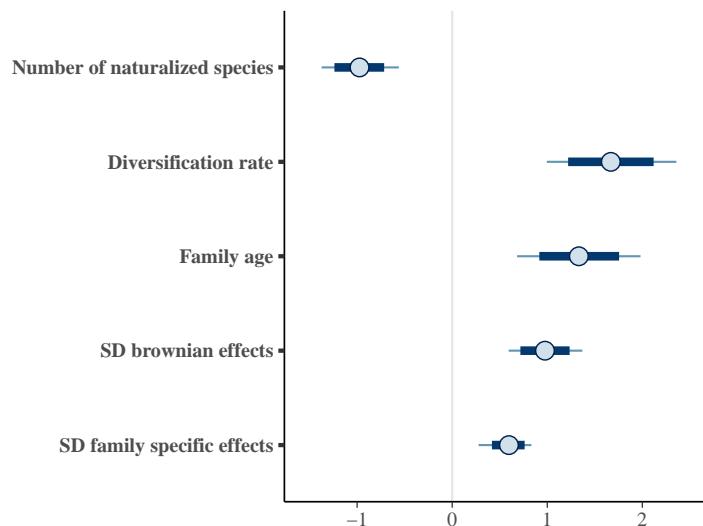


Figure SM 3: Forest plot for estimated β and σ parameters for the simple threatened model. Points represent posterior means, with thick lines representing 80% credible intervals, and thin lines representing 95% credible intervals.

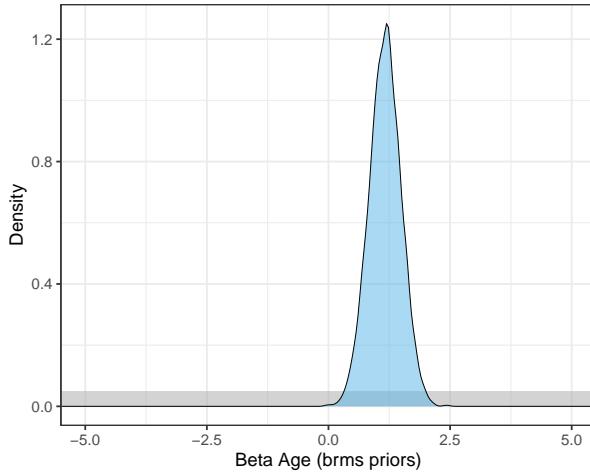


Figure SM 4: Prior (grey) and posterior (blue) distributions for the Age regression coefficient for the simple rarity model using *brms* priors. The improper uniform prior was restricted to (-10,10) to aid visualization.

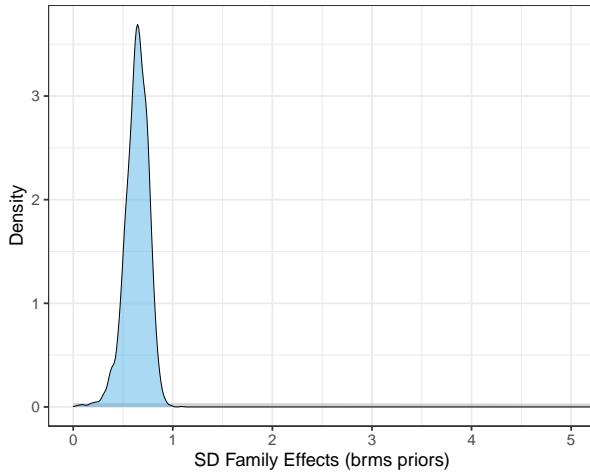


Figure SM 5: Prior (grey) and posterior (blue) distributions for the Family Effects standard deviation parameter for the simple rarity model using *brms* priors.

2.2 Simple threatened model - custom priors

Table SM 1: Summary of model output for β and σ parameters, including posterior means, posterior standard deviations, 2.5%, 50%, and 97.5% quantiles, the effective sample size (n_eff), and the potential scale reduction statistic (Rhat). n=236; RMSE=5.93 (+/- 0.73 SD); NRMSE = 0.20 (+/- 0.03).

	mean	sd	2.5%	50%	97.5%	n.eff	Rhat
Number of naturalized species	-0.91	0.20	-1.29	-0.91	-0.52	4462.00	1.00
Diversification rate	1.52	0.33	0.87	1.52	2.16	4579.12	1.00
Family age	1.20	0.32	0.57	1.20	1.82	4506.43	1.00
SD brownian effects	0.95	0.19	0.59	0.95	1.33	1175.25	1.00
SD family specific effects	0.61	0.13	0.30	0.62	0.83	1044.40	1.00

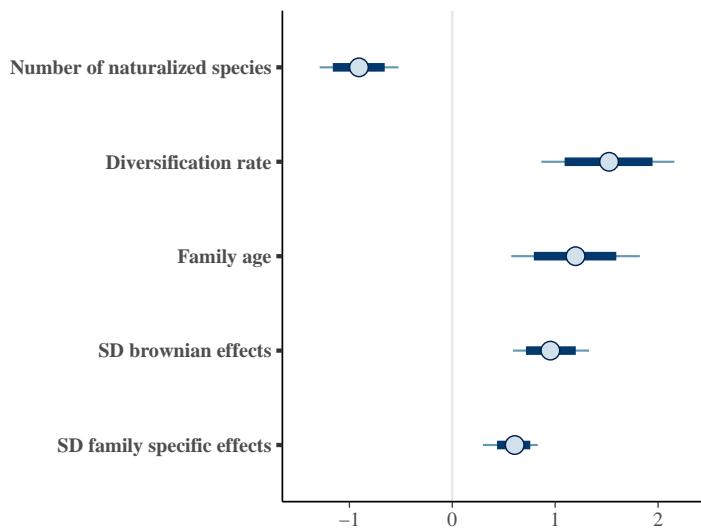


Figure SM 6: Forest plot for estimated β and σ parameters for the simple threatened model with custom priors. Points represent posterior means, with thick lines representing 80% credible intervals, and thin lines representing 95% credible intervals.

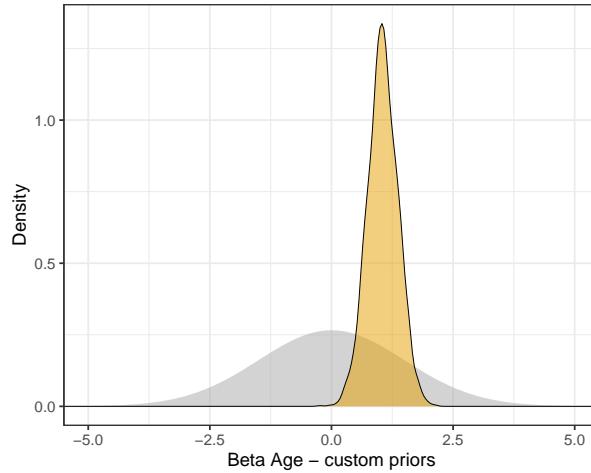


Figure SM 7: Prior (grey) and posterior (yellow) distributions for the Age regression coefficient for the simple rarity model using custom priors. The improper uniform prior was restricted to (-10,10) to aid visualization.

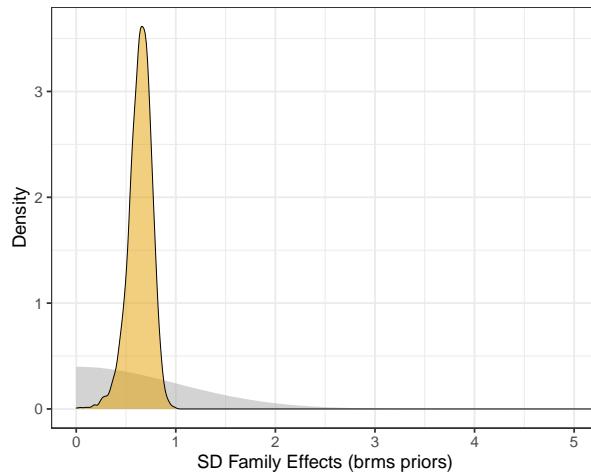


Figure SM 8: Prior (grey) and posterior (yellow) distributions for the Family Effects standard deviation parameter for the simple rarity model using custom priors.

2.3 Full threatened model - IUCN vetted species - *brms* default priors

	mean	sd	2.5%	50%	97.5%	n_eff	Rhat
Diversification rate	0.47	0.33	-0.18	0.47	1.13	4411.32	1.00
Famly age	0.42	0.31	-0.17	0.42	1.01	4175.69	1.00
Woodiness	0.61	0.14	0.34	0.61	0.87	3874.33	1.00
Herbaceous	-1.05	0.23	-1.48	-1.05	-0.59	2332.31	1.00
Climate sum	-0.26	0.10	-0.45	-0.26	-0.07	4508.21	1.00
Number of species hybrids	-0.18	0.13	-0.43	-0.18	0.08	4658.36	1.00
Hermaphroditic	0.13	0.23	-0.30	0.12	0.58	4991.91	1.00
Dioecious	-0.18	0.15	-0.48	-0.18	0.13	4657.14	1.00
Monoecious	-0.14	0.16	-0.45	-0.15	0.17	4848.15	1.00
Asexual	0.05	0.16	-0.28	0.05	0.37	4352.38	1.00
Fleshy fruit	0.03	0.15	-0.25	0.03	0.32	4339.32	1.00
Animal pollinated	0.55	0.25	0.05	0.55	1.04	4139.00	1.00
SD brownian effects	0.52	0.28	0.04	0.53	1.06	472.22	1.01
SD family specific effects	0.73	0.12	0.47	0.74	0.92	795.47	1.01

Table SM 2: Summary of model output for β and σ parameters, including posterior means, posterior standard deviations, 2.5%, 50%, and 97.5% quantiles, the effective sample size (n_eff), and the potential scale reduction statistic (Rhat). n=236; RMSE=5.94 (+/- 0.72 SD); NRMSE = 0.20 (+/- 0.03).

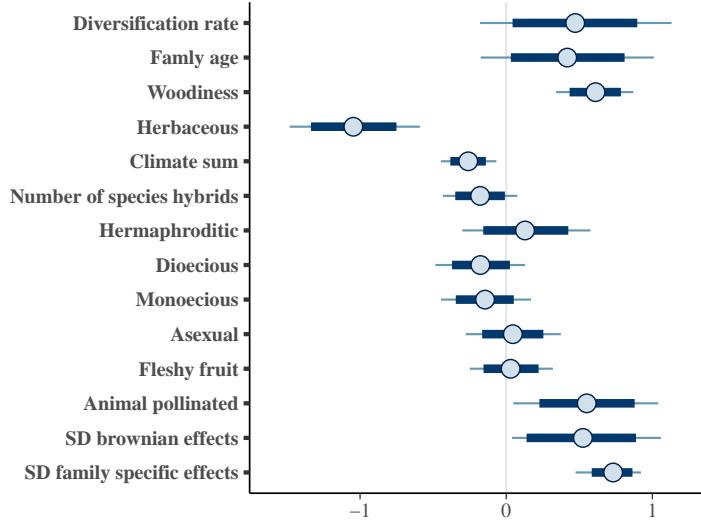


Figure SM 9: Forest plot for estimated β and σ parameters for the full threatened model with IUCN vetted species. Points represent posterior means, with thick lines representing 80% credible intervals, and thin lines representing 95% credible intervals.

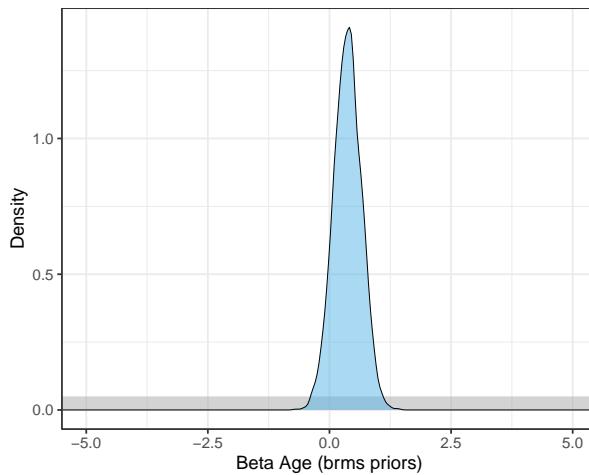


Figure SM 10: Prior (grey) and posterior (blue) distributions for the Age regression coefficient for the full rarity model using *brms* priors. The improper uniform prior was restricted to (-10,10) to aid visualization.

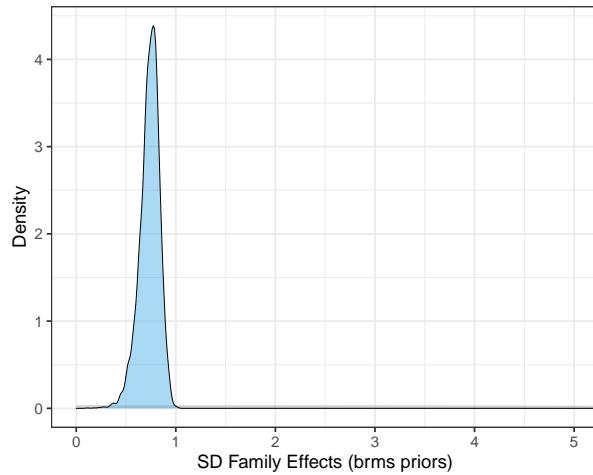


Figure SM 11: Prior (grey) and posterior (blue) distributions for the Family Effects standard deviation parameter for the full rarity model using *brms* priors.

2.4 Full threatened model - IUCN vetted species - custom priors

	mean	sd	2.5%	50%	97.5%	n_eff	Rhat
Diversification rate	0.44	0.32	-0.20	0.44	1.07	4537.10	1.00
Famly age	0.40	0.29	-0.19	0.40	0.95	3913.99	1.00
Woodiness	0.61	0.13	0.35	0.61	0.87	4766.49	1.00
Herbaceous	-1.04	0.22	-1.46	-1.04	-0.59	3420.69	1.00
Climate sum	-0.26	0.09	-0.44	-0.26	-0.07	4853.71	1.00
Number of species hybrids	-0.18	0.13	-0.43	-0.18	0.08	5120.11	1.00
Hermaphroditic	0.14	0.23	-0.32	0.14	0.58	4905.70	1.00
Dioecious	-0.18	0.15	-0.46	-0.18	0.12	4982.72	1.00
Monoecious	-0.14	0.15	-0.44	-0.14	0.16	4151.91	1.00
Asexual	0.04	0.16	-0.27	0.04	0.37	4815.08	1.00
Fleshy fruit	0.03	0.15	-0.25	0.03	0.33	4621.55	1.00
Animal pollinated	0.54	0.25	0.04	0.54	1.02	4005.88	1.00
SD brownian effects	0.49	0.26	0.03	0.50	1.00	798.59	1.00
SD family specific effects	0.74	0.11	0.50	0.75	0.92	1078.48	1.00

Table SM 2: Summary of model output for β and σ parameters, including posterior means, posterior standard deviations, 2.5%, 50%, and 97.5% quantiles, the effective sample size (n_eff), and the potential scale reduction statistic (Rhat). n=236; RMSE=5.93 (+/- 0.73 SD); NRMSE = 0.20 (+/- 0.03).

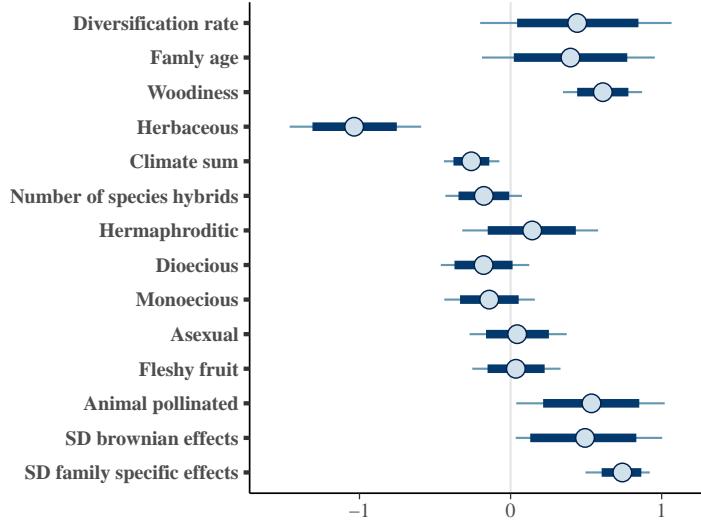


Figure SM 12: Forest plot for estimated β and σ parameters for the full threatened model with IUCN vetted species with custom priors. Points represent posterior means, with thick lines representing 80% credible intervals, and thin lines representing 95% credible intervals.

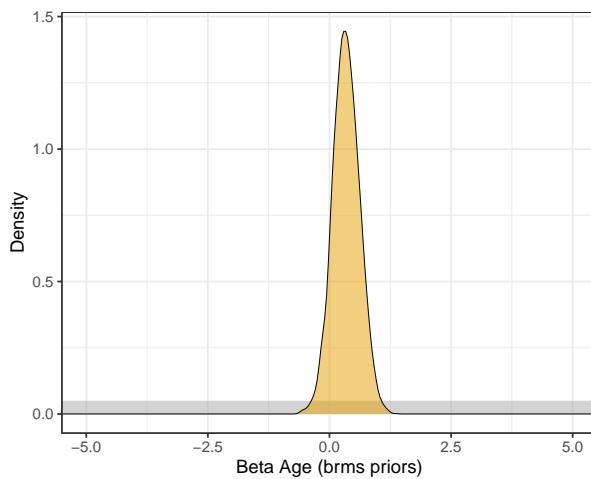


Figure SM 13: Prior (grey) and posterior (yellow) distributions for the Age regression coefficient for the full rarity model using custom priors. The improper uniform prior was restricted to $(-10, 10)$ to aid visualization.

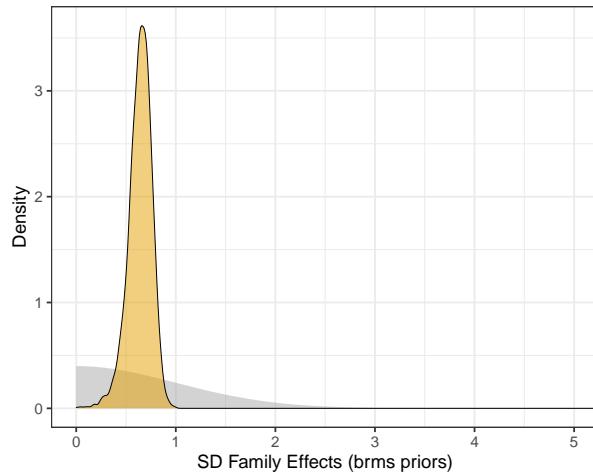


Figure SM 14: Prior (grey) and posterior (yellow) distributions for the Family Effects standard deviation parameter for the full rarity model using custom priors.

2.5 Naturalization model

	mean	sd	2.5%	50%	97.5%	n_eff	Rhat
Diversification rate	-1.25	0.25	-1.72	-1.25	-0.76	4733.68	1.00
Family age	-0.84	0.28	-1.38	-0.84	-0.30	4829.02	1.00
Hybrids	0.29	0.12	0.05	0.29	0.53	4517.69	1.00
Animal pollinated	-0.56	0.26	-1.06	-0.56	-0.05	4491.14	1.00
Fleshy fruit	-0.01	0.14	-0.28	-0.00	0.26	4757.24	1.00
Climate sum	0.33	0.09	0.14	0.33	0.51	4612.59	1.00
Herbaceous	0.64	0.21	0.24	0.64	1.05	4822.37	1.00
Annual	0.38	0.18	0.02	0.38	0.74	4643.58	1.00
Axsexual	0.45	0.17	0.10	0.45	0.79	4600.48	1.00
SD brownian effects	1.55	0.18	1.16	1.57	1.87	639.44	1.01
SD family specific effects	0.35	0.20	0.02	0.34	0.74	419.10	1.01

Table SM 3: Summary of model output for β and σ parameters, including posterior means, posterior standard deviations, 2.5%, 50%, and 97.5% quantiles, the effective sample size (n_eff), and the potential scale reduction statistic (Rhat). n=395; RMSE=7.57 (+/- 1.08 SD); NRMSE = 0.54 (+/- 0.08).

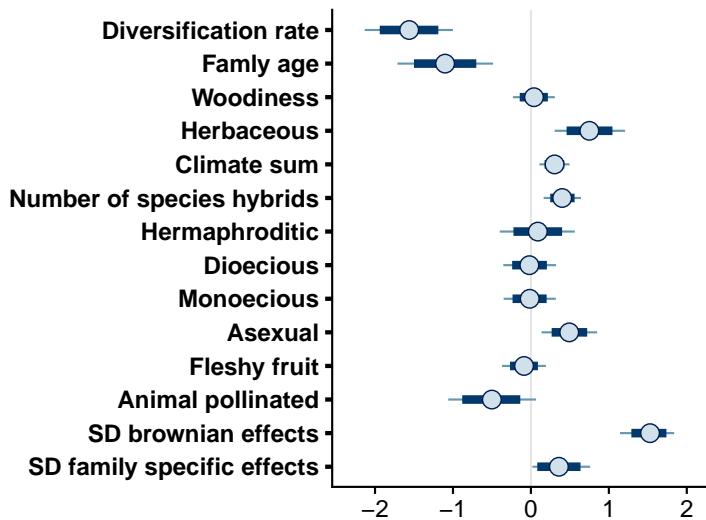


Figure SM 15: Forest plot for estimated β and σ parameters for the naturalization model. Points represent posterior means, with thick lines representing 80% credible intervals, and thin lines representing 95% credible intervals.

3 Sensitivity analyses

3.1 Full threatened model: no family effects

	mean	sd	2.5%	50%	97.5%	n_eff	Rhat
Diversification rate	0.18	0.09	-0.00	0.18	0.36	4842.48	1.00
Family age	0.21	0.09	0.04	0.21	0.38	4644.13	1.00
Woodiness	0.50	0.03	0.44	0.50	0.56	5171.53	1.00
Herbaceous	-0.71	0.05	-0.81	-0.71	-0.61	5069.99	1.00
Climate sum	-0.37	0.02	-0.41	-0.37	-0.32	4836.18	1.00
Number of species hybrids	-0.15	0.04	-0.24	-0.15	-0.07	4870.95	1.00
Hermaphroditic	0.19	0.06	0.07	0.19	0.31	4867.92	1.00
Dioecious	0.12	0.03	0.05	0.12	0.19	4568.06	1.00
Monoecious	-0.26	0.04	-0.34	-0.26	-0.18	4373.63	1.00
Asexual	0.18	0.03	0.11	0.18	0.25	4663.13	1.00
Fleshy fruit	-0.24	0.02	-0.28	-0.24	-0.20	4868.31	1.00
Animal pollinated	0.92	0.06	0.80	0.92	1.03	5010.02	1.00

Table SM 4: Summary of model output for β and σ parameters, including posterior means, posterior standard deviations, 2.5%, 50%, and 97.5% quantiles, the effective sample size (n_eff), and the potential scale reduction statistic (Rhat). n=236; RMSE=16.20 (+/- 0.98 SD); NRMSE = 0.55 (+/- 0.03).

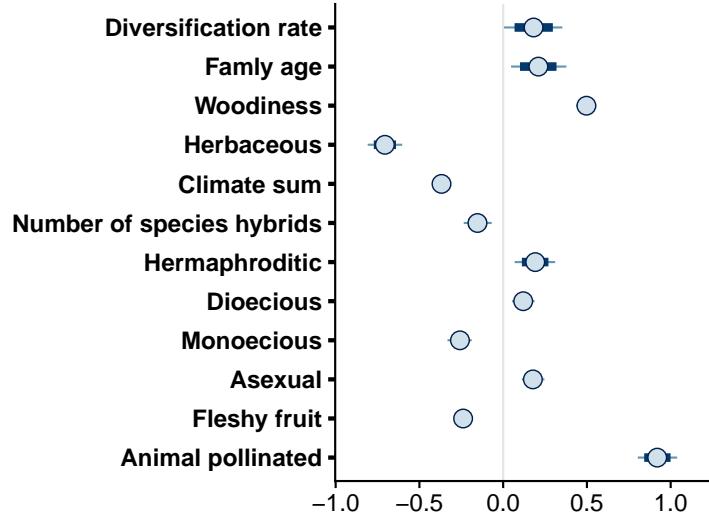


Figure SM 16: Forest plot for estimated β and σ parameters for the threatened model with no family effects. Points represent posterior means, with thick lines representing 80% credible intervals, and thin lines representing 95% credible intervals.

3.2 Full threatened model: only non-Brownian family effects

	mean	sd	2.5%	50%	97.5%	n_eff	Rhat
Diversification rate	0.47	0.32	-0.17	0.47	1.11	3299.25	1.00
Family age	0.49	0.29	-0.06	0.49	1.05	4013.44	1.00
Woodiness	0.65	0.12	0.41	0.65	0.88	3314.83	1.00
Herbaceous	-1.17	0.19	-1.55	-1.17	-0.80	3679.59	1.00
Climate sum	-0.27	0.09	-0.45	-0.27	-0.08	3554.38	1.00
Number of species hybrids	-0.17	0.13	-0.43	-0.17	0.09	4490.73	1.00
Hermaphroditic	0.13	0.23	-0.33	0.13	0.56	3460.29	1.00
Dioecious	-0.18	0.16	-0.47	-0.18	0.13	3374.37	1.00
Monoecious	-0.15	0.16	-0.46	-0.15	0.16	3365.90	1.00
Asexual	0.06	0.16	-0.26	0.06	0.37	3226.05	1.00
Fleshy fruit	0.04	0.15	-0.25	0.05	0.34	4319.92	1.00
Animal pollinated	0.63	0.24	0.16	0.63	1.10	4088.85	1.00
SD family specific effects	0.84	0.06	0.73	0.84	0.97	3310.40	1.00

Table SM 5: Summary of model output for β and σ parameters, including posterior means, posterior standard deviations, 2.5%, 50%, and 97.5% quantiles, the effective sample size (n_eff), and the potential scale reduction statistic (Rhat). n=236; RMSE=5.94 (+/- 0.71 SD); NRMSE = 0.20 (+/- 0.02).

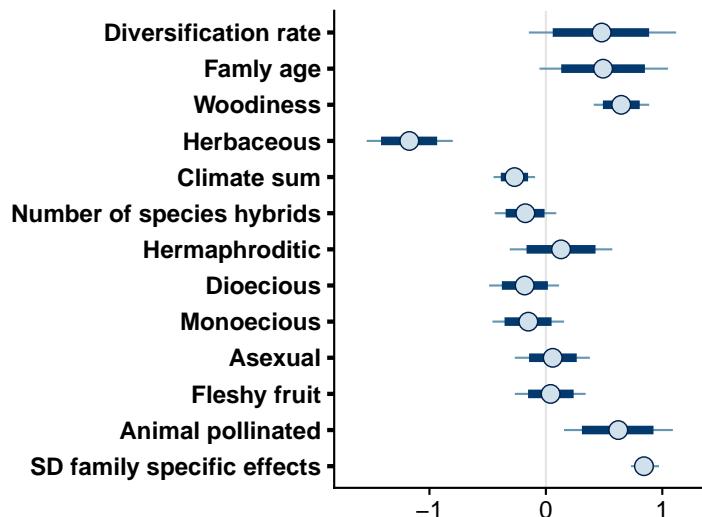


Figure SM 17: Forest plot for estimated β and σ parameters for the threatened model with non-Brownian family effects. Points represent posterior means, with thick lines representing 80% credible intervals, and thin lines representing 95% credible intervals.

3.3 Full threatened model: only Brownian family effects

	mean	sd	2.5%	50%	97.5%	n_eff	Rhat
Diversification rate	0.55	0.33	-0.12	0.55	1.18	3231.76	1.00
Family age	0.35	0.33	-0.31	0.35	0.99	2949.88	1.00
Woodiness	0.57	0.14	0.30	0.57	0.84	2759.86	1.00
Herbaceous	-0.89	0.23	-1.35	-0.89	-0.44	2846.98	1.00
Climate sum	-0.24	0.09	-0.42	-0.24	-0.05	3148.80	1.00
Number of species hybrids	-0.19	0.13	-0.44	-0.18	0.06	4371.60	1.00
Hermaphroditic	0.10	0.22	-0.34	0.10	0.54	3358.10	1.00
Dioecious	-0.19	0.15	-0.49	-0.19	0.09	3263.29	1.00
Monoecious	-0.09	0.15	-0.38	-0.10	0.20	3056.87	1.00
Asexual	0.01	0.16	-0.30	0.01	0.32	2792.53	1.00
Fleshy fruit	-0.08	0.12	-0.32	-0.08	0.17	4134.48	1.00
Animal pollinated	0.44	0.25	-0.04	0.44	0.94	3792.81	1.00
SD brownian effects	1.31	0.10	1.13	1.31	1.51	3628.27	1.00

Table SM 6: Summary of model output for β and σ parameters, including posterior means, posterior standard deviations, 2.5%, 50%, and 97.5% quantiles, the effective sample size (n_eff), and the potential scale reduction statistic (Rhat). n=236; RMSE=5.94 (+/- 0.71 SD); NRMSE = 0.20 (+/- 0.02).

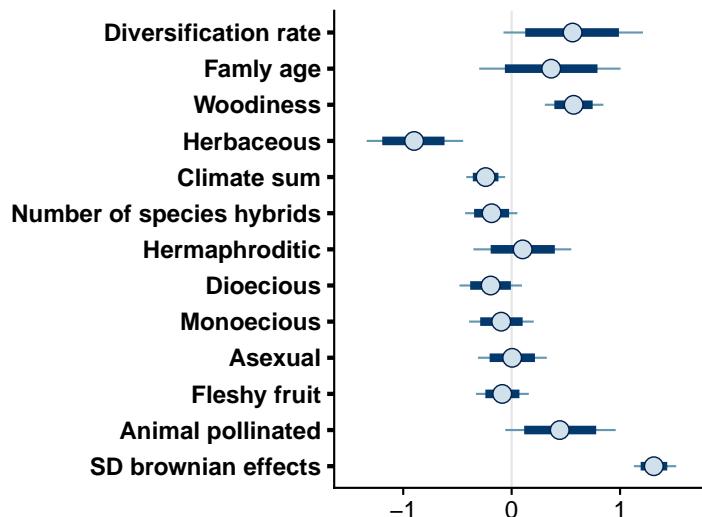


Figure SM 18: Forest plot for estimated β and σ parameters for the threatened model with Brownian family effects. Points represent posterior means, with thick lines representing 80% credible intervals, and thin lines representing 95% credible intervals.

3.4 Full threatened model: including non-IUCN vetted species

	mean	sd	2.5%	50%	97.5%	n_eff	Rhat
Diversification rate	0.69	0.36	0.00	0.69	1.40	4087.61	1.00
Famly age	0.51	0.32	-0.10	0.51	1.15	4584.84	1.00
Woodiness	-0.41	0.16	-0.73	-0.41	-0.10	3899.62	1.00
Herbaceous	-0.62	0.26	-1.12	-0.62	-0.13	2609.26	1.00
Climate sum	-0.18	0.11	-0.40	-0.18	0.03	4592.67	1.00
Number of species hybrids	0.03	0.16	-0.28	0.02	0.34	3696.19	1.00
Hermaphroditic	-0.11	0.27	-0.64	-0.12	0.41	4531.19	1.00
Dioecious	-0.19	0.19	-0.55	-0.19	0.16	4460.67	1.00
Monoecious	0.07	0.18	-0.29	0.07	0.44	4861.42	1.00
Asexual	0.15	0.21	-0.25	0.16	0.56	4629.34	1.00
Fleshy fruit	0.24	0.18	-0.12	0.24	0.60	5103.72	1.00
Animal pollinated	0.17	0.31	-0.41	0.17	0.78	4352.88	1.00
SD brownian effects	0.68	0.32	0.07	0.68	1.33	532.46	1.01
SD family specific effects	1.07	0.13	0.78	1.08	1.29	752.64	1.00

Table SM 7: Summary of model output for β and σ parameters, including posterior means, posterior standard deviations, 2.5%, 50%, and 97.5% quantiles, the effective sample size (n_eff), and the potential scale reduction statistic (Rhat). n=395; RMSE=6.82 (+/- 0.76 SD); NRMSE = 0.49 (+/- 0.05).

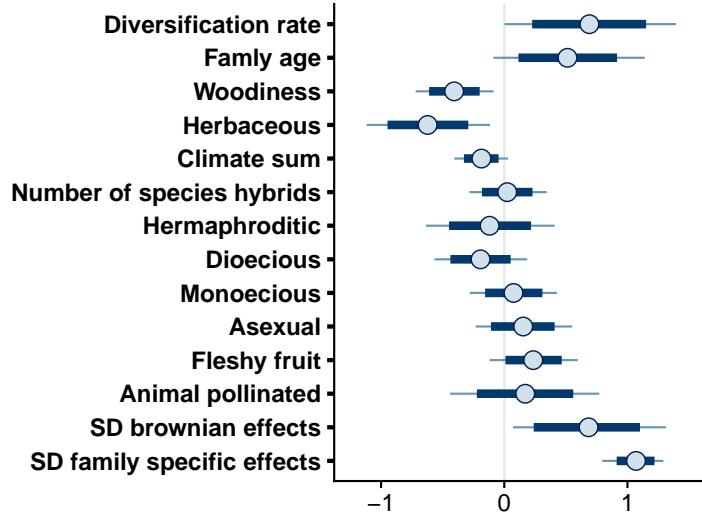


Figure SM 19: Forest plot for estimated β and σ parameters for the threatened model with non-IUCN vetted species. Points represent posterior means, with thick lines representing 80% credible intervals, and thin lines representing 95% credible intervals.

3.5 Invasive model

	mean	sd	2.5%	50%	97.5%	n_eff	Rhat
Diversification rate	-0.97	0.31	-1.56	-0.98	-0.33	4530.29	1.00
Family age	-0.76	0.35	-1.46	-0.76	-0.09	4119.70	1.00
Hybrids	0.35	0.15	0.05	0.35	0.63	4144.23	1.00
Animal pollinated	-0.42	0.32	-1.04	-0.42	0.21	3702.58	1.00
Fleshy fruit	0.07	0.16	-0.25	0.07	0.39	4626.87	1.00
Climate sum	0.18	0.11	-0.04	0.18	0.41	4319.14	1.00
Herbaceous	0.66	0.25	0.18	0.66	1.15	4057.81	1.00
Annual	0.22	0.21	-0.19	0.21	0.63	4291.63	1.00
Axsexual	0.42	0.21	0.01	0.43	0.82	3729.91	1.00
SD brownian effects	1.69	0.22	1.20	1.71	2.07	677.12	1.01
SD family specific effects	0.40	0.25	0.02	0.40	0.89	400.47	1.01

Table SM 8: Summary of model output for β and σ parameters, including posterior means, posterior standard deviations, 2.5%, 50%, and 97.5% quantiles, the effective sample size (n_eff), and the potential scale reduction statistic (Rhat). n=395; RMSE=4.68 (+/- 0.66 SD); NRMSE = 0.78 (+/- 0.11).

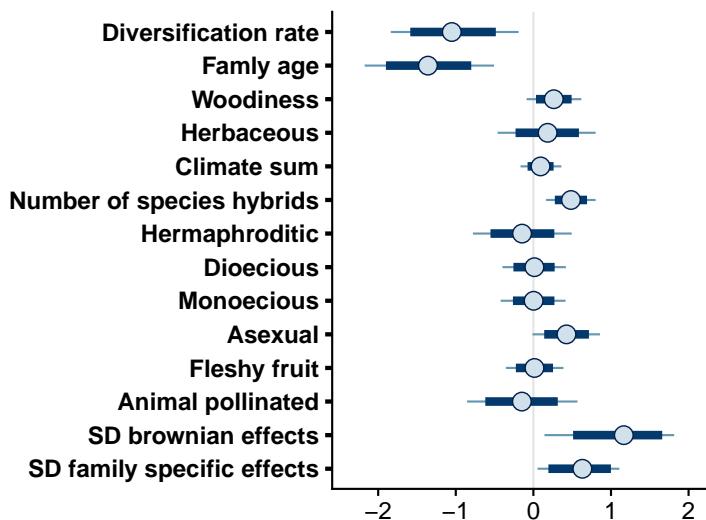


Figure SM 20: Forest plot for estimated β and σ parameters for the invasive model. Points represent posterior means, with thick lines representing 80% credible intervals, and thin lines representing 95% credible intervals.